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Dynamic compression of water 
to conditions in ice giant interiors
A. E. Gleason1,2*, D. R. Rittman2, C. A. Bolme3, E. Galtier4, H. J. Lee4, E. Granados4, S. Ali5, 
A. Lazicki5, D. Swift5, P. Celliers5, B. Militzer6, S. Stanley7,8 & W. L. Mao2

Recent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the 
phase diagram of  H2O at pressure–temperature conditions relevant to their planetary interiors. The 
unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are 
influenced by exotic high-pressure states of  H2O—yet the structure of ice in this state is challenging 
to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic 
(BCC) structured  H2O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser 
of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic 
compression. Although several cubic or orthorhombic structures have been predicted to be the stable 
structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and 
temperatures near the melt boundary. This suggests variable and increased electrical conductivity to 
greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.

Understanding the phase diagram of  H2O, a ubiquitous molecule in the Universe and a primary building block 
of volatile-rich giant planets, is of crucial importance for condensed matter physics, solid-state chemistry, and 
planetary science. During the formation of Uranus and Neptune in the outer region of our solar system, massive 
amounts of  H2O were accreted and are now stored at hundreds of GPa pressures in their  interiors1. During the 
visit of the Voyager II spacecraft, its magnetometer revealed surprising non-axisymmetric, non-dipolar magnetic 
fields for the ice giants that differed substantially from the strong dipolar fields of Jupiter and  Saturn2. Stanley and 
 Bloxham3,4 performed numerical dynamo simulations using model geometries to explain Uranus’ and Neptune’s 
anomalous fields—finding their non-dipolar, non-symmetric magnetic fields are generated by a combination 
of electromagnetic stresses perturbing the convecting ionic fluid which surrounds a layered, stratified interior. 
Knowing the phases and properties of  H2O at the pressure–temperature (P–T) conditions of ice giant interiors 
on their isentropes is critical for validating dynamo simulations—but they are not well understood.

Convection of electrically conducting fluids generates magnetic fields in planetary interiors. If dissociation 
of molecules occurs in water-rich planets, then total conductivity is comprised of an electronic and ionic con-
tribution. Ionic conduction is caused by the movement of negatively or positively charged ions and in the case 
of high-pressure  H2O ice, protonic conductivity properties are crucial to constrain planetary dynamo processes 
(e.g., Refs.5,6). The existence of a proton fluid and an oxygen sub-lattice in the superionic phase raises questions 
about the response of this phase to electromagnetic stress through protonic fluid motion. Theoretical work has 
suggested a body-centered cubic (BCC)7,8, face-centered cubic (FCC)9–11, or orthorhombic (e.g., Ref.12) structure 
of  H2O is stable at hundreds of GPa pressures and several thousand Kelvin, with bonding and transport proper-
ties consistent with a superionic phase.

More recent  work13,14 use optical reflectivity, absorption measurements, and X-ray diffraction (XRD) to 
demonstrate the low electronic conductivity of ice and provide experimental evidence for superionic conduc-
tion of water ice in an FCC crystal structure, stable at pressure (P), temperature (T) conditions of ~ 160 GPa and 
calculated 3000 K. The insulating solid ice phase at comparable pressure and below 2000 K, ice X, is known to 
have a BCC lattice structure, but does not have superionic properties. In contrast, we find the first XRD evidence 
for a BCC structure between ~ 100–200 GPa using compression-based solidification of liquid water calculated 
temperatures up to ~ 5000 K. This BCC crystal structure phase at these P–T conditions represents a new phase 
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of ice: ice XIX. Our constraints on the phase diagram of water ice near the conditions of the isentropes of ice 
giants, like Neptune and Uranus, have implications for their dynamos generating magnetic fields.

Results
Simultaneous, in situ XRD and velocimetry data combined with post-shot simulation work was used to examine 
the lattice structure, pressure, and temperature of  H2O. Here, atomic structure measurements of compressed 
liquid water (ρ0 = 1.0 g/cc; T0 = 288 K) were made using transmission in situ XRD with 7.6 keV X-rays from the 
X-ray Free Electron Laser (XFEL) at the Matter in Extreme Conditions (MEC) end-station of the Linac Coherent 
Light Source (LCLS), SLAC National Accelerator Laboratory (Fig. 1). The applied loading scheme was reverbera-
tion compression—achieved through a temporally step-shaped drive laser (see “Methods”). The peak pressure 
was varied by changing the total number of Joules delivered to the target with a waveplate optic for the long 
pulse laser. The target geometry consisted of a clamp-style water containment approach [15). Individual packages 
of sandwiched diamond–water–diamond served as the targets: [20 μm thick chemical vapor deposited (CVD) 
diamond ablator] + [25 μm deionized water (18 MOhm) layer set by a circular silicone washer (Silastic J, Dow 
Corning)] + [80 μm CVD diamond window]. Due to the impedance mismatch between the diamond ablator 
and the water, there is a many step compression sequence as elastic and plastic waves followed by reflections of 
those waves at interfaces effectively ‘ringing’ up the pressure in the water layer. A 75 nm gold layer was coated 
on the diamond ‘ablator’ surface in contact with the water sample, serving as the reflective layer for velocimetry 
and as an internal pressure calibrant to monitor compression via peak shifts in the XRD. The velocimetry data 
were recorded on a Velocity Interferometer System for Any Reflector (VISAR) diagnostic, simultaneously with 
the XRD (see “Methods”) to provide an additional pressure constraint. The diamond ‘window’ served as con-
tainment for the water and was optically transparent to the VISAR probe allowing velocimetry measurements 
recording the motion from the Au.

Diffraction data, recorded on Cornell-SLAC Pixel Array Detectors (CSPADs), are azimuthally integrated 
(Fig. 2) as a function of d-spacing (Å) (see “Methods”). A representative trace of an integrated XRD pattern at 
ambient conditions shows strong intensity (111), (200) and (220) Au peaks plus CVD diamond peaks (from 
both the ablator and window). XRD records the reverberation-compressed sample at an XFEL probe timed to 
capture the diffraction after peak compression was achieved (~ 7–9 ns). Polycrystalline diffraction peak positions 
are determined from peak fitting using  Fityk16; Table 1 for a listing of run numbers, XRD peak d-spacings, hkl 
assignments, lattice parameters, densities, and estimated P–T conditions.

Figure 1.  Experimental configuration of the XFEL probe and optical laser pump. The shock solidification 
behavior of water is captured in a Debye–Scherrer geometry. Inset: Schematic of target package with cut away 
side-view of the water layer.
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Diffraction from the (111) peak of the downstream diamond window shows little or no shift from the ambient 
d-spacing of 2.063 Å, indicating that the majority of the window volume is uncompressed. The lowest pressure 
XRD pattern records the Au (111) and (220) peaks shift to smaller d-spacing and broadening – providing a 
thermally corrected pressure of 47 ± 3 GPa, 1150 K (Ref.17,18); Fig. 2, red trace. The ablator CVD (111) diamond 
peak is also resolvable and shifts, consistent with 53 ± 5 GPa  compression18–20. Two new XRD features are seen 
at 1.961(3) Å and 1.397(4) Å corresponding to the BCC ice VII structure, for (110) and (200), respectively, with 
a density of 2.78 g/cc, as expected in this  regime21. Within uncertainty, the densities of Au, diamond, and ice are 
all consistent with a pressure of 53 ± 5 GPa, also in agreement with the VISAR measurement of 56 ± 4 GPa. Using 
previously published reverberation-compression-based equations of state (EoS) for ice  VII7,19–25, we estimate a 
temperature of 1150 ± 250 K for this density.

Upon increasing compression, the Au peaks are no longer resolvable in the XRD due to possible drive light 
leakage generating thermal expansion peak broadening. Although we clearly see Au peaks in the ambient pat-
terns, above ~ 50 GPa we can no longer resolve the Au. Loss of clarity in the XRD data is likely due to peak 
broadening to the point that the diffuse scatter intensity distribution across the CSPAD prevents it from being 
resolved as discrete peaks. Possible reasons for broadening include: (1) reaching temperatures above the melting 
point of Au at these pressures, and/or (2) thermal expansion due to drive light leakage through the diamond 
ablator reaching Au layer before the compression process can take place. It has been documented that the drive 
laser spatial profile can spill over the chamfered drive side of the target mount and damaging neighboring tar-
gets. Due to laser light from a preceding shot reaching an adjacent target, the Al flash coating (150 nm) on the 
drive side of the neighbor target can be damaged. The purpose of an Al flash coating is to prevent drive light 
from leaking through the ablator. However, if that Al coating was damaged, drive light can reach the Au layer, 
resulting in premature thermal expansion such that we cannot resolve the peaks.

Figure 2.  X-ray diffraction data with increasing pressure. Raw integrated traces from all high-pressure water 
shots without any normalization measured at ~ 7 ns for the highest pressures. Colored tick marks indicate fitted 
peak center for labeled phase. FCC ice positions are shown for reference to note where peaks would be predicted 
to appear, but are not observed, at these pressures. The sharp peak at 2.07 Å is the diamond peak (111) at near 
ambient conditions, labeled (filled diamond) from the VISAR-side window. r337 peak assignment is particularly 
complicated due to superposed peaks from diamonds and ice. However, due to the presence of the (200) ice 
peak near 1.4 Å we can constrain the ice (110) to be a component of the diffraction intensity seen at ~ 1.95 Å. 
Breaks between the detector pads are seen at d-spacings of 1.6 and 2.2 Å. Examples of 2-dimensional raw 
CSPAD images with colored ticks to match phases listed in traces are shown to the right.



4

Vol:.(1234567890)

Scientific Reports |          (2022) 12:715  | https://doi.org/10.1038/s41598-021-04687-6

www.nature.com/scientificreports/

Peak shifts in the compressed diamond ablator are resolvable and, using these diffraction peaks as a pressure 
calibrant in combination with the velocimetry record, we track pressure increasing to just over ~ 200  GPa18–20. 
The reported pressures are determined from the XRD of the diamond-ablator and are corroborated, within the 
uncertainty, by the pressure determined from the velocimetry traces. Pressure uncertainty is taken from the 
goodness-of-fit value for a Gaussian peak profile of the ablator diamond diffraction peak d-spacing, converted 
to a density uncertainty and used to estimate the and pressure uncertainty with an equation of state. We see the 
water ice diffraction peak shift from 1.961(3) Å (at 53 GPa) to 1.725(3) Å at the highest pressure. If we continue 
to assign this feature as a BCC (110) peak, the ice pressure estimates (via EoS from Refs.7,19–21) track well with 
the compressed diamond ablator estimates up to ~ 160 GPa. Beyond this pressure there are discrepancies in the 
EoS results between quantum molecular dynamics simulations (e.g., Ref.24) and previous experiments (e.g., 
Refs.21,22,26) for water. At the highest pressure, 205 ± 10 GPa, indexing the new peak as a BCC (110) gives a lattice 
parameter of a = 2.440 Å, corresponding to a density of 4.12 g/cc. Unfortunately, the (200) peak for the BCC ice 
structure falls off the detector d-spacing range above ~ 75 GPa.

Above the ice VII and ice X P–T stability fields, we can test the viability of the FCC, hexagonally-close packed 
(HCP), and orthorhombic structures, assuming the geometric constraints of packing efficiency or close packing 
oxygen in three dimensions (e.g., Refs.10,12). Our procedure was to test assignment of the new peak visible in pres-
sures above ~ 150 GPa to an FCC, HCP, or orthorhombic (Pbcm) structure and then inspect the 2-dimensional 
CSPAD images for any diffraction intensity located near a predicted (hkl) d-spacing position for that structure. 
If we assign the FCC (111) peak to the 1.828 Å feature, the corresponding FCC (200) should be at 1.583 Å which 
should then shift to 1.50 Å with compression. We do not see any XRD signal at these positions on the CSPADs. 
Similarly, if the HCP structure were assigned at comparable ice densities, the (101) is missing at its predicted 

Table 1.  Peak assignment and lattice parameters. V VISAR-side diamond, ab ablator-side diamond. *Pressure 
and temperature determined using Fei et al.18 and  Marsh19. ^Pressure determined using P-rho of McWilliams 
et al.20; Knudson et al.21 and  Marsh19 and  LEOS906130.

Run Phase hkl d-spacing (Å) a (Å) V(Å3) ⍴ (g/cc) Up (km/s) P_visar (GPa) P_xrd (GPa) Average P (GPa) , T (K)

201

Au* 111 2.361(1) 4.079 67.87 19.28 0

200 2.043(3) 4.079 67.87 19.28 0

220 1.437(1) 4.079 67.87 19.28 0

diamond-V,ab 111 2.063(1) 3.574 45.63 3.49 0 0 0 0, 300

337

Au* 111 2.233(3) 3.868 57.86 22.61 47.0

diamond-V 111 2.063(3) 3.574 45.63 3.49

diamond-ab^ 111 1.989(4) 3.445 40.89 3.90 1.2(1) 57.0 53.0

ice_bcc VII 110 1.961(3) 2.782 21.53 2.78 53(5), 1150(250)

ice_bcc VII 200 1.397(4) 2.782 21.53 2.78 53(5), 1150(250)

202

diamond-V 111 2.069(5) 3.574 45.63 3.49

diamond-ab^ 111 1.975(3) 3.420 40.00 3.99 1.7(1) 84.6 78.1

ice_bcc X 110 1.930(5) 2.730 20.35 2.94 78(10), 1800(350)

212

diamond-V 111 2.067(3) 3.574 45.63 3.49

diamond-ab^ 111 1.949(5) 3.377 38.51 4.14 2.3(2) 114.9 107.8

ice_bcc XIX 110 1.889(2) 2.680 19.25 3.11 108(10), 2200(350)

207

diamond-V 111 2.071(3) 3.574 45.63 3.49

diamond-ab^ 111 1.920(7) 3.326 36.79 4.34 3.2(3) 171.7 164.0

ice_bcc XIX 110 1.828(6) 2.587 17.31 3.46 164(10), 2700(500)

209

diamond-V 111 2.064(3) 3.574 45.63 3.49

diamond-ab^ 111 1.895(3) 3.282 35.35 4.51 4.5(4) 245.5 205.4

ice_bcc XIX 110 1.770(3) 2.504 15.70 3.81 205(10), 5500(500)

ice_bcc XIX 110 1.725(3) 2.440 14.53 4.12 205(10), 3300(500)

399

diamond-V 111 2.069(3) 3.574 45.63 3.49

diamond-ab^ 111 1.894(4) 3.281 35.32 4.52 4.5(5) 245.5 207.5

ice_bcc XIX 110 1.769(5) 2.502 15.66 3.82 207(10), 5500(500)

ice_bcc XIX 110 1.724(4) 2.438 14.49 4.13 207(10), 3300(500)
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1.843 Å, or 1.678 Å, respectively for ρHCP = 3 and 4 g/cc. Regarding the orthorhombic Pbcm structure—we also 
check for peaks using a linear extrapolation of lattice parameters, e.g., Ref.12, to ~ 200 GPa to look for (110) 
and (101) peaks at 1.96 Å and 1.47 Å, respectively. Figure 3 compares d-spacing vs pressure and correspond-
ing densities at each pressure assuming a BCC or FCC structure, including previous diamond-anvil cell data. 
Due to the absence of any corresponding FCC, HCP, or Pbcm peaks, each expected to be within the detector 
d-spacing coverage with predicted relative intensities of these peaks well above the noise floor of the detectors, 
and a BCC ice density consistent with velocimetry-based pressure estimates and compressed diamond-ablator 
pressures estimates, we conclude that the ice structure seen in the XRD data is BCC. At similar shot conditions, 
the formation of this BCC structure is reproducible (Fig. 4).

Previous dynamic compression induced disorder-order transitions (e.g., Ref.27) have reported randomly-
oriented nanocrystalline growth of the high pressure phase as seen in the uniformity of Debye–Scherrer ring 
intensity and the relative peak intensities matching a randomly orientated powder distribution. However, we 
see interesting trends in the change in powder XRD texture for both the ice phase and diamond above 100 GPa. 
The CVD ablator diamond signal remains spotty, showing a similarly sized grain structure as it compresses in 
the elastic regime up to the ~ 80 GPa HEL. Above this pressure, we see a gradual increase in ring smoothness 
and peak broadening up to the highest pressure of ~ 200 GPa where the intensity is more uniform over the azi-
muthal range available. This may indicate that the grain size is likely decreasing and orientations are becoming 
more random. The ice VII and ice X diffraction are large, broad and spotty up to over 100 GPa. Then as the ice 
X transitions to ice XIX above ~ 150 GPa we see these larger spots become more diffuse at the edges, perhaps 
indicating some increase mosaicity and/or crystallites with preferred orientation with respect to the compression 
direction. In the highest pressure shot there is an apparent concentration of diffraction intensity for the BCC ice 
(110) peak near the top of the detector. This is consistent with the horizontally polarized XFEL probe (consider-
ing the orientation of the CSPAD active areas with respect to the XFEL propagation direction). Additionally, we 
note heterogeneous growth of ice crystals on target component interfaces may have a needle-like  geometry15,28, 
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Figure 3.  Comparison of d-spacing and density for different structures. Measured d-spacings for each ice 
peak plotted with the pressures derived from the diamond-ablator XRD signal (top graph). Black circles 
(bottom graph) show density trend with pressure assigning this peak as the BCC (110). Dotted black line is 
the Vinet fit to room temperature, static compression DAC work Loubeyre et al.40. Solid black line is the trend 
for high temperature DAC data Sugimura et al.35. We note a reasonable similarity with this trend and the DFT 
prediction from French et al. (Ref.25; solid grey line) for a superionic BCC structure of ice below 200 GPa, but 
above there is some discrepancy. Red curves are from SESAME 7154 (Ref.26) for 3000 K and 5000 K, solid and 
dashed, respectively. Assigning the same d-spacing peak to FCC (111) (grey circles) shows a marked jump in 
density using the diamond-ablator based pressure which does not fit any predicted trend, nor do we have the 
corresponding FCC (200) peak which would be in the detector range. If we use French et al.25 EoS for superionic 
FCC ice to determine pressure of the ice, there would be a marked jump in pressure which does not corroborate 
the diamond-ablator pressure, or velocimetry-based pressure or laser drive intensity-pressure calibration data.
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such that nanocrystallites develop preferential orientation with respect to the X-ray probe direction. This could 
also contribute to a concentration of diffraction intensity at this location on the detector.

Velocimetry data was obtained by analyzing the line VISAR interferograms measured in the experiments with 
an image reduction  routine29, which employed a Fourier transform method to extract the interferograms’ phase 
information. The spatially resolved velocity histories were acquired by applying the experimental velocity-per-
fringe to the extracted phase map of the data (representative VISAR, Fig. 5). The drive laser pulse used to achieve 
these conditions is shown in Fig. 6. Equations of state (EoS) from SESAME 7154 and LEOS 9061 were used for 
the water and diamond ablator,  respectively26,30, finding these are comparable to those used in Millot et al.13,14. 
Due to the large impedance mismatch between the diamond and the water, the initial shock wave in diamond 
generates a release wave at the diamond-water interface which is reflected back into the diamond ablator. The 
impedance difference persists and sets up a reverberating shock in the diamond ablator. Breakout of the first 
shock in the ablator diamond into the water is at 1–2 ns (labeled ‘b/o’ for breakout, Fig. 5). The ablator diamond 
reverberation results in the diamond plastic wave overtaking the weak elastic wave in the water and reached the 
water-VISAR diamond interface at roughly ~ 5 ns. A 1st and 2nd shock wave transits the VISAR-side diamond 
to breakout into vacuum by ~ 8 ns and 9.5 ns.

The HYADES Radiation Hydrodynamics  code31 was used to perform a post-shot simulation and model 
the wave propagation through the target package (Fig. 7). These simulations compare well with velocimetry 
data—confirming the timing of expected features, like breakout of the elastic wave from the ablator-diamond, 
the main pressure wave reaching the downstream water-diamond interface near 4.5 ns, and shock waves break-
ing out into vacuum at around ~ 8–9 ns. Since we had no separate temperature diagnostic, we can only rely on 
this post-shot simulation temperature estimate and known P–T EoS for water under reverberation compression 
 conditions21–23,26 to constrain our temperature. Post-shot simulations were completed for high- and low-pressure 
shots using the Hyades Radiation Hydrodynamics code. We found that these shots required a multiplier of 0.45 
to obtain a best match to VISAR data. A typical multiplier value is ~ 0.7 (Ref.32), however our small multiplier 
value is indicative of extensive laser energy loss before reaching the target. This could be due to optics/coating 
damage in the beam path decreasing the delivered intensity reaching the target – perhaps up to 65%.

Diffraction from the highest pressure shot shows a doublet feature for the BCC (110). The hydrodynamic 
simulation shows a bimodal temperature distribution at the 7 ns probe time, present in the ice in two discrete 
ice layers: at ~ 3300 K and at 5500 K. This ~ 2000 K temperature difference between the layers would manifest as 
a density difference of 30–35% in the ice, which is consistent with the peak separation using the SESAME 7154 
Gruneisen parameter (Ref.26). Because of the uncertainty in pressure and temperature conditions for this shot we 
list out two data points for BCC, one for each peak of the doublet giving: 205 GPa, 3300 K and 205 GPa, 5500 K.

Figure 4.  Raw data from Run 399. Repeat of conditions from Run 209, this Run 399 shows diffraction signal 
from ice XIX with the same doublet feature (black ticks, d-spacings = 1.724 Å, 1.769 Å), the ablator diamond 
(blue tick, d-spacing = 1.894 Å), the VISAR window diamond (black diamonds, d-spacing = 2.069 Å and 
elongated feature at the top of the image which could be due to a small volume fraction of the single crystal 
responding to the stress distribution from compressive wave interactions). Light green lines are guides for the 
eye or to outline features.
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Discussion
Direct observation of the crystal structure of  H2O ice at a pressure of ~ 200 GPa and a calculated temperature 
of 5000 K has implications ranging from the fundamental physics and chemistry of  H2O to ice giant dynamo 
evolution. XRD presented here provides the first evidence of a BCC ice structure at these conditions. Consistent 
with superionic behavior, water is predicted to have a band gap (2–3 eV) at these conditions causing it to absorb 
visible light (e.g., Ref.7), and we do see the loss of reflectance of the 532 nm probe light off the Au as the shock 
front transits the  H2O layer. However, since our velocimetry records are inconclusive regarding a direct transport 
property measurement, we also consider alternate explanations. For instance, reflectance loss at ~ 2–8 ns (Fig. 5) 

Figure 5.  Velocimetry data from reverberation compression of water to ~ 200 GPa. Example raw VISAR1 (blue 
line & streak camera image) and VISAR2 (red line) data from Run 209 over a 28 μm region showing particle 
velocity (Up) of the diamond ablator (~ 4.5 km  s−1) and free surface velocities (Ufs) from the 1st and 2nd shock 
arrivals at the diamond VISAR window (~ 7–7.5 km  s−1) ranging from 4.4 to 6 km  s−1. Due to VISAR quality, 
the Up uncertainty is ~ 10%. Breakout (b/o) of the diamond elastic wave into the water layer occurs at ~ 1.5 ns, 
followed by the main pressure wave reaching the VISAR-side diamond-water interface at ~ 4.5 ns. The 1st and 
2nd shockwave arrivals reach the VISAR-side diamond-vacuum interface at ~ 8 ns and 9.5 ns, respectively. Drive 
laser parameters listed in Table 2.

Figure 6.  Oscilloscope traces of drive laser temporal profiles. Blue and green traces show the two 10 ns flat-top 
profiles offset by ~ 5 ns to yield a stepped ~ 15 ns drive pulse profile. Two separate laser ‘arms’ are combined to 
generate the compression wave, here labeled AB and EF corresponding to names of the capacitor banks. The 
total irradiance as seen by the target is the sum of the two drive profiles shown by the dotted black line.
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could also result from the light scattering off BCC ice grain boundaries (or a combination of both phenomena). 
Using the Scherrer  Equation33:φ =

K�
βcosθ  , where ϕ = grain size; K = dimensionless shape factor (commonly set 

to 0.9); λ = X-ray wavelength; β = line broadening at full width at half maximum (FWHM) minus instrumental 
broadening (0.03°); θ = Bragg angle, the BCC (110) ice peak width gives a grain size of 21 ± 2 nm, similar to 
the findings of Millot et al.14. This small grain size could lead to scattering of the VISAR probe light, which 
could cause the apparent loss of Au reflectivity. We do note that previous  experiments13,14,34,35 and computations 
(e.g., Ref.9,24,25) have shown that the P–T conditions achieved here is within the superionic phase stability field. 
Applying our new XRD data to the phase diagram of high pressure ice confirms the BCC structure previously 
theorized is stable at these conditions (e.g., Refs.10,14,25) (Fig. 8) in the superionic regime. Recent pioneering work 
by Millot et al.13,14 has also examined the phase diagram of water, to pressures beyond this paper, under laser-
driven shock-compression. We compare the lattice structure of ice at similar P,T conditions and find evidence 
of a BCC ice structure near the liquid boundary suggesting the FCC phase stability region can be pushed out to 
higher pressure. Millot et al.14 find an FCC ice extending to the liquid boundary. Our data suggest pushing this 
FCC boundary out to higher pressures (> ~ 250 GPa) along the isentrope. However, this pressure assignment, 
based on diamond XRD could represent the lower bound for the ice pressure, and in fact, be at higher pressure 
as indicated by hydrocode assessment. Our results are consistent with all but one of the data points reported by 
Millot et al.14. The reason for this discrepancy is not yet understood, but could be related to issues in diffraction 
quality signal/noise and indicates the need for more experimental investigations working to resolve real-time 
diffraction for phase with higher Q-range, velocimetry for pressure, and pyrometry for temperature determina-
tion all collected with in situ diagnostics.

Due to the nature of packing of the oxygen sub-lattice, the BCC structure is generally thought to have a 
higher hydrogen mobility than the FCC structure. The BCC structure allows the hydrogen atoms to migrate 

Figure 7.  Lagrangian distance-time diagrams. A post-shot simulation for (a) pressure labeled by color code 
(b) pressure line outs of specific Lagrangian coordinates in the water layer and (c) temperature distribution. In 
(a) and (c), the red dashed line shows the water region. Solid black line in (b) shows drive profile. Probe time of 
the X-rays was at 6.95 ± 0.35 ns (orange bar) where line width includes probe time uncertainty derived from rise 
time of first pulse (0.15 ns) and timing jitter of laser (0.20 ns).

Figure 8.  Phase diagram of  H2O. Revised phase diagram for  H2O (adapted from Refs.9,10,14,25,40,41 including 
our data for BCC-structured ice (black circles) which shifts the FCC boundary to higher pressures in line with 
theoretical predictions from Refs.10,25). Blue dashed line is the Neptunian  isentrope36.
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freely between different, connected interstitial sites, i.e., tetrahedral or octahedral, whereas the FCC structure 
has only one less connected tetrahedral site than  BCC9. This mobility is commonly assessed in molecular dynam-
ics calculations as the hydrogen diffusion  rate8,9,11,36. A linear extrapolation of the hydrogen diffusion constant 
with density to the conditions probed in this study suggests the BCC hydrogen diffusion constant is 40% higher 
than the FCC diffusion  constant9. The values for the diffusion coefficient vary over many orders of magnitude, 
1.8e−3  cm2s−1 (Refs.11,36) to ~ 0.5  cm2s−1 (Ref.9) for pressures and temperatures measured in this study for a BCC 
structure, depending on the molecular dynamics simulation parameters. The relationship between hydrogen dif-
fusion coefficient (DH) and protonic conductivity (σ) is governed by the Nernst-Einstein  equation37,38: σ =

fnDHq
2

RT  , 
where f is non-dimensional geometrical constant taken to be 1, n is the molar concentration per unit cell volume, 
q is the charge, R is the gas constant, and T is the temperature, and shows a proportional relationship between 
hydrogen diffusion coefficient and protonic conductivity. For our BCC lattice parameter (2.440 Å), and a DH of 
1.8e−3  cm2s−1 (Ref.36) we find a protonic conductivity of 102 (Ω cm)−1, whereas an FCC structure at the same 
pressure would be ~ 20% lower conductivity. This is in contrast to the liquid outer region of Neptune where ionic 
conductivity at 25 to 100 GPa, ranges from < 1 to 30–90 (Ω cm)−1, respectively (e.g., Ref.6,39). Confirmation of 
the extension of the BCC high-pressure stability field in the superionic regime results in higher than predicted 
protonic conductivity to greater depths in ice giant interiors (Fig. 9) which can respond well to magnetic stress.

Ice giant dynamos are generated in a convecting, fluid layer of electrically conductive water, ammonia, and 
methane. Solid ice layers cannot participate in the dynamo action through fluid motions. However, dynamo 
complexities arising from layered superionic ices with high but differing proton mobilities will influence the 
magnetic field properties. Here we have shown that solid ice is stable to over 200 GPa and 4400 K in a BCC 
structure. Combined with previous measurements that indicate that water ice is superionic in this P–T  region13, 
this suggests that the lower boundary of the dynamo-generation region is likely related to the location of the 
superionic phase change, especially if that phase change results in a solid ice layer (e.g., Ref.6), as seen here. Our 
data change the sub-liquid layer from FCC superionic solid ice to BCC superionic solid ice, resulting in a 40% 
increase in protonic conductivity. The magnetic fields generated in the ionic liquid layer will interact differently 
with a BCC ice layer than they would an FCC ice layer due to this difference in conductivity. For example, the 
magnetic fields generated in the ionic fluid layer are time-varying and the skin depth of penetration of magnetic 
fields into any solid sub-layer depends on the conductivity of that solid material. A higher conductivity solid 
sub-layer would preferentially repel magnetic fields, limiting their length scales. Although dynamo simulations 
have been able to produce multipolar magnetic fields without an enhanced conductivity of a solid interior (e.g., 
Ref.3), the smaller length-scales resulting from the enhanced repulsion of a higher conducting solid interior 
would promote the generation of multipolar magnetic fields—consistent with measurements made by Voyager 
II for Uranus and Neptune.

Methods
Experimental design. Quasi-monochromatic (dE/E = 0.2–0.5%), fully transverse coherent, 7.603(30) keV 
x-ray pulses of 40 fs duration with an average of ~  1012 photons per pulse, were incident over a 50 μm diameter 
spot on the target package. An X-ray only shot was collected before the drive shot as a reference. The 50 μm 
XFEL beam spot did not produce any observable x-ray damage to the target. Metal coatings on the diamond 
ablator served to absorb the drive laser (150 nm Al on upstream side) and act as the reflective layer for velocime-
try measurements (75 nm Au on downstream side).

Figure 9.  Neptune interior with multiple superionic layers. Ice giant interiors, like Neptune, have different 
layers of superionic ice. The molecular envelope of He,  H2 and  H2O gas is largely insulating and the convecting 
ionic liquid layer may have ionic conductivities of a few to 100 (Ω cm)−1. However, the superionic solid BCC 
and FCC layers can have comparable protonic conductivity 100 (Ω cm)−1 or up to two orders of magnitude 
larger, depending on the estimated proton mobility (or diffusion coefficient DH = 1.8e−3  cm2s−1 (Refs.6,36) to 
0.5  cm2  s−1 (Ref.9) at relevant pressures and temperatures along the isentrope.
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The optical drive laser was defocused to a 100 μm diameter spot at FWHM with a Gaussian spatial profile to 
achieve focal spot intensity of ~  1013 W  cm−2 (Table 2). The angle between drive laser arms and XFEL probe was 
22°. An ablation-driven compression wave was launched parallel to the sample normal over a 15.0 ns profile from 
a frequency doubled Nd:Glass laser system (λ = 527 nm). By adjusting a waveplate optic on the long pulse laser, 
we could increase/decrease the total number of Joules in the drive pulse and achieve a range of pressures. The 
applied loading scheme is reverberation compression and was designed to achieve peak pressure and tempera-
ture in the water layer near the 7–9 ns X-ray probe time. The temporal drive profile was achieved by temporally 
advancing one of two laser beams. The first pulse, 10 ns duration, characterized by a ~ 1.6 ×  1013 W  cm−2 intensity, 
pseudo flat-top profile (Fig. 6, blue curve designated the AB Arm) was followed by a second pulse, after 5 ns. This 
second pulse was slightly less intense, 10 ns duration at 1.4 ×  1013 W  cm−2 intensity, pseudo flat-top profile (Fig. 6, 
green curve designated EF Arm). The target was exposed to the sum of these pulses in time—looking like a step 
shape in irradiance after 5 ns. The optical laser and X-ray beam were spatially overlapped and operated in single 
shot mode. The absolute time zero corresponds to overlap of their leading edges. For each shot, a time delay was 
selected for the XFEL pulse relative to the optical laser pulse with a jitter of 0.35 ns. XRD pattern was captured 
by CSPADs constructed of individual application-specific integrated circuits (ASICs).

The VISAR diagnostic resolves the velocity histories determined from a phase map of the data. Etalon thick-
nesses of 25.001 mm and 11.006 mm for Mach–Zehnder interferometer beds 1 and 2, respectively, enable a com-
parison of the two different velocity–time profiles. The profile match, and unique Up determination, is obtained 
from the correct number of 2π fringe jumps allowed by the etalons. The target package (diamond–water–dia-
mond) combined with this temporal drive profile were designed to generate the following sequence of events. 
First, the AB arm is incident on the diamond ablator and begins the ablation process setting up a shock wave 
in the ablator diamond. The impedance mismatch sets up a reverberating shock in the diamond ablator. Then, 
a weak shock traverses the water to ~ 25 GPa on the principal Hugoniot as transmitted by the elastic wave in 
diamond. The diamond plastic wave overtakes the weak elastic wave in the water and is the main compressive 
wave in the water reaching the diamond VISAR window at ~ 5 ns. This plastic wave sends a reverberation wave 
back into the water/ice again due to impedance mismatch. At 5 ns, the second laser fires, EF arm, attempting to 
support continued reverberations.
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