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Abstract

INTRODUCTION: Well-chosen biomarkers have the potential to increase the effi-

ciency of clinical trials and drug discovery and should show good precision as well as

clinical validity.

METHODS: We suggest measures that operationalize these criteria and describe a

general approach that can be used for inference-based comparisons of biomarker per-

formance. The methods are applied to measures obtained from structural magnetic

resonance imaging (MRI) from individualswithmild dementia (n=70) ormild cognitive

impairment (MCI;n=303) enrolled in theAlzheimer’sDiseaseNeuroimaging Initiative.

RESULTS: Ventricular volume and hippocampal volume showed the best precision

in detecting change over time in both individuals with MCI and with dementia.

Differences in clinical validity varied by group.

DISCUSSION: The methodology presented provides a standardized framework for

comparison of biomarkers across modalities and across different methods used

to generate similar measures and will help in the search for the most promising

biomarkers.
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∙ A framework for comparison of biomarkers on pre-defined criteria is presented.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). Alzheimer’s & Dementia published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

6834 wileyonlinelibrary.com/journal/alz Alzheimer’s Dement. 2024;20:6834–6843.

https://orcid.org/0000-0002-5367-0951
mailto:djharvey@ucdavis.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/alz


HARVEY ET AL. 6835

∙ Criteria for comparison include precision in capturing change and clinical validity.

∙ Ventricular volume has high precision in change for both dementia and mild

cognitive impairment (MCI) trials.

∙ Imagingmeasures’ performance in clinical validity variesmore for dementia than for

MCI.

1 BACKGROUND

Dementia is widespread among older adults and poses a huge eco-

nomic burden on the health care system and families.1 In addition, the

cost of drug development is high, in part due to the length and size of

clinical trials and the need for surrogate biomarkers.2 With the pos-

itive results for lecanemab3 and donanemab,4 the field can start to

evaluate potential markers as surrogate biomarkers, which must not

only correlate strongly with clinical change, but must also show dif-

ferential response to treatment that captures the treatment’s effect

on the clinical endpoint; surrogate markers will likely be endpoint- and

intervention specific.5

Well-chosen biomarkersmay increase the efficiency of clinical trials

through strategies ranging from better defined inclusion and exclu-

sion criteria to the use of surrogate markers as alternative endpoints,

and a single marker will likely not serve all purposes. Ideal comparison

of markers requires a study acquiring all potential markers and stan-

dard clinical outcomes on every participant.6 The Alzheimer’s Disease

Neuroimaging Initiative (ADNI) was designed to provide high-quality,

uniformly ascertained multi-site data on potential imaging and fluid

biomarkers, and on cognitive function and clinical change outcomes,

and then to compare the performance of large numbers of potential

biomarkers for their precision in capturing change (small variance rel-

ative to the estimated change) and association with cognitive change

and clinical progression.

Research using data from ADNI or other studies has investigated

some of these characteristics related to imaging and fluid biomarkers.

Some recent studies have evaluated the precision in annual change,7

associations with cognitive decline,8–11 associations with incident

dementia,12–14 and correlations between rates of change in mark-

ers and cognitive function.15 However, comparisons of performance

across markers have generally been qualitative rather than inference

based, although some used bootstrapping techniques for inference.

In the statistical literature, most development has been done in

the context of evaluating markers of binary or time-to-event out-

comes. Summary measures derived from a graphical tool have been

proposed for the predictiveness of markers of a binary outcome.16

A semi-parametric estimated-likelihood approach was used to com-

pare individual and combinations of biomarkers as principal surrogate

endpoints for a binary clinical endpoint,17 which was then extended

into the setting of time-to-event endpoints.18 Janes, et al.19 proposed

a comprehensive framework consisting of descriptive and inferential

methods, using bootstrapping, for evaluating and comparing candi-

date markers for patient treatment selection. These approaches are

more practical when a small number of markers are being considered.

To our knowledge, there has been no proposal for a unified frame-

work for evaluating markers on a set of predefined criteria that can

accommodatemanymarkers simultaneously.

In this article,we layoutprecisionandvalidity criteria for theperfor-

mance of biomarkers in dementia andmild cognitive impairment (MCI)

and suggest commonly used measures that operationalize these crite-

ria.We then describe a general family of statistical techniques that can

be used for inference-based comparisons of biomarker performance

and apply these methods to data from the ADNI study. Not all criteria

need to be used to assess the performance of a biomarker, but rather

researchers can use the specific criteria related to the specific purpose

of interest.

We recognize that quantitative magnetic resonance imaging (MRI)

measures have fallen out of favor as a surrogate biomarker of effi-

cacy in trials of amyloid-removal therapies because the rates of brain

volume loss have been shown to be consistently higher with suc-

cessful amyloid removal compared to placebo. This is the opposite of

what was anticipated based on natural history studies, where greater

rates of volume loss map onto faster rates of cognitive decline. A

variety of explanations have been offered for this “pseudo-atrophy”

phenomenon. It is entirely possible, however, that rates of volume loss

might be slowed therapeutically by interventions that do not remove

amyloid but target other mechanisms, although this has not yet been

proven. Nonetheless, given that various morphometric measures have

been performed in ADNI, this data set provides a convenient test bed

for evaluating the proposed standardized framework for comparing

biomarkers that is the topic of this article.

2 METHODS

2.1 The Alzheimer’s Disease Neuroimaging
Initiative

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003

as a public–private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether

serialMRI, positron emission tomography (PET), other biologicalmark-

ers, and clinical and neuropsychological assessment can be combined

tomeasure the progression ofMCI and early Alzheimer’s disease (AD).

The determination of sensitive and specific markers of very early

progression in the context of dementia is intended to aid researchers
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and clinicians to develop new treatments and monitor their effective-

ness, as well as to lessen the time and cost of clinical trials. ADNI is the

result of efforts of many co-investigators from a broad range of aca-

demic institutions andprivate corporations, andparticipants havebeen

recruited frommore than50 sites across theUnitedStates andCanada.

For up-to-date information, see www.adni-info.org

2.2 Participants

Data presented here are from a subset of participants with dementia

and MCI from the second phase of ADNI (ADNI-GO/2), who have at

least 1 year of clinical and imaging follow-up. All participantswere seen

at baseline, month 6, and month 12, with an additional one (demen-

tia) or two (MCI) annual visits. Clinical and cognitive assessments were

performed, and images were acquired at each visit. All participants

underwent 3TMRI.

Full inclusion/exclusion criteria may be found on the ADNI pub-

lic informationwebsite (https://adni.loni.usc.edu/). Briefly, participants

were between 55 and 90 years of age (inclusive) with a study partner

able to provide an independent evaluation of functional abilities and

spoke either English or Spanish. ADparticipants hadMini-Mental State

Examination (MMSE) scores between 20 and 26 (inclusive), a Clini-

cal Dementia Rating (CDR) of 0.5 or 1, and met the National Institute

of Neurological and Communicative Disorders and Stroke/Alzheimer’s

Disease and Related Disorders Association (NINCDS/ADRDA)20 cri-

teria for probable AD. These individuals are referred to as having

a diagnosis of dementia throughout the article because of the non-

specificity of a clinical diagnosis of probable AD for actual biologically

determined AD. MCI participants had MMSE scores between 24 and

30 (inclusive), a CDR of 0.5, and a memory complaint. In addition, they

had objective memory loss as measured by education adjusted scores

on the Wechsler Memory Scale Logical Memory II and an absence of

dementia. Clinical diagnosis was reassessed at each visit. All partici-

pants gavewritten, informedconsent prior toparticipation through the

local institutional review boards at the participating institutions.

2.3 Cognitive measures

Although numerous cognitive tests were given at each assessment,

we selected the Alzheimer’s Disease Assessment Scale—Cognitive

subscale (ADAS-Cog),21 the most widely used cognitive outcome in

clinical trials; the MMSE22 and the Rey Auditory Verbal Learning Test

(RAVLT),23 and sum of the five learning trials for use in the analyses.

The ADAS-Cog contains 13 items that address fundamental cognitive

abilities such as comprehension, language, memory, and constructional

and ideational praxis. The total score ranges from 0 to 85, with higher

values indicatingworse performance. TheMMSE is a globalmeasure of

mental status covering the domains of orientation, registration, atten-

tion and calculations, recall, and language; scores range from 0 to 30,

with lower scores indicating worse ability. The RAVLT sum of five trials

ranges from 0 to 75, with lower values indicating worsememory.

RESEARCH INCONTEXT

1. Systematic review: The literature was reviewed through

PubMed with a specific focus on methods for the com-

parison of biomarkers and evaluation of markers in the

context of dementia.

2. Interpretation: A standardized framework for the statis-

tical comparisonof potentialmarkers on criteria including

precision in capturing change over time and clinical valid-

ity is presented and provides a strategy for the field to

identify the most promising markers of disease progres-

sion. The method is illustrated using magnetic resonance

imaging data from theAlzheimer’s DiseaseNeuroimaging

Initiative.

3. Future directions: The framework may be used in the

future to compare across markers quantified from mul-

tiple imaging modalities and fluid samples or to compare

across processing pipelines or assaysmeasuring the same

quantity. Extensions of thework should relax the assump-

tion of a balanced design and identify person-level met-

rics that account for censoring in the context of survival

analysis or longitudinal models accounting for covariates

and potential confounders.

2.4 MRI measures

Details of theADNIMRIdata acquisitionprotocol arepublicly available

on the Laboratory of Neuroimaging ADNI website (https://adni.loni.

usc.edu/data-samples/data-types/) and have been published.24 Cor-

tical reconstruction and volumetric segmentation were performed

with the FreeSurfer image analysis suite, which is documented and

freely available for download online (http://surfer.nmr.mgh.harvard.

edu/). To extract reliable volume and thickness estimates, images were

automatically processed with the longitudinal stream25 in FreeSurfer.

Specifically, an unbiased within-subject template space and image is

created using robust, inverse consistent registration.26 Several pro-

cessing steps, such as skull stripping, Talairach transforms, atlas reg-

istration, as well as spherical surface maps and parcellations are then

initializedwith common information from thewithin-subject template,

significantly increasing reliability and statistical power.25 Of the many

regions and measurements provided by the FreeSurfer suite, volumet-

ricmeasures (mm3), averagedacross hemispheres, of thehippocampus,

entorhinal cortex, ventricles, and whole brain (the sum of cortical gray

matter volume, cortical white matter volume, subcortical gray volume,

cerebellum cortical volume, and cerebellum white matter volume) and

a meta region of interest (meta-ROI; mm), defined as the surface-area

weighted average of themean cortical thickness in the entorhinal, infe-

rior temporal, middle temporal, and fusiform.27 The ventricular volume

in each hemispherewas the sumof the lateral ventricle and the inferior

lateral ventricle. Volumetric measures were normalized to intracranial

http://www.adni-info.org
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/data-samples/data-types/
https://adni.loni.usc.edu/data-samples/data-types/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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TABLE 1 Summary of statistical framework for comparisons across criteria.

Criteria Operationalizedmetric Person-specific contribution Wij

Precision: Annual change Sample size calculations (Rij − R̄.j)
2 (Rij−R̄.j )

2

(R̄.j )
2

Validity: Clinical differentiation Effect size (−1)k−1(Xijk − X̄.j.)
1

nk

(−1)k−1(Xijk−X̄.j. )
1

nk

spj

Validity: Change (dementia) Correlation r2ij∕𝜌j r2ij∕𝜌j

Validity: Change (MCI) Effect size (−1)k−1(Rijk − R̄.j.)
1

nk

(−1)k−1(Rijk−R̄.j. )
1

nk

spj

Note:Wij is a dimensionless or common dimension quantity, derived from the person-specific contribution, which enables comparison ofmarkers on different

scales. Rij is the annualized rate of change for biomarker j, person i. R̄.j is the average annualized rate of change for biomarker j. Xijk is the value of biomarker

j, person I, in group k. X̄.j. is the global mean of biomarker j across all participants in both groups. nk is the number of participants in group k. spj is the pooled
standard deviation for biomarker j. rij is the residual for person i, biomarker j, and 𝜌j is the estimated correlation for biomarker j.
Abbreviation:MCI, mild cognitive impairment.

volume (ICV) by first fitting a linear regression between each measure

and ICV in amyloid negative cognitively normal participants, apply-

ing that model to the values in the impaired groups and obtaining the

residual and then adding the mean volume in the cognitively normal

group.28

2.5 Framework for statistical comparisons of
biomarkers

The ultimate goal of the analyses is to be able to compare across poten-

tially very different measures based on a set of established criteria.

As discussed earlier, common criteria used to assess the performance

of markers may be classified into two major categories: precision and

validity. The proposed statistical framework for comparing biomarkers

on a particular criterion consists of the following five steps.

1. Operationalize the criterion with a statistical measure.

2. Identify subject-level contributions for individual i and measure j.

This step makes use of the fact that most statistical measures are

linear combinations of person-level information. This person-level

information is the contribution of interest.

3. Transform the contributions to a dimensionless or common dimen-

sion quantity, Wij, to be comparable across markers on different

scales.

4. Construct anm x nmatrix of dimensionless (or common dimension)

quantities form participants and nmarkers for statistical analysis.

5. Use standard statistical procedures for anoverall test of differences

acrossmarkers andmultiple comparison procedures for identifying

specific differences.

Specific criteria of interest include: (1) precision in measurement of

change; (2) validity at baseline (clinical differentiation); and (3) validity

in change. The first three steps for metrics to be used in ADNI for

each of these criteria are described separately in detail below and

summarized in Table 1. Details of Steps 4 and 5, which will use the

same approach regardless of the criteria or metric used to assess

the criteria, are then described. Markers performing well on these

criteria may be candidates for future study as true surrogate markers

that also capture the effect of a treatment on a clinical outcome

or as markers to be used for inclusion/exclusion criteria or other

purposes.

2.5.1 Precision: Annual change

Participants with dementia are expected to show cognitive decline

within 1 year, although there may still be variability in the amount of

change experienced by the individuals. MCI participants, on the other

hand, show much more heterogeneity in their cognitive performance,

with some declining and others staying stable. Potential markers in

either population, however, should exhibit precise estimates of mean

change, meaning small variability relative to the estimated change,

which leads to smaller sample sizes and efficiency of the design of a

trial. Therefore, this criterion is operationalized (Step 1) as sample size

calculations required for a two-arm (equal-sized) 1-year clinical trial to

detect a 25% reduction in annual rate of change, assuming 80% power,

a two-sided test, and α = 0.05. In this context, most sample size calcu-

lations are a direct function of the dimensionless quantity σ/δ, where
we estimate δ by the sample mean rate of change and σ by the sample

standard deviation (SD). This quantity is a measure of precision and is

related to the coefficient of variation. Because most sample size calcu-

lations, for any study design aimed at measuring change, are a function

of this quantity, σ/δ is useful for comparing the performance ofmarkers

in any longitudinal study design. The components that depend on data

are the variance in rate of change (which itself is proportional to the

sum of the squared deviations between person-specific rates and the

average rate) and the average change. The person-level contribution to

this quantity (Step 2) is (Rij − R̄.j)
2
, where R̄.j =

∑n
i=1

Rij
n
, Rij = Dij ∕tij, Dij

is the difference in marker j between the month 12 and baseline mea-

sures for participant i, tij is the time between the two assessments for

marker j, participant i, and n is the number of participants. This quantity

is invariant with respect to the desired α, power, and targeted per-

centage reduction. The dimensionless quantity (Step 3) is, therefore,

Wij =
(Rij−R̄.j)

2

(R̄.j)
2 . Multiplying this quantity by 1/(n-1) and adding across
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participants yields an estimate of σ/δ. Measures that are more precise

will have smaller values of these scaled squared deviations.

2.5.2 Validity at baseline: Clinical differentiation

Good markers should be able to differentiate individuals that are clin-

ically different from one another. For example, one would expect that

a marker of disease would be “worse” at baseline in participants with

dementia compared to MCI participants, because those with demen-

tia, clinically, are further along in the disease process. Interest lies in

comparing marker levels between two groups. Groups may be defined

according to the clinical diagnosis at the time themarker was acquired.

This criterion, therefore, is operationalized (Step 1) as the effect size
|X̄.j1−X̄.j2|

spj
, where X̄.jk is the mean level of marker j (i.e., a regional brain

volume fromMRI adjusted for head size) in group k (dementia or MCI)

for measure j, and spj is the common SD in the two groups. By adding

and subtracting the global mean level across all participants, this effect

size is then proportional to the difference in the deviation from the

global mean in one group and that same deviation in the other group.

If nk is the number of participants in group k, the person-level contri-

bution to this quantity (Step 2) is (−1)k−1(Xijk − X̄.j.)
1

nk
, where Xijk is the

level of marker j (adjusted for head size, by residualizing it) for person

i, in group k, and X̄.j. is the global mean of marker j across participants

in both groups. Dividing by the pooled SD generates a dimensionless

quantity (Step 3), Wijk =
(−1)k−1(Xijk−X̄.j.)

1

nk

spj
, which when added across

participants and scaled yields the usual two-sample t-statistic. For

these analyses, it is important to force allmarkers of interest tomove in

the same direction. For example, larger hippocampi are good, whereas

larger ventricles are bad. To put them in the same direction, multiply

the ventricular volumes by−1, so that larger (less-negative) values cor-
respond to better outcomes. Markers that show large effects between

the groups will have larger values for theWijk .

2.5.3 Validity in change

Operationalizing this criterion depends on the diagnostic group of

interest. For example, because the cognitive function of participants

with dementia is expected to decline, change in a marker should also

correlate with change in cognitive function; if not, the marker may be

changing for reasons unrelated to the disease process. In MCI par-

ticipants, where cognitive function is more variable, we might expect

that those who did progress to dementia showed more change on

the marker than those who remained stable. The approaches for each

diagnostic group are described separately.

One natural metric of performance in participants with dementia

is the correlation of change in the biomarker with clinical change, for

example, change in a cognitive test score. Specifically, first calculate

individual-level estimates of annual cognitive change by using linear

regression on all available cognitive data for each individual, with the

score as the outcome and time in years as the predictor. The slope of

this model represents an estimate of annual change in cognitive func-

tion for that person. Using a similar approach, the estimated annual

change in marker j may be calculated and then used as a predictor

in a regression model with the estimated annual change of cognitive

function as the outcome. The Pearson correlation coefficient from this

model is a natural way to operationalize this criterion (Step 1). The t-

statistic for the coefficient of marker j in the regression model may

be shown to be a function of the squared residuals and the estimated

correlation. Therefore, the person-level contribution is r2ij∕𝜌j (Step 2),

where rij is the residual for person i, marker j, and 𝜌j is the estimated

correlation for marker j. Although these values are not dimensionless,

they are units-free with regard to the markers because the deviations

are all measured in the units of the common outcome measure, not

the predictor. Thus, for example, a cortical thickness measure could

be compared with hippocampal volume for its accuracy in predicting

ADAS-Cogbecause theoutcome for eachpersonwouldbea functionof

the squared error of prediction in ADAS-Cog units for each biomarker.

Therefore, this value is also used as the person-level component (Step

3). These scaled squared residuals will be small for points close to the

regression line and large for points further away from the regression

line, andwe expect thatmeasurements that aremore highly correlated

(in magnitude) with cognitive change will have smaller scaled squared

residuals.

Similarly to the validity described for clinical differentiation, in MCI

participants, validity in change can be assessed through a two-sample

comparison where the groups are defined according to progression to

dementia or remaining stable over a fixed time period. Steps 1–3 are

identical to those defined in Section 2.5.2, where the rates of change

are used in place of the baseline levels of themarkers.

2.5.4 Statistical methods for comparison (Steps 4
and 5)

For simplicity, it is assumed that all measures have been collected

on each person, so that we have a completely balanced design. This

assumptionmeans that oncewe have calculated theWij for a particular

criterion, we can construct an array with one row per person and one

column per marker. Friedman’s rank test or randomized block analysis

of variance (for data meeting the assumption of normality), with

participants as blocks and measures as “treatments,” is used to assess

an overall difference between the measures. Post hoc pairwise com-

parisons, adjusted for multiple comparisons using a distribution-free

approach based on the Friedman’s rank sums29 or Tukey’s honestly

significant difference (HSD) approach, are used to identify specific

differences across the markers. For this study, Friedman’s rank test

and the distribution-free approach for multiple comparisons were

used to compare methods. To illustrate differences between markers,

columns are added to the tables with shaded cells. Markers that have

shaded cells within a column do not differ significantly from one

another.
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TABLE 2 Sample characteristics.

Variable

MCI

(n= 303)

Dementia

(n= 70) p-value

Age 71.7 (7.4) 73.7 (7.5) 0.04

Education (years) 16.1 (2.7) 15.4 (2.4) 0.04

Male (%) 53.1 58.6 0.49

Caucasian (%) 94.1 91.4 0.42

MMSE 28.0 (1.7) 23.2 (2.0) <0.001

ADAS-Cog (total 13) 14.9 (6.6) 29.3 (7.5) <0.001

RAVLT 36.6 (10.5) 22.6 (6.5) <0.001

CDR sum of boxes 1.48 (0.91) 4.24 (1.65) <0.001

APOE ε4+ (%) 51.1 80.0 <0.001

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale—

Cognitive subscale; CDR, Clinical Dementia Rating; MCI, mild cognitive

impairment; MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory

Verbal Learning Test.

3 RESULTS

Our sample consisted of a subset of 70 dementia and 303 MCI partic-

ipants from the ADNI parent study who had at least 1 year of clinical

follow-up, baseline, and month 12 MRI scans available and volumetric

measures from FreeSurfer available on those scans. Table 2 provides

a description of the participants included in this study. Those with

dementiawere slightly older than theMCI participants and had slightly

fewer years of education. The dementia group had a higher prevalence

of having at least one apolipoprotein E (APOE) ε4 allele. As expected,

the cognitive scores were worse, on average, in the dementia group

compared to theMCI group.

3.1 Precision: Annual change

Tables 3 and 4 present the sample size required for each arm of a

two-arm 1-year dementia or MCI trial to have 80% power to detect a

25% reduction in annual rate of change. Three commonly used mea-

sures of cognitive function in clinical trials (ADAS-Cog, MMSE, and

RAVLT) are included in the comparison as a reference to the preci-

sion of currently used outcomes. Measures corresponding to a shaded

cell within a column do not differ significantly after multiple compar-

ison adjustment. For both dementia and MCI trials there is variable

performance across measures, with an overall significant difference

across measures (p < 0.001). In dementia trials, the commonly used

cognitive measures (MMSE, ADAS-Cog, and RAVLT) require the most

participants, and their precision to detect change did not differ sig-

nificantly with sample sizes ranging from 415 to 1349 individuals per

arm of a trial. Volume of the hippocampus and ventricles had signif-

icantly greater precision than the cognitive measures, resulting in a

substantial reduction in the required sample size (118–200 per arm).

The cortical thickness meta-ROI and whole brain tissue volume had

greater precision than the MMSE and RAVLT, whereas the entorhi-

nal cortex volume had greater precision than RAVLT. In MCI trials the

cognitive tests require themost participants per arm. The imagingmea-

sures all performed better, resulting in at least a 71.6% reduction in

required sample size. Ventricular volume required the smallest number

of participants per arm at just over 300 participants per arm.

3.2 Validity: Clinical differentiation of dementia
from MCI participants

Means and SDs of the imaging variables at baseline are presented for

MCI and dementia participants in Table 5. There is a statistically sig-

nificant difference in all of the markers under consideration between

MCI and dementia, with effect sizes ranging from 0.51 to 1.5. Although

there was a global difference across methods (p < 0.001), effect sizes

did not differ significantly for the majority of markers. The cortical

thickness meta-ROI and hippocampal volume had a significantly larger

effect size than whole brain tissue volume, when comparing dementia

toMCI participants.

3.3 Validity: Change in dementia and MCI
participants

In participants with dementia, estimated change in the cortical thick-

ness meta-ROI correlated significantly with change in ADAS-Cog

(Table 6). When compared across the imaging metrics, cortical thick-

nessmeta-ROI and ventricular volume had significantly higher correla-

tions (in magnitude) than the other metrics. Volume of the entorhinal

cortex had the smallest correlation (in magnitude).

Table 7 presents the mean annual change in the imaging measures

for the MCI participants that progressed to dementia and those who

remained stable over 36 months, based on the subset of 239 individ-

uals who had either progressed to dementia by the 36-month visit or

who had been followed for the entire 3-year period. All imaging met-

rics considered had significantly different average change in those that

progressed versus those that did not, with those progressing showing

the most change. Hippocampal volume performed the best across the

imagingmetrics for this criterion, with an effect size of 1.30.

4 DISCUSSION

We presented a framework for comparing the performance of poten-

tial markers on the basis of pre-defined precision and validity criteria,

which allow for the comparison of markers measured on different

scales.We provide an example of a metric to operationalize each crite-

rion, how to identify the person-level contribution to that metric, and

how to achieve unitless (or same units) contributions, which can then

be used in analyses. We illustrated the methodology using a subset of

MCI and dementia participants from ADNI and four MRI volumes and

one cortical thickness measure associated with dementia. In demen-

tia participants, differences existed in precision in change and clinical
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TABLE 3 Sample size required per arm of a two-arm 1-year clinical trial in dementia participants to detect a 25% reduction in annual rate of
change (n= 70), assuming α= 0.05, a two-sided test and 80% power.a

Variable Mean annual change (SD) n/armb

Ventricular volume (mm3) 2136.6 (1459.4) 118

Hippocampal volume (mm3) −111.3 (99.1) 200

Cortical thicknessmeta-ROI (mm) −0.08 (0.07) 201

Whole brain tissue volume (mm3) −18345.8 (17386.9) 226

Entorhinal cortex volume (mm3) −70.0 (79.8) 327

ADAS-Cog (total 13) 4.4 (5.7) 415

MMSE −1.6 (2.9) 799

RAVLT −1.9 (4.3) 1349

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale—Cognitive subscale; meta-ROI, meta region of interest; MMSE, Mini-Mental State

Examination; RAVLT, Rey Auditory Verbal Learning Test.
aTo illustrate comparisons between measures, including imaging markers and cognitive test scores, we have included columns with shaded cells. Measures

corresponding to a shaded cell within a column are not statistically different.
bSample sizes are computedwith the non-roundedmeans and standard deviations.

TABLE 4 Sample size required per arm of a two-arm 1-year clinical trial inMCI participants to detect a 25% reduction in annual rate of change
(n= 303), assuming α= 0.05, a two-sided test and 80% power.a

Variable Mean annual change (SD) n/armb

Ventricular volume (mm3) 1084.0 (1191.3) 304

Hippocampal volume (mm3) −57.0 (86.3) 576

Whole brain tissue volume (mm3) −9851.4 (15639.6) 634

Cortical thicknessmeta-ROI (mm) −0.04 (0.07) 714

Entorhinal cortex volume (mm3) −45.5 (84.4) 866

MMSE −0.5 (1.8) 3054

RAVLT −0.6 (7.0) 37715

ADAS-Cog (total 13) −0.04 (4.5) 3138886

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale—Cognitive subscale; meta-ROI, meta region of interest; MMSE, Mini-Mental State

Examination; RAVLT, Rey Auditory Verbal Learning Test.
aTo illustrate comparisons between measures, including imaging markers and cognitive test scores, we have included columns with shaded cells. Measures

corresponding to a shaded cell within a column are not statistically different.
bSample sizes are computedwith the non-roundedmeans and standard deviations.

TABLE 5 Baseline imagingmeasures (mean [SD]) for dementia andMCI participants.a

Variable MCI (n= 303) Dementia (n= 70) p-value Effect sizeb

Cortical thicknessmeta-ROI

(mm)

2.8 (0.2) 2.5 (0.2) <0.001 1.5

Hippocampal volume (mm3) 3400.6 (579.2) 2832.1 (457.4) <0.001 1.0

Entorhinal cortex volume (mm3) 1786.4 (366.3) 1469.5 (299.7) <0.001 0.89

Ventricular volume (mm3) 18,064.8 (8968.9) 23,991.9 (9543.2) <0.001 0.65

Whole brain tissue volume (mm3) 1,211,612 (69,450) 1,175,832 (72,126.4) <0.001 0.51

Abbreviations:MCI, mild cognitive impairment; meta-ROI, meta region of interest.
aTo illustrate comparisons between imagingmeasures, we have included columnswith shaded cells.Measures corresponding to a shaded cell within a column

are not statistically different.
bEffect size computedwith the pooled estimate of the standard deviation.
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TABLE 6 Correlations between change inMRI and change in ADAS-Cog in dementia participants (n= 70).a

Variable Correlation p-value

Cortical thicknessmeta-ROI (mm) −0.38 0.001

Ventricular volume (mm3) 0.23 0.054

Hippocampal volume (mm3) 0.11 0.36

Whole brain tissue volume (mm3) −0.07 0.55

Entorhinal cortex volume (mm3) 0.01 0.93

Abbreviation: meta-ROI, meta region of interest.
aTo illustrate comparisons between imagingmeasures, we have included columnswith shaded cells.Measures corresponding to a shaded cell within a column

are not statistically different.

TABLE 7 Imaging changemeasures (mean [SD]) by progression status within 3 years inMCI.a

Variable Progressors (n= 75) Non-progressors (n= 164) p-value Effect sizeb

Hippocampal volume (mm3) −109.7 (59.1) −44.5 (45.2) <0.001 1.30

Ventricular volume (mm3) 1970.4 (1526.1) 770.5 (705.2) <0.001 1.16

Whole brain tissue volume (mm3) −18580.2 (13572.9) −7993.8 (6942.1) <0.001 1.11

Entorhinal cortex volume (mm3) −80.6 (59.4) −31.1 (41.4) <0.001 1.03

Cortical thicknessmeta-ROI (mm) −0.06 (0.05) −0.02 (0.03) <0.001 1.00

Abbreviation: meta-ROI, meta region of interest.
aTo illustrate comparisons between imagingmeasures, we have included columnswith shaded cells.Measures corresponding to a shaded cell within a column

are not statistically different.
bEffect size computed using the pooled estimate of the standard deviation.

validity of change with ventricular volume performing well under both

criteria. Additionalwell-performingmarkers fromthose selected in this

analysis include the cortical thickness meta-ROI. In those with MCI,

the main difference between markers was in precision in change, with

the volume of the ventricles performing the best. Many of the con-

sidered markers were promising in showing differences between MCI

and dementia participants at baseline, whereas change in hippocam-

pal volume showed the largest differences between stable-MCI and

those who progressed to dementia. Although hippocampal volume and

ventricles performed well among the markers included in the compar-

ison, they are likely not useful as surrogate markers, in part due to the

increased atrophy in groups treated with anti-amyloid therapies rel-

ative to the placebo group as mentioned in the Background, but also

because the correlation between change in thesemeasures and change

in cognitive function is fairly weak (Table 6). However, our focus was

on illustration of the proposed framework and how it can be used to

compare biomarkers rather than promoting specific markers for use in

clinical trials.

Although our illustration of the framework utilizes individual

biomarkers and individual outcomes (single cognitive test scores or

progression in the comparison), in clinical trials there may be com-

posite outcomes combining two or more single outcomes, co-primary

outcomes (which may have different constructs), secondary domain-

specific outcomes, or even interest in composite markers. When

considering a comparison of biomarkers, researchers should consider

how the biomarker will be used, the specific clinical outcome(s) of

interest, as well as the intervention. Different biomarkers may be

included in a comparison depending on these decisions. A comparison

of performance across biomarkers for multiple outcomes, for example,

correlations with cognitive change across multiple cognitive scores,

may be warranted. It is unlikely that a single biomarker will work for

multiple purposes andmultiple interventions.

The methodology presented here assumes that all markers of inter-

est are available for all participants. This assumption has two possible

impacts on the analysis. First, the number of participants in the com-

parison may be reduced to a subset on which all markers are available.

Second, certain markers may be removed from consideration due to

lack of sufficient overlap with the other markers. The criteria for

precision in annual change also assume that a 25% reduction (or what-

ever reduction of interest) in annual change means the same thing

across markers and cognitive outcomes, which may not be the case.

A modification to the proposed strategy might instead consider some

percentage reduction in the relative change in MCI or dementia com-

pared to cognitively normal. In our framework, we have opted to focus

on MCI and dementia as key diagnostic groups of interest. It is impor-

tant to note that thediagnosis ofMCI anddementia is left censored (we

do not know exactly when individuals would have first been diagnosed

with MCI or dementia), which requires a strong linear assumption

of decline within the dementia group and a comparison of MCI who

progress to those who do not. Over a relatively short period of time

(2–3 years), linear change is often a reasonable approximation to the

amount of change, although researchers should consider whether this

assumption is appropriate in their particular setting. Despite the lim-

itations, the methodology does provide a framework for comparing
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markers across a variety ofmodalities, including different imaging plat-

forms, fluid biomarkers, and different cognitive function tests. The

methodology is also easily adaptable to compare across criteria of

interest. We present precision and validity criteria by which to com-

pare the markers, but they are not the only ones possible, and the

person-level components are not the only ones that may be chosen for

a given set of criteria. Our proposed framework is not the only possible

approach for comparison either, although it does provide a means for

the simultaneous comparison of a larger number of potential markers.

Bootstrapping is another option for assessing pairwise comparisons

of markers. However, when the number of potential markers is large,

such a strategy requires considerable computational effort. In some

cases, regression modeling, such as logistic or linear regression, may

be sufficient for identifying promising markers, although when mark-

ers under consideration are highly correlated, such a strategy may not

be appropriate. To our knowledge, this project is the first to illustrate

the comparison of performance across cognitive and imaging biomark-

ers that have been statistically normed to a common standard. The

participants included in this analysis come from ADNI, which itself

is a strength, because all participants were imaged and clinically and

cognitively evaluated using a standardized protocol.

Although this study uses only a small subset of the available mark-

ers restricted to a single processing method of the MRI scans for

illustration of the methodology, future analyses will compare markers

across the imaging modalities (MRI and PET scans). Comparing fluid

biomarkers may also be of interest, as would more targeted compar-

isons for a specific clinical endpoint or with a specific intervention in

mind. Multiple labs have also provided volumetric data on the same

regions, such as the hippocampus and the ventricles, using different

processing methods. Additional future work may compare across the

methods to determine if one approach performs better than others.

Similarly, comparison of amyloid or tau burden quantified from lumbar

punctures or amyloid or tau PET imaging is also of interest. From a sta-

tistical standpoint, this methodology can be extended readily into the

unbalanced design setting, in which not all markers are available on all

participants. Further extensions to account for censoring in a survival

analysis setting and to enable the comparison of predictors of longitu-

dinal change of cognitive function after adjustment for covariates and

potential confounders should also bemade.
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