
UCLA
UCLA Electronic Theses and Dissertations

Title
Energy Efficient Computing Using Static-Dynamic Co-optimizations

Permalink
https://escholarship.org/uc/item/9335r2kv

Author
Gururaj, Karthik

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9335r2kv
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Energy Efficient Computing Using Static-Dynamic

Co-optimizations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Karthik Gururaj

2013

© Copyright by

Karthik Gururaj

2013

Abstract of the Dissertation

Energy Efficient Computing Using Static-Dynamic

Co-optimizations

by

Karthik Gururaj

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Jason Cong, Chair

Energy consumption is a primary concern of current day computing systems –

from handheld battery operated systems to servers in data centers connected to

wall power. Research in academia as well as industry has focused on a variety

of techniques for minimizing energy consumption while maintaining a good level

of performance. The most effective techniques combine the best of static (or of-

fline) and dynamic (or online/runtime) optimizations to obtain the best solution.

Static optimizations can be more complex and can afford to take a global view

of the application/computation being executed on the system – however, such

optimizations have to be conservative in nature because they cannot anticipate

all the different scenarios that can appear at runtime. Dynamic optimizations

have more information about the application/computation for the given input –

however, since such optimizations have to have low overhead, they can afford to

have only a local view of the computation/ application and the complexity of the

optimization has to be relatively low. An additional direction that needs to be

considered is to determine whether dynamic optimizations should be implemented

in software or hardware. In this thesis, I present a study of three aspects of energy

efficient computing that use a combination of static and dynamic optimizations

to minimize energy consumption. The first aspect is to consider variability in the

ii

execution time of applications during scheduling for dynamic voltage frequency

scaling (DVFS) capable systems to minimize energy consumption and yet main-

tain a desired level of performance. The main idea is to construct a schedule table

offline and perform a simple table look-up at runtime. The second aspect is to

consider application-level reliability for applications that can tolerate certain error

in the outputs. I present the study of a profile-guided offline compilation strategy

to identify critical instructions and a monitoring technique in software to handle

corner cases at runtime. Finally, the third aspect of energy efficient computing I

investigate is flexibility – customizing the instruction sets of processors to improve

energy efficiency. I study the benefits of compiler directed optimizations for gener-

ating custom instructions which are executed within a modified processor pipeline

and an architecture mechanism for detecting corner cases and to roll-back to a

safe state. Additionally, I investigate the benefits of customizing the instruction

set dynamically in hardware.

iii

The dissertation of Karthik Gururaj is approved.

Yuval Tamir

Glenn Reinman

Lei He

Jason Cong, Committee Chair

University of California, Los Angeles

2013

iv

To my family who have supported me at every step.

v

Table of Contents

1 Introduction . 1

1.1 Energy efficient multiprocessor task scheduling under input-dependent

variation . 2

1.2 Assuring application-level correctness in programs 2

1.3 Architecture support for custom instructions with memory operations 2

1.4 Architecture support for dynamic instruction set customization . . 3

2 Energy Efficient Multiprocessor Task Scheduling under Input-

dependent Variation . 4

2.1 Introduction . 4

2.1.1 Workload agnostic techniques 4

2.1.2 Workload aware techniques 5

2.1.3 Exploiting variation in execution time 7

2.1.4 Uni-processor Systems . 7

2.1.5 Multiprocessor Systems . 7

2.2 Preliminaries and problem statement 9

2.2.1 Processor Model . 9

2.2.2 Application Model . 10

2.2.3 Problem Statement . 12

2.3 VAR-TB – Variation-aware Time Budgeting 12

2.3.1 Task assignment heuristic 12

2.3.2 Task scheduling and voltage assignment 13

2.3.3 Mathematical formulation of VAR-TB 13

vi

2.4 Improving the scheduling algorithm 17

2.4.1 Restricting the number of SCE(v) entries per task 17

2.4.2 Time complexity . 18

2.4.3 Online algorithm . 19

2.4.4 Voltage switching overhead 19

2.4.5 Discrete voltages . 20

2.5 Experimental Results . 21

2.5.1 Random task-graphs . 22

2.5.2 Real-world Benchmarks 24

2.6 Conclusions . 28

3 Assuring Application-level Correctness Against Soft Errors . . 31

3.1 Introduction . 31

3.2 Related work and our contributions 33

3.2.1 Monte-Carlo based techniques: 33

3.2.2 Program analysis techniques 33

3.2.3 Using program invariants and patterns 34

3.3 Program Representation . 36

3.3.1 Preliminaries . 36

3.3.2 Program representation . 39

3.4 Overview of the proposed method 41

3.4.1 Constructing PDG and computing edge weights 41

3.4.2 Constructing PDG . 42

3.4.3 Computing edge weights - Static method 43

3.5 Computing α-AFFECTER from weighted PDG 45

vii

3.5.1 Acyclic PDG . 45

3.5.2 PDG with cycles . 46

3.5.3 Identification of critical instructions 47

3.5.4 Control flow optimization 47

3.6 Assuring application-level correctness - profiling and runtime mon-

itoring . 50

3.6.1 Profiling edge weights . 50

3.6.2 Runtime monitoring of edge weights 51

3.6.3 Ensuring application-level correctness 53

3.7 Experiments and Results . 53

3.7.1 Error injection methodology 54

3.7.2 Illegal memory accesses . 54

3.7.3 Analysis of results . 60

3.8 Conclusion . 61

4 Architecture support for custom instructions with memory op-

erations . 62

4.1 Introduction . 62

4.2 Related work and our contributions 63

4.2.1 ALU-like CFUs . 63

4.2.2 CFUs with memory operations 64

4.2.3 CFUs with Architecturally Visible Storage (AVS) 64

4.2.4 Context-full CFUs . 65

4.2.5 Our contributions . 65

viii

4.3 Challenges and our proposed solution for supporting memory op-

erations in CFUs . 67

4.3.1 Issue 1: Maintaining program order for memory operations 68

4.3.2 Issue 2: Ordering of memory operations within a CI 70

4.3.3 Issue 3: Possible partial commit to memory 70

4.3.4 Issue 4: Handling TLB faults 71

4.3.5 Issue 5: Handling variable number of memory operations . 71

4.3.6 Scenarios where our architecture would beat a system with

compiler inserted synchronization 72

4.3.7 Difference with CISC ISAs 73

4.4 Custom instruction operation and representation 74

4.5 Details of proposed architecture 76

4.5.1 Fetch stage . 77

4.5.2 Decode stage . 77

4.5.3 Rename stage . 79

4.5.4 Dispatch stage . 79

4.5.5 Scheduler and execute stage 82

4.5.6 Communication with CFUs 83

4.5.7 Retire stage . 84

4.6 Compiler flow for creating CIs . 87

4.7 Results . 88

4.7.1 Evaluation setup . 88

4.7.2 Comparison with baseline 89

4.7.3 Comparison with restricted CIs 91

ix

4.7.4 Sensitivity with respect to FPGA resource availability . . . 93

4.7.5 Comparison under equal area constraint 93

4.8 Conclusions . 95

5 Architecture support for dynamic instruction set customization 98

5.1 Introduction . 98

5.2 Related work . 100

5.2.1 Static instruction set customization 100

5.2.2 Dynamically configurable functional units 101

5.2.3 Dynamic instruction stream customization 102

5.2.4 Trace cache based methods 102

5.3 System overview . 103

5.4 CFU architecture . 105

5.5 Identifying frequently executed parts of an application 107

5.6 Challenges in generating CIs and optimized instruction stream . . 108

5.6.1 Generating correct CIs . 108

5.6.2 Generating correct optimized instruction stream 109

5.7 Hardware support for CI construction and optimized instruction

stream generation . 112

5.7.1 Determining instruction dependences 112

5.7.2 Subgraph enumeration . 113

5.8 Putting it all together . 115

5.8.1 Fetch stage . 115

5.8.2 Decode stage . 117

5.8.3 Extension to CMP systems 119

x

5.9 Results . 120

5.9.1 Evaluation framework . 120

5.9.2 Evaluating the impact of sizes of the proposed hardware

structures . 121

5.9.3 Comparison with baseline and previous work 123

5.9.4 Studying the impact of sharing hardware structures 130

5.10 Conclusions . 135

6 Conclusions and Future Directions 136

References . 138

xi

List of Tables

2.1 Sample schedule table . 11

2.2 Processor characteristics . 21

3.1 Simulation parameters . 54

3.3 Comparison with [83]: columns under ‘Error-free’ and ‘Errors in-

serted’ show the # instructions executed without and with errors

at runtime respectively, column titled ‘Energy reduction’ shows the

energy reduction relative to [83] 55

3.3 Comparison with [83]: columns under ‘Error-free’ and ‘Errors in-

serted’ show the # instructions executed without and with errors

at runtime respectively, column titled ‘Energy reduction’ shows the

energy reduction relative to [83] 56

3.2 Static instruction classification . 57

3.4 Comparison with [103]: columns under ‘Error-free’ and ‘Errors in-

serted’ show the # instructions executed without and with errors

at runtime respectively, column titled ‘Energy reduction’ shows the

energy reduction relative to [103] 58

3.4 Comparison with [103]: columns under ‘Error-free’ and ‘Errors in-

serted’ show the # instructions executed without and with errors

at runtime respectively, column titled ‘Energy reduction’ shows the

energy reduction relative to [103] 59

3.5 Overhead associated with runtime monitoring 61

xii

4.1 Alias information for benchmarks – columns titled 0-10 show the

fraction (as percentages) of memory dependences sorted by itera-

tion distance. The last column shows the ratio of dynamic/static

memory dependences (expressed as percentage). 72

4.2 CI statistics – average over largest CIs per loop 84

4.3 Simulation processor parameters 85

4.4 Normalized performance (#cycles elapsed) with non-pipelined CFUs

on FPGAs . 85

4.5 Normalized performance (#cycles elapsed) with pipelined CFUs on

FPGAs . 86

4.6 Normalized total energy consumption with pipelined CFUs on FPGAs 86

4.7 Resource usage for selected CFUs 92

4.8 Comparing the slowdown and energy reduction of 2 baseline cores

with 1 core + FPGA CMP system 94

4.9 Comparison of CFUs with 2-issue superscalar processor with no

memory operations . 96

4.10 Comparison of CFUs with 2-issue superscalar processor with syn-

chronization . 96

4.11 Sensitivity with respect to FPGA resources – normalized performance 97

4.12 Sensitivity with respect to FPGA resources – normalized energy . 97

5.1 Area numbers for the different components of the dynamic enumer-

ation logic . 118

5.2 Relative energy of components normalized to baseline core energy 119

5.3 Simulation processor parameters 120

5.4 Sizes of BHC, OBC and L0 cache 120

xiii

5.5 Performance improvement (as %) with BHC size (# entries) rela-

tive to 16-entry BHC and OBC size with respect to 8 entry OBC 121

5.6 Performance improvement (as %) with CCT size (# entries) rela-

tive to 32-entry CCT . 122

5.7 Performance improvement (as %) with L0 size (KB) relative to 4

KB L0 cache . 123

5.8 Speedup with respect to baseline software implementation – specint 124

5.9 Speedup with respect to baseline software implementation – specfp 125

5.10 Speedup (as X) over previous work [34] 126

5.11 Energy overhead with respect to baseline (as %) – specint 126

5.12 Energy overhead with respect to baseline (as %) – specfp 127

5.13 Performance degradation (as %) when placing a CCA 1 or 2 hops

away in the NoC – specint . 129

5.14 Performance degradation (as %) when placing a CCA 1 or 2 hops

away in the NoC – specfp . 130

5.15 Comparing the slowdown and energy reduction of 3 baseline cores

with 2 core DISC (specint) . 132

5.16 Comparing the slowdown and energy reduction of 3 baseline cores

with 2 core DISC (specfp) . 133

5.17 Comparing the slowdown and energy reduction of 3 baseline cores

with 2 core DISC (PARSEC) . 134

xiv

List of Figures

2.1 Fixing SCE values . 17

2.2 Energy savings over WC-DVS . 22

2.3 Varying the number of cores . 23

2.4 Varying the number of SCE values 24

2.5 Task graph for MPEG-4 decoder (a) single iteration (b) two iterations 25

2.6 Probability distribution of workload (a) Copy control (b) Motion

compensation . 26

2.7 Normalized energy consumption for W-Aware and W-Unaware schemes

for MPEG-4 decoder . 27

2.8 Task graph for MJPEG encoder (a) single iteration (b) unrolled . 28

2.9 Workload variation of Huffman encoding module 29

2.10 Normalized energy consumption for W-Aware and W-Unaware schemes

for MJPEG encoder . 29

3.1 Running example . 38

3.2 LLVM IR of the running example 39

3.3 PDG of the running example . 40

3.4 PDG of the running example . 48

3.5 Control-flow optimization algorithm - C-opt 50

4.1 Memory ordering example . 67

4.2 Ordering of instructions in the pipeline for the example in Figure 4.1 69

4.3 Layout of the processor pipeline with tightly integrated CFU . . . 74

4.4 Tiled CMP with reconfigurable logic 75

xv

4.5 Custom instruction format . 75

4.6 Decoder modification (a)baseline(b)modified 77

4.7 Reservation station entry format (a)baseline(b)modified 80

4.8 Communication links – W is the number of CFUs that can com-

municate in parallel . 83

4.9 Graph showing average MIPS/J values normalized to the 2-issue/128

entry window core . 91

5.1 DISC microarchitecture . 104

5.2 CCA from [33] . 106

5.3 Assembly code for our running example 107

5.4 Modified assembly code for our running example with CIs 110

5.5 Block diagram for producing optimized instruction stream 115

5.6 Microarchitecture of the processor pipeline 116

5.7 Shared CCA and subgraph enumeration hardware in a CMP system 118

5.8 Graph showing average MIPS/J values normalized to the in-order

core . 128

xvi

Acknowledgments

Firstly, I would like to thank my adviser, Professor Jason Cong, for his insightful

guidance and help during the full course of my study. If I was asked to state

the most important thing that I learned from him as a student, it would be the

method of approaching a research problem. Professor Cong has always emphasized

the need to model research problems under a formal framework and to develop

algorithms that provide some guarantee of global optimum. Under his approach,

the simplifications to the framework and algorithm (to make it tractable) can come

later. This methodology is quite different from some of the ad-hoc techniques that

we see in many publications. Professor Cong has provided numerous research ideas

and refinements during the course of the study. His suggestions, both technical

and with respect to presentation, have been very helpful in polishing my rough

ideas into a publishable work.

I would also like to thank Professor Glenn Reinman for the many discussions

we have had during the architecture meetings, especially when he plays the role

of the devil’s advocate when trying to nail down the novelty of a proposed archi-

tecture/design.

I would like to thank several members of VLSI CADLAB for their help and the

many discussions we have had. Guoling Han was practically a co-adviser in my

early years as a graduate student when we worked on the synthesis of processor

networks. Yi Zou has helped me several times while working with the high-level

synthesis tool AutoPilot. Discussions with Sen Li have helped me improve/fix my

code several times. I have had several meeting when dealing with architecture

simulators with Mishali Naik, Mohammadali Ghodrat, Chunyue Liu and Adam

Kaplan. Other students with whom I have worked with include Bo Yuan, Kirill

Minkovich and Mike Gill.

I am thankful to my family – my parents and my brother for supporting me

xvii

through my program.

The research work in this thesis has been supported by the Gigascale Systems

Research Center (GSRC) 2009-DT-2049 and the National Science Foundation un-

der the Customizable Domain-Specific Computing (CDSC) center CCF-0926127.

xviii

Vita

2002–2006 B.Tech. Department of Computer Science and Engineering,

Indian Institute of Technology Madras (IITM)

2006–present Ph.D. student, Department of Computer Science, University of

California Los Angeles

Publications

[1] J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik and G. Reinman,“MC-

Sim: An efficient simulation tool for MPSoC designs”, Proceedings of the 2008

IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2008),

San Jose, CA, pp. 364-371, November 2008.

[2] J. Cong, K. Gururaj, and G. Han,“Synthesis of Reconfigurable High-Performance

Multicore Systems”, Proceedings of Field Programmable Gate Arrays, Monterey,

California, pp. 201-208, February 2009.

[3] J. Cong and K. Gururaj,“Energy Efficient Multiprocessor Task Scheduling

under Input-dependent Variation”, Proceedings of Design, Automation and Test

in Europe, pp. 411-416, April 2009.

[4] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou and Y. Zou,“Evaluation

of Static Analysis Techniques for Fixed-Point Precision Optimization”, Proceed-

ings 17th Annual IEEE Symposium on Field-Programmable Custom Computing

xix

Machines (FCCM 2009), Napa, California, pp. 231-234, April 2009.

[5] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, W. Hwu,“High-

Performance CUDA Kernel Execution on FPGAs”, ACM/SIGARCH 23rd Inter-

national Conference on Supercomputing, Metro New York City Area, pp. 515-516,

June 2009.

[6] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and

W. W. Hwu,“FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FPGAs”, Symposium on Application Specific Processors , pp.35-42, July 2009.

(Best Paper Award)

[7] J. Cong, K. Gururaj, W. Jiang, B. Liu, K. Minkovich, B. Yuan and Y.

Zou,“Accelerating Monte Carlo based SSTA using FPGA”, Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA

2010), Monterey, California, pp. 111-114, February 2010.

[8] A. Papakonstantinou, Y. Liang, J.A. Stratton, K. Gururaj, D. Chen, W.M.

Hwu and J. Cong,“Multilevel Granularity Parallelism Synthesis on FPGAs”, Pro-

ceedings of 19th Annual IEEE Symposium on Field-Programmable Custom Com-

puting Machines (FCCM 2011), Salt Lake City, UT, pp. 178-185, May 2011.

(Best Paper Award)

[9] J. Cong, K. Gururaj, H. Huang, C. Liu, G. Reinman and Y. Zou ,“An Energy-

Efficient Adaptive Hybrid Cache”, Proceedings of International Symposium on

Low Power Electronics and Design (ISLPED 2011), Fukuoka, Japan, pp. 67-72,

August 2011.

xx

[10] J. Cong, K. Gururaj, M. Huang, S. Li, B. Xiao and Y. Zou,“Domain-Specific

Processor with 3D Integration for Medical Image Processing”, Proceedings of the

22nd IEEE International Conference on Application-specific Systems, Architec-

tures and Processors (ASAP 2011), Santa Monica, CA, pp. 247-250, September

2011.

[11] J. Cong and K. Gururaj,“Assuring Application-Level Correctness against

Soft Errors”, Proceedings of the 2011 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD 2011), San Jose, CA, pp. 150-157, November

2011.

[12] J. Cong and K. Gururaj,“Architecture Support for Memory Operations in

Custom Instructions”, Proceedings of the 21st ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays (FPGA 2013), Monterey, California,

pp. 231-234, February 2013.

xxi

CHAPTER 1

Introduction

Energy consumption is a primary concern of current day computing systems –

from handheld battery operated systems to servers in data centers connected to

wall power. The most effective techniques combine the best of static (or offline)

and dynamic (or online/runtime) optimizations to obtain the best solution. Static

optimizations by nature can be more complex and can afford to take a global view

of the application/computation being executed on the system – however, such

optimizations have to be conservative in nature because they cannot anticipate

all the different scenarios that can appear at runtime. Dynamic optimizations

have more information about the application/computation for the given input

– however, since such optimizations have to have low overhead, they can afford

to have only a local view of the computation/application and the complexity

of the optimization has to be relatively low. A relatively well-known example

is the optimization for exploiting memory locality – compilers may be able to

reorder loops for better locality; however, they cannot anticipate exactly which

data should be kept in on-chip caches. This where a dynamic and relatively simple

block replacement policy such as LRU (least recently used) comes in.

In this thesis, I will investigate three aspects of energy efficient computing that

exploit static and dynamic optimizations.

1

1.1 Energy efficient multiprocessor task scheduling under

input-dependent variation

Modern processors are capable of switching their voltage/frequency at runtime to

reduce dynamic energy consumption (DVFS). The goal is to provide an acceptable

level of performance for applications while minimizing energy consumption. I

describe a scheduling heuristic for exploiting dynamic variation in execution time

of sub-tasks of an application to further reduce energy while still meeting the

required performance which consists of an offline convex optimization algorithm

and a simple greedy online algorithm.

1.2 Assuring application-level correctness in programs

As transistor sizes get smaller, the probability of a failure leading to erroneous

computation increases. In this section, we target applications with “elastic” out-

puts – meaning that outputs with a certain amount of error can be tolerated.

The goal is to provide an acceptable output solution with minimum overhead –

both in terms of energy and performance. We present a profile-guided compilation

strategy to identify critical instructions – instructions which can severely affect

the quality of the output if erroneous – and a runtime monitoring technique to

identify corner cases which the compiler could not anticipate.

1.3 Architecture support for custom instructions with mem-

ory operations

Accelerators are in general more energy-efficient when compared to conventional

processors (running software). In this study, we propose an architecture for fine-

grained integration of accelerators into the processor pipeline allowing the ac-

2

celerators to share the processor’s resources. A compilation framework is also

developed enable programs to exploit fine-grained accelerators. We show that

such an approach with the compilation framework and architecture working to-

gether can produce more energy efficient solutions than when these techniques are

applied in isolation.

1.4 Architecture support for dynamic instruction set cus-

tomization

Offline instruction set customization has some limitations: (1) Large space require-

ments for storing the configuration bits for all custom instructions. (2) Inability

use custom functional units in legacy binaries and precompiled library code. An

architecture framework is developed to dynamically determine ‘hotspots’ in the

program and insert custom instructions into the instruction stream. These cus-

tom instructions are executed on a reconfigurable functional unit with a very low

overhead of reconfiguration.

3

CHAPTER 2

Energy Efficient Multiprocessor Task Scheduling

under Input-dependent Variation

2.1 Introduction

Energy consumption is an important issue in designing battery operated embedded

systems. The goal of designers is to create a system which consumes minimal

energy and satisfies performance constraints at the same time. Multi-core chips

are becoming increasingly popular for embedded systems. Examples include the

ARM Cortex A-9 MPCore [2] and the MIPS 1074K [8]. One of the most effective

design techniques for minimizing energy consumption of processors is dynamic

voltage frequency scaling (DVFS), in which processor frequency and voltage can

be adjusted depending on the workload of the processor. A primary problem of

interest has been to minimize the energy consumption of an application running

on a system subject to performance constraints. A variety of algorithms have been

proposed to tackle the energy efficient scheduling and mapping of applications to

a multi-core system subject to performance constraints – we examine the major

classes of algorithms proposed in this area.

2.1.1 Workload agnostic techniques

Techniques such as those described in [54], do not assume any knowledge about

the computation time of input tasks beforehand. Such techniques use simple,

online algorithms to estimate computation workload in the next time-step based

4

on the workload in recent as well as the global history. Based on this estimation

and the list of tasks that are ready to be processed, scheduling and task mapping

is done. Power-reduction techniques are applied if the estimated workload can

be completed subject to timing constraints. These techniques are pre-dominantly

used in OS schedulers.

2.1.2 Workload aware techniques

Techniques that fall into this category typically assume knowledge of the appli-

cation – the most common assumption is that the worst-case execution time and

power consumption of each application or sub-task are known beforehand. The

performance constraint specified is the maximum execution time of the applica-

tion.

2.1.2.1 Theoretical results

The problem of scheduling a given set of tasks onto multiple processors to minimize

an arbitrary cost function subject to latency constraint and resource constraints

is NP-Hard [102]. In our case, the cost function is power. A 2-approximation

[102] is given for the case in which all tasks are independent. For the case where

precedence constraints exist among tasks, a O(nlogm) approximation scheme is

provided in [59] ere m is the number of processors available. If we drop the

resource constraint and consider the problem where all processors are identical,

with each processor capable of functioning at k discrete voltages {V1, V2,, Vk},

the problem of minimizing power consumption subject to latency constraint is

still NP-Hard. A simple reduction from 0-1 Knapsack problem proves this. If we

further drop the constraint that only a few discrete voltage levels are available

and assume that every processor can switch dynamically to any voltage, then the

problem of minimizing power can be solved in polynomial time [56]. In [56], the

5

problem of assigning the optimal voltages to each task is reduced to optimally

assigning slack to each task. The solution is based on the assumption that in the

optimal solution the lengths of all paths from a node to a primary output are the

same. Based on this assumption, a LP is formulated, the dual of which is shown to

be identical to a network flow problem. A heuristic is proposed in [43] which uses

the LP solution to guide an iterative technique which assigns discrete voltages to

each task. If the processor can be only be run at discrete voltages/frequencies,

but is allowed to switch voltage/frequency in the midst of executing a task, then

the scheduling problem can be solved optimally. The authors in [66] prove that

at most one voltage switch in the middle of a task is sufficient to guarantee the

optimal solution. The basic idea is to generate a solution similar to [56], determine

the two discrete processor voltages between which the voltage for each task falls

(as per the solution) and split the execution time of the task between the two

processor voltage levels.

2.1.2.2 Heuristic techniques

List scheduling [58] is a popular technique for resource constrained scheduling. In

[60], the authors extend list scheduling to take into account energy consumption.

The priority function to guide the list scheduling algorithm is a weighted average

of the energy saving of the current task and the amount of time available for

the successor tasks lying in the critical path of the application.The technique is

iterative in nature where initial weight assigned to energy savings is higher and

gradually decreased to ensure that the performance constraint is satisfied. Force

directed scheduling [89] is another general scheduling heuristic – the authors in

[91] modify the force function to reflect the energy consumed by the system.

6

2.1.3 Exploiting variation in execution time

The techniques described in the previous section assume that the execution time of

each sub-task of the application is always the worst-case execution time – they do

not exploit variation in the execution time of the application (because of variation

in the inputs). In this section, we describe techniques which exploit this variation

to further reduce energy consumption.

2.1.4 Uni-processor Systems

The work in [61][72][118][117][14] models the execution time of a task as a random

variable and minimizes expected energy consumption on a single processor system.

A heuristic is provided in [61] for obtaining a low-energy schedule. In [72][118],

exact solutions are provided using convex optimization techniques; however, many

of their assumptions, such as the ability to change the voltage to any arbitrary

value at any point during the execution of a task, are not valid for practical

systems. Many of these issues are addressed in [117] for uni-processor systems.

In [14], a mathematical formulation is presented to optimize the expected energy

consumption (both dynamic and leakage) by using DVFS and Adaptive Body

Biasing (ABB). However, a simple extension of the proposed method for multi-

processor systems leads to an exponential increase in complexity.

2.1.5 Multiprocessor Systems

Dynamic slack reclamation based techniques: In [122][24], the authors propose

techniques by which the dynamic slack is distributed among the remaining tasks.

While the work in [24] does not consider precedence constraints among tasks, a list

scheduling heuristic is used in [122] for tasks with precedence constraints. Such

online techniques are constrained to be relatively simple and fast.

7

2.1.5.1 Schedule Table based

The idea of using heuristic to build a schedule table at design time was proposed

in [115][101] for scheduling and voltage assignment for conditional task graphs

(CTG). However, the proposed techniques are restricted to CTGs.

2.1.5.2 Expected energy minimization

A highly complex, non-linear integer programming based method is proposed in

[78] for task mapping and scheduling in multiprocessor systems. In [116], the

authors attempt to balance the expected energy consumption across processors

by partitioning a set of independent tasks. In [93], a dynamic programming based

method is used to minimize expected energy consumption. However, the proposed

method is exponential in complexity for multiprocessor systems. The primary

contributions of this paper can be stated as follows.

• We propose a mathematical programming formulation based technique for

scheduling tasks on DVFS capable multiprocessor systems, which takes into

account input-dependent variation in execution time of tasks to reduce av-

erage energy consumption subject to a specified latency constraint. Our

technique is capable of handling precedence constraints among tasks.

• Our technique runs in polynomial time for multiprocessor systems; the solu-

tion is optimal for tree like task graphs. This is achieved by a novel pruning

method during the formulation phase that avoids the exponential enumera-

tion done in [14] [93].

• Our algorithm constructs a schedule table at design time to provide multiple

scheduling options for each task. While complex algorithms can be used to

build the schedule table at design time, the only extra processing that a

system needs to perform at run-time is a table look-up.

8

The rest of the chapter is organized as follows: section 2.2 describes our task

graph and processor models. Section 2.2.3 provides the problem statement. In

section 2.3, our formulation is presented by which variation in execution-time can

be exploited; Experiments performed on randomly generated task-graphs as well

as real-world applications are described in section 2.5.

2.2 Preliminaries and problem statement

2.2.1 Processor Model

We assume that the number of processors is restricted to be no more than a

certain number P and that the voltage of every processor in the system can be set

independently to any value within a given range [Vlower, Vupper] at run-time. The

overhead for switching between voltages is assumed to be negligible compared to

the execution time of individual tasks. To model the relation between energy,

voltage and clock frequency, we use well known equations for CMOS logic [81]:

f = C1
(V − Vth)α

V
(2.1)

E = C2WV 2 (2.2)

where f is the clock frequency, V is the supply voltage, W is the number of cycles

taken by a task (or the workload). C1 and C2are constants. α is a constant

between 1 and 2. In this paper, we approximate the frequency to be a linear

function of supply voltage [62][30]. Thus, we can see that energy can be modeled

as a non-increasing convex function of the clock period as shown in Equation

2.2. From this point onwards in the paper, we model the energy consumption

as a function of clock period cp, instead of the clock frequency. Our method is

applicable to any convex, non-increasing function of clock period.

E = C3Wf 2 =
C3W

(cp)2
(2.3)

9

2.2.2 Application Model

We assume that an application is represented as a directed acyclic graph (DAG)

G(V,E) called the task graph. Each node v ∈ V represents a task that has to

be executed on a single processor without preemption. Moreover, every task is

restricted to run at a single voltage. A directed edge (u → v) ∈ E represents

a precedence constraint between the tasks represented by nodes u and v. Each

precedence constraint is also associated with a certain communication delay be-

tween the two tasks. In our model, we assume that the execution time of the

source task (of an edge) includes the time for communication of data from the

predecessor to the successor. A latency constraint on G is a timing constraint

which specifies the allotted time L within which the execution of G should be

completed. We assume that G will be re-executed every L time units. We now

define a set of parameters associated with each task v:

• WorkLoad(v, I) of a task v is defined as the number of clock cycles taken

by v to complete execution. Note that the workload is not the execution

time because the execution time for a fixed workload varies with the clock

frequency. Also, the WorkLoad depends on input I.

• WCW (v) (Worst-Case Workload) of a task v is defined as the maximum

workload of the task v.

Motivating example: Consider the task graph G shown in Figure 1. All

four tasks are assumed to be identical and the W − V ector for the tasks is

shown in Figure 1. The worst-case workload, WCW (v), is assumed to be

100 cycles for all the tasks. The probability that the workload of a task is

no greater than 75 cycles is 0.7 and that the workload is between 75 and

100 cycles is 0.3. Suppose we are given a latency constraint of 450ns for this

example on a 2 processor system P1 and P2. Using the model described in

section 2.2, we can determine that when all the tasks run for 75 cycles, the

10

Table 2.1: Sample schedule table

Task Entry 1 Entry 2 Entry 3

v1 < 0, 1.5, 0 > - -

v2 < 75, 1.68, 112.5 > < 100, 1.5, 150 > -

v3 < 75, 1.68, 112.5 > < 100, 1.5, 150 > -

v4 < 150, 2.1, 238.5 > < 175, 1.69, 280.5 > < 200, 1.5, 300 >

worst-case scheduling produces a solution which consumes 44% more energy

than the optimal solution.

• Start Cycles Elapsed (SCE(v)) for a task v is the number of clock cycles

elapsed when all predecessors of v have completed. For tasks with only pri-

mary inputs, CE(v) is 0. For other tasks, SCE(v) = maxu SCE(u) +Workload(u)

where u ∈ predecessors(v).

• End Cycles Elapsed (ECE(v)) for a task v is the number of clock cycles

elapsed when v finishes. ECE(v) = SCE(v) + Workload(v).Also, note

SCE(v) = maxuECE(u) where u ∈ predecessors(v)

In the above example, if v1, v2 and v3 take 75 cycles each, SCE(v4) is 150

cycles and ECE(v4) is 225 cycles.

• A schedule table is a table that has for each task v, a vector of tuples

< scev, i, cpv, i, sv, i > where (scev,1, scev,2, ...scev,K) is the list of possible

values of SCE(v) sorted in increasing order, cpv,i is the clock period at which

the task v is run and sv,i is the start time of v when the value of SCE(v) is

cev,i. Continuing to use our example in Figure 1, we show a sample schedule

table in Table 2.1 when the latency constraint is set to 450ns. Suppose

at run-time, CE(v4) is computed to be 175 cycles, then the schedule table

matches this value to the entry ¡175, 1.69, 280.5¿ (Row 3, Column 2 in Table

2.1). Thus, the task v4 is scheduled to start at time 280.5ns and run with a

11

clock period of 1.69 ns. This implies that task v4 will complete at most by

time 450ns because the worst case workload of v4 is 100 cycles.

2.2.3 Problem Statement

At run-time, each task u propagates the value of ECE(u) to its successors. Every

task v computes the value of SCE(v) and performs a table look-up to determine

the start time of v and the clock period to use. This immediately implies that con-

sidering different values of SCE(v) provides us with a way of exploiting workload

variation to generate different scheduling solutions and clock period assignments

for task v (seen in Table 2.1). With this in mind, we formally state the problem:

Given a task-graph G(V,E), the WorkLoad distribution associated with each task

v, and a latency constraint L, the goal of the scheduling algorithm is to construct

a schedule table T such that the average energy consumption is minimized and the

latency and precedence constraints are satisfied for any combination of workloads

of the tasks of G.

2.3 VAR-TB – Variation-aware Time Budgeting

Our algorithm is divided into two phases – the first phase assigns tasks to proces-

sors and the second phase determines the start time and voltage assignment for

each task.

2.3.1 Task assignment heuristic

The problem of resource-constrained energy minimization subject to latency con-

straints has been proved to be NP-Hard [24]. We use a priority based heuristic to

assign the tasks to a set of P processors. The highest priority task is scheduled to

run on the first processor that is ready to accept a new task. In our experiments,

12

we use the difference between the ALAP and ASAP time to decide the task pri-

orities. These times are computed by assuming that all processors run at their

highest frequency and all tasks run at their worst-case. After a task is assigned,

the ASAP and ALAP times for the remaining tasks are re-computed. We insert

pseudo edges between consecutive tasks running on the same processor to enforce

the resource constraints during the scheduling step.

2.3.2 Task scheduling and voltage assignment

We present the mathematical formulation for the scheduling and voltage assign-

ment problem. We first present the variable organization in our formulation. We

contrast our approach with two existing works and explain how our formulation

avoids enumeration of a large number of task workloads. In section 2.4.2, we prove

why our approach can run in polynomial time and yet provide optimal solutions

for certain kinds of task graphs.

2.3.3 Mathematical formulation of VAR-TB

In [67], the authors provide a mathematical formulation for the integer time-

budgeting problem. However, they do not consider variation in workloads of the

tasks. Based on the formulation in [67], we propose a novel method to handle vari-

ations in workloads. For each task v, we introduce a number of start time variables

and clock period variables. With every value of SCE(v) (given by scev,i), we as-

sociate a start time variable sv,i and clock period variable cpv,i. Every predecessor

u of v also has a set of finish time variables. Each finish time variable - fu,j is

associated with a value of ECE(u) (given by eceu,j). Based on these variables,

our formulation consists of the following constraints:

sv,i ≥ 0 (2.4)

13

sv,i +Workloadk(v)cpv,i ≤ fv,l ⇐⇒ scev,i +Workloadk(v) ≤ ecev,l (2.5)

sv,i ≥ fu,j ⇐⇒ eceu,j ≤ scev,i (2.6)

cplower ≤ cpv,i ≤ cpupper (2.7)

fZv,l ≤ L∀v, l (2.8)

The first constraint imposes non-negativity on the start time variables. Con-

straint 2.8 imposes latency constraint on the finish times of each task. The second

constraint ensures that the finish time is greater than the sum of start time and

execution time (expressed as a product of workload and clock period). Constraint

2.5 is repeated for every value of WorkLoad(v). The third constraint imposes

precedence between u and v. Constraint 2.7 imposes bounds on the clock period

variable. Note that the only variables in the above problem are the start times,

finish times and clock periods. We explain precedence constraints (Constraint 2.6)

with the example from Figure 1. Task v1 can complete after 75 cycles (ecev1,1)

or 100 cycles (ecev1,2). Thus, task v1 has 2 finish time variables – f1,1 and f1,2

associated with 75 and 100 cycles respectively. Task v2 can start after 75 cycles

(scev2,1) or 100 cycles (scev2,2). Hence, v2 has 2 start time variables – s2,1 and s2,2.

The precedence constraints are given by:

s2,1 ≥ f1,1 (2.9)

s2,2 ≥ f1,2 (2.10)

Note that no constraints exist between s2,1 and f1,2 because task v2 starts at

time s2,1 only when task v1 has completed within 75 cycles which ensures that

14

task v1 would have completed by time f1,1. When v1 runs at the worst case (100

cycles), it will complete by f1,2 and v2 will start at time s2,2. This ensures that the

precedence constraints are always satisfied. For task v2, s2,2 is the worst-case start

time. If v1 completes by 75 cycles, v2 can start at time s2,1 (which could be less

than s2,2), thus allowing our method to exploit variation in WorkLoad(v1). Such

precedence relationships are exactly captured by constraint 2.6 which states that

a particular start time (sv,i) should be greater than a finish time of predecessor u

(fu,j) if and only if the corresponding values of scev,i and eceu,j satisfy the relation

– eceu,j ≤ scev,i.

We return to our example from Figure 1 to explain Constraint 2. Constraint 2

enforces a relationship between the start time, execution time and finish time of

a task v. As explained previously, task v2 has two values of SCE(v2) - 75 cycles

(scev2,1) or 100 cycles (scev2,2). Task v2 can have two values of WorkLoad – 75

and 100 cycles. Thus, ECE(v2) can have 3 values – 150, 175 and 200, each of

which is associated with the finish time variables f2,1, f2,2 and f2,3 respectively.

Consider the case when SCE(v2) is 75 cycles (scev2,1) and WorkLoad(v2) is 100

cycles. We observe that ECE(v2) is 175, the start time of v2 is given by s2,1 (see

previous paragraph), the finish time for v2 is f2,2 and the clock period variable

is given by cp2,1 (because SCE(v2) is sce2,1). Hence, we impose the following

constraint: s2,1 + 75cp2,1 ≤ f2,2.

Such a relationship is captured by constraint 2.5 which states that the sum of a

start time (sv,i) and execution time (WorkLoadk(v)∗cpv,i) should be less than the

finish time (fv,l) if and only if the sum of associated value of SCE(v) (scev,i) and

WorkLoadk(v) is less than or equal to the associated value of ECE(v, l) (ecev,l).

We make the following observations about our method:

• Feasible schedule: The proposed constraints are safe because for a task v, for

every value of SCE(v), there always exists a start time that is greater than

15

the finish time of its predecessors and satisfies latency constraint (assuming

a feasible schedule exists).

• Exploits variation in workload of tasks.

• Avoids enumeration of combination of workloads of all tasks: Note that

in our method, the only variables that are considered while specifying the

precedence constraints are the start times of the task v and the finish time

variables associated with its predecessors. The approaches in [14][93] begin

by fixing a start time for each task with multiple predecessors. The opti-

mization pass is executed following which the start time of one of the tasks

is changed. The methods terminate when all possible combinations of start

times have been enumerated. As an example, consider a task graph with

10 tasks, each of which can have 4 different start times. The methods in

[14][93] will require 410 optimization passes each involving approximately 10

variables and m constraints (where m is the number of edges). Our method

on the other hand requires a single optimization pass with approximately

40 variables and 16m constraints (section 2.4.2). Note that the approaches

in [14][93] work well for single processor systems because the task graph is

restricted to a chain and the start time of only a single task needs to be fixed

for each optimization phase. However, for multiprocessor systems, this is

not true.

2.3.3.1 Objective Function

The objective function represents the average energy consumption and is given by

equation 2.11. probv,i,n is the probability that the value of SCE(v) is scev,i and

WorkLoad(v) is WorkLoadn(v), cpv,i is the clock period for task v when SCE(v)

16

Figure 2.1: Fixing SCE values

is ecev,i and Cv is a constant for a given task.

∑
v∈V

K∑
i=1

M∑
n=1

Cv ∗ probv,i,n ∗Workloadn(v)

cpv,i2
(2.11)

We observe that the only variable in the objective function is the clock period

cpv,i. Also, the objective function is convex separable and non-increasing. The

probability information is obtained by profiling the application.

2.4 Improving the scheduling algorithm

2.4.1 Restricting the number of SCE(v) entries per task

The number of values of distinct SCE(v) can be very large even for small task

graphs. To avoid this, we limit the number of values of SCE(v) per task to be

less than a constant K. In our approach, we select the K values so that the area

under the probability distribution curve for SCE(v) is split into K equal regions

as shown in Figure 2.1.

17

2.4.2 Time complexity

Since the number of values of SCE(v) per task is always less than a constant

K, we ensure that the number of variables associated with each task is no more

than O(K) and the number of constraints associated with each precedence edge

(Constraint 2.6) is no more than O(K2). Thus, the number of variables is linear

with respect to the number of tasks (O(K ∗ n)) and the number of constraints is

linear with respect to the number of edges (O(K2 ∗m)).

Lemma: Since all the constraints are linear and the objective function is sep-

arable convex, algorithm VAR-TB produces a schedule table to minimize average

energy consumption subject to latency and precedence constraints in polynomial

time [67]. The proof for the lemma follows from the fact that a minimization

problem with a convex objective function and linear constraints can be optimally

solved in polynomial time.

We state a theorem which proves why our method of associating start (finish)

time variables with cycles elapsed is optimal for certain kinds of task graphs. The

main assumption is that dynamic energy is a convex, non-increasing function of

clock period.

THEOREM : Given a chain of tasks (T1, ..., Ti) to be executed sequentially and

a latency constraint L, the value of the optimal energy consumption for a single

run is dependent only on the total number of cycles consumed during the run and

independent of the distribution of cycles consumed by the individual tasks.

The proof for this theorem follows directly from the fact that a chain of tasks

can be viewed as a single task whose workload is the sum of the cycles of all the

tasks in a chain. The energy consumption depends only on the number of cycles

elapsed.

From the above theorem, we observe that for a given task chain, in the optimal

configuration, the finish time of a task chain depends only on the cycles elapsed

18

and not on the workloads of the individual tasks. This is identical to the way

we organize start (finish) time variables in our formulation. Such task chains are

very common in pipelined applications.

2.4.3 Online algorithm

We introduce a simple online phase which does greedy slack reclamation. When

a task starts, it consumes all dynamic slack available from its predecessors and

completes within its assigned finish time. Thus, the complexity of the online

algorithm is O(1). The idea is the schedule table provides a good scheduling

solution in the “global” sense while the greedy, online heuristic exploits slack in

a local manner.

2.4.4 Voltage switching overhead

Real processors incur an overhead both in terms of time and energy to make

a voltage (frequency) switch. We use the technique described in [14] to model

this overhead. In this technique, the overhead is proportional to the magnitude

of change of frequency switch. This can be expressed mathematically as shown

below.

tover = Clatency ∗ |cp2 − cp1| (2.12)

Eover = Cenergy ∗ |cp2 − cp1| (2.13)

Clatency and Cenergy are constants and a frequency switch is made from the

frequency corresponding to clock period cp1 to the frequency corresponding to cp2.

Note that under this model, the constraints are still linear. However, for many real

processors the switching overhead is a constant irrespective of the magnitude of the

frequency switch [29]. This breaks the continuous nature of our formulation (both

objective function and timing constraint) and cannot be currently incorporated

into our framework.

19

2.4.5 Discrete voltages

Real processors operate only at a fixed set of discrete supply voltages (and fre-

quencies). If each task is required to run at a single voltage only, the problem of

minimizing energy consumption subject to latency constraints when the processor

can run at discrete supply voltages is NP-Hard [25]. For this case, we propose a

heuristic – for each clock period variable we round the value of the frequency to

the next higher frequency value. This creates some slack because all the tasks now

run faster. We then use a priority based approach to determine whether certain

tasks can be slowed. The priority of a task is given by the energy savings that

can be achieved if the frequency at which the task is to be executed is slowed

to the next available frequency subject to latency constraints. Tasks are sorted

in decreasing order and the highest priority task is slowed down. The process is

repeated till no tasks can be further slowed down.

However, if a processor is allowed to make a voltage switch while executing

a task, the authors in [66] propose a method by which the schedule to minimize

energy consumption can be obtained efficiently even when the processor can only

run at a discrete set of voltages. We briefly explain their approach in this section.

Suppose task v is scheduled to run at frequency fideal after VAR-TB completes

and

f1 ≤ fideal ≤ f2

where f1 and f2 are the frequencies that the processor can run at that are closest

to fideal. The authors in [66] prove that it is sufficient to run task v partly at f1

and partly at f2. Using this result, we formulate a second problem after VAR-TB

has completed. Let the number of cycles that task v runs at frequency f1 by given

by x1 and at f2 be x2. We modify the execution time and energy consumption for

task v as shown below.

x1 + x2 = Workload(v) (2.14)

20

Table 2.2: Processor characteristics

Processor Single issue, 5 stage pipeline, FPU

Registers 64 (32-bit)

Technology 90nm

L1 cache 16K I and D caches – 4 way set-associative

L2 cache 1 MB L2 cache – 16 way set associative

Execution time = x1 ∗ cp1 + x2 ∗ cp2 (2.15)

Energy consumed = Cv ∗ (
x1
cp12

+
x2
cp22

) (2.16)

Here cp1 and cp2 are the clock periods associated with frequencies f1 and f2 and

x1 and x2 are the variables in the formulation. The remainder of the formulation is

the same as before. Note that the constraints are linear and the objective function

is convex. By solving this second formulation, for a task v we can determine the

number of cycles to run at each of the two possible frequencies. Although not

shown here, we also consider the overhead associated with the frequency switch

as described in section 2.4.4.

2.5 Experimental Results

We compare the results of our algorithm VAR-TB with a DVS algorithm which

considers the worst-case only (WC-DVS), a worst-case DVS algorithm which per-

forms dynamic slack reclamation [29] (WC-Reclaim), the method proposed in [93]

(DynOpt) and a hypothetical method that can accurately determine the workloads

of each task before hand and performs optimal scheduling (Oracle). WC-Reclaim

allocates dynamic slack proportional to worst-case WorkLoad(v).

21

Figure 2.2: Energy savings over WC-DVS

2.5.1 Random task-graphs

We run our scheduling algorithm on several random task graphs generated from

TGFF [47] with a resource constraint of 4 processors. We add the probability dis-

tribution of the task workloads as task attributes in the TGFF description. We

obtain the probability distribution of SCE(v) every task by performing a number

of Monte-Carlo simulations (10,000 in our experiments). After the optimization

step, we use Monte-Carlo simulations to compute the energy consumption and de-

termine the average energy consumption. We compute the energy savings obtained

by each algorithm and plot the savings as a percentage of energy consumption of

the worst-case algorithm in Figure 2.2. The plot depicts the energy savings over

algorithm WC-DVS for different task graphs. As can be seen, the simple algo-

rithm WC-Reclaim performs much better than WC-DVS suggesting that the task

graphs have significant variation in workloads to exploit. Our algorithm VAR-

TB performs significantly better than algorithm WC-Reclaim; on an average the

solutions provided by VAR-TB are 20-25% better than algorithm WC-Reclaim.

22

Figure 2.3: Varying the number of cores

Finally, we analyze the scheduling solution obtained by algorithm Oracle. As we

can see, VAR-TB performs well compared to Oracle with the maximum deviation

being 20% and the average deviation being 15%. Moreover, the quality of solu-

tions provided by VAR-TB does not degrade with increase in the number of tasks

in the task graph. Moreover, VAR-TB completes within 90 seconds for all task

graphs. In the experiments presented, the number of SCE(v) entries per task has

been set to 16.

We have not plotted the results of algorithm DynOpt. We discovered that

the pruning step for DynOpt proposed in [93] causes scheduling solutions that

are inferior locally but optimal globally to be discarded. Such local pruning tech-

niques cannot generate optimal solutions for scheduling problems. We found that

DynOpt performs worse than WC-Reclaim in some cases. Moreover, DynOpt and

[14] will require up to 520 optimization passes for the medium sized task graphs.

Next, we examine the effect of varying the number of SCE(v) entries per task.

The energy savings over WC-Reclaim are shown in Figure 2.3 for 4, 8, 12 and 16

entries per task. As we can see, our method of choosing the entries is effective –

having 4 entries per task leads to a energy loss of only about 5% over having 16

23

Figure 2.4: Varying the number of SCE values

entries per task. Finally, we examine the effect of varying the number of cores.

We perform experiments for 2, 4 and 8 cores with 8 SCE(v) entries per task. The

results are shown in Figure 2.4. Our technique performs appreciably in all cases.

The quality of the solution produced by our technique seems to improve when the

number of cores is increased from 2 to 4 and then stabilizes.

2.5.2 Real-world Benchmarks

We perform experiments on two real-world applications – MPEG-4 decoder and

Motion-JPEG (MJPEG) encoder. For these benchmarks, we apply dynamic slack

reclamation after every algorithm. We evaluate two different schemes – W-Aware

in which the workload of a task can be predicted from its input values and W-

Unaware where the workload of the task cannot be predicted from its input values.

Processor Architecture The processor cores in our experiments are modeled after

the Intel XScale processor has 7 voltage levels as given in [29]. All processors

share a 1 MB on-chip L2 cache through a common bus and implement a MESI

cache-coherence protocol. Table 2.2 lists the relevant parameters. We use SESC

[9] to simulate our multi-processor system and obtain profiling information (prob-

24

P

CC

IDCT

MC

TU

P_1

CC

IDCT_1

MC_1

TU_1

P_2

IDCT_2

MC_2

TU_1

(a) (b)

Figure 2.5: Task graph for MPEG-4 decoder (a) single iteration (b) two itera-

tions

abilities and WorkLoad values).

For measuring dynamic energy consumption of on-chip components, we use

Wattch [22] (integrated with SESC). Energy values for read-write operations for

caches and SRAM-based array structures (TLB, ROB) are obtained from Cacti

[82] for 90nm technology. For other processor components (such as ALU, de-

coder etc), energy numbers are obtained from Wattch for 180nm technology and

scaling factors are applied as in [111]. Inter-processor communication is carried

out through blocking FIFOs that are similar to the Fast-Simplex Link (FSL) [96]

provided by Xilinx. We set the bandwidth of the FIFOs to be 300MB/s [96].

2.5.2.1 MPEG-4 decoder

A simplified task graph for the MPEG-4 decoder provided by Xilinx [100] is shown

in Figure 2.5(a). The main components of the decoder are the Parser (P), Copy-

Controller (CC), Inverse-DCT (IDCT), Motion Compensation (MC) and Texture

25

(a)
(b)

Figure 2.6: Probability distribution of workload (a) Copy control (b) Motion

compensation

Update (TU). While IDCT does not show significant variation across different

runs, the P, CC, MC and TU modules exhibit significant variation (Figure 2.6).

By unrolling the loop for one macroblock and performing loop pipelining (Figure

2.5(b)), a parallel version of the decoder was implemented on a 7 processor system.

A performance requirement of 20 frames/second was imposed on the decoder

leading to a latency constraint of 500us per macroblock. We measure the energy

reduction that our algorithm provides over the WC-Reclaim algorithm. Moreover,

we measure how the quality of the solution is affected by the number of SCE(v)

values per task. The results are summarized in Figure 2.7. The two curves

represent the energy consumption of the schedule produced by the two schemes

– W-Aware (red curve) and W-Unaware (blue curve). From the plot, it is clear

that our algorithm can achieve significant savings over the WC-Reclaim – up to

40% for W-Aware and up to 22% for W-Unaware. What is interesting is the

fact that for modules such as IDCT and Motion-Compensation, the workload can

be predicted very accurately from its input values primarily because of a nested

if-else construct that depends on control signals that are inputs to the modules.

26

Figure 2.7: Normalized energy consumption for W-Aware and W-Unaware

schemes for MPEG-4 decoder

2.5.2.2 MJPEG encoder

We apply our algorithm to the MJPEG encoder [45] for which the task graph is

shown in Figure 2.8(a). The encoder is constrained to process Minimum Coded

Units (MCU) of the incoming data stream in sequence. However, for processing

a single MCU, we implement a pipelined version of the encoder using a four

processor system where each task in Figure 2.8(a) is assigned to a processor. Of

the four tasks, only the Huffman encoding task shows significant variation (Figure

2.9). We perform loop unrolling to obtain the task graph in Figure 2.8(b), on

which we apply our We apply our algorithm to the MJPEG encoder [45] for

which the task graph is shown in Figure 2.8(a). The encoder is constrained to

process Minimum Coded Units (MCU) of the incoming data stream in sequence.

However, for processing a single MCU, we implement a pipelined version of the

encoder using a four processor system where each task in Figure 2.8(a) is assigned

to a processor. Of the four tasks, only the Huffman encoding task shows significant

variation (Figure 2.9). We perform loop unrolling to obtain the task graph in

27

RGB2YCC

DCT

Quant

Huff

(a) (b)

Figure 2.8: Task graph for MJPEG encoder (a) single iteration (b) unrolled

Figure 2.8(b), on which we apply our scheduling algorithm.

We compare the energy savings obtained from our algorithm against the WC-

Reclaim algorithm. As explained before, we consider two cases – W-Aware and

W-Unaware and vary the number of SCE(v) entries. We show the energy con-

sumption of the two schemes normalized to the energy consumption obtained by

the WC-Reclaim algorithm in Figure 2.10. For the W-Aware scheme (red curve),

we see that we can obtain up to 14% savings in energy whereas for the W-Unaware

scheme (blue curve), the maximum savings we obtain is 4%. The small savings is

because of the low variation seen in this benchmark.

2.6 Conclusions

We present a mathematical formulation which can exploit variation in workloads of

tasks in applications to provide a low-energy scheduling solution. Our algorithm is

capable of handling precedence constraints and multiple processors. We show that

the schedule table can be generated in polynomial time and is optimal for trees.

28

Figure 2.9: Workload variation of Huffman encoding module

Figure 2.10: Normalized energy consumption for W-Aware and W-Unaware

schemes for MJPEG encoder

29

Finally, our experiments show that significant energy savings can be obtained by

our scheduling algorithm over worst-case only scheduling algorithm.

30

CHAPTER 3

Assuring Application-level Correctness Against

Soft Errors

3.1 Introduction

While the previous chapter dealt with energy efficient computing in the presence

of application-level variability, another important aspect of efficient computing is

application-level reliability. With decreasing transistor sizes and supply voltages,

CMOS devices face an increasingly higher probability of suffering from Single

Event Upsets (SEUs) [4]. In theory, to ensure correct execution of programs, every

operation needs to be duplicated and verified at runtime. However, the authors in

[76] observe that the notion of correctness in programs can be defined in multiple

ways. Quoting the authors from [76] – “traditionally, a program’s execution is

said to be correct only if its architectural state is numerically perfect on a cycle-

by-cycle basis. A similar (though slightly looser) notion of correctness requires a

program’s visible architectural state, i.e. its output state, to be numerically perfect.

In both cases, correctness requires precise numerical integrity at the architecture

level, which is a very strict requirement. We refer to the traditional notion of

correctness as architecture-level correctness. Such strict assumptions regarding

program output has led to conventional error detection and recovery techniques

(such as triple (or dual) modular hardware/software redundancy (TMR, DMR))

that suffer from large performance and energy overheads. In many applications,

even if execution is not 100% numerically correct, the program can still appear to

31

execute correctly from the user’s perspective [76][120]. Although such numerically

faulty executions do not pass the test of architecture-level correctness, they may be

completely acceptable at the user or application level. We refer to such a notion of

correctness as application-level correctness. Good examples of such error tolerant

applications are programs from the multimedia domain, where a few bits errors in

an image or video stream may still be acceptable.”

However, even applications that exhibit a high degree of error tolerance contain

certain instructions (and program segments) that are required to be numerically

correct for the program output to be acceptable. Such instructions are called

application-level critical instructions, or critical instructions in short, in this pa-

per. For example, in a MPEG-4 decoder, the finite state machine module, that

determines control flow in the program is crucial for ensuring that the decoded

video is of acceptable quality. Since real-world programs are typically far too

complex for detailed manual analysis to determine critical instructions, automatic

analysis techniques are required.

In this chapter, we focus on determining critical program segments which,

when erroneous, will affect application level correctness. We assume that our

application source code and the target hardware are correct, but transient errors

(such as single event upsets due to high-energy particle strikes) are the sources

of errors during run-time. Identifying critical instructions allows us to selectively

replicate and verify critical program segments while executing a single, unchecked

copy of the remainder of the program, thus greatly reducing overhead (in terms of

time and energy) for transient error detection and recovery than the widely used

TMR or DMR schemes.

32

3.2 Related work and our contributions

Several researchers have proposed techniques to distinguish between critical and

non-critical instructions in programs. We briefly survey the existing techniques in

this section.

3.2.1 Monte-Carlo based techniques:

The approaches proposed in [76][113][53][73][98] are based on extensive random,

fault injection into program code and then observing their effect on program ex-

ecution. In [76], based on these results, the program stack, register file contents

and the PC, along with certain manually identified application specific data struc-

tures, are marked as part of critical state,. A detailed analysis of the frequency

and type of abnormal program symptoms that are caused by errors is presented

in [73]. The authors in [73][113][53] identify such symptom generating instruc-

tions and show that the probability of an error showing up as a symptom within

a relatively small instruction window is high. In [98], likely program invariants

are detected using Monte-Carlo simulation and checks are inserted to verify these

invariants during program execution. Fault injections and analysis are performed

at register transfer level by [112]. The advantage of Monte-Carlo techniques is

that they are general and can be applied to any application; the downside is the

high running time and the possibility of missing some critical instructions.

3.2.2 Program analysis techniques

In [53], the authors mark instructions that affect global variables and arguments

to functions as high-value. Approaches proposed in [105][103] provide a simple

static analysis technique wherein instructions that affect control flow and memory

address computation are tagged critical and are marked for protection. However,

such an approach might not be safe as some data flow critical instructions might

33

be missed. In [20], the authors analyze multimedia workloads that can tolerate

errors, and propose exploiting this to address manufacturing defects. In [86][88],

the authors use dynamic dependence graphs (DDG) to identify critical instruc-

tions and perform static analysis to determine all instructions that affect such

instructions. However, as with Monte-Carlo based techniques, none of the above

techniques can guarantee to identify all critical instructions. In [87], the authors

use formal methods with symbolic expressions to obtain exhaustive error propa-

gation and coverage metrics. But results are reported for small programs and it

is unclear whether this technique can scale to large programs.

3.2.3 Using program invariants and patterns

The compiler research community has proposed several approaches for detect-

ing errors in programs based on static analysis [44][52] using approximated fault

models. Runtime error detectors are specified by the designer using rule-based

templates in [65]. Daikon [50] and DIDUCE [63] are systems which dynamically

detects program invariants. It is unclear whether all critical data and instruc-

tions can be protected by using such invariants. In [49], the authors try to learn

common program patterns from the source code. Deviations from these patterns

are tagged with a warning for possible errors. However, it would be very time

consuming, if not impossible, for the user to specify all possible invariants for all

critical instructions in a program.

In failure oblivious computing platforms such as in [95], the target platform is

modified so that the faulty application can recover from a checkpoint even in the

case of an instruction that causes fatal error (such as program termination). How-

ever, if the faulty instruction is critical in terms of application-level correctness,

the output error can be arbitrarily large.

In contrast to previous work, our contribution is a highly efficient, profiling-

34

guided static program analysis technique and runtime monitoring approach that

is guaranteed to identify all critical instructions in a program. In particular, our

approach includes:

• A scalable program analysis phase that conservatively classifies instructions

into 2 sets – static critical (SC) and static non-critical (SNC) based on the

number of output that each instruction affects. The analysis is conservative

because it might classify certain non-critical instructions as critical.

• A profiling phase that further divides the instructions in set SC into two

subsets – likely critical (LC) (typically a small subset) and likely non-critical

(LNC) based on the results of profiling.

• A lightweight run-time monitoring mechanism that tracks instructions that

were classified as LNC by the static analysis to ensure that corrective actions

are taken if these instructions become critical at run-time (in corner cases,

non-profiled input sequences etc).

• We use the results of our analysis to ensure application-level correctness

in the presence of soft errors. Instructions belonging to the set LC are

duplicated and checked using the approach proposed in [83][94], instructions

in LNC are monitored at runtime while instructions in set SNC are neither

duplicated nor monitored. Together this ensures that all critical instructions

are detected and verified at runtime.

Put together, our approach is shown to provide 21% reduction in energy consump-

tion at run-time. Our approach is different from Monte Carlo based techniques,

because profiling is used only to identify instructions that are likely non-critical

(LNC), but cannot be proven by static analysis to be non-critical. Runtime mon-

itoring is used to detect when such instructions might become critical (in rare

cases) and to take corrective actions if necessary. This ensures that application-

level correctness is ensured at run-time.

35

The remainder of this chapter is organized as follows. Section 3.3 describes

certain preliminaries associated with our method. Section 3.4 provides a brief

overview of our technique. Section 3.5 describes our static dependence analysis

technique. Section 3.6 describes our lightweight runtime monitoring technique to

detect if any likely non-critical instruction became critical. Section 3.7 describes

experiments and results and finally we conclude the chapter in Section 3.8.

3.3 Program Representation

3.3.1 Preliminaries

Programs can exhibit enhanced error resilience at the application level when mul-

tiple valid outputs are permitted. In this paper, we say such programs have “elas-

tic outputs”. Elastic outputs commonly occur in programs computing results

that are interpreted qualitatively by the user, such as multimedia applications

and heuristic-based algorithms (such as genetic algorithms, loopy belief propaga-

tion and support vector machines) that attempt to solve complex problems for

which absolute optimal solutions are too costly to compute. Programs with elas-

tic outputs have application-dependent fidelity metrics associated with them to

mathematically characterize the quality of the solution. Examples of fidelity met-

rics include PSNR (peak signal to noise ratio) for the multimedia applications,

bit error rate for error correcting codes, etc. Application-level correctness can be

defined in terms of the value of such fidelity metrics. Intuitively, these metrics

estimate the overall quality of solution in the intended application domains.

3.3.1.1 Application-level correctness

Given an application A with:

• A vector of elastic outputs O.

36

• A set of outputs Oc that require numerical correctness.

• A fidelity metric FA(I, O) associated with its input I and the corresponding

elastic output O.

• A user-specified threshold T .

An output instance (O Oc) obtained by executing application A with input

instance I in the presence of soft-errors is defined to be application-level correct

if FA(I, O) ≤ T and Oc is numerically correct.

In general, the fidelity metric considers both the magnitude of error in each

element of O and the number of elements that are erroneous. In our paper, we

focus on the second part, as the impact of an soft error to an instruction output

can be unbounded. More precisely, we assume that if an error in instruction x can

propagate to output element oi then the magnitude of error of oi can be arbitrarily

large and hence, the number of incorrect outputs determines whether the program

execution satisfies application-level correctness. Previously proposed techniques

in numerical analysis, such as those in [41], can be used to estimate the sensitivity

of the error of oi with respect to the error magnitude in x; however, there is one

major difference from dealing with soft errors – in numerical analysis the inputs

are assumed to have small error (precision error, which might be amplified by

subsequent computations) and errors in subsequent computations are computed

according to the assumed error propagation model. For soft errors, the error in

any instruction can be arbitrarily large (depending on which bits were flipped).

We also introduce the follow definitions that are used in the rest of the chapter.

• Nmin: Given the maximum possible value of error for one output element

(Emax), Nmin is the minimum number of output elements that must be

erroneous (each with error Emax) so that FA(I, O) falls below the specified

threshold T .

37

1 X=s q r t (Y) ;

2 for (i =1; i<N;++ i)

3 {

4 C[i] = C[i −1] + i ;

5 output [i] = C[i] + X;

6 }

Figure 3.1: Running example

• Basic block : A basic block in a program is a sequence of consecutive in-

structions that has one entry point, one exit point and no other branch

instructions in between.

• Instruction instance: Instance of an instruction x in the program refers to

a dynamic execution of the instruction at run-time.

• α-AFFECTER: An instruction x is said to be an α − AFFECTER of

instruction y if an error in one instance of x can propagate to at least α

instances of y.

• Static instruction id (SID): Each static instruction is given a unique id –

SID – at compile time.

Figure 3.1 shows a simple example where the array output can tolerate some

errors. Assume that the each element of output is 10 bits wide and hence each

element can have error no greater than 1024. Let the fidelity metric be the average

error over all the elements of output. If the threshold value is T , then the value

of Nmin can be computed as T∗N
1024

. If N is 106 and T is 0.1, Nmin is approximately

100. Figure 3.2 shows the LLVM IR for the above example. Intuitively, we can

see that 100 add instructions in line 8 (Figure 3.2) would need to be erroneous to

cause large degradation in output quality. On the other hand, a single error in the

38

1 entry :

2 X = c a l l s q r t (Y) ;

3 bb :

4 i = phi [entry , 1] [bb , i i n c]

5 c i 1 = load &(C[i −1])

6 add C = c i 1 + i

7 s t o r e add C , &(C[i])

8 c i = load &(C[i])

9 o u t i = add c i , X

10 s t o r e out i , &(output [i])

11 i i n c = add i , 1

12 cond = cmp i l t , i i n c , N

13 br cond bb , e x i t

Figure 3.2: LLVM IR of the running example

computation of variable i (line 3) might cause significant degradation (especially

if the error occurs in early iterations).

3.3.2 Program representation

We implement all our analysis techniques in the LLVM compiler framework [10]

– however, our technique is not restricted to LLVM and can be applied easily

to other compiler infrastructures. The LLVM intermediate representation (IR)

is a static single assignment (SSA) based representation that essentially models

a RISC processor with infinite registers where accesses to pointers (and arrays)

are only through load/store instructions while all other instructions operate on

register operands. Starting from the LLVM IR, we construct a weighted program

dependence graph (PDG) G(V,E,W) as follows:

39

Figure 3.3: PDG of the running example

• Vertices V correspond to the instructions in the program, with one node for

each instruction in the program. I(u) represents the instruction correspond-

ing to node u.

• Edges E are used to represent dependence among instructions in the pro-

gram. An edge e(u, v) is created between nodes u and v in the PDG if:

– There exists a true data dependence between I(u) and I(v), or

– I(u) is a branch instruction and there exists a control edge between the

basic blocks containing I(u) and I(v).

• Weight w(u, v) for each edge represents the maximum number of instances

of I(v) that are affected by one instance of I(u). Essentially, if an error

occurs in one instance of I(u) at run-time, w(u, v) represents the maximum

number of instances of I(v) to which the error propagates to.

40

3.4 Overview of the proposed method

Our proposed method, named CIAP (Critical Instruction Analysis and Protec-

tion), consists of the following steps

• Construction of the weighted PDG from the LLVM IR (section 3.4.2).

• Using the PDG to compute Nmin − AFFECTER for all outputs. As per

the definition given above, the weighted PDG estimates the effect of an er-

roneous instruction on its immediate successors. Section 3.5 describes how

this information is propagated through the PDG to estimate the effect on

instructions that write to the final outputs. This step classifies instructions

into 2 sets: static critical (SC) and static non-critical (SNC). The classifica-

tion is conservative in the sense that certain non-critical instructions might

be marked critical.

• Profiling using given sample inputs is used to further refine the instructions

in set SC. Instructions that are frequently seen to be critical are classified

as likely critical (LC) while others are classified as likely non-critical (LNC).

• Runtime monitoring is used to detect whether any instructions in set LNC

become critical at runtime. This is described in section 3.6.

• Reliable execution is achieved by duplicating the instructions that are in

set LC after step 3. Checks are inserted in the program for error detec-

tion and recovery (section 3.6.3). Together with the runtime monitoring

system, errors (if any) in critical instructions are detected and corrected by

re-execution.

3.4.1 Constructing PDG and computing edge weights

We introduce some terminology that we use in this section:

41

• Loop nest vector Lvec(v) (L1, L2,, Lk) for node v represents the loop nest

inside which node v resides. The outermost loop is the first element of the

loop vector.

• Trip count of loop L, TC(L) is the number of iterations executed by loop

L. If this value cannot be determined statically, then it is assumed to be a

large value TCmax.

3.4.2 Constructing PDG

The construction of the PDG, apart from edges connecting store and load oper-

ations, is trivial given a SSA-based intermediate representation. For each LLVM

instruction v, an edge e is added from every operand u to v. For load-store in-

structions, we use LLVMs alias analysis to determine whether the address for the

load and store instructions can overlap. If the alias analysis returns true and if the

object accessed is an array and the array index is an affine function of loop index

variables, we further check for dependence using the Omega library. The Omega

library [11] is a tool capable of fast analysis of affine integer constraints. We use

the Omega library to determine loop carried and loop independent memory de-

pendences as follows: let the memory addresses accessed by a store and a load

instruction be given by the affine expressions a>1 ∗I1+b1 and a>2 ∗I2+b2 respectively

(where I1 and I2 are the iteration vectors of the loop nest for the two accesses). For

loop carried dependences, we set the constraint that iteration vector I2 should be

lexicographically greater than I1 (I2 � I1) and a>1 ∗I1+b1 = a>2 ∗I2+b2 . Together

these two constraints imply that the load should be executed after the store in the

loop nest and the address accessed by both the instructions is identical. We also

add constraints on the loop bounds of the iteration vectors (if loop bounds are

constants). The Omega library can determine if the mathematical relation exists

between I1 and I2 such that the above mentioned constraints are satisfied. If the

42

Omega library returns a feasible solution, it implies that loop-carried dependence

exists for the store-load pair. Hence, we add a new edge in the PDG between the

nodes corresponding to the load-store pair. Similarly, loop independent depen-

dences are computed using the Omega library as well. If the array access is not

an affine expression of the loop index variables or the object being accessed is not

an array (generic pointer), then we make a conservative assumption and assume

both loop carried and loop independent dependence between the load-store pair

over all common loops in Lvec(s) and Lvec(l).

Figure 3.3 shows the partial weighted PDG for the example in Figure 3.2.

The dotted edge indicates that it is a loop carried dependence edge between the

store (node 3) and load instruction (node 2), and the solid edges represent loop

independent dependences.

3.4.3 Computing edge weights - Static method

We describe how we compute the edge weights of the PDG based on a number of

different cases. First, we introduce the definition of Max live reads:

Max live reads(s, l) is the maximum number of instances of load instruction l

that read the live value produced by store instruction s. Essentially, this number

estimates the number of instances of l that are impacted by an error in store

instruction s. In general, this is a difficult quantity to compute - we describe two

scenarios in which this quantity can be efficiently computed. If neither scenario

occurs, we conservatively set this value to a large number MLRmax.

• Scenario 1: instructions s and l are in the same basic block, have identical

address operands and s is before l in the basic block. In this case, the

Max live reads(s, l) is 1 because a new instance of s is always executed

before l and both access the same address. For the example in Figure 3.3,

for one instance of node sc (store C[i]), there will be one instance of node c i

43

(load C[i]) which reads the value of the store in the same iteration. Hence,

Max live reads(sc, c i) is set to 1.

• Scenario 2: instructions s and l are in the same basic block, access the same

array object and the array access indexes are affine functions of the loop

indexes (given by a>1 ∗I1+b1 and a>2 ∗I2+b2). A polytope can be constructed

using equality constraint on the array access indexes (a>1 ∗I1+b1 = a>2 ∗I2+b2

) and lexicographic ordering constraints on the iteration vectors (I2 � I1).

In this case, the Barvinok library [109] can be used to get an upper bound

of the number of integer points within this polytope, each of which is a legal

solution to the above constraints. By assuming unbounded loops, for a given

value of I1, this number is an upper bound on the number of instances of l

that will read the value generated by one instance of s. For the example in

Figure 3.3, for one instance of node sc (store C[i]), there will be one instance

of node c i 1 (load C[i-1]) in the next iteration which reads the value of the

store. Hence, Max live reads(sc, c i 1) is set to 1 and e(sc, c i 1) is a loop-

carried dependence edge.

The LLVM IR contains three kinds of nodes that need to be considered specially

while assigning weights to dependence edges – SSA phi node, load and store

instructions (that provide read and write access to pointers and arrays). We

identify three cases for edge e(u, v):

• Case 1: v is not a load or phi node. Let Lvec(u) and Lvec(v) be the loop nest

vectors for the two nodes, such that Lvec(u) and Lvec(v) are identical up to

the ith entry and are different after i. Then, w(e) is given by
∏mv
k=i+1 TC(Lk)

which is the product of the trip counts of the loops of which v is part of but

u is not. Note that if v is not part of any loop nest or is part of an outer

loop relative to u then this value evaluates to 1. For the example in Figure

3.3, node X is outside the loop nest that contains node out i (add X, c i).

44

Hence, w(X, out i)) is set to N because any error in the computation of X

will affect N instances of the add instruction (out i = add X, c i).

• Case 2: v is a phi node and e is the dependence edge corresponding to control

edge b for v. If b is not a back edge, then w(e) is computed in the same

manner as Case 1. If b is a back edge corresponding to loop Lq (of which v

is also a part) and Lvec(u) and Lvec(v) are loop vectors for nodes u and v

that are identical up to the ith entry and are different after i, then w(e) is

set to
∏q
k=i+1 TC(Lk). Essentially, this value computes an upper bound on

the number of times the control-edge b is executed for one instance of node

u. Case 3: v is a load instruction. If u is the instruction that computes the

address from which data is loaded, edge e is handled in the same way as

Case 1. If u is a store instruction, which may alias with the address of the

load, then the w(e) is set to Max live reads(u, l).

3.5 Computing α-AFFECTER from weighted PDG

In this section, we present an algorithm Propagation to determine whether an

instruction x is a α − AFFECTER of instruction y given a weighted PDG G.

We first assume that G is a directed acyclic graph (DAG) and then relax this

assumption.

3.5.1 Acyclic PDG

Algorithm Propagation iterates over the nodes in topological order. The value

propagate(root → v) represents the maximum number of instances of node v to

which an error in a single instance of root can propagate to. At first, all values

of propagate are set to 0. propagate(root → root) is set to 1 (because in a

DAG 1 instance of a node affects only 1 instance of itself). For a node u, the

45

value of propagate(root→ v) has been computed for all predecessors v (since we

traverse G in topological order). By definition, propagate(root → v) represents

the number of instances of v to which an error from a single instance of root

can propagate to and w(v, u) is the number of instances of u to which an error

from a single instance of v can propagate to. Hence, the maximum number of

instances of u to which an error from a single instance of root can propagate to

through nodev is simply the product w(v, u) ∗ propagate(root → v). We take

the maximum over all predecessors v to get an upper bound on the number of

instances of u to which an error in a single instance of root can propagate to. More

precisely:propagate(root→ v) = maxu∈predecessors(v)propagate(root→ u ∗ w(u, v)

3.5.2 PDG with cycles

Our goal is to modify the PDG by adding new edges and updating some edge

weights so that all cycles can be removed. Existence of cycle C implies that

an error propagated to any single node instance in C will propagate to all node

instances in C (in the worst case). Hence, any node that can affect one node of

the cycle must affect all the nodes of the cycle. This information must be reflected

in the modified PDG. Since the PDG has cycles, the original program must have

loops. This implies that for each cycle C in the PDG G, there exists an edge be

which corresponds to the back-edge of the loop L associated with the cycle C.

We first add edges to all nodes in C from nodes which are not part of C but

affect at least one node in C. More precisely, ∀u ∈ S = {x|∃ v s.t. e(x → v) ∈

E∧v ∈ C∧x /∈ C} , create edges e′(u→ v) for all and set w(e′) to TC(L)∗w(be).

This ensures that any error from a node outside the cycle will be propagated to

all nodes in the cycle and the number of instances affected is upper bound by

the product of trip count of the loop L and weight of the back-edge. We can

then delete be. By repeating this process for all cycles, we finally end up with a

DAG, for which we can reuse algorithm Propagation. The only difference is the

46

initial value of propagate(root → u) for nodes that were part of the cycle C, the

initial value is set to TC(L) ∗ w(be). This implies that any error in one instance

of root will propagate to all instances of u in the cycle of which both u and root

are part of (in the worst case). For the PDG shown in Figure 3.3, the loop

carried dependence between nodes 2 and 3 makes the value of propagate(3 → 3)

and propagate(2 → 3) to become N . Thus, nodes 2 and 3 are marked critical -

however, node 1 does not become critical as propagate(1→ 5) is simply 1.

3.5.3 Identification of critical instructions

Let NC = (i1, i2, ..in) be the instructions that directly write to outputs that are

required to be numerically correct and J = (j1, j2, ..jm) be those that directly

write to the vector of elastic outputs. An instruction x is marked critical if:

• Rule 1: x is 1-affecter for any instruction inNC i.e.
∑n
k=1 propagate(x→ ik) ≥

1 OR

• Rule 2: x isNmin−affecter for any instruction in J i.e.
∑m
k=1 propagate(x→ jk) ≥

1 OR

• Rule 3: x is 1− affecter for any instruction marked critical by the above 2

rules.

3.5.4 Control flow optimization

The procedure described in the previous sections marks certain non-critical control

flow statements conservatively as critical. We define a critical basic block as a

basic block that contains at least one critical instruction. Consider the control-

flow graphs (CFG) shown in Figure 3.4 where each block represents one basic

block. Critical basic blocks are shaded. In Figure 3.4(a), assume that block D

contains an instruction X that has been marked critical according to rule 1 or

47

A

B C

D

P

Q R

S

(a) (b)

Figure 3.4: PDG of the running example

rule 2 in section 3.5.3. Let us also assume that blocks B and C do not have any

instructions that are marked critical according to Rules 1 or 2. Rule 3 would lead

to the branch instructions in B, C and A to also be marked critical (since they

are 1 − affecters of the critical instruction X in D). However, the control flow

from block A reaches critical block D irrespective of the direction taken by the

branch instruction at the end of A. Since blocks B and C do not really have any

critical instructions, an error in As branch instruction will not cause an error at

the application-level. Thus, As branch has been conservatively marked critical. In

contrast, in Figure 3.4(b), block R is critical and hence block P s branch becomes

critical (along with all instructions that affect P s branch). We now present an

analysis technique for further identifying non-critical control flow code segments.

To detect non-critical control flow, we first unmark branch instructions that have

been marked critical only by Rule 3 in section 3.5.3. We use the concept of

post-dominator from control-flow analysis. A basic block B is said to strictly

post-dominate block A if and only if all control paths from A to the end must pass

through B and B is not equal to A. The immediate post-dominator of a block

A (ipdom(A)) is the unique block B that strictly post-dominates A but does not

strictly post-dominate any other block that strictly post-dominates A. The main

idea behind our technique is to determine whether from a given basic block A,

48

control flow can reach a critical basic block before it reaches ipdom(A). If not, As

branch is not critical because no matter what path the control flow takes from A,

it does not reach a critical basic block before it reaches ipdom(A).

Figure 3.5 shows the outline of our analysis technique C−Opt. In the Initialize

step (line 1), basic blocks are marked critical based on the conditions:

• All basic blocks containing at least one critical instruction (section 3.5.3)

are marked critical.

• All basic blocks that exit from loops that contain at least one critical basic

block are marked critical.

• All basic blocks that contain an exit instruction (exit function, return etc.)

are marked critical.

Our algorithm then iterates over all basic blocks (lines 4-6) and for each block A

tries to find whether control flow from A can reach a critical basic block before

ipostdom(A) (line 7). This step is a simple depth-first search in the CFG starting

at A. If yes, then A is marked as a critical block and As branch instruction (Abr)

is also marked critical (lines 9-11). All instructions that are 1-affecters of Abr

(denoted DS(Abr)) are also marked critical as are the basic blocks that contain

these instructions (line 12). The algorithm terminates when no more basic blocks

are marked critical (line 15). The algorithm is guaranteed to terminate because

in the worst case all blocks will be marked critical.

49

Initialize

2: while new critical blocks found do

for i = 1→ num blocks do

4: A← block[i];

if reachesCriticalBeforeIPDom(A) then

6: Mark A as critical basic block;

Abr ← As branch

8: Mark Abr as critical;

Mark DS(Abr) as critical;

10: end if

end for

12: end while

Figure 3.5: Control-flow optimization algorithm - C-opt

3.6 Assuring application-level correctness - profiling and

runtime monitoring

3.6.1 Profiling edge weights

As is true for any static analysis, the results of the static dependence analysis

might be overly pessimistic. We identify two main sources of conservatism that

might lead to high edge weights resulting in several instructions being marked

critical conservatively.

• Conservative edge weights – Conservative alias and control flow analysis

techniques might set certain edge weights much higher than they occur dur-

ing program execution.

• Correlated edge weights – It is possible that two dependence edges are never

active simultaneously during program execution due to control flow, data

50

dependent address computation etc.

In our approach, we track edge weights that are overestimated by static analysis.

Determining correlations between edge weights requires path tracking which we do

not investigate in our work. Profiling is used to estimate edge weights of two kinds

of edges – edges between a store and load instruction and control dependent edges

with a phi node as their end-point. We compare weights of edges obtained during

profiling with those estimated by static analysis. Any edge whose weight obtained

from profiling is 25% of the value estimated by static analysis is identified as a

conservative edge. We then substitute the new values of edge weights obtained

from profiling for conservative edges and re-run the Propagate technique described

in section 3.5. It is possible that certain instructions which were marked critical

earlier by static analysis are now no longer critical. We mark these instructions

as likely non-critical (LNC) to be monitored at runtime.

3.6.2 Runtime monitoring of edge weights

At runtime certain edges may have higher weights for certain corner input cases,

which would make the conclusions of the profiling-guided criticality analysis in-

valid. Hence, we propose the use of a lightweight runtime scheme that can monitor

edge weights and trigger a signal when a edge weight increases above a thresh-

old (which might make certain instructions critical). We explain how we track

edge weights for dependences between a store and load instruction. Each memory

location has a tracker structure associated with it – the tracker has two fields a

src field to store the static instruction id (SID) of the instruction writing to the

address and a counter field to determine the number of times the memory location

is read before being overwritten by a new value. When a store instruction writes

to an address, it sets the src field of the tracker to its SID value and resets the

counter to 0. When a load instruction reads from an address, it reads the src

51

field associated with the tracker and increments the value of the counter. The

src id along with the load instructions SID describes the dependence edge. The

src SID and the load instructions SID together uniquely determine the depen-

dence edge and the value of the counter represents the edge weight. For each edge

being monitored at runtime, a threshold value is assigned. As long as the edge

weight is below the threshold, the results of the profiling guided analysis hold and

all instructions in set LNC are still non-critical. If the edge weight crosses the

threshold value, then there is a chance that certain instructions in the set LNC

may become critical. The threshold value is computed at compile time – it is set

to 80% of the edge weight obtained during profiling.

Accessing the counter location given the source and destination SIDs at run-

time needs to be efficient. We use a perfect hashing scheme [90] to achieve this – a

perfect hash is feasible since all the possible likely source ids given the destination

id is already known after profiling.

In our method two versions of the code are compiled – version V 1 which as-

sumes that all instructions are critical and version V2 which assumes that only

instructions classified as likely critical (LC) after the profiling phase are critical.

Version V 2 also contains runtime monitors to track dependence edges associated

with likely non-critical (LNC) instructions. To begin with, version V2 is exe-

cuted. If an unexpected dependence edge is seen during program execution, then

we switch to version V1 as we can no longer guarantee non-criticality of instruc-

tions in version V2 due to the unexpected dependence. We observe two common

patterns of accesses to array/pointer locations that would benefit from monitoring.

The first pattern involves array/pointer objects that are accessed in a streaming

fashion. The full input stream might be very large but the block of data (in the

array/pointer) being processed in one stage is relatively small. For such arrays, it

is important to keep track of accesses to individual words, because each word is

read and overwritten frequently – the tracker counters associated with each word

52

need to be reset to 0 on every store instance (that writes to the particular word).

The second pattern involves accesses to large sized pointer/array objects whose

read counts are uniformly distributed across all the individual elements and read

counts per element are rarely large enough to make store operations to these loca-

tions critical. For objects with such access patterns, maintaining a single counter

for a contiguous region of memory is expected to provide good estimates of edge

weights. Offline profiling can be used to estimate whether accesses to a particular

array/pointer fit into one pattern or the other.

3.6.3 Ensuring application-level correctness

We use the results of our analysis to obtain application-level correctness using

the approach in [83]. All instructions in the set LC are duplicated and their

results are compared before writing to memory. If any errors are detected, then

execution is rolled back to the start of the basic block and instructions are re-

executed. Runtime monitors are inserted to detect whether any instructions in

set LNC become critical. Finally, the instructions in set NC are not checked (since

any errors in NC will not affect application-level correctness).

3.7 Experiments and Results

We assume our program will run on a commercial off the shelf (COTS) processor

platform where the memory structures (caches, external memory) are protected

by ECC. We measure the energy overhead for achieving reliable execution by

simulation using Winsconsin’s GEMS simulation infrastructure [80] and McPAT

[74] for power estimation. We simulate a 4-issue processor with 64 KB L1 caches

and 4MB L2 cache. Some of the relevant configuration parameters of the processor

system which we simulated are given in Table 3.1.

53

Table 3.1: Simulation parameters

Parameter name Value

Issue-width 2-issue superscalar processor

Physical registers 224

L1 cache 64 KB, 4-way set associative, 64 byte block

L2 cache 1 MB, 4-way set associative, 64 byte block

3.7.1 Error injection methodology

For each instruction in IR-level representation, based on the given error probability

(0.01% in our case) and the number of times the instruction is executed (obtained

using a profiling run), we use a pseudo-random number generator to determine

whether that particular instruction should be impacted by a single-event upset.

If yes, a new function call is inserted into the program – the new function call

invokes a pseudo-random number generator and determines whether to inject an

error or not at run-time. Using real soft error rates for applications would take a

long time for errors to appear; hence we use 0.01% as a sample value. For actual

soft-error rates, we refer the reader to [75]. For all applications, the maximum

allowed fall in quality of solution is set to 5%.

3.7.2 Illegal memory accesses

In [73], the authors showed that when an error at the RTL-level for a processor

is not masked, it appears in software primarily as an illegal memory address

leading to a program crash. However, since many instructions are non-critical,

an application-level correctness aware system would ignore memory accesses with

faulty address values. Fortunately, current processor ISAs such as SPARC v9

[12] provide non-faulting loads (for optimized compilation) – load instructions

which will execute correctly when the memory address is legal and will be ignored

54

when illegal. Such non-faulting loads have no overhead relative to normal load

instructions when the address is legal.

We investigate the effectiveness of our technique on multimedia benchmarks

from MiBench [7]. DCT, Huffman coding and ycc2rgb are important kernels in the

JPEG decoder. Susan is an image recognition program with kernels for detecting

edges and corners in images. G721 is a voice compression application while GSM

implements a decoder for the GSM communications standard. LDPC [5] (low

density parity check) is a linear error correcting code. H264 is a video decoder

from the MediaBench suite [6] while libmad is an open source mp3 decoder.

Table 3.2 shows the results obtained by static analysis and profiling. Columns

1 and 2 show the total number of instructions and basic blocks in the program.

Columns 3 and 4 show the number of instructions marked critical during the

static analysis and control flow analysis phase respectively. Column 5 shows the

number of basic blocks marked critical during our control flow analysis phase.

Column 6 shows the number of instructions which became LNC after profiling

phase. The primary reason for the large number of instructions marked critical

during static analysis is the conservative nature of alias analysis. Profiling helps

reduce weights of certain edges which leads to many instructions being marked as

LNC, particularly for the larger benchmarks.

Table 3.3: Comparison with [83]: columns under ‘Error-free’ and ‘Errors inserted’

show the # instructions executed without and with errors at runtime respectively,

column titled ‘Energy reduction’ shows the energy reduction relative to [83]

Benchmark Error-free Errors inserted Energy reduction (%)

CIAP Previous

[83]

CIAP Previous

[83]

Static

only

Static

+monitor

IDCT 1.036 2.00 1.037 2.001 95 95

Huffman 1.761 2.00 1.78 2.02 32 32

55

Table 3.3: Comparison with [83]: columns under ‘Error-free’ and ‘Errors inserted’

show the # instructions executed without and with errors at runtime respectively,

column titled ‘Energy reduction’ shows the energy reduction relative to [83]

Benchmark Error-free Errors inserted Energy reduction (%)

CIAP Previous

[83]

CIAP Previous

[83]

Static

only

Static

+monitor

ycc2rgb 1.15 2.00 1.16 2.00 98 98

GSM 1.343 2.00 1.352 2.02 104 104

G721 1.665 2.00 1.687 2.00 63 63

Susan-edges 1.015 1.99 1.016 2.001 107 107

Susan-

corners

1.045 2.00 1.046 2.03 110 110

LDPC

(LBP)

1.098 1.99 1.1 2.007 103 103

Rician

denoise

1.57 2.00 1.62 2.08 8.23 42

H264 1.63 2.00 1.68 2.00 7.10 51

Libmad

(mp3)

1.41 1.99 1.49 2.002 4.56 71

Average 1.34 2.00 1.36 2.01 66.53 79.63

Table 3.3 shows the overhead (in terms of number of instructions executed at

run-time and energy) of duplicating critical instructions to achieve application-

level correctness with respect to the approach proposed in [83]. The approach in

[83] protects all instructions in the program and guarantees architectural correct-

ness. Columns 2 and 3 show the number of instructions (relative to the single

correct copy) executed at run-time when no errors are inserted into the applica-

tion for our approach and the previous work [83]. Columns 4 and 5 show the

56

Table 3.2: Static instruction classification

Benchmark InstructionsBasic

blocks

Critical

data flow

Critical

control

flow

Critical

blocks

LNC

IDCT 224 4 0 8 4 -

Huffman 443 76 0 309 66 -

ycc2rgb 85 8 27 17 7 -

GSM 2533 451 2 923 151 -

G721 1077 215 52 554 121 -

Susan -

edges

1299 44 7 34 14 -

Susan

-corners

993 106 14 30 15 -

LDPC

(LBP)

200 29 145 19 9 122

Rician 832 87 72 12 17 64

H264 50431 7731 18654 24321 5845 14312

Libmad

(mp3

decoder)

12349 2335 6086 3129 1945 4045

57

data for the case when errors are injected into the application. As can be seen, for

the random error injections, the overhead of recovery is small primarily because of

the relatively small number of critical instructions and the relatively small number

spent in re-execution. Columns 6 and 7 show the energy savings achieved by our

method compared to the approach in [83] – column 6 shows the impact of static

analysis only while column 7 considers both static analysis and run-time monitor-

ing. On the average, our technique provides 79.63% energy reduction compared

to [83] while guaranteeing application level correctness.

Table 3.4: Comparison with [103]: columns under ‘Error-free’ and ‘Errors inserted’

show the # instructions executed without and with errors at runtime respectively,

column titled ‘Energy reduction’ shows the energy reduction relative to [103]

Benchmark Error-free Errors inserted Energy reduction (%)

CIAP Previous

[103]

CIAP Previous

[103]

Static

only

Static

+monitor

IDCT 1.036 1.036 1.037 1.037 0 0

Huffman 1.761 1.82 1.78 1.83 3 3

ycc2rgb 1.15 1.12 1.16 1.12 -1.7 -1.7

GSM 1.343 1.99 1.352 2.01 34 34

G721 1.665 1.96 1.687 1.99 17 17

Susan-edges 1.015 1.997 1.016 2.030 63 63

Susan-

corners

1.045 1.984 1.046 2.012 63.3 63.3

LDPC

(LBP)

1.098 1.63 1.1 1.64 5 24.7

Rician

denoise

1.57 1.92 1.62 2.1 0 19.3

H264 1.63 1.91 1.68 1.98 0 32

58

Table 3.4: Comparison with [103]: columns under ‘Error-free’ and ‘Errors inserted’

show the # instructions executed without and with errors at runtime respectively,

column titled ‘Energy reduction’ shows the energy reduction relative to [103]

Benchmark Error-free Errors inserted Energy reduction (%)

CIAP Previous

[103]

CIAP Previous

[103]

Static

only

Static

+monitor

Libmad

(mp3)

1.41 1.62 1.49 1.65 0 21

Average 1.34 1.72 1.36 1.76 16.69 25.05

Table 3.4 shows the overhead (in terms of number of instructions executed at

run-time and energy) of duplicating critical instructions to achieve application-

level correctness with respect to the approach proposed in [103]. The approach

in [103] protects only control flow and memory address computations and does

not guarantee application-level correctness. Columns 2 and 3 show the number

of instructions (relative to the single correct copy) executed at run-time when no

errors are inserted into the application for our approach and the previous work

[103]. Columns 4 and 5 show the data for the case when errors are injected into

the application. As can be seen, for the random error injections, the overhead

of recovery is small primarily because of the relatively small number of critical

instructions and the relatively small number spent in re-execution. Columns 6 and

7 show the energy savings achieved by our method compared to the approach in

[103] – column 6 shows the impact of static analysis only while column 7 considers

both static analysis and run-time monitoring. On the average, our technique

provides 25% energy reduction compared to [103] while guaranteeing application

level correctness.

59

3.7.3 Analysis of results

For applications such as DCT and YCC2RGB in JPEG, the data flow is non-

critical and only loops form the critical program segments. These applications

have affine accesses to arrays and hence static analysis is able to perform well.

GSM and G721 operate on small chunks of data (16-130 bytes) and almost all

dependences which are not well analyzed by static techniques affect the control

flow. A few control statements are marked non-critical by our control-flow analysis

technique. The kernels in Susan have affine accesses with a large number of

instructions affecting control flow – however, each control decision affects only

one output element and each decision is independent. Thus, our control flow

analysis can save a significant number of critical instructions. Static analysis

performs adequately for these applications. Static analysis performs poorly for

the remaining benchmarks. LDPC is pointer-heavy with linked lists being used for

representing a sparse matrix. Denoising on the other hand is an iterative algorithm

with a check for convergence. Although it shows strong loop-dependence, the

number of iterations, before convergence, is rarely large enough (even in presence

of errors) for an error to propagate to a large number of elements. H264 and

libmad (mp3 decoder) are streaming applications; however, static analysis is not

able to perform effective alias analysis due to the complex nature of the code

involved. For these applications, the runtime monitoring scheme is useful as it

helps to overcome the overly conservative nature of static analysis. Table 3.5

shows the overhead associated with runtime monitoring (for the applications that

benefited from runtime monitoring). The main source of overhead is the write and

read of the source and destination SIDs in memory. Hashing is relatively fast.

For our set of applications, we did not any edge weights crossing their threshold

values. This might be a characteristic of media benchmarks – other applications

such as simulated annealing might behave differently.

60

Table 3.5: Overhead associated with runtime monitoring

Benchmark Overhead (# dynamic instructions) Performance overhead

LDPC 9% 11%

Denoising 6% 9%

H264 13% 16%

MP3 8% 9.2%

3.8 Conclusion

In this chapter, we presented a hybrid analysis technique which analyzes programs

with elastic outputs to determine critical instructions. Our approach consists of a

static analysis phase which can identify critical instructions and mark those which

are identified as critical because of the conservative nature of static analysis. This

is followed by a profiling phase that determines whether instructions conservatively

marked critical by static analysis do become critical at run-time – if not, these

instructions are monitored by a lightweight run-time system. We use the results of

our analysis to reduce the number of replicated instructions and show significant

benefits over previous approach while guaranteeing application-level correctness.

61

CHAPTER 4

Architecture support for custom instructions

with memory operations

4.1 Introduction

The previous two chapters focused on energy efficient computing in the context of

application level variability and reliability. However, the target platform on which

the applications were executed was a general purpose processor based system (chip

multiprocessor or CMP). When we talk of energy efficient computing, hardware

specialization has been a very powerful tool. Fixed-function accelerators are cus-

tom processing units which are highly efficient (in terms of energy) and fast at

performing tasks for which they are designed [40] (compared to software running

on conventional processor cores). However, typical coarse-grained accelerators are

not very flexible – they are unable to handle computations apart from those for

which their data-path and control flow are designed for. To bridge the gap be-

tween coarse-grained accelerators and software, instruction-set customization has

been proposed in [21][32][1][13][99][36][15]. Custom instructions (CIs) enhance

the conventional processor pipeline by allowing certain patterns of operations to

be executed efficiently on custom functional units (CFUs) added to the proces-

sor pipeline. CFUs are typically small compared to coarse-grained accelerators

– most CFUs comprise of a few operations and operate on a few inputs (< 10)

compared to coarse-grained accelerators which operate on hundreds of input data

elements and typically consist of hundreds of operations. This makes it possible

62

for compilers to automatically extract computation patterns from programs and

map them to the CFUs. In our work, we target systems where the CFUs can be

implemented in reconfigurable fabric that is tightly integrated with the processor

pipeline.

Integration of CFUs with a superscalar pipeline provides additional opportu-

nities – typical superscalar processors have hardware for speculatively executing

instructions and rolling back and recovering to a correct state when there is mis-

speculation. Speculation may involve branch prediction or load speculation – by

load speculation we mean the scenario where a load instruction can read memory

before the address of a preceding store instruction is even computed (operating

under the assumption that the store and load will not access the same address).

Using a content-addressable memory structure (CAM) called load-store queue

(LSQ), the processor can detect conflicts and recover in case of mis-speculation.

In our work, we propose an architecture for integrating CFUs with the superscalar

pipeline to exploit the processor’s hardware for speculation and recovery. Several

previous works have proposed architectures for supporting processors with CFUs

– in the following section, we review related work and discuss their limitations to

motivate our work.

4.2 Related work and our contributions

4.2.1 ALU-like CFUs

In such systems, the CFUs read (write) their inputs (outputs) directly from (to)

the register file of the processor and cannot access memory – hence the term

ALU-like CFUS. Such an architecture has been used in several previous works

[15][36][32]. This architecture makes it simple to integrate the CFU with a super-

scalar pipeline – the processor micro-architecture can perform register renaming,

branch prediction and control speculation in a manner transparent to the CFU.

63

However, since the CFU cannot access memory, the size of the computation pat-

tern that can be implemented on a CFU is constrained by the number of ports

in the register file. A variety of architectures have been proposed to overcome

this bottleneck – shadow register files [38][119], clustered register files [68] and

spreading the register file reads (writes) across multiple cycles [92][48].

4.2.2 CFUs with memory operations

The primary problem with allowing CFUs to launch memory operations is to

make sure that memory is updated and read in a consistent fashion with respect

to other in-flight memory instructions in the superscalar pipeline. In the GARP

[64] processor, the reconfigurable array can launch memory operations – however,

the assumption is that all memory operations within the processor pipeline have

completed before launching the CI and the processor pipeline cannot launch any

memory operations while the CFU is computing. In the VEAL design [31], the

authors assume that the compiler and hardware together take care of synchro-

nization between the CFU and the processor pipeline and memory consistency

is maintained using the system’s cache coherence protocol. In the OneChip [23]

processor, the compiler needs to insert special instructions in the program to mark

all the memory blocks which may be read or updated by the CFU – the mem-

ory controller uses this information to ensure the correct ordering of operations

within the pipeline. The limitation of this architecture is that the addresses of

all possible memory blocks that may be touched by a CI needs to be computed

before launching the CI itself.

4.2.3 CFUs with Architecturally Visible Storage (AVS)

The idea of AVS is to make a memory block inside the CFU visible to the processor

micro-architecture so that data can be transferred to/from the memory block

64

from/to the processor’s memory hierarchy in a consistent fashion. The CFU can

then launch memory operations which read/write from/to the AVS block. In

[17], the compiler inserts special instructions to explicitly transfer data from/to

the CFU’s AVS – thus, the compiler needs to identify which memory blocks are

read by a CFU, which software instructions update the memory blocks before the

CFU is launched and insert the transfer instructions after the update instructions

have completed. Coherence was addressed by the authors in [70] who introduced

a MESI coherence mechanism between the AVS and the processor cache. In an

extension to that work, the authors in [71] propose minimizing the overhead of the

coherence protocol between the AVS and cache by allocating some cache lines for

the AVS. However, in all these approaches, it is the responsibility of the compiler

to ensure that synchronization instructions are inserted in the program between

the CI and inserting transfer instructions at the correct position.

4.2.4 Context-full CFUs

The authors in [114] proposed an architecture by which the CFUs can possess con-

text/state (to minimize the number of transfers between the CFU and processor

memory/register file) and can be launched speculatively. The proposed hardware

contained support for storing CFU context and recovering it when there was a

mis-speculation. However, no other details of the interaction between the CFU

and the processor pipeline were provided.

4.2.5 Our contributions

In our paper, our goal is to design an architecture such that CIs with memory

operations can execute seamlessly along with other instructions in the processor

pipeline without any special synchronization operations. Our goal is to introduce

minimal changes to a conventional superscalar core architecture and re-use most

65

of its component. More precisely,we present an architecture for integrating CFUs

with the processor pipeline with the following properties:

1. CFUs can launch memory operations to directly access the L1 D-cache of

the processor – our CFUs have no internal memory or context which removes

the need for coherence between the CFU and D-cache.

2. CFUs do not have to specify which memory addresses they access before

executing the CIs. This is specially useful for pointer heavy applications

[106] where the address of memory accesses cannot be determined ahead of

time.

3. No synchronization instructions need to be inserted before /after the CI –

this greatly reduces the burden on the compiler specially for applications

with operations whose memory address cannot be determined beforehand.

Our architecture uses the components of the superscalar pipeline to ensure

the correct ordering among the different memory operations.

4. The effect of doing away with synchronization instructions is that more ag-

gressive speculative pipelining of CIs is possible for ’hot’ loops in a program.

CIs no longer need to wait for earlier CIs to complete.

5. Multiple CFUs can issue memory operations simultaneously in a specula-

tive fashion – again, our architecture leverages and extends the superscalar

pipeline components to determine conflicts and the processor’s rollback and

recovery mechanism to restart from a safe state in case of mis-speculation.

Our goal is to add CFUs to a relatively small superscalar core (for example,

a 2-issue wide core) and achieve the performance of a larger core (for example,

a 4-issue wide) with significant savings in energy consumption. Additionally, we

show that our architecture can be used for applications with complex memory

66

1 ld [A] , R1

2 s t R2 , [R1]

3 CI

Figure 4.1: Memory ordering example

access patterns and achieve good performance gains while previous approaches do

not perform well for such applications.

The rest of the paper is organized as follows – section 4.3 describes our main

contribution in supporting memory operations in CIs. Section 4.4 describes some

implementation details in our flow, section 4.5 describes the architecture of our

processor which is tightly integrated with the CFUs. Section 4.6 describes our

custom compilation flow for extracting CIs from computation-intensive loops of

benchmarks so that they can be efficiently executed on the processor system with

CFUs. Results are presented in section 4.7.

4.3 Challenges and our proposed solution for supporting

memory operations in CFUs

Execution of ALU-like CIs, which only read from/write to the core’s registers,

is well understood – the conventional register renaming mechanism takes care

of dependences between the CI and other instructions in the pipeline. In this

section, we explain the issues associated when CFUs connected to an out-of-order

(OoO) core are allowed to launch memory operations directly. As we explain the

issues, we propose modifications in the compilation flow as well as the underlying

micro-architecture of the core to support such CFUs. A more detailed view of the

67

architecture is described in section 4.5.

Basic working : A CI is essentially a set of operations grouped together by

the compiler to be executed as a single instruction. The primary inputs for a CI

always come from the registers of the processor – all input registers must be ready

before a CI is ready to execute. Once a CI starts executing, it can issue a series of

memory operations into the processor’s pipeline. The addresses of these memory

operations need not be known before the CI starts executing – the CI can supply

the addresses as it executes. Outputs of the CI can be writes to the processor’s

registers or write operations to memory.

4.3.1 Issue 1: Maintaining program order for memory operations

Typically, when CIs are inserted inside a sequential code block, the user expects

that memory is updated in program order. Consider the simple example in Figure

4.1 – the CI to be executed launches 3 memory operations, a read from location

M2 and writes to M1 and M3. Note that the preceding store instruction could

possibly write to the same location as M2 (shown as a dotted arrow in the depen-

dence graph). For previous work [23][70], the CI needs to wait at least until the

addresses of all preceding memory operations are computed before proceeding.

However, the address of the preceding store instruction is provided by the pre-

ceding load instruction – in case of a cache miss, the load instruction could take

several cycles to complete. Since the core is OoO and the CI may begin executing

before the store instruction’s address has been computed, the only way to achieve

program correctness is through compiler inserted synchronization instruction(s)

before the CI. This would force the CI to wait till the address of the store has

been computed, even if the CI does not really depend on the store instruction.

Note that even if the compiler determines address M2 to be a constant, the syn-

chronization instruction is still needed since the compiler cannot determine the

address of the store instruction. This could lead to idle resources in the pipeline

68

Figure 4.2: Ordering of instructions in the pipeline for the example in Figure

4.1

while the preceding addresses are being computed. Using a coherence protocol

[70] reduces the burden on the compiler in transferring data between the CFU

and L1 cache, but by itself does not guarantee correct program order ([70] uses

synchronization instructions provided by the compiler) .

We overcome this limitation by modifying the core micro-architecture – the

key difference of our approach is to make the memory operations launched by a CI

visible to the OoO processor’s pipeline in program order . In the decode

stage of the pipeline (see Figure 4.2), in which program order is still maintained,

the CI in Figure 4.1 would launch 3 memory operations (which we call mem-

rops) into the dispatch stage. In the dispatch stage, each operation is assigned a

tag representing its program order. Since the store instruction would have been

decoded/dispatched before the CI, it would have been assigned a preceding tag.

The OoO pipeline would assign 1 entry for the store and 3 entries for the CI in

the LSQ – the LSQ would contain the address, a valid bit to determine whether

the address is known and the instruction tag. If the addresses of the CI memory

operations can be computed (within the CI) before the store instruction’s address,

they are allowed to execute. Once the store instruction’s address is determined,

the LSQ will check whether any successive operations have an address conflict –

69

in case of a conflict, the OoO pipeline would ensure that the CI is squashed and

a pipeline flush occurs. If not, the instructions wait for retirement.

Note that because we made the ordering of memory operations launched by

the CI explicit to the OoO pipeline, the hardware is able to determine when

a data hazard occurs without any information from the compiler (no explicit

synchronization needed). Also, the CI can execute before the preceding address

values are known.

4.3.2 Issue 2: Ordering of memory operations within a CI

For the CI in Figure 4.1, assume that the first write operation to address M1 and

the read operation reading from M2 overlap/conflict. In case of normal memory

instructions, if the read executes before the write, the read would be squashed

and re-executed in the OoO pipeline. However, the instruction stream of the

program contains only the CI and not the individual memory operations. Re-

execution would need to begin from the CI and the same conflict would occur

again. To overcome this problem, we place a constraint during the CI compilation

phase – the compiler cannot cluster a memory operation in a CI if there is a

preceding memory write operation within the CI which may cause a conflict.

The compiler uses alias analysis (possibly in a conservative way) to satisfy this

constraint. Memory dependences between different CIs are handled in the same

way as described in section 4.3.1.

4.3.3 Issue 3: Possible partial commit to memory

For the CI in Figure 4.1, assume that the first write operation to address M1

commits and updates memory. However, after this commit, it is determined that

the write operation to M3 fails because of a TLB translation fault. For a normal

instruction, the pipeline would be squashed and the TLB translation fault would

70

be serviced by a page walk. However, for an operation launched by a CI, re-

execution would begin from the CI again. This would leave the memory in an

inconsistent state since the write to address M1 was committed. We overcome

this problem by delaying the commit of all write memory operations launched by

the CI till the successful completion of the CI (no TLB faults).

4.3.4 Issue 4: Handling TLB faults

Memory operations launched by a CI can cause TLB faults – we handle this from

the compiler side. The compiler assigns an additional output register for the

CI. When there are no faults, the CI writes 0 to this register, else it writes the

logical address which caused the TLB translation fault. All memory operations

launched by the CI are squashed (no update to memory). The compiler inserts

four additional instructions – a comparison to see whether the output register

contains a non-zero value, a branch if-not zero instruction, a load instruction for

the logical address which caused the fault and an unconditional branch back to

the CI. Basically, the program checks whether a TLB fault occurred (given by

the non-zero test of the output register), performs a software read where the TLB

fault is handled and re-executes the CI.

4.3.5 Issue 5: Handling variable number of memory operations

Since CIs can span multiple basic blocks in the program, the number of mem-

ory operations launched by a CI could vary across executions and need not be

deterministic before the CI starts executing. This issue is solved by launching

the maximum number of memory operations that a CI can execute during the

decode stage. These memory operations wait in the processor pipeline till the CI

supplies valid addresses. In case a particular memory operation is not executed,

the CI supplies a ‘dummy’ address for these operations effectively turning them

71

Table 4.1: Alias information for benchmarks – columns titled 0-10 show the

fraction (as percentages) of memory dependences sorted by iteration distance.

The last column shows the ratio of dynamic/static memory dependences (ex-

pressed as percentage).

Bench-

mark

0 1 2 3 4 5 6 7 8 9 ≥10 Dynamic

/Static

(%)

bzip2 8.71 9.8 4.2 0 0 1.54 0 3.23 0 0 72.52 14.34

lib-

quantum

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0 5.74

mcf 0.00 17.51 10.46 7.21 4.33 3.81 1.76 1.55 0.86 0.99 51.52 0.16

gobmk 72.40 13.77 3.24 1.60 0.94 0.58 0.45 0.36 0.31 0.23 6.12 17.86

h264 88.75 7.91 0.36 0.21 0.15 0.12 0.18 0.11 0.11 0.11 2.00 23.45

sjeng 55.87 21.74 2.67 1.76 1.50 1.09 1.48 0.70 0.66 0.62 11.93 11.78

hmmer 14.34 7.8 2.3 3.7 0 0 0 0 0 0 71.86 16.49

into nops. To bound the maximum number of memops that a CI can execute, our

compiler ensures that control flow within a CI never follows a loop backedge.

4.3.6 Scenarios where our architecture would beat a system with com-

piler inserted synchronization

Our architecture would be beneficial if memory dependences predicted by the

compiler are very conservative with respect to actual dynamic memory depen-

dences in the program. In Table 4.1, we analyze integer benchmarks from the

SPEC 2006 suite and show the distribution of dynamic memory dependences

across loop-iteration distances for the 10 ‘hottest’ loops in each program. For ex-

ample, the number in column titled 0 for h264 implies that for 88% of all memory

dependences (read after write) for the top 10 loops, the write and read operations

were executed in the same iteration of the loop (hence iteration distance 0). The

last column shows the ratio of the number of memory dependences observed at

72

runtime to the number of memory dependences predicted by the compiler (alias

analysis). The relatively low values in the last column show that the alias analy-

sis of the compiler is conservative when it comes to estimating RAW hazards for

memory operations. If the compiler was expected to figure out all the memory

dependences while generating custom instructions (like in OneChip [23]), then

a large number of ‘synchronization’ instructions would need to be inserted into

the code. In our experiments, we use the the full alias analysis from LLVM to

estimate dependence at compile time.

The distribution of memory dependences across iteration distances in loops,

shows us that there is significant opportunity for speedup using loop pipelining

with CFUs – if a large percentage of memory dependences had a small dependence

distance (1 to 3), then loop pipelining would not be efficient since too many iter-

ations would depend on near previous iterations. Note that memory dependences

with iteration distance 0 are not an issue with respect to loop pipelining. Our

results are consistent with those reported in [106] regarding speculative pipelining.

4.3.7 Difference with CISC ISAs

Our method of using mem-rops is similar to micro-ops used by x86 based proces-

sors. CISCinstructions (like x86) are typically split into relatively simple micro-

ops – typically an address computation micro-op, a memory read/write micro-op

and possibly an arithmetic micro-op. The CIs in our system differ from CISC

instructions in the following ways: (1) A CI can launch an arbitrary number of

mem-rops which may complete in any arbitrary order. (2) Memory read rops

launched by a single CI can have dependence between them as well (for exam-

ple ptr → next → X). (3) A CI can span multiple basic blocks in the program

and it is possible that the actual number of mem-rops executed varies from one

execution of the CI to another. The reason we used rops is because we want to

minimize the changes needed in the core for supporting memory operations from

73

Figure 4.3: Layout of the processor pipeline with tightly integrated CFU

within a CI.

4.4 Custom instruction operation and representation

In our system, a reconfigurable datapath is integrated tightly within the proces-

sor pipeline – the logical layout is shown in Figure 4.3. Physically, our system

is a tiled chip multiprocessor (CMP). Individual tiles may be processor cores, L2

cache banks or tiles of reconfigurable fabric (see Figure 4.4). A core can imple-

ment custom instructions in an adjacent tile containing reconfigurable fabric. The

baseline core in our system is a 2 GHz 2-issue superscalar processor. Consider the

Xilinx Virtex-6 XC6VSX315T FPGA which has around 50K slices and 1300 DSP

blocks in a 23mm by 23 mm die. In our system, we estimate the area occupied

by a core (using McPAT [74]) and compute the number of slices/DSPs that could

fit in this area as per the density of the above mentioned Virtex-6 FPGA die –

this turned out to around 2000 slices and 150 DSP blocks. From McPAT [74],

we determine that it would take 5 processor cycles to communicate between the

reconfigurable fabric and core pipeline to transfer values from/to the FPGA in

74

Figure 4.4: Tiled CMP with reconfigurable logic

Figure 4.5: Custom instruction format

a pipelined fashion. More details of the communication are provided in section

4.5.6.

At the start of an application, the datapath is re-configured to implement

the CFUs which execute the CIs selected by the compiler for that particular

application (section 4.6). Reconfiguration time for modern FPGAs is around 1

ms [77] and is small enough to be ignored if performed once per application. We

assume that the processor clock and the CFU clock arise from the same master

clock and the processor frequency is an integer multiple of the CFU frequency.

This may reduce the frequency at which CFUs are able to run, but makes the

interface between the clock domains simpler [110] – essentially all that is needed

is a register which can accept new data from the processor at a rate equal to the

integer multiple. More details of the interaction between the CFU and processor

pipeline are described in section 4.5.

Since memory operations launched by the CI can take arbitrary time to com-

plete (cache misses etc), each CFU is not a simple deterministic datapath – the

synthesized circuit contains a finite-state machine with dedicated states in which

the CFU stalls while the launched memory operations are completed.

Each CI has a code associated with it which tells the hardware which CFU

75

to run the CI on. This code is part of the binary representation of the CI.

In our setup, we use the SPARC v9 ISA and use the nop instruction “sethi

< imm value >, %g0 ” provided to implement CIs – see Figure 4.5 for the instruc-

tion format of sethi (the numbers above the rectangle specify the number of bits)

. This instruction provides 22 bits for representing the immediate value – we use 5

bits for the code of the CI, 11 bits as a bit vector to determine which registers are

inputs to the CI and 6 bits as another bit vector for determining which registers

are outputs of the CI (Figure 4.5 lower rectangle). For example, in the 11 bit

source register bit-mask, if bit number 8 is set to 1 (numbering assumed to start

from 0), then this implies that register r8 is one of the inputs to the CI. Note that

the SPARC ISA has 32 registers – however, under our setup, CIs can only use 11

of them as inputs and 6 as outputs (in our experiments, we use registers 8 to 18

for inputs and 19-24 for outputs). This imposes a hard limit on the number of

register inputs/outputs that custom instructions can have in our architecture.

4.5 Details of proposed architecture

Our baseline processor is a superscalar processor with support for branch pre-

diction (and rollback-recovery) and out of order execution of memory operations.

Figure 4.3 shows the basic layout of how our reconfigurable CFU units interact

with the rest of the processor pipeline – the rest of the section briefly explains

each component of this interaction. There are two main issues we need to consider

in our architecture: (1) Each CI can have more than 2 source registers and more

than 1 destination register (unlike conventional instructions). (2) Each CI can

launch 1 or more memory operations. For the purpose of illustration, we assume

that our baseline processor is a 2-issue wide superscalar processor.

76

Figure 4.6: Decoder modification (a)baseline(b)modified

4.5.1 Fetch stage

Our baseline processor can fetch upto two instructions every cycle from the I-

cache (assuming cache hit), perform branch prediction, update the PC and store

the fetched instruction in the fetch buffer. The fetch buffer is a circular FIFO – the

head (updated by the decode unit) points to the next instruction to be decoded

while the tail (updated by the fetch unit) points to the last instruction fetched.

The fetch unit ensures that the head of the fetch buffer is not overwritten when

the decode stage is stalled. We make no changes to the fetch stage.

4.5.2 Decode stage

Our baseline processor’s decoder has two decode slots and hence, can decode two

instructions every cycle from the fetch buffer (moving the head pointer of the

fetch buffer by two every cycle). The decoded instructions are placed into two

decode registers which are read by the rename logic in the subsequent cycle. The

rename logic checks for dependencies between the two instructions and renames

the source registers by accessing the register alias table (RAT) which stores the

mappings between architectural and physical registers. The destination registers

of each instruction are assigned a physical register from the free list buffer (which is

maintained as a circular FIFO). Since we are using the SPARC ISA, an instruction

can have at most 3 source registers (store integer instruction) and 1 destination

register. We assume that a 2-issue wide processor can rename upto 2x3 source

registers per cycle and can assign upto 2x1 destination physical registers per cycle.

77

Since CIs may contain upto 11 source registers, 6 destination registers and

multiple memory operations and the number of ports of the register file (and

other components in the micro-architecture of a superscalar processor such as the

RAT, free list, reservation station) is limited, additional changes are needed in the

micro-architecture to support CIs. Essentially, we split a complex CI into multiple

simple operations which we call rops (for RISC operations). This approach is

similar to decoding performed in x86 processors where a complex instruction is

split into multiple simple micro-ops (uops) [3]. However, the difference is that

for our CIs the micro-ops are used only for reading from/writing to registers and

memory while the computation is performed by customized logic on the FPGA.

When the decode stage encounters a CI, it determines the number of register

operands from the binary representation of the instruction (see Figure 4.5) . The

opcode of the CI (see section 4.4) is used to determine the number and type

(read/write) of memory operations that the CI will launch. This operation is

essentially a table lookup – we assume a 1-cycle latency for this operation (bit

vector to denote the type of operation). We introduce a SRAM table called CFU

memop table to store the mapping between the CI opcode and the number of

memory operations launched by the CI – this is a programmable table which is

filled up when a new application is launched.

Consider an example CI with 8 register inputs, 3 register outputs and 4 memory

operations on a 2-issue wide baseline processor. Our baseline ISA is SPARC v9

where an instruction can have at most three source registers and one destination

register. For a fair comparison, we use the same constraints and hence, a rop can

have at most three source registers and one destination register. Hence, the decode

logic creates 3 sreg-rops (source register rops), 4 mem-rops (read operations first

followed by write operations), 3 dreg-rops (destination register rops). For a 2-

issue processor, assuming the CI is decoded in decode slot 0, upto 2 rops (and/or

instructions) can be processed every cycle. Hence, for our example CI, it would

78

take 5 cycles to insert all the rops into the pipeline. Also, we introduce two

additional bits in the decode registers to mark the first and last rops of a CI.

A CI can appear at any of the two inputs of the decoder in a 2-wide processor

while the rops of the CI can be output at any of the two outputs of the decoder.

This implies that we need a crossbar at the end of the decode stage because the

rop issued by any decode unit should be able to enter any of the two decode slots

available (see Figure 4.6).

Using a circular FIFO for the fetch buffer allows the decode stage to throttle

the fetch stage when the buffer is full. However, if the pipeline design is similar to

the Alpha-21264 [69] with a single wide register to store the fetched instructions

every cycle, our design needs another modification. An additional wide register is

introduced to copy the fetched instructions every cycle – if the fetched instructions

contain a CI, the fetch unit is stalled and the decoder will use the duplicate register

in subsequent cycles till all the instructions in the duplicate register are decoded

fully.

4.5.3 Rename stage

The sreg-rops and dreg-rops are renamed in the same way as normal instructions.

Mem-rops are ignored completely by the rename stage.The source operands for

these mem-rops (address and/or data) are provided by the CI after partial exe-

cution. Making sure that the mem-rops ’ source operands are passed correctly is

handled by the dispatch stage and the scheduler.

4.5.4 Dispatch stage

The dispatch stage is the last stage in the pipeline where instructions are processed

in order (apart from the commit stage) – each instruction is assigned a sequence

id or SID which represents the program order. The SID is typically the index in

79

Figure 4.7: Reservation station entry format (a)baseline(b)modified

the ROB in which the instruction is stored.

The main job of the dispatch stage is to perform resource allocation – create

entries in the ROB (and assigning SIDs) for each instruction/rop, the reserva-

tion station and in the LSQ for memory instructions/rops. Since mem-rops get

their address (and data) operands directly from the CIs (and not register file),

each entry in the reservation table needs to be expanded to accommodate this

information. We explain with an example: consider a modern superscalar proces-

sor with 256 physical registers and a 128-entry ROB. A typical reservation station

(RS) contains entries whose format looks similar to the one shown in Figure 4.7(a)

– each entry has 3 fields for the source operands, each field stores the physical

register id and value of the source operands (and/or immediate operand), a valid

bit and a ready bit (labeled V and R respectively). For our example processor,

the width of the physical register id field would be 8 bits.

In our modified ISA, the number of destination registers has been limited to 6

and source registers to 11 (see section 4.4). From section 4.4, each CI can have at

most 16 mem-rops. Thus, each CI can have at most 4 sreg-rops, 6 dreg-rops and

16 mem-rops. Each mem-rop can have two source operands – address and data

(for memory write operations). Thus, to correctly address the source operand of

a mem-rop, the following information is needed:

• SID of the CI which provides the source operands: We use the SID of the

first rop to represent the SID of a CI. We denote this by SIDfirst. Since an

SID is the index of the rop in the ROB, the bitwidth for SID in our example

80

system is log2(128) bits.

For normal instructions, each source operand is simply the physical register

id – to maintain compatibility with the field for SID is expanded to 1 +

log2(max(256, 128)) bits, with one additional bit to determine whether the

source operand is a physical register or is provided by a CI.

• Index of the rop inside the CI – we call this the ropid. In our example, the

CI could provide data to upto 16 mem-rops, 4 dreg-rops or the 6 dreg-rops.

Thus, ceil(log2(26)) bits are needed to represent the ropid.

• Operand index within a single rop: For example, a mem-rop has upto two

source operands (address and data) and hence, 1 bit is needed to mark the

operand index within a single rop.

This brings the bitwidth of each source operand id to 15 bits while baseline

processor (without CIs) would use only 8 bits for representing source ids (physical

register ids).

For each rop that passes data to the CI, the rop needs to know the SID of the

CI i.e. SIDfirst. This information is used to correctly route the results of sreg-rops

and mem-rops over the bypass path to the CFU executing the CI. Additionally,

since a CI may launch multiple sreg-rops and mem-rops, each rop must know

its own index within a CI. Since a CI can have at most 26 rops, we would need

5 bits to represent the index of the rop within a CI or ropid as described in the

previous paragraph. Normal instructions in the baseline processor have one field to

represent the destination physical register id. We extend this field to also include

the additional information required for CIs. In our baseline example processor,

the destination register id field is log2(256) bits wide. In our system, this field is

extended to 1 + log2(max(256, 128)) + 5 bits – the one additional bit is 1 if the

destination is a CI, 0 otherwise.

81

From McPAT [74], we observe that the area of the reservation station in the

baseline processor would be 0.17 mm2 while the modified reservation station would

occupy 0.21 mm2 at the 45 nm node.

4.5.5 Scheduler and execute stage

When a particular sreg-rop becomes ready (all its source register operands become

ready), assuming the CFU corresponding to the CI is idle or the CI corresponding

to the sreg-rop has already been assigned to the CFU, the scheduler may decide

to assign the CFU to that particular CI. Communication to the CFU occurs over

the 5-cycle link mentioned in section 4.4. The correspondence between an sreg-rop

and the issuing CI is obtained by reading the SIDfirst value from the destination

field as described in subsection 4.5.4.

Preventing deadlocks : Consider an example, where two CIs C1 and C2 that

runs on the same CFU enter the pipeline in-order and launch one sreg-rop each,

given by r1 and r2 respectively. It is possible that r2 is ready before r1 (cache miss

etc) and the scheduler reserves the CFU for C2. However, if there is a dependence

between C1 and C2, then C2 would never complete execution on the CFU and C1

would never execute (as C2 has reserved the CFU) leading to a deadlock. The

scheduler makes sure that such a deadlock never happens by reserving a CFU for

a CI only when all the sreg-rops for the same CI are ready.

Once the CFU has obtained all its register operands, it begins execution. When

a memory operation is encountered, the CFU computes the address (and data)

for the operation and sends it over the bypass path to forward it to the mem-rop

waiting in the RS. The address is tagged with the SIDfirst of the CI and the ropid

so that the correct mem-rop reads the address. The CFU may have to stall till

the mem-rop is completed – if the mem-rop is a read operation and its value is

needed for further operations in the CFU.

82

Figure 4.8: Communication links – W is the number of CFUs that can commu-

nicate in parallel

The mem-rop, using the address obtained from the CFU, proceeds with the

memory operation in a manner identical to load/store instructions. Assuming

there are no conflicts in the LSQ or TLB misses, the memory operation completes

and waits in the ROB for retirement. If the mem-rop is a memory read operation,

the read value is forwarded to the CFU over the bypass paths (again using SIDfirst

to route the value to the correct CFU).The value is also tagged with the ropid (as

described in section 4.5.4).

The CFU completes execution and forwards the results to dreg-rops waiting

in the RS after which the dreg-rops wait in the ROB for retirement.

4.5.6 Communication with CFUs

Figure 4.8 shows the communication mechanism between the processor core and

CFUs. As described in subsections 4.5.4 and 4.5.5, the value of ropid is used to

pass data either from sreg-rops to the primary inputs of the CFU or from mem-

rops to the CFU. The value of ropid is used to pass address and data values to

dreg-rops and mem-rops. The parameter W determines the number of CFUs that

can communicate in parallel; in our experiments W is set to 1.

83

The communication links and source registers for the CFUs are pipelined and

operate at the core frequency. The CFU reads from the source registers at the

FPGA frequency which is typically much lower. The difference between the fre-

quency of the communication links and the CFUs allows communication to pro-

ceed efficiently even when there are several CFUs connected to the core. In our

experiments, we determined that increasing the width of the communication links

did not provide any performance improvements (the frequency difference between

the primary reason).

4.5.7 Retire stage

The sreg-rops and mem-rops which only read from memory are retired like any

other instructions – except that they do not update any registers. Unlike store

instructions, write memory mem-rops launched by CIs are allowed to update

memory only when all the rops launched by the CI have retired because of reasons

explained in section 4.3.3. We introduce two additional bits per entry of the ROB:

(1) Bit 0 is 1 if the current entry is the first rop of a CI. (2) Bit 1 is 1 if the current

entry is the last rop of a CI.

Table 4.2: CI statistics – average over largest CIs per loop

Benchmark #Nodes #Inputs #Outputs #Memory operations

bzip2 14.5 6.2 4.7 5.8

libquantum 11.4 5.1 4.4 1.9

hmmer 17.5 5.5 8.4 4.3

mcf 16.3 4.2 6.2 4

gobmk 47.5 5.6 9.6 7.6

h264 37.6 12.4 17.8 4.5

sjeng 74.9 10.6 31.2 9.6

84

Table 4.3: Simulation processor parameters

Parameter Value(s)

Issue-width 2/4

ROB 128/256 entries

RS 128/256 entries

Register file 256 physical entries

LSQ 64 entries

Cache 64 KB L1 I/D cache, 4MB L2 cache

Table 4.4: Normalized performance (#cycles elapsed) with non-pipelined CFUs

on FPGAs
2-issue/128 entries 2-issue/256 entries 4-issue/128 entries 4-issue/256 entries

baseline CFU baseline CFU baseline CFU baseline CFU

bzip2 1.000 0.960 0.999 0.940 0.958 0.947 0.956 0.945

libquantum 1.000 0.847 1.000 0.810 0.653 0.607 0.653 0.606

hmmer 1.000 0.850 1.000 0.842 0.775 0.715 0.775 0.704

mcf 1.000 0.980 1.000 0.978 0.973 0.963 0.973 0.962

gobmk 1.000 1.001 0.999 0.960 0.982 0.971 0.981 0.969

h264 1.000 0.880 0.998 0.870 0.765 0.701 0.763 0.688

sjeng 1.000 0.930 0.999 0.920 0.895 0.890 0.894 0.888

Average 1.000 0.921 0.999 0.903 0.857 0.828 0.857 0.823

Improvement(%)- 7.886 - 9.664 - 3.443 - 3.896

85

Table 4.5: Normalized performance (#cycles elapsed) with pipelined CFUs on

FPGAs
2-issue/128 entries 2-issue/256 entries 4-issue/128 entries 4-issue/256 entries

baseline CFU baseline CFU baseline CFU baseline CFU

bzip2 1.000 0.945 0.999 0.944 0.958 0.901 0.956 0.902

libquantum 1.000 0.564 1.000 0.536 0.653 0.213 0.653 0.193

hmmer 1.000 0.714 1.000 0.701 0.775 0.483 0.775 0.472

mcf 1.000 0.964 1.000 0.963 0.973 0.937 0.973 0.936

gobmk 1.000 0.977 0.999 0.976 0.982 0.960 0.981 0.958

h264 1.000 0.693 0.998 0.700 0.765 0.465 0.763 0.447

sjeng 1.000 0.863 0.999 0.866 0.895 0.757 0.894 0.756

Average 1.000 0.817 0.999 0.812 0.857 0.674 0.857 0.666

Improvement(%)- 18.298 - 18.722 - 21.401 - 22.202

Table 4.6: Normalized total energy consumption with pipelined CFUs on FPGAs

2-issue/128 entries 2-issue/256 entries 4-issue/128 entries 4-issue/256 entries

baseline CFU baseline CFU baseline CFU baseline CFU

bzip2 1.000 0.691 1.046 0.716 1.367 0.949 1.452 0.929

libquantum 1.000 0.620 1.058 0.735 1.044 0.726 1.141 0.700

hmmer 1.000 0.615 1.094 0.743 1.079 0.685 1.291 0.888

mcf 1.000 0.698 1.060 0.723 1.035 0.717 1.123 0.711

gobmk 1.000 0.694 1.011 0.663 1.391 0.895 1.412 0.881

h264 1.000 0.678 1.051 0.657 1.137 0.718 1.224 0.768

sjeng 1.000 0.700 1.029 0.719 1.290 0.818 1.343 0.867

Average 1.000 0.671 1.050 0.708 1.192 0.787 1.284 0.821

Improvement(%)- 32.894 - 32.582 - 33.986 - 36.075

86

4.6 Compiler flow for creating CIs

We implement all our analysis and program transformations as part of the LLVM

compiler infrastructure framework [10]. We use profiling to find the 10 most

computationally intensive loops of an application and then use the pattern enu-

meration and selection approach described in [39] to determine the CIs – however,

we are allowed to have memory access operations inside our CI. The pattern enu-

meration approach has to satisfy the constraints imposed in sections 4.4 and 4.5.

There are additional constraints imposed to generate valid patterns for CIs. We

enumerate these constraints below:

• Convex data flow [39]: Assume instruction X is included as part of a CI Y

which depends on X is not part of the CI. Then, any instruction Z which

is dependent on Y cannot be part of the CI because this would lead to a

cyclic dependency between the CI and instruction Y .

• No special instructions : Instructions such as function calls, return, volatile

memory operations, atomic instructions etc cannot be part of a CI as our

synthesize logic is incapable of handling these instructions.

• No loops within CIs : We do not allow CIs to include the back-edge for a

loop (a single CI by itself cannot execute multiple iterations). Allowing back

edges would lead to the CFUs storing some context that is invisible to the

processor making rollback impossible (since the CFUs do not possess any

means to rollback).

• Maximum number of memory operations per CI : Each type of CI can launch

only a predetermined maximum number of memory operations – this allows

the dispatch logic to determine the number of entries to create in the ROB

and RS. CIs spanning multiple basic blocks are handled as described in 4.3.5.

87

• Bound on the number of memory operations : The number of memory oper-

ations launched by a CI should be no more than the number of entries in

the ROB/reservation station/LSQ.

In Table 4.2, we present some statistics for the largest CIs we found in our pro-

grams. We determined the largest CIs that our compiler pass could identify in

the top 10 loops and took the average over these loops. The first column shows

the number of nodes in each CI, the second shows the number of register inputs,

the third shows the number of register outputs and the fourth shows the number

of memory operations per CI. Allowing memory operations in the CI allows us to

increase the size primarily because: (i) Fewer input/output registers. (ii) Not al-

lowing memory operations increases the likelihood of non-convexity of a CI. Note

that we cannot really use the largest CIs because of architectural constraints that

limit the number of register inputs/outputs and memory operations per CI.

4.7 Results

4.7.1 Evaluation setup

We use the LLVM compiler framework to analyze and extract CIs from the SPEC

integer 2006 benchmark suite (since FPGAs are not very area efficient at im-

plementing floating point operations). Our compiler framework is limited to C

programs (3 of the SPEC integer benchmarks are C++ programs) – perlbench

and gcc would crash when compiled with LLVM. We use AutoESL HLS tool for

synthesizing our CFUs and Xilinx XPower for energy numbers for the FPGA. We

use Wisconsin’s Gems simulation infrastructure [80] to model the performance of

our system – the simulation parameters we use are listed in Table 4.3. We use

McPAT [74] to estimate energy of the processor core – for compatibility reasons,

we assume that the core is implemented in a 45 nm process (the same as Xilinx

88

Virtex-6). Our cores and the CFUs run at different frequencies –the core runs at

2 GHz while the frequency of the CFU is provided by Xilinx ISE. To keep the in-

terface logic as simple as possible, the CFU is adjusted so that the CPU frequency

is an integer multiple of the CFU frequency (see section 4.4). The reconfigurable

fabric is reconfigured once per application – hence, the actual time per reconfigu-

ration is not critical in our methodology. Based on our description in section 4.4,

we can have most 32 CFUs at a time. For the CFUs that our compiler selected

for our benchmarks, for 5 of the benchmarks the CFUs could operate at 200 MHz

(1 FPGA cycle = 10 core cycles) while for the other 2 benchmarks, the frequency

we had to use was 125 MHz (1 FPGA cycle = 16 core cycles).

We first examine the effect of allowing memory operations inside the CI. We

find that the average number of nodes per CI is 3.6 when memory operations are

not allowed inside the kernel and 12.3 when allowed. Additionally, the primary

constraining factors that prevent the increase in CFU size in the first case are

memory operations and limited number of register ports. For the case where

memory operations are allowed, the primary constraining factor is the presence of

aliased memory read operations (section 4.6).

4.7.2 Comparison with baseline

We compare the performance of our system with several core configurations in

Tables 4.4 and 4.5 – All numbers are normalized with respect to the 2-issue baseline

processor (by performance we mean the normalized number of cycles taken to

execute the programs).

Performance: Table 4.4 shows the performance when the CFUs are not pipelined.

As can be seen, the average performance improvement is small compared to soft-

ware. This is primarily because of the massive frequency difference between the

FPGA and CPU. Table 4.5 shows the performance when the CFUs are pipelined –

89

initiation interval of pipelining varies between 1 and 3 FPGA cycles (as determined

by AutoPilot). With pipelining, we begin to see significant performance improve-

ments – average of around 18% for 2-issue cores. The key point in our approach

is to compare the performance of a 2-issue core augmented with CFUs (column

2) with a 4-issue core (column 5) – our architecture can beat the performance of

a 4-issue core using 2-issue core and CFUs. For benchmarks with significant ILP

(libquantum, hmmer, sjeng, h264), the speedup is reasonable. Benchmarks such

as mcf which have a large working set see very little improvement mainly because

they are memory bound and encounter a high fraction of cache misses.

Energy : Table 4.6 shows the energy consumption (normalized to the 2-issue

core). Here, we see that having CFUs provides significant energy savings. On the

average, we see a 32% energy reduction. Of the total energy savings, we observe

that 41% of the total energy savings in our system comes from reduced number

of accesses to the I-cache, instruction buffer and decode logic, 32% of the savings

comes from reduced energy consumption of the ALUs (since many arithmetic

operations are performed in the FPGA now) and register files and the remaining

27% of the energy savings are distributed among the reservation station, rename

logic and ROB.

MIPS/J : To sum it up, we plot the performance over energy average values

for the different configurations that we studied in Figure 4.9. We compute the

MIPS/J metric for each configuration and normalize them with respect to the

MIPS/J metric for the 2-issue/128 entry window core. As we can see, using our

CFUs significantly improves the MIPS/J metric, upto 1.8X times the baseline

core. The 4-issue cores have relatively low values of MIPS/J metric because of

the large energy consumption of the 4-issue base core. However, with CFUs their

MIPS/J values also rises significantly thanks to the larger reduction in energy

consumption relative to the 2-issue core. An additional conclusion that can be

drawn is that the increase in window size from 128 to 256 entries provides no

90

Figure 4.9: Graph showing average MIPS/J values normalized to the 2-is-

sue/128 entry window core

significant benefits while causing an increase in energy consumption.

Resource usage: Table 4.7 shows some statistics and resource usage associated

with our selected CFUs. Column 1 shows the number of different CFUs selected,

column 2 shows average number of operands per CFU, column 3 shows average

number of memory operations per CFU, columns 4 and 5 show the total slices

and DSP blocks used respectively.

4.7.3 Comparison with restricted CIs

We examine the benefits of allowing memory operations inside a CFU. Table 4.9

shows the results of a system where the CFU is not allowed to launch memory

operations compared to a 2-issue superscalar processor. As can be seen, the

performance and energy improvements are very small mainly because the size of

each individual CFU (and the custom datapath) is limited to a few operations and

so the CFUs do not perform significantly better than software. Not having memory

91

Table 4.7: Resource usage for selected CFUs

CFUs #Instructions/CI #memops Slices DSP

bzip2 27 20 4 1958 114

libquantum 16 11 3 1961 112

hmmer 21 16 7 1886 139

mcf 25 18 3 1852 135

gobmk 23 11 4 1893 121

h264 22 13 7 1918 124

sjeng 16 13 4 1892 114

operations launched from within a CI limits the speedup and energy savings for

superscalar processors.

We examine the benefits of allowing CIs to execute speculatively – namely

the case where the memory read operation launched by a CI can proceed before

preceding store instructions or CIs have completed. Table 4.10 shows the results

of a system where the CFU is not allowed to execute speculatively – the CI has

to wait for all preceding memory operations and CIs to complete before being

launched. Again as can be seen, the performance improvement compared to a 2-

issue superscalar processor is very small mainly because multiple CFUs within the

same loop cannot execute speculatively – they wait for the preceding operations

to complete. In a superscalar processor without CFUs, load-store instructions

can execute speculatively in parallel – adding synchronization operations between

software instructions and CIs significantly degrades performance (specially if the

number of memory aliases is small). If the CI needs to wait for preceding load-

/store instructions to complete before execution, the improvement is significantly

degraded.

92

4.7.4 Sensitivity with respect to FPGA resource availability

We study the effect of increasing FPGA resources available to implement CFUs.

Tables 4.11 and 4.12 show the normalized performance and energy consumption

as we increase the slices available. The baseline is a 2-issue core and the 2K slices

column is the same as shown in subsection 4.7.2. As can be seen the performance

increase is not significant for most cases. For cases like mcf and gobmk, the pri-

mary reason is the high rate of cache misses. The observation that we made during

our experiments is that pipelined CFUs implemented on FPGAs are most effec-

tive when they cover instructions which are part of hot innnermost loops. In such

cases, the pipelined CFUs provide high throughput (relative to baseline). High

resource availability leads to covering parts of the program which are not in the

innermost loops (still in hot loops). For such CIs, the latency of execution is more

important than the throughput since successive invocations of the CI are spread

out over relatively large periods of time. Since the FPGA frequency is significantly

lower than the core frequency, such CIs do not provide signficant performance im-

provements. The normalized energy consumption does decrease by 47% when

50K LUTs are available – the addition of extra CFUs reduces the instructions

fetched/decoded/renamed which leads to smaller energy consumption.

4.7.5 Comparison under equal area constraint

To make a meaningful comparison under an almost equal area constraint, we

compare the performance of a baseline system with two cores and a one core system

with an FPGA tile for implementing the CFUs. In this way, we compare systems

with equal silicon area. We run two copies of each application and examine the

benefits of our approach. Table 4.8 shows the performance and energy reduction of

our system. Our system does suffer from significant slowdown (40-52%) because

our CFUs are not able to provide a large speedup. Also, the energy reduction

93

Table 4.8: Comparing the slowdown and energy reduction of 2 baseline cores with

1 core + FPGA CMP system

Bench-

mark

2-

issue/128

entries

2-

issue/256

entries

4-

issue/128

entries

4-

issue/256

entries

Slow-

down

(%)

Energy

reduc-

tion

(%)

Slow-

down

(%)

Energy

reduc-

tion

(%)

Slow-

down

(%)

Energy

reduc-

tion

(%)

Slow-

down

(%)

Energy

reduc-

tion

(%)

bzip2 76.729 23.974 76.614 24.921 75.928 25.467 76.419 30.949

lib-

quantum

5.486 35.405 0.221 28.949 -38.949 31.466 -44.709 39.327

hmmer 33.623 33.945 31.151 28.592 16.605 33.531 14.007 29.142

mcf 80.289 23.142 80.214 24.974 80.260 23.877 80.011 29.923

gobmk 82.652 23.297 82.662 27.009 82.767 30.061 82.522 31.984

h264 29.592 28.412 31.216 33.410 13.712 34.189 9.652 34.941

sjeng 61.326 24.254 62.081 24.475 58.183 31.850 58.119 30.969

Average 52.814 27.490 52.023 27.476 41.215 30.063 39.432 32.462

94

(27-32%) is slightly lower than what we observe for the individual cores case

(32-36%). This is because the larger execution time on our system leads to the

shared L2 cache being active and dissipating leakage power for a longer time. This

causes an increase in the energy consumed by our system relative to the baseline.

In the age of Dark Silicon, when energy consumed and not chip area is not

the limiting constraint, it is useful to minimize the energy consumption of every

application that is executed on the system. In scenarios where the system is lightly

loaded with respect to utilization of all cores in the system (example: few single

threaded applications are running), it may be beneficial to power down most of

the cores and use CFUs implemented on the FPGA fabric to run the applications.

In times of high load, the OS may decide to use all the cores in the system for

obtaining the best throughput.

4.8 Conclusions

In this paper, we present an architecture by which CIs can launch memory op-

erations and execute speculatively when integrated with a superscalar processor

pipeline. Our approach does not need any synchronization or detailed memory

analysis by the compiler. Our architecture uses the components of the superscalar

pipeline to detect conflicts and mis-speculation at run-time and to rollback to a

safe state.Our experiments show that even for pointer-heavy benchmarks our ap-

proach can average of 24% energy savings over software only implementations and

significant performance improvements (average of 14%).

95

Table 4.9: Comparison of CFUs with 2-issue superscalar processor with no mem-

ory operations

Benchmark Performance improvement (%) Energy reduction(%)

bzip2 0.9 0.76

mcf 0.2 1.2

gobmk 3.7 2.9

hmmer 5.3 8.4

sjeng 6.2 10.6

libquantum -2.1 1.4

h264ref -4.6 6.6

Average 1.45 5.18

Table 4.10: Comparison of CFUs with 2-issue superscalar processor with synchro-

nization

Benchmark Performance improvement(%) Energy reduction(%)

bzip2 -2.7 4.7

mcf -4.1 2.2

gobmk -9.5 4.5

hmmer -3.5 6.2

sjeng -2.3 0.2

libquantum -6.1 1.1

h264ref -7.6 2.3

Average -5.51 2.75

96

Table 4.11: Sensitivity with respect to FPGA resources – normalized perfor-

mance

Benchmark baseline 2K slices 10K slices 50K slices

bzip2 1.000 0.945 0.941 0.935

libquantum 1.000 0.564 0.529 0.484

hmmer 1.000 0.714 0.692 0.663

mcf 1.000 0.964 0.961 0.958

gobmk 1.000 0.977 0.975 0.972

h264 1.000 0.693 0.669 0.639

sjeng 1.000 0.863 0.852 0.838

Average 1.000 0.817 0.803 0.784

Improvement(%)- 18.298 19.725 21.580

Table 4.12: Sensitivity with respect to FPGA resources – normalized energy

Benchmark baseline 2K slices 10K slices 50K slices

bzip2 1.000 0.691 0.611 0.541

libquantum 1.000 0.620 0.540 0.470

hmmer 1.000 0.615 0.535 0.465

mcf 1.000 0.698 0.618 0.548

gobmk 1.000 0.694 0.614 0.544

h264 1.000 0.678 0.598 0.528

sjeng 1.000 0.700 0.620 0.550

Average 1.000 0.671 0.591 0.521

Improvement(%) - 32.894 40.894 47.894

97

CHAPTER 5

Architecture support for dynamic instruction

set customization

5.1 Introduction

As described in the previous chapter, instruction set customization provides sig-

nificant opportunities for obtaining improvements in both performance and energy

consumption. Compared to coarse grained, fixed function accelerators, using cus-

tom functional units provides significantly greater flexibility. However, techniques

that customize the instruction sets of processors offline are typically faced with

the following challenges:

1. Storage of configuration bits for a reconfigurable functional unit : As the

number of custom instructions (CIs) increases, the size of memory needed

to store the configuration information increases.

2. Reconfiguration overhead : Reconfiguring a customizable functional unit may

require several cycles as well as reconfiguration energy. For example, for

FPGA-like fabric, the reconfiguration time could be in the order of hun-

dreds of micro-seconds. This overhead has implications on the frequency of

reconfiguration that can be performed for a given system.

3. Binary compatibility : Customized executables/library modules may not be

able to work on systems where the customized functional units are not avail-

able. This challenge was addressed by introducing branch and link instruc-

98

tions in [34] with a software fall back mode. Pre-compiled libraries in which

programs may spend significant amount of time provide additional chal-

lenges.

4. Legacy binaries : Finally, for those portions of a program for which the source

code is not available (pre-compiled libraries, for example), offline instruction

set customization may not be possible.

Dynamic instruction-set customization techniques could overcome some of the

challenges described above. Issue (1) could be handled by generating configura-

tion bits on the fly while (3) and (4) would be handled implicitly as no changes are

made to the binary. However, dynamic techniques still face issue (2) and must also

take into account the overhead (time and energy) of generating configurations for

the reconfigurable functional units at runtime. The overhead depends both on the

reconfigurable fabric used to implement the custom functional units as well as the

heuristics used to extract and map program segments onto the custom functional

units. For example, FPGAs provide an extremely fine-grained reconfigurable fab-

ric which implies that significant effort is needed to map (place and route) data

flow computations onto the fabric. Alternatives such as CGRAs (coarse-grained

reconfigurable arrays) are less flexible in terms of configurability but the effort to

map computation onto a CGRA may be lower.

Highlights of our contribution

1. We present a microarchitecture which can generate custom instructions on

the fly for frequently executed code blocks during the application execution.

Along with the custom instruction creation, the microarchitecture can gen-

erate the configurations for the custom functional units on a reconfigurable

datapath.

2. Our microarchitecture generates the custom instructions and the modifies

the instruction stream (with custom instructions) dynamically while ensur-

99

ing correct program operation, guaranteeing correct program state to deal

with context switches and interrupts.

The above contributions are enabled by:

1. A hardware module to generate legal custom instructions and configurations

from the instruction stream.

2. A L0 instruction cache to store the modified instruction stream (with custom

instructions) along with hardware to determine the entry and exit points.

3. An architecture by which the custom instruction generation hardware can

be shared among multiple cores in a chip multiprocessor (CMP) system.

We note that previous work on custom instructions has focused mainly on of-

fline custom instruction selection/generation [21][1][13][99][36][15][119], sometimes

with dynamically configurable functional units [34][57]. While other work has fo-

cused on dynamic instruction stream optimization [104][18][97][42], to the best of

our knowledge, this is the first work to dynamically generate fine grained custom

instructions and optimize the instruction stream in hardware. For a more detailed

review of previous work, we refer the author to section 5.2.

5.2 Related work

5.2.1 Static instruction set customization

A vast body of previous work exists for customizing instruction sets for optimizing

performance or energy efficiency [21][1][13][99][36][15][38][119][92][48][68][64][23][107].

However, all these approaches use a static (or offline) method to determine the

operations to group into custom instructions and also statically determine the

configuration of the custom functional units (CFUs) to be implemented (mostly

on FPGAs). The typical flow is to identify ‘hot’ program segments and map the

100

operations in these segments to CFUs implemented on a reconfigurable fabric such

as FPGAs. These approaches suffer from the limitations described in the introduc-

tion section. While FPGAs are reconfigurable, the overhead of reconfiguration is

in the order of 100s of micro-seconds which prevents fine-grained reconfiguration.

5.2.2 Dynamically configurable functional units

All approaches described in this subsection determine the mapping of computa-

tions to the configurable functional units offline, i.e., either by the compiler or a

trace optimizer beforehand. This implies that legacy binaries or dynamic libraries

loaded at runtime cannot use the configurable functional units.

The authors in [34][35][84][51] propose a customizable datapath with multiple

levels of ALUs. The datapath can be configured to connect ALUs between succes-

sive levels. Configuration is done by using a hardware block that can generate the

configuration bits based on the operations selected and scheduled on the datap-

ath. A similar datapath called versatile processing unit (VPU) with configurable

interconnect between the ALUs is proposed in [28]. In the Dyser work [57], the

configurable functional unit is a two dimensional array of functional units (ALUs)

with configurable switches to determine the connections. A credit-based scheme

is used to ensure that data transfer is scheduled correctly. The configuration of

the array is selected offline, however, reconfiguration is done through a series of

configuration instructions which load the configuration bits into the array. Such

a functional unit resembles a CGRA system used in [84]. In QsCores [108], each

core has access to a small set of custom functional units (selected offline) and

the compiler partitions computations in an application among these units (where

possible). In [37], the authors compose large accelerators at runtime using a set

of simpler units called accelerator building blocks.

101

5.2.3 Dynamic instruction stream customization

While JITs (just-in-time compilers) and code instrumentation techniques can be

used to generate CFUs [79], our focus is more on fine grained instruction stream

customization for efficient utilization of hardware. In DISE [42], the authors iden-

tify instruction patterns of interest offline and replace them with a more optimized

sequence. The patterns are stored in a pattern table and instructions executed

at runtime are compared by the hardware with the patterns in the table to check

whether a match occurs. If a match is detected, then a replacement sequence of

instructions is inserted into the instruction stream of the processor. A similar

approach was proposed in [27][26] for achieving program monitoring. In Mini-

Graph [19], frequently executed dataflow patterns are identified and stored by the

compiler in a hardware table before execution. At runtime, the dataflow patterns

in the table are consulted to reserve functional units and bypass paths of the

processor for scheduling the dataflow pattern statically. The drawback of such

approaches is that the number of distinct patterns that can be stored/matched is

relatively small and cannot be updated frequently.

In [121], the authors propose an approach to use the rePLay mechanism [85] to

modify the instruction stream to optimize instruction segments on the fly. How-

ever, the architecture of the target configurable functional unit and the latency

to map to such a functional unit is unclear.

5.2.4 Trace cache based methods

While the methods described in this subsection did not directly customize the

instruction set, the goal was to optimize instruction traces at runtime for energy

efficient execution. Several previous papers propose the use of an out of order

(OoO) front-end to generate an instruction trace at runtime which is then fed into

a simpler in-order backend [104][18] using a trace cache [97]. Repeated execution

102

of an optimized trace that is constructed once by the OoO engine by a simple back-

end could lead to energy efficiency. Trace cache based techniques are orthogonal

to our approach of customizing instruction traces as our technique can be modified

to use the trace cache. The rePLay framework [85] is a popular system to generate

long optimized instruction segments which commit or abort atomically. However,

the use of such a framework depends on the baseline processor’s microarchitecture

to maintain speculative state and commit when no hazards have occurred.

5.3 System overview

Figure 5.1 shows the high level view of our processor microarchitecture with the

new components shaded. In our system, an application begins execution on a pro-

cessor core. Instructions are fetched and executed from the core’s L1 cache. The

core’s pipeline is augmented with a Configurable Functional Unit (CFU)

(and control logic). Our goal is to identify frequently executed parts of the pro-

gram at runtime from the program binary (performed by the block indicated

as Re-use Detection Hardware) and schedule and map operations onto the

CFU to provide speedups for frequently executed blocks of instructions. This

is performed by the Custom Instruction Generation Hardware . Instruc-

tion blocks are optimized by grouping instructions into custom instructions (CIs)

which run on the CFU. This optimized instruction stream with CIs is written to a

small L0 I-cache from which it is fetched and executed. Anytime the program’s

control leaves the optimized stream, the core begins fetching instructions from the

L1 cache. Additional control logic is provided to detect entry and exit points in

the L0 cache. Section 5.8 provides the implementation details for each module in

the microarchitecture.

We enumerate the basic steps involved in achieving the described goal:

• Identifying frequently executed parts of the application to exploit CFU.

103

Figure 5.1: DISC microarchitecture

104

• Generating control information for scheduling and mapping instructions

onto the CFU.

• Generating optimized and legal instruction blocks with CIs that run com-

putations on the CFU. The system must ensure that control flow within the

program is functionally correct even when CIs have been inserted into the

instruction stream.

• Running optimized instruction stream on the core and CFU. The system

must ensure correct execution when the instruction stream branches out of

the optimized portion of the stream. Also, program state must be correctly

maintained to handle context switches and interrupts. This is because after

a context switch the L0 cache is invalidate and the optimized instruction

stream will not be available when the application is re-scheduled.

• As a final step, we investigate the possibility of sharing the new components

we add across multiple processor cores in a CMP (chip multi-processor)

system. The idea is to amortize the area overhead of the components of the

system. We present more details in section 5.8.3.

5.4 CFU architecture

We use the CFU design proposed in [33][34][35] for our CFU. The authors in

[34] selected the design based on their analysis of applications from the SPECint

and MediaBench suites. The CFU design is shown in Figure 5.2 which they call

Configurable Compute Accelerator (CCA). The shaded functional units can per-

form logical operations, bitwise operations, sign extraction and moves on integer

operands while the other functional units can perform 32-bit addition/subtraction

and logical operations. The CCA has two outputs which are ultimately written

to the register file and four inputs which are read from the register file. The inter-

105

Figure 5.2: CCA from [33]

connect consists of a configurable crossbar between every two successive levels of

functional units. Configuration bits are provided to configure the interconnect of

the CCA. The authors compute that for the given CCA, a total of 245 configura-

tion bits would be needed. Unlike FPGAs, where one configuration bit would be

needed for every connection, in the CCA, a single bit would control the connection

of a 32-bit data source with its destination port.

We introduce one modification to the above CCA – in the previous work, the

authors assume that the CCA is not pipelined and end up with a delay of 5.62

ns at the 90 nm technology node. In our setup, the CCA is pipelined and hence

is able to run at a higher frequency – 2 GHz at the 45 nm technology node.

106

1 L1 : add R1 , R2 , R3

2 L2 : xor R3 , R4 , R5

3 load [M1] , R1

4 sub R5 , R6 , R7

5 and R7 , R1 , R2

6 s t o r e R2 , [M2]

7 cmp R2 , 0

8 bnz L1

9 .

10 .

11 branch L2

Figure 5.3: Assembly code for our running example

5.5 Identifying frequently executed parts of an application

We use a simple hardware mechanism to identify frequently executed parts of an

application. We maintain a small cache of previously executed branch instructions

called the Branch History Cache (BHC) (similar to the ones in [55][97]). If any

branch is seen in the history, then very likely it is part of a loop and assume that

this branch is the beginning of a loop. Even if this assumption is incorrect, it

does not affect the correctness of the program. Apart from the virtual address of

the branches, this cache also stores the number of instructions executed. If the

number of instructions executed between two successive invocations of a branch

instruction is too large, then very likely this branch is not part of an inner loop

and any CIs generated for the instructions between two successive invocations of

the branch would have a lesser chance of being re-used. The BHC uses the FIFO

replacement policy.

107

5.6 Challenges in generating CIs and optimized instruc-

tion stream

Once a frequently executed segment of the program has been identified, the next

step is to identify subgraphs of computation that can be mapped and scheduled

onto the CCA. In the following subsections, we describe the challenges in the

construction of legal CIs and optimized instruction streams.

For the purpose of explanation, we use the running example shown in Figure

5.3. The assumption is that the code from the first instruction to the bnz instruc-

tion is part of a loop while the unconditional branch to L2 at the end is outside

the loop. Our loop detection logic described in section 5.5 would store the branch

bnz in line 8 in the BHC and detect a loop when it is executed again.

5.6.1 Generating correct CIs

For a CI to be legal, it must satisfy the following constraints:

• Number of inputs/outputs should be no more than the number of inputs and

outputs provided by the CCA (four and two respectively).

• Restricted operations : Only the integer operations that are supported by

the CCA (see section 5.4 can be included in a subgraph. This implies that

memory, branch, control transfer, or atomic operations cannot be part of an

enumerated subgraph. For our example, in Figure 5.3, only the arithmetic,

bitwise and comparison instructions can be executed on the CCA.

• Localized to a single basic block : Since the CCA cannot deal with control

flow and the baseline core may not posses any logic to rollback and recover

from branch mis-predictions, subgraphs that span multiple basic blocks are

deemed illegal.

108

• Convexity : Only convex subgraphs [39] can be executed on the CCA. As-

sume instruction Y depends on instruction X. Instruction X is selected to

be part of a subgraph while instruction Y is not. Then, any instruction Z

which is dependent on Y cannot be part of the subgraph because this would

lead to a cyclic dependency between the custom instruction representing the

subgraph and instruction Y .

5.6.2 Generating correct optimized instruction stream

In our work, after constructing the CIs, we generate a distinct optimized instruc-

tion stream with the CIs that is stored in a separate L0 instruction cache.

• Maintaining virtual addresses of instructions in the program: Since many

branch instructions in the executable specify their destination as an offset

with respect to the program counter, the system should ensure that the vir-

tual addresses of branch targets do not change. This is achieved by inserting

the appropriate number of nops in the instruction stream when multiple in-

structions have been collapsed into one CI and inserting a branch to ensure

that nops are not fetched and decoded by the processor pipeline.

For our running example in Figure 5.3, consider a possible custom instruc-

tion created by grouping all the arithmetic, logical and comparison instruc-

tions into one subgraph (see Figure 5.4. Additional nops and a branch

instruction need to be added to make sure the virtual addresses of the in-

structions are maintained (shaded instructions in Figure 5.4).

• Maintaining correct program state in case of interrupts/traps/context switches :

Consider the optimized instruction stream in Figure 5.4; the custom instruc-

tion CI in line 1 would update the register state for all arithmetic and logical

operations in the program segment. However, it is possible that the load in-

struction in line 3 causes a TLB miss and possibly invokes the operating

109

1 L1 : CI In (R1 , R2 , R4 , R6) Out(R5 , R2)

2 L2 : nop

3 load [M1] , R1

4 branch L3

5 nop

6 L3 : s t o r e R2 , [M2]

7 nop

8 bnz L1

9 .

10 .

11 branch L2

Figure 5.4: Modified assembly code for our running example with CIs

system to perform a page walk. This would invalidate all entries in the

L0 cache. The program would resume from the load instruction, however,

instructions would be fetched from normal instruction stream from the L1

cache. This implies that the sub, and and cmp instructions in lines 4, 5 and

7 respectively would be re-executed. This could potentially lead to incorrect

computation.

For our example in Figure 5.4, the subgraph has instructions which are non-

consecutive. More specifically, there are three sets of instructions in the

subgraph which are non-consecutive – set S1 = {add, xor}, S2 = {sub, and}

and S3 = {cmp}. The custom instruction executes instructions from all

three sets and updates the register file. However, we observe that even

though the register file is updated, re-executing instructions from S2 and

S3 do not change the values of the registers. Such sets of instructions are

called idempotent sets in [46]. Hence, even if the load instruction in line 3

causes a TLB fault, re-executing these instructions would not affect program

110

correctness.

• Identifying correct entry/exit points into/from the optimized stream: Con-

sider the example in Figure 5.4 – the branch labeled bnz in line 8 is the back

edge of a loop. The optimized stream would be stored in the L0 cache of

the core and would continue execution. However, after exiting the loop the

second branch from line 11 could redirect control flow in the middle of the

optimized stream where the original instructions have been replaced with

nops.

The problem that occurred in the above example is that the subgraph enu-

meration logic considers only a limited part of the program. In the above

example, the branch in line 11 was outside the loop of interest and hence, the

subgraph enumeration logic could not determine all the basic block bound-

aries in the program. As a result the custom instruction CI spanned across

multiple blocks.

This problem is solved by our system by restricting the portions in the

program from where control can enter an optimized stream. In the above

example, our loop-detector from section 5.5 would mark branch bnz in line

8 as the branch which started the frequently executed portion and L1 as

the start of the block which was optimized. Thus, when control flows from

bnz to L1, instructions are fetched from the L0 cache. After the loop exits,

subsequent instructions would be fetched from the L1 cache. The branch

in line 11 is not explicitly marked as a legal entry point into the optimized

stream and instructions would continue to be fetched from the L1 I-cache.

111

5.7 Hardware support for CI construction and optimized

instruction stream generation

5.7.1 Determining instruction dependences

After the repeat execution of a loop branch is detected, the process of optimiz-

ing the instruction stream for the next iteration (second iteration of the loop)

begins. All the intermediate data for processing an instruction stream is stored

in a table called the Optimized Instruction Stream Table (OIST).The basic step

in the optimizing step is to remove WAR and WAW dependences from the in-

struction stream so that only true dependences are maintained. The hardware

for the optimizing step is similar to the rename logic in superscalar processors,

except that we do not have any physical registers or free list (since we are not

using the renamed instructions for actual execution). Renamed instructions are

stored in the OIST. Note that the renaming is only used for generating the op-

timized instruction stream – the baseline core is still executing the instructions

with possible false dependences.

If the OIST is full before the loop branch is detected again, then the process of

storing the optimized stream is aborted. If the loop branch is detected before the

OIST is full, then the system proceeds to the next step of subgraph enumeration.

The OIST contains one bit each to mark the boundaries of basic blocks.

Branch instructions which can continue in the optimized stream are marked legal.

For conditional branches within the optimized stream, as long as the direction

of the branch is the same as that during the optimized stream construction, the

processor can keep fetching instructions from the optimized stream.

112

5.7.2 Subgraph enumeration

The subgraph enumeration algorithm uses the optimized stream in the OIST to

produce subgraphs and performs three passes to enumerate the subgraphs.

Matching operands : The first pass maps operands to the instruction ids in

the OIST table. If any source instruction is in a different block or there exists

a special instruction (function call, atomic) between the source and the target

instruction, then the source cannot be clustered with the target and the input can

only be passed through the register file. A bit is set for this source operand for

such a target instruction to imply that the source instruction cannot be clustered.

In the first pass, an additional computation is performed where each instruc-

tion is assigned a completion time based on ASAP scheduling meaning that the

completion time of an operand is one over the maximum completion time of its

predecessors.

Maintaining data flow convexity : Data convexity is maintained by maintaining

a set of successors for each instruction in the OIST and comparing it with the

inputs of the current CI being produced. If a successor is an input to the CI, then

the instruction cannot be clustered into the CI.

Subgraph enumeration and selection: A simple list scheduling heuristic to iden-

tify feasible subgraphs. Subgraph growth begins at an instruction (root) and

moves up its predecessor instructions in a breadth-first approach. The root in-

struction’s output is considered to be the primary output of the CCA and each pre-

decessor instruction is scheduled at one level higher than the current instruction.

Subgraphs grow by including the next predecessor instruction into the subgraph

as long as the following conditions are satisfied:

• The operation can be scheduled on the higher CCA level.

113

• The number of inputs does not increase beyond four.

• Data flow convexity is maintained.

Our next step is to determine which instructions can be safely replaced with nops

while maintaining the correctness of the program. An instruction is said to be

internal to a given subgraph if it satisfies one of the following conditions

• The output register of the instruction is also an output of the subgraph OR

• The output register of the instruction is consumed only by other instructions

that are internal to the subgraph.

Instructions that are internal a subgraph can be replaced with nops in the in-

struction stream.

Subgraph selection happens in parallel with enumeration. The latency of a

subgraph is obtained by adding the maximum completion time of the predecessors

(see subsection 5.7.2) with the worst case path length. If this completion time is

at least half the latency that would be taken by executing all instructions within

the subgraph in-order, then the subgraph is selected.

We synthesized all the hardware for subgraph enumeration and selection using

the Synopsys Design Compiler with TSMC 45nm technology library. For the table

structures, we use McPAT [74] to estimate the area and energy.

5.7.2.1 Storing the optimized instruction stream

The optimized instruction stream with its CIs and nops is stored in a small L0

instruction cache – in our experiments this L0 cache is a M KB 2-way set asso-

ciative cache with LRU replacement. Like the L1 cache, the L0 cache is indexed

and tagged using the virtual and physical addresses of the instruction blocks re-

spectively. The L0 cache is invalidated whenever there is a context switch.

114

Figure 5.5: Block diagram for producing optimized instruction stream

Additionally, the configuration bits associated with the CIs are stored in a

CCA Configuration Table (CCT). The CCT is a simple SRAM table indexed

using the opcode of the CI.

Figure 5.5 shows a block diagram for the whole subgraph enumeration and

selection logic. Note that this logic is power gated with sleep transistors and does

not dissipate power when not being used.

5.8 Putting it all together

Figure 5.6 shows the complete microarchitecture of the core’s pipeline. Apart

from the additional CCA unit at the execute stage, all our changes are restricted

to the fetch and decode stages.

5.8.1 Fetch stage

Initially, instruction fetch starts from the L1 cache normally. PC values for branch

instructions are stored in the BHC as well as compared with previous entries.

When a loop branch is detected, the subgraph enumeration hardware is activated

as execution continues in the core. As mentioned before, for our running example

115

Figure 5.6: Microarchitecture of the processor pipeline

116

in Figure 5.3, the branch bnz in line 8 would be stored in the BHC and the loop

would be detected.

When the optimized instruction stream produced and stored in the L0 cache,

the loop branch is added to the Optimized Branch Cache (OBC) to mark a legal

entry point into the optimized instruction stream. The OBC is a N -entry fully

associative content addressable memory which stores the legal entry points into

the optimized instruction stream. It is tagged using the virtual addresses (PC) of

the branch instructions. The fetch stage checks the OBC whenever an instruction

is fetched. If the OBC provides a hit, subsequent instructions are fetched from

the L0 cache. For our running example, the branch bnz in line 8 would be stored

in the OBC and would allow fetch to proceed from the L0 cache. However, the

branch in line 11 is not inserted into the OBC.

Exit from an optimized instruction stream in the L0 cache can happen in two

ways. First, a branch instruction fetched from the L0 cache can direct control

flow to an address which misses in the L0 cache. Second, a branch could exit from

the optimized instruction stream because of the conditions described in section

5.6.2.In both scenarios, subsequent fetches are directed towards the L1 cache.

5.8.2 Decode stage

When the decode stage encounters a CI, it uses the CI opcode to index into the

CCT and reads the configuration bits. The configuration bits are loaded into the

CCA pipeline. Register reads happen in normal fashion; however, since a CI can

have upto four inputs, it may take two cycles for the read to complete due to the

register port limitation.

If the baseline core is an out-of-order (OoO) core, the configuration bits are

read and loaded into the CCA when the CI is scheduled for execution and not in

the decode stage.

117

Figure 5.7: Shared CCA and subgraph enumeration hardware in a CMP system

Table 5.1: Area numbers for the different components of the dynamic enumera-

tion logic

Component Area (in mm2) Relative Area (%)

Baseline core 15.924 –

Integer CCA 0.029 0.182

FP CCA 0.052 0.327

BHC (32 entry) 0.069 0.433

OBC (16 entry) 0.062 0.389

CCT (64 entry) 0.235 1.476

L0 (8 KB) 0.707 4.440

Subgraph enumeration

hardware

1.915 12.026

Total overhead 3.069 19.273

118

5.8.3 Extension to CMP systems

The area overhead of adding all the extra hardware described in the previous

sections amounts to around 19% of the core area (see Table 5.1). Column one

in table 5.1 shows the absolute area of each component (in mm2). Column two

shows the area relative to a baseline single issue core. Out of these the L0 cache

and the subgraph enumeration and optimized stream generation logic take most of

the area. We consider the possibility of sharing the CCA, subgraph enumeration

and optimized stream generation logic among multiple cores in the system (see

Figure 5.7). The effect of sharing these hardware structures among multiple cores

is explained in the results section (section 5.9). Sharing reduces the area overhead

for dynamically customizing instructions. The L0 cache, the OBC and BHC

cannot be shared because they are accessed frequently during the fetch stage and

any increase in latency of access would cause significant performance degradation.

Table 5.2: Relative energy of components normalized to baseline core energy

Component Relative energy (%)

Integer CCA 11.53

FP CCA 9.75

BHC (32 entry) 0.023

OBC (16 entry) 1.557

CCT (64 entry) 0.478

L0 (8 KB) 21.45

Subgraph enumeration hardware 3.589

Total overhead 48.377

Table 5.2 shows the energy overhead of each component relative to the base-

line single issue core. Again, the L0 cache dominates in terms of total energy

consumed. We would like to clarify that the overhead mentioned in table 5.2

is not the total energy overhead with respect to the full system. For example,

119

Table 5.3: Simulation processor parameters

Parameter Value(s)

Core type Pipelined, in-order

Issue-width 1/2/4

Cache 64 KB L1 I/D cache, 4-way set asso-

ciative, 4MB L2 cache

Table 5.4: Sizes of BHC, OBC and L0 cache

Parameter Value(s)

BHC size 16/32/64 entries

OBC size 8/16/32 entries

CCT size 16/32/64 entries

L0 Cache 4/8/16 KB, 4-way set associative

although the L0 cache consumes significant energy, the L1 cache will see a corre-

sponding decrease in dynamic energy because instruction fetches are directed to

the L0 cache. Similarly, the ALUs in the baseline core pipeline will see an energy

reduction because several computations are now executed on the CCA. We report

the actual energy overhead of our approach in section 5.9.

5.9 Results

5.9.1 Evaluation framework

We use Wisconsin’s Gems simulation infrastructure [80] to model the performance

of our system – the simulation parameters we use are listed in Table 5.3. We use

McPAT [74] to estimate energy of the processor core. Since our CCA is synthesized

using TSMC 45 nm library, for compatibility reasons, we assume that the core

is implemented in a 45 nm process as well. Table 5.4 lists the sizes of the BHC,

120

OBC and the L0 cache that we use in our experiments. We use the SPEC 2006

integer benchmarks for assessing the impact of the sizes of the different structures

on the performance of the system and both integer and floating point benchmarks

for subsequent sections.

5.9.2 Evaluating the impact of sizes of the proposed hardware struc-

tures

Table 5.5: Performance improvement (as %) with BHC size (# entries) relative

to 16-entry BHC and OBC size with respect to 8 entry OBC

Benchmark BHC sensitivity OBC sensitivity

32 64 16 32

bzip2 5.781 6.263 9.132 10.343

hmmer 7.181 9.436 7.789 8.688

gobmk 7.471 8.494 4.938 6.410

sjeng 6.026 8.996 10.392 11.415

libquantum 4.006 4.313 5.345 7.323

h264 7.523 10.940 10.627 12.477

xalanc 5.808 6.804 11.707 12.998

mcf 5.208 6.725 7.191 8.880

gobmk 1.297 1.986 10.713 13.181

astar 0.896 2.426 8.352 8.876

Average 5.120 6.638 8.619 10.059

Table 5.5 shows the impact of the sizing of the BHC and OBC respectively.

Increasing the size of the BHC increases the likelihood of detecting loops which

have several basic blocks inside them. From Table 5.5 it can be seen that increasing

the size of the BHC from 32 to 64 has minimal impact on the performance. This

is because large loops with more than 32 basic blocks (and hence more than 32

121

branches) are unlikely to be selected for optimization since the custom instructions

for large loops are unlikely to be re-used from the CCT.

Increasing the size of the OBC increases the number of legal entry points into

the optimized stream located in the L0 cache. From Table 5.5, using a small num-

ber of entries (8), does impact the performance significantly. However, increasing

this number beyond 16 provides no significant benefits. The temporal and spa-

tial locality of programs (with respect to the instruction stream) ensures that an

optimized program segment with limited entry points is executed frequently.

Table 5.6: Performance improvement (as %) with CCT size (# entries) relative

to 32-entry CCT

Benchmark 64 128

bzip2 15.322 17.878

hmmer 18.758 24.817

gobmk 30.397 36.926

sjeng 15.765 22.149

libquantum 41.007 42.658

h264 16.978 21.799

xalanc 33.550 38.955

mcf 40.314 47.484

gobmk 18.373 24.390

astar 18.746 21.845

Average 24.921 29.890

Table 5.6 studies the impact of the size of CCT which determines the number of

valid custom instruction (CI) configurations that are stored simultaneously. Small

table sizes affect performance significantly because older CI configurations need

to be invalidated frequently as and when new CIs are created. The performance

improvement starts to taper off as the size is increased because the configuration

122

for all the CIs which are active simultaneously can fit inside the CCT. Since the

CCT is an SRAM table and not a CAM (content addressable memory), we use

64 entries for all our subsequent experiments.

Table 5.7: Performance improvement (as %) with L0 size (KB) relative to 4 KB

L0 cache

Benchmark 8 KB 16 KB

bzip2 21.027 26.330

hmmer 11.056 13.054

gobmk 22.606 25.086

sjeng 10.261 11.927

libquantum 21.163 24.239

h264 23.102 25.916

xalanc 32.050 35.845

mcf 13.836 16.038

gobmk 20.173 21.612

astar 11.708 13.401

Average 18.698 21.345

Finally, we study the impact of the L0 cache in table 5.7. Beyond 8 KB, we

observe minimal performance improvements. 8 KB of a cache can store up to

2048 32-bit instructions which is adequate in most cases to hold inner loops of the

program. For our subsequent experiments, we assume that our L0 cache is sized

at 8KB.

5.9.3 Comparison with baseline and previous work

Table 5.8 and 5.9 show the performance improvement provided by dynamic in-

struction customization over the baseline software implementation for integer and

floating point operations respectively. For completeness sake, we compare the per-

123

Table 5.8: Speedup with respect to baseline software implementation – specint

Benchmark inorder 2-issue 4-issue

bzip2 1.865 1.532 1.12

hmmer 2.012 1.678 1.08

gobmk 1.775 1.498 1.102

sjeng 1.69 1.27 1.05

libquantum 2.192 1.603 1.09

h264 1.972 1.802 1.18

xalanc 1.52 1.378 1.139

mcf 1.821 1.087 1.02

omnetpp 1.796 1.796 1.07

astar 2.463 1.873 1.153

Average 1.910 1.551 1.100

formance with respect to 2-issue and 4-issue cores also. As the baseline processor

complexity increases, the performance improvement drops. For example, for the

4-issue core, the performance improvement is minor. One of the reasons is that

the issue width of the core is the same as the number of inputs for the CCA;

hence, the customized instructions are unlikely to provide any speedup.

Table 5.10 shows the speedup with respect to the previous work which deter-

mines the CIs at compile time [34]. Our method is able to match the performance

of the previous approach for all benchmarks and significantly outperform in the

cases of gobmk, omnetpp, astar and xalanc. For gobmk, the lack of specific “hot

spots” in the program ensures that the compilation pass is unable to select the

best set of CIs. For the other three benchmarks, additional performance gains are

obtained because these applications spend a significant amount of time in library

code (stl library) and accelerating library code dynamically improves performance.

Table 5.11 and 5.12 show the impact of adding our hardware on energy con-

124

Table 5.9: Speedup with respect to baseline software implementation – specfp

Benchmark inorder 2-issue 4-issue

410.bwaves 2.37 1.3 1.13

416.gamess 2.16 1.14 1.12

433.milc 1.94 1.31 1.07

434.zeusmp 2.6 1.24 1.13

435.gromacs 2.53 1.34 1.08

436.cactus 2.71 1.32 1.11

437.leslie3d 1.96 1.35 1.09

444.namd 1.93 1.18 1.12

447.dealII 2.41 1.17 1.1

450.soplex 2.49 1.14 1.06

453.povray 1.8 1.29 1.12

454.Calculix 1.8 1.13 1.13

459.Gems 2.77 1.18 1.11

465.tonto 1.89 1.13 1.07

470.lbm 1.83 1.31 1.05

481.wrf 2.29 1.28 1.12

482.sphinx3 2.01 1.33 1.11

Average 2.205 1.243 1.101

125

Table 5.10: Speedup (as X) over previous work [34]

Benchmark inorder 2-issue

bzip2 1.23 1.129

hmmer 1.1 1.087

gobmk 1.34 1.23

sjeng 1.29 1.21

libquantum 1.08 1.02

h264 1.07 1.06

xalanc 1.37 1.32

mcf 1.05 1.021

omnetpp 1.67 1.52

astar 1.72 1.59

Average 1.292 1.2187

Table 5.11: Energy overhead with respect to baseline (as %) – specint

Benchmark inorder 2-issue 4-issue

bzip2 13.87 2.3 0.72

hmmer 7.896 1.9 1.43

gobmk 18.91 2.6 1.07

sjeng 14.29 2.08 0.92

libquantum 9.05 0.18 -0.09

h264 14.59 2.36 2.36

xalanc 19.765 3.12 0.903

mcf 15.275 1.78 1.67

gobmk 21.635 1.62 2.57

astar 16.923 4.2 0.78

Average 15.2204 2.214 1.2333

126

Table 5.12: Energy overhead with respect to baseline (as %) – specfp

Benchmark inorder 2-issue 4-issue

410.bwaves 14.16 1 0.09

416.gamess 13.53 1.79 0.51

433.milc 10.54 1.38 0.7

434.zeusmp 12.09 1.45 2.04

435.gromacs 11.07 1.53 0.15

436.cactusADM 10.68 1.45 0.62

437.leslie3d 8.23 1.62 0.67

444.namd 9.98 1.73 0.16

447.dealII 10.53 1.08 1.41

450.soplex 9.14 1.4 1.08

453.povray 7.05 1.14 1.08

454.Calculix 7.2 2.1 0.3

459.GemsFDTD 9.19 1.32 0.88

465.tonto 12.03 2.06 1.58

470.lbm 11.93 1.35 0.4

481.wrf 12.32 1.89 1.09

482.sphinx3 14.83 2.07 2.05

Average 10.852 1.550 0.871

127

Figure 5.8: Graph showing average MIPS/J values normalized to the in-order

core

sumption of the system for integer and floating point benchmarks respectively. For

the simple core, the energy overhead of our system is around 15%. For more com-

plex cores, the energy overhead is small primarily because of the higher baseline

energy of the complex cores.

To sum it up, we plot the performance over energy average values for the

different configurations that we studied in Figure 5.8. We compute the MIPS/J

metric for each configuration and normalize them with respect to the MIPS/J

metric for the in-order core. As we can see, using DISC with the in-order and

2-issue cores significantly improves the MIPS/J metric. The 4-issue cores have

relatively low values of MIPS/J metric because of the large energy consumption

of the 4-issue base core which is many cases provides relatively small performance

improvement over the 2-issue core. The 2-issue core wins over the in-order core

mainly because the core can be switched off earlier (as it completes execution

earlier).

128

Table 5.13: Performance degradation (as %) when placing a CCA 1 or 2 hops

away in the NoC – specint

Benchmark Inorder 2-issue

1-hop 2-hops 1-hop 2-hops

bzip2 -19.86 -30.89 -29.73 -55.18

hmmer -11.28 -27.46 -29.77 -59.75

gobmk -18.02 -28.4 -29.61 -60.25

sjeng -11.15 -23.35 -40.04 -50.87

libquantum -14.08 -28.42 -29.49 -46.71

h264 -12.2 -28.78 -39.71 -49.63

xalanc -12.37 -33.49 -36.31 -47.45

mcf -12.89 -24.54 -41.6 -48.19

omnetpp -17.07 -23.71 -37.98 -58.04

astar -14.33 -33.98 -34.98 -47.35

Average -14.325 -28.302 -34.922 -52.342

129

Table 5.14: Performance degradation (as %) when placing a CCA 1 or 2 hops

away in the NoC – specfp

Benchmark Inorder 2-issue

1-hop 2-hops 1-hop 2-hops

410.bwaves -11.2 -24.54 -38.41 -49.44

416.gamess -15.65 -30.53 -30.69 -52.92

433.milc -12.76 -35.2 -33.17 -45.81

434.zeusmp -17.73 -34.42 -30.64 -48.1

435.gromacs -19.21 -24.83 -33.97 -62.35

436.cactusADM -16.05 -29 -41.5 -62.09

437.leslie3d -13.49 -36.38 -33 -48.59

444.namd -11.13 -25.76 -38.44 -45.68

447.dealII -13.77 -29.93 -32.44 -60.25

450.soplex -11.1 -28.78 -31.87 -48.83

453.povray -13.37 -30.92 -32.12 -63.69

454.Calculix -14.24 -28.36 -30.94 -49.64

459.GemsFDTD -15.63 -30.78 -31.07 -45.98

465.tonto -19.87 -25.11 -41.14 -49.42

470.lbm -11.76 -26.87 -34.39 -46.84

481.wrf -15.27 -25.4 -30.69 -59.46

482.sphinx3 -17 -28.78 -36.26 -57.54

Average -14.660 -29.152 -34.161 -52.742

5.9.4 Studying the impact of sharing hardware structures

We study the impact of sharing the CCA and the subgraph generation logic on

performance. Before actually sharing the hardware structures, we estimate the

130

impact on performance of moving the structures one or two hops away on the

network on chip (NoC). Tables 5.13 and 5.14 show the impact on performance if

the CCA is located one and two hops away for integer and floating point bench-

marks respectively. The performance degradation is very large. The reason for

this is that CIs executing on the CCAs are typically small in terms of the number

of operations executed. Adding a latency of four to ten cycles (which is approxi-

mately the latency to cross one and two hops in the NoC) impacts the performance

greatly.

We also observe the impact of sharing the subgraph enumeration logic. This

turns out to have minimal impact on performance. On the average, we observe less

than 0.1% degradation when the subgraph enumeration hardware is placed two

hops away. We do not enumerate the tables for these experiments as the results

are practically identical to that shown while comparing against the baseline. The

reason for this being that the subgraph enumeration is off the critical path of

computation in a program. Our results are consistent with those observed for

frame based optimizations in [85].

As noted before, the L0 cache, the OBC and BHC cannot be shared because

they are accessed frequently during the fetch stage and any increase in latency of

access would cause significant performance degradation.

To make a meaningful comparison under an almost equal area constraint, we

compare the performance of a baseline system with three simple cores and a

two core system with shared subgraph enumeration hardware and private CCAs.

The two core system with DISC consumes slightly less area (see table 5.1). We

run three copies of each application and examine the benefits of our approach.

Tables 5.15 and 5.16 show the performance and energy reduction of our system

for integer and floating-point benchmarks respectively. The performance of our

two core system is comparable to the three core baseline, however, our system

benefits from a 30% reduction in energy.

131

Table 5.15: Comparing the slowdown and energy reduction of 3 baseline cores

with 2 core DISC (specint)

Benchmark Inorder 2-issue

Slowdown

(%)

Energy re-

duction (%)

Slowdown

(%)

Energy re-

duction (%)

bzip2 -0.29 24.05 6.13 38.31

hmmer 1.19 32.54 5.91 31.47

gobmk 0.19 25.7 9.28 39.83

sjeng 2.07 37.02 8.67 39.3

libquantum 2.82 30.36 5.49 34.77

h264 1.63 35.5 -1.25 43.69

xalanc -3.12 37.42 6.67 34.1

mcf 1.54 28.32 7.92 29.76

omnetpp -0.11 31.8 4.25 45.73

astar -1.44 26.91 -0.77 41.05

Average 0.448 30.962 5.23 37.801

132

Table 5.16: Comparing the slowdown and energy reduction of 3 baseline cores

with 2 core DISC (specfp)

Benchmark Inorder 2-issue

Slowdown

(%)

Energy re-

duction (%)

Slowdown

(%)

Energy re-

duction (%)

410.bwaves 3.06 34.61 7.77 30.57

416.gamess -0.64 24.8 -1.48 40.98

433.milc 0.45 26.17 8.73 45.63

434.zeusmp 2.6 24.82 -1.63 41.16

435.gromacs -1.38 37.46 8.72 35.09

436.cactu -1.32 28.54 2.92 41.43

437.leslie3d 0.9 31.4 3.57 32.66

444.namd 4.44 24.19 7.67 42.32

447.dealII 3.54 33.54 7.62 33.06

450.soplex 3.28 36.17 8.42 34.74

453.povray -2.57 35.68 1.45 43.62

454.Calculix 4.51 28.24 4.53 33.52

459.Gems -0.66 30.79 4.62 39.56

465.tonto 3.85 23.63 1.89 36.77

470.lbm 1.4 35.31 5.19 38.99

481.wrf 3.94 30.31 2.1 42.25

482.sphinx3 -1.71 26.36 -2.09 30.4

Average 1.393 30.118 4.117 37.808

133

Table 5.17: Comparing the slowdown and energy reduction of 3 baseline cores

with 2 core DISC (PARSEC)

Benchmark Inorder 2-issue

Slowdown

(%)

Energy re-

duction (%)

Slowdown

(%)

Energy re-

duction (%)

blackscholes 1.91 37.30 8.52 41.63

bodytrack 0.52 23.60 2.79 37.72

facesim 1.44 29.46 4.13 35.17

ferret 21.45 7.56 27.94 5.34

freqmine 0.59 31.84 2.87 29.63

swaptions 11.34 16.43 15.34 19.61

fluidanimate 4.56 28.45 8.91 45.65

x264 42.30 2.10 51.45 5.98

canneal 29.33 -1.23 32.45 0.56

streamcluster 2.05 35.86 6.70 34.26

Average 11.55 21.14 16.11 25.56

134

Table 5.17 shows the results for the multi-threaded benchmarks from the PAR-

SEC suite [16]. For most of the benchmarks, the behavior is similar to the multi-

workload scenario. The reason for this is that most of the PARSEC benchmarks

are data parallel in nature and hence, once the independent threads are launched,

the behavior (in terms of computation) of individual threads is not very different

from that of the SPEC benchmarks. There are three applications which suffer

significant slowdown – canneal, x264 and ferret. x264 and ferret exploit pipelined

parallelism and hence, having an extra core helps improve the throughput of the

pipeline by balancing the resources available for the three threads. Canneal is a

memory intensive benchmark and hence, our CCA does not provide adequate ben-

efits over the software implementation. In the age of Dark Silicon, we may have

DISC along with all three processor cores; however, it may be decided (by the OS

scheduler, for example) to power down one of the cores when DISC can provide

a good performance boost or power down DISC hardware when no performance

boost is obtained.

5.10 Conclusions

In this chapter, we provided a detailed description of an architecture with the ca-

pability to customize instructions on the fly and execute them on a pre-designed

CCA. Results show that the high frequency of the CCA combined with quick

reconfiguration time and high re-use of optimized instruction streams lead to sig-

nificant performance improvements with respect to the baseline. The fact that

instruction customization happens dynamically allows us to obtain speedups for

unmodified, pre-compiled binaries. Overall, we see around 1.9X speedup over

the baseline when each core has a private copy of the hardware structures pro-

posed and around 31% energy reduction when certain hardware structures used

for customizing the instruction set are shared.

135

CHAPTER 6

Conclusions and Future Directions

Reducing energy consumption is a crucial problem for many computing systems.

A wide variety of tools and techniques are needed to tackle the challenges posed

by this problem. Designers must consider the best optimization strategies and

decide whether to implement them offline or online. In this thesis, I studied three

main aspects of energy efficient computing, namely application-level variability,

application-level reliability and flexibility and explored the design and trade-off

associated with offline and online optimizations.

• Variation aware DVFS scheduling : While DVFS based scheduling is an old

problem, I explored scheduling optimizations for applications in the presence

of input dependent variation. A rigorous convex optimization based schedule

was generated offline and a simple lookup table based approach was used at

runtime.

• Identifying critical instructions : Soft errors and single-event upsets are es-

timated to be increasingly an issue as device sizes decrease [4]. A compiler

analysis technique along with a runtime monitoring technique is presented

to reduce the number of instructions that need to be replicated and verified.

• Improved ASIPs : The use of customized computing hardware has been very

effective at improving energy efficiency. Techniques and architectures to

extend the impact of ASIPs to SPEC benchmark like workloads were pre-

sented. The techniques involved both compiler analysis as well as runtime

136

scheduling and hazard detection to obtain best results.

There are still lots of avenues for further improvement in each of the three

areas. While we explored the concept of critical instructions in error resilient ap-

plications, further research is needed to develop architectures which can effectively

exploit knowledge of such critical instruction segments. Additional analysis tech-

niques which can determine the criticality of an instruction/instruction segment

at runtime would provide further benefits.

For ASIPs, the interesting direction is to study the nature of the reconfig-

urable fabric used to implement the custom functional units – should it be FPGA

or CGRA based? Additionally, future ASIPs could incorporate mechanisms from

out of order execution such as speculative execution to obtain higher efficiency.

Studying the tradeoff between the overhead of such mechanisms and the added

benefits they provide in an ASIP environment could lead to interesting architec-

tures.

To conclude, my thesis studies three areas of energy efficient computing and

provides solutions which involve both offline and online optimizations. We be-

lieve that these studies form a useful stepping stone for future refinements and

exploration.

137

References

[1] Altera NIOS-II processor. http://www.altera.com/devices/processor/

nios2/ni2-index.html.

[2] Arm mpcore. http://www.arm.com/products/processors/classic/

arm11/arm11-mpcore.php.

[3] Intel 64 and IA-32 architectures optimization reference manual. http:

//www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-optimization-manual.html.

[4] ITRS report, 2011. http://www.itrs.net/Links/2011ITRS/Home2011.

htm.

[5] LDPC benchmark. http://www.cs.utoronto.ca/~radford/ldpc.

software.html.

[6] MediaBench2 benchmark suite. http://euler.slu.edu/~fritts/

mediabench/.

[7] MiBench benchmark suite. http://www.eecs.umich.edu/mibench/.

[8] Mips32 1074k. http://www.mips.com/products/cores/

32-64-bit-cores/mips32-1074k/.

[9] Sesc simulator. http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/.

[10] The LLVM compilation infrastructure. http://llvm.org.

[11] The Omega project. http://www.cs.umd.edu/projects/omega/.

[12] The SPARC architecture manual, version 9. http://developers.sun.com/
solaris/articles/sparcv9.pdf.

[13] Xtensa customizable processor. http://www.tensilica.com/products/

xtensa-customizable.

[14] Alexandru Andrei, Marcus T. Schmitz, Petru Eles, Zebo Peng, and Bashir
M. Al Hashimi. Quasi-static voltage scaling for energy minimization with
time constraints. In Proceedings of the conference on Design, Automation
and Test in Europe - Volume 1, DATE ’05, pages 514–519, Washington, DC,
USA, 2005. IEEE Computer Society.

[15] K. Atasu, C. Ozturan, G. Dundar, O. Mencer, and W. Luk. Chips: Custom
hardware instruction processor synthesis. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 27(3):528 –541, march
2008.

138

http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php
http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://www.cs.utoronto.ca/~radford/ldpc.software.html
http://www.cs.utoronto.ca/~radford/ldpc.software.html
http://euler.slu.edu/~fritts/mediabench/
http://euler.slu.edu/~fritts/mediabench/
http://www.eecs.umich.edu/mibench/
http://www.mips.com/products/cores/32-64-bit-cores/mips32-1074k/
http://www.mips.com/products/cores/32-64-bit-cores/mips32-1074k/
http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/
http://llvm.org
http://www.cs.umd.edu/projects/omega/
http://developers.sun.com/solaris/articles/sparcv9.pdf
http://developers.sun.com/solaris/articles/sparcv9.pdf
http://www.tensilica.com/products/xtensa-customizable
http://www.tensilica.com/products/xtensa-customizable

[16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques, October 2008.

[17] Partha Biswas, Nikil D. Dutt, Laura Pozzi, and Paolo Ienne. Introduction
of architecturally visible storage in instruction set extensions. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
26(3):435 –446, march 2007.

[18] B. Black, B. Rychlik, and J.P. Shen. The block-based trace cache. In Com-
puter Architecture, 1999. Proceedings of the 26th International Symposium
on, pages 196–207, 1999.

[19] A. Bracy, P. Prahlad, and A. Roth. Dataflow mini-graphs: Amplifying
superscalar capacity and bandwidth. In Microarchitecture, 2004. MICRO-
37 2004. 37th International Symposium on, pages 18–29, 2004.

[20] M.A. Breuer. Multi-media applications and imprecise computation. In Dig-
ital System Design, 2005. Proceedings. 8th Euromicro Conference on, pages
2 – 7, aug.-3 sept. 2005.

[21] P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set
synthesis for reconfigurable system-on-chip designs. In Design Automation
Conference, 2004. Proceedings. 41st, pages 395 –400, july 2004.

[22] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Archi-
tecture, 2000. Proceedings of the 27th International Symposium on, pages
83 –94, june 2000.

[23] Jorge E. Carrillo and Paul Chow. The effect of reconfigurable units in
superscalar processors. In Proceedings of the 2001 ACM/SIGDA ninth in-
ternational symposium on Field programmable gate arrays, FPGA ’01, pages
141–150, New York, NY, USA, 2001. ACM.

[24] Jian-Jia Chen, Heng-Ruey Hsu, Kai-Hsiang Chuang, Chia-Lin Yang, Ai-
Chun Pang, and Tei-Wei Kuo. Multiprocessor energy-efficient scheduling
with task migration considerations. In Real-Time Systems, 2004. ECRTS
2004. Proceedings. 16th Euromicro Conference on, pages 101 – 108, june-2
july 2004.

[25] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms. In Embedded and Real-
Time Computing Systems and Applications, 2007. RTCSA 2007. 13th IEEE
International Conference on, pages 28 –38, aug. 2007.

139

[26] S. Chen, M. Kozuch, P.B. Gibbons, M. Ryan, T. Strigkos, T.C. Mowry,
O. Ruwase, E. Vlachos, B. Falsafi, and V. Ramachandran. Flexible hard-
ware acceleration for instruction-grain lifeguards. Micro, IEEE, 29(1):62–
72, 2009.

[27] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B.
Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase,
Michael Ryan, and Evangelos Vlachos. Flexible hardware acceleration for
instruction-grain program monitoring. In Proceedings of the 35th Annual
International Symposium on Computer Architecture, ISCA ’08, pages 377–
388, Washington, DC, USA, 2008. IEEE Computer Society.

[28] A.C. Cheng. Amplifying embedded system efficiency via automatic instruc-
tion fusion on a post-manufacturing reconfigurable architecture platform. In
Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium
on, pages 744–749, 2008.

[29] Kihwan Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff based on
the ratio of off-chip access to on-chip computation times. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 24(1):18
– 28, jan. 2005.

[30] P. Chowdhury and C. Chakrabarti. Static task-scheduling algorithms for
battery-powered dvs systems. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 13(2):226 –237, feb. 2005.

[31] N. Clark, A. Hormati, and S. Mahlke. Veal: Virtualized execution accelera-
tor for loops. In Computer Architecture, 2008. ISCA ’08. 35th International
Symposium on, pages 389 –400, june 2008.

[32] N. Clark, M. Kudlur, Hyunchul Park, S. Mahlke, and K. Flautner.
Application-specific processing on a general-purpose core via transparent
instruction set customization. In Microarchitecture, 2004. MICRO-37 2004.
37th International Symposium on, pages 30 – 40, dec. 2004.

[33] Nathan Clark. Customizing the Computation Capabilities of Microproces-
sors. PhD thesis, University of Michigan, 2007.

[34] Nathan Clark, Jason Blome, Michael Chu, Scott Mahlke, Stuart Biles, and
Krisztian Flautner. An architecture framework for transparent instruction
set customization in embedded processors. In Proceedings of the 32nd annual
international symposium on Computer Architecture, ISCA ’05, pages 272–
283, Washington, DC, USA, 2005. IEEE Computer Society.

[35] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and Krisz-
tian Flautner. Application-specific processing on a general-purpose core via

140

transparent instruction set customization. In Proceedings of the 37th an-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO
37, pages 30–40, Washington, DC, USA, 2004. IEEE Computer Society.

[36] Jason Cong, Yiping Fan, Guoling Han, and Zhiru Zhang. Application-
specific instruction generation for configurable processor architectures. In
Proceedings of the 2004 ACM/SIGDA 12th international symposium on
Field programmable gate arrays, FPGA ’04, pages 183–189, New York, NY,
USA, 2004. ACM.

[37] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and
Glenn Reinman. Charm: a composable heterogeneous accelerator-rich mi-
croprocessor. In Proceedings of the 2012 ACM/IEEE international sympo-
sium on Low power electronics and design, ISLPED ’12, pages 379–384, New
York, NY, USA, 2012. ACM.

[38] Jason Cong, Guoling Han, and Zhiru Zhang. Architecture and compiler
optimizations for data bandwidth improvement in configurable processors.
IEEE Trans. Very Large Scale Integr. Syst., 14:986–997, September 2006.

[39] Jason Cong, Hui Huang, and Wei Jiang. A generalized control-flow-aware
pattern recognition algorithm for behavioral synthesis. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2010, pages 1255 –1260,
march 2010.

[40] Jason Cong, Glenn Reinman, Alex Bui, and Vivek Sarkar. Customizable
domain-specific computing. Design Test of Computers, IEEE, 28(2):6 –15,
march-april 2011.

[41] George A. Constantinides, Peter Y. K. Cheung, and Wayne Luk. Synthesis
and optimization of DSP algorithms. Kluwer Academic Publishers, 2004.

[42] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. Dise: a pro-
grammable macro engine for customizing applications. In Proceedings of
the 30th annual international symposium on Computer architecture, ISCA
’03, pages 362–373, New York, NY, USA, 2003. ACM.

[43] F. Dabiri, R. Jafari, A. Nahapetian, and M. Sarrafzadeh. A unified optimal
voltage selection methodology for low-power systems. In Quality Electronic
Design, 2007. ISQED ’07. 8th International Symposium on, pages 210 –218,
march 2007.

[44] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: path-sensitive program
verification in polynomial time. SIGPLAN Not., 37:57–68, May 2002.

141

[45] Abhijit Davare, Jike Chong, Qi Zhu, Douglas Densmore, and Alberto
Sangiovanni-Vincentelli. Classification, customization, and characteriza-
tion: Using milp for task allocation and scheduling. Technical Report
UCB/EECS-2006-166, University of California, Berkeley, December 2006.

[46] M. A. de Kruijf et al. Static analysis and compiler design for idempotent
processing. In Proceedings of the 33rd ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, PLDI ’12, pages 475–486,
New York, NY, USA, 2012. ACM.

[47] R.P. Dick, D.L. Rhodes, and W. Wolf. Tgff: task graphs for free. In
Hardware/Software Codesign, 1998. (CODES/CASHE ’98) Proceedings of
the Sixth International Workshop on, pages 97 –101, mar 1998.

[48] Quang Dinh, Deming Chen, and Martin D. F. Wong. Efficient asip design for
configurable processors with fine-grained resource sharing. In Proceedings
of the 16th international ACM/SIGDA symposium on Field programmable
gate arrays, FPGA ’08, pages 99–106, New York, NY, USA, 2008. ACM.

[49] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. Bugs as deviant behavior: a general approach to inferring errors in
systems code. SIGOPS Oper. Syst. Rev., 35:57–72, October 2001.

[50] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evo-
lution. In Proceedings of the 21st international conference on Software en-
gineering, ICSE ’99, pages 213–224, New York, NY, USA, 1999. ACM.

[51] S. Gupta et al. Bundled execution of recurring traces for energy-efficient
general purpose processing. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44 ’11, pages 12–23,
New York, NY, USA, 2011. ACM.

[52] David Evans, John Guttag, James Horning, and Yang Meng Tan. Lclint:
a tool for using specifications to check code. SIGSOFT Softw. Eng. Notes,
19:87–96, December 1994.

[53] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
Shoestring: probabilistic soft error reliability on the cheap. In Proceedings
of the fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems, ASPLOS ’10, pages 385–396, New York,
NY, USA, 2010. ACM.

[54] Krisztin Flautner and et al. Automatic performance setting for dynamic
voltage scaling. In IN MOBILE COMPUTING AND NETWORKING,
pages 260–271. ACM Press, 2001.

142

[55] Alejandro Garćıa, Oliverio J. Santana, Enrique Fernández, Pedro Medina,
and Mateo Valero. Lpa: a first approach to the loop processor architec-
ture. In Proceedings of the 3rd international conference on High performance
embedded architectures and compilers, HiPEAC’08, pages 273–287, Berlin,
Heidelberg, 2008. Springer-Verlag.

[56] Soheil Ghiasi, Elaheh Bozorgzadeh, Siddharth Choudhuri, and Majid Sar-
rafzadeh. A unified theory of timing budget management. In In IEEE/ACM
International Conference on Computer-Aided Design, pages 653–659, 2004.

[57] V. Govindaraju, Chen-Han Ho, and K. Sankaralingam. Dynamically spe-
cialized datapaths for energy efficient computing. In High Performance
Computer Architecture (HPCA), 2011 IEEE 17th International Symposium
on, pages 503–514, 2011.

[58] R. L. Graham and R. L. Grahamt. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics, 17:416–429, 1969.

[59] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Opti-
mization and approximation in deterministic sequencing and scheduling: a
survey. In E.L. Johnson P.L. Hammer and B.H. Korte, editors, Discrete Op-
timization II Proceedings of the Advanced Research Institute on Discrete Op-
timization and Systems Applications of the Systems Science Panel of NATO
and of the Discrete Optimization Symposium co-sponsored by IBM Canada
and SIAM Banff, Aha. and Vancouver, volume 5 of Annals of Discrete Math-
ematics, pages 287 – 326. Elsevier, 1979.

[60] F. Gruian and K. Kuchcinski. Lenes: task scheduling for low-energy systems
using variable supply voltage processors. In Design Automation Conference,
2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, pages 449
–455, 2001.

[61] F. Gruian and K. Kuchcinski. Uncertainty-based scheduling: energy-
efficient ordering for tasks with variable execution time [processor schedul-
ing]. In Low Power Electronics and Design, 2003. ISLPED ’03. Proceedings
of the 2003 International Symposium on, pages 465 – 468, aug. 2003.

[62] Flavius Gruian. Hard real-time scheduling for low-energy using stochastic
data and dvs processors. In Proceedings of the 2001 international symposium
on Low power electronics and design, ISLPED ’01, pages 46–51, New York,
NY, USA, 2001. ACM.

[63] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 291–301, New York,
NY, USA, 2002. ACM.

143

[64] J.R. Hauser and J. Wawrzynek. Garp: a MIPS processor with a recon-
figurable coprocessor. In FPGAs for Custom Computing Machines, 1997.
Proceedings., The 5th Annual IEEE Symposium on, pages 12 –21, apr 1997.

[65] M. Hiller. Executable assertions for detecting data errors in embedded con-
trol systems. In Dependable Systems and Networks, 2000. DSN 2000. Pro-
ceedings International Conference on, pages 24 –33, 2000.

[66] Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynam-
ically variable voltage processors. In Proceedings of the 1998 international
symposium on Low power electronics and design, ISLPED ’98, pages 197–
202, New York, NY, USA, 1998. ACM.

[67] Wei Jiang, Zhiru Zhang, M. Potkonjak, and J. Cong. Scheduling with in-
teger time budgeting for low-power optimization. In Design Automation
Conference, 2008. ASPDAC 2008. Asia and South Pacific, pages 22 –27,
march 2008.

[68] Kingshuk Karuri, Anupam Chattopadhyay, Manuel Hohenauer, Rainer Le-
upers, Gerd Ascheid, and Heinrich Meyr. Increasing data-bandwidth to
instruction-set extensions through register clustering. In Proceedings of the
2007 IEEE/ACM international conference on Computer-aided design, IC-
CAD ’07, pages 166–171, Piscataway, NJ, USA, 2007. IEEE Press.

[69] R.E. Kessler. The Alpha 21264 microprocessor. Micro, IEEE, 19(2):24 –36,
mar/apr 1999.

[70] Theo Kluter, Philip Brisk, Paolo Ienne, and Edoardo Charbon. Speculative
DMA for architecturally visible storage in instruction set extensions. In
Proceedings of the 6th IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, CODES+ISSS ’08, pages 243–
248, New York, NY, USA, 2008. ACM.

[71] Theo Kluter, Samuel Burri, Philip Brisk, Edoardo Charbon, and Paolo
Ienne. Virtual ways: Efficient coherence for architecturally visible stor-
age in automatic instruction set extensions. In HiPEAC, volume 5952 of
Lecture Notes in Computer Science, pages 126–140. Springer, 2010.

[72] Lap-Fai Leung, Chi-Ying Tsui, and Xiaobo Sharon Hu. Exploiting dynamic
workload variation in low energy preemptive task scheduling. In Proceedings
of the conference on Design, Automation and Test in Europe - Volume 1,
DATE ’05, pages 634–639, Washington, DC, USA, 2005. IEEE Computer
Society.

[73] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V.
Adve, Vikram S. Adve, and Yuanyuan Zhou. Understanding the propaga-

144

tion of hard errors to software and implications for resilient system design.
SIGOPS Oper. Syst. Rev., 42:265–276, March 2008.

[74] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. Mcpat: an integrated power, area, and
timing modeling framework for multicore and manycore architectures. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 469–480, New York, NY, USA, 2009.
ACM.

[75] Xiaodong Li, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. Scaling of
architecture level soft error rate for superscalar processors. 2005.

[76] Xuanhua Li and Donald Yeung. Application-level correctness and its impact
on fault tolerance. In In Proceedings of the 13th International Symposium
on High Performance Computer Architecture, pages 181–192, 2007.

[77] Ming Liu, W. Kuehn, Zhonghai Lu, and A. Jantsch. Run-time partial recon-
figuration speed investigation and architectural design space exploration. In
Field Programmable Logic and Applications, 2009. FPL 2009. International
Conference on, pages 498 –502, 31 2009-sept. 2 2009.

[78] Michele Lombardi and Michela Milano. Stochastic allocation and scheduling
for conditional task graphs in mpsocs. In Frdric Benhamou, editor, Prin-
ciples and Practice of Constraint Programming - CP 2006, volume 4204 of
Lecture Notes in Computer Science, pages 299–313. Springer Berlin / Hei-
delberg, 2006.

[79] Ya-shuai Lü, Li Shen, Zhi-ying Wang, and Nong Xiao. Dynamically uti-
lizing computation accelerators for extensible processors in a software ap-
proach. In Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, CODES+ISSS ’09, pages
51–60, New York, NY, USA, 2009. ACM.

[80] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.
Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and
David A. Wood. Multifacet’s general execution-driven multiprocessor simu-
lator (gems) toolset. SIGARCH Comput. Archit. News, 33:92–99, November
2005.

[81] T. Mudge. Power: a first-class architectural design constraint. Computer,
34(4):52 –58, apr 2001.

[82] Naveen Muralimanohar and Rajeev Balasubramonian. Cacti 6.0: A tool to
model large caches. Technical report, HP Laboratories, 2009.

145

[83] N. Oh, P.P. Shirvani, and E.J. McCluskey. Error detection by duplicated
instructions in super-scalar processors. Reliability, IEEE Transactions on,
51(1):63 –75, mar 2002.

[84] Yongjun Park, Hyunchul Park, and Scott Mahlke. Cgra express: accelerat-
ing execution using dynamic operation fusion. In Proceedings of the 2009
international conference on Compilers, architecture, and synthesis for em-
bedded systems, CASES ’09, pages 271–280, New York, NY, USA, 2009.
ACM.

[85] Sanjay J. Patel and Steven S. Lumetta. replay: A hardware framework for
dynamic optimization. IEEE Trans. Comput., 50(6):590–608, June 2001.

[86] K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer. Automated derivation of
application-aware error detectors using static analysis. In On-Line Testing
Symposium, 2007. IOLTS 07. 13th IEEE International, pages 211 –216, july
2007.

[87] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer. Symplfied: Sym-
bolic program-level fault injection and error detection framework. In De-
pendable Systems and Networks With FTCS and DCC, 2008. DSN 2008.
IEEE International Conference on, pages 472 –481, june 2008.

[88] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. K. Iyer.
Dynamic derivation of application-specific error detectors and their imple-
mentation in hardware. In Proceedings of the Sixth European Dependable
Computing Conference, pages 97–108, Washington, DC, USA, 2006. IEEE
Computer Society.

[89] P.G. Paulin and J.P. Knight. Force-directed scheduling for the behavioral
synthesis of asics. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 8(6):661 –679, jun 1989.

[90] Peter K. Pearson. Fast hashing of variable-length text strings. Commun.
ACM, 33:677–680, June 1990.

[91] J. Pouwelse, K. Langendoen, and H.J. Sips. Application-directed voltage
scaling. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 11(5):812 –826, oct. 2003.

[92] Laura Pozzi and Paolo Ienne. Exploiting pipelining to relax register-file port
constraints of instruction-set extensions. In Proceedings of the 2005 inter-
national conference on Compilers, architectures and synthesis for embedded
systems, CASES ’05, pages 2–10, New York, NY, USA, 2005. ACM.

146

[93] Meikang Qiu, Chun Xue, Zili Shao, and E.H.M. Sha. Energy minimiza-
tion with soft real-time and dvs for uniprocessor and multiprocessor embed-
ded systems. In Design, Automation Test in Europe Conference Exhibition,
2007. DATE ’07, pages 1 –6, april 2007.

[94] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I.
August, and Shubhendu S. Mukherjee. Software-controlled fault tolerance.
ACM Trans. Archit. Code Optim., 2:366–396, December 2005.

[95] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee, Jr. Enhancing server availability and security
through failure-oblivious computing. In Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation - Volume 6,
pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[96] H.P. Rosinger. Connecting customized ip to the microblaze soft proces-
sor using the fast simplex link (fsl) channel. www.xilinx.com/support/

documentation/application_notes/xapp529.pdf.

[97] E. Rotenberg, S. Bennett, and J.E. Smith. A trace cache microarchitecture
and evaluation. Computers, IEEE Transactions on, 48(2):111–120, 1999.

[98] S.K. Sahoo, Man-Lap Li, P. Ramachandran, S.V. Adve, V.S. Adve, and
Yuanyuan Zhou. Using likely program invariants to detect hardware errors.
In Dependable Systems and Networks With FTCS and DCC, 2008. DSN
2008. IEEE International Conference on, pages 70 –79, june 2008.

[99] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu
Kim, Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R.
Moore. Exploiting ilp, tlp, and dlp with the polymorphous trips architec-
ture. In Proceedings of the 30th annual international symposium on Com-
puter architecture, ISCA ’03, pages 422–433, New York, NY, USA, 2003.
ACM.

[100] P. Schumacher and W. Chung. Fpga-based mpeg-4 codec. In DSP Maga-
zine, pages 8–9, 2005.

[101] Dongkun Shin and Jihong Kim. Power-aware scheduling of conditional task
graphs in real-time multiprocessor systems. In Low Power Electronics and
Design, 2003. ISLPED ’03. Proceedings of the 2003 International Sympo-
sium on, pages 408 – 413, aug. 2003.

[102] David B. Shmoys and Éva Tardos. An approximation algorithm for the
generalized assignment problem. Math. Program., 62:461–474, December
1993.

147

www.xilinx.com/support/documentation/application_notes/xapp529.pdf
www.xilinx.com/support/documentation/application_notes/xapp529.pdf

[103] Ayswarya Sundaram, Ameen Aakel, Derek Lockhart, Darshan Thaker, and
Diana Franklin. Efficient fault tolerance in multi-media applications through
selective instruction replication. In Proceedings of the 2008 workshop on
Radiation effects and fault tolerance in nanometer technologies, WREFT
’08, pages 339–346, New York, NY, USA, 2008. ACM.

[104] E. Talpes and D. Marculescu. Execution cache-based microarchitecture for
power-efficient superscalar processors. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 13(1):14–26, 2005.

[105] Darshan D. Thaker, Diana Franklin, John Oliver, Susmit Biswas, Derek
Lockhart, Tzvetan Metodi, and Frederic T. Chong. Characterization of
errortolerant applications when protecting control data. In In Proc. of the
IEEE Intl Symp. on Workload Characterization, 2006.

[106] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges,
Guilherme Ottoni, and David I. August. Speculative decoupled software
pipelining. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, PACT ’07, pages 49–59, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[107] F. Vahid, G. Stitt, and R. Lysecky. Warp processing: Dynamic translation
of binaries to fpga circuits. Computer, 41(7):40–46, 2008.

[108] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota
Venkata, Michael Bedford Taylor, and Steven Swanson. Qscores: trading
dark silicon for scalable energy efficiency with quasi-specific cores. In Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-44 ’11, pages 163–174, New York, NY, USA, 2011.
ACM.

[109] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. Counting integer points in parametric polytopes using
barvinok’s rational functions. Algorithmica, 48:37–66, March 2007.

[110] S. Verma and A. S. Dabare. Understanding clock domain crossing issues.
EETimes EDA DesignLine, December 2007.

[111] Hangsheng Wang, Li-Shiuan Peh, and S. Malik. A technology-aware and
energy-oriented topology exploration for on-chip networks. In Design, Au-
tomation and Test in Europe, 2005. Proceedings, pages 1238 – 1243 Vol. 2,
march 2005.

[112] Nicholas J. Wang, Justin Quek, Todd M. Rafacz, and Sanjay J. patel. Char-
acterizing the effects of transient faults on a high-performance processor

148

pipeline. In Proceedings of the 2004 International Conference on Depend-
able Systems and Networks, DSN ’04, pages 61–, Washington, DC, USA,
2004. IEEE Computer Society.

[113] N.J. Wang and S.J. Patel. Restore: Symptom-based soft error detection
in microprocessors. Dependable and Secure Computing, IEEE Transactions
on, 3(3):188 –201, july-sept. 2006.

[114] Tao Wang, Zhihong Yu, Yuan Liu, Dong Liu, and Joel Emer. An archi-
tecture & mechanism for supporting speculative execution of a context-full
reconfigurable function unit. In Workshop on the Intersections of Computer
Architecture and Reconfigurable Logic (CARL 2010), 2010.

[115] Dong Wu, Bashir M. Al-Hashimi, and Petru Eles. Scheduling and mapping
of conditional task graphs for the synthesis of low power embedded systems.
In Proceedings of the conference on Design, Automation and Test in Europe
- Volume 1, DATE ’03, pages 10090–, Washington, DC, USA, 2003. IEEE
Computer Society.

[116] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. Energy-aware scheduling
for real-time multiprocessor systems with uncertain task execution time. In
Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, pages
664 –669, june 2007.

[117] Ruibin Xu, Rami Melhem, and Daniel Mossé. A unified practical approach
to stochastic dvs scheduling. In Proceedings of the 7th ACM & IEEE in-
ternational conference on Embedded software, EMSOFT ’07, pages 37–46,
New York, NY, USA, 2007. ACM.

[118] Ruibin Xu, Daniel Mossé, and Rami Melhem. Minimizing expected energy
in real-time embedded systems. In Proceedings of the 5th ACM international
conference on Embedded software, EMSOFT ’05, pages 251–254, New York,
NY, USA, 2005. ACM.

[119] Z.A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera: a high-
performance architecture with a tightly-coupled reconfigurable functional
unit. In Computer Architecture, 2000. Proceedings of the 27th International
Symposium on, pages 225 –235, june 2000.

[120] Thomas Y. Yeh, Glenn Reinman, Sanjay J. Patel, and Petros Faloutsos.
Fool me twice: Exploring and exploiting error tolerance in physics-based
animation. ACM Trans. Graph., 29:5:1–5:11, December 2009.

[121] S. Yehia and O. Temam. From sequences of dependent instructions to func-
tions: an approach for improving performance without ilp or speculation. In
Computer Architecture, 2004. Proceedings. 31st Annual International Sym-
posium on, pages 238–249, 2004.

149

[122] Dakai Zhu, Rami Melhem, and Bruce Childers. Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multi-processor real-
time systems. In IEEE Trans. on Parallel and Distributed Systems, pages
84–94, 2001.

150

	Introduction
	Energy efficient multiprocessor task scheduling under input-dependent variation
	Assuring application-level correctness in programs
	Architecture support for custom instructions with memory operations
	Architecture support for dynamic instruction set customization

	Energy Efficient Multiprocessor Task Scheduling under Input-dependent Variation
	Introduction
	Workload agnostic techniques
	Workload aware techniques
	Exploiting variation in execution time
	Uni-processor Systems
	Multiprocessor Systems

	Preliminaries and problem statement
	Processor Model
	Application Model
	Problem Statement

	VAR-TB – Variation-aware Time Budgeting
	Task assignment heuristic
	Task scheduling and voltage assignment
	Mathematical formulation of VAR-TB

	Improving the scheduling algorithm
	Restricting the number of SCE(v) entries per task
	Time complexity
	Online algorithm
	Voltage switching overhead
	Discrete voltages

	Experimental Results
	Random task-graphs
	Real-world Benchmarks

	Conclusions

	Assuring Application-level Correctness Against Soft Errors
	Introduction
	Related work and our contributions
	Monte-Carlo based techniques:
	Program analysis techniques
	Using program invariants and patterns

	Program Representation
	Preliminaries
	Program representation

	Overview of the proposed method
	Constructing PDG and computing edge weights
	Constructing PDG
	Computing edge weights - Static method

	Computing -AFFECTER from weighted PDG
	Acyclic PDG
	PDG with cycles
	Identification of critical instructions
	Control flow optimization

	Assuring application-level correctness - profiling and runtime monitoring
	Profiling edge weights
	Runtime monitoring of edge weights
	Ensuring application-level correctness

	Experiments and Results
	Error injection methodology
	Illegal memory accesses
	Analysis of results

	Conclusion

	Architecture support for custom instructions with memory operations
	Introduction
	Related work and our contributions
	ALU-like CFUs
	CFUs with memory operations
	CFUs with Architecturally Visible Storage (AVS)
	Context-full CFUs
	Our contributions

	Challenges and our proposed solution for supporting memory operations in CFUs
	Issue 1: Maintaining program order for memory operations
	Issue 2: Ordering of memory operations within a CI
	Issue 3: Possible partial commit to memory
	Issue 4: Handling TLB faults
	Issue 5: Handling variable number of memory operations
	Scenarios where our architecture would beat a system with compiler inserted synchronization
	Difference with CISC ISAs

	Custom instruction operation and representation
	Details of proposed architecture
	Fetch stage
	Decode stage
	Rename stage
	Dispatch stage
	Scheduler and execute stage
	Communication with CFUs
	Retire stage

	Compiler flow for creating CIs
	Results
	Evaluation setup
	Comparison with baseline
	Comparison with restricted CIs
	Sensitivity with respect to FPGA resource availability
	Comparison under equal area constraint

	Conclusions

	Architecture support for dynamic instruction set customization
	Introduction
	Related work
	Static instruction set customization
	Dynamically configurable functional units
	Dynamic instruction stream customization
	Trace cache based methods

	System overview
	CFU architecture
	Identifying frequently executed parts of an application
	Challenges in generating CIs and optimized instruction stream
	Generating correct CIs
	Generating correct optimized instruction stream

	Hardware support for CI construction and optimized instruction stream generation
	Determining instruction dependences
	Subgraph enumeration

	Putting it all together
	Fetch stage
	Decode stage
	Extension to CMP systems

	Results
	Evaluation framework
	Evaluating the impact of sizes of the proposed hardware structures
	Comparison with baseline and previous work
	Studying the impact of sharing hardware structures

	Conclusions

	Conclusions and Future Directions
	References

