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Abstract

Recent developments in machine learning algorithms have enabled models to exhibit impressive 

performance in healthcare tasks using electronic health record (EHR) data. However, the 

heterogeneous nature and sparsity of EHR data remains challenging. In this work, we present a 

model that utilizes heterogeneous data and addresses sparsity by representing diagnoses, 

procedures, and medication codes with temporal Hierarchical Clinical Embeddings combined with 

Topic modeling (HCET) on clinical notes. HCET aggregates various categories of EHR data and 

learns inherent structure based on hospital visits for an individual patient. We demonstrate the 

potential of the approach in the task of predicting depression at various time points prior to a 

clinical diagnosis. We found that HCET outperformed all baseline methods with a highest 

improvement of 0.07 in precision-recall area under the curve (PRAUC). Furthermore, applying 

attention weights across EHR data modalities significantly improved the performance as well as 

the model’s interpretability by revealing the relative weight for each data modality. Our results 

demonstrate the model’s ability to utilize heterogeneous EHR information to predict depression, 

which may have future implications for screening and early detection.
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I. Introduction

With the rapid development of deep learning algorithms and widespread use of healthcare 

data sets, many models have presented state-of-the-art performance using patients’ 

electronic health records (EHRs) for diagnostic tasks [1], disease detection [2], and risk 

prediction [3]. EHRs have been broadly adopted for documenting a patient’s medical history 

[4]. They are composed of data from various sources, including diagnoses, procedures, 

medications, clinical notes, and laboratory results, which contribute to their high 

dimensionality and heterogeneity. Frequently, models built on EHR data have limited the 

number of data categories used [5], [6]. Few studies have attempted to use data from a broad 

set of categories as data heterogeneity remains a technical barrier for utilizing all types of 

EHR data in one model. As a consequence, there is an ongoing effort to construct a single 

model that is able to aggregate data from different data modalities. An additional 

complication is that EHR data includes temporal information from different patient visits, 

with each visit producing data from various sources.

Depression is one of the leading causes of disability worldwide [7]. Many depressed patients 

seek treatment from primary care providers, as 15% of primary care patients screen positive 

for depression, which makes improvement in the quality of depression care in primary care 

settings vital [8]. Despite the high prevalence and cost of depression, a previous meta-

analysis found that the screening process for patients at high risk of depression only 

produced a true positive rate of 50% [9]. Ensuring that screening targets high-risk 

individuals minimizes the workload for primary care providers, who do not have enough 

time to do all relevant preventive health care screening [10]. To address this problem, studies 

have utilized LASSO logistic regression [11], random forests [12], support vector machines 

(SVM) [13] for predicting depression. While these methods are able to handle some data 

modalities, they do not model the EHR’s heterogeneous structure, thus presenting an 

opportunity for new techniques.

To construct a predictive model with high accuracy for prediction of depression and mitigate 

the heterogeneity and sparsity of EHR data, we propose Hierarchical Clinical Embedding 

with Topic modeling (HCET), which aggregates diagnoses, procedure codes, medications, 

and demographic information together with topic modeling of clinical notes. Inspired by [5], 

HCET builds a hierarchical structure on different categories of EHR data with various 

embedding levels, while preserving the data’s sequential nature. In this way, it learns the 

inherent interaction between EHR data from various sources within each visit and across 

multiple visits for an individual patient. This study points to a potential method for targeting 

depression screening among individuals in a single health system who have conditions that 

are associated with high risk for depression. Depression is often not evaluated in primary 

care settings. This approach could help in clinical practice by identifying individuals 

potentially at risk for developing depression within a specific time interval who should be 

screened (and potentially treated) for depression.
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II. Related Work

Temporal models based on RNN or LSTM have been applied on medical data, particularly 

for using EHR data to predict future diagnoses [1], [14]. [15] added an attention mechanism 

to an RNN to predict heart failure, which improved the model’s interpretability for 

predicting the time of an event. Bai et. al also focused on improving their model’s 

interpretability using self-attention, but only applied it on diagnosis and procedure codes 

[16]. [5] focused on learning the inner structure of an EHR by constructing a multiple level 

embedding with a bottom up hierarchy of diagnosis level, visit level, and patient level. 

However, these models did not apply on wide range of EHR data sources. [17] was able to 

predict clinical interventions from a deep neural network using lab results and 

demographics, but with a smaller feature dimension of 34 in total. Thus, this method did not 

resolve the data heterogeneity and sparsity issues for EHR data.

Several previous studies have focused on semantic representation of clinical notes. 

Gligorijevic et. al proposed a model with attention to process clinical text with several hand 

crafted features for chronic disease prediction [18]. [11] was able to include diagnosis codes, 

demographic information, and clinical notes for predicting a future diagnosis of depression. 

However, their approach processed unstructured clinical text using a medical ontology for 

medical term extraction. In addition, it ignored temporal information by building a logistic 

regression classifier, which is a non-temporal model. [6] first applied topic modeling to 

parse clinical notes and combined it with other data modalities to input into an autoencoder 

as a feature extractor, while building a random forest classifier for future disease prediction. 

This method is a two-stage model, which incurs additional complexity to optimize compared 

to one end-to-end model. our model aims to achieve better semantic representation of 

clinical notes and aggregates them with other EHR data to improve predicting diagnosis of 

depression. In addition, hierarchical embedding was built to reveal latent connection 

between various EHR data source to resolve data heterogeneity and sparsity issues.

III. Data Description

To capture a spectrum of clinical complexity for our analyses, we selected patients based on 

three primary diagnoses: myocardial infarction (MI), breast cancer, and liver cirrhosis. 

Generally, MI represents the least complexity, with acute onset, resolution, and straight-

forward treatment. Breast cancer is increasingly complicated in terms of diagnoses and 

treatment options. Finally, a patient with liver cirrhosis may have many sequelae, generating 

a complex EHR representation. Patients for this project were identified from our EHR in 

accordance with an IRB (#14–000204) approved protocol. Each patient visit had EHR data 

types consisting of diagnosis codes in International Classification of Disease, ninth revision 

(ICD-9) format, procedure codes in Current Procedural Terminology (CPT) format, 

medication lists, demographic information, and clinical notes. All patient records coded with 

ICD-9 values for MI, breast cancer, or liver cirrhosis from 2006–2013 were included. In this 

data set, demographics were limited to the patient’s gender and age at the time of each visit. 

Initially, there were 45,208 patients and after the preprocessing and patient including criteria 

in section III. D, 10,148 patients were included in the analysis. Table I shows statistics of the 

dataset. Note that there some patients have more than one primary diagnosis.
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A. Identifying Diagnosis of Depression

Because patients in this dataset were identified retrospectively and were not suspected for 

depression, common methods for identifying and assessing severity of depression such as 

Patient Health Questionnaire (PHQ-9) scores [19] were not available. Instead, depression 

onset was identified by three methods:

• depression related ICD-9 code [11]

• inclusion of an antidepressant drug in a patient’s medication list

• appearance of an antidepressant drug in clinical notes (from https://

www.whocc.no/atc_ddd_index/?code=N06A)

The earliest time stamp of an occurrence of any of these events was defined as the time of 

diagnosis with depression. In total, 3,047 patients out of the total 10,148 were identified as 

depressed. The diagnosis time of depressed for each patient occurred after the primary 

diagnosis.

IV. Methods

ICD-9 codes, CPT codes, medication lists, and patient’s gender can all be considered as 

categorical variables while ages are numerical. Therefore, an intuitive approach is to encode 

these features in a multi-hot vector, where each row corresponds to a specific code or data 

element. Each row has a binary value, where 1 indicates have this item and 0 for not during 

one visit. ICD-9 codes are up to five digits long with three digits before a decimal point and 

two digits after, resulting in 9,285 unique code in our data set. In order to reduce the 

dimensionality of the feature vector, ICD-9 codes were grouped by the three numbers before 

the decimal point, as was previously done in [14]. Detailed descriptions of dimensionality 

reduction techniques for ICD-9, CPT, and medication lists are presented in section IV.C, 

definition of HCET.

Embedding is a technique that has been widely adopted in NLP to project long and sparse 

feature vectors into a dense lower dimensional space [20]. This approach efficiently reduces 

the size of a model’s parameters as well as decreases training time. Recent models [5], [14], 

[21] have utilized embedding to process categorical data in EHRs, which we have adopted in 

the current model. The full definition is shown in section IV.C.

A. Topic Modeling of Clinical Notes

Latent Dirichlet allocation (LDA) is an unsupervised learning method to encode text by 

assigning words to underlying topics (semantic themes). Briefly, a topic is represented as a 

multinomial distribution over the unique words in a corpus, and a document is represented as 

a multinomial distribution over all topics. LDA is able to generate topics automatically from 

a corpus, providing generalized information. Recent work has applied topic modeling on 

clinical notes [22]–[25]. We chose to model clinical notes with 100 topics, each one with 

five words with highest probability to represent the semantic mean of the clinical notes, thus 

generating a 100-feature vector representation of the document in semantic topic space. 

Topic vectors was dichotomize using each topic’s average value as a threshold among our 
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data. For patients with multiple clinical reports in the six-month time window, probabilities 

were averaged first to reach on feature vector and then dichotomized using the same method.

B. Baseline Models

Traditional machine learning algorithms generally ignore temporal and sequential 

correlation among features by aggregating them over a time window for a patient. As 

mentioned in the first paragraph of section IV, the feature vector for each patient is a multi-

hot vector which concatenated all five EHR data modalities over multiple visits. In order to 

leave out the bias for more frequent codes, each row of vector is 1 when this code shows in 

any of the visits. As a compensation factor for temporal information, the number of records 

in ICD-9, CPT, medication lists, and clinical notes are added as addition factors to capture 

the of frequency of patients visits of records. 10-fold cross validation was adopted for each 

model. In addition, patients in the test set were separated by their primary diagnosis and the 

results were compared for three primary diagnosis individually.

Lasso—Previous work has applied Lasso for predicting depression [11], which is 

compared in the analysis. Lasso uses L1 regularization which brings sparsity to select the 

more correlated features for the task.

SVM—SVM is also compared in the experiment as it been utilized to predict depression 

previously [13]. Here we used RBF kernel and five-fold cross validation with grid search to 

fine tune the regularization term.

MLP Multilayer perceptron (MLP)—Two layers of MLP with a tanh activation function 

and 256 nodes is also compared here, following the implementation from previous studies 

[5], [15].

RF—Nevertheless, ensemble methods like random forests (RF) [26] and gradient boost 

regression trees (GBRT) [27] have produced competitive results in disease detection and 

outcome prediction for healthcare. These models also compute the significance factor for 

each feature, which provides valuable information on feature selection as well as dimension 

reduction. Therefore, RF was adopted as a baseline model in comparison with HCET. The 

hyper parameters were chosen using grid search with five-fold cross validation on the 

training set.

VAE+RF—[6] proposed pretraining autoencoder as the feature extractor for EHR and using 

RF for classification from the extracted features. This method is also compared.

MiME*—The MiME model demonstrated state-of-the-art performance in predicting heart 

failure onset [5]. It consists of a temporal model using GRUs that learn the temporal 

character of disease progression with external knowledge of linked relation between ICD-9 

codes and associated CPT codes and medication lists during each visit. The MiME model 

required removal of visits that did not include diagnosis codes to make sure diagnosis codes 

were present to input the model. Since there was no direct linked relationship between 

ICD-9 codes, CPT codes, and medication lists in our EHR data, these three features were 

processed in the same level instead of the two level structure proposed in MiME. In addition, 
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there are many cases where procedure codes or medications are present in the EHR without 

associated diagnoses. Therefore, we revised the MiME model by removing this layer while 

keeping the remaining structure and parameter values consistent, denoted MiME*. The 

performance of this modified model was compared to our HCET model.

Laux = − λaux∑
t

T
( ∑

i

v(t)

CE di
(t), di

(t) + ∑
i

Mi
(t)

CE mi, j
(t) , mi, j

(t) (1)

As shown above, MiME defined Eq. (1) to compute the auxiliary loss, where di
(t) denoted the 

diagnosis code in tth visit. Thus, calculating auxiliary loss required diagnosis codes present 

in each visit, which and this is not applicable to our dataset. On the other hand, we highly 

focus on the prediction accuracy of depression but not on other diseases or symptoms. 

Furthermore, the average increase after implementing this component was less than 0.01 

from their reported results, so the auxiliary loss defined in MiME was not adopted in this 

study.

C. Definition of HCET

Fig. 1 illustrates the hierarchical structure of HCET. The ultimate goal of the model is to 

predict the probability of a chronic disease for patient i given the feature embedding 

representing a sequence of visits, ℙ(yi | hi). While the model is designed to be generalizable, 

we focus here on the prediction of depression, yi. hi  stands for the patient level embedding 

of a patient’s EHR, and each patient has multiple hospital visits from v1 to vt , which 

compose the visit level embedding. During one visit vt , the code level embedding et  is the 

ensemble of multiple ICD-9 and CPT codes, medications, demographic information, and 

topic features extracted from associated clinical notes. Since there are five categories of 

EHR data, we built individual embedding for each first and aggregated them together.

Table II shows the full list of notation and corresponding definitions of symbols used in 

HCET. d  is a multi-hot binary vector with dimension of ℝD × 1, where each column 

corresponds to whether a specific ICD-9 code was assigned in the tth visit. A similar 

approach applies to c ϵ ℝC × 1, m ϵ ℝM × 1, and p ϵ ℝ2 × 1, which are the vector 

representations for CPT, medication, and demographic information, respectively. As 

described before, topic features are vector representations in topic space, which represent the 

distribution of topic occurrences in the document. In order to match the embedding size of 

other data types, a threshold was defined to dichotomies each topic word, which was 

computed by the average probability of each topic value across all patients. The threshold 

value for 100 topic words are described in the results section. Thus, x ϵ ℝ100 × 1 is a multi-

hot binary vector representation of topic features, where each column denotes the unique 

100 topics for the tth visit.

Eq. (2), Eq. (3) and Eq. (4) describe mathematical formulation of HCET in the top-down 

view, denoting the Patient level, Visit level, and Code level embeddings, respectively.
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hi = f(v1…vt…vT) (2)

Eq. (2) shows the method to process temporal information of various visit level embeddings 

to compute a patient level embedding, where f stands for the function to input visit 

information in a sequential order. As mentioned before, RNNs, LSTMs, and GRUs have 

been widely used to fulfill this task. Since RNNs often encounters the vanishing gradient 

problem and better performance has been shown for a GRu over an LSTM in previous work 

[5], we used a GRU in the current model.

vt = α(W e et ) + et (3)

In Eq. (3), visit level embedding is generated by first performing a matrix transformation 

with weight W e ϵ ℝz × z, followed by a non-linear ReLU transformation function α, where 

z is the embedding size. We omitted the bias term bt  here to formulate residual connection 

[28].

et = β(F ) + F (4)

F = W Dd + W C c + W Mm + W P p + W X x (5)

Eqs. (4) and (5) define the code level embedding by summing individual embeddings from 

five EHR data sources with a non-linear transformation function β. As in equation (3), we 

use a ReLu for β. The W D ϵ ℝz × D, W C ϵ ℝz × C, W M ϵ ℝz × M, W P ϵ ℝz × P  and 

W X ϵ ℝz × X represent the weight matrices for transforming the feature vectors of ICD-9 

codes, CPT codes, medication lists, demographics, and topic features with high and varied 

dimensionality into a latent space with the same lower dimension. For example, the 

diagnosis vector d ϵ ℝD × 1, after multiplied with weight matrix, W Dd  results in a vector 

of dimension ℝz × 1. Therefore all vectors can sum up as in Eq. (5). In the same manner to 

Eq. (3), all of the corresponding biased terms were omitted to denote residual connection. 

Finally, binary cross entropy was used as the loss function.

∑λj = 1 (6)

F ′ = λDW Dd + λCW C c + λMW Mm + λPW P p + λXW X x (7)

In order to investigate the importance of each data modality in this prediction task as well as 

improve interpretability of HCET, attention weights λj were defined for each modality, 

where the sum of all weights equal to one, as shown in Eq. (6). A weighted sum code level 

embedding F′ was input into HCET, indicated by Eq. (7), which substituted F in Eqs. (4) 
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and (5). After training, attention weights reveal the importance for each feature type in 

prediction tasks.

D. Predicting Depression at Different Decision Points

Previous studies [1], [2], [5], [21] have used the data from the entire EHR for future disease 

prediction. This method could add bias for patients with longer medical histories. It also 

gives equal weight to old data that likely is not as useful as more recent data. As predicting 

the future risk of a disease in a prospective setting is an ongoing task, the time window of a 

patient’s EHR is highly varied. Therefore, as a similar approach to [11], we defined four 

decision points in advance of the diagnosis of depression: two weeks, three months, six 

months, and one year. Fig. 2 illustrates the four six-month time Windows for using EHR 

data to predict depression diagnosis. For non-depressed patients, the last time step of the 

EHR was substituted for the diagnosis time.

In order to test the effect of temporal information and data size on model performance, 

previous work [5] used varying maximum lengths (visits) of the EHR. This resulted in a 

different number of patients in each of the four experiments as the number of visits was not 

consistent across patients. In our approach, we kept the number of patients consistent 

through the four predicting tasks, which revealed the temporal nature of prediction as the 

time to diagnosis varies. In this case, patients who had at least one of ICD-9, CPT, 

medication and topic feature in all four time windows were included in experiments. After 

processing data based on this method, 10,148 patients were selected, where 3,747 were 

diagnosed with depression. Basic statistics of the data are shown in Table III.

Ablation study—Three feature sets were generated to compare the contribution to 

prediction of depression for demographics and topic features. There were applied to HCET: 

all data types (ICD-9 codes, CPT codes, medication lists, demographics, and topic features); 

ICD-9 codes, CPT codes, medication lists and topic features; ICD-9 codes, CPT codes, and 

medication lists. This ablation study was only applied to HCET while all baseline models 

used all data types as input.

E. Training Details

All models were implemented in TensorFlow 1.12 and trained on a work station equipped 

with Intel Xeon E3–1245, 32 GB RAM and two NVIDIA Ti 1060 GPUs. Adam [29] was 

selected as the optimizer, with the same learning rate of le−3 as [5] for HCET. The number 

of parameters is 2.5M, which mainly depends on the size of embedding matrices. Reported 

results are averaged over 10 random data splits: training 70%, validation 10% and test 20%. 

Models were trained with the minibatch of 50 patients for a total of 2,000 iterations to 

guarantee convergence. The validation set was evaluated at every 100 iterations for early 

stopping. The vanishing gradient problem was avoided by using skip connections. To 

address over fitting, L2 regularization with coefficient le−4 was chosen for the two HCET 

models instead of using dropout. The embedding size z was set as 200 and the number of 

nodes for the GRU was set at 256. The source code of HCET is available at https://

github.com/lanyexiaosa/hcet.
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V. Results

A. Comparison of Performance in Depression Prediction

Table IV displays the results from all baseline models and HCET with abalation analysis at 

four time points in advance of diagnosis in terms of receiver operating characteristic area 

under the curve (ROCAUC) and PRAUC. HCET using all EHR modalities with attention 

outperformed other models for every prediction window. Lasso generated the worst 

accuracy. There is no significant difference between results from RF and VAE+RF. There is 

conistent decrease of accuracy for each model as the prediction point moves further away 

from the time of diagnosis, where the number achieves the highest at window of two weeks.

Adding demographic information and topic features improved the performance for HCET, 

which demonstrates their significant contribution in predicting depression as well as 

emphasizes the advantage of building a model being able to aggregate EHR data from 

multiple sources. The values between MiME* and HCET(codes+demo) are similar, while 

the difference between HCET(codes+demo) and HCET(code+demo+topics) are relatively 

large. HCET with all types of EHR data achieved the highest accuracy at each prediction 

than all baseline models. It generated the highest mean ROCAUC of 0.81 when predicting 

two weeks prior to the diagnosis, and the value dropped to 0.7541 when predicting one year 

in advance. After applying attention weights to each embedding at the code level, the 

ROCAUC at six months and one year are significantly improved with p=0.04 and p=3e-5, 

respectively.

B. Model’s performance for each primary diagnosis

Table V shows the results for each of three primary diagnosis in predictions windows of two 

weeks and one year in ROCAUC and PRAUC. Only HCET+attention was compared as it 

demonstrated the best performance in the previous ablation study on its own. HCET

+attention also achieved the best performance for three primary diagnosis for two prediction 

windows. The low variance also indicated that it is more robust than other models. The 

ROCAUC for every model is quite similar even though the number of patients with breast 

cancer was substantially higher than the other diseases (Table I), which indicated no bias 

toward any primary diagnosis in the prediction. On the other hand, it is noticeable that the 

PRAUC for patients with myocardial infarction is relatively higher than other two.

Fig. 3 contains confusion matrices with patients separated in three primary diagnosis in the 

prediction window of two weeks from four models at the same threshold of 0.5, after 

probability calibration using isotonic regression [30]. VAE+RF is chosen here rather than 

SVM, MLP, RF and as it generated slightly higher results in previous analysis for non-

temporal models. The numbers were aggregated from 10-fold cross validation. For each 

primary diagnosis, the distribution was imbalanced with a lower number of depressed 

patients. Lasso generated poor accuracy as it almost always predicted the negative class. 

VAE+RF slighted reduced false negative cases but the number of true negatives was worse 

than Lasso. MiME* both improved the numbers in true positives and true negatives while 

HCET+attention improved it further. The average precision and recall over three primary 

diagnosis from HCET+attention were 0.88 and 0.76, respectively.
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C. Interpretation of Feature Importance from Attention Weights

As mentioned in the method section, one advantage of RF over majority of deep learning 

models is the ability to provide information on the importance factor of each feature 

contributing to classification [31]. However, there is a consistent effort to improve the 

interpretability of deep learning models like HCET. Fig. 4 shows the attention weights for 

each of EHR data modalities over four prediction windows According the result, medication 

and demo both are below the average value of 0.2 in four prediction windows. Attention for 

ICD-9 is above 0.2 in window of two weeks and three months but it drops in six months and 

one year. There is a consistent increase of attention for topics while the attention from CPT 

always ranks top.

VI. Discussion

Accoring to result in Table IV and V, Lasso generated the worst performance as it is a linear 

classifier which indicats that predicting depression from the EHR is a complicated task 

which requires more advanceted models. In addition, the Lasso method also provides 

sparsity of using more correlated features but the poor accuracy reveals that this task need to 

include more features than only the most correlated ones. There is no significant different 

between results from RF and VAE+RF which indicated the power of classfication maily 

depends on RF. Models starting from MiME* are all temporal models and they all achieved 

higher performance than non-temporal ones, which further confirms the advantage of using a 

temporal model over non-temporal methods in predicting chronic disease. Furthermore, the 

performance consistently declined for each model as the prediction window moved further 

away from the diagnosis time point, which agrees with our expectation that records closer to 

the diagnosis are more likely to contain relevant information and provide better predictions.

The improvement of HCET with attention over all baseline models demonstrated the 

advantage of utilizing temporal information and hierarchical embedding to aggregate more 

heterogenous EHR data modalities in the prediction of depression. In the original 

implementation of the MiME model [5], interactions between diagnosis codes with 

associated procedures and medication were explicitly modeled, but this linked relation was 

not available in our EHR, a situation that commonly applies to other medical systems. 

Meanwhile, MiME also has another limitation of ignoring data when no diagnosis code is 

present for each visit. Our results indicate that treating all EHR data types in one level of 

code embedding during each visit is a viable solution in this scenario while being able to 

include all data from each visit. Another adjustment in our model is the extension of 

embedding to process demographics and clinical notes, which further addresses the 

heterogeneity issue in EHR data. Furthermore, we applied attention weights on each data 

modality, which further improved our model’s interpretability by showing the relative 

importance of each data modality.

The results presented in Table IV and V both demonstrate the contribution of topic features 

in temporal models for predicting depression. Future work may include more clinical notes 

with other EHR modalities in a single model when building machine learning models for 

healthcare tasks. In addition, the attention weights of topics were consistently above the 

average value, demonstrating their important contribution in our prediction task. Topic 
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modeling methods, such as LDA, are one way of processing texts. They are based on the bag 

of words assumption, which may not be the ideal way to represent clinical text. Future 

studies could utilize more recent NLP tools, such as BERT [32] to process clinical notes, 

which could further improve the overall performance. On the other hand, our attention 

weights were not applied on individual visits and codes, so HCET did not learn the latent 

relation between them. Future work can improve this attention by applying BERT [32] to do 

representation learning using self-attention and a multi-head attention mechanism.

As mentioned in our methods section, the clinical standard for depression diagnosis is the 

PHQ-9 questionnaire, which is not routinely collected clinically. Instead, three criteria were 

used for determining depression diagnosis, which could have led to errors in our labels. 

Thus, future prospective studies could periodically administer PHQ-9 surveys, which may 

provide more precision in depression diagnosis. Temporal models could then be built to 

track the disease progression as well as early detection. There are other chronic diseases 

with high prevalence, such as hypertension, diabetes, and obesity, which could provide more 

applications for the HCET model in future work. Finally, the EHR includes other data 

sources that are not currently included in the HCET model, such as laboratory results [17]. 

Future studies may extend the model to include these other data sources to further utilize the 

heterogeneity of EHR data.

VII. Conclusion

We have developed a temporal deep learning model, HCET, which was able to integrate five 

types of EHR data during multiple visits for depression prediction. HCET consistently 

outperformed the baseline models tested, achieving an increase in PRAUC of 0.07 over the 

best baseline model. The results demonstrate the ability of HCET as an approach to deal 

with data heterogeneity and sparsity in modeling the EHR. Adding attention weights 

improved model’s interpretability. In future work, HCET could possibly be used as the basis 

for constructing a screening tool by utilizing the models’ predictions to intervene with 

individuals who have a higher risk of developing depression.

Acknowledgments

This work was supported by the National Heart, Lung, and Blood Institute (NIH/NHLBI R01HL141773).

References

[1]. Lipton ZC, Kaie DC, Elkan C, and Wetzel R, “Learning to diagnose with LSTM recurrent neural 
networks,” in 4th International Conference on Learning Representations, ICLR 2016 - 
Conference Track Proceedings, 2016, pp. 1–18.

[2]. Choi E, Schuetz A, Stewart WF, and Sun J, “Using recurrent neural network models for early 
detection of heart failure onset,” J. Am. Med. Informatics Assoc, vol. 24, no. 2, pp. 361–370, 
2017.

[3]. Pham T, Tran T, Phung D, and Venkatesh S, “Predicting healthcare trajectories from medical 
records: A deep learning approach,” J. Biomed. Inform, vol. 69, pp. 218–229, 2017. [PubMed: 
28410981] 

[4]. Menachemi N and Collum TH, “Benefits and drawbacks of electronic health record Systems,” 
Risk Manag. Healthc. Policy, vol. 4, pp. 47–55, 2011. [PubMed: 22312227] 

Meng et al. Page 11

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[5]. Choi E, Xiao C, Stewart W, and Sun J, ‘MiME : Multilevel Medical Embedding of Electronic 
Health Records for Predictive Healthcare,” Adv. Neural Inf. Process. Syst 31 (NIPS 2018), no. 
Nips, 2018.

[6]. Miotto R, Li L, Kidd BA, and Dudley JT, “Deep Patient: An Unsupervised Representation to 
Predict the Future of Patients from the Electronic Health Records,” Sci. Rep, vol. 6, pp. 1–10, 
2016. [PubMed: 28442746] 

[7]. James SL et al., “Global, regional, and national incidence, prevalence, and years lived with 
disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A 
systematic analysis for the Global Burden of Disease Study 2017,” Lancet, vol. 392, no. 10159, 
pp. 1789–1858, 2018. [PubMed: 30496104] 

[8]. Ong MK and Rubenstein LV, “Wishing Upon a STAR*D: The Promise of Ideal Depression Care 
by Primary Care Providers,” Psychiatr. Serv, vol. 60, no. 11, pp. 1460–1462, 2009. [PubMed: 
19880461] 

[9]. Mitchell AJ, Vaze A, Rao S, and Infi R, “Clinical diagnosis of depression in primary care: a meta-
analysis,” Lancet, vol. 374, no. 9690, pp. 609–619, 2009. [PubMed: 19640579] 

[10]. Yarnall KSH, Pollak KI, Østbye T, Krause KM, and Michener JL, “Primary care: Is there enough 
time for prevention?,” Am. J. Public Health, vol. 93, no. 4, pp. 635–641, 2003. [PubMed: 
12660210] 

[11]. Huang SH, LePendu P, V Iyer S, Tai-Seale M, Carrell D, and Shah NH, “Toward personalizing 
treatment for depression: predicting diagnosis and severity,” J. Am. Med. Informatics Assoc, vol. 
21, no. 6, pp. 1069–1075, 11. 2014.

[12]. Jin H, Wu S, and Di Capua P, “Development of a Clinical Forecasting Model to Predict 
Comorbid Depression Among Diabetes Patients and an Application in Depression Screening 
Policy Making,” Prev. Chronic Dis, vol. 12, pp. 1–10, 2015.

[13]. Zhang J, Xiong H, Huang Y, Wu H, Leach K, and Barnes LE, “M-SEQ: Early detection of 
anxiety and depression via temporal Orders of diagnoses in electronic health data,” Proc. - 2015 
IEEE Int. Conf. Big Data, IEEE Big Data 2015, pp. 2569–2577, 2015.

[14]. Choi E, Bahadori MT, Schuetz A, Stewart WF, and Sun J, “Doctor AI: Predicting Clinical Events 
via Recurrent Neural Networks.,” Proc. Mach. Learn. Healthc. 2016, vol. 56, pp. 301–318, 2016.

[15]. Choi E., Bahadori MT, Kulas JA, Schuetz A, Stewart WF, and Sun J, “RETAIN: An Interpretable 
Predictive Model for Healthcare using Reverse Time Attention Mechanism,” Adv. Neural Inf. 
Process. Syst 29 (NIPS 2016), 2016.

[16]. Bai T, Egleston BL, Zhang S, and Vucetic S, “Interpretable representation learning for healthcare 
via capturing disease Progression through time,” Proc. ACMSIGKDD Int. Conf. Knowl. Discov. 
Data Min., pp. 43–51, 2018.

[17]. Suresh H, Hunt N, Johnson A, Celi LA, Szolovits P, and Ghassemi M, “Clinical Intervention 
Prediction and Understanding using Deep Networks,” arXiv:1705.08498v1, pp. 1–16, 2017.

[18]. Gligorijevic D et al., “Deep attention model for triage of emergency department patients,” Proc. 
2018 SIAM Int. Conf. Data Min., pp. 297–305, 2018.

[19]. Kurt Kroenke M; Spitzer Robert L., “The PHQ-9 : A New Depression Measure,” Psychiatr. Ann, 
vol. 32, no. 9, pp. 509–515, 2002.

[20]. Mikolov T, Chen K, Corrado G, and Dean J, “Distributed Representations of Words and Phrases 
and Their Compositionality,” Adv. Neural Inf. Process. Syst. 2013), pp. 3111–3119, 2013.

[21]. Choi E, Bahadori MT, Song L, Stewart WF, and Sun J, “GRAM: Graph-based attention model for 
healthcare representation learning,” in Proceedings of the ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 2017, pp. 787–795.

[22]. Arnold CW, El-Saden S, Bui AAT, and Taira RK, “Clinical case-based retrieval using latent topic 
analysis,” AMIA Annu. Symp. Proc, pp. 26–30, 2010. [PubMed: 21346934] 

[23]. Arnold CW and Speier W, “A topic model of clinical reports,” in 35th international ACM SIGIR 
conference on Research and development in information retrieval, 2012, pp. 1031–1032.

[24]. Arnold CW, Oh A, Chen S, and Speier W, “Evaluating topic model interpretability from a 
primary care physician perspective,” Comput. Methods Programs Biomed, vol. 124, pp. 67–75, 
2015. [PubMed: 26614020] 

Meng et al. Page 12

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[25]. Speier W, Ong M, and Arnold C, “Using phrases and document metadata to improve topic 
modeling of clinical reports,” J. Biomed. Inform, vol. 61, pp. 260–266, 2016. [PubMed: 
27109931] 

[26]. Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, and Lauer MS, “Identifying important risk 
factors for survival in patient with systolic heart failure using random survival forests,” Circ. 
Cardiovasc. Qual. Outcomes, vol. 4, no. 1, pp. 39–45, 2011. [PubMed: 21098782] 

[27]. Limsopatham N, Macdonald C, and Ounis I, “Learning to Combine Representations for Medical 
Records Search,” Proc. 36th Int ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 833–836, 2013.

[28]. Kaiming He JS, Zhang Xiangyu, Ren Shaoqing, “Deep Residual Learning for Image Recognition 
Kaiming,” in IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[29]. Kingma DP and Ba JL, “Adam: A method for stochastic optimization,” in 3rd International 
Conference on Learning Representations, ICLR 2015, 2015, pp. 1–15.

[30]. Guo C, Pleiss G, Sun Y, and Weinberger KQ, “On Calibration of Modern Neural Networks,” in 
34th International Conference on Machine Learning, 2017.

[31]. Meng Y et al., “A Machine Learning Approach to Classifying Self-Reported Health Status in a 
Cohort of Patients with Heart Disease Using Activity Tracker Data,” IEEE J. Biomed. Heal. 
Informatics, vol. 24, no. 3, pp. 878–884, 2020.

[32]. Devlin J, Chang M-W, Lee K, and Toutanova K, “BERT: Pre- training of Deep Bidirectional 
Transformers for Language Understanding,” arXiv:11810.04805, 2018.

Meng et al. Page 13

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Illustration of for EHR data. There are three levels of embedding: patient level, visit level 

and code level. λ denotes the attention weight for each embedding. The full explanation of 

symbols is described in Table II. The red color shows the new components added from 

MiME.
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Fig. 2. 
Illustration of prediction at different time windows in advance of diagnosis of depression. 

The beginning time of EHR is defined by the timestamp of the primary diagnosis.
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Fig. 3. 
Confusion matrix for patients separated by three primary diagnosis at a window of two 

weeks for four models. The numbers are aggregated together with 10-fold cross validation. 

Label 0 means non-depressed while 1 means depressed.
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Fig. 4. 
Attention weights from every EHR data modalities in four prediction windows. Error bars 

denotes the standard deviation. The black dash line is at threshold of 1/5, which indicates 

constant weights in HCET models before.
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TABLE I

Statistics of EHR dataset

# of patients with MI 2,943 (1,280 depressed)

# of patients with breast cancer 5,568 (1,960 depressed)

# of patients with liver cirrhosis 2,218 (772 depressed)

Gender Male (27.46%), Female(72.54%)

Age 68.78 ± 15.46, min: 18, max 98
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TABLE II

Notation used in the formulation of HCET

Notation Definition

D Unique set of ICD-9 codes

C Unique set of CPT codes

M Unique set of medications

X Set of 100 topic features

P Demographic information

λj Attention weight for one data modality, j ∈ (D,C,M,X,P)

et ϵ ℝz Vector representation of summed EHR data at the t-th visit

vt ϵ ℝz Vector representation of t ϵ[1...T] visit EHR data for a patient

hi ϵ ℝz Vector representation of EHR data for patient number i

The dimension of embedding z is the same for associated vectors due to the residual connection used in HCET.
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TABLE III

Statistics of data input for HCET

Total # of patients 10,148 (Depressed:3,747; Non-depressed:6,401)

Total # of visits 294,941

Avg. # of visits 29.06

# of unique codes D:1391, C:6927, M: 4181

# of demographics per visit 2 (Age, Gender)

# of topics per visit 100

Max / Avg. # of ICD-9 codes per visit 69 / 1.74

Max / Avg. # of CPT codes per visit 106 / 3.23

Max / Avg. # of medication per visit 14 / 0.09

Max / Avg. # of topics per visit 30 / 1.87

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 April 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 21

TA
B

L
E

 IV

C
O

M
PA

R
IS

O
N

 O
F 

PR
E

D
IC

T
IO

N
 P

E
R

FO
R

M
A

N
C

E
 F

O
R

 D
IF

FE
R

E
N

T
 M

O
D

E
L

S

P
re

di
ct

io
n 

w
in

do
w

T
w

o 
w

ee
ks

T
hr

ee
 m

on
th

s
Si

x 
m

on
th

s
O

ne
 y

ea
r

M
od

el
s

R
O

C
A

U
C

P
R

A
U

C
R

O
C

A
U

C
P

R
A

U
C

R
O

C
A

U
C

P
R

A
U

C
R

O
C

A
U

C
P

R
A

U
C

L
as

so
 (

co
de

s+
de

m
o+

to
pi

c)
0.

66
 (

0.
01

)
0.

55
 (

0.
02

)
0.

65
 (

0.
02

)
0.

52
 (

0.
03

)
0.

63
 (

0.
02

)
0.

51
 (

0.
03

)
0.

63
 (

0.
02

)
0.

50
 (

0.
03

)

SV
M

 (
co

de
s+

de
m

o+
to

pi
c)

0.
72

 (
0.

02
)

0.
62

 (
0.

03
)

0.
69

 (
0.

01
)

0.
59

 (
0.

02
)

0.
68

 (
0.

01
76

)
0.

57
 (

0.
02

)
0.

68
 (

0.
02

)
0.

57
 (

0.
03

)

M
L

P 
(c

od
es

+
de

m
o+

to
pi

c)
0.

72
 (

0.
01

)
0.

64
 (

0.
01

)
0.

70
 (

0.
02

)
0.

60
 (

0.
02

)
0.

69
 (

0.
02

)
0.

58
 (

0.
02

)
0.

68
 (

0.
02

)
0.

57
 (

0.
02

)

R
F 

(c
od

es
+

de
m

o+
to

pi
c)

0.
76

 (
0.

02
)

0.
67

 (
0.

03
)

0.
73

 (
0.

02
)

0.
62

 (
0.

03
)

0.
70

 (
0.

02
)

0.
59

 (
0.

02
)

0.
69

 (
0.

02
)

0.
58

 (
0.

03
)

V
A

E
+

R
F 

(c
od

es
+

de
m

o+
to

pi
c)

0.
76

 (
0.

02
)

0.
67

 (
0.

02
)

0.
74

 (
0.

01
)

0.
64

 (
0.

02
)

0.
71

 (
0.

03
)

0.
60

 (
0.

02
)

0.
69

 (
0.

01
)

0.
60

 (
0.

02
)

M
iM

E
*  

(c
od

es
)

0.
76

 (
0.

01
)

0.
67

 (
0.

02
)

0.
74

 (
0.

01
)

0.
64

 (
0.

02
)

0.
72

 (
0.

02
)

0.
61

 (
0.

01
)

0.
70

 (
0.

01
)

0.
61

 (
0.

01
)

H
C

E
T

 (
co

de
s+

de
m

o)
0.

76
 (

0.
01

)
0.

68
 (

0.
01

)
0.

75
 (

0.
02

)
0.

65
 (

0.
02

)
0.

73
 (

0.
02

)
0.

62
 (

0.
01

)
0.

71
 (

0.
01

)
0.

61
 (

0.
01

)

H
C

E
T

 (
co

de
s+

de
m

o+
to

pi
c)

0.
81

 †
 (

0.
01

)
0.

73
 †

 (
0.

02
)

0.
80

 †
 (

0.
02

)
0.

71
 †

 (
0.

02
)

0.
78

 †
 (

0.
01

)
0.

68
 †

 (
0.

02
)

0.
75

 †
 (

0.
01

)
0.

66
 †

 (
0.

02
)

H
C

E
T

 +
 a

tte
nt

io
n 

(c
od

es
+

de
m

o+
to

pi
c)

0.
81

 (
0.

01
)

0.
73

 (
0.

01
)

0.
80

 (
0.

01
)

0.
70

 (
0.

02
)

0.
79

**
 (

0.
01

)
0.

69
 (

0.
01

)
0.

78
**

 (
0.

01
)

0.
67

 (
0.

01
)

C
od

es
 d

en
ot

e 
da

ta
 f

ro
m

 I
C

D
-9

, C
PT

, a
nd

 m
ed

ic
at

io
n 

lis
ts

, w
hi

le
 d

em
o 

st
an

ds
 f

or
 d

em
og

ra
ph

ic
 in

fo
rm

at
io

n.
 V

al
ue

s 
in

 p
ar

en
th

es
is

 r
ef

er
 to

 s
ta

nd
ar

d 
de

vi
at

io
ns

 a
cr

os
s 

ra
nd

om
iz

at
io

ns
 a

nd
 b

ol
d 

va
lu

es
 d

en
ot

es
 

th
e 

hi
gh

es
t i

n 
ea

ch
 c

ol
um

n.

† in
di

ca
te

s 
th

e 
va

lu
e 

is
 s

ig
ni

fi
ca

nt
ly

 b
et

te
r 

th
an

 M
iM

E

* (p
<

0.
05

) 
w

hi
le

**
de

no
te

s 
th

e 
va

lu
e 

is
 s

ig
ni

fi
ca

nt
ly

 b
et

te
r 

th
an

 n
o 

at
te

nt
io

n 
(p

<
0.

05
).

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 April 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 22

TA
B

L
E

 V

C
O

M
PA

R
IS

O
N

 O
F 

PR
E

D
IC

T
IO

N
 P

E
R

FO
R

M
A

N
C

E
 F

O
R

 T
H

R
E

E
 P

R
IM

A
R

Y
 D

IA
G

N
O

SI
S

P
re

di
ct

io
n

w
in

do
w

T
w

o 
w

ee
ks

O
ne

 y
ea

r

D
is

ea
se

s
B

re
as

t 
ca

nc
er

M
I

L
iv

er
 c

ir
rh

os
is

B
re

as
t 

ca
nc

er
M

I
L

iv
er

 c
ir

rh
os

is

M
od

el
s

R
O

C
 A

U
C

PR
 A

U
C

R
O

C
 A

U
C

PR
 A

U
C

R
O

C
 A

U
C

PR
 A

U
C

R
O

C
 A

U
C

PR
 A

U
C

R
O

C
 A

U
C

PR
 A

U
C

R
O

C
 A

U
C

PR
 A

U
C

L
as

so
0.

67
 (

0.
02

)
0.

54
(0

.0
3)

0.
66

 (
0.

02
)

0.
62

 (
0.

03
)

0.
65

 (
0.

02
)

0.
55

 (
0.

02
)

0.
64

 (
0.

03
)

0.
49

 (
0.

03
)

0.
62

 (
0.

02
)

0.
56

 (
0.

04
)

0.
62

 (
0.

04
)

0.
53

 (
0.

02
)

SV
M

0.
72

 (
0.

02
)

0.
61

 (
0.

03
)

0.
71

 (
0.

02
)

0.
68

 (
0.

03
)

0.
71

 (
0.

02
)

0.
60

 (
0.

03
)

0.
68

 (
0.

03
)

0.
56

 (
0.

03
)

0.
67

 (
0.

02
)

0.
62

 (
0.

03
)

0.
66

 (
0.

02
)

0.
55

 (
0.

02
)

M
L

P
0.

74
 (

0.
02

)
0.

63
 (

0.
02

)
0.

72
 (

0.
02

)
0.

69
 (

0.
02

)
0.

72
 (

0.
02

)
0.

62
 (

0.
02

)
0.

69
 (

0.
01

)
0.

56
 (

0.
02

)
0.

66
 (

0.
01

)
0.

62
 (

0.
02

)
0.

66
 (

0.
02

)
0.

56
 (

0.
02

)

R
F

0.
76

 (
0.

02
)

0.
66

 (
0.

03
)

0.
74

 (
0.

03
)

0.
71

 (
0.

02
)

0.
75

 (
0.

03
)

0.
65

 (
0.

03
)

0.
70

 (
0.

03
)

0.
57

 (
0.

03
)

0.
67

 (
0.

02
)

0.
63

 (
0.

02
)

0.
67

 (
0.

01
)

0.
57

 (
0.

03
)

V
A

E
+

R
F

0.
76

 (
0.

02
)

0.
67

 (
0.

02
)

0.
75

 (
0.

02
)

0.
71

 (
0.

01
)

0.
75

 (
0.

02
)

0.
65

 (
0.

02
)

0.
70

 (
0.

02
)

0.
58

 (
0.

03
)

0.
68

 (
0.

01
)

0.
63

 (
0.

01
)

0.
68

 (
0.

02
)

0.
58

 (
0.

02
)

M
iM

E
*

0.
77

 (
0.

01
)

0.
67

 (
0.

02
)

0.
75

 (
0.

01
)

0.
70

 (
0.

02
)

0.
76

 (
0.

02
)

0.
67

 (
0.

01
)

0.
71

 (
0.

02
)

0.
61

 (
0.

01
)

0.
69

 (
0.

02
)

0.
64

 (
0.

01
)

0.
70

 (
0.

01
)

0.
61

 (
0.

02
)

H
C

E
T

+
 a

tte
nt

io
n

0.
81

 (
0.

01
)

0.
73

 (
0.

01
)

0.
79

 (
0.

01
)

0.
77

 (
0.

01
)

0.
80

 (
0.

01
)

0.
72

 (
0.

01
)

0.
78

 (
0.

01
)

0.
67

 (
0.

01
)

0.
77

 (
0.

01
)

0.
71

 (
0.

01
)

0.
77

 (
0.

01
)

0.
66

 (
0.

01
)

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 April 06.


	Abstract
	Introduction
	Related Work
	Data Description
	Identifying Diagnosis of Depression

	Methods
	Topic Modeling of Clinical Notes
	Baseline Models
	Lasso
	SVM
	MLP Multilayer perceptron (MLP)
	RF
	VAE+RF
	MiME*

	Definition of HCET
	Predicting Depression at Different Decision Points
	Ablation study

	Training Details

	Results
	Comparison of Performance in Depression Prediction
	Model’s performance for each primary diagnosis
	Interpretation of Feature Importance from Attention Weights

	Discussion
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3
	Fig. 4
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V



