
Lawrence Berkeley National Laboratory
LBL Publications

Title
Database Management Software at LBL: An Introduction and Comparative Assessment

Permalink
https://escholarship.org/uc/item/935158ft

Authors
McCarthy, J L
Firestone, R
Gey, F
et al.

Publication Date
1990-02-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/935158ft
https://escholarship.org/uc/item/935158ft#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

. ,1
....

Lie -t;o5
LBID-1585

ITl1I Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

Database Management Software at LBL:
An Introduction and Comparative Assessment

J.L. McCarthy, R. Firestone, F. Gey,
C. Madison, J. Olivares, and A. Spurlock

February 1990

For Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

lJj
I-'

0..
!.Cl

tt!
51

r
1-'.

er-
-t .'
!ll ..,.

J

-< .

r
lJj
r
!-!

n t:!
0 i
U

,...,.
-< tti

.....

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

.. 1>

LBID-1585

Database Management Software at LBL:
An Introduction and Comparative Assessment

Report of the ad hoc
Data Management Resource Group

John L. McCarthy (Chair), Computer Science Research & Development

Richard Firestone, Table of Isotopes Project

Fred Gey, Computer Science Research & Development

Claudia Madison, Workstation Group

Jose Olivares, Library

Arlene Spurlock, Applications Group

Information and Computing Sciences Division
February, 1990

Prepared for the U.S. Department of Energy under Contract DE-AC03-76FOOO98

1. Introduction ... 1
1.1. Organization of This Report .. 1
1.2. Background ... 1
1.3. Where to Go for More Help .. 1

2. Basic Data Management Concepts ... 2
2.1. Records and Fields, Types and Instances ... 2
2.2. Relational and Other Data Models ... 2
2.3. Query Languages and User Interfaces ... 3
2.4. Comparing Data Management Software ... 3

3. User Application Requirements .. 4
3.1. Common Environments and Costs .. 4
3.2. Data Sharing and Portability ... 4
3.3. Users and General Types of Use .. 5
3.4. Data Characteristics .. 5
3.5. Data Volumes and Operations ... 6
3.6. High Level Tools .. 6
3.7. Data Security and Privacy .. 7
3.8. Data Integrity and Quality ControL ... 7
3.9. Special Considerations .. 7
3.10 Requirements vs. System Characteristics ... 7

4. System Characteristics .. 8
4.1. Data Access .. 8
4.2. Data Definition .. 8
4.3. Languages and Sublanguages .. 9
4.4. Operational Issues .. 10
4.5. Database Administration .. 11
4.6. Cost and Support Issues .. 11

5. Data Management Systems at LBL .. 12
5.1. Datatrieve ... 12
5.2. dBase ... 13
5.3. FOCUS .. 13
5.4. Oracle .. 14
5.5. SPIRES ... 14
5.6. 4th Dimension ... 15
5.7. Other Data Management Software .. 15

6. Glossary of Generic and System-specific Database Terms ... 17

7. Further Reading ... 26
7.1. Brief Introductions .. 26
7.2. Full Length Texts .. 26
7.3. Journals and Series .. 27
7.4. Data Characterization & Logical Design ... 27
7.5. Product Comparisons ... 28

II 7.6. System-specific References .. 29
7.7. Previous LBL Reports on Database Management Systems 29

..

•

Database Management Software at LBL

1. Introduction
The purpose of this report is to assist people
who want to organize their data and are
considering various database management
system (DBMS) options. It is an introductory
document which grew out of discussions among
people working with data management systems
at Lawrence Berkeley Laboratory.

Data management is a rapidly changing field.
During the past decade, the relational data
model has become predominant over prior
network and hierarchical models, but it may in
turn give way to object-oriented models in the
future. Old products are continually being
upgraded and new products come on the market
every year. Many specific details about
individual DBMS products in this report soon
will be obsolete, but we hope that its general
points will be of continuing use.

1.1. Organization of This Report

The remainder of this chapter outlines the rest
of the report, describes the committee that
produced it, and suggests where to go for more
help. Chapter 2 introduces basic data
management concepts and briefly discusses some
of the issues of comparing data management
software. Chapter 3 reviews why different
data management problems require different
database software capabilities. Chapter 4
outlines different data management system
features that address diverse user
requirements. Chapter 5 gives a brief overview
of database software currently running on LBL
computers (from mainframes to microcomputers)
and compares their major strengths and
weaknesses. A selected bibliography suggests
further reading on different aspects of data
management, and a short glossary of DBMS
terminology gives cross-references for variant
terminology used by major LBL database
systems that our group studied.

Each chapter is relatively self-contained.
They need not be read sequentially, though
someone unfamiliar with data management
will find it easier to proceed in order. Those
who simply want a brief overview of current
data management systems at LBL, for example,
can proceed immediately to chapter 5.

Two unpublished documents (available
separately) provide further information for
those interested in more details. 1988 LBL

2116/90 version

Introduction

DBMS Comparisons evaluates selected systems
in several different ways, including tables
comparing detailed features and command
languages, how each DBMS was used to carry a
specified set of tasks for a small test dataset,
and detailed listings of actual code used to do
example problems. DBMS Vendors contains
contact names, addresses, etc., for information
on individual systems.

1.2. Background

The Data Management Resource Group (DMRG)
began meeting in July, 1987, to facilitate
exchange of information among people working
with different database management systems
at LBL. Those who were able to participate on
a regular basis above and beyond their normal
responsibilities are listed as co-authors

Other individuals who participated on the
committee at earlier stages included Allan
Konrad from the Computing and
Communication Resources Group, Gary Wagman
from the Particle Data Group, and Bob Leedy
from the SSC Central Design Group.

Drafting of this report began in 1988, but was
not completed for over a year due to demands of
other projects. In retrospect, that may have
been a blessing in disguise, because it gave time
for the contents to "season" Given the longer
time perspective, we have tried to filter and
reorganize our results in a way that focuses on
their less transient aspects.

1.3. Where to Go for More Help

This report is intended to provide a starting
point for people with database needs at LBL. It
certainly does not provide enough information
in itself to select a suitable DBMS, but we hope
that it will help facilitate that process for
others. For further information, there is a
selected, annotated bibliography at the end of
this report that spans the range from brief
introductions to computer science texts and
specialized technical product comparisons .
Readers should also consult the growing cadre
of people at LBL familiar with various aspects
of database management and call DBMS
vendors (list available separately) to get up­
to-date, system-specific information.

pagel

Introduction

2. Basic Data Management Concepts
People use a wide variety of software tools to
help organize and manage computer-readable
information, from simple name and address
lists and bibliographic references to laboratory
equipment inventories and experimental
results. Such tools range from simple text
editors and spreadsheet programs on personal
computers to sophisticated database
management programs that run on large, multi­
user mainframes. Some are specialized for
particular types of information, such as
bibliographic citations or mechanical design
drawings, while others are more general in
nature.

In order to choose the right tool(s) for a
particular set of applications, it is helpful to
be acquainted with basic terminology and
concepts that are common to most types of data
management software. Unfortunately,
database terminology is still far from
standardized. Various authors and database
vendors may use several different terms for the
same thing, and sometimes the same term for
different things. The glossary at the end of this
report attempts to clarify some of the most
common terms, along with particular
terminology used by selected database
management packages currently in use at LBL.
The next section briefly reviews some of the
fundamentals in terms of a simple example.

2.1. Records and fields, Types and Instances

Consider a simple address file. A typical
address file consists of individual records,
each of which contains several different fields
(sometimes called attributes) for different
types of information such as name, title,
organiZation, street address, city, state,
country, postal code, and telephone number(s).
'Name" is used here to indicate a generic type
of field, while John Jones would be a particular
instance or value of that field. Domains are
sets of allowable values which may be
associated with one or more attributes (e.g.,
positive integers, integers 1 through 12 for
months of the year, "M" and "F' for sex codes,
and soon).

Records can also have types and instances, such
as a bibliographic record type and a specific
instance for The Handbook of Chemistry.

page 2

Database Management Software at LBL

Database records usually pertain to real world
entities, and fields to particular attributes of
those entities. Some databases pertain to a
single type of entity (e.g., addresses), while
others contain different attributes for different
types of entities.

Data management tools become even more
important when one needs to maintain related
information on several different types of
entities. If "organization" were a field in an
address record, for example, the organization
name could be used to automatically link the
address information to an "organization" record
type, which might include further information
(fields) on particular organizations.
Information about the organization could thus
be maintained independently, rather than
stored and maintained redundantly with the
address record for each individual.

2.2. Relational and Other Data Models

During the past decade, the relational data
model has evolved from a mathematical,
research concept to the new conventional
wisdom. Nearly every data management
vendor now claims that its system is
"relationaL" In the trade press, the term
"relational" is often used to characterize any
system that represents data in logically
related "tables," and that links related
information across multiple tables. Computer
scientists tend to apply a more rigorous and
restrictive standard to use of the term. [Gey and
Wong, 1986] summarizes a series of criteria
proposed by E.P. Codd, who originally
developed the relational data model [Codd
1970].

The standard relational data model requires
that all information be organized as single
values (cells) within si~ple relations -- tables
whose columns represent attributes (fields) and
whose tuples (rows) represent individual
record instances. Relational systems can deal
with two or more tables Simultaneously in
retrieving and updating data.

While relational tables are a natural way to
represent many types of information, some
systems support direct representation of more
complex data structures, such as hierarchies
and networks. CODASYL [O'Connell, 1975] is a
network database standard that preceded the
relational model. Sometimes database

2116/90 10:29 AM version

.'

..

Database Management Software at LBL

designers find it useful to begin with a richer
logical data model -- e.g., entity-relationship
diagrams -- even though implementation may
be carried out on a relational system (for
further discussion, see [Estvanik, 1987],
[Gillenson, 1988], and [Martin, 1977]). Object­
oriented data models and data management
systems are receiving increased attention from
both researchers and commercial vendors
because they promise a richer variety of
semantic representation, induding inheritance,
aggregation, and incorporation of active
operations (e.g., "raise" salary) as part of the
database environment. Some systems may
permit more than one logical view of the data -
- e.g., a relational interface as well as a
CODSYL interface.

2.3. Query Languages and User Interfaces

Non-procedural languages (sometimes called
4th Generation Languages or 4GL's) specify
what information is to be drawn from a
database, rather than the specific procedures
used to do so. The DBMS interprets 4GL
commands and turns them into a series of
procedures that will effect the desired result.
Other user interfaces include menus and forms
that prompt users to fill in the type of
information they want (e.g., Query By
Example, or QBE).

SQL, the Structured Query Language developed
at IBM Research, is a non-procedural language
for creating, accessing, modifying, and
managing data stored in a relational system
[Date, 1987; Finkelstein, 1987]. SQL may be
used directly by users or invoked by calling
sequences from within an application program.
SQL has become an international standard; a
standing committee of the International
Standards Organization (ISO) is responsible
for its continued development and future
modifications. As with standard compiler
languages, such as FORTRAN, many vendors
have developed extensions to the base-level
SQL standard. Some have argued that SQL's
importance as a standard for data management
has been exaggerated because the bulk of most
implementations usually involves non­
standard extensions such as forms specification,
report definitions, and so on [Stonebraker,
1988].

2116/90 version

Introduction

2.4. Comparing Data Management Software

Comparison of data management software is
not easy. There are many aspects to consider
which have differing importance depending on
particulars of applications and data. A specific
DBMS may be optimal for one project but
terrible for another. Some systems are fast and
highly versatile, but may be difficult to learn
or use. Obtaining a general purpose system for a
general user community usually requires
compromises on a variety of issues.

Ideally, it is best to choose database
management software to fit application needs,
and then determine hardware necessary to
support the software and applica~ons, uther
than vice-versa. In many cases, however, the
hardware and operating system environments
may already be "fixed." One or more database
systems may already be available.

The selection process can begin by ennumerating
which characteristics are mandatory (e.g.,
hardware environment) and the relative
importance of other characteristics -- in light
of specific applications requirements. Each
organization and user will have somewhat
different "weights" ranking the relative
importance of different characteristics. Most
software selection methodologies recommend
explicit numeric representation of such weights
and rankings prior to review and analysis of
specific systems.

Comparative evaluations require considerable
time, effort, and resources. Comparative
analyses available in the trade press (e.g.,
[Finkelstein, 1988]) or from specialized
publications (e.g., [DataPro Research,
Software Digest]), can provide a useful starting
point. Talking to users who are already running
similar applications using a DBMS can be very
enlightening. But it is always necessary to
tailor and weigh such information in light of
local requirements. The next chapter outlines
some of the major kinds of local requirements
that deserve careful consideration.

page 3

Application Requirements

3. User Application Requirements
Distinct kinds of data management problems
have varying requirements and different
solutions. Software that will match your needs
depends on the kinds of data you are dealing
with, and how you wish to organize, retrieve,
and manipulate it. Some collections of data may
not require a full-blown database management
system -- sometimes a simple text or spreadsheet
file may suffice. In other cases, the type or
amount of data may exceed current data
management system capabilities. Potential
DBMS users need to assess their application
needs and match those against available
software options.

What kinds of situations can benefit from a
database management system? Some of the
more common ones are as follows:

You have an amount of data that is unwieldy to use
without something to manage it -- in terms of the
number of objects (rows), attributes (fields), tables
(record-types), or relationships;

Your data is changed regularly, perhaps potentially
by many people at once;

You need software to help collect information and
insure its validity;

You need access to objects of interest based on
different attributes (e.g., author, title, and subject
term indexes for a bibliographic database);

You need to display a set of information in a variety
of different ways;

You need to enforce security constraints on access to
information by different types of users;

You need to keep track of how your data is being used
or changed;

In the future, you may want to change the ways in
which data are collected and stored without having
to change application programs that use the data.

Once you have decided that a data base
management system may help, you can narrow
the choices further by explicitly specifying
your requirements. The major types of
requirements discussed below are as follows:

• Common Environments and Costs

• Data Sharing and Portability

• Users and General Types of Use

• Data Characteristics

page 4

Database Management Software at LBL

• Data Volumes and Operations

• Data Security and Privacy

• Information Integrity and Quality Control

• Special Considerations

3.1. Common Environments and Costs

Often a DBMS decision is constrained by
existing hardware and software. Do you have
to run on existing hardware and operating
systems? In many cases a computer hardware
vendor will supply a DBMS which is closely
integrated with its own hardware at
Significant savings over products from
independent software vendors. Yet relying on a
hardware vendor's DBMS ties users to the
vendor for the indefinite future, whereas
independent software vendors often support
versions which run on different types of
computers. Are there any DBMS's already
running on machines to which you have access?
Using an existing DBMS can save significantly
in terms of acquisition, development of
expertise, shared costs, and so on.

DBMS software varies dramatically in cost,
from $100 on a microcomputer to $30,000 on a
shared mini-computer to $250,000 for a large
mainframe system. DBMS's also consume
significant computer resources (cpu cycles,
storage space, I/O channels, etc.). What are
your budgetary constraints? Can you share costs
(and control) with other projects?

3.2. Data Sharing and Portability

Sharability of data files is often more
important than other considerations of
functional capabilities. Do you have a single
application, or will you need to integrate
several different applications? Will the
application need to import files from other
applications or software? Will there be a
requirement for "bulk load" of large data files
which are already being used locally or
elsewhere? What kind of data export
facilities are needed? Standard data base
formats (e.g., DBase)? spreadsheet formats?
word processor formats? DBMS tools to
simplify import and export of data vary
widely in efficiency and ease of use.

Networked environments with heterogeneous
hardware pose other challenges and
opportunities for database sharing. Databases

2/16/90 version

' ..

Database Management Software at LBL

may reside on a common file-server, accessed by
client processes on remote machines.
Alternatively, a local client process may run in
conjunction with X-Windows servers on remote
machines -- in order to provide a common
interface as well as common data. Can the
candidate DBMS's run as remote servers? Will
their interface(s) run under X-windows?

Will you need to move applications from one
machine to another? If the application has an
expected lifetime of more than a few years, the
answer is probably yes. Applications written
entirely in standard or vendor-specific
languages (sometimes known as Fourth
Generation Languages or 4GLs) such as SQL or
FOCUS may migrate more easily to equivalent
software on other machines than applications
written in third generation compiled languages
(e.g. Cobol, Fortran) with direct calls to DBMS
library subroutines. Note however, that except
for SQL, DBMS users will remain locked into a
particular DBMS vendor in using a 4GL. Since
many vendors have extended SQL in
idiosyncratic ways, since there are as yet no
standards for embedded SQL, and since there
are no standards for other important aspects
such as form and report definition languages,
portability across DBMS's is still difficult at
best.

3.3. Users and General Types of Use

Some applications access database software
via intermediate programs (e.g., data analysis
programs), while others directly utilize DBMS
user interfaces and tools such as query menus,
report generators, and so on. Will the DBMS be
used directly by people, by computer programs
(written in C, Fortran, Cobol, Pascal, PL/I,
etc.), or both? Database systems differ in terms
of which programming languages they support,
whether DBMS calls from the programming
language are compiled or turned into
intermediate code by a preprocessor, and
compatibility with programming tools such as
debuggers.

To what extent does data need to be shared?
Data sharing may be accomplished in a
variety of ways. Multiple users can share a
single central database via networks or
telephone dial-up (distributed use). Some
database systems have "front-ends" which run
on different types of hardware. An increasing
number of data management systems also are

2116/90 version

Application Requirements

beginning to support distributed databases -- in
which different parts of the data reside on
different machines, sometimes even on
different types of hardware (distributed
data).

Will more than one user need simultaneous
access to the data? Can the multi-access be
read-only or is there a requirement for two or
more people modifying or updating the
database at the same time? Single user and
read-only access can be satisfied by
microcomputer systems or relatively
unsophisticated multi-file management
systems (such as Datatrieve on V AX
computers). True multi-user concurrent update
capability calls for sophisticated system
security, data integrity and recovery facilities.

Will users be inexperienced or sophisticated?
Some users are willing to put up with a longer
learning curve to get more power and
flexibility.

3.4. Data Characteristics

Most DBMS's support physical storage of
different data types, including fixed length
characters, integers, and floating point
numbers. Some support special data types such
as dates, variable length text, and bitmaps
(e.g., digitized pictures). A few are beginning to
permit "user-defined" data types. Some store
data in variable length "tagged" fields, while
others store data in fixed length fields whose
types and lengths must be pre-specified
separately in a system dictionary or schema.
The former can save storage space if one has
highly irregular data -- e.g., variable length
text entries or sparse data values -- and they
usually permit addition of new data fields
without reloading data. The latter can save
space and access time if data values are more
uniform, but they may prohibit addition of new
data fields without reloading data.

What kind of data is being stored? Is it
scientific data (double precision reals, vectors,
matrices)? Is it variable length text
(documents and bibliographic records)? Is it
multiply occurring? (e.g., bibliographic
citations frequently include multiple authors)
Do you need to handle dates, personal names, or
currency in special formats? Do you need to
store, retrieve, and manipulate graphic images
(e.g. digitized drawings or photographs) ?

page 5

Application Requirements

What about sounds, speech segments, or other
'Multi-media' objects? Some systems are well­
suited to handle text and personal names,
while others are not. Some are stronger with
respect to numeric data (e.g., built-in
trigonometric functions, scientific notation,
etc.). A few have. special facilities for
digitized images or sound.

Although a clever database designer can
usually figure out ways to represent a
particular set of data within the constraints of
a given logical data model (relational,
hierarchical, network, or object-oriented),
mapping between a DBMS based on a
particular logical data model and a specific
application that does not conform easily to
that model may be difficult or inefficient at
best. Do you need to represent information about
many different types of entities and the
relationships between them? Is the data quite
regular (e.g., many entities with the same
attributes) or sparse and irregular? Do the
entity types, attributes, and relationships
themselves change frequently over time? Do
you need to edit, manipulate, and display
complex objects?

Most DBMSs have length restrictions on the
size and number of data elements that can be
used within a single file. Some have a
maximum size for text fields (e.g. 256
characters). If an application calls for data
structures which exceed these limits, artificial
restructuring of the database may be necessary
to make the application work with the chosen
DBMS product. How many data base files (or
relations) will be needed? How many data
elements or fields do you expect to have in your
data base? What size are they? Is there a need
for unlimited length text descriptions?

3.5. Data Volumes and Operations

Some large applications may exceed DBMS
limits in terms of data volumes and operational
demands.How many files will the application
require to be open and simultaneously
accessible for linkage of data? How many
records (tuples)? How many values in all files
and records? Many DBMS products place a
strict limit on the number of files that can be
manipulated simultaneously by an application.
Others limit the total number of records in a
file. Still others require that you pre-allocate
disk storage space for the total expected

page 6

Database Management Software at LBL

amount of data to be ultimately stored in the
database. Obtaining estimates of the volume
of storage necessary can also yield some idea of
the disk storage costs which the DBMS
application will incur.

Data volatility impacts both storage and
DBMS update facilities. Archival data can be
placed upon lower cost storage media, while
very frequently updated data may require
extra storage for maintenance of backups of
application critical data to assure continuous
operation with minimal disruption in the event
of computer hardware failure. What is the
volume and frequency of changes to the data?
Are these changes updates or modifications to
the database (such as updating a person's
phone number), or are they merely additions to
the database (e.g. adding a new citation to a
bibliography)?

Some DBMSs are optimized for rapid access to
single .records by multiple simultaneous users
(airline reservation systems are an extreme
example). Other DBMS's bog down if even a
few users issue simultaneous multi-record-type
queries. Some include query optimizersHow
often will the database be queried? by how
many simultaneous users? How rapidly
should the DBMS respond to a query? Will the
DBMS be used for real time data acquisition or
user interface control? If so, speed and .
effiCiency are prime considerations.

3.6. High Level Tools

Mature database systems usually include a
variety of high level tools for non-programmer
users, such as query and report generation
facilities, which can differ substantially in
terms of power and ease of use.

Some DBMS's include query interfaces other
than SQL or other command languages. A
Query-By-Example (QBE)-style interface, for
example, lets users edit templates containing
example attributes for objects of interest. Some
systems (particularly microcomputer DBMSs)
include business graphics as a reporting and
display option. Others facilitate linkages to
other analysis and display software (e.g.
spreadsheets, drawing programs, statistical
packages). Do you expect to make ad-hoc
queries on the data? Will they involve
arithmetic or higher math functions? Do
potential users want a command, menu, or

2/16/90 version

Database Management Software at LBL

graphical interface? Do you need to make
standard formatted reports of the data
(possibly including counts and subtotals)? Do
you want graphic displays (e.g. bar charts/pie
graphs)?

Some DBMSs have extensive and elaborate
tools to ease the job of building a complex
application, while others are very limited in
their applications development repertoire.
How many data entry and inquiry screens does
the application expect to need? How are these
screens ordered hierarchically? Will the
screens require simultaneous access to multiple
data files (e.g. personnel file information
combined with project scheduling information)?

3.7. Data Security and Privacy

Multi-user database systems provide facilities
to specify different types of privileges (e.g.,
read, write, delete) for different users with
regard to different databases. Some support
such facilities at various levels of granularity,
from entire databases down to individual data
element values. Is the data sensitive? Does it
need some privacy protection from
unauthorized usage? Do you need encryption,
password, account security? Is the security
required at the file, record or element/field
level ?

3.8. Data Integrity and Quality Control

One of the principle reasons for use of database
management systems is to improve data quality
and integrity. Four major types of integrity
which some DBMS's can help enforce are
illustrated by the following four examples:

1. Primary-key Integrity. A user creates a new
employee record but fails to put in the employee's
social security number, which is the primary
identifier for locating that employee's record.

2. , Referential Integrity. A user assigns that
employee to a non-existent department number
(either through error or omission).

3. Domain integrity. The user types in the number 22
for the month-of-hire for that employee.

4. User-defined or Business Integrity. The
department to which the employee is hired into has
a personnel ceiling which will be exceeded if the
employee is assigned to that department.

In addition there are other areas of data
quality which an application may require
which go beyond the above examples of

2/16/90 version

Application Requirements

fundamental DBMS integrity. For example,
one may wish to attach footnotes to particular
data values which give some description of
their derivation and the experimental
conditions under which they were collected.
Different versions of the value may be stored as
the experimental apparatus becomes more
accurate. Does the DBMS application need
extensive input validation facilities for
quality control? Will an audit trail of data
value changes be required? Is there a need for
authority tables of permissible data values for
certain domains?

3.9. Special Considerations

Other factors may also need to be considered in
describing your own particular requirements.
For example, do other organizations with
which you collaborate already use a particular
DBMS? Using a common DBMS makes it much
easier to share data and applications. Is it
difficult to find and retain programmers? The
more popular the database system, the more
likely you will be able to find programmers
who already are familiar with it.

3.10 Requirements vs. System Characteristics

Once you have prepared a list of your own
requirements, answering questions such as those
outlined above, you can evaluate specific
functionality of different data management
systems in terms of your own particular needs.
The next chapter outlines a general set of
functional features that can provide a starting
point for such evaluations.

If you are planning a major application or
expensive DBMS acquisition, you may want to
use a formal methodology, such as outlined in
[Quinn, 1980]. Such methodologies typically
involve assigning points or mandatory status to
each requirement, and then evaluating each
DBMS in detail, dropping those that fail to
meet all mandatory requirements and assigning
some fraction of the points in each category for
corresponding features of each individual
system being considered.

page 7

System Characteristics

4. System Characteristics
The outline below lists major types of system
characteristics which may be important in
matching application requirements to s~if.ic
database systems. Groupings of characterIstics
into more general categories are necessarily .
somewhat arbitrary, since many
characteristics pertain to more than one
category (e.g., data representation and
input/ output). .

The categories shown here are not exhaustive;
rather they are intended to give the reader a
starting point for further consideration. More
comprehensive and up-to-date check lists of
this kind can be found in special reports on
DBMS features, such as [Datapro], [Auerbach],
and [Software Digest]. An unpublished 1988
LBL System Comparisons document (available
separately) includes a detailed features table
based on this outline for selected database
software.

Note that many database management system
vendors offer separately priced modules for
specialized functions such as individual
program language interfaces, report generation,
full screen forms input, and so on.

4.1. DATA ACCESS

Integration and network capabilities
client-server facilities
linkage to external software
network compatibility (which ones?)
distributed capabilities

partitioned schemas
distributed tables
distributed query optimization

Indexing and access methods
hashing/ randomization/key transformation
B-tree indexes
linked lists
automatic pointer creation & updating
create new index without reloading
pass different elements, same record
pass elements from different records
pass pointer from record to record
duplicate index keys
automatic re-indexing on update
composite key indexes

pageS

Database Managemen

Interactive I/O
Display commands

Standard (native) I/O format
Setable alternative formats
Default element list selection

Relationships to local editor(s)
Screen input forms definition
Menu structure and flow control specs

Batch I/O and import/export
Load initial database
Unload/reload for restructuring
Backup to tape
Specific import/ export formats

Custom format definition language
Procedural or non-procedural
Structured standard record in DBMS
Definable elements (components)
Control structures

if, then, else; while; exit/return
Nesting of formats (frames, windows)

4.2. DATA DEFINITION

Data types and sizes
Integer
Aoating point
Character string
Date
Dollar
Packed decimal
Logical <True/False)
Binary (bitstring, bit map)
Executable (stored procedures)
Computed/Redefined/Virtual
User-defined types (e.g., graphic)

Data structures within records
Variable length elements
Multiple occurrences of element
Simple hierarchy repeating groups
Multiple (branching) repeating groups

Data structures between records
Automatic validation and update
Simple hierarchy (no branching)
Multiple (branching) hierarchies
Network relationships
Records of same record type (plex)
Many to many relationships .
Relational join of different record types

Schema definition
Active, integrated role in DBMS
Controls data definition, validation
Is itself a standard DBMS record
Updatable on-line
Compiled by utility to produce system tables
Separate record/dictionary for each database
Changes do not require reload

2116/90 version

...

Database Management Software at LBL

Data dictionary components
All levels (database, record, element, etc.)

Name
Aliases/synonyms
Comments, notes, etc.
Security and access control
Creation/update date(s)

Data element (field or item) level
Internal structure (nested elements)
Occurrence (optional, fixed, variable)
Length
Input validation checks
Table look-up validation
Input conversion functions, coding
Output conversion functions
Output format specification(s)
Default row/column headers
Missing data specifications

Index (pointer linkage) level, if any
Elements being indexed
Target record to receive pointer
Record pointer refers to
Other element values to carry

Data Validation and Integrity
Specified in schema or only in entry screens?
Element level checks
Inter-element checks-same record
Inter-record checks
User-specified subroutines

In database language
Exit to compiler language(s)

Support for Views
Multi-record
Selected, redefined elements
User definable

4.3. LANGUAGES AND SUBLANGUAGES

Programming (host) language interface(s)
Languages supported
Embedded query language precompiler
Via regular call statements
Locking control
Exits to programming language

High level command language(s)
SQLsupport

ISO standard SQL
Embedded SQL
SQL extensions

General and informational features
setable message modes
setable defaults'
show command for parameters
help/explain facility
search history display
browse records, indexes sequentially
set global search modifier(s)

2116/90 version

System Characteristics

Query/search commands
Selection features

multiple selection
recursive selection
case sensitive/insensitive searching
non-indexed fields
global search & actions

using expressions
delete
merge to other tables

Data types covered
numeric
string
date
time

String content operators
prefix
suffix
word
string
having
mask
with
partial match
wild card
phonetic

Relational operators
=, -=, >, >=, <, <=

Range operators
before
after
between .. and
from .. to
boolean logic on multiple qualifiers
parentheses for explicit precedence
sequential series of search operations on

successive lines
Saving and manipulation of search result

Save result of search commands
On-line sort of search result

maximum sort levels
maximum concurrent sort levels
simultaneous ascending/ descending
sort on virtual! calculated fields

Set operations (boolean save, combine)
Create arbitrary sets of records
Manipulations

comparisons (numeric, date, time, string)
arithmetic (numeric, date, time)

Data modification commands
Batch and on-line
Add, remove, update, merge

Stored procedural or macro control language
Sequences of query language commands
If, go to, etc. control structures
Ability to capture and parse user input
Batch processes

page 9

System Characteristics

Report writing language (see also 110)
Formatting

headers & footers, etc.
left, right, center alignment
automatic page numbering
current date, day, time
automatic field labels from schema
hierarchical sort key suppression
page breaks
user-specified field size and placement
flexible field formatting

money
embedded commas
common date formats

Reports to preprinted custom forms
Aggregation

counts, subtotals
average, standard deviation
minimum and maximum values
control break post-computation

Cross-tabulation
subtotals, counts in table cells
aggregate operations in tabulations
range collapsing (e.g., Quarter 1 = Months 1·3)
missing data types & handling

Operations
pause between records
save & reuse named report formats
send reports to screen/disk/printer
merge output with external software

(e.g., graphics display or word processor)

4.4. OPERATIONAL ISSUES

Resource Requirements
Hardware & operating systems

Hardware supported
Operating systems supported

Output devices supported
Alphanumeric terminals
Graphic terminals
Personal computers
Hardcopy devices

Compatibility across systems
Primary source code available
Primary developmental system
Different limits on different systems
Some features not on some systems

System resource requirements
Main memory

minimum configuration
dbms
common data buffers
indices (if any)

Disk
minimum configuration
approximate % overhead
intensity of use

page 10

Database Managemen

system files
Operation overhead

DBMS internal overhead--disk/CPU/RAM
access method/retrieval path(s)
more memory yields better performance
service functions/tuning

Multi-user considerations
Re-entrant code
Multi-task
Multi-thread
Multiple copies for multiple users?

Limits and Maximum Values
System level

Separate databases
Concurrent users

Database level
Elements (fields)
Record types
Indexes
Concurrent users
Record types for simultaneous travers~'

Record level
Records
Elements (fields)
Bytes/record .
Indexes
Repeating groups

Repeating group level
OccwTences
Elements
Bytes
Levels of nesting

Element (field) level
Total bytes
Occurrences
Name length
Number of aliases

Index' level
Indexes per file/database
Elements passed to single database
Record types associated with single index
Characters per index
Value length

Ease And Efficiency of Use
Operations done w.ithout reload/lockout

Add new elements
Add new record types
Add new indexes
Rename and/or add new aliases
Change security specifications

Over-all modularity for ease of learning
Interface consistency across modules

2116/90 version

".

I

Database Management Software at LBL

4.5. DATABASE ADMINISTRATION

System management
Initial installation procedures
Maintenance and Updates
Database Displays

Record structure
Structured dictionary
Data element table

Operations and Scheduling
Other Utilities

Use and performance monitoring
Billing data
Space utilization report(s)
Access time report(s)
I/O usage report(s)

Physical Storage & Optimization
Compaction routines
Page size, segments
Buffer size(s)
Dynamic automatic garbage collection

Security and Recovery
Access control to what levels?

Database
Record-type
Element-type
Individual record instance
Specified element values

Security mechanisms
ACXDunt number
Separate password(s)
Terminal ID
Program/module identifier
Security level number

Different types of protection
Read, add, update, delete information
Specify permitted operations/functions
Encryption
Concurrent access
Setable global search modifier(s)

Restart, recovery and logging
Journaling/transaction logging
Checkpointing
Warm restart/before images/roll back
Cold restart/after images/ roll forward
Valid(but incorrect) data recovery

2116/90 version

System Characteristics

4.6. COST AND SUPPORT ISSUES

Acquisition and annual maintenance costs
Minimum configuration price
Optional components

Unbundled subsystems
Bundled combinations

Discounts
Educational
Multiple copies
Site license

Documentation and b'aining
Documentation

On-line documentation
Explain <term, command, etc.>
Search history and advice
Tutorials
Example <term>
Syntax <term>

Printed manual(s)
General query language user
Reference card(s)
Dba, database designer
Applications designer
Technical, systems programmer

Training
Amount required
Courses offered, frequency, timing
Instruction manuals

Vendor support
Assistance

Consulting, hotline hours
Installation assistance
Users groups
Contract support availability
Support personnel
Local expertise

Reputation and position
Financial and institutional stability
Staff size
Reputation
Responsiveness to users
Commitment to DBMS
User base

page 11

System Summaries

5. Data Management Systems at LBL
LBL has developed, acquired and used a
variety of software systems to help manage
both scientific and administrative data. The
Berkeley Data Management System (BDMS)
was originally developed on LBL's CDC 7600 to
support bibliographic and publication
databases for the Particle Data Group.
Somewhat later, a lab-wide committee
recommended acquisition of System 2000, a
commercial hierarchical system that also ran
(after a fashion) on the CDC machines. As LBL
shifted from CDC to DEC hardware for
scientific computing and IBM hardware for
administrative applications, it replaced
System 2000 with DEC's Datatrieve and two
systems that ran on IBM mainframes -- SPIRES
from Stanford University for bibliographic and
general purpose applications and FOCUS from
Information Builders, Inc. for administration
and business activities. With the advent of
departmental mini-computers and personal
workstations, the number of different data
management software packages at LBL has
proliferated still further.

Although a number of LBL's major scientific
projects still maintain data on tapes and
standard system files, an increasing number
have begun to use commercial database
software. These include the Table of Isotopes
Project (Datatrieve), the Particle Data Group
(SPIRES and ORACLE), the Earth Sciences
Division (Ingres), and the SSC Central Design
Group (Sybase and Informix), and the Human
Genome Project (Sybase and Ingres). Most of
LBL's administrative data is currently
maintained on FOCUS.

Database management systems covered by this
report are restricted to those that were
familiar to committee participants and used
routinely by LBL staff in FY 1988. These
included Datatrieve, dBase, Focus, Oracle,
SPIRES, and 4th Dimension. Several DBMS's
currently used at LBL are not covered in detail
because committee members were not
sufficiently familiar with them; they are
described briefly in the next subsection.
Additional software that may be used for
certain data management tasks (e.g., personal
bibliographic systems such as BIB and REFER
on Unix, EndNote on Macintosh, and ProCite on

page 12

. Database Management Software at LBL

Macintosh and IBM PC's) were not studied in
depth because of their more specialized nature.

The subsections below briefly describe
individual database management systems at
LBL. These descriptions include the types of
hardware and operating systems on which
each DBMS runs and representative LBL
applications for which they are currently being
used. More extensive discussion of each system
and comparisons between them are included in
1988 LBL DBMS Comparisons (available
separately).

5.1. Datatrieve

DATATRIEVE is a product of the Digital
Equipment Corporation (DEC). It was designed
to operate on most DEC operating systems,
including RSX and VMS. DATATRIEVE
utilizes standard DEC utilities and file
structures and is very suitable for managing
data within a diverse DEC environment. It is
available on the LBL-V AX cluster, where it
has been used to prepare the Table of _
Radioactive Isotopes, as well as interactive
access to a database on thermochemical .
properties of aqueous solutions.. .

Strengths. The principal strength of
DATATRIEVE is its close compatability with
the V AX-VMS operating system. It recognizes
standard VMS files and allows
straightforward interaction with various
programming languages and VMS command
procedures. Separate databases can be linked
together and complex searches can be
performed with minimal effort. There is
virtually no limit to the size of databases
handled by DATATRIEVE, and most large
applications can be handled efficiently. As a
mainframe facility, DATATRIEVE has
inherent access to mail and networking
utilities. For example, DATATRIEVE at LBL
can be accessed from many laboratories through
the high energy physics network (HEPnet).
Data files resident on any node of HEPnet can
be accessed through DATATRIEVE without
directly copying those files to a local disk.
DATATRIEVE can be readily learned by users
familiar with VMS, and simple data searches
can be performed by nonprogrammers.
Documentation is substantial, and considerable
on-line HELP is available.

Weaknesses. It is probably fair to say that
DATA TRIEVE's initial interaction with users

2116/90 version

.•

Database Management Software at LBL

is less than 'user friendly'. DATATRIEVE is
fairly bullet proof, but it provides cryptic
responses to incorrect commands. Input syntax is
slightly cumbersome and commands must be in
upper case. Great power is available to the
user for file modification but it is up to the user
to establish the proper protection. It is
completely possible for users to unintentionally
destroy or modify files and delete previous
versions. The power afforded the user to
manipulate files should not be looked upon only
as a disadvantage, however, because it also
allows DATATRIEVE to interact freely with
the outside world (e.g. FORTRAN programs)
which is not always possible with other
database management systems. A major
disadvantage to some users is that
DATATRIEVE provides only limited output
capability. Screens, graphics, mailing labels,
and other special applications are not readily
available through DATATRIEVE. Some third
party software, including a forms package, are
available but have not been reviewed here.
Also, as a proprietary system, DATATRIEVE is
not directly available on non-DEC mainframes
or PC's. The cost of using DATATRIEVE at LBL
is complex. Access to this database
management system is free on the cluster, but
disk space and computer time charges can add
up rapidly.

Summary. DATATRIEVE is probably most
useful for users who are comfortable with V AX
programming, have a large and complex
problem, and are not concerned about fancy
display capabilities (at least within the
DATATRIEVE environment).

5.2. dBase

dBase III + runs on IBM PC/XT / AT machines
and compatibles using MS- or PC-DOS. It is
known as the de/acto standard DBMS for IBM
microcomputers. At LBL the program has been
used in administrative applications for list
management and record keeping tasks. Space
~llocation and telephone information systems
have been done in dBaseIII+. It is used as a
prototyping system for applications that will
be fully developed in a compiled language, as a
part of a more elaborate system (for example,
as a data-entry front end), and as a bridge to
receive data from some system, parse or re­
arrange it, and transfer it to a different system.

2116/90 version

System Summaries

Strengths. dBase III+ may not be the best
DBMS for any single application, but its
strength derives from its versatility. It is
possible to do most data management tasks
with dBaseIII+. Non-programmers can create
many applications in the menu-driven
Assistant environment, which has a rich
assortment of search, selection, screen-painting,
and report-writing tools. For more complex
applications, a programming language is
available which includes the on-line query
language commands so that relatively
unsophisticated users can jump from on-line use
to program creation. Finally, the dBase III+
user base is large, and there is a spin-off
industry which provides a variety of add-on
utilities, compilers, and training materials.

Weaknesses. dBase III+ is weakest with
respect to repeating and/ or complex data
elements (as opposed to simple, single-valued
fields). Currently its multi-user features are
fairly primitive. It is slow in execution,
though related products offer compiling of
dBaseIII+ code for faster execution.

5.3. FOCUS

FOCUS is a fourth generation language and
database management system that runs on a
wide range of computer hardware and
operating systems. At LBL it is available under
MS-DOS or PC-DOS on IBM compatible PC­
ATs, VMS on DEC computers, and CMS on IBM
mainframes.

EXAMPLES of FOCUS applications running at
LBL include the Stores Catalog and Issues
Report, General Ledger, Monthly Effort
Reports, Property Management, Information
Services Recharge (Cost-Recovery) System,
Travel Information Management System, and
Project Management System

Strengths. FOCUS runs on a variety of
hardware, under a variety of operating
systems, with comprehensive features for
entering, maintaining, retrieving, and
analyzing data. It is designed for use both by
people with no formal training in data
processing and by data processing professionals
who need powerful tools for developing
complete applications. The non-procedural
FOCUS language was designed to replace
traditional programming languages. The
simplicity of the language stems from the fact

page 13

System Summaries

that it uses simple English phrases. It ~s easy
to retrieve data from files using the TABLE
environment in FOCUS. The TABLE
environment allows the user to produce a basic
report with a minimum of commands. At the
same time the TABLE environment has a
wealth of capabilities which allow users to
specify headers, footers, page-breaks, line­
skips, groupings, sub-groupings, aggregations
for rows, columns, grand-totals, groups and sub­
groups. Users can COMPUTE variables on the
fly, specify nested sorts, and print fields
ACROSS a page or OVER each other. Users
may specify conditional clauses which records
must meet. FOCUS can read many different file
structures. This allows users to issue the same
TABLE requests against FOCUS files, RMS
files, Lotus files, ORACLE files, dBase files,
etc.

Weaknesses. FOCUS has several
"environments": TABLE (already mentioned),
MODIFY, ANALYSE, GRAPH, REBUILD,
SCAN and the home environment, DIALOG­
MANAGER. The environments share command
names and syntax. However, many commands
act differently in different environments. The
syntax is not always straight forward.
Documentation has traditionally been very
poor for FOCUS~ IBI has relied on training
classes for explaining FOCUS's features. Until
recently, local expertise for support of FOCUS
in a VMS environment was not readily
available. One other drawback is that FOCUS
only understands commands that are typed in
UPPERCASE. When using FOCUS
interactively, it converts all commands into
UPPERCASE automatically. FOCUS can store
data in upper/lowercase. However, the
default is to store data in uppercase.

5.4. Oracle

ORACLE from Oracle Corporation was the first
DBMS to fully implement the Structured
Query Language (SQL) proposed by IBM for
relational data base management systems,
which has become the standard query language
for such dbms's. At LBL, ORACLE runs on the
full range of V AX computers under both the
VMS and ULTRIX operating systems, on IBM­
PC's (albeit with expanded memory
requirements) and SUN systems. The major host
language interface is through the C language.

page 14

patabase Management Software at LBL

The main Oracle application currently running
at LBL is the Particle Data -Group's set of
special databases which support its various
publications.

Strengths. ORACLE's major claim to fame is its
portability across many hardware/software
environments. Data base files exported from
any of these ORACLE implementations may be
loaded without change into ORACLE on any
other machine. The same is true for ORACLE's
forms interface. ORACLE permits users to
dynamically modify many aspects of a
database (e.g., add a new column) without
reloading data. ORACLE Corp is the largest
independent vendor of relational dbms
software.

Weaknesses. It is_only at the host language
interface level that ORACLE portability
begins to break down, with a FORTRAN call
interface not available for the IBM-PC or for
many minor hardware implementations (e.g.
UNISYS unix minicomputers). ORACLE's
forms entry system is a cumbersome question and
answer program to create entry screens.
Modifying forma is difficult.

5.5. SPIRES

SPIRES is a DBMS originally developed at
Stanford University in the 1970's for large
bibliographic applications and is currently
used for most of Stanford's administrative
databases. It currently runs on IBM 370
mainframes under MVS, TSO, and CMS at
several dozen academic and government
installations in the U.S., Canada, and Great
Britain. A C version for VMS and Unix is
currently under development.

LBL users currently use SPIRES on the U.c.
Berkeley campus 370 system via LBLNet.
There are about a dozen SPIRES database
applications at LBL currently in production,
including the employee database used to
produce online and printed telephone
directories, LBL Reports, Mechanical
Engineering drawings and notes, SSC drawings
and addresses, a prototype material properties
data system, and an online Account
Authorization system.

Strengths. SPIRES has proven to be a very
versatile dbms that has been applied to very
diverse applications. It has a number of
features that make it particularly suited for

2116/90 version

, ..

Database Management Software at LBL

text and complex data structures. It does not
require an over-all Database Administrator;
each database owner defines and maintains his
own database. Many forms of security are
provided by SPIRES at both physical and
logical levels. It also provides a rich variety of
mechanisms for automatic indexing and passing
information between different files and record­
types, connection of related databases,
integrity constraint specification, and custom
environment development. SPIRES was one of
the first systems to provide access via an
autonomous server process, so that remote users
can access databases automatically via Email
without necessarily having an account on the
host machine.

Weaknesses. SPIRES currently runs only on IBM
mainframes. Because it is an extensive system
with many features, the early part of the
learning curve for users is steep.

5.6. 4th Dimension

4th Dimension runs on Apple Macintosh Plus,
SE, and II machines under System 4.1 or higher
and Finder 5.4 or higher. It combines the
Macintosh graphical interface with a
structured programming language and comes up
with an amazingly versatile DBMS. A
relatively new product, 4th Dimension is
finding uses at LBL in applications as varied as
personnel-payroll administration, a hyper­
text like front end to a material properties
data base, job tracking, a travel-records
administration system, and a space utilization
system.

Strengths. 4th Dimension is strongest in
handling multiply-occurring elements and in
integrating multi-table elements on single data
entry and/or display screens.

Weaknesses. 4th Dimension lends itself to the
development of user friendly, fully Mac-like
custom applications, but it is not so friendly to
the developer--a fact which may confuse those
who expect the development of friendly
applications to be friendly too. Developers
must master several graphics-based editors and
the programming language. Interestingly, Mac
aficionados are put off by 4th Dimension's
programming language, and more traditional
programmers might be put off by its graphical
aspects.

2116/90 version

System Summaries

5.7. Other Data Management Software

LBL scientists and other staff also use a number
of other database management systems that
this study did not address in any detail. Some
of these are described briefly below. We have
undoubtedly overlooked others.

5.7.1. FILEMAKER II

FileMaker Plus is an excellent flat-file data
management program for the Macintosh. It has
no relational capabilities, no programming
language, no customizable menus or buttons, no
very complex searching capabilities. It does
have excellent layout, file definition, sort, and
import-export facilities and is extremely easy
to learn, compared with more full-featured
DBMS. It has built-in facilities for doing
mailing labels and has a text export facility
that creates files formatted for Microsoft Word
merge printing. FileMaker is the program of
choice at the Laboratory for mail list
management and similar simple data
organization tasks.

5.7.2. Informix

Informix is a full-featured relational system
that runs on different mini and mainframe
systems, including Unix. It is less expensive
than Ingres, Oracle, or Sybase and boasts a
large number of third-party applications. It is
currently being used by the Advanced
Development Group in conjunction with several
projects that address data and program
sharing.

5.7.3. Ingres

Ingres is a relational system which runs on a
variety of hardware and operating systems-­
though not quite as wide a variety as Oracle. It
is based on fixed length, rather than variable
length fields. Users currently cannot add
columns to an existing table without unloading
and reloading the data already in that table.
It has a more fully developed and integrated
forms management subsystem than Oracle.
Ingres also has the most fully developed set of
features for distributed databases of any
commercial product. Ingres is currently being
used by the Earth Sciences Division for a
seismic database and by the Human Genome
Center for a database of digital images.

page 15

System Summaries

5.7.4. Paradox for DOS, Paradox for OS/2

A full featured data base application system,
Paradox packs a lot of power' for developers of
complex applications. While this product is
not widely used at LBL, it is a major DBMS for
IBM and compatible microcomputers. The
Workstation Group has a copy for user
evaluation.

5.7.5. Reflex

Reflex on the IBM PC family is a single file
DBMS. It uses pull-down menus or commands for
almost everything it does. Some menus have
dialog boxes. Reflex can be used with or
without a mouse. Screens are nicely laid out.
Establishing and maintaining a simple
database is very easy. Many tools are
available - e.g. nested sorting, filters, global

. edit capabilities, report formatting; a number
of different "views", graphs, cross-tabulation
facilities, etc. Reflex is very fast: The
drawbacks are that the size of a database is
limited to the amount of memory on the
machine. The entire. database is loaded into
memory - whence the speed. Another
drawback is that Reflex will only handle one
file. PC Reflex is not a relational system. It
does not support lookup tables, etc. Reflex on
the MAC is a relational DBMS. It will work
with more than one file.

5.7.6. Sybase

Sybase, one of the newest entries in the
relational marketplace, competes with Ingres
and Oracle on midsize computers. It also comes
as part of the standard software on NeXT
computers. The primary niche for which
Sybase was designed is tt:ansaction processing -­
i.e., ability to process hundreds of simultaneous
transactions very quickly. It was the first
relational system to support "triggers," a very
general mechanism that can be used to execute
user-defined processes in conjunction with read
or write access to specified data fields
(analogous to "rules" in SPIRES). It also was
one of the first to support scientific functions
(sine, cosine, etc.) and binary large objects
(BLOBS). LBL runs Sybase on its NeXT
machines and has recently acquired a SUN
file-server version for use in the Human
Genome Project.

page 16

Database Management Software at LBL

..

2116/90 version

Database Management Software at LBL Glossary

6. Glossary of Generic and System-specific Database Terms

NOTE: ABBREVIATIONS AND SOURCE OF DEFINITIONS:l.
4 D Fourth Dimension
DTR Datatrieve
FOC FOCUS
OR Oracle
SPI SPIRES
dB dBase

Auerbach: Auerbach Reports Glossary, 1984.

WIS: WWMCCS Information System Data Standards & Data
Standardization Procedures.

ANSI CCLOIIR: Proposed American National Standard for Information
Sciences Common Command Language for Online Interactive
Information Retrieval.

ALIAS: A data element having the same definition and structure as a standard data
element but with a different name. It is a synonym. (WIS) An alternate
label used to refer to a data element. (Auerbach).

4D No provision.
DTR Query name.
FOC One alias allowed in file description. Additional aliases may be

established using DEFINE and LET commands.
OR Used as defined.
SPI An alternate name for a data element.
dB Used as alternate label at file level only.

ATTRIBUTE: Property that can assume values of entities or relationships. Entities can
be assigned several attributes (e.g., a tuple in a relation consists of values).
Some systems also allow relationships to have attributes. (Auerbach) A
definitive characteristic of a data element or data item which quantifies,
identifies or describes its representational, administrative, or relational
concept. (WIS) Data field. Data element.

FOC Refers to security attributes, video display, etc.
OR Column.
SPI
dB

Length, type, occurrences, other processing rules. Data element.
Refers to video display only.

AUDIT: Record of activity during data base system operation. May be record of changes
and / or record of actions.

DTR History List: record of processing.
FOC Logging: record of processing. Dialog Manager: record of commands.
OR Audit: audit of system use. After Image]ournaling: record of changes.
SPI Command Logging: record of commands for each user of a specified data

base. Many levels of logging available. Subfile logging.
dB History, Do History: retains commands in memory for recall or printing.

1 See bibliography for citations.

2116/90 version page 17

Glossary Database Management Software at LBL

BINARY ELEMENT: A constituent element of data that takes either of two values or
states usually either true or false or zero or one. (Auerbach).

SPI One possible type of element. Type = logical.
dB Logical field type.

BROWSE: Display of selected group of records and/or selected fields.
SPI Used to browse an index (Le., an inverted list with pointers). Display small

subset of values from a specified index; may be centered around a specified
value or drawn arbitrarily from the index.

dB Allows full-screen editing, record addition, and deletion during browse.

CLASS (of entities): All entities held by a given proposition (conditional statement).
4D Has commands to create, modify, save, and load classes of records, which

are called SETS.
SPI A set of records may be created in a variety of ways. Can manipulate a set

of records (add, delete, update).
dB SET FILTER. .

COLUMN: A vertical table cut in which values are selected from the same domain.
The column is named in the heads. (Auerbach) Single attribute in a
relational table.

OR Used as defined.
SPI Data element.
dB Field.

COMMAND LANGUAGE: User interface to data base for retrieval, update,"display,
etc.

4D Menu driven User Environment.
DTR Used as defined.
FOC Dialog manager.
OR QUERY.
SPI Searching and updating language. File maintenance language.
dB Used as defined. Also has menu-driven command interface, "The Assis­

tant".

COMPLEX INDEX: Index keyed on derived data element.
4D No provision.
SPI Compound index.
dB Allows any derivation except mixed data types. Allows converted data

types.

DATA DEFINITION: The statement of the data entities, their attributes, and their

4D

relationships in a coherent data base structure to create a schema.
(Auerbach).
Data structure, which is a list of fields and their attributes, plus a
schematic of tables and their relationships, plus layouts and layout proce-
dures, which define input/output specifications.

FOC Master File Description.
OR Schema. Table table. Column table.
SPI
dB

page 18

File Definition.
File structure plus filters, indexes, and data input/output specifications.

2116/90 version

Database Management Software at LBL Glossary

DATA ELEMENT: A basic unit of information having a unique meaning and sub­
categories (data items) of distinct units or values. (WIS).

4D Field is the basic unit, within which there may be sub-files which contain
subrecords.

FOC Field.
OR Column
SPI

dB

Spires uses term element or data element rather than field. Spires
"elements" have no spatial connotation for storage, deliberately.
Field is the basic unit of data. There are no sub-units.

DATA ITEM: Unit within data element.
4D Sub-file.
DTR Elementary Field.
FOC None.
OR None
dB None.

DERIVED DATA ELEMENT; VIRTUAL ELEMENT: A data element whose value is
generated as a result of the operation of an application. (WIS) A data
element that is not necessarily stored but that can be generated when
needed. (Auerbach).

4D Non-enterable field or variable.
DTR Global variables, local variables, new fields.
FOC Temporary Field. Global/local variables. Defined and computed fields.
OR Temporary data field. Pseudo-column.
SPI Static variable, dynamic variable, virtual elements. Phantom elements,

phantom structures, redefined elements, etc. Dynamic element.
dB Memory variable, public and private.

DERIVED RELATION: A relation that can be obtained from previously defined
relations by applying some sequence of retrieval and derivation operators
(e.g., a table that is the join of others plus some projections.) (Auerbach).

SPI Phantom structure.

DOMAIN:

4D

DTR
FOC
OR
SPI

dB

Set of legal values from which actual values are derived for a given
attribute or data element (Auerbach). A set of all data element values from
which a data item is drawn. (WIS).
Not supported directly, but validation can be done with input layout proce­
dures.
Refers to file.
Limited support in schema.
Supported with triggers in the forms entry process.
Not supported directly, but validation for admissible values can be done
via inprocs, searchprocs, and userprocs (processing rules).
Not supported directly, but validation can be done with input procedures.

EDIT MASK: Format template for control of data element display on screen or printer;
also may be basis for data validation.

4D Not defined in data structure, but can be defined in layout; numerous date
and number formats, text alignments, and so forth.

DTR PICTURE clause in data definition.
FOC Format in schema definition. Edit masks in dialog manager and in TABLE.
OR Format model.

2116/90 version page 19

Glossary Database Management Software at LBL

SPI Format refers to report formats. Uses edit mask in standard way. Standard
usage. Available as inproc, outproc, searchproc, or function call in protocols
language.

dB Template following PICTURE clause in screen or report format.

ENTITY: Person, place, or thing of interest.

FIELD /ELEMENT: As a subset of a record, a set of alphanumeric characters or other
structured data treated as a unit and used to store a particular kind of data.
(Proposed ANSI CCLOIIR).

4D Field may contain sub-file(s) of repeating sub-records.
DTR Field may contain subfields. Group field may contain other fields.
FOC Used as defined.
OR Column. Field also means data entry unit of input form.
SPI Uses term element; structure elements may contain other elements. Spires

has data elements and structure elements. Only data elements contain data.
Structure elements contain other (data and/ or structure) elements.

dB Used as defined.

FILE: Set of records treated as a unit and stored. under a single, logical file name.

4D

(Auerbach) An organized collection of data, usually comprising related
records. (Proposed ANSI CCLOIIR).
4D does not store data tables as separate files; rather a data base of related
tables are stored together in a collection of physical files: data, layouts,
indices, procedures, and so forth. The files are organized into a folder. 4D
takes care of file management automatically, and the prudent user doesn't
interfere.

DTR File holds logically related records. Term also applies to physical storage.
FOC Used as defined.
OR
SPI

dB

Partition.
Uses term subfile. A Spires FILE can contain lor more subfiles. Each-subfile
can have 1 or more record types, etc. Two meanings: (1) the physical files
(2) the logical set of all the record types defined by a single file definition.
Subfile means access to a particular record type. Record types contain
records goal or index records.
Used as defined for data file. Separate files hold indices, memos, views,
memory variable listings, and sO forth.

FORMAT: The arrangement or layout of data in or on a data medium (i.e., buffer) or in
a program definition. (Auerbach).

4D Layouts govern display of data input and output. May be governed by proce­
dures attached to the layouts.

SPI Input format: used to load data from a physical file or the terminal into
Spires. Output format: used to display or print database records from in­
ternal Spires to an eye-readable layout. Format specifications for display
of one or more record types on an output device (CRT or printer). OUTPROC:
output processing rule for transforming the value of a data element from
internal to external representation.

FULL SCREEN EDITING: Presentation of logical unit records from one or more record
types (relations) for operator editing of displayed fields.

4D Uses Macintosh user interface, which includes support for full-screen I/O
layouts.

DTR Not available.

page 20 2116/90 version

Database Management Software at LBL Glossary

FOC Uses TED (XEDIT lookalike). See also FORM.
SPI Uses XEDIT. Input format can be defined via SCREEN DEFINER.
dB Managed by system in crude way with no edit masks or range checking. User

defined screen form required for polished full screen editing.

HIERARCHICAL MODEL: Tree structured model of data relationship. Spires,
Datatrieve, Focus. 40 provides some hierarchical structuring.

I/O FORM.
40 Layouts are used for all I/O; interactive and reporting/display.
FOC CRTFORM used for interactive I/O screen operations.

INDEX: The portion of the storage structure maintained to provide efficient access to a
record when its index key item value is known. (Auerbach) A means of
determining the location of data in a file; contains words or phrases by
which a record in the file may be identified and retrieved. (Proposed ANSI
CCLOIIR).

INVERTED INDEX FILE: An index organized by a nonunique key to speed the search
for data in a previously unspecified manner. (Auerbach).

SPI Index specified by unique key to allow search of data in manner previously
specified.

JOIN: An operation that takes two relations as operands and produces a new relation
by concatenating the tuples and matching the corresponding columns when a
stated condition holds between the two. (Auerbach) May be physical or
logical.

40 No provision for physical join (though could probably write a procedure to
achieve such a thing). Link: a logical join. The effect of a logical join can
also be achieved in layout procedures.

DTR Cross.
FOC Join: logical join. Match: physical join.
OR Join column is term for the common key. Cluster join: Physical join.
SPI Available only by effort of the file definition. Not interactively by the

user.
dB Join: physical join, creates new data base file. Select & set relation: logical

join.

KEY: Value used in index to identify row (record, tuple) from which it came.
40 Multiple index fields supported. Indexed fields need not be unique.
FOC Key refers to the key value within RMS/ISAM files. Uses SEGTYPE se­

quence key for storage and retrieval. Uses CRKEY (cross reference key) for
linking files. Uses FIELDTYPE = I to index a field. The entire value of
"field" is indexed.

SPI The unique identifier of any goal record or index record.

LOGICAL FIELD TYPE: See entry for BINARY ELEMENT.

MACRO: A sequence or package of commands to perform a multi-step process. (Proposed
ANSI CCLOIIR).

40 Global procedure can be called from a menu or by any other procedure and
used as a macro.

FOC Files called focexecs or on VMS system FEXes.
OR Function key assignment.

2/16/90 version page 21

Glossary Database Management Software at LBL

SPI Processing rules (inproc, outproc, passprocs, search procs, user procs) and Pro­
tocols language. Protocol: sequence of command language statements.

dB Uses term in reference to substitution of variable into string to create label.
Sets of commands can be stored in procedure files for use similar to macros.

MULTIPLY OCCURRING: Data element which can contain more than one value (e.g.,
a vector). Number of occurrences may be fixed or variable. Related item:
repeating group.

4D A field of type "sub-file" contains "sub-records" of one or more fields.
Number of occurrence of sub-records is not fixed.

DTR Group field.
SPI Elements can: not occur, occur one or more times. An occurrence of an element

need not have a value. Elements can: not occur, occur with a null value, occur
with a value Number of occurrences can be specified (l,2, .. etc.). Otherwise
number of occurrences may vary from record to record.

NAVIGATING: Steering a course through a data base by using such devices as indexes
and pointers to arrive at and examine a record and data item values.
(Auerbach).

FOC Nexting.
OR Walking the tree.

NETWORK MODEL: A data model that provides data relationships based on records
and that groups records into so-called sets in which one record is designated
as the set owner and a single member record can belong to one or more owner
relationships. (Auerbach).

SPI Can represent networks directly via multiply occurring pointers.

PARAMETER: An elementary data item or array of data items that specifies the data
type of its values and assumes or supplies the value(s) of the corresponding

4D
FOC
OR
SPI
dB

argument in the call of a procedure. (Auerbach).
Used as defined.
Variables.
Used as defined.
Used as defined.
Used as defined.

PRIMARY KEY: An item whose value uniquely identifies a record or tuple. (Auerbach).
4D Indexed fields can be specified unique, but need not be.
FOC Keys are available. User defined. Need not be unique. Need not have any

key.
SPI Each record type must have a designated key element, whose values must

be unique.
dB No provision for unique key.

PROCEDURE: Set of commands stored as named entity which may be invoked directly
or called from another procedure.

4D Used as defined. Procedures may be attached to layouts, to files, or to a
data base as a whole.

DTR Used as defined.
FOC Focexec (FEX).
OR Collections of SQL statements can be invoked by triggers in SQL-FORMS
SPI Procs Protocol.
dB Used as defined.

page 22 2116/90 version

..

Database Management Software at LBL Glossary

PROGRAMMING LANGUAGE: 4GL; command sets stored and recalled by name;
usually have branching, looping capabilities in addition to command or
query language repertoire.

4D Procedures.
DTR Indirect Command File.
FOC Dialog manager, modify, table, scan comprise programming language. This

programming language can be executed interactively or stored in executable
files called Focexecs.

SPI Protocol. File definition language Formats language.
dB Command file.

PUBLIC.
4D

OR
SPI

dB

The term refers to variable whose value is available to all procedures of a
data base. There are in addition various levels of password protection; non­
protected layouts and procedures are public.
Object (table, view, etc.) available or visible to all users.
Level of security assigned to a database, format, etc., which makes it ac­
cessible to all users (but which may be restricted to read-only).
Variable whose value is available to all levels and procedures of a com­
mand file.

QUERY LANGUAGE: A language that enables a user to interact directly with a DBMS
to retrieve and possibly modify its data. (Auerbach).

RECORD:
4D
FOC
OR
SPI

dB

Aggregation of values of data items or elements. (Auerbach) Row or tuple.
Prefers term record.
Prefers term record. Segment is a logical structure/group with record.
Prefers term row.
A goal record or index record is a collection of data element values with a
unique key.
Prefers term record.

RELATIONAL MODEL: A data model allowing the expression of relationships among
data elements as mathematical relations. The relation is a table of data
representing occurrences of the relationship as rows. (Auerbach) Model
which organizes data into tables consisting of one or more units (rows) each
containing the same set of data elements (columns). dBase, Oracle, Focus
vendors describe these systems as relational. In general, the term is
applied to all microcomputer DBMS that are not hierarchical or network;
the term originally had a more restricted meaning.

REPEATING GROUP: A collection of data that can occur several times within a given
record occurrence. (Auerbach).

4D Sub-files can contain multiple sub-records associated with a single parent
record.

DTR List. Repetition of field or group of fields using the OCCURS clause. Must
specify number of repeats. GROUP FIELD.

FOC Segment.
OR Not supported.
SPI Same as multiply-occurring (whether a single data element or a multiply­

occurring structure). -
dB None.

2/16/90 version page 23

Glossary Database Management Software at LBL

ROW: A nonempty sequence of values in a table and the smallest unit of data that can
be stored into and erased from a table. (Auerbach).

SCHEMA: A complete description of the data base in terms of the data characteristics
and the implicit and explicit relationships between data types.
(Auerbach) A conceptual description of a data base. (WIS) .

4D . No such entity. A graphical presentation of files, linked files, and sub files,
plus print- out of records and field attributes, plus layouts and layout proce­
dures all combine to serve the function of a schema.
Master file description. FOC

SPI File Definition (output formats, command procedures, etc. are stored sepa­
rately).

dB No such entity. File structure plus any relations and input screen range
specifications have to be combined to achieve the function of a schema.

SCREEN DEFINITION: Screen painter: full screen operator interface.
4D Layout editor in the design environment.
FOC FIDEL. Also has a screen painter.
OR Form.
SPI Screen definer, formats.
dB Create screen: .frm files.

SET: A number of distinct objects with a membership criteria. In a network or
CODASYL-type of data base, a set is a named logical relationship between
record types, consisting of one owner record type, one or more member record
types, and a prescribed order among the instances of member records.
(Auerbach).

TABLE: A relation that consists of a Set of columns with a heading and a set of rows
(i.e., tuples). (Auerbach).

4D File. One table per file; many files per database. (File here does not mean
that tables are stored in separate physical files.)

FOC Table refers to report generation facilities/ language.
OR Table. Used as defined.
SPI Format $REPORT: tables can be defined by the user "on the fly". Subfile,

record type.
dB File. One table per data file.

VARIABLE LENGTH FIELD: Variable length (text) field in otherwise fixed-length
data base system.

4D Text field.
OR Long field.
SPI Any field may be declared variable length or fixed length.
dB -Memo field.

VERSIONING: Retention of previous versions of file(s) or other aspects of a database.

page 24 2116/90 version

:.

Database Management Software at LBL Glossary

VIEW Derived relation (using operations such as join, project, etc.)
4D Used as defined.
DTR Collection.
FOC Alternate file view. Screening specifications. Dynamic and static joins

available.
OR Used as defined.
SPI

dB

Does not use the term view, but analogous functionality is available via
formats, index linkages, virtual elements, and phantom structures.
Use of the term is not standard. "View" in dBase refers to a materialized
view - i.e., an actual physical file which contains the desired relation be­
tween two or more files, filter statements, indexes, and so forth.

VIRTUAL ELEMENT: See derived data element.

VIRTUAL RELATION: See derived relation, view.

WILD CARD: Symbolizing unknown or unspecified characters in a search term by
special characters defined to represent any character (also known as
truncation). (Proposed ANSI CCLOIIR).

FOC Uses EDIT mask function.
OR Pattern.
SPI

dB

Truncation character used in index searching, e.g., Find Jones or Fine Jon#.
Partial string matching.
Skeleton: used for file names and memory variables only.

2/16/90 version page 25

Annotated Bibliography

7. Further Reading
The following list contains references to
selected publications that participants in the
ad hoc Data Management Resource Group have
found useful. It is far from comprehensive, but
it does suggest the range of publications that
are available on the subject of data
management, from short articles in the micro­
computer trade press to full-length academic
monographs.

7.1. Brief Introductions

Auerbach, Data Base Management, p. 8,
Auerbach Publishers Inc., Pennsauken, NJ, 1984.

A small (8 page) dictionary of database
management terms.

Finkelstein, Richard, "Lingua Franca for
Databases," PC Tech Journal, vol. 5, no. 12, p.
52, December 1987.

With IBM's backing the nonprocedural
Structured Query Language or SLQ is on its way
to providing a universallangauage that allows
different databases to communicate. SQL-based
data managers are migrating from mainframe to
PC in a variety of dialects.

Lynch, Clifford A., Developments in Database
Mangement System Technology and Their
Impact on Information Retrieval, Division of
Library Automation, University of California,
Oakland, CA.

O'Connell, Mike, Data Base Management:
What's It All About, Digital Equipment
Corporation, 1975.

A concise (34 page) though somewhat dated
statement of the basic issues from the
perspective of file access methods, with
emphasis on the CODASYL (network) model.

Sandberg, G. "A Primer on Relational Data
Base Concepts," IBM Systems Journal, Vol. 20,
No.1, 1981 pp.23-39

Seiter, Charles "Data Basics," MacWorld June
1988, pp.136-142

Stanford University. Center for Information
Technology, A Guide to Data Base
Development: A SPIRES Primer, Center for
Information Technology, Stanford, CA, 1983.

Discusses general database issues from the
standpoint of user requirements, as well as how
SPIRES addresses certain classes of database
requirements.

page 26

Database Management Software at LBL

Stonebraker, Michael, Future Trends in Data
Base Systems, in Proceedings of the Fourth
International Conference on Data Engineering,

Los Angeles, 1988, pp. 222-231.

A trenchant critique of SQL as a standard. There
are already different dialects of SQL, and the
majority of database application code will not
be written in SQL. Users are still locked into
vendor-specific solutions because of "4th
Generation" languages, full-screen interface
tools, and so on

7.2. Full Length Texts

Banet, Bernard A., Judith R. Davis, and Ronni
T. Marshak, Data Base Management Systems:
the Desk-top Generation, The Seybold series on
professional computing. A Byte book., p. viii,
199, McGraw-Hill, New York, 1985.

Includes index. Microcomputers.

Cardenas, Alfonso F., Data Base Management
Systems, p. xix, 745, Allyn and Bacon, Boston,
1985.

Includes bibliographical references and index.

LBL Bldg 50 QA76.9.D3 C37 1979

Date, C. J., A Guide to the SQL Standard: A
User's Guide to the Standard Relational
Language SQL, p. xiv, 205, AddisonWesley Pub.
Co., Reading, Mass., 1987.

Includes index. Bibliography: p. 199-201. SQL
(Computer program language)

UCB Engin QA76.9D3 D369511987

Date, c.J., An Introduction to Database
Systems, Addision Wesley systems
programming series, Addison-Wesley Pub. Co.,
Reading, Mass., 1986-.

Classic survey of the field, with special
emphasis on the relational (System R),
hierarchical (lMS), and network (CODASYL)
approaches. Includes bibliographies and index

UCB Bus/SS QA76.9 D3 D3711986 v.l

UCB Engin QA76.9 D3 D37 1986
Reserve

UCB LibSchLib QA76.9 D3 D37 1986 v.l

Date, C. J., Relational Database: Selected
Writings, p. xiv,497, Addison-Wesley,
Reading, Mass., 1986.

Includes bibliographical references and index.

UCB Engin QA76.9.D3 D37241 1986 Reserve

2116/90 version

"

Database Management Software at LBL

IEEE Standard Glossary of Computer
Applications Terminology, Institute of
Electrical and Electronics Engineers, New York,
1987.

This glossary defines terms in the field of
Computer Applications. Topics covered include
automated language processing, business data
processing, computer-aided design and
manufacturing, control systems, medical
appications, office automation, personal
computing, and telecommunications ap­
plications.

LBL Library

Loomis, Mary E. 5., The Database Book, p.
xxiv, 465, Macmillan London: Collier
Macmillan, New York, 1987.

Includes bibliographies and index. System
design.

Maier, David, The Theory of Relational
Databases, Computer Science Press, Rockville,
Maryland, 1983.

Not for the novice. The author discusses
relations, relation schemes, relational
operators, joins, set theory, relational algebra,
dependencies, normal forms, etc. This is an
excellent, advanced and technical introduction
to relational database systems.

LBL Bldg 50 QA76.9.D3 M33 1983

UCB Engin QA76.9.D3 M33 1983

UCB Math/Stat QA76.9.D3 M33 1983

Martin, James, Computer Data-Base
Organization, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1977.

An extremely readable classic, with lots of
excellent diagrams and schematic
representation.

UCB Engin

UCB LibSchLib

UCB Math/Stat

QA76.9.D3.M361 1977

QA76.9.D3.M361 1977

QA76.9.D3.M361 1977

Weiderholdt, Gio, Database Design, McGraw­
Hill, 1983.

Another classic text.

7.3. Journals and Series

Database Programming and Design, Miller
Freeman Publications, 500 Howard St., San
Francisco, (415) 397-1881.

Application oriented, short articles of
somewhat uneven quality cover the mainframe
to mini spectrum, from DBII to DBase.

2116/90 version

Annotated Bibliography

"Database Library" feature in each issue
reviews relevant books.

DataPro Reports on Software (continuing
series) DataPro Corp. Delran, NJ.

In depth reports on software products for DBMS
and Applications Development, with
management overviews, detailed features
comparisons, and prices.

Software Digest Ratings Newsletter, One
Winding Drive, Philadelphia, PA 19131-2903,
(1-800-223-7093).

Rates Personal Computer Software, including
database management systems. Also prepares
special reports for clients.

7.4. Data Characterization & Logical Design

Blaha, Michael R., Premerlani, William J.,
Rumbaugh, James E. "Relational Database
Design Using An Object-Oriented
Methodology," Communications of the ACM ,
Volume 31, Number 4, pp.414-427, Computing
Practices, April 1988

Explains how object-oriented methods can be
used to design relational systems.

Estvanik, Steve, "Logical Approach to Data
Base Design," Computer Language, vol. 5, no. 1,
pp. 49-58, Miller Freeman Publications, San
Francisco, CA, January 1988.

Design guidelines for non-programmers and for
microcomputer database implementors. As data
bases become more widespread and more
complex, the need to plan and design them
carefully before implementation is increasingly
important. This article looks at how one
company used structured analysis to accomplish
this task: by evaluating needs, organizing data,
recognizing departmental crossovers,
reorganizing data and creating the application.

Gillenson, Mark L., "The Duality of Database
Structures and Design Techniques,"
Communications of the ACM, vol. 30, no. 12, pp.
1056-1065, Association for Computing
Machinery, New York, NY, December 1987.

Attempting to pair database structures with
database design techniques that seem
incompatible yields some fascinating concepts
about the world of database, including foreign
keys and multiple relationships.

LBL Library

Ross, Steve, How to Define Data to a Computer
or Whaddayamean Specifications, University

page 27

Annotated Bibliography

of Ottawa, Systems Development Services,
1983.

An irreverant primer that discusses what
aspects of a client's data need to be examined in
order to design an appropriate database.

Shlaer, Sally, Mellor, Stephen J.
Understanding Object-Oriented Analysis,
Project Technology, Inc. ©Hewlett Packard,
1989

An excellent text on object-oriented design.

Shoshani, A., Wong, H.K.T., and Olken, P.,
"Characteristics of Scientific Databases," in
Proceedings of the 10th International
Conference on Large Databases, Singapore,
August 1984.

Distinguishes between "Experimental" and
"Associated" data and identifies common
characteristics shared by different types of
scientific data, including identifiers, access pat­
terns, database size, and useage. Includes Time
Projection Chamber example and excellent table
of examples by characteristics.

7.5. Product Comparisons

Department of Commerce, A Guide to
Performance Evaluation of Database Systems,
National Bureau of Standards Special
Publication 500-118 (December, 1984)

One of a series of publications oriented to
technical issues that arise with respect to
procurements.

Quinn, John-Charles "Two Basic Tools Pave
the Way to Choosing ... " Computerworld,
Special report pp.22-23, June 30, 1980

[a brief outline of formal methodologies for
developing requirements and evaluating
software in terms of those requirements]

Rothenstein, Philip I., Manger of Time­
Sharing First Boston Corp. Nine Questions to
Ask When Selecting a Non-Procedural
Database Mangement System, Focus In Action,
Information Builders, Inc. 9pages

7.5.1. Micro Computer System Evaluations

---, "Data Basics", Macworld, vol. 5 no. 6, pp.
136-143, PCW Communications Inc., San
Francisco, June 1988.

Review of 7 mostly flat-file DBMS programs for
the Mac.

page 28

Database Management Software at LBL

---, "Databases for OS/2: The First Wave", PC
Magazine, vol. 8 no. 11, pp. 94-131, Ziff
Communications Co., New York, June 13, 1989.

Review of Paradox OS/2, Q&A OS/2 and
R:BASE for OS/2 and discussion of OS/2
applications requirements in general.

---, "In Depth: Database Trends, Byte, vol. 14,
no. 9, pp. 244-292, McGraw-Hill, Inc.,
September 1989.

Discussion of trends in distributed data
management, server technology, and data
models.

-, "Project Database 3: Programmable
databases: dBASE and its challengers," "SQL:
An emerging database standard for PC's", PC
Magazine, vol. 7, no. 9, pp. 93-306, Ziff
Communications Co., New York, May 17, 1988.

Review of 43 programmable systems and 5 SQL
systems. Sidebars discuss most relevant PC
DBMS issues.

---, "The Data Chase", MacUser, vol. 4 no. 12,
pp. 159-185, Ziff Communications Co., New
York, December 1988.

Review of 7 relational DBMS programs for the
Mac.

Finkelstein, Richard and Fabian Pascal, "SQL
Database Management Systems. Byte,"vol. 13,
no. 1, pp. 111-118, McGraw-Hill, Peterborough,
NH, January 1988.

Comparison of Informix-SQL, Ingress for PC,
Oracle, SQLBase, XDBII, and XQL, all SQL
systems for IBMPC/ AT and compatibles.

LBL Library

Information Builders, Inc., A Performance
Benchmark: PC/FOCUS, dBase III, R:base
4000, R:base 5000, Software Digest Inc.,
Philadelphia. 55 pp.

FOCUS reprint of tests conducted by National
Software Testing Laboratories of Philadelphia.
Shows code as well as times for each problem.
(Same folks as Software Digest Ratings
Newsletter).

Software Digest Inc., "Relational Database
Management Programs," Software Digest
Ratings Newsletter, vol. 3, no. 3, Software
Digest Inc., Philadelphia, March 1986. 67 pp.

Very well done comparison of features and
performance - but does not show code for each
system or each test.

2116/90 version

/,

Database Management Software at LBL

[Stanford University] PC Development Task
Force, Product Comparisons, update, originally
written in August 1987, update- June 1988

An in-depth comparison of selected products.

Urschel, William, "Tomorrow's Data Bases
Today," PC World, vol. 6, no. 2, pp. 146-156,
Ziff Communications Co., New York, February
1988.

Comparative evaluation of three database
management systems for the PC which are built
around SQL: Informix, Ingres, and Xdb.

LBL Library
7.5.2. Mainframe System Evaluations

A Datapro Feature Report A Buyer's Guide to
Data Base Management Systems, DAT APRO
RESEARCH CORPORTATION ©1977

An outdated example of the type of information
that can be purchased from organizations such as
Datapro that specialize in product comparisons.

A Comparative Analysis of Data Base
Management Systems for Use in Medlars III.
MITRE Corporation 81WOO379 (July 1981).

A decade old, but still interesting in-depth
comparison of mainframe systems for major
bibliographic applications.

Request for Information on a Generalized Data
Base Management System. Center for
Information Technology, Stanford University
(June, 1980).

One of the documents from a database
management system selection process at Stanford
some years ago, this study contains an extensive
list of system attributes for evaluation, as well
as vendor-specific issues.

7.6. System-specific References

Benne, Bart, FOCUS: Developer's Handbook,
Computer Professional Series, Wordware
Publishing, Inc., Dallas, TX, 1987.

This book is geared to the more advanced
audience - computer professionals and advanced
end-users. The topics it addresses are describing,
building and structuring FOCUS files, various
types of calculations, FOCUS executable pro­
grams to build and maintain files, select and sort
records, produce reports from files, interact with
the user, use the FOCUS text editor, produce
graphs, use statistical tools, etc.

Date, C. J., A guide to INGRES: a user's guide to
the INGRES product (a relational database
management system with built-in application

2116/90 version

Annotated Bibliography

development facilities) from Relational
Technology Inc, p. xiii, 385, Addison-Wesley
Pub. Co., Reading, Mass., 1987.

Includes index. Bibliography: p. 377-378.
INGRES (Computer system)

Jones, Edward, dBASE III Plus Programmers'
Reference Guide, p. 430, Howard W. Sams &
Co., Indianapolis, 1987.

A well-written, concise manual for fairly
sophisticated dBASE users who want to extend
their skills into writing command language
files. Well-indexed, no bibliography.

7.7. Previous LBL Reports on Database
Management Systems

Berkowitz, D., Bernzott, P., Borges, J., Fink, R.,
Franz, J., Fry, D., Johnston, J., Osterer, L.
Lawrence Berkeley Laboratory Computer
Center Database Planning Group Position Paper
, September 29,1980.

Summarizes procedures the LBL Computer
Center used to identify and obtain a DBMS for
LBLin 1980.

Gey, Fred and Wong, Harry T.K., "Codd's
Twelve Rules for Relational DBMS
Functionality" LBL Technical Report LBL-
22202 (September, 1986) 18 pp.

A reorganization and explanation of features for
data integrity, data manipulation, and data
independence which should be supported by
DBMS products in the 1990's.

Olken, Frank, "A DBMS Selection Checklist
for the Army Corporate Database Project" LBL
Technical Report LBL-22181 (October, 1986)
26pp.

A brief summary of selection criteria for a large
administrative database application.

page 29

--
LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT

1 CYCWTRON ROAD
BERKELEY, CALIFORNIA 94720

