UC San Diego

Technical Reports

Title
Automatically Mining Requirements Relationships From Test Cases

Permalink
https://escholarship.org/uc/item/9357z8vq

Authors

Ziftci, Celal
Krueger, Ingolf

Publication Date
2013-06-06

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/9357z8vg
https://escholarship.org
http://www.cdlib.org/

Automatically Mining Requirements Relationships From
Test Cases

Celal Ziftci
Department of Computer Science and
Engineering
University of California, San Diego
La Jolla, CA, USA
cziftci@cs.ucsd.edu

ABSTRACT

Requirements relationships express conceptual dependencies,
constraints and associations among the requirements of a
software system, such as dependencies and hint-relations.
For stakeholders of a system, it is important and beneficial to
identify requirements relationships for system design, main-
tenance and comprehension tasks. In this paper, we build on
existing research and use features, realization of functional
requirements in software, to automatically retrieve require-
ments relationships from existing test cases. We evaluate our
approach on a chat system, Apache Pool, and Apache Com-
mons CLI. We obtain precision/recall levels as good as or
better than currently existing object-tracing and scenario-
analysis based approaches when tested on the same case
studies. Furthermore, our approach is resistant to scenario
selection, and works for all types of systems with a profiler
available, unlike existing techniques.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications—

elicitation methods, methodologies, tools; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-

ment—restructuring, reverse engineering, reengineering; D.2.9

[Software Engineering]: Management life cycle, produc-
tivity

General Terms
Measurement, Performance, Design, Economics

Keywords

requirements analysis, requirements dependencies, require-
ments hint-relations, testing, program understanding, auto-
mated analysis, reverse engineering

1. INTRODUCTION

Requirements relationships express conceptual dependencies,
constraints and associations among the requirements of a

Ingolf Kruger
Department of Computer Science and
Engineering
University of California, San Diego

~ LaJolla, CA, USA
ikrueger@cs.ucsd.edu

software system [25]. Examples of these relationships are
dependencies, a requirement needed by another one; and
hint-relations, a requirement being frequently used in con-
junction with another requirement [25, 11, 9] (hence, when
used, it hints at the other requirement).

Identification of requirements relationships in a system’s do-
main is important in several aspects. During the design and
maintenance of a system, understanding requirements in iso-
lation is typically not enough, since requirements interact
with or depend on each other, and making a change on one
requirement may have impact on other requirements [6, 7,
17, 9, 26]. During the design phase, requirements relation-
ships help ensure that the system will behave correctly by ex-
posing potential conflicts between requirements to designers
[12]. During maintenance, they help developers determine
if a change on the system will create conflicts that didn’t
exist before [12, 7, 17]. In all stages of the software lifecycle,
they help developers comprehend a requirement along with
its dependencies and the other requirements it typically in-
teracts with before a maintenance task is performed [35, 16,
23, 26]. Finally, during all stages of the software lifecycle,
they help customers see an overview of requirements, sup-
port design and architecture decisions about the evolution of
the software system and prioritize development efforts [30,
29, 28, 9.

Requirements relationships are typically modeled during the
requirements analysis stage. Similar to other software arti-
facts, such as source code, test cases and documentation,
the system’s requirements relationships model evolves dur-
ing maintenance of and updates to the system. The bene-
fits of the knowledge about requirements relationships, de-
scribed above, are possible only if the requirements rela-
tionships model is accurate and up-to-date. Requirements
relationship models can be manually maintained as software
evolves. However, it is labor-intensive, time-consuming and
error-prone to acquire and maintain such software artifacts.
Furthermore, without disciplined developers, the model gets
out-of-date over time during maintenance [14, 20, 8]. There-
fore, retrieving and maintaining the relationships model via
an automated process is important and convenient.

In this paper, we propose to automatically reverse engineer
requirements relationships using existing test cases, such
as unit tests, integration tests acceptance tests and system
tests. Testing is an important and critical part of the soft-

ware development lifecycle. It increases the quality of the
system, and it is typically employed by many, if not all,
software development teams. Based on empirical studies, in
many systems, the amount of test code produced is com-
parable to the code produced for the system itself, ranging
from 50 percent less to 50 percent more [22, 33]. The amount
of test code is even more for some systems, such as critical
systems or systems built following the Test Driven Devel-
opment (TDD) process [15]. Therefore, the effort spent on
testing and its cost in the development process is substan-
tial. We propose using this investment to reverse engineer
requirements relationships from the test cases automatically.

Recent effective methods that automatically determine re-
quirements relationships use dynamic analysis to track the
flow of objects at runtime in object-oriented systems [27, 19].
For each requirement, they exercise the system via a scenario
(an act triggered on the system to exercise a requirement).
They profile the system to track the instantiation of objects
and how they are passed around in the system as the sce-
narios for requirements are exercised. If an object that is
created by a requirement is used during the execution of an-
other requirement, the latter requirement is said to have a
dependency on the former. Although these approaches can
successfully find requirements dependencies, they only work
for object-oriented systems. Furthermore, they are highly
sensitive to the implementation of the system and how ob-
jects flow in different parts of the system.

Another family of recent effective methods that determine
requirements relationships uses dynamic analysis, scenarios
and profiling as described above [12, 23]. They analyze the
software components executed, such as classes and meth-
ods, while the scenarios for the requirements are exercised.
If a requirement contains all of the components exercised
by another requirement, the former requirement is said to
have a dependency on the latter one [12]. These approaches
are not limited to only object-oriented systems, unlike the
previous ones. However, they only find requirements de-
pendencies, not hint-relations. Furthermore, they are very
sensitive to the selection of scenarios chosen to exercise the
requirements.

In this paper, similar to the recent methods described above,
we represent functional requirements of software using "fea-
tures”, observable units of behavior of a system that can be
triggered by a user [13]. We use scenarios to trigger features,
extract programming components (classes, methods, blocks,
statements) that can represent each feature, and observe the
extracted components in test cases as they execute and find
requirements relationships automatically. Our work makes
the following contributions:

e A new method to find dependencies and hint-relations
between requirements. Our method performs as good
as or better than existing techniques on our case stud-
ies.

e A new method to find dependencies and hint-relations
between requirements that is broader in applicability.
Unlike existing methods, our method is not sensitive to
the selection of scenarios used to exercise requirements.
Furthermore, unlike existing methods, our method is

connect

sign-off send-message

Figure 1: Dependencies between requirements.

not limited to object-oriented systems; it works for all
systems with a profiler available.

e An automated process and tool support to reverse en-
gineer requirements relationships from a software sys-
tem’s test cases as a by-product of automated software
development processes, such as TDD and continuous
integration.

2. BACKGROUND

Requirements relationships represent different types of asso-
ciations between requirements [25]. Two common types of
such associations are dependency and hint-relation [25, 11].

Dependency Dependency refers to the case where a re-
quirement must be exercised before another one for the sec-
ond one to work properly. An example from a Chat System
(one of the case studies we use) is the dependency relation-
ship between requirements connect, sign-on, send-message
and sign-off (shown in Figure 1): send-message requires
sign-on, and sign-on requires connect, because to sign on
and create a session, one needs to first connect to the server;
and to send a message to another chat client, one needs to
first sign on successfully. Similarly, sign-off depends on
sign-on and connect.

Hint-Relation Hint-relation refers to the case where re-
quirements are not necessarily dependent on each other as
in the dependency case, but they are typically used together.
Therefore, understanding one potentially helps understand-
ing the other, and it becomes easier to estimate the impact
of change in one requirement on the other requirements. As
an example, consider Apache Pool [2] (one of the case studies
we used). This is a library that provides resource pooling,
where a limited number of resources exist and the customers
of the pool can check-out and check-in objects as they need
them. It is typically used to pool resources that are expen-
sive to create and destroy (such as database connections),
to avoid the overhead associated with those lifecycle activi-
ties. Pool provides a maximum size to limit the number of
resources (max-size requirement). One can decide on what
happens when the pool is full and a consumer asks to check-
out a resource, the action-on-full requirement, (such as
block the consumer call, or throw an exception). Similarly,
if “block the consumer’s call” is the action chosen, then the
pool provides a way to specify for how long to block the call

_ |relevant N retrieved| _ |relevant N retrieved|

recision =
p |retrieved)|

f — measure =

, recall =
|relevant)|

2 X precision X recall

precision + recall

Figure 2: Precision is the correctness of the re-
trieved relationships; Recall is the coverage of the
relevant relationships; and F-measure combines pre-
cision and recall into a single metric with equal
weight.

(timeout-on-block requirement). These requirements are
not strictly dependent on each other, i.e. setting one does
not necessarily require setting the others (since there are de-
faults for each of them). However, they are closely related
to each other, and when a developer tries to understand one
of them, knowing that these requirements are related can
help him during comprehension, since it is expected that
the implementation of these requirements are related to and
possibly interleaved with each other.

In this work, we propose to find these two types of relation-
ships automatically from existing test cases. We use pre-
cision, recall and the f-measure as the metrics to measure
success (see Figure 2). In the context of finding require-
ments relationships, the “relevant” relationships are the ac-
tual ones, i.e. the ones that we try to find. “Retrieved”
relationships are what an approach suggests. Precision and
recall correspond, respectively, to accuracy and complete-
ness of the retrieved requirements relationships compared
to the relevant relationships. Finally, precision and recall
are considered equally important and combined into a single
metric: f~measure. On finding requirements relationships, it
is important to obtain a high f-measure, because that im-
plies finding both a low number of false positives and a low
number of false negatives.

3. RELATED WORK

Previous research exists on automatically finding require-
ments relationships. There are approaches that use exe-
cutable use-cases, called scenarios, to represent requirements
on the actual system [27, 19]. A scenario can be a test case,
manual execution of the requirement on the system (such as
using a graphical user interface), or any other specification
representing a requirement that can be converted into an
executable form. As an example, consider the Chat System:
sign-on is a requirement, and signing on to the server using
the graphical user interface of the system is a scenario for
that requirement. These approaches execute the scenarios
of the requirements on the system. While scenarios are exe-
cuted, they track object instantiations [27] and object alias-
ing [19], i.e. how objects are passed in the system between
components (classes, methods) using a profiler (or a simi-
lar technology). These approaches propose that if an object
that is created during the execution of a requirement is used
in another requirement during its execution, then there is a
direct dependency of the latter requirement on the former.
These methods are successful in finding requirements de-
pendencies. However, they have some shortcomings. First,

since they track objects, they only work for systems imple-
mented in object-oriented languages; not for other types of
languages such as functional or procedural languages. Sec-
ond, they are sensitive to the implementation of the system
since they rely on the flow of objects. They may report non-
existing dependencies and hint-relations due to sharing of
non-critical utility objects in the system, and they may miss
some relationships since not all relationships require sharing
or flow of objects in the system.

A different family of approaches to automatically retrieve
requirements relationships also uses scenarios to represent
requirements. Similar to the previous ones, they execute
the scenarios and collect execution-traces as they execute
[12, 23]. Unlike the previous methods, they trace the com-
ponents executed, such as class and method names. They
propose that if the components observed in the execution of
a requirement are a subset of the components observed in
another requirement, the latter requirement is said to have
a dependency on the former one. An advantage of these
approaches is that they not only work on object-oriented
systems, but also other types of systems, because they don’t
use object instantiation and flow to determine dependency.
One of the disadvantages of these approaches is that observ-
ing the same components may not be sufficient to conclude
the existence of a dependency. If the common methods for
the first requirement are executed in a different order than
the second one, this may point to a different requirement.
Therefore, these approaches can be misguided, since they
only analyze the existence of the components, not their or-
der. Another disadvantage of these approaches is that they
only detect dependencies; they cannot detect hint-relations
between requirements.

A common disadvantage to both of these approaches is in the
way they use scenarios. They require executable scenarios
for each requirement, which, in some systems, do not readily
exist. Furthermore, unless they are supported with manual
effort (as in [12]), these approaches can retrieve trace links
only for functional requirements of the system. Finally, these
approaches might miss some of the trace links, because they
only gather trace links on those parts of the system that are
exercised by the scenarios. These approaches assume repre-
senting each requirement with a single scenario. However,
some requirements might be triggered in multiple ways. As
an example, consider the Chat System: users are provided
a graphical user interface, a command-line client and pro-
grammatic access to the server. These approaches will need
to choose only one of these as a scenario. Therefore, it is
inevitable to miss some trace links for some requirements.
This shortcoming can be gapped using an approach as de-
scribed in [36]. In this approach, a single requirement can be
represented with the use of multiple scenarios, which avoids
missing some requirements trace links.

Another disadvantage of these approaches is that they are
very sensitive to the selection of scenarios. As an exam-
ple, consider two of the Chat System’s requirements: con-
nect and sign-on. As explained earlier, sign-on depends
on connect. During the selection of scenarios, the scenario
for sign-on should encapsulate the actions for connect, too.
Otherwise, neither the objects nor the components executed
during its execution will contain the objects or components

for connect. Therefore, the described approaches will fail to
detect the dependency. We propose that this makes these
approaches very sensitive to the selection of scenarios.

The method that we propose in this paper builds on existing
dynamic analysis based requirements tracing methods to au-
tomatically find requirements relationships. Therefore, we
discuss the relevant body of research on requirements trac-
ing and dynamic analysis below. We refer the reader to [36]
for an in-depth discussion on the comparison of requirements
tracing methods, which is out of the scope of this paper.

Requirements tracing is defined as the ”ability to describe
and follow the life of a requirement, in both a forward and
backward direction” [5], by “defining and maintaining rela-
tionships to related development artifacts” [21]. Some ex-
amples of these artifacts are source code, test cases and de-
sign documents. Our work builds upon the requirements-to-
source-code [32, 13, 24] and requirements-to-test-case trac-
ing methods [36]. So these are also described below.

Recent effective requirements-to-source-code tracing meth-
ods make use of dynamic analysis and scenarios as described
above. They trace the components executed for each re-
quirement while scenarios are running, and they perform
different types of analysis to link requirements to source
code components (reconnaissance [32], execution slicing [34],
formal concept analysis [13], probabilistic ranking [24], foot-
print graph [12] and many more). The advantage of these ap-
proaches is that they are successful in finding the highly rel-
evant source code components for each requirement, which
is critical for the work in this paper. The disadvantages
of these approaches are the same as for the scenario based
ones explained above (since they are all scenario based). In
our work, we build upon a well-known method among these
approaches [24] (probabilistic ranking) to find source code
components that are highly relevant to each requirement.
In this approach, components are ranked according to how
many times they are observed in the execution trace of each
requirement while scenarios are executed, and a probability
is calculated for each component (method) that shows how
likely it is for a component to represent a requirement (see
Section 4.2 for details).

Recent effective requirements-to-test-case tracing methods
also use dynamic analysis and scenarios [36]. They first find
highly relevant source code components for each require-
ment. Then they execute the test cases and look for those
components in the execution-traces of the test cases. If a
component is observed in the execution trace of a test case,
they propose that there is a trace link between the require-
ment and the test case. Since these are also based on the
use of scenarios, they also have the disadvantages related to
scenarios as described above.

Although not directly related to our work, a significant body
of research exists on finding dependencies on the level of soft-
ware components in source code (classes, methods, blocks,
statements). Some of these approaches use static analysis
[31, 7, 10], while some use dynamic analysis [35, 16, 17].
Although our work in this paper exhibits some similarities
with some of these techniques in the way they perform math-
ematical analysis on their respective levels (source code),

our work is focused on finding requirements relationships,
whereas these techniques focus on source code components.

Finally, although not directly related to our work, an ap-
proach that finds usage patterns on the application pro-
gramming interface (API) level is introduced in [18]. In
this work, API usage patterns are retrieved from running
test cases based on the number of times different API are
executed and observed together. This work is again focused
on analyzing source code, while our work focuses on require-
ments.

4. REQRELEX: MINING REQUIREMENTS
RELATIONSHIPS FROM TEST CASES

Requirements are what a system needs to provide to its
stakeholders. Features, observable units of behavior of a sys-
tem that can be triggered by a user [13], are the realization
of the functional requirements in the system. In this paper,
we use the terms requirement and feature interchangeably.

This work partially builds upon previous work on tracing re-
quirements in test cases [36]. For completeness, we describe
the relevant parts of that work (Sections 4.1, 4.2, 4.3) here.

Figure 3 summarizes the inputs, flow and outputs of our
approach. We implemented a tool, REQRELEX, to automate
this process. The rest of this section explains the steps of
the process in Figure 3 in more detail.

4.1 Features and Scenarios

A feature corresponds to the realization of a functional re-
quirement in the system. To invoke a feature, a user needs
to trigger it by performing an action. This action can be
anything that is executable and exercises the feature on the
system. Some examples are: running a test case, using the
user-interface of the system, a formal test specification that
can be executed. We call such an action that triggers a fea-
ture a scenario [12, 13]. For a chat system, send-message
is a feature, and typing a message and clicking ”"Send” in
the user interface is a scenario for send-message. Similarly,
writing a test case that performs message sending program-
matically is another scenario. Since both of these execute
the feature, they are both scenarios for send-message.

Unless features are already specified in a requirements spec-
ification document, finding them is typically a manual task.
Similarly, unless requirements specifications are accompa-
nied with directly or indirectly executable scenarios, prepar-
ing scenarios is mostly a manual task. An alternative for
creating scenarios is to use existing test cases and extract
scenarios out of them. These correspond to Step 1 in Figure
3.

4.2 Feature Markers

After features are identified and scenarios are prepared for
each feature (Step 1), we execute scenarios and, using a
profiler, we collect execution traces for each feature (Step
2 in Figure 3). Execution traces contain information about
which components were executed during each scenario. Com-
ponents can be the combination of file and procedure names
for procedural languages; the combination of class names,
method names and statement locations for object-oriented

i Identify functional
. requirements |
(features) and
create scenarios
for each

;. collect execution
: » . traces for each

Automated analysis to find requirements relationships Output
o
Find feature Minimize

Run scenarios & markers for

each feature
. scenario @) execution
traces

using scenarios’

© Run fests & gather
execution fraces ——
for each test e

L AN~)

number of
requirements
dependencie:

| Requirements
/| dependencies

Mine
requirements :
relafionships =
via statistical :

analysis !-:’

g

Find which
tests exercise
which
features

Requirements
hint-relations

Figure 3: Inputs, outputs and steps of ReqlRelEx. Execution traces of the scenarios and test cases are the
inputs, while the requirements dependencies and hint-relations are the outputs.

languages; and combination of namespaces and function names

for functional languages (by adjusting the profiler, compo-
nents can be chosen on different levels of detail according to
project properties).

After execution traces for each feature are collected, we find
specific components that can represent each feature (Step 3
in Figure 3). To do this, we build upon existing research on
finding specific source code locations to understand the im-
plementation of a feature [32, 34, 13, 24]. These techniques
aim to find good starting points in source code to compre-
hend a feature and perform further investigation; and are
good at finding components that are specifically related to
a feature. Specifically, we use one of these techniques that
is known to perform well [24], and find distinguishing com-
ponents for features which we call feature markers.

As an example, below, consider the Chat System, its features
and the methods observed in the execution traces of each
feature:

connect :

(
sign-on : (ms, ma)
send-message : (

(

sign-off :

As in [24], we rank each method probabilistically accord-
ing to the number of features whose execution traces it was
observed in. In the above example, ms is observed in all
four features. Therefore its ranking is %. Similarly, for all
features in our example, the rankings are:

connect :

E

:0.5,m2 : 1.0,ms3 : 0.25)
mg : 0.25,m4 : 1.0)
mi : 0.5,m3 : 0.25,m5 : 1.0)
:0.25,me : 1.0)

sign-on :

send-message :

o~ o~ o~ —~

sign-off :

g

After this ranking, we use a heuristic strategy (a constant
number or a more adaptive strategy for each feature) to
choose the highest ranked methods as feature markers for
each feature. For our chat system example, if we choose a

single feature marker for each feature, they would be:

connect : [ms]
sign-on : [my]
send-message : [ms]

sign-off : [myg)

This way, we find feature markers to represent all features.

4.3 Finding Which Test Cases Exercise Which

Features

After we find feature markers for each feature, we execute
the test cases and, again using a profiler, we collect their
execution traces (Step 4 in Fig. 2). These execution traces
contain the same type of components as for scenarios as
described in the previous subsection. Next, we look for the
feature markers inside the execution traces of each test (Step
5 in Figure 3). Using the Chat System example, consider the
feature marker for connect and the execution trace for the
test case testConnect:

connect : [ma]

testConnect : (ma, ma, M7, M13, M146)

Since testConnect’s execution-trace contains ms (the fea-
ture marker of connect), we observe that testConnect ex-
ercises connect. Performing this operation for all features
and tests, we find which test cases execute which features
(Step 5 in Figure 3).

4.4 Mining Requirements Relationships

Once we find out which test cases execute which features,
we investigate the order in which features are observed in
each test case. Based on this, we propose the following;:

o If a feature f, is often observed before another feature
fq, we deduce that it is highly likely that f, depends
on fp.

e If two features f, and f; are often executed in the same
test case (but in possibly different orders in different
test cases), we deduce that it is highly likely that f,
and f; have a hint-relation, i.e. they do not depend
on each other, but they are typically used together.

As an example, consider the feature markers for connect
and sign-on, and the execution trace for the test testCon-
nectAndSign0On:

connect : [ma)]
sign-on : [my]
testConnectAndSign0n : (M2, M4, Mg, M6, Ma6)

We observe that in testConnectAndSignOn, connect is exe-
cuted before sign-on (because ma comes before my). If this
is observed in many other test cases, we propose that sign-
on likely depends on connect. Similarly, if two features are
observed in many test cases, but in different orders (i.e. in
some, one of them precedes the other, while in others the
reverse happens), we propose that they likely have a hint-
relation.

In summary, to find such relationships between requirements,
we analyze the execution traces of all test cases and look
for statistically significant correlations between features ob-
served together in test cases (Step 6 in Figure 3).

4.5 Minimizing the Number of Requirements

Dependencies

Once this analysis is performed on the execution traces of
test cases, there will likely be many requirements dependen-
cies discovered due to the transitive nature of dependence.
As an example, consider the requirements from the Chat
System: connect, sign-on, send-message. As described
earlier, send-message depends on sign-on, which depends
on connect. In such a dependence relationship, it is not nec-
essary to explicitly document that send-message depends on
connect, since that is already implied due to transitivity. In
our analysis of the test cases, there will be many such depen-
dencies discovered explicitly (due to the nature of the analy-
sis performed in Section 4.4). Unless such implicit transitive
relationships are discarded, there will be an overwhelming
amount of information for stakeholders to consume. For this
reason, we build a graph on the requirements dependencies
we discover, and we apply transitive graph reduction to dis-
card the implicit dependencies (Step 7 in Figure 3). This
provides a much clearer picture of the dependencies for de-
velopers. Figure 4 shows an example of how the dependen-
cies in Figure 1 look like after reduction.

This reduction is not performed for hint-relations, since hint-
relation is not transitive like dependence.

4.6 Tool Support

For our approach, we provide automated tool support that
can be integrated into automated software processes (such
as continuous build and TDD). As an example, our tool can
be run as a task similar to running test cases and provid-
ing code coverage in a continuous build system. Execution
traces for each feature and execution traces for tests are the
inputs to our system. Given these inputs, our tool outputs
the requirements relationships. For an example, see Figure
4 where a portion of the automatically retrieved require-
ments dependencies are output by REQRELEX for the Chat
System.

As described in previous work [36], to make the collection
of execution traces of scenarios easier, we propose using au-

connect

sign-off

send-message

Figure 4: Sample results on minimizing the number
of dependencies found in the Chat System via tran-
sitive reduction. This graph is a reduced version of
the one shown in Figure 1.

Table 1: ReqRelEx case study properties.
Total

Case Relati- # Del?en— # H}n‘c
Study . dencies relations
onships

Chat

System 28 26 2
Apache
Pool [2] 9 3 6
Apache

Commons CLI [1] 2 3 18

tomated tests as feature scenarios with a special identifier
(@FeatureScenario(””) in Java). This approach is similar to
how automated test cases are typically marked with special
identifiers for automated tools (such as @Test for JUnit [4]
in Java). This way, continuous build systems can run the
scenarios and test cases, collect their execution traces, and
input them to REQRELEX automatically.

S. EVALUATION

To assess the validity of our approach, we conducted three
case studies: a chat system used in teaching a Software En-
gineering class at UCSD, the open source Apache Pool li-
brary [2], and the open source Apache Commons CLI library
[1]. All of these systems are implemented in Java, and they
have unit and system tests prepared to be run with JUnit
[4]. Therefore, they are very suitable for mining require-
ments relationships using test cases. Table 1 summarizes
the statistics relevant to requirements relationships for each
project.

To compare our results, we implemented two recent tech-
niques for automatic detection of requirements relationships:
object flow analysis of Salah and Mancoridis [27] and Lien-
hard et al. [19] (which we call Salah’s approach in the rest
of this paper), and scenario analysis of Egyed [12] (which
we call Egyed’s approach in the rest of this paper). Salah’s
approach [27, 19] tracks the flow of objects as scenarios are
executed and proposes that: if a feature uses objects created
by another feature, there is a dependency between them; if
two features share usage of some objects, they have a hint-
relation. Egyed’s approach [12] analyzes the scenarios them-

selves: if the scenario of a feature contains all components
of another feature, then the former depends on the latter.

We used precision, recall and f-measure as the indicator of
success for each method. The rest of this section explains
the input preparations of the case studies for REQRELEX,
Salah’s approach [27, 19] and Egyed’s approach [12].

5.1 Finding Requirements

The Chat System had its requirements documented in a re-
quirements specification document in text form. Apache
Pool [2] and Apache Commons CLI [1] did not have re-
quirements specification documents. So we gathered their
requirements and their relationships using their webpages
online, javadocs, and comments manually. This preparation
corresponds to Step 1 in Figure 3, and took about 5 hours
for each project. To gather the relationships between re-
quirements, we asked two developers to perform the task
and compared their findings to eliminate errors.

It is important to note that, using its documentation or
source code, it may not be possible to find all requirements
in a software system. Therefore, we can only claim that our
analysis of the case studies is partial.

5.2 Creating Scenarios

We prepared scenarios for the chat system manually (Step 1
in Figure 3). We used the existing graphical user interface of
the system to perform actions such as connect and sign-on.

For Apache Pool [2] and Apache Commons CLI [1], we
created scenarios as executable test cases using the @Fea-
tureScenario(“”) markers explained in Section 4.6. Each test
case was about 2-5 lines of code (considerably shorter com-
pared to the existing tests). For each project, this took
about 1 hour.

5.3 Collecting Execution Scenarios

While the scenarios and tests were running, we collected the
execution traces using AspectJ [3] (Steps 2 and 4 in Figure
3). Note that AspectJ is not a profiler, but it can be used for
this purpose by weaving method entries and printing their
names.

We found all test cases that exercise the requirements we
identified in Section 5.1 for each case study, and used them
in our analysis.

5.4 Inputs to Other Approaches

For Salah’s approach [27, 19], we tracked objects when they
are instantiated and then used elsewhere using their location
in the heap. This ensures that we follow both the flow of
objects [27] and any aliasing effects [19].

For Egyed’s approach [12], we used the same scenarios and
their execution traces that we prepared as input to RE-
QRELEX.

6. DISCUSSION

Table 2 summarizes the case study results for all approaches:
Salah’s approach [27, 19], Egyed’s approach [12] and RE-
QRELEX. We provide precision, recall and f-measure values

for each approach on the respective types of requirements
relationships they support. For REQRELEX and Salah’s ap-
proach, we provide results for both requirements dependen-
cies and hint-relations as well as a combination of the two
(combined). For Egyed’s approach, we only provide require-
ments dependency results, since it only provides dependency
relationships for requirements. During our comparisons, we
use the f-measure since it incorporates both precision and
recall with equal weight.

Table 2 contains the results of two different experiments we
performed: In the first experiment (the first three rows for
each case study), the inputs are prepared in conformance
to what each technique expects as described in Section IV.
In the second experiment (rows four and five for each case
study, where each technique is marked with a *), the input is
modified to demonstrate a shortcoming of the existing tech-
niques on scenario selection. Each experiment is discussed
in detail below.

As discussed in the related work section, Salah’s approach
[27, 19] might produce false positives since object sharing or
flow does not always imply that there are relationships be-
tween requirements (but rather in their implementations).
It may also result in false negatives, since requirements rela-
tionships may exist in systems even in the absence of object
interactions. These are observed in our case studies (since
precision and recall are not equal to 100%).

Egyed’s approach [12] should not have false positives if sce-
narios are properly selected (hence 100% recall). However,
it can produce false positives, since it only investigates the
existence of components in execution traces, not the order
in which they are executed in scenarios. These are also ob-
served in our case studies.

Below, we provide a discussion of how REQRELEX compares
with Salah’s [27, 19] and Egyed’s [12] approaches in the first
experiment (first three rows for each case study).

First, we compare our results with Salah’s approach [27, 19]
(rows 1 and 3 in Table 2 for each case study). We provide
combined metrics that show how successful each approach
is on finding a relationship between requirements without
distinction on whether it is a dependency or a hint-relation.
Based on the results of the case studies, REQRELEX per-
forms better overall on finding the relationships before they
are categorized as dependency or hint-relation on all case
studies.

On finding hint-relations, REQRELEX performs very close or
better on the case studies that have higher number of hint-
relations (Apache Pool [2] with 6, and Commons CLI [1] with
18), while it performs worse on the chat system which has
only 2 hint-relations. Upon investigation, we observed that
REQRELEX categorizes those two hint-relations as depen-
dencies because the features in both are stylistically used in
a fixed order by the developers in test cases, so REQRELEX
misses both of them in this case study. Overall, REQRELEX
achieves comparable or better results compared to Salah’s
approach [27, 19] since it provides very close or better results
on those case studies with a higher number of hint-relations.
Overall, however, none of the approaches performs well on

Table 2: Case study results on finding requirements relationships

Case Results
Study Technique Combined Hint-relation Dependency
Precision Recall | F-measure Precision Recall F-measure | Precision | Recall F-measure
1. Salah 40.43 67.86 50.67 5.56 100 10.53 100 57.69 73.17
2. Egyed - - - - - - 100 100 100
Sf:;‘g” 3. ReqRelEx 78.79 92.86 85.25 0 0 0 100 96.15 98.04
- 4. Egyed* - - - - - - 0 0 0
5. ReqRelEx * 73.68 100 84 .85 0 0 0 89.66 100 94.55
1. Salah 6.1 62.5 11.12 3.66 50 6.82 33.33 100 50
2. Egyed - - - - - - 66.67 100 80
I‘,“”Pa‘l";;j] 3. ReqRelEx 30.43 87.5 4516 25 83.33 38.46 66.67 100 80
4. Egyed* - - - - - - 0 0 0
5. ReqRelEx * 30.43 87.5 45.16 25 83.33 38.46 66.67 100 80
1. Salah 66.67 19.05 29.63 66.67 22.22 33.33 0 0 0
Apache 2. Egyed - - - - - - 23.08 100 37.5
Commons | 3. ReqRelEx 37.14 61.9 46.43 28 38.89 32.56 30 100 46.15
CLI[5] | 4 Egyed* - - - - - - 0 0 0
5. ReqRelEx* 37.14 61.9 46.43 28 38.89 32.56 30 100 46.15

detecting hint-relations (compared to dependencies).

On finding dependencies (first three rows for each case study
in Table 2), Salah’s approach [27, 19] performs worse on our
case studies compared to both Egyed’s approach [12] and
REQRELEX. Egyed’s approach [12] and REQRELEX perform
very similarly on all case studies with small differences in
their f-measures. Overall, REQRELEX achieves comparable
or better results compared to Egyed’s approach [12], the
state-of-the-art, in our case studies.

Next, we provide the results of another experiment (rows
four and five for each case study in Table 2) we performed
on the same case studies to show that REQRELEX is resis-
tant to the selection of scenarios, unlike Egyed’s approach
[12] (we do not provide results for Salah’s approach [27, 19]
here, because there is no way to perform the experiment
without fundamentally changing Salah’s algorithm since it
depends on object flow). Scenario selection and gathering
the execution traces of scenarios are very important steps
that determine the success of dynamic analysis techniques.
Since scenarios are typically created by developers manu-
ally, the process is open to mistakes. Therefore, it would
be very beneficial for developers to use a technique that is
somewhat resistant to such mistakes. In our experiment, we
purposefully modified the collection of the execution traces
in our scenarios for each requirement so that dependencies
are not explicit right in the execution traces. As an example,
consider the two requirements connect and sign-on from
the Chat System: sign-on has a dependency to connect.
Therefore, when the components of the scenarios for these
requirements are collected, the execution traces for sign-
on should contain all components in the execution traces
of connect. However, when developers create scenarios for
requirements and collect execution traces of each scenario,
they may only include the parts relevant to sign-on in its
execution traces (purposefully or by mistake) and leave out
the ones relating to connect. For Egyed’s approach [12] to
find the dependencies properly, all execution traces should
be collected as described above (i.e. dependent requirements

Salah refers to [27, 19], Egyed refers to [11]

* indicates that the same techniques were used with modified scenarios as input for the second experiment

Table 3: Comparison of the methods compared
Salah | Egyed
27, 19] [12] ReqRelEx
Requires scenarios Yes Yes Yes
Works on object-
oriented systems
Works on systems
that are not No
object-oriented
Resistant to
scenario selection
Works in the
absence of No
test cases

should explicitly contain the execution traces of their depen-
dencies). For REQRELEX, however, this is not a necessity,
because it doesn’t analyze the collected execution traces of
scenarios to mine requirements dependencies. Instead, it
uses those to find feature markers, and uses the test cases
to mine the dependencies. Since REQRELEX uses proba-
bilistic ranking on choosing feature markers, we argue that
it will likely still choose good components to represent each
feature, and be very resistant to such mistakes on scenario
selection. Rows 4 and 5 in Table 2 for each case study show
the same experiments run again to find requirements re-
lationships. As the case study results suggest, REQRELEX
obtains almost the same results, while Egyed’s approach [12]
fails to find any of the dependencies in this new experiment,
as expected.

Finally, Table 3 summarizes the applicability of each ap-
proach with pros and cons. Salah’s approach [27, 19] only
works on object-oriented systems since it relies on object
flow and aliasing. On the other hand, Egyed’s approach [12]
and REQRELEX work for all systems with a profiler avail-
able. Egyed’s approach [12] is very sensitive to the selection
of scenarios, while REQRELEX is resistant to it. And finally,

REQRELEX depends on the existence of test cases, while the
other approaches do not.

In the rest of this section, we discuss advantages and limi-
tations of our approach.

Our approach is independent from the programming lan-
guage with which the system is built, unlike Salah’s ap-
proach [27, 19] which only works for object-oriented systems.
The only requirement of our approach is that it uses a pro-
filer to gather execution traces, and the components in the
execution trace are of the same type for tests and scenarios.
Our tool currently works for Java, but it is easily extensi-
ble to work for any other language (such as object-oriented,
functional, procedural) for which a profiler is available (such
as C, C++, python, perl, Smalltalk).

An advantage of our approach is that, even though it finds
dependencies and hint-relations currently, it can easily be
extended to find other types of relationships that can be
deduced from test cases. We argue that test cases are a rich
source of information that contain implicit knowledge about
requirements relationships (such as dependencies and hint-
relations as shown in this paper). Therefore, they can be
used for mining other types of requirements relationships.

Another big advantage of our approach is that, scenarios
can be provided as test cases themselves. When the source
code of the system is refactored or changed, developers fix
tests to keep them passing after the changes. Since scenarios
are also test cases, developers will fix them too and scenarios
will always stay up to date. Although this demands some ef-
fort from developers, the automatically mined requirements
relationships will stay up to date as software evolves.

Another advantage of our approach is that it is resistant
to the selection of scenarios. Scenario selection typically
determines the success of dynamic analysis techniques, so it
is beneficial for developers to use a method that is resistant
to the selection of scenarios. This decreases the burden on
developers by tolerating some mistakes.

Dependence on test cases might be listed as a disadvantage
of our approach. However, although there may be some sys-
tems without test cases, we argue that it is commonplace for
many production systems to have test cases to ensure correct
behavior [22, 33]. Therefore we argue that our technique can
still be successfully used for many production systems.

One limitation of our approach is how it uses test cases to
find dependencies: If the developers of a test suite have a
certain style such that they always exercise a requirement
before another, even though there is no dependency between
them, REQRELEX may wrongly deduce that there is a de-
pendency. In fact, this was the reason that REQRELEX did
not obtain 100% precision on the chat system case study.
This vulnerability can be fixed by using mutations to change
the order of the exercised requirements in the test cases au-
tomatically, and checking if dependencies found are actual
dependencies. We leave this as future work.

Another limitation of our approach is on finding require-
ments relationships overall. If the test suite does not con-

tain test cases that exhibit the conceptual relationships (i.e.
missing test cases), REQRELEX will miss them (hence the
recall numbers are not 100% in our case studies). Similarly,
the success of our approach is limited by the quality and
properties of the test cases in the test suite. This is ex-
hibited by the differences in the results across different case
studies. These can be partially mitigated by complementing
REQRELEX with one of the existing techniques [12, 27, 19].

Another limitation of our approach is that it only applies
to functional requirements currently. Our approach can be
complemented with manual effort, as done in [12], to de-
tect relationships for non-functional requirements (robust-
ness, security), which we leave as future work.

Finally, our approach builds upon scenario based dynamic
analysis techniques [24]. Therefore, it exhibits the same lim-
itations for these techniques described in the related work
section, such as missing coverage. This can be mitigated us-
ing multiple scenarios for each requirement [36] to increase
the coverage of dynamic analysis.

6.1 Threats to Validity

In this section, we discuss any issues that might have poten-
tially affected our case study results and therefore may limit
the interpretations and generalizations of our results.

The first threat is the number and type of the case studies
we used and the extent they represent software systems used
in practice. The chat system is software used in a class at
UCSD, and Apache Pool [2] and Apache Commons CLI [1]
are open-source software commonly used in production. We
picked our case studies from different domains to mitigate
this threat. This threat can be reduced even further if more
software systems of varying size from more domains are used
for further experiments.

Another threat is the selection of functional requirements
and scenarios to obtain execution traces for ReqRelEx. We
are not domain experts of the software used in the case stud-
ies. Therefore, we cannot claim that we found all require-
ments and our scenarios capture them best. Thus, depend-
ing on the chosen requirements and scenarios, the results
may differ.

Another threat is the preparation of the ground truth for
requirements relationships in our case studies, which we per-
formed manually. To mitigate risk, two different developers
performed these tasks and the results are confirmed compar-
ing their responses. However, it is still possible that mistakes
have happened.

7. CONCLUSION

Requirements relationships describe different conceptual de-
pendencies, constraints and associations between the require-
ments of a system [25].

Determining requirements relationships in a system is im-
portant on performing different tasks in the different lifecy-
cle stages of the development of the system. During design
and maintenance, requirements relationships help on deter-
mining possible requirements conflicts [12], and determining
whether making a change on a requirement may have an im-

pact on other requirements [6, 7, 17, 9, 26]. During mainte-
nance, they help developers on program comprehension be-
fore a requirement is modified to help them understand the
implications and investigate the related requirements that
may help during the maintenance activity [35, 16, 23, 9].
During all stages, they help stakeholders see an overview of
requirements to help with design and architecture mainte-
nance decisions [30, 29, 28, 9].

The benefits of the identification of requirements relation-
ships, described above, are possible only if the relationships
are kept accurate and up-to-date. Acquiring and maintain-
ing the relationships manually is error prone and time con-
suming [14, 20, 8]. Therefore it would be very beneficial to
retrieve and maintain them automatically.

In this paper, we propose retrieving and maintaining two
types of requirements relationships automatically using ex-
isting test cases: dependencies and hint-relations. A require-
ment is dependent on another if it requires that requirement
to be exercised before itself to behave properly. There is a
hint-relation between two requirements if they tend to be
used together, but are not necessarily dependent on each
other.

Testing is an important part of many software development

processes, and a considerable amount of test code is pro-

duced in production systems based on empirical studies [22,

33]. The amount of test code is even more for critical systems

and systems developed using Test-Driven-Development. Hav-
ing many test cases increases the investment on testing dur-

ing the system’s development. We propose making use of

this investment to automatically mine requirements relation-

ships from existing test cases.

In this paper, we build upon existing literature [12, 13, 24,
36] to trace features in source-code via scenarios. Once the
features are traced in source-code, we use highly relevant
traces in the source code to find which test cases exercise
which features [36]. Finally, after identifying which test
cases exercise which features, we perform statistical anal-
ysis to find relationships between requirements. We propose
that if a requirement is always observed before another one,
then there is a dependency of the latter requirement to the
former. Similarly, if two requirements are observed in dif-
ferent orders in different test cases, but tend to be observed
together many times, we then propose that they have a hint-
relation.

Our approach achieves as good as or better precision, re-
call and f-measure values on the case studies we performed
compared to the currently known approaches on finding re-
quirements dependencies and hint-relations [12, 27, 19].

Our approach has many benefits: unlike existing methods
[27, 19], it works for both object-oriented systems and for
any other type of systems with a profiler available. It is
also resistant to the selection of scenarios, unlike existing
techniques [12]. It is also fully automated with no need for
human intervention during its analysis. The only require-
ments, similar to existing research [12, 27, 19], are to have
a profiler available for the system to be analyzed and the
creation of scenarios that represent requirements.

Finally, we propose an automated process and tool sup-
port, REQRELEX, to automatically find requirements re-
lationships as a by-product of automated software devel-
opment processes such as continuous integration and Test-
Driven-Development.

8. FUTURE WORK

If the test-suite was developed stylistically to always exer-
cise two requirements that do not depend on each other in
the same order, our technique can be misguided and detect
such requirements pairs to have a dependency. This can
be mitigated by using controlled mutations to check if an
automatically mined dependency is indeed a dependency or
not.

Our technique currently only finds two types of relation-
ships. It can be extended to make use of test cases to find
more types of requirements relationships.

9. ACKNOWLEDGEMENTS

This work was supported in part by NSF Grants CNS-0932403
and 0729029, as well as a generous donation of phones by
Qualcomm.

10. REFERENCES

[1] Apache Commons CLI.
http://commons.apache.org/cli. Accessed:
12/01/2013.

[2] Apache Pool. http://commons.apache.org/pool/.
Accessed: 12/01/2013.

[3] AspectJ. http://www.eclipse.org/aspectj/. Accessed:
12/01/2013.

[4] JUnit. http://www.junit.org/. Accessed: 12/01/2013.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions on
Software Engineering, 28(10):970-983, Oct. 2002.

[6] D. Binkley and M. Harman. Locating dependence
clusters and dependence pollution. In 21st IEEE
International Conference on Software Maintenance
(ICSM’05), pages 177-186. IEEE, 2005.

[7] H. P. Breivold, I. Crnkovic, R. Land, and S. Larsson.
Using dependency model to support software
architecture evolution. In 23rd IEEE/ACM
International Conference on Automated Software
Engineering - Workshops, pages 82-91. IEEE, Sept.
2008.

[8] S. Brinkkemper. Requirements engineering research
the industry is and is not waiting for. In Proceedings
of the 10th International Workshop on Requirements
Engineering: Foundation for Software Quality, pages
41-54, 2004.

[9] T. B. Callo Arias, P. Spek, and P. Avgeriou. A
practice-driven systematic review of dependency
analysis solutions. Empirical Software Engineering,
16(5):544-586, 2011.

[10] K. Chen and V. Rajlich. Case study of feature location
using dependence graph. In Proceedings of the 8th
International Workshop on Program Comprehension,
pages 241-247. IEEE Comput. Soc, 2000.

[11] A. G. Dahlstedt and A. Persson. Requirements
Interdependencies - Moulding the State of Research

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

24]

into a Research Agenda. 9th International Workshop
on Requirements Engineering Foundation for Software
Quality REFSQ03, pages 55—64, 2003.

A. Egyed and P. Griinbacher. Supporting software
understanding with automated requirements
traceability. International Journal of Software
Engineering, 15:783, 2005.

T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE Transactions on
Software Engineering, 29(3):210-224, Mar. 2003.

0. C. Z. Gotel and C. W. Finkelstein. An analysis of
the requirements traceability problem. Proceedings of
IEEE International Conference on Requirements
Engineering, pages 94 101, 1994.

J. H. Hayes, A. Dekhtyar, and D. S. Janzen. Towards
traceable test-driven development. In ICSE Workshop
on Traceability in Emerging Forms of Software
Engineering, pages 26-30. IEEE, May 2009.

J. Jasz, A. Beszedes, T. Gyimothy, and V. Rajlich.
Static Execute After/Before as a replacement of
traditional software dependencies. In IEEE
International Conference on Software Maintenance,
pages 137-146. IEEE, Sept. 2008.

J. Law and G. Rothermel. Incremental dynamic
impact analysis for evolving software systems. In 14th
International Symposium on Software Reliability
Engineering, 2003. ISSRE 2003., pages 430—441.
IEEE, 2003.

C. Lee, F. Chen, and G. Rosu. Mining parametric
specifications. In Proceedings of the 33rd international
conference on Software engineering - ICSE 11, page
591, New York, New York, USA, 2011. ACM Press.
A. Lienhard, O. Greevy, and O. Nierstrasz. Tracking
Objects to Detect Feature Dependencies. In 15th
IEEE International Conference on Program
Comprehension (ICPC ’07), pages 59 68. IEEE, 2007.
M. Lormans, A. van Deursen, E. Nocker, and

A. de Zeeuw. Managing evolving requirements in an
outsourcing context: an industrial experience report.
In Proceedings of the 7th International Workshop on
Principles of Software Evolution, pages 149 158.
TEEE, 2004.

A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Recovering traceability links in software artifact
management systems using information retrieval
methods. ACM Transactions on Software Engineering
and Methodology, 16(4):13—es, Sept. 2007.

E. M. Maximilien and L. Williams. Assessing
test-driven development at IBM. In Proceedings of the
25th International Conference on Software
Engineering, volume 6 of ICSE ’03, pages 564-569.
IEEE Computer Society Washington, DC, USA, IEEE
Computer Society, 2003.

J. L. Pfaltz. Using Concept Lattices to Uncover
Causal Dependencies in Software. 4th International
Conference Formal Concept Analysis, 3874:233-247,
2006.

D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus,

G. Antoniol, and V. Rajlich. Feature Location Using
Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval. IEEE
Transactions on Software Engineering, 33(6):420-432,

34]

[35]

[36]

June 2007.

M. Riebisch. Towards a More Precise Definition of
Feature Models. Modelling Variability for Object
Oriented Product Lines, 22(3):64-76, 2003.

M. P. Robillard. Topology analysis of software
dependencies. ACM Transactions on Software
Engineering and Methodology, 17(4):1-36, Aug. 2008.
M. Salah and S. Mancoridis. A hierarchy of dynamic
software views: from object-interactions to
feature-interactions. In 20th IEEE International
Conference on Software Maintenance, pages 72—81.
IEEE, 2004.

N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. ACM SIGPLAN Notices, 40(10):167,
Oct. 2005.

J. A. Stafford and A. L. Wolf. Architecture-Level
Dependence Analysis for Software Systems.
International Journal of Software Engineering and
Knowledge Engineering, 11(04):431 451, 2001.

M. Vieira and D. Richardson. Analyzing dependencies
in large component-based systems. In Proceedings of
the 17th International Conference on Automated
Software Engineering, pages 241-244. IEEE, 2002.

Z. Wei, M. Hong, and Z. Haiyan. A feature-oriented
approach to modeling requirements dependencies. In
138th IEEE International Conference on Requirements
Engineering (RE’05), pages 273 282. IEEE, 2005.

N. Wilde and M. C. Scully. Software reconnaissance:
Mapping program features to code. Journal Of
Software Maintenance Research And Practice,
7(1):49-62, 1995.

L. Williams, E. M. Maximilien, and M. Vouk.
Test-driven development as a defect-reduction
practice. In 14th International Symposium on Software
Reliability Engineering 2003 (ISSRE 2003), volume 0
of ISSRE 03, pages 34—45. IEEE Computer Society,
IEEE Computer Society, 2003.

W. Wong, S. Gokhale, J. Horgan, and K. Trivedi.
Locating program features using execution slices. In
Proceedings of the IEEE Symposium on
Application-Specific Systems and Software Engineering
and Technology (ASSET’99), pages 194-203. IEEE
Comput. Soc, 1999.

B. Xin and X. Zhang. Efficient online detection of
dynamic control dependence. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA’07), page 185, New York, New York,
USA, July 2007. ACM Press.

C. Ziftci and I. Krueger. Tracing requirements to tests
with high precision and recall. In Proceedings of the
26th International Conference on Automated Software
FEngineering, pages 472—-475, Kansas, Nov. 2011. IEEE.

