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Abstract of the Dissertation

Character Formulas

for 2-Lie Algebras

by

Robert Arthur Denomme

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Raphaël Rouquier, Chair

Part I of this thesis lays the foundations of categorical Demazure operators following the

work of Anthony Joseph. In Joseph’s work, the Demazure character formula is given a

categorification by idempotent functors that also satisfy the braid relations. This thesis

defines 2-functors on a category of modules over a half 2-Lie algebra and shows that they

indeed categorify Joseph’s functors. These categorical Demazure operators are shown to also

be idempotent and are conjectured to satisfy the braid relations as well as give a further

categorification of the Demazure character formula.

Part II of this thesis gives a presentation of localized affine and degenerate affine Hecke

algebras of arbitrary type in terms of weights of the polynomial subalgebra and varied

Demazure-BGG type operators. The definition of a graded algebra is given whose cate-

gory of finite-dimensional ungraded nilpotent modules is equivalent to the category of finite-

dimensional modules over an associated degenerate affine Hecke algebra. Moreover, unlike

the traditional grading on degenerate affine Hecke algebras, this grading factors through cen-

tral characters, and thus gives a grading to the irreducible representations of the associated

degenerate affine Hecke algebra. This paper extends the results of Rouquier, Brundan and

Kleschev on the affine and degenerate affine Hecke algebras for GLn which are shown to be

related to quiver Hecke algebras in type A, and also secretly carry a grading.
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Introduction

This thesis is divided into two parts, both having some relation to the categorification of

Lie algebras, found for instance in [Rou08]. Categorifications are a technique championed

by [CF94] in the context of mathematical physics and which has had major impact in fields

as disparate as modular representation theory of symmetric groups and topological invari-

ants of knots. The technique of categorification takes a traditional algebraic object built

with sets and functions and replaces those with categories and functors. Equations must be

replaced with natural isomorphisms. These natural transformations satisfy their own struc-

tural equations which are then called the higher coherence relations of the categorification.

These natural transformations with their higher coherence relations are often a recognizable

and interesting classical algebraic structure which becomes linked to the starting object. One

may use symmetries, formulas, and theorems about the original object to inspire and create

analogous higher versions involving the coherence structures, often enriching and adding to

our understanding of both.

In higher representation theory [Rou08], Lie algebras and their associated quantum

groups are categorified with coherence relations coming from graded versions of affine Hecke

algebras or quiver Hecke algebras, and the quantum variable coming from grading shift.

The crystal bases of representations of quantum Lie algebras now have an interpretation via

simple modules of affine Hecke algebras and cyclotomic Hecke algebras [LV11], and certain

derived equivalences between blocks of affine Hecke algebras can be viewed as a categori-

fication of the Weyl group action on finite representations of Lie algebras, [CR08]. This

thesis explores the role of these and other Hecke algebras in higher representation theory,

particularly motivated by the following two questions:

• One consequence of the Demazure character formula for Lie algebras is a formula

for the characters of finite dimensional simple modules of a simple Lie algebra g in

terms of Demazure operators, ∆α. These operators are interesting in that they satisfy

the braid relations, but are not invertible as they also satisfy the quadratic relation
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∆2
α = ∆α. In [Jos85] this character formula is taken one step further by giving a

construction of simple modules of g using functors Dα that categorify the Demazure

operators. Separately, a crystal version of the character formula was proved in [Kas93].

Given the connection between crystals and categorification can one pull all these works

together by providing categorical Demazure operators which further categorify Joseph’s

functors?

• The coherence relations in higher representation theory are related to affine Hecke

algebras specifically of type A, [Rou08, Thm 3.16, 3.19]. This connection has been

used to give a constructive proof of the classification of their irreducible modules

[McN12], [HMM12], [KR11] as well as study the homological properties of such al-

gebras, [BKM14]. Much as the case with symmetric groups [Kle10] this connection

gives Hecke algebras of type A a secret grading, and their graded modules graded char-

acters. In light of the impact this has for type A, what can be said about affine Hecke

algebras of types other than A?

Part I of this thesis answers the first question in the positive by constructing a further

categorification D*
α of Joseph’s functors Dα. Along with the decategorification Theorem I.44

for D*
α, it is shown show these satisfy a 2-functor analogue of the quadratic relation D2

α
∼= Dα.

This relation already has many consequences for higher representation theory, including the

fully faithful lemma, Lemma I.38. Section 3.5 offers the construction of an object in Corollary

I.40 which under the assumption of Conjecture I.42 provides the categorification of the

Demazure character formula for a simple module over a Lie algebra. The theory of these

categorical Demazure operators is still new and underdeveloped. We pose in Conjecture

I.48 that these operators D*
α also satisfy the braid relations, perhaps the most significant

property the 2-functors could posses. There is currently nowhere in the literature a 2-

categorical version of braid relations. There is also the original motivating question which

remains to be answered: may the crystal version of the Demazure character formula be

proved or interpreted using the categorical Demazure operators?
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In Part II, a separate work also available at [Den13], significant progress on the second

question is made by showing that degenerate affine Hecke algebras and their irreducible

modules in all types are secretly graded, and have a presentation closely resembling the

presentation of quiver Hecke algebras in higher representation theory. Though these algebras

themselves are not involved with the categorification of Lie algebras, it is hoped that such a

framework will develop our understanding of affine Hecke algebras so as to obtain algebraic

classifications of their simple modules, as well as obtain graded character formulas for them.
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Part I

Character Formulas for 2-Lie Algebras
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CHAPTER 1

Joseph’s Functors

5



1.1 Notation and the Demazure character formula

Recall some basic results on complex semisimple Lie algebras and their finite dimensional

representations. Let g be a complex finite-dimensional semisimple Lie algebra and h ⊂ b ⊂ g

Cartan and Borel subalgebras. Let X ⊂ homC(h,C) be the weight lattice and (X,R, Ř,Π)

be the root datum of g associated to these choices. Thus Π ⊂ R ⊂ X is a choice of simple

roots. Let X+ be the collection of weights λ in X for which 〈λ, α̌〉 ≥ 0 for each α ∈ Π. Let

ρ be the half sum of the positive roots, which is also the sum of the fundamental weights. It

is defined by the property 〈ρ, α̌〉 = 1 for each α ∈ Π.

For each α ∈ R define the reflection sα ∈ Aut(X) by the formula, sα(x) = x − 〈x, α̌〉α.

Let W ⊂ Aut(X) be the finite subgroup generated by the collection {sα}α∈Π. The generators

{sα}α∈Π give rise to the length function ` on W . Let w0 be the unique longest element in

W . Define the dot action of W on X by w.x = w(x + ρ) − ρ. Also define the negative dot

action by w·x = w(x − ρ) + ρ. Neither of these dot actions are linear on X. In particular,

sα.x = sα(x)− α and sα · x = sα(x) + α.

For each positive weight λ ∈ X+ there is a unique simple g-module L(λ) with highest

weight λ. It is a finite-dimensional representation. The spaces {L(λ)w(λ)}w∈W are called

extremal weight spaces and are all one dimensional. The extremal weight space L(λ)w0(λ)

generates L(λ) as a b-module.

The Borel subalgebra b is generated by h and generators {Eα}α∈Π which satisfy the Serre

relations. The algebra g is generated by b and generators {Fα}α∈Π which also satisfy the

Serre relations. For each simple root α ∈ Π let gα ⊂ g be the parabolic subalgebra of g

generated by b and Fα. We let g−fmod, b−fmod, gα−fmod . . . stand for the categories of

finite dimensional modules. Given V a b-module, let V hw be the subspace of V of highest

weight vectors, V hw = ∩α∈Π ker(Eα). Given V a g-module, let V lw be the subspace of V of

lowest weight vectors, V lw = ∩α∈Π ker(Fα).

Let g be an arbitrary complex reductive Lie algebra with h ⊂ b ⊂ g Cartan and Borel

subalgebras. Given α ∈ Π, let sα ⊂ gα be the reductive subalgebra of semisimple rank 1
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generated by h and the generators Eα, Fα. Let bα = b ∩ sα, a Borel subalgebra of sα. Let

n(α) ⊂ gα be the nilpotent radical of gα. This is an ideal with a decomposition

gα = sα ⊕ n(α).

Let Z[X] = Z[ex]x∈X/(e
xey = ex+y), a subring of the character ring of h. Given V ∈

h−fmod, semisimple with Vλ = 0, λ 6∈ X, we define the character of V by

char(V ) =
∑
x∈X

dim(Vx)e
x.

Definition. Let ∆α : Z[X]→ Z[X] be the Z-linear function defined by the following action

on basis elements

∆α : ex 7→ ex − esα.x

1− e−α
.

Similarly let ∆*
α : Z[X]→ Z[X] be defined by the formula

∆*
α : ex 7→ ex − esα·x

1− eα
.

The operators ∆α and ∆*
α are called Demazure operators. The following two relations are

classical.

Claim I.1. Given α, β ∈ Π let mα,β be the order in W of sαsβ. The operators ∆α,∆
*
α satisfy

the following relations:

1.

∆α
2 = ∆α,

∆*
α

2
= ∆*

α

2.

∆α ∆β · · · = ∆β ∆α . . . ,

∆*
α ∆*

β · · · = ∆*
β ∆*

α . . . ,

with mα,β terms on each side.
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Proposition I.2 (Demazure character formula). Let w ∈ W and w = sα1 . . . sαk a reduced

decomposition. Let λ ∈ X+ and let V (w) be the b-submodule of L(λ) generated by the space

L(λ)w(λ). Then

charV (w) = ∆α1 . . .∆αk(e
λ).

This chapter will only be concerned with the case of w = w0, for the which the formula gives

the character:

charL(λ) = ∆α1 . . .∆αn(eλ).

where w0 = sα1 . . . sαn is a reduced decomposition of the longest element w0 ∈ W .

Remark I.3. Note that in the the full Demazure character formula is more general than

the Weyl character formula, as it gives the characters of other submodules of the simple

modules. The Weyl formula also has a categorification via the BGG-resolution which gives a

resolution of a simple module by Verma modules. In the framework of 2-Lie algebras there is

no analogue of a Verma module, so there is little hope of giving the kind of categorification

sought in this thesis to the Weyl character formula.

1.2 Definitions

This section defines and discusses Joseph’s functors on the category of b-modules. While

the original paper [Jos85] uses properties of category O we shall simply use properties of

adjoints to the restriction functor res : gα−fmod→ b−fmod.

Definition. Let res : gα−fmod→ b−fmod be the restriction functor. Define the functor

Dα : b−fmod→ gα−fmod

as the left adjoint of res. Similarly, define

D*
α : b−fmod→ gα−fmod

as the right adjoint of res. The functors Dα are referred to as induction functors and D*
α as

a coinduction functors.

8



It will be shown in Lemma I.17 that Dα categorifies ∆α and D*
α categorifies ∆*

α.

Remark I.4. In this chapter nearly every result about the functors Dα is proved in [Jos85].

The functors D*
α do not appear there, and neither does the language of adjunctions, both of

which are needed for the categorical interpretation given in Chapter 3. Thus these results

are reproved in this chapter using adjunctions along with analogous results for D*
α.

Remark I.5. Let V ∈ b−fmod be a finite dimensional b-module. Then the infinite-dimensional

gα-module U(gα) ⊗U(b) V lies in the BGG category O. By standard properties of category

O one may deduce that this infinite dimensional module has a unique maximal finite di-

mensional quotient. Let W be another finite dimensional gα-module. As every gα-morphism

U(gα) ⊗U(b) V → W factors through the maximal finite dimensional quotient there is a

functorial equivalence

homb(V, resW ) ∼= homgα(U(gα)⊗U(b) V,W ) ∼= homgα(Dα(V ),W )

By the Yoneda lemma, this maximal finite dimensional quotient must in fact be Dα(V ). One

can give a similar explicit construction of D*
α(V ).

1.3 Adjunctions

Recall that Dα,D*
α, being defined as left and right adjoints both come with unit and counit

natural transformations. The following standard notation denotes the unit of an adjunction

with η and counit by ε. In this notation (η, ε) : Dα ` res and (η, ε) : res ` D*
α does not

distinguish the unit and counit (η, ε) for Dα and the unit and counit (η, ε) for D*
α, so one

must determine this simply from the context we are using. To be concrete, for V ∈ gα−fmod

there is a gα-module morphism

Dα res(V )
ε−→ V,

and for W ∈ b−fmod there is a b-module morphism

W
η−→ res Dα(W ).

9



These morphisms satisfy the so-called zig-zag equalities. That is, the following morphisms

are the identity:

res(V )
η res−−→ res Dα res(V )

res ε−−→ res(V ),

Dα(W )
Dα η−−→ Dα res Dα(W )

εDα−−→ Dα(W ).

1.4 An sl2 example

Consider the case g = sl2, where X = Z which has the simple root α = 2. The subalgebra

b ⊂ sl2 is spanned by H and E. By Jordan normal form for the nilpotent operator E, every

finite b-module is a direct sum of so-called string modules, defined as follows. Let n ≤ m be

two integers and S(n,m) the b-module which is one dimensional in each weight space λ with

n ≤ λ ≤ m, and on which E is injective between non-zero weight spaces. Given λ ≥ 0 there

is the unique simple sl2-module L(λ) with highest weight λ. These simple finite modules

exhaust all the simple modules in the semisimple category sl2−fmod.

Define the representation Cn to be the one dimensional b-module on which H acts as

multiplication by n and E acts as multiplication by 0.

Claim I.6. Let c ∈ Cn\{0}. There is an isomorphism,

homb(Cn, V )
∼−→ V hw

n , (1.1)

given by f 7→ f(c).

Corollary I.7. For n ≥ 0, there is an isomorphism Dα(Cn) ∼= L(n). For m ≤ 0 there is an

isomorphism D*
α(Cm) ∼= L(−m).

Lemma I.8. As sl2−fmod is a semisimple category with irreducible objects {L(n)}n≥0 there

are natural isomorphisms

Dα(V ) ∼=
⊕
n≥0

L(n)⊗C homb(V, L(n))∗,

D*
α(V ) ∼=

⊕
n≥0

L(n)⊗C homb(L(n), V ).

10



1.5 Fully faithful Lemma

Let g be an arbitrary complex reductive Lie algebra with h ⊂ b ⊂ g Cartan and Borel

subalgebras. Recall that given α ∈ Π, the subalgebra sα ⊂ gα is the reductive subalgebra

of semisimple rank 1 generated by h and the generators Eα, Fα. Also, bα = b ∩ sα, is a

Borel subalgebra of sα, and n(α) ⊂ gα is the nilpotent radical of gα. Given W ∈ b−fmod

we may restrict W to bα−fmod. Denote by Dα the left adjoint of the restriction functor

res : sα−fmod → bα−fmod, so that Dα(W ) ∈ sα−fmod, and denote by eta the unit of

the adjunction. The b-module morphism η : W → Dα(W ) gives by the universal mapping

property of Dα a sα-module morphism, y → Dα(W ) making the following diagram commute:

W
η
//

η
##

Dα(W )

y

��

Dα(W ).

Lemma I.9. The morphism y : Dα(W )→ Dα(W ) is an isomorphism.

Proof. As sα−fmod is semisimple the morphism y is split. The module Dα(W ) is generated

by the image of η as a sα-module (using the fact that n(α) is an ideal), thus the morphism y

is an isomorphism.

Claim I.10. Let (η, ε) be the unit and counit of the adjunction Dα ` res as in Section 1.3.

Let V ∈ g−fmod and consider the counit morphism

Dα res(V )
ε−→ V.

This morphism is an isomorphism with inverse given by the counit morphism η : res(V ) →

res Dα res(V ), which is a gα-module morphism and not just a b-morphism. Analogously

consider the counit morphism

V
η−→ D*

α res(V ).

11



This morphism is an isomorphism with inverse given by the unit morphism η : res D*
α res(V )→

res(V ), which is a gα-module morphism and not just a b-morphism.

Proof. First, suppose that g = sl2. As sl2−fmod is a semisimple category it suffices to prove

that for each simple module L(n), n ∈ Z≥0 the morphism

Dα resL(n)
ε−→ L(n),

is an isomorphism. This follows from the fact that,

homb(L(n), L(m)) ∼=


C n = m,

0 n 6= m

and Lemma I.8.

It follows that η is an isomorphism if and only if η is an isomorphism. The claim then

follows from the case of g = sl2.

One can prove the analogous claim for D*
α similarly.

Remark I.11. If one abuses the notation and drops res from notation notice the above Claim

shows that Dα applied to the b-module Dα(W ) for W ∈ b−fmod is isomorphic to Dα(W ).

Thus, Dα
2(W ) ∼= Dα(W ). It follows that the endofunctor Dα : b−fmod → b−fmod is an

idempotent functor. Similarly, D*
α is an idempotent endofunctor in the same sense.

Corollary I.12. The restriction functor res : gα → b is fully faithful. Given V,W ∈

gα−fmod:

homgα(V,W ) ∼= homb(V,W ).

Proof. From the adjunction there is an isomorphism

homb(V,W ) ∼= homgα(V,D*
α(W )).

As D*
α(W ) ∼= W the corollary is proved.

12



Remark I.13. It is classical that the above corollary is equivalent to the fact that D* is

a localization functor [GZ67, Prop. 1.3, pp.7]. This fits in nicely with the fact that the

traditional definition of Zuckerman functors is via localization [MS07].

1.6 Simple modules

Let g be a finite complex simple Lie algebra. For each non-negative weight λ ∈ X+ there

is unique finite dimensional irreducible representation L(λ) with highest weight λ. Let

V ∈ g−fmod. Let e ∈ L(λ)λ be non-zero. The following fact is well known,

homg(L(λ), V )
∼−→ V hw

λ ,

f 7→ f(e).

Let Cλ be the one dimensional representation of b with weight λ and on which Eα acts by

zero for each α ∈ Π. There is also an isomorphism

homb(Cλ, V ) ∼= V hw
λ .

Let s1, s2, · · · ∈ W be a sequence of simple reflections associated to α1, α2, · · · ∈ Π.

Let D1,D2, · · · be the functors associated to α1, α2, . . . , but considered as functors from

b−fmod→ b−fmod via restriction.

By the above remarks, the adjunction Dα ` res and repeated applications of Proposi-

tion I.12,

V hw
λ
∼= homb(Cλ, V ),

∼= homgαn (Dn(Cλ), V ),

∼= homb(Dn(Cλ), V ),

∼= homgαn−1
(Dn−1 Dn(Cλ), V ),

∼= homb(Dn−2 . . .Dn(Cλ), V ),

...

13



Given c ∈ Cλ\{0} and e ∈ L(λ)λ\{0} there is a nonzero b-morphism Cλ → L(λ) sending

c 7→ e. The above formula gives for each k a b-morphism Dk · · ·Dn(Cλ)→ L(λ).

If the b-module D1 D2 · · ·Dn(Cλ) has the structure of a g-module then

homb(D1 D2 · · ·Dn(Cλ), V ) ∼= homg(D1 D2 · · ·Dn(Cλ), V )

We could thus Identify the functors homg(L(λ), V ) ∼= V hw
λ and homg(D1 D2 · · ·Dn(Cλ), V ) ∼=

homb(Cλ, V ) ∼= V hw
λ . By Yoneda’s lemma, we could conclude the b-morphism D1 D2 · · ·Dn(Cλ)→

L(λ) is an isomorphism. This is summarized in the following Proposition.

Proposition I.14. If the b-module D1 D2 · · ·Dn(Cλ) has the structure of a g-module then

there is an isomorphism D1 D2 · · ·Dn(Cλ)→ L(λ).

Proposition I.15. Let λ ∈ X+ and let w0 ∈ W be the longest element of the Weyl group,

w0 = s1s2 . . . sn a reduced decomposition. Then the b-morphism constructed before the pre-

vious proposition,

D1 D2 · · ·Dn(Cλ)→ L(λ),

is surjective.

Proof. Let en ∈ L(λ)λ be the image of 1 ∈ Cλ under a non-zero b-morphism Cλ → L(λ).

Let en−1 ∈ L(λ)sn(λ) be the element

en−1 = F 〈λ,α̌n〉en.

Inductively define ei in the extremal weight space L(λ)si+1...sn(λ) by

ei = F 〈si+2...sn(λ),α̌i+1〉ei+1.

For each i there is a surjection

D i . . .Dn(Cλ)→ U(gαi)U(b)ei+1 ⊂ L(λ),

14



given by the canonical morphism from the previous proposition. As e0 ∈ L(λ)w0(λ) generates

L(λ) as a b-module, we find that the canonical morphism

D1 D2 · · ·Dn(Cλ)→ L(λ),

is surjective.

Proposition I.16. Keep the setup of the previous proposition. The canonical morphism

D1 D2 · · ·Dn(Cλ)→ L(λ),

is an isomorphism.

Proof. See [Jos85]. A similar result holds for D*
α with λ ∈ −X+. This is a categorification

of part of the Demazure character formula, Proposition I.2.

1.7 Characters

Recall Z[X] = Z[ex]x∈X/(e
xey = ex+y). Given V ∈ h−fmod semisimple with Vλ = 0, λ 6∈ X,

its character is defined by

char(V ) =
∑
x∈X

dim(Vx)e
x.

Lemma I.17. Let V ∈ b−fmod and let V = im(V
η−→ res Dα(V )) be the image of the unit

η. The following formula gives the character of Dα(V ):

char Dα(V ) = ∆α char(V ).

Similarly, let V̂ be the image of the counit res D*
α(V )

ε−→ V . The following formula gives the

character of D*
α(V ):

char D*
α(V ) = ∆*

α char(V̂ ).

Proof. To begin with, let V
p−→ V

i−→ res Dα(V ) be the projection and inclusion morphisms.

Then Dα(p) : Dα(V ) → Dα(V ) is an isomorphism with inverse given by the composition,

15



Dα V
Dα(i)−−−→ Dα res Dα(V )

εDα−−→ Dα(V ). Analogously for j : V̂ → V , there is an isomorphism

Dα(V̂ )
Dα(j)−−−→ Dα(V ). It follows that to determine the character of Dα(V ) we can assume

that V is a b-submodule of a gα-module, and for D*
α(V ) we can assume that V is a b-quotient

module of a gα-module.

By Lemma I.9 it will suffice to show the claims for g = sl2. In that case b is a 2-

dimensional Lie algebra, b = HC ⊕ EC with commutativity relation [H,E] = 2E. By

Jordan normal form for the nilpotent operator E, every finite b-module is a direct sum of

string modules S(n,m), see Section 1.4. If S(n,m) is a submodule of a g-module then 0 ≤ m

and −m ≤ n. If S(n,m) is a quotient of a g-module then n ≤ 0 and m ≤ −n.

By Section 1.4 there are natural isomorphisms:

Dα(V ) ∼=
⊕
n≥0

L(n)⊗C homb(V, L(n))∗,

D*
α(V ) ∼=

⊕
n≥0

L(n)⊗C homb(L(n), V ).

Thus the characters are given by the precursory character formulas:

char Dα(V ) =
∑
n≥0

dimC homb(V, L(n)) · charL(n),

char Dα(V ) =
∑
n≥0

dimC homb(L(n), V ) · charL(n).

By the preliminary remarks it suffices to prove the first character formula for string modules

V = S(n,m) with 0 ≤ m and −m ≤ n. In that case

dimC homb(S(n,m), L(λ)) =


1, |n| ≤ λ ≤ m,

0, else.

It is clear that:

charL(λ) = ∆α(eλ),

and by the idempotence of ∆α,

charL(λ) = ∆α charL(λ).

16



For n ≥ 0 the contribution of each L(λ) to the precursory character formula is equal to

∆α(eλ). Thus,

char Dα(S(n,m)) =
∑

−n≤λ≤m

∆α(eλ),

= ∆α(charS(n,m)).

For n ≤ 0 the contribution of L(−n) to the precursory character formula is equal to en +

en+2 + · · · + e−n = ∆α(en + en+2 + · · · + e−n). The contribution of L(λ) for n < λ ≤ m is

equal to ∆α(eλ). All told,

char Dα(S(n,m)) = ∆α(en + en+2 + · · ·+ e−n) +
∑

−n<λ≤m

∆α(eλ),

= ∆α(charS(n,m)).

The proof for D*
α(S(n,m)) when n ≤ 0 and m ≤ −n is similar, using the formula L(λ) =

∆*
α(e−λ).

The following lemma is needed for the next chapter.

Lemma I.18. Let K be a b-module. Then D*
α(K) = 0 if and only if for every λ ∈ X with

−n = 〈λ, α̌〉 ≤ 0, the morphism

En+1
α : Kλ → Ksα(λ)+α

is injective.

Proof. It suffices to show the claim for sl2. As L(n) is a cyclic b-module generated by L(n)−n

such that En+1 : L(n)−n → L(n)n+1 is zero, a b-morphism L(n) → K is given by a linear

morphism C ∼= L(n)−n → ker(En+1 : K−n → Kn+1). There are no such morphisms precisely

when En+1 : K−n → Kn+1 is injective.

Lemma I.19. Let K,V ∈ b−fmod and M ∈ gα−fmod and suppose there is an exact se-

quence:

0 −→ K −→ resM
p−→ V −→ 0.

17



By the adjunction res ` D*
α there is an associated gα-module morphism

M
q−→ D*

α(V ).

Then q is an isomorphism if and only if for every λ ∈ X with −n = 〈λ, α̌〉 ≤ 0, the morphism

En+1 : Kλ → Ksα(λ)+α

is an isomorphism.

Proof. As D*
α has a left adjoint it is left exact. Thus q is injective if and only if D*

α(K) ∼= 0.

Suppose M ∼= D*
α(V ). Then by Lemma I.17, charM = ∆*

α(charV ). As M is an extension

of V by K the following equality holds:

charK = charM − charV,

= ∆*
α(charV )− charV.

As ∆*
α

2
= ∆*

α it follows, ∆*
α(charK) = 0, and hence sα · charK = charK. Let λ ∈ X with

−n = 〈x, α̌〉 ≤ 0. As D*
α(K) = 0 the previous lemma shows that En+1

α : Kλ → Ksα·λ is

injective. But sα · charK = charK so the spaces Kλ, Ksα·λ have the same dimension and

En+1
α must also be surjective.

Conversely, suppose that each En+1
α : Kλ → Ksα·λ is an isomorphism.

By the previous lemma and the injectivity of En+1
α : Kλ → Ksα·λ it follows D*

α(K) ∼= 0.

As M is a gα-module, ∆*
α(charM) = charM . Finally, the isomorphism En+1

α : Kλ → Ksα·λ

shows that sα · charK = charK, from which it follows

0 = ∆*
α charK,

= ∆*
α(charM − charV ),

= charM −∆*
α(charV ).

Lemma I.17 gives char D*
α(V ) = ∆*

α charV , so that M and D*
α(V ) have the same character.

As q : M → D*
α(V ) is injective and they both have the same characters, q must be an

isomorphism.

18



Lemma I.20. Suppose K ∈ b−fmod and D*
α(K) ∼= 0. Let Khw be the kernel of Eα. Then

to show that for each λ ∈ X, −n = 〈λ, α̌〉 ≤ 0 the morphism

En+1
α : Kλ → Ksα·(λ),

is an isomorphism, it suffices to show that for each such λ, n that

Khw
sα·λ ⊂ En+1

α (Kλ)

Proof. It suffices to show the claim for g = sl2. First, break K into string modules, and

let S(−n,m), −n ≤ m be one of the string submodules. It cannot be the case that m ≤ 0

as then there would be a non-zero morphism L(n) → S(−n,m), which contradicts that

D*
α(K) ∼= 0. Thus m > 0. Let y ∈ S(−n,m) be non-zero. If Khw

m ⊂ Em+1(K−m+2) then

because Em+1 : K−m+2 → Km is also injective there is a unique x ∈ K−m+2 with Em+1x = y.

As K is the direct sum of such string modules it cannot be that S(−n,m)−m+2
∼= 0 as

then the projection of x onto S(−n,m) would be zero, but Em+1x = y ∈ S(−n,m). It

follows that −n ≤ −m + 2 ≤ 1. If −n = m = 1 we are done. Otherwise, as En+1 :

S(−n,m)−n → S(−n,m)n−2 is injective, it must be that n− 2 ≤ m. Hence −n = −m + 2,

and S(−n,m) = S(−m + 2,m) for which the claim is obvious. As this is the case for each

string submodule of K, the claim follows.

1.8 Braid relations

The following two claims have no categorical analogue yet, so we include them without proof.

Claim I.21. Let V ∈ b−fmod. Then V has a unique gα-module structure if and only if for

each α ∈ Π, the natural morphism D*
α(V )→ V is an isomorphism.

Proof. See [Jos85, Lemma 2.16].
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Claim I.22. Let α, β ∈ Π and put mα,β the order of sαsβ in W . There is an isomorphism:

D*
α D*

β . . .
∼= D*

β D*
α . . . ,

where both sides have mα,β terms. Thus, the functors D*
α give a categorification of the Hecke

algebra of W having quadratic relations which make the standard generators idempotent.

Proof. See [Jos85, Proposition 2.15].
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CHAPTER 2

Background on 2-Lie Algebras
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2.1 Monoidal categories and adjunctions

Given a monoidal category M,⊗, we will use juxtaposition for the tensor product of both

objects and morphisms. Thus, if X,X ′, Y, Y ′ ∈ M are objects and x : X → X ′, y : Y → Y ′

are morphisms then,

xy : XY → X ′Y ′.

We use ◦ to denote the composition of morphisms inM, so that if a : X → Y and b : Y → Z

then,

b ◦ a : X → Z.

We use X to both denote the object X and the identity morphism Id : X → X. Thus, for

x ∈ End(X),

X
x−→ X

X−→ X = X
x−→ X.

If X ∈M, a right adjoint to X is the data of an object Y ∈M along with two morphisms,

ε : XY → 1,

η : 1→ Y X,

satisfying the zig-zag equalities, i.e. the following diagrams commute :

X
Xη
//

X
##

XYX

εX
��

X,

Y
ηY
//

Y
##

Y XY

Y ε
��

Y.

It is also said that X is left adjoint to Y and is sometimes denoted (ε, η) : X ` Y .
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2.2 Half Lie algebras

Retain the notation of Chapter 1. This section reproduces the definition of A used throughout

Chapter 3. It is based on [Rou11].

Let Π ⊂ R be the simple roots, and put C = (aα,β)α,β∈Π the Cartan matrix,

aα,β = 〈β, α̌〉.

Put mα,β = −aα,β. Let tα,β,s,r be a family of indeterminates with 0 ≤ r < mα,β and

0 ≤ s < mβ,α for α 6= β and such that tβ,α,s,r = tα,β,r,s. Let {tα,β}α 6=β be another family of

indeterminates with tα,β = tβ,α if aα,β = 0.

Let k = kC = Z[{tα,β,r,s}∪{t±1
α,β}]. Define polynomials Qα,β ∈ k[u, v] by Qα,α = 0, Qα,β =

tα,β if aα,β = 0 and,

Qα,β = tα,βu
mα,β +

 ∑
0≤r<mα,β
0≤s<mβ,α

tα,β,r,su
rvs

+ tβ,αv
mβ,α ,

for aα,β < 0.

Definition. Let B = B(C) be the free strict monoidal k-linear category generated by objects

Eα, for α ∈ Π and arrows,

xα :Eα → Eα,

τα,β :EαEβ → EβEα,

for each α, β ∈ Π with relations,

1. τα,βτβ,α = Qα,β(Eβxα, xβEα)

2. τβ,γEα ◦ Eβτα,γ ◦ τα,βEγ − Eγτα,β ◦ τα,γEα ◦ τβ,γ =
Qα,β(xαEβ, Eαxβ)Eα − EαQα,β(Eβxα, xβEα)

xαEβEα − EαEβxα
Eα if α = γ,

0 otherwise.
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3. τα,β ◦ xαEβ − Eαxβ ◦ τα,β = δα,β

4. τα,β ◦ Eαxβ − xαEβ ◦ τα,β = −δα,β

For each α ∈ Π and n ∈ Z≥0 there is a chosen idempotent bn : En
α → En

α. Let E
(n)
α be the

image of the idempotent bn in the idempotent completion Bi of B. There is an isomorphism

n! · E(n)
α
∼= En

α in Bi.

2.3 2-Lie algebras

Let B1 be the strict monoidal k-linear category obtained from B by adding Fα right dual to

Eα for every α ∈ Π. Denote by

εα : EαFα → 1,

ηα : 1→ FαEα,

the counit and unit of the adjunctions.

Consider the strict 2-category A1 with set of objects X and hom(λ, λ′) the full subcategory

of B1 generated by direct sums of products of Eα, Fα whose E•-term subscripts, summed,

minus the F•-term subscripts, summed, give λ′ − λ. As a notation we will write Eα1λ to

denote the 1-arrow Eα : λ→ λ+ α in A1.

Definition. Let A be the strict k-linear 2-category deduced from A1 by inverting the fol-

lowing 2-arrows:

• when 〈λ, α̌〉 ≥ 0,

ρα,λ = σα,α +

〈λ,α̌〉−1∑
i=0

εα ◦ (xiαFα) : EαFα1λ → FαEα1λ ⊕ 1
〈λ,α̌〉
λ

• when 〈λ, α̌〉 ≤ 0,

ρα,λ = σα,α +

−〈λ,α̌〉−1∑
i=0

(Fαx
i
α) ◦ ηα : EαFα1λ ⊕ 1

−〈λ,α̌〉
λ → FαEα1λ
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• σα,β : EαFβ1λ → FβEα1λ for all α 6= β and all λ, where

σα,β = (FβEαεβ) ◦ (Fβτβ,αFα) ◦ (ηβEαFβ) : EαFβ → FβEα.

2.4 Representations of 2-Lie algebras

Let k be an algebraically closed field. A representation of A on a k-linear category V is the

data of:

• A morphism k→ k

• a k-linear category Vλ for every λ ∈ X

• functors Eα : Vλ → Vλ+α and Fα : Vλ → Vλ−α along with an adjunction (εα, ηα) : Eα `

Fα.

• natural transformations xα : Eα → Eα and τα,β : EαEβ → EβEα

such that the relations of Definition 2.2 hold and the morphisms of Definition 2.3 are invert-

ible. We say that the representation is integrable if each of Eα, Fα are locally nilpotent.

Definition. Given λ ∈ X− we define an integrable, additive representation of A which

categorifies the simple representation L(λ) of lowest weight λ. Let L(λ) be the additive

quotient representation

L(λ) = •Aλ/(•AFα1λ).

The following three results are needed for Chapter 3.

Lemma I.23. (See [Rou08, Lemma 4.14] ) Let α ∈ Π and m,n ∈ Z≥0. Let r = m−n+〈λ, α̌〉.

There is an isomorphism in Ai:

E(m)
α F (n)

α 1λ ∼=
⊕
i≥0

(
r

i

)
F (n−i)
α E(m−i)

α
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when r ≥ 0 and:

F (n)
α E(m)

α 1λ ∼=
⊕
i≥0

(
−r
i

)
E(m−i)
α F (n−i)

α

when r ≤ 0.

Let 0Hn denote the nil affine Hecke algebra of GLn. Put Pi = Z[X1, . . . , Xi]. We denote

by Hi,n the subalgebra of 0Hn generated by T1, . . . Ti−1 and P
S[i+1,n]
n .

Let g = sl2. Given n ∈ Z, n ≥ 0, let L̃(−n)λ = H(n+λ)/2,n−free for λ ∈ {−n,−n +

2, . . . , n}. We define E =
⊕n−1

i Ind
Hi+1,n

Hi,n
and F =

⊕n−1
i=0 Res

Hi+1,n

Hi,n
. There is a canonical

adjunction E ` F . Multiplication by Xi+1 gives an endomorphism of each Ind
Hi+1,n

Hi,n
and

taking the sum over all i gives an endomorphism x of E. Similarly, multiplication by Ti+1

gives an endomorphism of Ind
Hi+2,n

Hi,n
which gives an endomorphism τ of E2. This gives the

data of a representation of A on L̃(−n) =
⊕

λ L̃(−n)λ.

Proposition I.24. ([Rou08, Proposition 5.15]) There is a canonical isomorphism of -representations

of A,

L(−n)
∼−→ L̃(−n)

Lemma I.25. (See [CR08, Remark 5.25]) Let k be a base field. Let g = sl2 and let V be

an integrable representation of A on an abelian, Krull-Schmidt category with the property

that for any simple object S of V the endomorphism ring of S is k. Let Iλ be the set of

isomorphism classes of simple objects U ∈ Vλ such that F (U) ∼= 0. There is an isomorphism

⊕
λ∈X+

U∈Iλ

Q⊗K0(L(λ))
∼−→ Q⊗K0(V),

giving a canonical decomposition of Q⊗K0(V) into simple summands.

26



CHAPTER 3

Categorical Demazure Operators
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3.1 Definitions

Definition. The 2-category B is the strict k-linear 2-category with set of objects X, and for

which homB(λ, λ′) is the full subcategory of B given by direct sums of products of Eα’s the

sum of whose subscripts is λ′−λ. As notation, we write Eα1λ for the 1-arrow Eα : λ→ λ+α′

See Chapter 2 for background, notation and general definitions pertaining to 2-Lie alge-

bras used in this chapter. Recall B from Definition 3.1 is the 2-category with objects X and

1-morphisms generated only by Eα, and not Fα. The 2-morphisms of B are those coming

from the category B, so that B is not a full subcategory of A. This is analogous to the

Borel subalgebra b of g. For each α ∈ Π let Aα be the subcategory of A with objects X and

1-morphisms generated by all of the {Eβ}β∈Π and only Fα. This is a categorification of the

parabolic lie subalgebra gα ⊂ g.

In this section a 2-functor,

D*
α : B−mod→ Aα−mod

will be defined which mimics coinduction using the B−Aα bimodule HomAα(−,−). The fol-

lowing suggestive abuse of notation will be used for the remainder of the chapter, HomAα(−,−) =

•A
α
• in which the bullets are the reverse order of the dashes. For each µ ∈ X the right Aα-

module µA
α
• is equal to µA

α
λ = Hom(λ, µ) in weight λ. There is a contravariant action, for

G ∈ Hom(λ, λ′) i.e., a functor,

− ·G :•A
α
λ′ → •A

α
λ

which is thought of as right multiplication. In the 2-categorical language this map comes

from,

Hom(G,−) : Hom(λ′,−)→ Hom(λ,−).

Similarly, for each λ ∈ X the left B-module •A
α
λ is equal to µA

α
λ = Hom(λ, µ) in weight µ.

There is a covariant action, for G ∈ Hom(µ, µ′) i.e., a functor,

G · − :µA
α
• → µ′A

α
•,
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which is interpreted as left multiplication. In the 2-categorical language this map comes

from the functor,

Hom(−, G) : Hom(λ′,−)→ Hom(λ,−).

Definition. For any 2-representation V of B define via pullback a 2-representation of Aα on

the category of B-morphisms of 2-representations,

D*(V) = homB(Hom(−,−),V),

= homB(•A
α
•,V).

The λ weight space of this representation of Aα is given by,

D*(V)λ = hom
D

*
α
(Hom(λ,−),V),

= homB(•A
α
λ,V).

The action of G ∈ µA
α
λ on Σ ∈ D*(V)λ = homB(•A

α
λ,V) is given by

(G · Σ)(−) = Σ(− ·G).

3.2 Adjunctions

This section gives the categorical analogues of Section 1.3. In particular it is shown that D*
α

may be interpreted as a right adjoint of a restriction functor in an even stronger sense than

the usual adjunction between 2-functors.

LetRes : Aα−mod→ B−mod be the restriction 2-functor. Since D*
α(W) = HomB(•A•,W),

we rely on a categorical tensor – hom adjunction in which the tensor product, “− ⊗A A =

Id(−)” functor is trivial.

Claim I.26. Given V a k-linear A-module andW a k-linear B-module, there is an equivalence

of categories

K : homAα(V ,D*
α(W))

∼←→ homB(ResV ,W) : K−1,
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where

K(Φ) = (Vλ 3 v 7→ Φ(v)(1λ),

K−1(Ψ) = (v 7→ (G 7→ Ψ(G · v))).

Furthermore, if V ,W are abelian categories, restricting to the subcategories of exact mor-

phisms gives an equivalence denoted by,

homex
A
α(V ,D*

α(W))
∼←→ homex

B (ResV ,W)

Proof. There is a standard way to make each of K,K−1 functorial, and one notes that with

these choices they are well defined, i.e. the A-module map structure on Φ is mapped to a

B-module map structure on K(Φ) and analogously for K−1. It is also plain that these two

functors are inverses of each other.

If Φ ∈ homex
A (V ,D*

α(W)) then K(Φ) is also an exact functor due to the abelian structure

on D*
α(W). For Ψ ∈ homex

B (V ,W) one has K−1(Ψ) : Vλ 3 v 7→ (G 7→ Ψ(G · v)) where G

ranges over the objects of HomA(λ,−). It must be shown that if v′ → v → v′′ is exact then

so is Ψ(Gv′)→ Ψ(Gv)→ Ψ(Gv′). As the objects of HomA are generated by E,F which act

as exact functors on V , it follows that Gv′ → Gv → Gv′′ is exact, and because Ψ is exact it

follows that Ψ(Gv′)→ Ψ(Gv)→ Ψ(Gv′) is as well.

The above adjunction comes from the data (ε, η) : Res ` D*
α defined as follows. Let V

be an A-module and let η : V → D*
αRes(V) be the canonical 2-morphism of Aα-modules

V → D*
α(V) given by mapping v ∈ Vλ to the unique Aα-morphism, Σv : Hom(λ,−)→ V for

which Σv(1λ) = v and homA(1λ, G) 7→ homV(v,Gv) is the ‘left-multiplication’ map.

Let W be a B-module and let ε : ResD*
α(W) → W be the evaluation map, for Γ ∈

D*
α(W)λ, ε(Γ) = Γ(1λ). As Γ is a B-module map, ε(EβΓ) = Γ(Eβ1λ) ∼= Eβ(Γ(1λ)), so that η

is also a B-module map.

One may check the zig-zag relations that say the following two compositions of functors

are equal to the identity functor.
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D*
α(W)

ηD
*
α−−→ D*

αResD*
α(W)

D
*
α ε−−→ D*

α(W),

Res(V)
Res η−−−→ ResD*

αRes(V)
εRes−−−→ Res(V).

Remark I.27. It must be said that in the usual notion of adjunction between 2-morphisms

there is only required to be an isomorphism between the identity functor and the composition

in the zig-zag relations. These two so-called triangulator isomorphisms are then required to

satisfy their own coherence relation called the swallowtail identity. In our case the triangula-

tors are identity maps, and satisfy these identities trivially. One would likely need to define

a lax version of the functor D*
α to have a non-trivial 2-adjunction Res ` D*

α.

3.3 Integrability and sl2 example

For this section, set A = A(sl2), the 2-Lie algebra associated with sl2 and drop α from the

notation. Recall from Remark I.5 that when the standard induction functor U(gα) ⊗U(b) −

is applied to a finite b-module, the resulting g-module is an infinite dimensional module

in the BGG category O. Thus to define Dα using such an approach one needs to take a

maximal finite dimensional quotient and use properties of category O to study it. We show

in this section, Corollary I.30 that for a finite, or more precisely integrable B-moduleW , the

corresponding A-module D*
α(W) is integrable already, and thus needs no such quotient or

category O, making D*
α somewhat simpler to use.

For this section let µ0 ∈ −X+ be fixed, and let V be a B-module for which Vµ = 0 if

µ < µ0.

Claim I.28. Let λ ∈ X with λ = µ0 + aα, a ≥ 0. For every Σ ∈ D*(V)λ = homB(•Aλ,V),

the map Σ vanishes on •A · F a+11λ.

Proof. Let Σ ∈ homB(•Aλ,V), and G ∈ Hom(µ0 − α, µ). It follows from Lemma I.23 that G
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is a direct summand of a sum of objects of the form

µE
b
µ0−(c+1)αF

c
µ0−α.

It follows that

Σ(µE
b
µ0−(c+1)αF

cF a+1
λ ) ∼= EbΣ(µ0−(c+1)αF

c+a+1) ∼= 0,

as Σ(µ0−(c+1)αF
c+a+1) ∈ Vµ0−(c+1)α = {0}. The claim is now shown.

Claim I.29. If λ < µ0 then D*(V)λ = homB(•Aλ,V) ∼= 0. Likewise, if λ > −µ0 then

D*(V)λ ∼= 0.

Proof. For the first claim, consider λ < µ0. As above, every G ∈ Hom(λ, µ) is a direct

summand of a sum of terms of the form µE
bF c

λ. Then for Σ ∈ HomB(Hom(λ,−),V), we

have

Σ(EbF c
λ) ∼= EbΣ(λ−cαF

c) ∼= 0.

For the second claim, consider λ > −µ0. Let µ = λ− nα and suppose µ ≥ µ0. Let m be

the smallest positive integer such that µ −mα < µ0. Consider the element µE
mF n+m

λ . As

in Lemma I.23 set r = λ − n. Note that r > 0 if and only if µ > −λ. In particular, r > 0

since µ ≥ µ0. There is an isomorphism (loc. cit.),

µE
mF n+m1λ ∼=

m⊕
`=0

F n+m−`Em−`1λ ⊗k k
(m+n)!m!

(m+n−`)!(m−`)!(
r
`).

In particular, for ` = m we find that µF
n
λ is a direct summand of µE

mF n+m
λ . Thus, for

Σ ∈ HomB(Hom(λ,−),V), Σ(µF
n
λ ) is a direct summand of EmΣ(µ−mαF

n+m
λ ) ∼= 0. It follows

that Σ ∼= 0.

Corollary I.30. Let µ0 ∈ −X+. If V is a B-module which is bounded below by µ0, then

D*(V) is bounded below by µ0 and above by −µ0.
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Lemma I.31. Suppose V is an integrable 2-representation of A and T ∈ Vµ0 is such that

En+1(T ) = 0, where µ0 = −n. Then there exists a canonical B-morphism Σ : L(µ0) =

•Aλ/•A·F1λ → V with Σ(1λ) = T and hom(1λ, G)→ homV(T,GT ) for each G a 1-morphism

in B coming from left multiplication of A on V. Moreover, Σ is also a morphism of A-modules.

Proof. See [Rou08, section 5.1.2]

Consider now an example analogous to the one from Corollary I.7. Let µ0 ≤ 0 be a

weight, and k−fmodµ0 the B-module which is k−fmod in weight µ0 and zero on every other

weight. The following claim computes the 2-representation D*(k−fmodµ0).

Claim I.32. Consider the right A-module (Eα · µ0−αA•)\µ0A•. Define a representation of A

via pullback on

homk((Eα · µ0−αA•)\µ0A•, k−fmod),

the space of k-linear functors from the category (Eα · µ0−αA•)\µ0A• to k−fmod. There is an

equivalence of A-modules,

D*(k−fmodµ0)
∼= homk((Eα · µ0−αA•)\µ0A•, k−fmod).

Proof. The categorical tensor–hom adjunction, Claim I.26 gives an equivalence

homex
A (V ,D*(k−fmodµ0))

∼= homex
B (V , k−fmodµ0).

There is an equivalence

homex
B (V , k−fmodµ0)

∼−→ {Σ ∈ homk(Vµ0 , k−fmod) | Σ(Eα(Vµ0−α)) ∼= 0},

Φ 7→ Φ |Vµ0

which may be written suggestively as

homex
B (V , k−fmodµ0)

∼= homex
k ((Eα · µ0−αA•)\µ0A• ⊗A V , k−fmod).
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Now, consider the right A-module (Eα · µ0−αA)\µ0A. There is a similar equivalence

homex
k ((Eα · µ0−αA)\µ0A⊗A V , k−fmod) ∼= homex

A (V , homk((Eα · µ0−αA)\µ0A, k−fmod)),

also given by using another categorical tensor – hom adjunction. Putting this together gives

the chain of equivalences

homex
A (V ,D*(k−fmodµ0))

∼= homex
B (V , k−fmodµ0)

∼= homex
k (Vµ0/Eα(Vµ0−α), k−fmod)

∼= homex
A (V , homk((Eα · µ0−αA)\µ0A, k−fmod)).

Using the Yoneda lemma this gives an equivalence between A-modules,

D*(k−fmodµ0)
∼= homk((Eα · µ0−αA)\µ0A, k−fmod).

Remark I.33. Chevalley duality gives an equivalence between A-modules and Arev-modules,

where the superscipt rev stands for the reverse 2-category as defined in [Rou08, Section

2.2.2, Section 4.2.1]. Under this equivalence the Arev-module (Eα · µ0−αA)\µ0A corresponds

to the A-module Aµ0/Aµ0−α ·Fα ∼= L(µ0). Writing a superscript ∨ for this Chevalley duality,

(Eα · µ0−αA)\µ0A = L(µ0)∨, and rewriting the above equivalence gives,

D*(k−fmodµ0)
∼= homk(L(µ0)∨, k−fmod).

3.4 Fully faithful lemma

Let V be an A-module. Recall the A-module unit map η : V → D*
αRes(V) from Section 3.2.

Lemma I.34. The A-morphism unit functor η : V → D*
α(V), v 7→ Σv is fully faithful.

Proof. Since Σv,Σw : •Aλ → V are A-morphisms, given v, w ∈ Vλ let homA(Σv,Σw) be the

set of morphisms σ : Σv → Σw in homA(Σv,Σw). Thus, homA(Σv,Σw) ∼= homV(v, w) by a
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standard universal property of the A-module •A•. Similarly, let homB(Σv,Σw) be the set of

morphisms σ : Σv → Σw in D*
α(V).

There is a split surjection homB(Σv,Σw) → homA(Σv,Σw) given by mapping σ in the

first set to σ(1) ∈ homV(v, w) ∼= homA(Σv,Σw) in the latter. The splitting is given by the

canonical inclusion homA(Σv,Σw) ↪→ homB(Σv,Σw). It follows that the morphism in the

lemma is faithful.

To be more explicit, let v, w ∈ Vλ and consider σ : Σv → Σw any morphism from Σv to

Σw. Then σ is a B-morphism if and only if each diagram of the following form is commutative:

Σv(EG)

σ(EG)

��

∼ // EΣv(G)

Eσ(G)
��

Σw(EG) ∼ // EΣw(G).

Note that the horizontal arrows are part of the data for Σv,Σw to be A-morphisms. In

fact, by definition Σv(EG) := EG(v) ∈ V , so they are in actuality identity maps in V .

To show the map is full, we must show that if σ is a B-morphism then it must also be an

A-morphism, which is to say every diagram of the following form is also commutative:

Σv(FG)

σ(FG)

��

∼ // FΣv(G)

Fσ(G)

��

Σw(FG) ∼ // FΣw(G).

Here again, Σv(FG) = FG(v) ∈ V , and the isomorphisms are identity maps. Let σ :

Σv → Σw be a B-morphism. Consider the following diagram:

Σv(FG)
ηΣv(FG)

//

σ(FG)

��

FEΣv(FG) ∼ //

FEσ(FG)

��

FΣv(EFG)
FΣv(εG)

//

Fσ(EFG)

��

FΣ(G)

Fσ(G)

��

Σw(FG)
ηΣw(FG)

// FEΣw(FG) ∼ // FΣw(EFG)
FΣw(εG)

// FΣw(G).
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The first square commutes as η is a morphism of functors. The second square commutes as

σ, a B-morphism, commutes with E. The third square commutes as σ is a functor. It follows

that if σ : Σv → Σw is a B-morphism, then σ is also an A-morphism.

Proposition I.35. If Σ ∈ D*(V) is a lowest weight object, then there is a canonical extension

Σ′ ∈ homA(•A•,V) and a canonical B-isomorphism Σ′ ∼= Σ.

Proof. Suppose that Σ ∈ D*(V)λ is a lowest weight object, F · Σ = 0. If λ > 0 then 1λ

divides EF , and hence Σ = 0. In that case, the proposition is clear. For the remainder of

the proof we assume λ ≤ 0.

More precisely, F ·Σ = 0 means that for every G ∈ Hom(λ−α,−), we have Σ(GFλ) ∼= 0.

This is the equivalent to the condition for Σ to factor through the representation L(λ),

defined above. As an A-morphism Σ : L(λ)→ V is determined by the value Σ(1λ) alone,we

must show that a B-module map Σ : L(λ)→ V is determined by the value Σ(1λ) alone.

By the description [Rou08, Proposition 5.15] of L(λ), a B-module map Σ : L(λ) → V is

determined by the value vλ = Σ(1λ), and by the given algebra map α : End(1λ)→ End(vλ).

All other data is determined as the algebra Ha,n is generated by X1, . . . Xa, T1, . . . Ta−1 ∈

End(Ea) over PSn
n . The following commutative diagram shows that the morphism α is

determined by the image, Σ(1λ) alone:

PSn
n

act //

∼

$$

End(E(n)(vλ)) End(vλ)
E(n)

∼
oo

End(E(n)(1λ))

E(n)Σ(α)

OO

End(1λ).
E(n)

∼
oo

α

OO

Let vλ = Σ(1λ) ∈ V . Let λ = −n, so that En+1vλ = 0 in V . As Fλ divides F n+2En+1
λ ,

it follows that F (vλ) = 0 in V . Thus, there is a unique A-morphism Σ′ = Σvλ : L(λ) → V ,

which is isomorphic to Σ as a B-morphism.
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The following Corollary is a categorification of Claim I.10.

Corollary I.36. If V is a A-module, the unit map η : V → ResD*Res(V) is a fully faithful

map which is an equivalence on the full subcategories of lowest weight objects, V lw ∼−→ D*(V)lw.

If the additive quotient D*(V)/V is integrable and V is an abelian category then the

inclusion V ↪→ D*(V) is an equivalence. In particular, if V is an integrable abelian category,

V is canonically equivalent to D*(V), via η and the inverse equivalence is given by the counit

map, ε : Σ 7→ Σ(1λ) for Σ ∈ D*(V)λ. It follows that there is an essentially unique way to

extend the B-module structure to an A-module structure on an integrable A-module, namely

by the above evaluation isomorphism ResD*(V)→ V.

Proof. The first statement follows from the above proposition. For the second, consider the

following fact: If Γ ∈ D*(V) is an extension of Σw by Σv, and F (w) ∼= 0, then Γ ∼= ΣΓ(1) ∈ V .

To see this let j > 0 and note the exact sequence,

0→ F jv → Γ(F j)→ F jw ∼= 0→ 0,

shows that Γ(F j) ∼= F jv. By the exactness of F , the following sequence is also exact,

0→ F jv → F jΓ(1)→ F jw ∼= 0→ 0.

This shows that F jv ∼= F jΓ(1). It follows that for any i, j we have Γ(EiF j) ∼= EiΓ(F j) ∼=

EiF jΓ(1), so that Γ ∼= ΣΓ(1).

Now let Γ ∈ D*(V) with F · Γ ∈ V . Consider the following map,

EFΓ
ε−→ Γ.

After applying F , the map is a split surjection, with the splitting given by,

FEFΓ
ηF←− FΓ.
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As D*(V) is also an abelian category, the following sequence is exact,

EFΓ
ε−→ Γ→ Γ/EFΓ→ 0.

This stays exact after applying F , hence F (Γ/EFΓ) ∼= 0, which by the above proposition

implies that Γ/EFΓ ∼= Σw for some w ∈ V with Fw ∼= 0. We claim that ker(ε) ∼= Σv for

some v ∈ V , hence EFΓ/ ker(ε) ∈ V , from which the short exact sequence,

0→ EFΓ/ ker(ε)
ε−→ Γ→ Γ/EFΓ→ 0,

shows that Γ ∈ V .

To show that ker(ε) ∈ V , let Γ′
ψ−→ FEFΓ be the kernel of the split surjection FEFΓ

Fε−→

FΓ. As FEFΓ ∈ V by assumption, and V is idempotent complete, Γ′ ∼= Σv′ for some v′ ∈ V .

By the adjunction (E,F ) there is a canonical map ψ′ : EΓ′ → EFΓ given by the composition

EΓ′
Eψ−−→ EFEFΓ

εEF−−→ EFΓ. Moreover, the interchange law gives the commutativity of the

following diagram,

EFEFΓ εEF //

EFε
��

EFΓ

ε
��

EFΓ ε // Γ

,

which shows that the composition EΓ′
ψ′−→ EFΓ

ε−→ Γ is zero. This gives the following

complex,

0→ EΓ′
ψ′−→ EFΓ

ε−→ Γ→ Γ/EFΓ→ 0.

Now, the coimage of EΓ′ → ker(ε) is isomorphic to the coimage of EΓ′
ψ′−→ EFΓ, hence is in

V . It is also the case that F applied to this coimage is also isomorphic to Γ′, and applying

F to the short exact sequence,

0→ coim(EΓ′ → ker(ε))→ ker(ε)→ ker(ε)/EΓ′ → 0,

shows that F (ker(ε)/EΓ′) ∼= 0, hence ker(ε)/EΓ′ ∼= Σw for some w ∈ V with Fw ∼= 0 as

well. As above, since coim(EΓ′ → ker(ε)) ∼= Σv′ for some v′ ∈ V , and Fw ∼= 0, we have that

ker(ε) ∼= Σv for some v ∈ V .
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It follows that the 2-representation on the additive categorical quotient D*(V)/V has no

lowest weight objects. If D*(V)/V is integrable, as in the case that V is integrable, this shows

that V ↪→ D*(V) is an equivalence of categories.

Remark I.37. Just as in Remark I.11 the idempotence relation D*
α

2 ∼= D*
α follows from the

above claim. From this one can also draw the following analogue of Corollary I.12, the fully

faithful lemma.

Lemma I.38. Let V ,W ∈ Aα −mod. The restriction functor Res : A−mod → B−mod is

fully faithful on integrable modules. Given V ,W ∈ A−mod with W integrable, restriction

gives an equivalence

homAα(V ,W) ∼= homB(V ,W).

Proof. See the proof of Corollary I.12.

3.5 Simple modules

Now consider the 2 Kac-Moody algebra A associated to a higher rank finite semi-simple Lie

algebra. For λ ∈ X− define the A-module L∗(µ0) as follows:

L∗(µ0) = homk((1µ0〈EiA〉i)\1µ0A, k−fmod),

where again, homk denotes the category of k-linear functors. Let w0 = s1 · · · sn be a re-

duced decomposition of the longest element of the Weyl group associated with A. Put

wi = si+1 · · · sn and let D*
wi = D*

si+1
◦ · · · ◦D*

sn be the composition of categorical demazure

operators.

Claim I.39. Let V be an A-module. There is a natural equivalence

homex
B (V ,D*

w0(k−fmodµ0))
∼= homex

k (Vµ0/〈Ei(V)〉i, k−fmod).
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Proof. Putting s1 = sα and given that V is an Aα-module, the categorical tensor – hom

adjunction gives an equivalence,

homex
B (V ,D*

w0(k−fmodµ0))
∼= homex

Aα
(V ,D*

α

2 ◦D*
w1(k−fmodµ0)),

As D*
α

2 ∼= D*
α, there is an equivalence

homex
B (V ,D*

w0(k−fmodµ0))
∼= homex

Aα
(V ,D*

α

2 ◦D*
w1(k−fmodµ0)),

∼= homex
Aα

(V ,D*
α ◦D*

w1(k−fmodµ0)).

Using the tensor – hom adjunction again gives

homex
B (V ,D*

w0(k−fmodµ0))
∼= homex

B (V ,D*
w1(k−fmodµ0))

Continuing in this fashion for s2, s3, . . . gives an equivalence,

homex
A (V ,D*

w0(k−fmodµ0))
∼= homex

B (V , k−fmodµ0)

∼= homex
k (Vµ0/〈Ei(V)〉i, k−fmod).

The following is a categorification of Proposition I.14.

Corollary I.40. If the B-module D*
w0(k−fmodµ0) can be given the structure of an A-module

extending the B-action, then there is an A-module equivalence,

D*
w0(k−fmodµ0)

∼= L∗(µ0)

Proof. If D*
w0(k−fmodµ0) can be extended to an A-module, such a structure would necessar-

ily be unique according to Section 3.4. If V is an A-module, Corollary I.38 and the previous

claim give,

homex
A (V ,D*

w0(k−fmodµ0))
∼= homex

B (V ,D*
w0(k−fmodµ0))

∼= homex
k (Vµ0/〈Ei(V)〉i, k−fmod).
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The module L∗(µ0) is defined so that the tensor – hom adjunction gives,

homex
A (V ,L∗(µ0)) = homex

A (V , homk((1µ0〈EiA〉i)\1µ0A, k−fmod))

∼= homex
k (Vµ0/〈Ei(V)〉i, k−fmod).

Thus, the Yoneda Lemma gives an explicit equivalence L∗(µ0) ∼= D*
w0(k−fmodµ0).

Given that L∗(µ0) is an A-module one can construct maps from it to D*
w0(k−fmodµ0) by

computing elements of,

homex
B (L∗(µ0),D*

w0(k−fmodµ0))
∼= homex

k (L∗(µ0)µ0/〈Ei(L∗(µ0))〉i, k−fmod)

∼= homex
k (L∗(µ0)µ0 , k−fmod)

∼= homex
k (homk((1µ0〈EiA〉i)\1µ0Aµ0 , k−fmod), k−fmod)

Of course the category (1µ0〈EiA〉i)\1µ0Aµ0 maps into this double dual category and we will

focus on the image of the object 1µ0 ∈ (1µ0〈EiA〉i)\1µ0Aµ0 , which produces a morphism

Σcan : L∗(µ0)→ D*
w0(k−fmodµ0).

Remark I.41. Abusing the tensor – hom analogy would give the equivalence,

D*
w0(k−fmodµ0)

∼= homk((〈Ei〉i)\1µ0As1 ⊗B · · · ⊗B Asn , k−fmod).

Again, using double duality we would be able to construct maps L∗(µ0)→ D*
w0(k−fmodµ0)

by constructing right B-module maps

(1µ0〈Ei〉i)\1µ0As1 ⊗B · · · ⊗B Asn → (1µ0〈EiA〉i)\1µ0Aµ0

On the decategorified level one may actually construct an isomorphism between the ana-

logues of the above two objects using a PBW basis. We would like to mimic that con-

struction by instead constructing a special element of (1µ0〈EiA〉i)\1µ0Aµ0 which maps into

homex
B (L∗(µ0),D*

w0(k−fmodµ0)).

Conjecture I.42. The B-morphism,

D*
w0(k−fmodµ0)→ homk((〈Ei〉i)\1µ0A, k−fmod).
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is an isomorphism. This gives a construction of the A-module homk((〈Ei〉i)\1µ0As1⊗B · · ·⊗B
Asn , k−fmod) and gives a categorification of Proposition I.16. This is a 2-categorical analogue

of the original Demazure character formula.

3.6 Decategorification

Let V be a B-module on an abelian category which is Artinian and Noetherian. The counit

map ResD*
α(V)

ε−→ V is exact and thus its kernel K is a Serre subcategory of ResD*
α(V).

Definition. Define V̂ to be the abelian quotient category of ResD*
α(V) by the kernel of ε, and

let j : V̂ → V and k : ResD*
α(V)→ V̂ be the canonical functors which factor ResD*

α(V)
ε−→ V .

Claim I.43. The following map,

D*
α(j) : D*

α(V̂)→ D*
α(V)

is an equivalence with inverse given by the composition

D*
α(V)

ηD
*
α−−→ D*

αResD*
α(V)

D
*
α k−−→ D*

α(V̂)

The category V̂ satisfies the following universal property. Given W ∈ Aα−mod there is an

equivalence

homex
B (Res(W),V) ∼= homex

B (Res(W), V̂)

Proof. This is a standard exercise in using the zig-zag equalities and the tensor – hom

adjunction referred to earlier.

The decategorification Theorem may now be stated and proved.

Theorem I.44 (Decategorification Theorem). The decategorification of the operator D*
α

is given by D*
α in the following sense. The map k : D*

α(W) → Ŵ gives rise to a map

[k] : C⊗K0(D*
α(W))→ C⊗K0(Ŵ). Where defined, there is a natural isomorphism,

C⊗K0(D*
α(W)) ∼= D*

α(C⊗K0(Ŵ)).
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This theorem will be proved in two steps, showing first that the map is injective, Claim I.46

and second that it is surjective, Claim I.47.

Lemma I.45. Let λ ∈ X− and Γ,Σ ∈ D*
α(V̂)lwλ . Then,

hom
D

*
α(V̂)

(Γ,Σ) ∼= homV̂(kΓ, kΣ).

Proof. Both Γ,Σ : Aλ → V factor through L(λ) ∼= Aλ/AFα1λ. The description [Rou08,

section 5.2] of L(λ) shows that as a B-module, L(λ) is generated by the image of 1λ ∈

•Aλ/•AFα1λ. Any subobject Ω of Γ also factors through Aλ/AFα1λ and so if ε(Ω) = Ω(1λ) ∼=

0, i.e. Ω ∈ K = ker(ε), then Ω ∼= 0. Similarly, if a quotient object Ω of Σ were in K, it would

factor through Aλ/AFα1λ and thus if ε(Ω) = Ω(1λ) ∼= 0 then Ω ∼= 0. It follows that in the

abelian quotient category V̂ the set of morphisms between Γ and Σ is the same as the set of

morphisms between Γ and Σ in V :

hom
D

*
α(V̂)

(Γ,Σ) ∼= homV̂(kΓ, kΣ).

Claim I.46. Let V be a B-module and V̂ as above. As C⊗K0(D*
α(V̂)) is a gα-module and

[k] : C⊗K0(D*
α(V̂))→ C⊗K0(V̂),

is a b-module morphism, the adjunction res ` D*
α gives a gα-module morphism

C⊗K0(D*
α(V̂))→ D*

α(C⊗K0(V̂)).

This map is injective.

Proof. The following is a commutative diagram,

C⊗K0(ResD*
α(V̂)) //

[k] ))

D*
α(C⊗K0(V̂))

��

C⊗K0(V̂).
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It remains to show that the top row is injective. As the top row is a map of gα-modules it

suffices to show that it is injective on lowest weight spaces. Commutativity of the diagram

shows that it is enough to prove that the restriction,

C⊗K0(ResD*
α(V̂))lw

[k]−→ C⊗K0(V̂)

is injective. As D*
α(V̂) is an abelian categorification on an Artinian and Noetherian category

then by Lemma I.25,

C⊗K0(D*
α(V̂))lw ∼= C⊗K0(D*

α(V̂)lw).

By the previous lemma, the restriction,

k : D*
α(V̂)lw → V̂

is fully faithful. Because D*
α(V̂)lw is the kernel of the exact functor F , it is a Serre subcategory

of the Artinian and Noetherian category D*
α(V̂). Finally, as k is fully faithful and V̂ is also

an Artinian and Noetherian category this implies

[k] : C⊗K0(ResD*
α(V̂))lw → C⊗K0(V̂)

is injective and the claim follows.

Claim I.47. Keep the setup of Theorem I.44. The map

C⊗K0(D*
α(V))→ D*

α(C⊗K0(V̂)).

is surjective.

Proof. Let K = C⊗K0(K). There is an exact sequence of b-modules,

0→ K → C⊗K0(D*
α(V̂))→ C⊗K0(V̂)→ 0.

Also, K0(D*
α(V̂)) is a gα-module, and the associated map

K0(D*
α(V̂))→ D*

α(C⊗K0(V̂))
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is injective by Lemma I.46, thus by Lemma I.19, i.e. by the left exactness of D*
α there is an

isomorphism,

D*
α(K) ∼= 0.

To show the claim, Lemma I.20 implies that it suffices to show that for each λ ∈ X, −n =

〈λ, α̌〉 ≤ 0, that

Khw
sα·λ ⊂ En+1

α (Kλ).

Since D*
α(V) is an abelian sl2-categorification on a k-linear Artinian and Noetherian category,

Lemma I.25 shows that Khw
sα·λ is spanned by the classes of objects in Khw ⊂ D*

α(V)hw. Let

λ ∈ X, −n = 〈λ, α̌〉 ≤ 0 and let Γ ∈ Khwsα·λ be non-zero. Then,

E(n+2)F (n+2)Γ ∼= Γ.

The claim would be proved if EF (n+2)Γ ∈ K, i.e. if Γ(EF
(n+2)
λ ) ∼= 0, though this is not

the case in general. Since Γ ∈ Khwsα·λ it follows that Eα · Γ ∼= 0. By [Rou08, Lemma 4.6]

it is also the case that F · F n+2 · Γ ∼= 0, thus F n+2 · Γ ∈ D*
α(V)lwλ−α. It will be shown

that there is a subobject Σ ↪→ EF n+2Γ with En+1Σ ∼= 0 and ((EF (n+2)Γ)/Σ)(1λ) ∼= 0, i.e.

(EF (n+2)Γ/Σ ∈ K. As Eα is exact, and En+1Σ ∼= 0 there is an isomorphism,

En+1((EF n+2 · Γ)/Σ) ∼=(En+2F n+2 · Γ)/En+1Σ,

∼=En+2F n+2Γ.

Now, En+2F n+2Γ is a non-zero multiple of E(n+2)F (n+2)Γ ∼= Γ. It follows that the class of Γ

is in the image of En+1 : Kλ → Ksα·λ.

To construct Σ ↪→ EF n+2 · Γ note that F n+2 · Γ ∈ D*
α(V)lwλ−α, and so F n+2 · Γ : Aλ−α

factors through Aλ−α/AFλ−α, which may be written,

F n+2 · Γ : L(λ− α)→ V .

Recall that L(λ−α) ∼= P
Sn+2

n+2 − free, where Pn+2 is the polynomial algebra on n+2 variables

and Sn+2 is the action of the symmetric group. In particular, under this identification
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F n+2 ·Γ(P
Sn+2

n+2 ) = (F n+2 ·Γ)(1λ−α) with the action of P
Sn+2

n+2 coming from the Hecke algebra

action Hn+2 → End(F n+2) and the inclusion Pn+2 ↪→ Hn+2. Include Pn ↪→ Pn+2 using the

‘middle’ n variables. This gives a morphism PSn
n → End(EF n+2 · Γ(1λ)). Let Σ : L(λ)→ V

be defined on PSn
n − free by the above map. As Γ ∈ K, we have En+1((EF n+2 · Γ)(1λ)) ∼= 0,

which shows that indeed Σ extends to a well defined morphism L(λ) → V . Moreover, such

a morphism necessarily has F · Σ ∼= 0, so because Σ has weight λ, En+1Σ ∼= 0.

The claims of Section I.22 suggest the following Conjecture.

Conjecture I.48. The 2-functors D*
α satisfy braid relations.
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Hecke Algebras
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Abstract

We give a presentation of localized affine and degenerate affine Hecke algebras of arbitrary

type in terms of weights of the polynomial subalgebra and varied Demazure-BGG type

operators. We offer a definition of a graded algebra H whose category of finite-dimensional

ungraded nilpotent modules is equivalent to the category of finite-dimensional modules over

an associated degenerate affine Hecke algebra. Moreover, unlike the traditional grading on

degenerate affine Hecke algebras, this grading factors through central characters, and thus

gives a grading to the irreducible representations of the associated degenerate affine Hecke

algebra. This paper extends the results [Rou11, Theorem 3.11], and [BK09, Main Theorem]

where the affine and degenerate affine Hecke algebras for GLn are shown to be related to

quiver Hecke algebras in type A, and also secretly carry a grading.

Introduction

The representation theory of affine and degenerate affine Hecke algebras has a rich and

continuing history. The work of Kazhdan and Lusztig in [KL87] (c.f. also [Gin98]) gives a

parametrization and construction of irreducible modules over an affine Hecke algebra with

equal parameters which aren’t a root of unity. This parametrization is in the spirit of the

Langlands program, and is carried out by constructing a geometric action of the Hecke

algebra on equivariant (co)homology and K-theory of various manifolds related to the flag

variety. Moreover, character formulas for irreducible representations are deduced from this

theory, giving a satisfactory geometric understanding of the representation theory of such

algebras. Unfortunately, for unequal parameters the geometric approach has not yielded as

much progress.

More recently, the categorification of quantum groups has given a renewed interest to the

theory of affine Hecke algebras of type A. It is shown in [BK09, Main Theorem], [Rou08,

Theorem 3.16, 3.19] that a localization of the affine Hecke algebra Hn of GLn at a maximal
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central ideal is isomorphic to a localization of a quiver Hecke algebra Hλ associated to a finite

or affine type A Cartan matrix at a corresponding central ideal. This coincidence has been

used in [McN12], [KR11] to give a new approach to classifying the irreducible representations

of these algebras for parameters q which aren’t a root of unity, as well as understanding the

homological algebra of their representation categories. This algebraic approach replaces the

set-up of the Langlands program with the main categorification result, that quiver Hecke

algebras categorify quantum groups [KL09; Rou08]. Even further, this work shows that the

affine Hecke algebras of type A carry a secret grading which recovers the quantum variable

in the decategorification. It is a natural, and important question to ask if these techniques

may be used for affine Hecke algebras in other types.

This paper defines a graded algebra H associated to any simply connected semisimple

root datum and arbitrary parameters whose category of (ungraded) finite modules with

a nilpotence condition is equivalent to the category of finite modules over the associated

degenerate affine Hecke algebra. Thus degenerate affine Hecke algebras in other types and

with unequal parameters are secretly graded as are those of type A. The presentation of H

is a natural analogue of a quiver Hecke algebra, but with the symmetric group Sn replaced

with the Weyl group of the root datum, thus we refer to H as a quiver Hecke algebra as well.

In this way we generalize [Rou08, Theorem 3.16], and give a grading on finite-dimensional

irreducible representations of degenerate affine Hecke algebras. It is unclear if the algebras H

are in fact related to the geometry of quiver-type varieties, but the considerable applications

of the the theory of quiver Hecke algebras gives cause for their study. Moreover, there are

many natural questions to be asked about the algebra H. Could the graded characters of an

irreducible module could be computed from the geometric standpoint mentioned above? Are

there natural graded cyclotomic quotients ofH? Could one give an algebraic parametrization

of the irreducible H-modules and offer an algebraic construction of them following the work

of [McN12]?

It should be noted that this paper uses localizations where other authors, [Lus89],

[Hof+12] use completions. Our approach is rooted in finding a graded version of the de-
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generate affine Hecke algebras, which does not need the machinery of completions, and is

perhaps a simpler approach in the first place.

We now briefly summarize the results of the paper. Fix a simply connected semisimple

algebraic group over a field k, and let h0 ∈ k be a parameter. In this paper we define a

locally unital localized quiver Hecke algebra H h0(G) associated to a data G with generators

and relations. The algebra is given as a direct sum over Weyl group orbits in the dual to

a maximal torus when h0 6= 0 and over Weyl group orbits in the dual space to a Cartan

subalgebra when h0 = 0:

H h0(G) =
⊕

Λ∈T h0/W

H h0(G)Λ.

We associate a data G and parameter h0 ∈ k to the affine and degenerate affine Hecke

algebras H ,H associated with this group where h0 = 0 in the degenerate case. We then

define a non-unital localization, ˙H h0 of H ,H and produce an isomorphism,

H h0(G)
∼−→ ˙H h0 ,

which generalizes [Rou11, Theorem 3.11, 3.12]. The graded version of a degenerate affine

Hecke algebra, H, is defined as a subalgebra of H h0(G) with h0 = 0, and we give a separate

presentation of this algebra with generators and relations.

In the last section 3, we define the quiver Hecke algebra H associated to a degenerate affine

Hecke algebra H. This is a graded algebra whose category of finite-dimensional ungraded

nilpotent representations is equivalent to that of H. In fact, we show in this section that

every irreducible ungraded representation of H has a grading whose graded character is

invariant under inverting the grading. In section 3.4 we study the representation theory of

H h0(G) one weight space at a time. A crucial tool is the PBW-basis given in Theorem

II.15. Using this basis along with a few simple results on the action of the Weyl group

on the torus we provide two algebraic constructions of all irreducible representations which

have a non-zero eigenspace Vλ with λ a standard parabolic weight, both in the equal and

unequal parameters case. A highlight of this study is the structure of the so-called weight
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Hecke algebra, λH
h0
λ , which turns out to be a matrix ring for λ a standard parabolic. This

recovers and extends a well known result of Rodier in the case that λ is W -invariant, as well

as a result of Bernstein-Zelevinsky in the case that λ is regular. This chapter includes an

example algebraic computation of the graded characters of each irreducible representation

of a degenerate affine Hecke algebra of type SL3 with a specific central character.

We hope our construction can be used to obtain new and algebraic insights on representa-

tions of (degenerate) affine Hecke algebras at unequal parameters, where geometric methods

are missing.
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CHAPTER 1

Affine Hecke algebras

1.1 Bernstein’s presentation

We recall the Bernstein presentation of affine Hecke algebras, following [Lus89]. Let (X, Y,R, Ř,Π)

be a (reduced) simply connected semisimple root datum. Thus X, Y are finitely generated

free abelian groups in perfect pairing we denote by 〈, 〉. Further, the finite subsets R ⊂ X,

Ř ⊂ Y of roots and coroots are in a given bijection α 7→ α̌. The set R is invariant under the

simple reflections, sα ∈ GL(X), which are given by,

sα(x) = x− 〈x, α̌〉α.

Similarly, it is required that Ř be invariant under sα̌, defined by,

sα̌(y) = y − 〈y, α〉α̌.

Denote by W ⊂ GL(X) the finite Weyl group of the system, and Π ⊂ R a root basis. As the

root system is reduced, the only multiples of a root α which are also roots are ±α. Lastly,

the root datum being simply connected means X contains the fundamental weights {ωα}α∈Π

defined as follows. Given α ∈ Π let ωα ∈ Q ·R ⊂ Q⊗ZX be defined by 〈ωα, β̌〉 = δα,β for all

β ∈ Π. The assumption that the root system is simply connected simplifies a number of the

formulas in [Lus89], in particular α̌ 6∈ 2Y for any α ∈ Π. This also simplifies the W -module

structure of the group ring of X, as we shall see.

Let A be the group ring of X,

A = Z[ex]x∈X/(e
xex

′
= ex+x′),
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which is a domain. Finally, fix a parameter set given by a collection qsα = qα of indetermi-

nates indexed by α ∈ Π such that qα = qβ whenever the order mα,β of sαsβ in W is odd. As

convention, we put mα,α = 2.

With this data we associate the affine Hecke algebra, H , which appears naturally in

the complex, admissible representation theory of the associated algebraic group over p-adic

fields.

Definition. Let H f denote the finite Hecke algebra associated to Weyl group of the root

datum. This is the Z[qα]α∈Π-algebra generated by symbols Tα = Tsα , α ∈ Π, with the

relations:

i. · · ·TβTα = · · ·TαTβ, for α 6= β, with mα,β terms on both sides,

ii. (Tα + 1)(Tα − qα) = 0, α ∈ Π.

Denote by H the affine Hecke algebra of the root system. As an additive group,

H = H f ⊗Z A .

Let H f and A be subrings, with the indeterminates qα central and give H the following

commutativity relation between Tα ∈H f , f ∈ A :

Tαf − sα(f)Tα = (qα − 1)
f − sα(f)

1− e−α
. (1.1)

We remark that while (1− e−α)−1 6∈ A , the fraction appearing on right side of the above

commutativity formula is in A . For example,

ex − esα(x)

1− e−α
=


ex + ex−α + · · ·+ esα(x)+α 〈x, α̌〉 > 0

−(ex+α + ex+2α + · · ·+ esα(x)) 〈x, α̌〉 < 0

0 〈x, α̌〉 = 0.

55



1.2 Degenerate and interpolating affine Hecke algebras

The degenerate affine Hecke algebra H is introduced in this section, along with an algebra

H h which interpolates the affine and degenerate affine Hecke algebras. Let (X, Y,R, Ř,Π)

be a simply connected semisimple root datum. A set of parameters for the degenerate affine

Hecke algebra, H, is a collection of indeterminates cα such that cα = cβ when mα,β is odd.

Let C = Z[cα]α∈Π be the parameter ring. Let A = SZ(X) the symmetric algebra of X over

Z, a polynomial algebra over Z with variables given by a basis of X.

Definition. As an additive group let

H = Z[W ]⊗Z C ⊗Z A.

Here Z[W ] denotes the group ring of the Weyl group, generated by the simple reflections

sα ∈ W,α ∈ Π. Let C[W ], C and A be subrings of H, the parameters cα be central and give

H the following commutativity relation between sα ∈ Z[W ] and x ∈ X ⊂ A:

sα · x− sα(x) · sα = cα
x− sα(x)

α
.

We stop here to remark that as before the fraction on the right of the above formula does

define an element of A. Indeed,

x− sα(x)

α
= 〈x, α〉.

The interpolating Hecke algebra, H h, is an algebra defined using a parameter h such

that the specialization at zero gives, H h⊗Z[h] Z[h]/(h) ∼= H whereas the specialization away

from zero gives, H h ⊗Z[h] Z[h±1] ∼= H ⊗Z Z[h±1], where the parameters qs, cs for H and H

are related by qs = 1 + hcs.

Consider the polynomial ring, Â h, over Z[h] with generators {Px | x ∈ X}. The symmet-

ric algebra, A = SZ(X), of X over Z is the quotient of Â h by the relations Px + Py = Px+y,

and h = 0. Let A h be the quotient of Â h by the relations

Px + Py + hPxPy = Px+y,
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P0 = 0.

It is noted in [Hof+12] that A h is a rational form of the formal group ring of the multiplicative

formal group law over the abelian group X. Upon specializing at h = 0, A h⊗Z[h]Z[h]/(h) ∼=

SZ(X). Let,

Ux = 1 + hPx.

Notice that,

UxUy =h2PxPy + h(Px + Py) + 1,

=hPx+y + 1,

=Ux+y.

It follows that A h is isomorphic to the Z[h]-subalgebra of A ⊗Z Z[h±1] generated by {Px =

h−1(ex − 1)}x∈X . Hence, A h[h−1] is isomorphic to the group ring of X over Z[h±1]. Note

that W acts Z[h]-linearly on A h and this action specializes to the action of W on A and A.

Let C be the parameter ring, C = Z[cα]α∈Π and let qα = 1 + hcα ∈ C[h] be parameters for

the finite Hecke algebra H f over C[h]. We now define the interpolating hecke algebra, H h.

Definition. As an additive group let H h be the tensor product,

H h = H f ⊗Z[h] A
h.

Let A h and H f be subalgebras, let h, cα be central and give H h the following commutativity

relation:

TαPx − Psα(x)Tα =


0 if 〈x, α̌〉 = 0,

cα
(
〈x, α̌〉+ h(Px + Px−α + . . . Psα(x)+α)

)
if 〈x, α̌〉 > 0,

cα
(
〈x, α̌〉 − h(Px+α + Px+2α + . . . Psα(x))

)
if 〈x, α̌〉 < 0.

Proposition II.1. We have canonical identifications H h⊗Z[h] Z[h]/(h) ∼= H, and H h⊗Z[h]

Z[h±1] ∼= H ⊗Z Z[h±1].
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Proof. From the above relations we find H h ⊗Z[h] Z[h]/(h) ∼= H by sending Px to the

associated element x of the symmetric algebra. For the specialization with C[h±1], we note

that for 〈x, α̌〉 > 0, the number of terms in the sum Px + Px−α + · · · + Psα(x)+α is precisely

〈x, α̌〉. Similarly, for 〈x, α̌〉 < 0 the number of terms in Px+α+Px+2α+ · · ·+Psα(x) is precisely

−〈x, α̌〉. Using the fact that Uy = 1 + hPy, as well as qα − 1 = hcα we see,

TαUx − Usα(x)Tα =


0 if 〈x, α̌〉 = 0,

(qα − 1)
(
Ux + Ux−α + . . . Usα(x)+α

)
if 〈x, α̌〉 > 0,

−(qα − 1)
(
Ux+α + Ux+2α + . . . Usα(x)

)
if 〈x, α̌〉 < 0.

These are nothing more than the commutativity relations for the affine Hecke algebra

H .

1.3 Demazure operators and polynomial representations

Now we define BGG operators and a variant of Demazure operators to discuss the represen-

tations of Hecke algebras on their commutative subalgebras. Define ∆α : SZ(X) → SZ(X)

by the following formula:

∆α(f) =
f − sα(f)

α
.

As usual, the right side of the formula actually lies in SZ(X). Note that the commutativity

relation for H may be written

sα · f − sα(f) · sα = cα∆α(f),

for any f ∈ A. Define Dα : A → A by the following formula:

Dα(f) =
f − sα(f)

1− e−α
.

Note that the commutativity relation for H may be written

Tαf − sα(f)Tα = (qα − 1)Dα(f),
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for any f ∈ A

Recall that the algebra A h is a subalgebra of the localization A ⊗ZZ[h±1] by the inclusion

which maps Px to h−1(ex − 1). We compute:

hDα(Px) = Dα(ex − 1)

= Dα(ex)

=


0 if 〈x, α̌〉 = 0,

〈x, α̌〉+ h(Px + Px−α + . . . Psα(x)+α) if 〈x, α̌〉 > 0,

〈x, α̌〉 − h(Px+α + Px+2α + . . . Psα(x)) if 〈x, α̌〉 < 0,

and see that Dα : A h → h−1A h. To put it informally, Dα is singular at h = 0. Nonetheless

we have a well defined operator hDα : A h → A h. This is summarized by the following.

Claim II.2. Let f ∈ A h and consider the operator hDα : A h → A h. The commutativity

relation for the interpolating Hecke algebra may be written,

Tαf − sα(f)Tα = cαhDα(f).

In the specialization A h0 ⊗Z[h] Z[h]/(h) ∼= S(X), the operator hDα specializes to ∆α.

We also remark that the classical Demazure operators, D̃α : A → A , given by

D̃α : f 7→ f − e−αsα(f)

1− e−α
,

may be expressed in terms of Dα. Let ρ ∈ X be defined by 〈ρ, α̌〉 = 1, α ∈ Π, and recall that

êρ : A → A is the invertible operator given by multiplication by eρ. We claim that,

D̃α = ê−ρ ◦Dα ◦ êρ.

Indeed, sα(eρ) = e−αeρ, hence,

ê−ρ ◦Dα ◦ êρ(f) =e−ρ · e
ρf − sα(eρf)

1− e−α
,

=
f − e−αsα(f)

1− e−α
.
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As the classical Demazure operators satisfy the braid relations, so do the Dα

· · ·DβDα = · · ·DαDβ, mα,β terms.

It is also important to note that Dα does not specialize to ∆α when h→ 0, but rather hDα

specializes to ∆α. This proves that the ∆α also satisfy the braid relations. Further, the

quadratic relation D2
α = Dα gives (hDα)2 = h(hDα), which specializes to 0 when h → 0,

showing ∆2
α = 0.

We remark that for w ∈ W , the operator Dw is uniquely defined by taking a re-

duced decomposition w = s1 · · · sr and setting Dw = Ds1 · · ·Dsr . The assumption that

(X, Y,R, Ř,Π) is simply connected implies by the Pittie-Steinberg theorem that W forms

a basis of End(A h)W (A h) as a left A h-module. Extending scalers from A h to the fraction

field ff(A h), we see by a triangular base change that {Dw | w ∈ W} forms a basis of

Endff(A h)W (ff(A h)).

Proposition II.3. Consider the representation of the finite Hecke algebra H f on C[h] given

by sending Tα 7→ qα. There is an induced representation of H h on H h⊗H f C[h] ∼= A h⊗Z[h]

C[h]. Write T̂α, q̂α, · · · : A h⊗Z[h]C[h]→ A h⊗Z[h]C[h] for the action of Tα, qα, . . . as operators

on A h ⊗Z[h] C[h]. Then,

T̂α − qα : Px 7→ (cα + qαP−α) · hDα(Px). (1.2)

Proof. The claim is obvious for 〈x, α̌〉 = 0. We show the case 〈x, α̌〉 > 0, the other case
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being nearly identical. By the commutativity relation for H h we find:

T̂α − qα(Px) =Psα(x)Tα ⊗ 1 + (qα − 1)Dα(Px)− qαPx,

=qαPsα(x) − qαPx + csαhDα(Px)

=qα(Psα(x) − Px) + (qα − 1)(h−1〈x, α̌〉+ Px + · · ·+ Psα(x)+α)

=qα
(
h−1〈x, α̌〉+ Px−α + · · ·+ Psα(x)

)
−
(
h−1〈x, α̌〉+ Px + · · ·+ Psα(x)+α

)
=(qα(1 + hP−α)− 1)Dα(Px)

=(qα − 1 + qαhP−α)Dα(Px)

=(csα + qαP−α)hDα(Px)

=(csα + P−α + hcsαP−α)hDα(Px).

Here we have used that Dα(Px) = h−1Dα(Ux), and that 1 + hP−α = U−α which satisfies the

relation, U−αUy = Uy−α.

1.4 Weight spaces of H h0-modules

For this section fix k a field and fix a parameter h0 ∈ k.

Definition. Let A h0 = A h ⊗Z[h] k[h]/(h− h0), T h0 = Homk−alg(A h0 , k). We call T h0 the

space of weights for the algebra A h0 , and given λ ∈ T h0 and f ∈ A h0 we let f(λ) ∈ k

denote the evaluation of λ at f .

As A h0 ⊗Z[h] k[h]/(h−h0) is isomorphic to the symmetric algebra of X over k for h0 = 0

and the group ring of X over k for h0 6= 0, we find that T h0 ∼= Y ⊗Z k for h0 = 0 and

T h0 ∼= Y ⊗Z k
∗ for h0 6= 0. Motivated by the following paragraph we will call T h0 the space

of weights for the algebra A h0 with parameter h0.

Let V be an A h0-module which is finite dimensional as a k-vector space. If k is alge-

braically closed, there is canonical generalized eigenspace (weight space) decomposition:

V =
⊕
λ∈Ω

Vλ,
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where for λ ∈ T h0 , Vλ = {v ∈ V | (f − λ(f))nv = 0 for all f ∈ A h0 , n � 0} and

Ω = Ω(V ) ⊂ T h0 is the finite subset of λ such that Vλ 6= 0.

In discussing the weight spaces, Vλ, it is convenient to introduce a non-unital localization

˙A h0 of A h0 . We set

˙A h0 =
⊕
λ∈T h0

A h0
λ ,

where A h0
λ = A h0 [f−1 | λ(f) 6= 0] with the unit element denoted by 1λ. We have an

equivalence from the category of finite dimensional A h0-modules with eigenvectors in k to

the category of unital (with 1λ as the projection onto Vλ) finite dimensional ˙A h0-modules,

sending V 7→
⊕

λ∈Ω Vλ.

Now fix some set of parameters for H f in k, in other words, fix an algebra morphism

C[h] → k for which h → h0. Define H h0 = H h ⊗C k. As we will see, if V is a finite

dimensional representation of H h0 and λ ∈ Ω(V ) is a weight of the subalgebra A h0 ⊂H h0

which is not invariant under sα, then Tα does not preserve the weight space Vλ, nor does

it permute the weight spaces. In fact Tα(Vλ) ⊂ Vλ ⊕ Vsα(λ). There is, however, a relation

1λTα1λ = fα1λ, in EndC(V ), where fα ∈ A h0
λ will be made explicit. In this work we describe

generators and relations of H h0 which permute the weight spaces of finite representations.

These generators are based on the elements 1sα(λ)Tα1λ.

Before we define the localized Hecke algebra ˙H h0 , note that (−P−α)·hDα(f) = f−sα(f).

This relation may be used to extend hDα to an operator on ˙A h0 as follows. Let f ∈ A h0
λ

be given. If sα(λ) 6= λ, then P−α is invertible in both A h0
λ and A h0

sα(λ), and we set,

hDα(f) = (−P−α)−1f − (−P−α)−1sα(f) ∈ A h0
λ ⊕A h0

sα(λ).

If sα(λ) = λ, we appeal to the description of A h0 as one of A or A, where the action

of hDα(f) may be written as a fraction lying in A h0
λ . This gives a well defined operator

hDα : ˙A h0 → ˙A h0 .

Definition. As an additive group let ˙H h0 = H h0 ⊗A h0
˙A h0 ∼=

⊕
λ∈T h0 H f ⊗C A h0

λ .

Let the algebra ˙A h0 be a subalgebra of ˙H h0 . For Λ ∈ T h0/W , put 1Λ =
∑

λ∈Λ 1λ and
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TΛ
α = Tα ⊗ 1Λ ∈ ˙H h0 . For each such Λ let the inclusion of the finite Hecke algebra,

H f ↪→
⊕
λ∈Λ

H h0 ⊗A h0 A h0
λ ⊂ ˙H h0 ,

Tα 7→ TΛ
α .

be an algebra morphism. The following decomposition,

˙H h0 =
⊕

Λ∈T h0/W

˙H h01Λ.

gives ˙H h0 the structure of a locally unital algebra with the following commutativity relation:

TΛ
α f − sα(f)TΛ

α = cαhDα(f),

for any f ∈ ˙A h01Λ.

First note that the unital algebra ˙H h01Λ in the direct sum above is a subalgebra of the

completion of H h0 at the kernel of the associated central character Λ : (A h0)W → k [Lus89].

It is in fact the subalgebra generated by H h0 and the localizations A h0
λ 1λ in the completion

of A h0 with respect to this ideal.

We show that a finite dimensional representation of H h0 for which the eigenvectors for

A h0 are in k indeed gives rise to a representation of ˙H h0 , where 1λ acts as the projection

onto the λ weight space.

Lemma II.4. Let V be a finite dimensional representation of H h0 for which the eigenvalues

of A h0 are in k. Let 1λ ∈ EndC(V ) be the projection onto Vλ. If α ∈ Π with sα(λ) = λ then

Tα(λ) ⊂ Vλ, hence,

Tα1λ =1λTα

=1λTα + cαhDα(1λ).

Moreover, if sα(λ) 6= λ, then (P−α)−1 ∈ A h0
λ ,A h0

sα(λ). Thus the eigenvalues of P−α are

non-zero and hence P−α is an invertible operator on Vλ, Vsα(λ). Also, Tα(Vλ) ⊂ Vλ ⊕ Vsα(λ)
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and the following commutativity relation holds,

Tα1λ − 1sα(λ)Tα =cα(−P−α)−1(1λ − 1sα),

=cαhDα(1λ).

Proof. Let x ∈ X and z ∈ k. With the simple identity, aN − bN = (a− b)
∑

0≤i≤N−1 a
ibN−i−1

we find

(−P−α)hDα((Px − z)N) =(Px − z)N − (Psα(x) − z)N ,

=(Px − Psα(x))
∑

0≤i≤N−1

(Px − z)i(Psα(x) − z)N−i−1,

= ((−P−α)hDα(Px)) ·
∑

0≤i≤N−1

(Px − z)i(Psα(x) − z)N−i−1.

As A h0 is a domain,

(Px − z)NTα =Tα(Psα(x) − z)N + hDα(Px)
∑

0≤i≤N−1

(Px − z)i(Psα(x) − z)N−i−1.

Let λ ∈ T h0 with sα(λ) = λ and suppose N, z are such that (Px − z)bN/2c(Vλ) =

(Psα(x) − z)bN/2c(Vλ) = 0. In this case, the above expression shows that (Px − z)NTα1λv = 0

for v ∈ V . Thus, Tα(Vλ) ⊂ Vλ and Tα1λ = 1λTα.

Now, suppose sα(λ) 6= λ so that λ(P−α) 6= 0. Thus, (P−α)−1 ∈ A h0
λ ,A h0

sα(λ) and (P−α)−1

may be considered as an operator on Vλ, Vsα(λ) (as the operator P−α has a lone eigenvalue

which is non-zero). We also suppose that N, z are picked so that (Px − z)N(Vλ) = 0. Then,

(Psα(x) − z)N(Tα1λ − cα(−P−α)−11λ)v =Tα(Psα(x) − z)N1λv

+ cα(−P−α)−1(Psα(x) − z)N1λv,

=0.

In particular, it follows that Tα(Vλ) ⊂ Vλ ⊕ Vsα(λ), and moreover,

Tα1λ − 1sα(λ)Tα =cα(−P−α)−1(1λ − 1sα),

=cαhDα(1λ).
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in EndC(V ).

To show that a finite dimensional representation of H h0 lifts to a finite dimensional

representation of ˙H h0 we note that the ring of W -invariants, (A h0)W , is the center of H h0

and each finite representation splits into a direct sum of generalized eigenspaces VΛ of the

center of H h0 according to the central characters Λ ∈ T h0/W :

V =
∑

Λ∈T h0/W

VΛ.

We can decompose the operators Tα =
∑

Λ T
Λ
α , f =

∑
λ fλ. The above lemma shows that

these operators give an action of ˙H h0 .
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CHAPTER 2

Localized Quiver Hecke Algebras

2.1 Weyl group orbits on tori

We will need the following lemmas to study the localized quiver Hecke algebras. Let W be

the Weyl group of the reduced root datum, (X, Y,R, Ř,Π). Recall that Π ⊂ R defines a

length function ` on W .

Definition. Let W ′ ⊂ W be a subgroup. We say that W ′ is a standard parabolic subgroup

if there is a subset Πλ ⊂ Π so that W ′ is the subgroup generated by {sα ∈ W | α ∈ Πλ}.

We call a subgroup parabolic if it is W -conjugate to a standard parabolic subgroup.

Let λ ∈ T h0 . We say that λ is standard parabolic, if there is a subset Πλ ⊂ Π so that

the stabilizer of λ in the Weyl group W is the standard parabolic subgroup generated by

{sα ∈ W | α ∈ Πλ}. We call a weight parabolic (resp. parabolic with respect to W P ) if it

is in the W -orbit (resp. W P -orbit) of a standard parabolic weight (resp. standard parabolic

with respect to W P ).

Lemma II.5. Let w = sαn · · · sα1 = sβn · · · sβ1 be two reduced expressions. Then there is a

permutation p of {1, · · · , n} so that whenever p(i) = j,

sα1 · · · sαi−1
(αi) = sβ1 · · · sβj−1

(βj),

sαn · · · sαi+1
(αi) = sβn · · · sβj+1

(βj).

Proof. This is simply a restatement of the following standard theorem, see [Hum90, Section

1,7].
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Let w = sα1 · · · sαn be a reduced decomposition. Put γi = sαn · · · sαi+1
(αi). Then the

roots γ1, . . . , γn are all distinct and the set {γ1, . . . , γn} equals R+ ∩w−1R−, which is the set

of γ ∈ R+ such that w(γ) ∈ R−.

Let (X, Y,R, Ř,Π) be a root data associated to the k-split semisimple algebraic group G.

Associated to this data is a maximal torus, T = Y ⊗Z k
∗ and a dual torus, T ∗ = X ⊗Z k

∗,

both with actions of the Weyl group W . The purpose of this section is to collect some results

on the stabilizers of elements of T in the Weyl group W .

Let λ ∈ T and denote by 〈λ〉 the smallest closed subgroup of T containing λ.

Claim II.6. The subgroup 〈λ〉 is the direct sum of a cyclic subgroup generated by ζ ∈ T

with finite order and a torus S ⊂ T .

Proof. The subgroup 〈λ〉 has finitely many components. Let S be the identity component of

〈λ〉. The morphism from 〈λ〉 → 〈λ〉/S is a split surjection, as the category of diagonalizable

groups is dual to the category of finitely generated abelian groups. Considering that the set

of components of 〈λ〉 containing the powers λi, i ∈ Z is a closed subgroup of T , we find that

the group of components is a cyclic group. It follows that 〈λ〉 is the direct sum of a cyclic

subgroup generated by ζ ∈ T with finite order and a torus S ⊂ T .

Definition. Let α̃ ∈ R+ be the highest root. Define an augmented standard parabolic

subgroup of W to be a subgroup W ′ such that there is a subset I ⊂ Π for which W ′ is

generated by {sα}α∈I ∪ {sα̃}. A subgroup is called an augmented parabolic subgroup if it is

W -conjugate to an augmented standard parabolic subgroup.

Corollary II.7. Assume (X, Y,R, Ř,Π) to be simply connected semisimple. Given λ ∈ T ,

the centralizer of λ in the Weyl group W is the intersection of a parabolic subgroup with an

augmented parabolic subgroup.

Proof. As the Weyl group acts by algebraic automorphisms of T , the stabilizer of λ in W

is equal to the intersection of the stabilizer in W of S with the stabilizer of ζ. As S ⊂ G
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is a torus, the centralizer ZG(S ) is a connected, reductive subgroup [Hum75, section 26.2].

Moreover the centralizer ZG(S ) is the Levi subgroup of a parabolic subgroup of G (see

[DM91, Proposition 1.22]) and hence the centralizer ZW (S ) is a parabolic subgroup.

It remains only to show that the centralizer of an element ζ ∈ T of finite order is an

augmented parabolic subgroup. We may restrict our attention to the group Y ⊗Z 〈ζ〉. If ζ

has order n, then this is isomorphic to the group Y ⊗Z
1
n
Z/Z. Lift ζ ∈ Y ⊗Z 〈ζ〉 to an element

in the Euclidean space z ∈ Y ⊗Z
1
n
Z ⊂ Y ⊗ZR, and note that for w ∈ W we have w(ζ) = ζ if

and only if w(z)− z ∈ Y ⊗Z ⊂ Y ⊗ZR. This is the same as asserting that there exists t ∈ Y

with w(z)−y = z. For w ∈ W, y ∈ Y fixed, the transformation x 7→ w(x)−y is an element of

the affine group Wa, which is the semidirect product of the Weyl group with the translation

group Y . As Y has a basis given by {α̌}α∈Π, Wa is a Coxeter group with Coxeter generators

{sα}α∈Π ∪ {sα̃,1} where sα̃,1(x) = sα̃(x) + α̌ (see [Hum90]). Examining the Weyl group

stabilizers of elements of the fundamental alcove {x ∈ Y ⊗ZR | 〈x, α〉 > 0α ∈ Π, 〈x, α̃〉 = 1},

whose walls are the hyperplanes orthogonal to α, α ∈ Π and α̃, we find that the stabilizer of

ζ ∈ T is conjugate to an augmented parabolic subgroup.

Remark II.8. Let (X, Y,R, Ř,Π) be any root data for which X contains the fundamental

weights {ωα}α∈Π ⊂ Q · R ⊂ X ⊗Z Q, and let Y ′ = Z · Ř be the Z-span of the coroots in Y .

We have a natural inclusion i : Y ′ ↪→ Y . Define the projection p : Y → Y ′ by the following

formula,

p(y) =
∑
α∈Π

ωα(y)α̌.

Then p is a split surjection, i ◦ p(y′) = y′ for y′ ∈ Y ′. Moreover, p, i are both W -equivariant.

Abusing notation, let p : Y ⊗Z k
∗ and i : Y ′ ⊗Z k

∗ denote the corresponding maps on tori.

Again, p : Y ⊗Z k
∗ → Y ′ ⊗Z k

∗ is a split W -equivariant surjection, and hence is a bijection

on W -orbits.

We compute the stabilizers of weights in rank 2, which by the above remark is equivalent

to computing Wα,β-orbits on general tori associated to simply connected root data. Given
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a rank 2 root system let (X, Y,R, Ř,Π) be a root data for which X has the basis {ωα}α∈Π

and Y has the basis {α̌}α∈Π. We compute the stabilizers of elements λ ∈ T = Y ⊗Z k
∗.

In type A1 × A1, A2 we find that the stabilizer of any element is already a parabolic

subgroups of W .

In types B2, G2, consider the action of W on the vector space Y ⊗Z k. The only non-

parabolic, augmented standard parabolic subgroup of W is generated by the reflection sα̃

and one other reflection. As the two reflections have distinct 1-dimensional eigenspaces we

find that the subspace of fixed points on Y ⊗Z k = Lie(Y ⊗Z k
∗) is the zero subspace. It

follows that the group of fixed points on T of a non-parabolic, augmented standard parabolic

subgroup of W is a finite torsion subgroup of T .

Consider, as above, the real vector space E = Y ⊗Z R. Recall that the torsion subgroup

of T may be embedded as a subgroup of Y ⊗Z Q ⊂ E/Y . It is plain to check that the

set of elements λ in the fundamental alcove of E which are stabilized by sα̃,1 and one other

Coxeter reflection actually lie in 1
2
Y , which gives us the following corollary.

Corollary II.9. If (X, Y,R, Ř,Π) is a simply connected semisimple root system of rank 2,

and λ ∈ T = Y ⊗Z k
∗ satisfies stabW (λ) is a non-parabolic subgroup of W , then λ satisfies

λ2 = 1 ∈ T , and for α ∈ Π,

〈α, λ〉 =


1, if sα(λ) = λ,

−1, if sα(λ) 6= λ.

2.2 The datum G and its conditions

Remark II.10. We now define an abstract set of datum on which our definition of localized

quiver Hecke algebra depends. The definition of localized quiver Hecke algebra we give

extends that of [Rou08], [Rou11]. We briefly paraphrase the set-up of [Rou11] where actually

two quivers are given.

Fix a finite set I as well as a Cartan matrix C = (ai,j)i,j∈I . This determines the first
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quiver, whose vertices are identified with I, and with −ai,j arrows from i to j. Next, consider

the action of the symmetric group Sn on the set In. We form the quiver ΨI,n(Λ) whose

vertices are identified with a fixed Sn-orbit Λ in In. There are two types of arrows for the

quiver ΨI,n(Λ). The first type is an arrow xi : λ→ λ for each 1 ≤ i ≤ n, and second type is

an arrow τi : λ→ si(λ), where si ∈ Sn is the element (i, i+ 1).

Finally, the first quiver determines a set of polynomials Q = (Qi,j(u, v))i,j∈I with which

one constructs for each Sn-orbit in In the quiver Hecke algebra, H(Q)Λ. The algebra H(Q)Λ

is a quiver algebra with relations on the second quiver ΨI,n, with relations determined by the

polynomial data Q. For Γ of type A the algebras H(Q)Λ may be identified with localizations

of affine Hecke algebras of type A. The quiver Hecke algebras defined in this paper do not

give a way of generalizing the first quiver, but instead generalize the data Q and second

quiver ΨI,n(Λ) to give a quiver Hecke algebra presentation of affine Hecke algebras of any

type.

Fix h0 ∈ k. Then A h0 is the specialization A h0 = A h ⊗Z[h] k[h]/(h− h0) of the interpo-

lating ring A h at h → h0, and hDα as the specialization of the Demazure operator. Thus,

either h0 = 0 in which case A h0 is isomorphic to the symmetric algebra and hDα is the BGG

operator ∆α, or h0 6= 0 in which case A h0 is isomorphic to the group ring k[X] and hDα is

a scaler multiple of the Demazure operator. Recall that T h0 = Homk−alg(A h0 , k) is the set

of k-algebra homomorphisms from A h0 to k, which is either isomorphic to h = Y ⊗Z k for

h0 = 0, or isomorphic to T = Y ⊗Z k
∗, for h0 6= 0. We have

˙A h0 =
⊕
λ∈T h0

A h0
λ ,

the localized, non-unital algebra associated to A h0 , where A h0
λ is the localization of A h0 at

λ ∈ T h0 .

Let G = (Gλ
α)λ∈T h0 ,α∈Π be a collection of non-zero rational functions, Gλ

α ∈ A h0
λ \{0} =

˙A h01λ\{0}. We list now a few conditions that this data is required to satisfy before we can

define the localized quiver Hecke algebra H h0(G).

For notational purposes, we need the following lemma.
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Lemma II.11. Let α, β ∈ Π. We put Wα,β = 〈sα, sβ〉, the subgroup of W generated by

sα, sβ. We also put m = mα,β as the order of sαsβ when α 6= β and 2 otherwise, and finally

we write wα,β for the longest element in Wα,β. We have,

wα,β(α) =


−α if m even,

−β if m odd.

Instead of using cases, we will simply write wα,βsα(α) which is equal to α for mα,β even, and

β for mα,β odd.

Definition. Let λ ∈ T h0 α ∈ Π. The weight λ is said to be α-exceptional if there exists

β ∈ Π with λ not parabolic with respect to Wα,β and sα(λ) 6= λ. If β is as above, then it is

automatic that mα,β = 4, 6.

Let G = (Gλ
α)λ∈T h0 ,α∈Π and assume that G satisfies the following conditions.

1. For λ, α as above,

sα(Gλ
α) = Gsα(λ)

α .

We shall refer to this as the associative relation on G.

2. If sα(λ) = λ then Gα = 1.

3. For any α, β ∈ Π,

wα,βsα(Gλ
α) = G

wα,βsα(λ)

wα,βsα(α)

where, again, wα,β ∈ Wα,β is the longest element. We will refer to this relation as the

braid relation on G. Note that in the case α = β, we have that wα,α = sα and the

condition is vacuous.

4. If λ is α-exceptional then Gλ
α = 1.
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2.3 The localized quiver Hecke algebra

Let G = (Gλ
α)λ∈T h0 ,α∈Π be a collection satisfying the conditions in section 2.2. We define the

localized quiver Hecke algebra H h0(G) associated to this choice in analogy with a quiver

algebra with relations over the ring A , see [Rou11]. Underlying this construction of a quiver

algebra with relations is the quiver with vertices T h0 , and arrows f : λ→ λ, rλα : λ→ sα(λ),

whenever f ∈ A h0
λ , α ∈ Π. We remark that the arrows rλα give precisely the Cayley graph of

the action of {sα | α ∈ Π} on T h0 .

Definition. First, define H̃ h0(G) as the non-unitary algebra given by adjoining generators

rλα to ˙A h0 which satisfy the following relations.

• rλα1ν = 1sα(ν)r
λ
α = δλ,νr

λ
α.

• rsα(λ)
α rλα =


Gλ
α if sα(λ) 6= λ,

h0r
λ
α if sα(λ) = λ.

• For f ∈ Aλ,

rλαf − sα(f)rλα =


0 , if sα(λ) 6= λ,

hDα(f) , if sα(λ) = λ.

• For α, β ∈ Π distinct and λ ∈ T h0 a standard parabolic weight with respect to {α, β},

or λ which is not parabolic with respect to Wα,β, but fixed by one of sα, sβ:

rλmαm · · · r
λ1
α1

= rµmβm · · · r
µ1
β1
,

where m = mα,β is the order of sαsβ in W ,

αi =


α , i odd,

β , i even,

βi =


β , i odd,

α , i even,
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and λi = sαi−1
· · · sα1(λ), µi = sβi−1

· · · sβ1(µ). This is known as the braid relation.

Finally, let Iλ be the right A h0
λ -module consisting of elements I ∈ H̃ h0(G)1λ such that

there is f ∈ A h0
λ \{0} with I · f = 0. We define H h0(G) = H̃ h0(G)/

⊕
λ Iλ. Thus, there is

no right polynomial torsion in H h0(G).

Given simply connected root datum we will produce in section 3.1 a family G and an

isomorphism H h0(G)→ ˙H h0 .

2.4 The PBW property and a faithful representation

This section analyzes the structure of H h0(G). We start by defining a filtration (F n) on

H h0(G), letting F n ⊂H h0(G) be the right ˙A h0-linear span of all products rλkαk · · · r
λ1
α1

with

up to n terms in them. We see F n ·Fm ⊂ F n+m.

Lemma II.12. Fix some λ ∈ T h0 and let B1 = (αn, · · · , α1), B2 = (βn, · · · , β1), αi, βi ∈ Π,

be two ordered collections of simple roots with the same cardinality such that sαn · · · sα1 =

sβn · · · sβ1. Then,

rλnαn · · · r
λ1
α1
− rµnβn · · · r

µ1
β1
∈ F n−1,

where, λi = sαi−1
· · · sα1(λ), µi = sβi−1

· · · sβ1(λ).

Proof. We prove the assertion by induction on n. The cases of n = 0, 1 are trivial.

First, put w = sαn · · · sα1 . Suppose that `(w) < n. By the deletion condition, there

exists, 1 ≤ i < j ≤ n with,

sαj · · · sαi+1
= sαj−1

· · · sαi .

By induction, we may assume

rλjαj · · · r
λi+1
αi+1
− rλ

′
j
αj−1 · · · r

λ′i+1
αi ∈ F j−i−1,
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with the appropriately chosen λ′k = λk, 1 ≤ k ≤ i+ 1, j + 1 ≤ k ≤ n. Thus,

rλnαn · · · r
λj+1
αj+1

(
rλjαj · · · r

λi+1
αi+1

)
rλiαi · · · r

λ1
α1
− rλ′nαn · · · r

λ′j+1
αj+1

(
r
λ′j
αj−1 · · · r

λ′i+1
αi

)
r
λ′i
αi · · · rλ

′
1
α1
∈ F n−1.

Because r
λ′i+1
αi r

λ′i
αi ∈ F 1, the second term is in F n−1, hence rλnαn · · · r

λ1
α1
∈ F n−1. The claim

now follows for non-reduced expressions.

Now we show that the assertion is true in the case of a braid relation. Let α, β ∈ Π be

distinct, and let Wα,β be the dihedral subgroup of W generated by sα, sβ. Let m = mα,β be

the order of sαsβ, and set

αi =


α, if i odd,

β, if i even.

βi =


β, if i odd,

α, if i even.

We will show,

rλmαm · · · r
λ1
α1
− rµmβm · · · r

µ1
β1
∈ Fm−1. (2.1)

First, suppose λ is not parabolic with respect to Wα,β. By analyzing the four simply

connected semisimple groups of rank 2 in lemma II.9 we see the only such λ have mα,β = 4, 6.

In the case mα,β = 4, we may assume that β is longer than α and 〈λ, β〉, 〈λ, α〉 = ±1, as λ

has order two. Checking the four elements satisfying that requirement in the torus of the

associated simply connected semisimple group, the Wα,β-orbit of λ must be of order exactly

two, with the two elements being π = β̌ ⊗ −1 and sα(π) = (α̌ ⊗ −1) · (β̌ ⊗ −1). We find

sβ(π) = π and sβ(sα(π)) = sα(π). We have the following picture of the Cayley graph of the

orbit:

sβ 	 π
sα←→ sα(π) � sβ .
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Both of these weights are β-exceptional, hence the braid relation holds for both π, sα(π),

thus the difference in question is in fact zero.

In the case G2 we also assume that β is the longer root. Again, 〈λ, β〉, 〈λ, α〉 = ±1. In

this case the order of the Wα,β-orbit must be exactly three, with the three elements given

by π = α̌ ⊗ −1, sβ(π) = (α̌ ⊗ −1) · (β̌ ⊗ −1), and sαsβ(π) = β̌ ⊗ −1. We find that π is

sα-invariant, and sαsβ(π) is sβ invariant, so these two weights are exceptional. We have the

following picture of the Cayley graph of this orbit:

sα 	 π
sβ←→ sβ(π)

sα←→ sαsβ(π) � sβ .

We will show that the braid relation for π, sαsβ(π) implies the braid relation for sβ(π), which

is the only weight not fixed by one of sα, sβ. This will also demonstrate the technique used in

the general case, that the braid relation for a standard parabolic weight implies a (different)

braid relation for the other weights in its Wα,β-orbit. With this in mind, recall that we wish

to calculate the difference,

rπβ · · · r
sαsβ(π)

β r
sβ(π)
α − rsαsβ(π)

α · · · rπαr
sβ(π)

β .

We simply multiply this difference on the right by r
sαsβ(π)
α :

rπβr
π
α · · · r

sαsβ(π)

β r
sβ(π)
α r

sαsβ(π)
α − rsαsβ(π)

α r
sαsβ(π)

β · · · rπαr
sβ(π)

β r
sαsβ(π)
α .

The first term simplifies as, r
sβ(π)
α r

sαsβ(π)
α = G

sαsβ(π)
α . As sαsβ(π) is α-exceptional we have

G
sαsβ(π)
α = 1. The last six elements in the product in the second term may be substituted

by the braid relation for the β-exceptional weight sαsβ(π):

r
sαsβ(π)
α r

sαsβ(π)

β · · · rπαr
sβ(π)

β r
sαsβ(π)
α = r

sαsβ(π)
α r

sβ(π)
α · · · rsαsβ(π)

α r
sαsβ(π)

β

Notice that the first two terms of the product on the right side of the equality simplify;

r
sαsβ(π)
α r

sβ(π)
α = G

sβ(π)
α .
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Again, sβ(π) is α-exceptional so G
sβ(π)
α = 1. It follows that the difference in question is equal

to:

rπβr
π
α · · · r

sαsβ(π)

β r
sβ(π)
α r

sαsβ(π)
α − rsαsβ(π)

α r
sαsβ(π)

β · · · rπαr
sβ(π)

β r
sαsβ(π)
α

= rπβr
π
α · · · r

sαsβ(π)

β G
sαsβ(π)
α − sαwα,β(G

sαsβ(π)
α )rπβr

π
α · · · r

sαsβ(π)

β

= rπβr
π
α · · · r

sαsβ(π)

β − rπβrπα · · · r
sαsβ(π)

β

= 0.

Multiplying again on the right by r
sβ(π)
α and noting that r

sαsβ(π)
α r

sβ(π)
α = G

sβ(π)
α = 1, we find

the braid relation for sβ(π):

rπβ · · · r
sαsβ(π)

β r
sβ(π)
α − rsαsβ(π)

α · · · rπαr
sβ(π)

β .

This concludes the claim for exceptional weights.

We move on, and assume λ is parabolic with respect to Wα,β. If the stabilizer of λ has

1 element, or is Wα,β itself, then λ was a standard parabolic weight with respect to {α, β}

and we are done, as the braid relation shows that the difference in (2.1) is zero.

Thus, assume that λ is a parabolic weight, but not a standard parabolic weight. Then

there is a unique 1 ≤ t < m so that λt+1 = sαt · · · sα1(λ) is a standard parabolic weight

with sαt+1(λt+1) = λt+1. We will swap α, β if it happens that t ≥ m
2

, which has the effect of

changing t to m− t− 1. From now on, we assume t < m
2

.

Define λ−i = λi+1, µ−i = µi+1, and multiply the difference in (2.1) on the right by

rλ−1
α1
· · · rλ−tαt . The two terms that appear are grouped as follows:

rλmαm · · · r
λt+1
αt+1

(rλtαt · · · r
λ1
α1
rλ−1
α1
· · · rλ−tαt )−

rµmβm · · · r
µm−t+1

βm−t+1
(r
µm−t+1

βm−t+1
· · · rµ1β1 r

λ−1
α1
· · · rλ−tαt ).

As β1 6= α1, the last m entries of the second term alternate between α and β, and start at

the parabolic weight λ−t = λt+1. Thus, they may be switched using the braid relation to the
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following:

rλmαm · · · r
λt+1
αt+1

(rλtαt · · · r
λ1
α1
rλ−1
α1
· · · rλ−tαt )−

rµmβm · · · r
µm−t+1

βm−t+1
(r
µ−(m−t+1)

βm−t+1
· · · rµ−mβm

rλmαm · · · r
λt+1
αt+1

).

We combine the last 2t entries in the first term and the first 2t entries in the second term to

simplify this expression,

rλmαm · · · r
λt+1
αt+1
· P−

P ′ · rλmαm · · · r
λt+1
αt+1

where,

P =
t∏
i=1

sαt · · · sαi+1
(Gλ−i

αi
),

P ′ =
m∏

j=m−t+1

sβm · · · sβj+1
(G

µ−j
βj

).

Using the commutativity relation between rλα and elements of ˙A h0 we find that the above

expression is equal to,

sαm · · · sαt+1(P ) · rλmαm · · · r
λt+1
αt+1

+

sαm · · · sαt+2(hDαt+1(P )) · rλmαm · · · r
λt+2
αt+2
−

P ′ · rλmαm · · · r
λt+1
αt+1
·

We claim that sαm · · · sαt+1(P ) = P ′. We can use the permutation p from lemma II.5 to

show that the i-th term in the product expression for sαm · · · sαt+1(P ) is the same as the j-th

term in the expression for P ′, where j = p(i). In fact, let j = m − i + 1 = p(i). Then the

corresponding terms are exactly,

sαm · · · sαi+1
Gλ−i
αi
,

sβm · · · sβj+1
G
µ−j
βj

.

The braid relation for G axiomatizes the above equality.
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Now, µ−j = wα,β(λ−i) and βj = wα,β(αi). All in all, the difference in (2.1) simplifies to,

sαm · · · sαt+2(hDαt+1(P )) · rλmαm · · · r
λt+2
αt+2

.

The above expression has m− t− 1 terms of the form rλα, and we can replace t of them

(using the assumption that t < m
2

) after we multiply on the right by rλ−tαt · · · r
λ−1
α1

.

To summarize, let’s define the following non-zero element of A h0
λ :

R = rλ−1
α1
· · · rλ−tαt r

λt−1
αt · · · r

λ1
α1
.

We have shown that the following relation holds in H h0(G):

(
rλmαm · · · r

λ1
α1
− rµmβm · · · r

µ1
β1

)
R

=sαm · · · sαt+2(hDαt+1(P )) · rλmαm · · · r
λ2t+2
α2t+2

·R.

The relation that H h0(G) has no right ˙A h0-torsion implies:

rλmαm · · · r
λ1
α1
− rµmβm · · · r

µ1
β1

=sαm · · · sαt+2(hDαt+1(P )) · rλmαm · · · r
λ2t+2
α2t+2

,

where again,

P =
t∏
i=1

sαt · · · sαi+1
(Gλ−i

αi
).

Finally, we show the assertion for reduced expressions. Let w ∈ W with `(w) = n, and

take two expressions w = sαn · · · sα1 = sβn · · · sβ1 of minimal length. We show:

rλnαn · · · r
λ1
α1
− rµnβn · · · r

µ1
β1
∈ F n−1,

by reducing to a smaller length case, or by using a braid relation. We need to apply the

following lemma, which follows directly from lemma II.5, possibly many times.
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Lemma II.13. Let u ∈ W with `(u) = m and consider two reduced expressions u =

sδm · · · sδ1 = sγm · · · sγ1 in W . Then there is a unique 1 ≤ i0 ≤ m with

δ1 =sγ1 · · · sγi0−1
(γi0),

sγi0−1
· · · sγ1sδ1 =sγi0 · · · sγ1 .

Applying the lemma directly to the two expressions we have for w, we see if i0 < n, then

by induction we have

rβi0 · · · rβ1 − rβi0−1
· · · rβ1rα1 ∈ F i0−1.

Though we drop the weights µi, λi the reader may check this does no harm.

By the inductive hypothesis,

rαn · · · rα2 − rβn · · · rβi0+1
rβi0−1

· · · rβ1 ∈ F n−2.

Thus,

(
rαn · · · rα1 − rβn · · · rβi0+1

rβi0−1
· · · rβ1rα1

)
+(

rβn · · · rβi0+1
rβi0−1

· · · rβ1rα1 − rβn · · · rβ1
)
∈ F n−1.

We assume i0 = n, or

α1 = sβ1 · · · sβn−1(βn),

sβn−1 · · · sβ1sα1 = sβn · · · sβ1 = w.

Similar to the argument above, we have by induction,

rβn−1 · · · rβ1 − rαn · · · rα2 ∈ F n−2.

Thus, the following two assertions are equivalent,

rβn · · · rβ1 − rαn · · · rα1 ∈ F n−1,

rβn · · · rβ1 − rβn−1 · · · rβ1rα1 ∈ F n−1.
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We now apply the lemma above to the second expression, finding an i0 with,

β1 = sα1sβ1 · · · sβi0−2
(βi0−1).

Again, either i0 < n in which case we apply the induction to show the claim, or we show the

following two assertions are equivalent,

rβn · · · rβ1 − rβn−1 · · · rβ1rα1 ∈ F n−1

rβn−1 · · · rβ1rα1 − rβn−2 · · · rβ1rα1rβ1 ∈ F n−1.

Using the same trick we show either the second claim or the equivalence of the following two

assertions,

rβn−1 · · · rβ1rα1 − rβn−2 · · · rβ1rα1rβ1 ∈ F n−1,

rβn−3 · · · rβ1rα1rβ1rα1 − rβn−2 · · · rβ1rα1rβ1 ∈ F n−1.

At this point, if mα,β = 3 we are done due to the above proof for the braid relation. If mα,β

is larger, we keep applying this algorithm to eventually find a braid relation.

This finishes the proof of the lemma.

Corollary II.14. Let B be a set of reduced expressions rαn · · · rλαn so that every w ∈ W is

represented exactly once. Then B generates H h0(G)1λ as a right A h0
λ -module.

Let grH h0(G) be the graded algebra associated to the filtration (F n). We wish to

describe the structure of grH h0(G).

Let 0H f be the finite nil-Hecke algebra. This is the algebra with generators rα, α ∈ Π,

satisfying:

r2
α = 0,

· · · rβrα = · · · rαrβ,with mα,β terms.

We form the wreath product algebra

˙A h0 o 0H f ,
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which as a k vector space is given by the tensor product, ˙A h0 ⊗k 0H f . We give the multi-

plication by setting,

1⊗ rsα · f ⊗ 1 = sα(f)⊗ rsα .

There is a natural surjective morphism

˙A h0 o 0H f → grH h0(G).

We say that H h0(G) has the PBW property if this morphism is an isomorphism.

Theorem II.15. The following assertions hold:

• H h0(G) satisfies the PBW property.

• For every λ ∈ T h0, H h0(G)1λ is a free right A h0
λ -module with basis B.

Proof. The first two assertions are equivalent thanks to the generating family B mentioned

in the above corollary.

Lemma II.16. Given a family G satisfying the conditions of section 2.2, there exists a

splitting family F = (F λ
α ), Fα ∈ A h0

λ , which satisfy the following conditions:

1. One of F λ
α or F

sα(λ)
α is equal to 1.

2. F λ
α · sα(F

sα(λ)
α ) = Gλ

α.

Remark II.17. This lemma takes the place of the splitting Qi,j(u, u
′) = Pi,j(u, u

′)Pj,i(u
′, u)

in [Rou11, Section 3.2.3].

Proof. Fix λ ∈ T h0 , α, β ∈ Π distinct. If sα(λ) = λ, we put F λ
α = F

sα(λ)
α = 1. Note, in this

case, Gλ
α = 1. We see that wα,βsα(λ) = wα,β(λ), and because swα,βsα(α)wα,β = wα,βsα, we

have F
wα,βsα(λ)

wα,βsα(α) = F
wα,β(λ)

wα,βsα(α), so this choice is consistent with the braid relation.

Assume sα(λ) 6= λ, and set F λ
α = Gλ

α, F
sα(λ)
α = 1. Consider the set,

{λ, sα(λ), wα,βsα(λ), wα,β(λ)}. (2.2)
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As sα(λ) 6= λ, we have wα,βsα(λ) 6= wα,β(λ). In accordance with the braid relations, we set

F
wα,βsα(λ)

wα,βsα(α) :=wα,βsα(F λ
α ) = wα,βsα(Gλ

α), (2.3)

F
wα,β(λ)

wα,βsα(α) :=wα,βsα(F sα(λ)
α ) = 1.

If mα,β is odd, then wα,βsα(β) = β and the four pairs

{(λ, α), (sα(λ), α), (wα,β(λ), wα,βsα(α)), (wα,βsα(λ), wα,βsα(α))}, (2.4)

are distinct, so we have not defined any element of F twice. If mα,β is even and λ = wα,βsα(λ),

then the two sides of (2.3) are already equal by the braid relation for Gλ
α = F λ

α . Thus, we

have defined the two elements, F λ
α , F

sα(λ)
α twice, but with the same values each time. If mα,β

is even and λ = wα,β(λ), then because wα,β has even length, it is not a reflection, thus λ is

not a parabolic weight. This means that λ is α-exceptional so all four values in (2.3) are 1.

Now, let γ ∈ Π be distinct from α, β and define F
wα,γsα(λ)

wα,γsα(α) , F
wα,γ(λ)

wα,γsα(α) as above. If either

of mα,β or mα,γ are odd, then the values of the F -terms are well defined. Assuming that

mα,β,mα,γ are both even we see that if wα,γ(λ) = wα,β(λ then as F
sα(λ)
α = 1, we indeed have

wα,βsα(F
sα(λ)
α ) = wα,γsα(F

sα(λ)
α ).

In case wα,βsα(λ) = wα,γsα(λ) we have the braid relation:

wα,βsα(Gλ
α) = G

wα,βsα(λ)
α = Gwα,γsα(λ)

α = wα,γsα(Gλ
α).

Thus, to show that no contradiction forms from these choices it is enough to consider the

case

wα,γ(λ) =wα,βsα(λ), (2.5)

wα,γsα(α) =wα,βsα(α) = α. (2.6)

In the case mα,β = mα,γ = 2 we find that if sαsγ(λ) = sβ(λ) then sαsβsγ(λ) = λ. As

sγ(ωα) = sβ(ωα) = ωα we find,

ωα(λ) =ωα(sαsβsγ(λ))

=ωα(λ)−1.
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It follows that ωλ(λ) = ±1. As mα,β = mα,γ = 2 this shows that λ is in fact sα-invariant,

i.e. this case never happens.

We are left to consider the rank 3 root systems with the following cases mα,β = 2,mα,γ =

4, 6 and mα,β = 4, 6, mα,γ = 2. We must show that F
wα,γ(λ)
α = F

wα,βsα(λ)
α , which by definition

means we must show that,

wα,γsα(F sα(λ)
α ) = wα,βsα(F λ

α ).

As we have already defined F
sα(λ)
α = 1, we must show that F λ

α = Gλ
α = 1.

When mβ,γ = 2, we see ωγ is both sα and sβ invariant. Thus sγsα(λ) = wα,βsα(λ) implies

that ωγ(λ)−1 = ωγ(λ), and hence sγ(λ) = λ. From this we deduce that wα,β(λ) = λ. As the

length of wα,β is even and sα(λ) 6= λ we deduce that λ is α-exceptional and so Gλ
α = 1 as we

desired.

The other cases arise from the simply connected root datum associated with B3 and C3.

Consider the simply connected root datum associated to B3. Let Π = {α, β, γ}, where α

is the short root, mα,β = 4, and mα,γ = 2. By an explicit calculation with the element

λ = (x, y, z) ∈ (k∗)3 corresponding to (α̌⊗ x) · (β̌ ⊗ y) · (γ̌ ⊗ z) ∈ T h0 ⊗ k∗, we find that the

only elements satisfying sγsα(λ) = sβsαsβ(λ) and sα(λ) 6= λ are of the form (i, 1,−1) where

i is a square root of (−1). In that case the Cayley graph of the action of sα, sβ, sγ looks like,

sβ ,sγ 	 (i, 1,−1)
sα←→ (−i, 1,−1) � sβ ,sγ .

As mα,β = 4 it is clear that λ is α-exceptional and so Gλ
α = 1 as desired.

A similar calculation for the simply connected root datum associated to C3 shows that

every weight λ with wα,γ(λ) = wα,βsα(λ) are in fact sα-invariant.

This shows that we may define F λ
α consistently.

Now take a splitting family F λ
α ∈ A h0

λ for G.

For sα(λ) = λ we let rλα act as hDα1λ. Otherwise we let rλα act as sαF
λ
α1λ. To show this

representation is well defined we only need to check the relations.
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The only difficult relation is the braid relation in the case where λ is a parabolic weight

with respect to Wα,β, but is fixed by only one of the weights.

For this case, suppose λ is sα invariant and not sβ invariant. We set

αi =


α, if i odd,

β, if i even

βi =


α, if i even,

β, if i odd

.

The relevant relation we must show is equivalent to

sαmsαm−1 · · · sα2Dα1 = Dβmsβm−1 · · · sβ1 .

If we consider Dα as given by the fraction,
1− sα
1− e−α

, then the relation

Dαm = (w`sα)Dα1(w`sα)−1

makes the desired relation above obvious.

The above morphism defines a faithful representation of H h0(G) on ˙A h0 .

The image of the set B ⊂ H h0(G)1λ gets mapped to ( ˙A h0 o W )1λ, and is linearly

independent over 1λ ˙A h01λ, just as in [Rou11, Proposition 3.8], with k[X1, · · ·Xn] replaced

by A h0 .

2.5 Isomorphism class of H h0(G)

The main result of this section shows that the isomorphism class of H h0(G) is invariant

under multiplying the data G by invertible functions which also satisfy braid and reflexive

relations.

Theorem II.18. Let G = (Gλ
α) and H = (Hλ

α) be datum satisfying the conditions from

section 2.2. Suppose (gλα)λ∈T h0 ,α∈Π is the set of functions gλα = Hλ
α/G

λ
α, and suppose that the
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gλα are invertible rational functions, gλα ∈ (A h0
λ )∗. Then there is an isomorphism,

H h0(H)→H h0(G)

Proof. Suppose G and H are sets of datum satisfying the conditions from section 2.2. Sup-

pose, further, that gλα = Hλ
α/G

λ
α is a unit in A h0

λ . By the splitting lemma, II.16, there exists

a splitting family (F ) = (F λ
α ) for (gλα). As each F λ

α is either 1 or gλα, we find that F λ
α is also

invertible in A h0
λ . Consider the elements,

τλα = rλαF
λ
α ∈H h0(G).

From the proof of Theorem II.15, we find the elements τλα satisfy the same relations as

rλα ∈ H h0(H). Moreover they generate, along with ˙A h0 the algebra H h0(G). This proves

our claim.
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CHAPTER 3

Applications

3.1 Affine Hecke algebras and localized quiver Hecke algebras

Given a root datum (X, Y,R, Ř,Π) and set of parameters cα ∈ C∗, α ∈ Π, with a fixed h0 ∈ C,

we construct datum G satisfying the properties above, and an isomorphism H h0(G)→ ˙H h0 .

If sα(λ) = λ or λ is α-exceptional, let Gλ
α = 1. Otherwise, for λ with sα(λ) 6= λ let

Gλ
α = (cα + qαP−α)(P−α − cα)(−P−α)−2

Theorem II.19. The data G constructed above satisfies the conditions of section 2.2, so

H h0(G) is well defined. Consider the map H h0(G) → ˙H h0 which is the identity on ˙A h0,

and on generators is given by:

rλα 7→


(cα + qαP−α)−1(Tsα − qsα)1λ, if sα(λ) = λ,(

P−α
cα + P−α + hcαP−α

)
1sα(λ)Tsα1λ, if λ is α-exceptional.,

1sα(λ)Tsα1λ, else.

This map is well defined and it is an isomorphism.

Proof. We easily see that Gλ
α satisfies the associative property, and the braid relation follows

from the Weyl group lemmas. It follows that H h0(G) is well defined. To check that the

above map is well defined we must check the 4 relations from section 2.3 on the generators,

and confirm that there is no right A h0
λ -torsion in ˙H h01λ.

Abusing notation, we use rλα for its image in ˙H h0 . From the definition of ˙H h0 we have

that 1sα(ν)r
λ
α = rλα1ν = δλ,νr

λ
α.
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We now check the quadratic relation,

rsα(λ)
α rλα =


Gλ
α if sα(λ) 6= λ,

hrλα if sα(λ) = λ.

First, suppose sα(λ) 6= λ. We have the quadratic relation T 2
sα = (qsα − 1)Tsα + qsα . We

multiply on the left and right by 1λ to obtain,

1λT
2
sα1λ =(qsα − 1)1λTsα1λ + qsα1λ,

=(qsα − 1)cα(−P−α)−11λ + qα.

On the other hand, we have:

1λT
2
sα1λ = 1λTsα(1λ + 1sα(λ))Tsα1λ,

=1λTsα1sα(λ)Tsα1λ + c2
α(−P−α)−2.

Equating the two expressions yields the equality:

1λTsα1sα(λ)Tsα1λ = (cα + qαP−α)(P−α − cα)(−P−α)−2.

Consequently, we find that 1sα(λ)Tsα1λ is invertible when λ(P−α) 6= cα,−q−1cα.

Next, we verify the commutativity relation:

rλαf − sα(f)rλα =


0 , if sα(λ) 6= λ,

hDα(f) , if sα(λ) = λ.

First, suppose sα(λ) 6= λ. We simply multiply the original commutativity relation,

Tsαf − sα(f)Tsα = cαhD(f),

on the left by 1sα(λ) and on the right by 1λ. Since 1λ1sα(λ) = 0, the claim follows.

Now suppose sα(λ) = λ. We check directly:

(Tα − qα)f − sα(f)(Tα − qα) =cαhDα(f)− qα(f − sα(f)),

=(cα + qαP−α)hDα(f).
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One could also expand the expression,

(cα + qαP−α)−1(Tα − qα)(cα + qαP−α)−1(Tα − qα)

and verify the quadratic relation, (rλα)2 = hrλα, but we will use the induced representation of

H h0 on A h0 for this and the braid relations.

Finally we verify the braid relations. The only standard parabolic subgroups of the

Coxeter group (Wα,β, {sα, sβ}) are Wα,β, 〈e〉, 〈sα〉, 〈sβ〉.

Suppose that the stabilizer of λ is the trivial group 〈e〉. The element rλα is given by

1sα(λ)Tsα1λ. In this case, with λ′ = · · · sαsβsα(λ), we have

1λ′ · · ·TsαTsβTsα1λ = 1λ′ · · ·Tsα1sβsα(λ)Tsβ1sα(λ)Tsα1λ,

and similarly for · · ·TsβTsαTsβ . Thus the braid relation for Tsα , Tsβ yields the braid relation

between rα, rβ.

Consider, now, the case where the stabilizer of λ is sα. In this case, we also have

1λ′ · · ·TsαTsβTsα1λ = 1λ′ · · ·Tsα1sβsα(λ)Tsβ1sα(λ)Tsα1λ.

Replacing the rightmost Tsα with (cα + qsαP−α)−1(Tsα − qsα) and using the commutativity

relation yields the desired result.

Finally, suppose that stabWα,β(λ) = Wα,β. We will use the Demazure-Lusztig represen-

tation of H h0 from section 1.3.

Recall equation (1.2), which gives the formula for the action of T̂α − qα on A h0 :

T̂α − qα : f 7→ (cα + qαP−α)hDα(f).

We extend the action of H h0 on A h0 to an action of ˙H h01λ on A h0
λ , and find rλα = hDα.

As the Demazure-Lusztig representation is faithful this shows the braid relation between

rλα, r
β
λ , as well as the quadratic relation rλαr

λ
α = hrλα.

From the structure theory of ˙H h0 we see it has no polynomial torsion, and the same

PBW basis, by the same Demazure-Lusztig representation, thus the map in question is an

isomorphism.
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3.2 Quiver Hecke algebras

In this section we define quiver Hecke algebras attached to simply connected semisimple

root data as a subalgebra of H h0(G) defined in the previous section. Let h0 = 0, then

Pα + Pβ = Pα+β. Pick a choice of parameters cα ∈ k∗. Recall that there are no exceptional

weights in this case, as every weight is conjugate to a standard parabolic weight.

Recall the dataG associated to a simply connected semisimple root datum (X, Y,R, Ř,Π):

Gλ
α =


1 if sα(λ) = λ,

(Pα − cα)(Pα + cα)(Pα)−2 else.

Suppose the characteristic of k is not 2. Define the data H and g as follows:

Hλ
α =



1 if sα(λ) = λ,

cα − Pα if 〈λ, α〉 = cα,

cα + Pα if 〈λ, α〉 = −cα,

1 else,

gλα =



1 if sα(λ) = λ,

(Pα + cα)−1(Pα)2 if 〈λ, α〉 = cα,

(Pα − cα)−1(Pα)2 if 〈λ, α〉 = −cα,

(Pα − cα)−1(Pα + cα)−1(Pα)2 else,
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In the case that the characteristic of k is 2, define H and g instead as,

Hλ
α =


1 if sα(λ) = λ,

(cα − Pα)2 if 〈λ, α〉 = cα,

1λ else,

gλα =


1λ if sα(λ) = λ,

(Pα)2 if 〈λ, α〉 = cα,

(Pα − cα)−1(Pα + cα)−1(Pα)2 else,

Proposition II.20. The data H satisfies the assumptions of section 2.2. Moreover, the

algebras H h0(G) and H h0(H) are isomorphic.

Proof. Simply apply theorem II.18 to the datum G,H, g.

The advantage of the datum Hλ
α is that it is contained in the image of k[h] ↪→ k[h]λ. This

allows us to define the following subalgebra of the algebras H h0(H).

Definition. Suppose H = (Hλ
α)α∈Π,λ∈h is a datum which satisfies the conditions of section

2.2, and for which Hλ
α is in the image of the inclusion k[h] ↪→ Aλ. Let H be the subalgebra

of H h0(H) generated by the image of k[h] ↪→ Aλ, for each λ ∈ h and rλα, α ∈ Π, λ ∈ h.

Proposition II.21. The inclusion H ↪→ H h0(G) gives, via pullback, an equivalence from

the category of finite representations of H h0(G) and the category of representations of H

for which (Pα − 〈λ, α〉)n1λ acts by 0 for large enough n.

Proof. It is plain that a A-module Vλ with the property (Pα − 〈λ, α〉)n acts by zero for

large enough n has a unique extension to a module over Aλ by letting elements f−1 ∈ Aλ

with f ∈ A with f(λ) 6= 0 act via the inverse of the action of f , which has only non-zero

eigenvalues on Vλ. The claim the follows, as any module over H with the above property

has a unique lift to a module over H h0(H).
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We do one more change of variables to get the presentation of H that we need to define

a grading. Let ψλ : k[h]→ k[h] be the W -equivariant map given by,

ψλ(Pα) = Pα + 〈λ, α〉.

After this change of variables we use the notation xα for the variable Pα, thus for f ∈ k[h],

a polynomial in {Pα}α∈Π, we consider ψλ(f) a polynomial in {xα}α∈Π.

Let R̃ be the algebra with generating set {1λ}λ∈h∪{xλα}α∈Π,λ∈h∪{τλα}α∈Π,λ∈h and relations:

1λ1λ′ = 1λδλ,λ′ ,

xλα1λ′ = 1λ′x
λ
α = δλ,λ′x

λ
i ,

τλα1λ′ = 1sα(λ′)τ
λ
α = δλ,λ′τ

λ
α ,

xλαx
λ
β = xλβx

λ
α,

τλαx
λ
β = x

sα(λ)
sα(β)τ

λ
α , for sα(λ) 6= λ,

τλαx
λ
β − xλsα(β)τ

λ
α = cα〈β, α̌〉, for sα(λ) = λ

along with the following quadratic relations,

τ sα(λ)
α τλα =


0 if sα(λ) = λ,

ψλ(H
λ
α) else.

Also give R̃ the following braid relation between τα and τβ for λ a standard parabolic

weight. For α, β ∈ Π distinct and λ ∈ h a standard parabolic weight with respect to {α, β},

τλmαm · · · τ
λ1
α1

= τµmβm · · · τ
µ1
β1
,

91



where m = mα,β is the order of sαsβ in W ,

αi =


α , i odd,

β , i even,

βi =


β , i odd,

α , i even,

and λi = sαi−1
· · · sα1(λ), µi = sβi−1

· · · sβ1(µ). Let R be the quotient of R̃ by right polynomial

torsion. Then R has no polynomial torsion.

Proposition II.22. Suppose (X, Y,R, Ř,Π) is a simply connected semisimple root datum.

Let H be any datum satisfying the conditions of 2.2 and which is included in the image

k[h] ↪→ k[h]λ, so that the algebras H, R are defined. Then the map on generators 1λ 7→ 1λ,

xλα 7→ Pα − 〈λ, α〉, τλα 7→ rλα is an isomorphism of algebras.

Moreover, suppose for each α ∈ π, λ ∈ h that ψλ(H
λ
α) is a homogeneous polynomial in

{xα}α∈Π. Then let deg be defined on generators as deg(1λ) = 0, deg(xλα) = 2, and

deg(τλα) =


−2 if sα(λ) = λ,

1
2

deg(ψλ(H
λ
α)) else.

Then deg extends to a grading on the algebra R, hence on the quiver Hecke algebra H.

Corollary II.23. Let H be the data associated above to a degenerate affine Hecke algebra

as above. Then the quadratic relations for R are given by,

τ sα(λ)
α τλα =



0 if 〈α, λ〉 = 0,

xλα if 〈α, λ〉 = cα,

−xλα if 〈α, λ〉 = −cα

1λ else,

,
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whereas, for characteristic 2 let,

τ sα(λ)
α τλα =


0 if 〈α, λ〉 = 0,

(xλα)2 if 〈α, λ〉 = cα,

1λ else,

,

The grading is as follows: deg(1λ) = 0, deg(xλα) = 2, for characterstic of k not 2,

deg(τλα) =


−2 if sα(λ) = λ,

1 if 〈λ, α〉 = ±cα,

0 else,

whereas for characteristic of k equal to 2,

deg(τλα) =


−2 if sα(λ) = λ,

2 if 〈λ, α〉 = cα,

0 else.

Proof. The presentation of the algebra R is simply a recollection of the relations of H h0(G),

restricted to H and with the above change of variables.

To show that the above grading on generators extends to a grading on H we need to

show that all the relations are graded. This is trivial with the exception of the braid relation

and the relations pertaining to polynomial torsion. In the case of the braid relation, we have

〈λi, αi〉 = 〈λ, sα1 · · · sαi−1
(αi)〉.

Applying lemma II.5 to the expression sαm · · · sα1 = sβm · · · sβ1 we find a permutation p of

the set {1, · · · ,m} with,

〈λi, αi〉 = 〈λ, sα1 · · · sαi−1
(αi)〉 = 〈λ, sβ1 · · · sαp(i)−1

(βp(i))〉 = 〈µp(i), βp(i)〉

It follows that the braid relations are graded.
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As for the polynomial torsion, section 2.4 shows that the polynomial torsion relation

may be replaced with the following relations for general λ ∈ h and α, β ∈ Π distinct. For λ

not fixed by either sα, sβ, then we may pick t as in section 2.4. In that case, following the

notation of 2.4, we have the following braid-like relation:

τλmαm · · · τ
λ1
α1
− τµmβm · · · τ

µ1
β1

= sαm · · · sαt+2(∆αt+1(P ))ταm · · · τα2t+2 ,

where,

P =
t∏
i=1

sαt · · · sαi+1
(Gλ−i

αi
),

=τλtαt · · · τ
λ1
α1
τλ−1
α1
· · · τλ−tαt .

Here, λ−i = sαi(λi). The two terms on the left side of the relation have the same degree by

the above description of 〈λi, αi〉. The term ∆αt+1(P ) has the same degree as τλ2t+1
α2t+1

· · · τα1 as

the product expression for P shows that it has the same terms with the exception of τλtαt ,

which has degree −2. As the operator ∆α has degree −2, it follows that the above braid-like

relation is graded.

3.3 Graded characters of irreducible representations

Let H be the quiver Hecke algebra with grading defined above. We define an anti-involution

ι : H → Hopp as follows:

ι(1λ) =1λ

ι(xλα) =xλα

ι(τλα) =τ sα(λ)
α .

The only difficulty in showing that ι is well defined is in showing that the braid relations are

preserved under ι. Indeed, to show that

τλ2α1
· · · τλm+1

αm − τµ2β1 · · · τ
µm+1

βm
= sα2t+1 · · · sαt+2∆αt+1(P )τ

λ2t+3

2t+2 · · · rλm+1
αm ,
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it suffices to multiply the left side of the equation on the left by τα1 · · · ταtταt · · · τα1 and

simplify as in section 2.4.

As deg(τλα) = deg(τ
sα(λ)
α ), we see that ι is a graded anti-involution. Let V be a graded

H-module. Then V ∨ := homk(V, k) is naturally a Hopp-module, which we consider as a

H-module via the map ι. We see that the graded character of V ∨ is given by switching v

and v−1 in the graded character of V .

Proposition II.24. Let H be the quiver Hecke algebra associated to a degenerate affine Hecke

algebra as above. Let V be an irreducible graded representation of H. There is a grading

shift V {`} of V such that the graded character of V {`} is invariant under the substitution

v 7→ v−1.

Proof. By Schur’s lemma, a non-graded irreducible H-module can have at most one grading,

up to grading shift. As an irreducible H-module is determined up to isomorphism by its

ungraded character we find that V and V ∨ are isomorphic as ungraded modules. It follows

that the graded character of V is vk times the graded character of V ∨ for some k. First, we

claim that k must be even. It suffices to consider the proposition for the graded character

of Vλ as an 1λH1λ-module, where Vλ is some non-zero generalized eigenspace. Let v ∈ Vλ be

an element of highest degree. As deg(xλα) > 0, we see that xλαv = 0 for all α ∈ Π. We have

Vλ = 1λH1λv, so by the PBW-theorem for H we find that Vλ is the k-span over elements

τλmαm · · · τ
λ1
α1

with λ = λ1 = sαm(λm), and the other λi defined as usual by λi+1 = sαi(λi). We

claim that the degree of such an element τλmαm · · · τ
λ1
α1

must be even. In characteristic 2 this is

automatic, as every τλα has even degree. Otherwise, the claim is equivalent to showing that

the number of i for which 〈λi, sαi〉 = ±cαi is even. There exists u ∈ W with λ′ = u−1(λ)

a standard parabolic weight. Given a decomposition u = sβn · · · sβ1 , we easily see that the

element,

τβ1 · · · τλβnτ
λk
αk
· · · τλα1

τβn · · · τλ
′

β1
,

has the same degree as τλmαm · · · τ
λ1
α1

modulo 2, as the former element has for every τµβi term, a

term of the form τ
sβi (µ)

βi
, and these two degrees add up to 2.
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Thus, we are left to show that for λ a parabolic weight and sαm · · · sα1(λ) = λ we must

have the number of i with 〈λi, αi〉 = ±cαi is even. If sαm · · · sα1 is a reduced expression then

each λi = λ, so that 〈λi, αi〉 = 0 and the claim follows.

Note that

〈λi, αi〉 = 〈λ, sα1 · · · sαi−1
(αi)〉.

If sαm · · · sα1 is not reduced, then there exists i < j with

sαj · · · sαi =sαj−1
· · · sαi+1

,

sαj · · · sαi+1
=sαj−1

· · · sαi ,

both of which are reduced expressions. It follows for this choice of i, j that,

αi = sαi · · · sαj−1
(αj),

and hence,

〈λi, αi〉 =〈λsα1 · · · sαi−1
(αi)〉

=〈λsα1 · · · sαj−1
(αj)〉

=〈λj, αj〉.

Moreover, as the equation sαj · · · sαi+1
= sαj−1

· · · sαi is an equality of reduced expressions,

there is a bijection p : {i+ 1, · · · j} ∼−→ {i, · · · , j − 1} with the property that,

sαi+1
· · · sαk−1

(αk) =si · · · sαp(k)−1
(αp(k)),

p(j) =i.

It follows that modulo 2, the degree of τλmαm · · · τ
λ1
α1

is the same as the degree of the τ
µm−2

βm−2
· · · τµ1β1

where the sequence β1, · · · , βm−2 is the same as the sequence α1, · · · α̂i, · · · , α̂j, · · · , αm, where

the hat denotes ommision, and the µi are defined as usual, µ1 = λ, µi+1 = sβi(µi).

By induction it follows that the degree of any sequence τλmαm · · · τ
λ1
α1

with λ1 = sαm(λm)

is even. We have proved that for any irreducible graded H-module V with Vλ 6= 0, the
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degree of any two elements in Vλ differ by a multiple of two. In particular the highest degree

and lowest degree element in the graded character of Vλ differ by vk where k is even. Put

` = k
2
. We then have that V {−`} is a module whose graded character is invariant under the

substitution v 7→ v−1.

Remark II.25. As one can see, the result is true more generally if deg(τλα) depends only on

〈λ, α〉.

Corollary II.26. The category of finite representations of a degenerate affine Hecke algebra

H associated to a simply connected semi-simple root data is Morita equivalent to the category

of ungraded finite representations of the associated quiver Hecke algebra H for which the

elements xλα act nilpotently for all α ∈ Π, λ ∈ h. An irreducible representation V of H

is associated to a unique graded irreducible representation of H, whose graded character is

invariant under the substitution v 7→ v−1, and for which the substitution v 7→ 1 yields the

character of V .

Proof. We must show that every ungraded irreducible representation of H has a grading

compatible with the action of H. As the center Z(H) of H is given by the space of invariants

(
⊕

λ∈h k[h]1λ)
W , it is a graded ideal of H. Moreover, the action of H on an irreducible

representation factors through the finite dimensional graded algebra H/Z(H). Then the

claim follows from [NV04, Theorem 4.4.4].

3.4 A pair of adjoint functors

Fix λ ∈ T h0 and consider the algebra λH
h0
λ := 1λ ˙H h01λ, which we refer to as the weight

Hecke algebra. There is a functor on finite dimensional representations which we will call

the λ-weight restriction functor,

wResλ : H h0 − mod −→ λH
h0
λ − mod ,

V 7→ Vλ.
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The weight restriction functor admits a left adjoint, which we will call wIndλ, or the

λ-weight induction functor,

wIndλ : λH
h0
λ − mod −→ H h0 − mod ,

Vλ −→ ˙H h01λ ⊗
λH

h0
λ
Vλ.

Proposition II.27. Let λ ∈ T h0 be a weight. The following gives a construction of all

irreducible representations V of H h0 for which Vλ 6= 0, in terms of irreducible representations

of λH
h0
λ .

1. Let Vλ be a non-zero, irreducible λH
h0
λ -module. Then, wIndλ(Vλ) has a unique irre-

ducible quotient, L(wIndλ(Vλ)).

2. Conversely, suppose that V is an irreducible representation of H h0 with Vλ 6= 0. Then,

Vλ is an irreducible λHλ-module, and the counit of the adjunction, non-zero map

wIndλ(Vλ)→ V,

is non-zero and identifies V with L(wIndλ(Vλ)).

3. Finally, the kernel of the above map is the largest H h0-submodule U of wIndλ(Vλ) for

which Uλ = 0. This kernel may be computed in terms of the λH
h0
λ -module structure

on Vλ.

Proof. For the first claim, suppose Vλ is an irreducible λH
h0
λ -module and let U ( wIndλ(Vλ)

be a proper λH
h0
λ -submodule. We claim that Uλ = 0. If not, Vλ irreducible implies that

Uλ = Vλ. But, Vλ generates ˙H h01λ ⊗
λH

h0
λ
Vλ as an H h0-module, so we would have U =

wIndλ(Vλ), a contradiction.

Now we note that the interior sum of two submodules U,U ′ ⊂ wIndλ(Vλ) with Uλ =

U ′λ = 0 is a submodule, U + U ′, with (U + U ′)λ = 0. So there is a unique maximal proper

submodule, categorized as the sum of all H h0-submodules U with Uλ = 0.
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For the second claim, we have the easy fact, wIndλ(Vλ)λ = 1λ ˙H h01λ ⊗
λH

h0
λ
Vλ ∼= Vλ. If

there were a non-trivial submodule Uλ ⊂ Vλ, then the image U ′ of the composition of maps

wIndλ(U)→ wIndλVλ → V

would be a submodule of V with 0 ( U ′λ ( Vλ. Thus, U ′ would be a non-trivial H h0-

submodule of V .

The last claim follows from the proof of the first claim. We show how to describe the

maximal proper submodule.

Let Uλ′ be the left A h0-span of the elements of the form r ⊗ v ∈ 1λ′ ˙H h01λ ⊗ Vλ for

which 1λ ˙H h01λ′(r ⊗ v) = 0. Then Uλ′ is clearly the λ′-weight space of the maximal proper

submodule. We may describe this set as 1λ′ ˙H h01λ ⊗ V λ′

λ , where V λ′

λ is the kernel of the

action of 1λ ˙H h01λ′ ˙H h01λ ⊂ λH
h0
λ on Vλ.

3.5 The Demazure algebra

For simply connected root datum, (X, Y,R, Ř,Π), we may identify the algebra, End(A h0 )W (A h0)

with the Demazure algebra, h0H , an interpolating version of the affine nil-Hecke algebra 0H

of [Rou11, Section 2.1]. As a vector space this algebra is equal to a tensor product

A h0 ⊗C
h0H f

of A h0 with the finite Demazure algebra, h0H f of W . the latter algebra is the algebra with

generators τα, α ∈ Π, which satisfy the braid relation between τα, τβ, as well as the quadratic

relation

τ 2
α = h0τα.

The algebra structure of h0H is given by letting A h0 and h0H f be subalgebras, and giving

the commutativity relation,

ταf − sα(f)τα = hDα(f).
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The following theorem is an algebraic link between the Demazure algebra and the weight

Hecke algebra, λH
h0
λ , for certain λ ∈ T h0 .

It is clear that for a weight, λ ∈ T h0 , the subalgebra of λH
h0
λ generated by A h0

λ and

rλα with sα(λ) = λ is isomorphic to a Demazure algebra with possibly smaller root datum,

(X, Y,Rλ, Řλ,Πλ), Πλ = {α ∈ Π | sα(λ) = λ}. There is a special case when this subalgebra

is the entirety of 1λH 1λ.

We can use simple Weyl group lemmas and the structure theorem of the quiver Hecke

algebra H (G) to give the solution to this question.

Theorem II.28. Suppose λ ∈ T h0 is a standard parabolic weight, i.e. the stabilizer of λ in

W is a standard parabolic subgroup of W . Then the weight-Hecke algebra λH
h0
λ is isomorphic

to the Demazure algebra associated to the root data, (X, Y,Rλ, Řλ,Πλ).

Corollary II.29. If λ ∈ T h0 is a parabolic weight, then there is, up to isomorphism, only

one irreducible representation V of H h0 with Vλ 6= 0.

Proof. By corollary II.14, we see that λH
h0
λ is spanned by products rαn · · · rα1 with w =

sαn · · · sα1 a reduced expression for w ∈ W , a Weyl group element which stabilizes λ. By

assumption the stabilizer is generated by sα, α ∈ Π fixing λ, and a reduced expression will

use only these terms sα, α ∈ Πλ.

Now, for (X, Y,R, Ř,Π) simply connected, a parabolic subgroup corresponding to Πλ

will also be simply connected. Thus, the subalgebra λH
h0
λ
∼= h0H will be a matrix algebra

over A Wλ
. Modulo the kernel of the central character corresponding to the irreducible

representation, the algebra is a matrix algebra over C. Thus, the weight Hecke algebra λH
h0
λ

has only one irreducible representation with a non-zero weight λ. In fact, it’s dimension is

#W λ, the cardinality of the stabilizer of λ.

100



3.6 Example computation

Let us take (X, Y,R, Ř,Π) the standard root datum for SL3, and H the quiver Hecke algebra

with the grading given above. Let v stand for the grading shift, so that characters of finite

H modules are in the group ring Z[v±1][h]. Let k be a field with characteristic not 2. We

have the roots, α = (1,−1, 0), β = (0, 1,−1), which span the vector space X ⊗Z k. Then

A = Sk(X), the symmetric algebra is a polynomial algebra in the variables α, β. Pick a

parabolic weight λ = (1, 1, 0) ∈ Homalg(A,C) and let Λ be the S2-orbit of λ. We compute

the graded characters of each irreducible representation ofH whose associated representation

of H have central character Λ.

First, suppose V is a finite irreducible H-module with non-zero λ-weight space. Since λ

is a standard parabolic weight, there is only one such representation up to isomorphism and

we may construct it as follows. By the previous section, 1λH1λ is isomorphic to the nil-affine

Hecke algebra for the root system (X, Y, {α}, {α̌, {α}). There are two ways of constructing

the irreducible 1λH1λ-module, Vλ. Let k be the trivial A-module with xα, xβ acting by 0.

Then 1λH1λ ⊗A1λ k has the correct dimension, and hence must be the unique irreducible

representation of 1λH1λ with xα, xβ acting nilpotently.

Alternatively we could induce from the finite nil Hecke algebra. Let A〈sα〉 be the functions

which are invariant under the action of sα. Let J0 be the positively graded elements of

this subalgebra. Then J0 is a central ideal of 1λH1λ, and we can form the representation

1λH1λ⊗0H f k, where k is the trivial nil-Hecke 0H f -module with τλα acting by 0. Again, this

representation has the correct dimension and so must be isomorphic to the unique irreducible

nilpotent representation.

It is clear that the graded character of the first representation is 1 + v2, whereas the

graded character of the second one is v−2 + 1. We may shift the grading so that the graded

character of this module is v + v−1, which is invariant under the substitution v 7→ v−1. Let

L(Vλ) be the irreducible quotient of the module weight-induced from Vλ. Then the graded

character of L(Vλ)sβ(λ) is simply 1, and the character of L(Vλ)sαsβ(λ) is simply 0. It is worth
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noting that the graded character of L(Vλ) is invariant under the substitution v 7→ v−1.

The case of irreducible representations with non-zero sαsβ(λ)-weight space is identical as

that is also a standard parabolic weight. We are left to compute the irreducible modules Vsβ(λ)

over 1sβ(λ)H1sβ(λ) whose associated irreducible H-module L(Vsα) has no λ, sαsβ(λ)-weight

space. This is equivalent to τλβ τ
sβ(λ)

β = xβ, and τ
sαsβ(λ)
α τ

sβ(λ)
α = −xα acting by 0 on Vsβ(λ).

By the commutativity relation between τγ := τατβτ
sβ(λ)
α and xγ := xα+β, τγxγ +xγτγ = 2, we

see that the constant map 2 must be zero on Vsβ(λ). It follows that there is no such non-zero

irreducible representation.

3.7 Appendix: quiver Hecke algebras in type A

We note that in type A the (graded) quiver Hecke algebras appearing in [Rou11] are related

to the algebra H h0(G) we have defined here with the standard root datum GLn. We first

present the quiver Hecke algebra Hn(Γ) from [Rou11] which is shown there to be related to

the degenerate affine Hecke algebras of type A.

Definition. Define the quiver Γ with vertices I = k and arrows a → a + 1, a ∈ k. Denote

λ = (λ1, λ2, . . . , λn) ∈ kn with λi ∈ I, i = 1, 2, . . . , n. Then Hn(Γ) is the algebra generated

by idempotents {1λ}λ∈Λ, by variables {xλi }ni=1, and {τλi }i∈I subject to the following relations.
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1λ1λ′ = 1λδλ,λ′ ,

xλi 1λ′ = 1λ′x
λ
i = δλ,λ′x

λ
i ,

τλi 1λ′ = 1si(λ′)τ
λ
i = δλ,λ′τ

λ
i ,

xλi x
λ
j = xλj x

λ
i ,

τix
λ
j − x

si(λ)
si(j)

τλi =


−1λ if si(λ) = λ and j = i,

1λ if si(λ) = λ and j = i+ 1,

0 else,

τ
si(λ)
i τλi =



0 if λi = λj

xλi+1 − xλi if λj = λi + 1

xλi − xλi+1 if λj = λi − 1

1λ else,

τ
sj(λ)
i τλj − τ

si(λ)
j τλi = 0 if | i− j |> 1,

τ
si+1si(λ)
i τ

si(λ)
i+1 τλi − τ

sisi+1(λ)
i+1 τ

si+1(λ)
i τλi+1 = 0 if λi = λi+1 = λi+2 or λi 6= λi+2.

There is also a relation stating that Hn(Γ) have no polynomial torsion (see [Rou11,

Section 3.2.2]), which is equivalent to the missing braid like relations from [Rou08, Section

3.2.1].

Let (Zn,Zn, R, Ř,Π) be a root data for GLn with standard basis {ei}ni=1 of Zn and simple

roots αi = ei+1 − ei, i = 1, . . . , n − 1. Let cα = 1 be a set of parameters, and let H be the

associated degenerate affine Hecke algebra, with Ti = Tαi . We remark that although the

weight lattice for GLn does not contain the fundamental weights, it is the case that every

weight is conjugate to a standard parabolic weight. Thus, our construction of H h0(G),H

may be carried out with no change.

Finally, let V be a representation of the degenerate affine Hecke algebra H. In this case

we identify Pi = Pei , A = k[P1, . . . , Pn], and λ ∈ (k∗)n a weight of A via λ(Pi) = λi. By

103



[Rou08, Theorem 3.11], we can turn V into an Hn(Γ)-module with 1λ the projection onto

the λ-generalized-eigenspace for A, xλi acting by (Pi − λi)1λ, and τλi acting by,

τλi 7→


(Pi − Pi+1 + 1)−1(Ti − 1)1λ if si(λ) = λ,

((Pi − Pi+1)Ti + 1)1λ if λi+1 = λi + 1,

Pi−Pi+1

Pi−Pi+1+1
(Ti − 1)1λ + 1λ else.

Using our notation for αi, as well as the relation commutativity relation for Ti and 1λ, we

find that this is equivalent to,

τλi 7→


(1− Pαi)−1(Ti − 1)1λ if si(λ) = λ,

(−Pαi)1si(λ)Ti1λ if λi+1 = λi + 1,

(
−Pαi
1−Pαi

)1si(λ)(Ti)1λ else.

Using the isomorphism H h0(G)→ ˙H h0 of the previous section we find the following:

Theorem II.30. There is a map Hn(Γ)→H h0(G) given by xλi 7→ (Xi− λi)1λ ∈ ˙A h0, and

τλi 7→


rλαi if si(λ) = λ,

(−αi)rλαi if λi+1 = λi + 1

( −αi
1−αi )r

λ
αi

else.

Moreover, this map gives a graded isomorphism of Hn(Γ) onto H.

We can do something analogous for localized affine Hecke algebras, but only in the simply

laced case.

Definition. Let qα = q ∈ k∗. Define the quiver Γ of [Rou08, Section 3.2.5] with vertices

I = k∗ and arrows a → q · a. Denote λ = (λ1, . . . , λn) ∈ (k∗)n. Then Hn(Γ) is the algebra
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generated by idempotents {1λ}λ∈(k∗)n , variables {xλi }ni=1 and {τλi }ni=1 with relations:

1λ1λ′ = δλ,λ′1λ,

xλi 1λ′ = 1λ′x
λ
i = δλ,λ′x

λ
i ,

τλi 1λ′ = 1si(λ′)τ
λ
i = δλ,λ′τ

λ
i ,

xλi x
λ
j = xλj x

λ
i ,

τλi x
λ
j − x

si(λ)
si(j)

τλi =


−1λ if si(λ) = λ and j = i,

1λ if si(λ) = λ and j = i+ 1,

0 else,

τ
si(λ)
i τλi =



0 if λi = λj

xλi+1 − xλi if λj = λi · q

xλi − xλi+1 if λj = λi · q−1

1λ else,

τ
sj(λ)
i τλj − τ

si(λ)
j τλi = 0 if | i− j |> 1,

τ
si+1si(λ)
i τ

si(λ)
i+1 τλi − τ

sisi+1(λ)
i+1 τ

si+1(λ)
i τλi+1 = 0 if λi = λi+1 = λi+2 or λi 6= λi+2.

Again, there is also a relation (see [Rou11]) in Hn(Γ) saying that Hn(Γ) contains no poly-

nomial torsion which accounts for the missing braid like relations in [Rou08].

Let cα = 1, qα = q ∈ k∗\{±1} and h0 = q − 1. Again, let (Zn,Zn, R, Ř,Π) be a root

datum for GLn. Let {ei}ni=1 be the standard basis of Zn, and let the root basis be defined

by αi = ei+1 − ei. With this data we associate the affine Hecke algebra H and its localized

version ˙H h0 . We identify A with the ring k[X±1
1 , . . . , X±1

n ], with Xi corresponding to the

exponential of ei. By [Rou11, Theorem 3.12], there is a map Hn(Γ)→ ˙H h0 given by mapping
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xλi 7→ Xiλ
−1
i 1λ, and:

τλi 7→


λiX

−1
i+1(qXiX

−1
i+1 − 1)−1(Ti − q)1λ if si(λ) = λ,

q−1λ−1
i Xi+1(XiX

−1
i+1 − 1)1si(λ)Ti1λ if λ(α) = q,

XiX
−1
i+1−1

qXiX
−1
i+1−1

1si(λ)Ti1λ else.

Using our notation for Ux the exponential of x ∈ Zn in A the group ring of Zn, we find the

above mapping to be:

τλi 7→


λiX

−1
i+1(qU−αi − 1)−1(Ti − q)1λ if si(λ) = λ,

q−1λ−1
i Xi+1(U−αi − 1)1si(λ)Ti1λ if λ(α) = q,

U−αi−1

qU−αi−1
1si(λ)Ti1λ else.

It follows from the polynomial representations of ˙H h0 ,H h0(G) that there is a mapping from

Hn(Γ) to H h0(G) given by mapping xλi 7→ Xλ
i λ
−1
i 1λ, and:

τλi 7→


λiXi+1r

λ
αi

if si(λ) = λ,

q−1λ−1
i Xi+1(U−αi − 1)rλα if λ(α) = q,

U−αi−1

qU−αi−1
rλα else.

Notice now, that the braid relation for τλα is different than the braid relation for rλα.

Remark II.31. It should be noted that in [Rou11, Theorem 3.11], a grading is also given to the

affine Hecke algebras of type GLn by use of an algebraic W -equivariant map A→ A . There

is an algebraic obstruction to this approach in other types and we do not give gradings to

affine Hecke algebras in this paper. One could give irreducible representations of affine Hecke

algebras gradings by using the correspondence given by [Lus89] between their representation

categories.
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