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Abstract

We present a method of generating spatial maps of kinetic parameters from dynamic sequences of 

images collected in hyperpolarized carbon-13 MRI experiments. The technique exploits spatial 
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correlations in the dynamic traces via regularization in the space of parameter maps. Similar 

techniques have proven successful in other dynamic imaging problems such as dynamic contrast 

enhanced MRI. In this paper we apply these techniques for the first time to hyperpolarized MRI 

problems, which are particularly challenging due to limited SNR. We formulate the reconstruction 

as an optimization problem and present an efficient iterative algorithm for solving it based on the 

alternation direction method of multipliers (ADMM). We demonstrate that this technique 

improves the qualitative appearance of parameter maps estimated from low SNR dynamic image 

sequences, first in simulation then on a number of data sets collected in vivo. The improvement 

this method provides is particularly pronounced at low SNR levels.

I. INTRODUCTION

Magnetic resonance imaging (MRI) using hyperpolarized carbon-13 labeled substrates has 

made it possible to probe metabolism in vivo with chemical specificity [1], [2]. This 

technique is increasingly being applied in the clinic, allowing researchers to investigate 

metabolic conditions ranging from prostate cancer [3] to heart disease [4]. In particular, 

experiments studying the conversion of hyperpolarized [1-13C]pyruvate to [1-13C]lactate are 

common, as the rate of conversion is upregulated in many cancers, a phenomenon known as 

the Warburg effect.

MRI using hyperpolarized carbon-13 is challenging due to the dynamic nature of the data 

collected, the low signal-to-noise ratio (SNR), and the difficulty of presenting large data sets 

consisting of dynamic spectroscopic images in an interpretable manner. Metabolism 

mapping by estimating parameters in a kinetic model from hyperpolarized MRI data has 

been shown to be useful for overcoming a number of these challenges [5]. Constraining the 

time evolution of signal in a given voxel to follow a kinetic model has been shown to allow 

map reconstruction from noisy, undersampled dynamic images, and to reduce the number of 

signal-depleting excitations required to generate images. Parameter mapping also facilitates 

interpretation of dynamic image data by summarizing spatial, temporal and chemical (i.e. 

chemical shift spectrum) information in a single spatial map.

Parameter maps are naturally a form of constrained reconstruction, as they constrain the data 

to lie on a manifold of trajectories of the dynamical system parametrized by the system’s 

parameters. This constrained reconstruction reduces the sequence of dynamic images to a 

single map by exploiting temporal correlations within the dynamic imaging data. In this 

paper, we demonstrate that we can exploit spatial correlations in addition to temporal 

correlations by integrating prior information about the parameter map through 

regularization. Similar approaches have proven useful recently in the context of 

pharmacokinetic parameter mapping in dynamic contrast enhanced and cardiac perfusion 

MRI [6]–[12]. To our knowledge, this is the first time this family of spatial regularization 

techniques have been used in hyperpolarized MRI, where they are particularly beneficial due 

to the challenges of working with low SNR images.

This paper is organized as follows. In Section II we introduce background on modelling 

hyperpolarized 13C MRI data and existing approaches to parameter mapping. In Section III 

we introduce a framework for spatially-constrained parameter mapping to exploit spatial 
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correlations in the data. In Section IV we present an algorithm for efficient inference in this 

framework. In Section V we present the results of simulation experiments where we 

demonstrate the effectiveness of the method. In Section VI we then apply the method to a 

collection of clinically-relevant data sets. Finally, Section VII concludes the paper and 

briefly discusses potential extensions of this work.

Preliminary results from this paper were presented at the 2017 Annual Meeting of the 

International Society of Magnetic Resonance in Medicine [13].

II. BACKGROUND

A. Data Model

We model the dynamic evolution of the data Yi collected from a single voxel i using a 

dynamic model for a two-dimensional state x(t) = [x1(t) x2 (t)]T:

dx
dt t =

−kPL − R1P 0
kPL −R1L

x t +
kTRANS

0
u t . (1)

This system of ordinary differential equations (ODEs) has been widely used to model the 

uni-directional conversion of an injected substrate (pyruvate, in this case) to a metabolic 

product (lactate, in this case) [14]. The state x1(t) models the longitudinal magnetization in 

the substrate pool, and the state x2(t) models the longitudinal magnetization in the product 

pool. The parameter kPL describes the rate at which the substrate is metabolized, the 

parameter kTRANS describes the rate at which the substrate is taken up by the tissue, and the 

parameters R1P and R1L are lumped parameters that account for T1 magnetization decay, 

metabolism of the substrate into unmeasured products and flow of substrate out of the voxel.

Measurements are collected at a sequence of times {t1,…, tN}. Neglecting the effect of the 

input between tk and tk+1, integrating this continuous-time dynamic model and incorporating 

the effect of repeated radio-frequency (RF) excitation leads to a discrete-time model for the 

magnetization at acquisition times tk of the form

L k + 1 = e
−R1LΔt

cos αL k L k − kPL
e

− R1P + kPL Δt
− e

−R1LΔt

R1P − R1L + kPL
cos αP k P k . (2)

This gives a statistical model that describes the evolution of the predicted lactate signal 

L k = x2 tk  as a function of the measured pyruvate signal P (k) = x1(tk) and the flip angles 

αP and αL applied to the pyruvate and lactate compartments. The predicted lactate is 

assumed to be L 0 = 0 at the beginning of the experiment.

For the purpose of generating simulated data, the data measured at each time tk are assumed 

to be independent and follow a bivariate normal distribution with mean δxδyδzx(tk) and 

covariance σ2I where I denotes the 2×2 and δx, δy and δz describe the image resolution and 
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slice thickness. We collect the time series data collected from voxel i into a matrix 

Y i = P 1 ⋯ P N
L 1 ⋯ L N

 and denote the the unknown parameters to be estimated from the data θi 

= kPL.

B. Voxel-Wise Parameter Estimation

Given a collection of data Yi from a voxel i we wish to generate an estimate of the parameter 

θi that describes the tissue in that voxel. We assume that θi lies in a parameter space Θ. We 

consider the class of “M-estimators” [15] that minimize a loss function

θi ∈ argmin
θ ∈ Θ

𝓁 θi Yi .

In the present paper, we consider the nonlinear least squares loss function

ℓ θi Y i = Y i − Y i θi F
(3)

where Y =
P 1 ⋯ P N

L 1 ⋯ L N
 denotes the predicted signal given the pyruvate time ∥·∥F denotes 

the Frobenius norm (i.e. the ℓ2 norm of the vectorized matrix). Under the assumption that the 

data collected are normally-distributed with mean proportional to x(tk), independent with 

identical variance, the minimum of this nonlinear least squares loss is also the maximum 

likelihood estimate of the parameter vector. While we consider only this loss in the present 

paper, the results are applicable generally to any computationally tractable loss function.

III. CONSTRAINED PARAMETER MAPPING

In order to incorporate prior information about the spatial distribution of metabolic rates and 

exploit spatial correlations within the data, we constrain the maps to have a desired structure 

through regularization. This results in an optimization problem in Lagrangian form

minimize ∑
i ∈ 𝒱

ℓ θi Y i + λr θ (4)

where θ = (θi)i∈υ denotes the map of parameters across all voxels, r is a regularization term, 

and λ denotes a Lagrange multiplier that can be tuned in order to achieve the desired 

regularization strength. The choice of an appropriate regularizer depends on the desired 

features of the parameter map. Common choices include Tikhonov (ℓ2) regularization, ℓ1 

regularization, and total variation regularization. We briefly summarize these three methods 

below.

Tikhonov regularization, or ℓ2 regularization penalizes the size of the parameters θi. It 

involves adding a quadratic penalty term
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r θ = θ 2
2

where ∥·∥2 denotes the ordinary Euclidean norm. For linear regression problems with 

orthogonal covariates, this regularization leads to uniform shrinkage of the estimates [16]. 

For the nonlinear parameter mapping problems we consider here, using Tikhonov 

regularization helps to suppress large parameter values in the unperfused “background” 

region.

ℓ1 regularization is another shrinkage method that penalizes parameters based on their ℓ1 

norm

r θ = θ 1 .

This method induces sparsity in the resulting parameter maps, and hence also helps to 

suppress parameter values in the background region. It is closely-related to basis pursuit 

denoising [17] and lasso regression [18].

Total variation (TV) regularization is another method commonly used for image denoising 

[19]. In this paper, we use an anisotropic total variation regularization term given by

r θ = ∇θ 1: = ∑
i, j ∈ 𝒩

θi − θ j

where ▽ denotes a discrete differencing operator and 𝒩 denotes the set of all neighbouring 

voxels. As all applications we consider in this paper we consider three-dimensional images, 

the neighbourhood 𝒩 consists of the six voxels j immediately adjacent to the voxel i. 
Anisotropic total variation is chosen due to the availability of numerical packages for 

extremely fast computation of proximity operators via the proxTV package [20], [21]. TV 

regularization is known to preserve edges and large-scale structure in images while rejecting 

noise [22], resulting in natural-looking reconstructed images.

IV. ITERATIVE ALGORITHMS FOR CONSTRAINED PARAMETER MAPPING

A naive algorithm for solving this optimization problem by directly optimizing the objective 

function (4) would be inefficient because it involves solving a joint optimization over all {θi: 

i ∈ υ}. Thus the computation time required to directly solve the optimization problem 

increases dramatically with matrix size, making naive approaches inefficient even for the 

images of moderate resolution considered here. To solve the optimization problem more 

efficiently, we can take advantage of the particular structure of the problem using the 

ADMM algorithm.

The alternating direction method of multipliers (ADMM) is an iterative optimization 

algorithm that is well-suited to efficiently solving such problems that can be decomposed 

into a sum of two terms [23]. In contrast with other distributed optimization algorithms, the 
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ADMM algorithm is particularly well-suited to the problem formulated in this paper as it 

splits the required optimization into the sum of a set of loss functions ℓ that are complex to 

optimize, but can be optimized independently for each voxel, and a regularization r that is 

relatively simple but high-dimensional as it couples a large number of neighboring voxels. 

By exploiting this decomposition, ADMM allows the optimization problem to be solved 

efficiently. The general problem that ADMM attempts to solve is an optimization problem of 

the form

minimize f x + g z
subject to Ax + Bz = c

. (5)

The algorithm does so by iteratively applying the updates

xk + 1 = argmin
x

f x + ρ
2 Ax − Bzk − c + uk

2
2

zk + 1 = argmin
z

g z + ρ
2 Axk + 1 − Bz − c + uk

2
2

uk + 1 = uk + Axk + 1 + Bzk + 1 − c .

Under the assumption that f and g are closed, proper, convex functions and that the 

Lagrangian

L x, z, λ = f x + g z + λT Ax + Bz − c

has a saddle point, it can be shown [23] that the residuals rk = Axk +Bzk −c converge to zero 

and the values f(xk)+g(zk) converge to the optimal value of the problem (5).

A. ADMM for iterative parameter mapping

To solve (4) we transform the problem to a form amenable to the ADMM algorithm by 

introducing a new variable z = θ and solving

minimize ∑
i ∈ 𝒱

ℓ θi Y i + λr z

subject to θ − z = 0.
(6)

The ADMM iteration is then given as

θk + 1 = argmin
θ

∑
i ∈ 𝒱

𝓁 θi Yi + ρ
2 θ − zk + uk

2
2

zk + 1 = argmin
z

λr z + ρ
2 θk + 1 − z + uk

2
2

uk + 1 = uk + θk + 1 − zk + 1 .
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This method is sometimes known as Douglas-Rachford splitting [24]. Note that the θ update 

is additively separable. Introducing the proximity operator

prox f x = argmin
u

f u + 1
2 u − x 2

2

we can re-write this iteration as

θi
k + 1 = prox 1

ρℓ ⋅ Yi
zi
k − ui

k i ∈ 𝒱

zk + 1 = prox λ
ρr

θk + 1 + uk

uk + 1 = uk + θk + 1 − zk + 1 .

Here, the θi updates can be performed independently for each i ∈ υ, significantly decreasing 

time and memory required for computation and allowing the parallelization of this step.

Note that for the particular choice of loss function given in Section III, ℓ(·|Yi) are nonconvex 

functions and thus the formal convergence guarantees do not apply. Despite this fact, we 

have seen in all the experimental instances of the problem we have considered that the 

algorithm converges to a sensible optimum robustly for a variety of initializations. In what 

follows, we use the modified Levenberg-Marquardt algorithm [25] implemented in 

MINPACK [26] to solve the nonlinear least squares problem corresponding to the θ update 

step in the ADMM iteration, and for the unregularized estimation.

V. SIMULATED RESULTS AND DISCUSSION

To demonstrate the effectiveness of this method, we perform a sequence of experiments on 

simulated data. We begin with an experiment using a simple numerical phantom designed to 

test the robustness of metabolic parameter mapping methods to differences in perfusion, as 

well as their ability to reliably resolve large and small features.

A. Reconstruction at a variety of noise levels

To generate simulated data for validating our algorithm, we simulate trajectories for each 

voxel of the 16×16×16 dynamic phantom described shown in Figure 1. This phantom 

describes maps of the kTRANS and kPL parameters and is designed to test an algorithm’s 

ability to resolve both large and small features under high and low perfusion conditions. 

More details about the phantom can be found in Section 5.5 of [27]. The data are generated 

according to the model (1) with arterial input u(t) = k TRANSA0(t – t0)γe
(−(t−t0)/β added to 

the pyruvate compartment, and states scaled by cos(αP/L(k)) and measured outputs scaled by 

sin(P/L(k)) each time that simulated data are collected, where αP/L(k) is a spectrally-selective 

flip angle applied to spins in the P or L compartment during acquisition k. An optimized 

dynamic flip angle sequence based on the method of [28] is used for the simulation, and 

shown in Figure 2. This same flip angle sequence is also used for a majority of the in vivo 
experiments.
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We then add independent, identically-distributed (iid) Gaussian noise at a variety of SNR 

levels, measured based on the SNR in the lactate channel corresponding to the peak lactate 

level. Simulated time series and image data are shown in Figure 3.

For SNR levels of 8, 4, 2, and 1, we fit the model (2) to the data using the loss function (3) 

and the regularization r θ = λ1 ∇θ 1 + λ2 θ 2
2 with λ1 =1e06 and λ2 =1e08. A combination 

of ℓ2 and TV regularization was chosen because the ℓ2 penalty prevents estimation bias in the 

unperfused region while the TV penalty encourages smooth maps with well-defined tissue 

boundaries. The values of λ1 and λ2 are selected such that the total absolute error is 

minimized (see Section V-B). Before fitting, the simulated data are scaled by 1/ sin(αP/L(k)) 

to counteract the effect of the time-varying flip angle sequence. In Figure 4 we compare the 

results of this constrained fit against two competing methods: independent voxel-wise fit 

(equivalent to our method with λ1 = λ2 = 0) and independent voxel-wise fit followed by 

anisotropic total variation denoising of the resulting parameter map. We see that the 

constrained reconstruction allows accurate parameter maps to be generated in high noise 

regimes where the competing methods have difficulty. In particular, the baseline method of 

unconstrained mapping followed by denoising performs poorly in unperfused areas where it 

is attempting to fit parameter values to pure noise. In contrast, the constrained fit is able to 

suppress noise in the unperfused region via ℓ2 regularization.

B. Quantitative Improvements

In addition to the qualitative benefits of spatial regularization demonstrated in the previous 

section, regularization can also lead to quantitative improvements in the estimates of 

dynamic parameters. In simulation experiments where we have access to the ground truth 

values of the model parameters, we can quantify the improvement in estimates θ  of θ via the 

total absolute error

θ − θ 1 = ∑
i ∈ V

kPLi
− kPLi

.

In Figure 5 we plot the total absolute error for various values of the regularization 

parameters λ1 and λ2. This experiment was performed using the 16×16 × 16 phantom from 

Figure with a maximum lactate SNR value of 2.0. We see that small values of λ1 and λ2 

lead to larger quantitative errors in the parameter maps than the optimized values λ1 =1e06 

and λ2 =1e08 used in the previous section. Note that the optimal values will depend on a 

number of factors potentially including the geometry and sparsity of the phantom, and the 

noise distribution, SNR and signal amplitude in the dynamic images. Thus by appropriately 

choosing λ1 and λ2, we can achieve quantitative improvements in the parameter map in 

addition to the qualitative improvements we have already demonstrated.

VI. IN VIVO RESULTS AND DISCUSSION

We now move on to experiments on a number of datasets collected in vivo. In contrast to the 

simulation experiments, we no longer have access to ground truth values of the model 

parameters to make quantitative comparisons. However, we will use the in vivo experiments 
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to demonstrate that the spatially-constrained parameter mapping technique leads to 

qualitative improvements in the parameter maps.

We begin with an experiment in healthy rats where we can collect high SNR data. For these 

data, we add artificial noise to demonstrate how the spatially-constrained parameter mapping 

technique can be used to allow reconstruction in low SNR regimes, for realistic anatomies. 

We then apply this technique to the analysis of a number of low SNR clinical datasets 

collected in prostate cancer patients. These experiments demonstrate that spatio-temporally 

constrained kinetic modelling can be used to generate improved metabolic parameter maps 

from low SNR experimental data.

A. High SNR rat kidney data analysis

We begin by analyzing a metabolic dataset acquired in healthy Sprague-Dawley rats on a 3T 

MRI scanner (MR750, GE Healthcare). 2.5mL of 80mM hyperpolarized [1–13C]pyruvate 

was injected over 15s, and data acquisition coincided with the start of injection. Metabolites 

from a single slice were individually excited with a singleband spectralspatial RF pulse and 

encoded with a single-shot EPI readout [29], an in-plane resolution of 3 × 3mm, a 15mm 

slice thickness centered on the kidneys, and a 2s sampling interval. The resulting dynamic 

image sequences are relatively high SNR with Rician noise resulting from magnitude 

images, are shown in Figure 6.

In Figure 7 we compare a spatially constrained fit of the data against an independent voxel-

wise fit. The voxel-wise fit is masked to only show kPL fit in the highly perfused regions 

where the total area under the pyruvate curve (AUC) is greater than 2e04. We see that the 

constrained fit leads to more smoothly-varying maps. Additionally, the Tikhonov 

regularization helps alleviate problems with artificially high kPL estimates in the background 

region and tissues with low perfusion, a common problem with kPL mapping from Rician-

distributed data. This leads to more realistic kPL values in the intestinal tissue proximal to 

the kidneys without significantly affecting the kPL estimates in the kidney voxels, and also 

removes the need to mask the images to the high perfusion region.

To investigate the robustness of this technique to noise, we perform a sequence of 

experiments in which artificial iid Gaussian noise of varying strengths is added to the in vivo 
data using Python’s numpy.randn random number generator before fitting kPL. The random 

number generator is seeded explicitly using numpy.random.seed(0) to ensure reproducibility. 

This allows us to replicate the results of Figure 4 with more realistic anatomy. We see in 

Figure 8 that qualitatively, the spatially-constrained fit is more robust to strong noise than 

the independent fit. Further, we see in Figure 9 that spatially-constrained parameter mapping 

outperforms a baseline of simply downsampling the raw image sequence.

B. Human prostate cancer data analysis

To demonstrate feasibility of this technique on clinically-relevant data, we have analyzed 

two prostate cancer datasets collected during clinical experiments at UCSF. These datasets 

were chosen because they had relatively low SNR compared to our typical prostate cancer 

studies, and thus would potentially benefit the most from this approach.
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Imaging was performed using a 3T GE scanner using a abdominal clamshell 13C 

transmission coil and an endo-rectal receive coil. The injected solution consisted of 220–260 

mM [1-13C]-pyruvate at a dose of 0.43 mL/kg. Dissolution DNP was performed using a 5T 

SpinLab polarizer (GE Healthcare). Before injection the electron paramagnetic agent is 

filtered out, and automated pH, temperature, polarization, volume and EPA concentration 

tests were performed.

Images were encoded using two techniques. One set of images labeled “EPI” were collected 

using a spectrally-selective excitation with an echo-planar (EPI) readout [29]. The other set 

of images labelled “EPSI” was collected using a blipped EPSI acquisition with a compressed 

sensing reconstruction [30].

Raw space/time/chemical data reconstructed from the EPI acquisition are shown in Figure 

10. The raw data are rather noisy and also difficult to interpret for metabolic activity due to 

3D spatial, temporal and chemical dimensions.

We fit 3D kPL parameter maps to the data using the constrained reconstruction method. 

Regularization strengths λ1 and λ2 are selected manually based on the qualitative 

appearance of the parameter maps. Due to the quick parameter map estimation enabled by 

the parallelized ADMM iteration, it is possible to perform this hyperparameter exploration 

relatively efficiently. In Figure 11 we compare the resulting parameter maps for a variety of 

values for the regularization parameters λ1 and λ2. The results suggest that we should 

choose λ1 large enough that the images do not appear noisy, but small enough that the signal 

does not disappear, and choose λ2 large enough to suppress the bias in the unperfused region 

but small enough that it does not cause too much shrinkage in the perfused region. Figure 12 

shows L-curves for the choice of λ1 and λ2, providing an alternative quantitative method of 

choosing parameters. We see that for very low or very high values of the regularization 

parameters, the regularization and residual terms cluster at the top left and bottom right of 

the figures respectively. Regularization parameter values approximately midway between the 

two clusters correspond to the qualitatively good parameter choices found in Figure 11. 

Additionally, in Figures 13 and 14 we compare unconstrained and constrained fits on the 

dataset from the EPI and EPSI acquisitions. The fits are overlaid on 1H images of the 

anatomy using SIVIC [31]. The unconstrained fit is masked to voxels with a minimum 

pyruvate SNR due to fitting instability with low pyruvate signals, whereas this is not 

necessary for the constrained fit. We see that with an appropriate choice of regularization, 

we can recover qualitatively satisfying parameter maps for a variety of datasets. Note that 

the regularization parameters differ significantly between the EPI and EPSI acquisitions due 

mainly to the different amplitudes of the raw dynamic image data. Note that the strong 

regularization leads to significant quantitative shrinkage of the kPL estimates. However, it 

improves the qualitative indication of the highly metabolically-active regions and removes 

noise-like characteristics of the fitting that is primarily due to low pyruvate SNR.

Figure 15 demonstrates how the constrained kPL maps could be integrated with the multi-

parametric 1H MRI into the clinical workflow to improve tumor localization and visualize 

treatment response. Elevated kPL in the prostate regions of Figures 13, 14 and 15 were 

consistent with biopsy and multiparametric (mp)-MRI [32] results. The patient studied in 
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Figures 13 and 15A had biopsy proven cancer in the left base and midgland (Gleason 3+3 

and 3+4). Their mp-MRI exam had an associated clear-cut region of reduced T2 signal and 

water apparent diffusion coefficient (ADC), and enhanced uptake and washout on dynamic 

contrast enhanced (DCE) MRI in the left posterior peripheral zone of the midgland with 

extension across the midline. This is in strong agreement with the region of high kPL shown 

with the constrained mapping in Figures 13 and 15A, which is in the left base and midgland 

with some extension across the midline. The patient studied in Figures 14 and 15B had 

extensive bilateral biopsy-proven prostate cancer (Gleason 4+4 and 4+3). mp-MRI 

demonstrated a large volume of prostate cancer involving the entire prostate, with right, 

posterior mid gland macroscopic extracapsular extension and bilateral seminal vesicle 

invasion. The kPL fitting in Figures 14 and 15B also shows bilateral regions of high kPL, 

including the right, posterior midgland region identified by mp-MRI. The high kPL does not, 

however, extend through the entire prostate, most likely due to low SNR further away from 

the endo-rectal 13C RF coil sitting just below the prostate in the images. While further 

studies are required to fully evaluate the potential improvements in assessing cancer 

metabolism, this work demonstrates the feasibility and qualitative results of this approach on 

clinical datasets.

VII. CONCLUSION

We have demonstrated that constrained reconstruction of parameter maps via spatial 

regularization improves the qualitative performance of model-based parameter mapping. We 

have shown this first in simulated experiments where we can also demonstrate quantitative 

improvements in the parameter estimates. The results of the in vivo studies echo the 

qualitative benefits of constraining parameter maps through regularization, and validate that 

the ADMM-based algorithm we have presented enables efficient reconstruction of parameter 

maps for problems of practical interest by exploiting the objective function’s structure.

Looking forward, the ability to exploit spatial and temporal correlations in the data for 

denoising could potentially help to overcome problems with low SNR in hyperpolarized 13C 

MRI, enabling the reconstruction of higher resolution kPL maps. Also, developing methods 

to choose the regularization strength hyperparameters systematically may help to improve 

the quantitative bias seen in some of the in vivo experiments. In particular, methods based on 

Shure’s unbiased risk estimate used for selecting hyperparameters in total variation 

denoising applications [33] can likely be adapted to this context. We suspect that the results 

of this paper could be further improved by replacing the ordinary least squares objective 

used by a weighted least squares objective where weights are chosen based on SNR, or 

based on an optimization problem based on maximizing Fisher information about the 

metabolic rate [34]. Finally, we would like to develop a better theoretical understanding of 

the ADMM algorithm’s convergence on the non-convex optimization problem presented.
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Fig. 1: 
Slice through z = 0 of a 16×16×16 voxel 3D dynamic phantom.
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Fig. 2: 
Dynamic flip angle sequence used for experimental validation
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Fig. 3: 
Simulated data generated at a maximum lactate SNR level of 2.
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Fig. 4: 
Results of simulated kPL mapping experiment for various values of the maximum lactate 

image SNR
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Fig. 5: 
Total absolute estimation error for kPL for various values of the regularization parameters λ1 

and λ2.
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Fig. 6: 
Dynamic metabolite images collected in the healthy rat experiment. Maximum lactate SNR 

in these images is 21.1.
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Fig. 7: 
Comparison of unconstrained and constrained kPL maps fit to the healthy rat dataset.
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Fig. 8: 
Comparison of kPL maps at various artificial noise levels. Noise level is measured based on 

maximum lactate SNR over the time and space dimensions in the dynamic images. 

Regularization parameters used for the constrained fits are chosen to be the same as in 

Figure 7.

Maidens et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9: 
Comparison of kPL maps for varying spatial resolutions. Raw data is downsampled to the 

appropriate matrix size prior to fitting parameter maps for the independent voxel-wise and 

spatially-constrained fits.
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Fig. 10: 
Sample of raw EPI data collected in a prostate cancer patient.
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Fig. 11: 
Constrained estimates of the kPL paramater with different regularization strengths compared 

on a single slice from the 3D EPI human prostate cancer dataset.
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Fig. 12: 
L-curve analysis for the 3D EPI human prostate cancer dataset. The residual Σ ℓ(θi|Yi) is 

plotted against the regularizer r(θ) for various values of λ1 and λ2.
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Fig. 13: 
Comparison of unconstrained and constrained kPL maps fit to the 3D EPI data set overlaid 

on proton images of the prostate anatomy. Maps are plotted for four slices through the 

prostate with high lactate signal. This patient had biopsy proven cancer in the left base and 

midgland (Gleason 3+3 and 3+4), which is consistent with the results seen in the spatially-

constrained kPL fit.
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Fig. 14: 
Comparison of unconstrained and constrained kPL maps fit to 3D EPSI data overlaid on 

prostate anatomy. Maps are plotted for five slices through the prostate with high lactate 

signal. This patient had extensive bilateral biopsy-proven prostate cancer (Gleason 4+4 and 

4+3) involving the entire prostate. The spatially-constrained fit is consistent with significant 

bilateral disease, though the high kPL region does not extend all the way to the prostate apex, 

likely due to its distance from the endo-rectal 13C RF coil.
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Fig. 15: 
Multi-parametric 1H MRI and 13C kPL maps for the EPI (A) and EPSI (B) study showing the 

midgland prostate. Regions of high kPL on the constrained reconstruction correlated well 

with biopsy proven aggressive cancer. It also agrees with lesions on multiparameteric MRI, 

including T2-weighted, diffusion weighted, and ADC maps (red arrows). In contrast, the 

lesions are obfuscated by spurious noise on the unconstrained kPL maps, or require an 

empirical hard threshold on the pyruvate signal to visualize.
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