UC Irvine UC Irvine Previously Published Works

Title

Single Crystal Growth and Magnetic Properties of SmCu2Ge2

Permalink https://escholarship.org/uc/item/937149rs

Journal

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 81(SUPPL.B)

ISSN 0031-9015

Authors

Matsuda, Tatsuma D Tateiwa, Naoyuki Yamamoto, Etsuji <u>et al.</u>

Publication Date

2012

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Single Crystal Growth and Magnetic Properties of SmCu₂Ge₂

Tatsuma D. Matsuda^{1,*}, Naoyuki Tateiwa¹, Etsuji Yamamoto¹, Yoshinori Haga¹, and Zachary Fisk^{1,2}

¹ ASRC, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
² University of California, Irvine, California 92697, U.S.A.

E-mail: *matsuda.tatsuma@jaea.go.jp

(Received February 4, 2012)

We have succeeded in growing a single crystal of tetragonal SmCu₂Ge₂ in Sn-flux and measured the x-ray diffraction and magnetic susceptibility. The volume of the unit-cell and the magnetic behavior are consistent with trivalent Sm in SmCu₂Ge₂. It was confirmed that the temperature independent Van Vleck term arising from the J = 7/2 first excited state gives a large contribution to the magnetic susceptibility in SmCu₂Ge₂ similar to other Sm compounds. The difference in energy between the J=5/2 and 7/2 angular momentum states is roughly estimated to be $\Delta E \sim 1800$ K from the magnetic susceptibility.

KEYWORDS: SmCu₂Ge₂, single crystal growth, magnetic susceptibility

1. Introduction

Most RT_2X_2 (R: rare earth and actinide, T: transition metal, X: Si and Ge) compounds crystallize in the Th Cr_2Si_2 -type tetragonal structure (Fig. 1). The Ce, Yb and U intermetallic compounds with this crystal structure exhibit a variety of characteristic features including magnetic ordering, heavy fermion behavior, valence fluctuations and anisotropic superconductivity. Most such compounds investigated have been polycrystalline or low quality single crystals. Therefore, the details of physical properties are still unclear. In the case of $SmCu_2Ge_2$, only the lattice parameter has been reported. According to this previous report [1], the unit cell volume of RCu_2Ge_2 (R: rare earth) varies smoothly with rare earth even at Sm. This fact indicates that the valence of Sm would be close to Sm^{3+} and a magnetic ground state can be expected. Recently, we succeeded to grow a single crystal of $SmCu_2Ge_2$ using the Sn-flux method. In order to clarify the ground state and the valence of Sm of this system, we measured the physical properties using single crystals. In this paper, we report the structural parameters and magnetic properties of $SmCu_2Ge_2$ in detail.

2. Experimental

Single crystals of SmCu₂Ge₂ were grown by the Sn-flux method. The starting materials were 3N(99.9% pure)-Sm, 5N-Cu, 5N-Ge, and 5N-Sn. These materials were put in an alumina crucible and sealed in a quartz tube with an off-stoichiometric composition of R:Cu:Si:Sn = 1:5:3:40. The ampoule was heated up to 1050 °C, maintained at this temperature for three days, and cooled to 500 °C at a rate of 1.5 °C/h, taking about 19 days in total. The excess flux was removed from the crystals by spinning the ampoule in the centrifuge. Figure 2 shows a typical single crystal sample with 4×3×1.5 mm³. The flat plane corresponds to the (001) plane. We checked the elemental composition of the single crystal sample using the electron-probe microanalysis (EPMA) as Sm:Cu:Ge=1:2:2. X-ray measure-

a-axis

mm

Fig. 1. (Color online) ThCr₂Si₂-type crystal struc- Fig. 2. (Color online) Ty

SmCu,Ge,

c-axis

Fig. 2. (Color online) Typical single crystal of SmCu₂Ge₂.

ments were performed using a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Mo-K α radiation. We selected a small high quality single crystal with dimensions of $0.07 \times 0.05 \times 0.04$ mm³ in order to minimize the absorption as well as the secondary extinction effects, which generally make the structural determination difficult. The single crystal sample of SmCu₂Ge₂ was mounted on a glass fiber. The magnetic susceptibility measurements were performed using a commercial SQUID magnetometer(Quantum Design MPMS-5). Crystallographical parameters were refined using SHELXL [2].

3. Results and Discussion

ture in SmCu₂Ge₂.

The structural parameters were refined by the analyses of the integrated intensities corrected for absorption and secondary extinction effects, as summarized in Table I. These lattice parameters are slightly larger than those reported data previously [1].

Table I. Atomic coordinates and thermal parameters of $SmCu_2Ge_2$ at 300 K from x-ray measurements. *R* and *wR* are the reliability factors and *B* is the equivalent isotropic atomic displacement parameter.

	atom	position			$B(Å^2)$
I4/mmm(#139)	(site)	x	у	z.	
a = 4.0967(2) Å	Sm (2 <i>a</i>)	0	0	0	0.37(3)
c = 10.2503(8) Å	Cu (4 <i>d</i>)	0	1/2	1/4	0.65(3)
$V = 172.032(20) \text{ Å}^3$	Ge (4 <i>e</i>)	0	0	0.37973(10)	0.41(3)
(R=2.78%, wR=6.18%)					

Figure 3 shows the temperature dependence of magnetic susceptibility of $SmCu_2Ge_2$ for field along the *a*- and *c*-axes. The overall behaviors are very similar to those of $SmCu_2Si_2$ except for the ordering temperature [3]. Around 15 K, the susceptibility shows a clear kink(*a*-axis) and cusp(*c*-axis), which corresponds to an antiferromagnetic ordering. This ordering temperature is higher than that of $SmCu_2Si_2$ ($T_N = 12$ K) [3]. Generally, replacement of Si by Ge atom in *f*-electrons system is recognized as an application of negative chemical pressure because of the larger size of Ge atom. Hence there is expected a suppression of magnetic ordering in Sm-based compounds based only on size under the simple assumption of Doniach phase diagram [4]. However, it needs further clarification as

the simple interpretation can not be applicable for the $SmCu_2X_2$ system.

Fig. 3. (Color online) Temperature dependence of magnetic susceptibilities for field along a- and c-axis, respectively. Inset show the reciprocal susceptibility.

Inset of Fig. 3 shows a plot of the reciprocal magnetic susceptibility for SmCu₂Ge₂. The behavior can not be described by a simple Curie-Weiss law, which is consistent with the Sm³⁺ ions having relatively low-energy first excited states above the Hund's rule ground state. Furthermore, the magnetic susceptibility is isotropic at high temperatures. These facts make a determination of crystalline electric field (CEF) level scheme of J=5/2 ground state in SmCu₂Ge₂ difficult. Therefore, here we refer to the analysis of the magnetic susceptibility of SmRh₄B₄ and SmCu₂Si₂ at high temperatures [3, 5]. The magnetic susceptibility for Sm compounds can be often well described by the following formula:

$$\chi = N_{\rm A} \left(\frac{\mu_{\rm eff}^2}{3k_{\rm B}(T - \theta_{\rm p})} + \frac{20\mu_{\rm B}^2}{7\Delta E} \right) \qquad , \tag{1}$$

where N_A is Avogadro's number, k_B is Boltzmann's constant, μ_B is the Bohr magneton, μ_{eff} is the effective magnetic moment, and θ_p is the Curie-Weiss temperature [5, 6]. The first term represents a Curie-Weiss contribution from J = 5/2 ground state, while the second term is the temperature independent Van Vleck correction arising from the accessible first excited angular momentum J = 7/2 state. In the absence of CEF, $\mu_{eff} = g_J \sqrt{J(J+1)}\mu_B$ is $0.845\mu_B$, where g_J is the Landé g-factor, and ΔE is the difference in energy between the J = 5/2 and J = 7/2 angular momentum states. The best fits of formula (1) to the data of H//a- and c-axis above 25 K are shown in Fig. 3 by broken lines, respectively. These lines are well described $\chi(T)$ of SmCu₂Ge₂ at high temperatures. The fitting parameters are $\mu_{eff} = 0.83 \mu_B$, $\theta_p = -25.7$ K, and $\Delta E = 1700$ K for a-axis and $\mu_{eff} = 0.76 \mu_B$, $\theta_p = 3.5$ K, and $\Delta E = 1860$ K for c-axis. The determined effective moments are close to the theoretical values of 0.845 for free Sm³⁺ ion. The values of ΔE for both field directions are roughly in good agreement with each other and with ~ 1500 K estimated for free Sm³⁺ [7].

4. Summary

We have succeeded in growing a single crystal of SmCu₂Ge₂ with the tetragonal structure by the Sn-flux method and measured the x-ray diffraction and magnetic susceptibility. The volume of the unit-cell and the magnetic behavior are consistent with that the valence of Sm in SmCu₂Ge₂ is Sm³⁺. It was confirmed that the temperature independent Van Vleck term arising from the first excited multiplet J = 7/2 gives a large contribution to the temperature dependent magnetic susceptibility of SmCu₂Ge₂ similar to that seen in other Sm compounds. The difference in energy between the J=5/2and T/2 states is roughly estimated to be $\Delta E \sim 1800$ K from the magnetic susceptibility.

Acknowledgements

The present work was financially supported by Grants-in-Aid for Young Scientists (B)(22740241), Scientific Research C (21540373, 22540378), Scientific Research S (20224015), Scientific Research on Innovative Areas "Heavy Electrons" (20102002, 23102726) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society of the Promotion of Science (JSPS).

References

- [1] W. Rieger and E. Parthé: Monatsh. Chem. 100 (1969) 444.
- [2] G. M. Sheldick: Acta Cryst. A64 (2008) 112.
- [3] N. D. Dung, Y. Ota, K. Sugiyama, T. D. Matsuda, Y. Haga, K. Kindo, M. Hagiwara, T. Takeuchi, R. Settai, and Y. Ōnukil: J. Phys. Soc. Jpn. 78 (2009) 024712.
- [4] S. Doniach, in Valence Instabilities and Related Narrow Band Phenomena, ed. R. D. Parks (Plenum, New York, 1977).
- [5] H. C. Hamaker, L. D. Woolf, H. B. Mackay, Z. Fisk, and M. B. Maple: Solid State Commun. 32 (1979) 289.
- [6] for example, D. Wagner, Introduction to the Theory of Magnetism, (Pergamon Press, 1972) pp. 94-99.
- [7] J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, (Oxford Press, 1932) 245-256.