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Abstract

Background and Aims: Recently, we demonstrated that a distinct pattern of structural 

covariance networks (SCN) from magnetic resonance imaging (MRI)-derived measurements of 

brain cortical thickness characterized young adults with alcohol use disorder (AUD) and predicted 

current and future problematic drinking in adolescents relative to controls. Here, we establish the 

robustness and value of SCN for identifying heavy alcohol users in three additional independent 

studies.

Design and Setting: Cross-sectional and longitudinal studies using data from the Pediatric 

Imaging, Neurocognition and Genetics (PING) study (n = 400, age range = 14–22 years), the 

National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) (n = 272, 

age range = 17–22 years) and the Human Connectome Project (HCP) (n = 375, age range = 22–37 

years).

Cases: Cases were defined based on heavy alcohol use patterns or former alcohol use disorder 

(AUD) diagnoses: 50, 68 and 61 cases were identified. Controls had none or low alcohol use or 

absence of AUD: 350, 204 and 314 controls were selected.

Measurements: Graph theory metrics of segregation and integration were used to summarize 

SCN.

Findings: Mirroring our prior findings, and across the three data sets, cases had a lower 

clustering coefficient [area under the curve (AUC) = −0.029, P = 0.002], lower modularity (AUC 

= −0.14, P = 0.004), lower average shortest path length (AUC = −0.078, P = 0.017) and higher 

global efficiency (AUC = 0.007, P = 0.010). Local efficiency differences were marginal (AUC 

= −0.017, P = 0.052). That is, cases exhibited lower network segregation and higher integration, 

suggesting that adjacent nodes (i.e. brain regions) were less similar in thickness whereas spatially 

distant nodes were more similar.

Conclusion: Structural covariance network (SCN) differences in the brain appear to constitute 

an early marker of heavy alcohol use in three new data sets and, more generally, demonstrate the 

utility of SCN-derived metrics to detect brain-related psychopathology.
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INTRODUCTION

Alcohol use produces substantial health costs, is a leading cause of preventable mortality 

world-wide [1] and a significant proportion of alcohol users go on to develop an alcohol 

use disorder (AUD) [2]. In adults, alcohol use has been linked to lower gray matter volume 

relative to controls [3–6] in widespread parts of the brain and, in adolescents, is related 

to a typical neurodevelopment [7–10]. Brain differences have also been reported in alcohol-

naïve individuals with a family history of AUD [11]. However, these brain findings have 

been highly heterogeneous and challenging to reproduce with conventional mass-univariate 

tests [12]. Multivariate approaches may provide a better characterization of the complex 

interaction of the brain with alcohol use and AUD.

Recently, we reported differences in structural covariance networks (SCN) assessed with 

graph theory metrics in young adults with AUD and adolescents with present and future 

problematic alcohol use [13]. SCN represents the correlation of cortical thicknesses between 

different brain regions. The biological basis of SCN involves multiple factors including 

underlying patterns of cortico–cortical growth. Covarying regions possibly share common 

plastic and trophic influences on cortical thickness as they proceed through the same 

developmental stages or are impacted similarly by external stimuli [14]. Graph theory 

metrics summarize SCN patterns by mapping all pairwise correlations among brain regions 

as a network and extracting global features [15]. Correlations above a threshold, termed 

‘edges’, reveal how coordinated in thickness two regions, or ‘nodes’, are. Consequently, the 

relationships between nodes reveal the degree of cortico–cortical similarity.

Our prior work utilized two of the largest sources of magnetic resonance imaging 

(MRI) data with alcohol use phenotyping: the pooled ENIGMA-Addiction data sets (n = 

1495, https://www.enigmaaddictionconsortium.com) and the IMAGEN study of adolescent 

development (n = 891, https://imagen-project.org). We found that a distinct pattern of 

SCN, namely lower segregation and higher integration, characterized young adults with 

AUD (n = 745) and adolescents with hazardous drinking at age 19 (n = 297) and at 

age 14 prior to substantial use, indicating that SCN differences may be a risk factor for 

problematic use. Our results suggested that the alcohol using adults and at-risk youth 

showed a pattern where, compared to controls, distant brain regions were more similar in 

thickness while brain regions closer to each other were less similar in thickness. A similar 

network profile (i.e. lower segregation and higher integration) has been found in other 

substance and non-substance use disorders using resting-state and diffusion MRI [16–20]. It 

has been hypothesized that imbalances in segregation and integration may reflect differences 

in neurodevelopmental trajectories [21] related to lower executive functions and greater 

internalizing symptoms [22–27] which could contribute to early alcohol onset and ongoing 

problematic use. The present study had therefore three aims:
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1. To demonstrate the robustness and value of SCN to identify individuals with 

heavy alcohol use by replicating our prior findings on three new independent 

data sets.

2. To investigate whether multivariate methods, namely the analysis of SCN, and 

univariate methods, such as single region-of-interest (ROI) contrasts, produce 

similar outcomes.

3. To locate which nodes are showing lower segregation in cases compared to 

controls and to provide insights on the relationship between segregation and 

integration.

MATERIALS AND METHODS

Participants

Procedures were approved by institutional review at each site and all participants provided 

informed consent. All data sets were treated cross-sectionally.

Pediatric Imaging, Neurocognition and Genetics (PING)

The PING study collected behavioral and MRI data on 1493 individuals aged 3–20 

years at 10 sites [28]. Cases endorsed one or more problems with alcohol use (e.g. 

health or psychological sequelae, reckless behavior, tolerance/withdrawal). See Supporting 

information for the full set of criteria (Supporting information, S1); 50 cases and 350 age- 

and sex-matched controls were identified (n = 400).

National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA)

NCANDA is an ongoing accelerated longitudinal study of early alcohol use, including 

annual assessments of 831 individuals recruited between the ages of 12 to 21 years at 

five sites [29]. To match the age range (17–22 years) in our previous work, analyses were 

based on participants between the ages 17 to 22. Participants meeting the age range criteria 

were only included once (i.e. 302 from baseline, 242 from year 3 and 164 from year 5). 

Groups were formed using published NCANDA criteria [8, 10, 30–34] for heavy alcohol 

use. Briefly, those that surpassed age-dependent life-time drinking days thresholds (e.g. 

> 23 at age 17 years, > 51 for +18 years), were in the 75th quartile of life-time binge 

drinking episodes and were heavy drinkers after Calahan’s criteria were considered cases. 

Controls did not surpass life-time drinking days thresholds, had no life-time binge drinking 

episodes and were not heavy drinkers; 68 cases and 204 matched controls were identified 

(see Supporting information, S2 for details) (n = 272).

Human Connectome Project (HCP)—S1200 release

HCP is a large publicly available imaging data set [35]. We used the S1200 release, 

which includes data on 1113 participants aged 22–36 years. Cases were selected based 

on DSM-IV-TR criteria for life-time alcohol dependence. Controls did not endorse any 

life-time symptoms; 61 cases and 314 controls, all unrelated, were identified (see Supporting 

information, S3 for details) (n = 375).
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Imaging

We used the average cortical thicknesses of ROIs derived from Desikan atlas in FreeSurfer 

[36, 37]. The insula ROI label was not included in version 4.1 used to prepare the PING 

data set. NCANDA and HCP data were prepared with versions 5.1 and 5.3, respectively, 

which include the insula ROI. Hence, 66 bilateral ROIs were analyzed for PING and 68 

ROIs for NCANDA and HCP. Details on the MRI protocols and processing pipelines of 

each study are published elsewhere [9, 28, 38]. Scanner effects in PING (12 scanners) and 

NCANDA (five scanners) were adjusted for each ROI with ComBat version 1.0.13 [39] 

while preserving age, sex and group effects as in our prior work. HCP data were collected on 

a single MRI scanner.

SCN construction and graph theory metrics

The generation of SCN and the extraction of graph theory metrics were performed 

separately for each data set. Prior to the SCN construction, each scanner-adjusted ROI was 

residualized for mean global thickness. For cases and controls independently, SCN were 

generated by calculating the Pearson’s correlation between every pair of residualized ROIs. 

The correlation coefficients of each group were binarized according to a series of thresholds 

following a density-based approach to ensure SCN were equal in size (i.e. groups were 

matched for the number of edges) [40]. Thresholds increased in 1% increments starting at 

the minimum density (Dmin), where groups showed fully connected graphs up to a density 

preserving the top 30% of the edges.

Graph theory metrics summarize SCN organization at several levels of complexity: edge 

(e.g. correlation coefficients), node (e.g. transitivity) and network (e.g. modularity). Network 

metrics of segregation and integration were calculated for each group and density (Figure 

1). Briefly, greater segregation [i.e. higher clustering coefficient (Cp), local efficiency 

(LE) or modularity] indicates greater correspondence among adjacent nodes and greater 

integration [i.e. lower average shortest path length (Lp) or greater global efficiency (GE)] 

indicates higher correspondence among distant nodes. See Supporting information for more 

information.

We formerly reported a pattern of lower SCN segregation (lower Cp, LE and modularity) 

and higher integration (lower Lp and higher GE) in individuals with heavy alcohol use [13] 

suggesting fewer short-range edges and more long-distant edges. To explore whether these 

phenomena were related, node-level metrics of transitivity, participation coefficient (PC) 

and within-modular degree (WMD) were calculated. Transitivity is a segregation metric 

reflecting the number of closed triangles per node (i.e. whether neighbors of a node are 

neighbors of each other). As nodes that are similar in thickness should be assorted to the 

same module, PC and WMD could clarify why some nodes are poorly segregated. PC 

captures how similar in thickness a node is to nodes from other modules, where higher 

values of PC represent more intermodular, long-distance edges [41]. Conversely, WMD 

captures how similar in thickness a node is to other nodes in its own module, i.e. the number 

of intramodular, short-range edges [41]. Consequently, PC and WMD shed light upon 

whether a node with low segregation (low transitivity) is caused by more intermodular edges 

(high PC), fewer intramodular edges (low WMD) or both. See Supporting information, S5 
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for more details. A visual summary of the graph theory metrics used here is depicted in 

Figure 1. All steps were performed in brainGraph version 2.7.3 [42].

Statistical analysis

For each data set, differences in age and sex were assessed with t- and χ2 tests. In PING and 

NCANDA, controls were matched to cases for age and sex with the MatchIt package version 

3.0.2 [43] at the highest ratio possible where group differences were not found.

Mean and regional cortical thickness differences between cases and controls were examined 

with linear models. All P-values from the regional thickness contrasts (n = 68 in NCANDA 

and HCP, 66 in PING) were adjusted using false discovery rate (FDR, q-value < 0.05) 

[44]. All analyses were performed in R version 4.1.0 [45]. While aim 1 analysis sought to 

replicate our prior findings following the same analytical plan [13], aims 2 and 3 analyses 

were not pre-registered and results should be considered exploratory.

Aim 1—SCN replication of network-level contrasts

Prior to the SCN analysis, we examined a potential confound related to group differences 

in global correlation strength. If differences in the global correlation strength exist, spurious 

edges may be introduced by matching the groups in terms of SCN density. The confound 

was assessed with permutation-based t-tests (1000 iterations).

For the network-level contrasts, and similar to our previous work, a null distribution for 

statistical testing was generated with permutation tests (1000 iterations) for each density and 

SCN metric. Critical values from this null distribution were used to test the significance of 

the observed differences. To prevent results from relying on an arbitrary density, significance 

was defined as P < 0.05 for the area under the curve (AUC) across the range of tested 

densities. Lower Cp, LE, modularity and Lp, and higher GE in cases relative to controls, 

were expected based on our previous results.

To facilitate the interpretation of the results, and reduce the number of tests, further analyses 

explored the relationship between SCN-derived metrics and cortical thickness and located 

SCN effects at the node-level (Aim 2) and examined the interplay of segregation and 

integration (Aim 3) on the three pooled data sets after adjusting for study effects with 

ComBat [39]. That is, cortical thickness was first adjusted for scanner effects within study 

for the preceding analyses, and here additionally harmonized between studies. These pooled 

analysis were conducted using 66 ROIs.

Aim 2—Multivariate and univariate correspondence

First, to examine whether SCN-derived metrics were capturing additional information 

compared to cortical thickness alone, we generated a regional strength score that captures 

the average of all the correlation weights per ROI (n = 65) and conducted Spearman’s 

correlation (rho) between these scores and the cortical thickness of each region (n = 66). 

Secondly, to explore if group regional differences in cortical thickness (t-values) were 

related to group differences in regional strength we (a) ran all possible Fisher’s Z-tests 

to compare cases and controls on each pairwise correlation in the correlation matrix (66 
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× 65 = 4290/2 = 2145 tests), (b) averaged the resulting statistics for each one of the 66 

ROIs (i.e. each ROI’s average was based on its 65 Fisher’s Z-test scores) and (c) calculated 

a Spearman’s correlation between these average scores and the initial cortical thickness 

between-group t-values. As these scores are probably co-dependent because of anatomical 

proximity, P-values were adjusted (P-spin) for auto-spatial correlations as in Alexander-

Bloch et al. [46] (see https://github.com/frantisekvasa/rotate_parcellation for details).

Aim 3—Segregation versus integration

Node-level comparisons were conducted in a similar manner as the network-level contrasts 

(Aim 1). We anticipated lower transitivity in cases. Nodes showing lower transitivity 

were tested for higher PC and lower WMD. Correlations (rho) among the unthresholded 

differences in transitivity, PC and WMD were tested to assess if lower transitivity was 

related (P-spin < 0.05) to a greater presence of intermodular edges (higher PC) or to a lesser 

number of intramodular edges (lower WMD).

RESULTS

Demographics

After the matching procedure, age and sex did not differ among cases and controls in the 

separate or pooled data sets. Table 1 summarizes the participant demographics.

Mean and regional cortical thickness differences

In PING and NCANDA, cases exhibited thinner mean cortical thickness than controls 

(PING: t = 2.80, P = 0.005; NCANDA: t = 2.19, P = 0.030). No regional cortical thickness 

differences were found after FDR correction. In HCP, there was no difference in mean 

cortical thickness (t = 0.78, P = 0.436) and no regional cortical thickness differences after 

FDR correction. Further, maps of regional cortical thickness differences (Figure 2b) were 

unrelated among data sets: PING-to-NCANDA rho = −0.08, P = 0.51; PING-to-HCP rho 

= 0.05, P = 0.67; NCANDA-to-HCP rho = 0.14, P = 0.27. In the pooled analysis, cases 

had lower mean cortical thickness compared to controls (t = 3.23, P = 0.001), and lower 

thickness in several regions survived FDR correction (Figure 2 and Supporting information, 

S6, S7, S8 and S9).

Aim 1—SCN replication of network-level contrasts

No group differences were found in the global correlation strength in PING (t = −0.12, P = 

0.90), NCANDA (t = −0.28, P = 0.78), HCP (t = 0.46, P = 0.66) or in the pooled data sets (t 
= −0.05, P = 0.96). Figure 3a illustrates the distribution of the global correlation strength as 

well as group differences on this metric.

PING cases exhibited lower Cp (P = 0.029), lower modularity (P = 0.039), lower Lp (P = 

0.033) and greater GE (P = 0.023) compared to controls. LE differences were not significant 

(P = 0.112). In NCANDA, cases exhibited lower Cp (P = 0.028), lower modularity (P 
= 0.031), lower Lp (P = 0.012) and higher GE (P = 0.025) relative to controls. Groups 

did not differ for LE (P = 0.158). With regard to HCP, cases had lower Cp (P = 0.030), 

lower Lp (P = 0.014) and higher GE (P = 0.016). Modularity (P = 0.123) and LE (P = 
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0.106) differences were not significant. In the pooled data sets, cases had lower Cp (P = 

0.002), lower modularity (P = 0.004), lower Lp (P = 0.017) and higher GE (P = 0.010). LE 

differences were marginal (P = 0.052) (Figure 3c). Supporting information, S10 lists the full 

set of findings and results of a random-effects meta-analysis conducted on both the three 

data sets in the present work and the data sets in our prior paper (i.e. PING, NCANDA, HCP, 

ENIGMA-Addiction, IMAGEN baseline, IMAGEN follow-up). Additional analysis on sex 

differences were in the same direction as originally reported, although not all effects were 

significant, which was probably due to the lower number of participants (see Supporting 

information, S12). Supplementary tests on age and sex-adjusted SCN did not change the 

direction of the original results (see Supporting information, S12).

Aim 2—Multivariate and univariate correspondence

The relationship between regional strength and regional cortical thickness was non-

significant and negative in both cases (rho = −0.34, rho2 = 0.12, P-spin = 0.163) and 

controls (rho = −0.43, rho2 = 0.18, P-spin = 0.063). Similarly, the relationship between the 

differences in regional correlation strength (i.e. average Fisher’s Z-test scores per ROI) and 

regional cortical thickness (i.e. t-values) as non-significant and negative (rho = −0.25, rho2 = 

0.06, P-spin = 0.081).

Aim 3—Segregation versus integration

Cases had lower transitivity in several nodes (Supporting information, S11). Among the 

nodes with lower transitivity, cases presented greater PC in the left inferior parietal [AUC 

= 0.022, 95%high confidence interval (CI) = 0.016 P = 0.018], the left superior parietal 

(AUC = 0.013, 95%high CI = 0.012, P = 0.043), the left paracentral (AUC = 0.047, 95%high 

CI = 0.045 P = 0.035) and the right inferior parietal (AUC = 0.016, 95%high CI = 0.012 

P = 0.021). No nodes lower in transitivity showed lower WMD. In addition, while the 

differences in transitivity and PC were negatively and significantly correlated (rho = −0.47, 

P-spin < 0.001), the differences in transitivity and WMD were not (rho = −0.02, P-spin = 

0.479) (Figure 4b).

DISCUSSION

We replicated in three new independent data sets a SCN pattern that distinguishes heavy 

alcohol users from controls. As in our prior work [13], heavy alcohol users here showed 

lower segregation and higher integration, suggesting that adjacent cortical regions were less 

similar in thickness while spatially distant regions were more similar. The present analyses 

also yielded insights into the location and nature of the group differences in such pattern: 

lower segregation in cases (1) was mainly observed in frontal and parietal regions and (2) 

was related to a greater number of intermodular edges rather than fewer intramodular edges. 

In summary, this SCN pattern suggests that heavy alcohol use may be related to differences 

in normative cortico–cortical maturation.

AUD has previously been linked to gray matter differences in prefrontal and reward-

processing areas [4, 5]; even low levels of alcohol use have been associated with premature 

brain aging [3, 47] and, in adolescents, alcohol use has been associated with accelerated 
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cortical thinning [8, 48]. Our results align with these prior findings—in all three data 

sets, cases exhibited thinner cortex than controls. However, none of the ROIs tested in 

each data set separately survived FDR correction. More importantly, the maps of regional 

cortical thickness differences were unrelated among data sets consistent with heterogeneity 

of findings resulting from univariate analyses.

In contrast to the heterogeneous results from mass-univariate tests on cortical thickness, 

the SCN global pattern consistently shows, among five independent data sets [13], that 

heavy alcohol use is related to lower cortical thickness correspondence among adjacent 

regions and higher similarity between distant regions. Similar SCN profiles have been 

reported with different MRI modalities in youth at-risk for AUD [16], adults with AUD 

[18] and other addictions [16, 18, 19]. Imbalances in segregation and integration have 

also been related to psychiatric and neurological disorders [48]. Two hypotheses emerge 

considering our findings. Alcohol neurotoxic effects [49, 50] might have precipitated subtle 

changes in anatomically distant nodes, resulting in increased correlations in thickness. 

An alternative is that SCN differences including the greater number of intermodular 

edges reflects developmental delays in regional specialization of functions [21]. Delayed 

neurodevelopment has been related to inattention and poor decision-making, self-regulation 

failures, greater reward-seeking behaviors and greater internalizing symptoms, all risk 

factors for early alcohol onset [22–27]. Although the cross-sectional nature of the data 

limits our ability to determine temporal order, our prior study [13] found the same SCN 

pattern, albeit not significant, in a smaller subsample of adolescents at age 14 who were 

alcohol-naïve, implying that subtle SCN differences may predate alcohol exposure.

Regarding the equivalence among multivariate and univariate approaches to cortical 

thickness data, we found that the correlations between the regional average correlation 

strength and the regional cortical thickness were weak, negative and non-significant in cases 

and controls. The correlation between-group differences for regional correlation strength 

and regional cortical thickness was also weak, negative and non-significant. These results 

suggest that multivariate and univariate estimates of brain structure provide distinct insights. 

Here we have demonstrated that the SCN results, derived from a multivariate method, were 

consistent throughout studies relative to mass-univariate tests results. This indicates that 

there is value in multivariate methods to study brain structure, and other studies might find 

this and other similar approaches useful.

Node-level metrics such as transitivity helped in localizing lower segregation effects in the 

brain. Consistent with patterns of lower Cp in cases, lower transitivity was observed broadly 

but especially in parietal and frontal nodes. Similarly, PC and WMD metrics clarified that 

lower segregation/transitivity was in part related to a greater number of edges with nodes 

from other modules. Relative to controls, four parietal nodes low in transitivity showed 

higher PC in cases. None of the nodes with low transitivity had lower WMD. Also, the maps 

of unthresholded group differences in transitivity and PC were negatively related: the lower 

the transitivity in cases, the greater the PC in this group. There was no relation between 

transitivity and WMD differences. In brief, some nodes appear to show less discrepancy 

from distant nodes and could be related to alterations in typical patterns of maturation-

related differentiation, as we hypothesized [21, 51]. The lower modularity in cases supports 

Ottino-González et al. Page 9

Addiction. Author manuscript; available in PMC 2024 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this conclusion. As Figure 4 shows, cases present aberrant modularity patterns (e.g. temporal 

nodes included in prefrontal modules). Modularity peaks by late adolescence [52, 53] and is 

related to the achievement of executive functions [54], cognitive skills that, when deficient, 

may contribute to early alcohol exposure [55, 56]. Other converging evidence also suggest 

brain maturation differences with heavy or binge alcohol use in human adolescents [8, 30, 

34] and non-human primates [57]. In our study, the use of cross-sectional data prevents 

us from stating that SCN effects mimic other longitudinal works showing delays in brain 

growth. Longitudinal studies with sufficient data throughout the life-span will be able to 

confirm this.

Also critical to this work is what clinical value a brain marker identified at the group-level 

has. We have shown that early heavy alcohol use is related to deviations on patterns 

of thickness similarity among adjacent and distant regions, and that such deviations 

are observed in parietal and frontal regions [58, 59]. These regions experience intense 

remodeling during puberty and adolescence, developmental periods highly represented in 

this work. It is possible that early interventions help redirect cortico–cortical growth back to 

normative trajectories and lower the risk of alcohol use, yet the current work leaves unclear 

if effects precede or arise from use. Also, existing methods to generate individual-level 

measures on thickness covariance are the next step to offer better predictions. However, 

said methods are in part different and likely to yield distinct results from the ones we 

tried to replicate here [58–61]. It would nonetheless be valuable to examine whether other 

approaches also generate their own robust pattern of results across independent data sets.

The current work has several limitations. First, the criteria to define the problematic drinking 

groups varied between data sets, ranging from the heavy alcohol use in PING and NCANDA 

to clinical diagnosis of AUD in HCP. However, the observation of the same pattern of 

altered SCN among the different sets of criteria indicates that the phenomenon is robust and 

not simply an artifact of a specific definition of problematic use. Institutional restrictions 

on data sharing obstructed our ability to use the same FreeSurfer version, test alternative 

parcellations of the brain or run quality checks on the data. The consistency of findings 

despite differences in the preparation of the data also supports the apparent robustness of the 

pattern of results. In a similar vein, the optimal adjustment for scanner effects in multi-site 

collaborations is an ongoing topic of discussion [62], with new approaches inspired by the 

original ComBat process such as ComBat-GAM [63], CovBat [64] or LongCombat [65]. 

While we used the original ComBat to replicate our already published findings [13], other 

options could be explored in future work. Another limitation was the lack of control over 

the concomitant use of other drugs besides alcohol, onset of AUD, anxiety and depression 

symptoms, socio-economic status and education. While the cross-sectional nature of the data 

as used here cannot address whether the observed pattern of altered SCN precedes alcohol 

exposure, this may be examined in future studies with longitudinal adolescent samples.

In conclusion, the present study demonstrates that differences in structural covariance 

networks based on cortical thickness are sensible and robust markers of heavy alcohol use. 

In five independent studies, including three in this paper, individuals with heavy alcohol 

use showed SCN patterns of lower segregation and higher integration compared to controls 

suggesting that, in heavy alcohol users, adjacent regions of the brain were less similar in 
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thickness while spatially distant regions were more similar. This pattern of altered cortico–

cortical correspondence was explained in part by a greater presence of intermodular edges, 

implying that deficits in the brain’s modular organization are potentially related to delayed 

brain maturation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Visual summary of graph theory metrics of segregation, integration and modularity.
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FIGURE 2. 
(a) The distributions of mean cortical thickness per group and study. The upper portion 

of (b) shows the between-group differences in regional cortical thickness. Positive t-values 

indicate greater thickness in controls. Bottom portion of (b) shows regions surviving study-

wise false discovery rate (FDR)-correction.
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FIGURE 3. 
(a) Overlap in the global correlation strength between groups. The vertical black line 

indicates the observed difference and the right-sided box-plot the permuted difference. 

No significant group differences were observed. (b) The average correlation strength per 

region-of-interest (ROI) and shows the similarity in regional correlation weights across both 

groups and studies. (c) Summary of the network-level metrics of the current study together 

with the summary statistics of our previous work. The horizontal line denotes the null 

distribution, the X the mean permuted difference under the null hypothesis and the circle the 

observed difference. If colored, the area under the curve (AUC) difference was significant 

(P < 0.05), otherwise the data are presented in grey. Cp = clustering coefficient; LE = local 

efficiency; M = modularity; Lp = average shortest path length; GE = global efficiency.
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FIGURE 4. 
(a) The different modules for cases and controls at their maximum density (30%). Red 

edges indicate intermodular correlations and black edges intramodular correlations. Greater 

overlap of modules represents more intermodule thickness similarities. (b) The upper row 

shows the unthresholded differences in transitivity and the second row shows nodes passing 

statistically significant cut-offs (P < 0.05). Blue indicates lower transitivity in cases. The 

middle row shows the unthresholded differences in the participation coefficient and below 

it the nodes passing cut-offs for statistical significance (P < 0.05). Red represents higher 

participation coefficient (PC) in cases. Bottom row depicts the correlation between the 

unthresholded differences in transitivity, PC and within-modular degree (WMD). Points are 

colored based on the modular organization of cases.
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Table 1 –

Summary of demographics per group and study.

Dataset Group N Age (mean, sd) Age range Females stats sig

PING Cases 50 18.1 ± 1.97 14 – 21 26 (52%) t = 0.85
X2 = 0

p = 0.40
p=l

Controls 350 17.8 ± 2.03 14 – 21 182 (52%)

NCANDA Cases 68 19.53 ± 0.99 17.5 – 21.6 30 (44.1%) t = 1.53
X2 = 0

p = 0.13
p = 0.78

Controls 204 19.32 ± 0.97 17.4 – 21.9 96 (47.1%)

HCP Cases 61 28.8 ± 3.33 23 – 36 34 (55.7%) t = −0.20
X2 = 0.14

p = 0.84
p = 0.71

Controls 314 28.9 ± 3.84 22 – 37 186 (59.2%)

POOLED Cases 179 22.3 ± 5.26 14 – 36 90 (50%) t = 0.24
X2 = 0.48

p = 0.81
p = 0.49

Controls 868 22.2 ± 5.77 14 – 37 464 (53.5%)

Note: t-student is for age (continuous) and X2 for sex (categorical) comparisons
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