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Abstract

Robustness in Nonlinear and Learning Based Control
by
He Yin
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley
Professor Murat Arcak, Chair

In this dissertation we propose a control synthesis and analysis framework for nonlinear, and
neural network (NN) controlled systems with robustness guarantees. We quantify systems’
robustness against external disturbances and perturbations using the following measures: (i)
the forward reachable set; (ii) the backward reachable set; (iii) the tracking error bound; (iv)
the region of attraction. These measures are all characterized by sublevel sets of storage func-
tions satisfying appropriate dissipation inequalities that account for external disturbances
and perturbations. Integral quadratic constraints (IQCs) are used to describe perturba-
tions, allowing for a variety of perturbations including parametric uncertainty, unmodeled
dynamics, and nonlinear activation functions in NNs. We formulate sum-of-squares (SOS)
constraints and Linear matrix inequality conditions by merging dissipation inequalities with
IQCs to compute controllers and their associated robustness measures.

We start off by focusing on the finite time horizon robustness of uncertain nonlinear
(polynomial) systems, which are modeled as interconnections of nominal polynomial systems
and perturbations. We propose a method of outer-approximating the forward reachable set
on finite horizons for the uncertain nonlinear systems with controllers given. Then we move
from analysis to control synthesis, and present a method for synthesizing a polynomial control
law that steers the system to the target set with the goal of maximizing inner-approximations
to the backward reachable set. The approximations to both the forward reachable set and
backward reachable set are characterized by time dependent polynomial storage functions,
and are computed using SOS programming. IQCs with both hard and soft factorizations are
used to describe perturbations.

Furthermore, we address robust trajectory planning and control design for nonlinear
systems. A hierarchical trajectory planning and control framework is proposed, where a
low-fidelity model is used to plan trajectories satisfying planning constraints, and a high-
fidelity model is used for synthesizing tracking controllers guaranteeing the boundedness of
the error state between the low- and high-fidelity models. We formulate SOS optimizations
for computing the tracking controllers and their associated tracking error bound, with the



goal of minimizing the volume of the tracking error bound. The tracking error bound is then
used to redesign the planning constraints to guarantee safety of the system.

Finally, we move to NN controlled systems. We propose two theorems to prove local sta-
bility of NN controlled linear time invariant systems, and to compute inner-approximations
to the region of attraction. The first theorem merges dissipation inequalities with local sec-
tor quadratic constraints (QCs) to bound the nonlinear activation functions in the NN. The
second theorem includes IQCs to allow for perturbations, and further refine the description
of activation functions by capturing their slope information. Then we move from analysis to
control synthesis. Loop transformation is used to derive stability and safety conditions that
are jointly convex in the Lyapunov function, weights of the NN controller, and the Lagrange
multipliers for including QCs. These convex conditions are incorporated in the imitation
learning process, which trades off between imitation learning accuracy, and size of the region
of attraction inner-approximations, to learn robust NN controllers. We propose an alter-
nating direction method of multipliers based algorithm to solve the constrained imitation
learning problem.
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Chapter 1

Introduction

Robust control has shown its effectiveness in controlling various types of linear systems, in-
cluding time invariant [1], time varying [2,3], and parameter varying systems [4]. However,
modern control design and analysis methods for more complex systems, like nonlinear sys-
tems and neural network (NN) controlled systems, are still suffering from lack of robustness
guarantees, which are important in safety-critical applications. A shortcoming of the existing
nonlinear control and analysis methods is that they rely on accurate system models. Only
limited forms of uncertainty have been addressed, such as parametric uncertainty [5-10]. As
for NN controlled systems, they have long been suffering from lack of robustness certificates.
Only a few results have attempted to assess their stability and safety, including a work on
reachability analysis [11], and a result regarding global stability analysis [12]. The com-
plexity of the NN structure, e.g., various types of nonlinear activation functions, potentially
numerous layers, and a large number of hidden neurons, makes it difficult to apply classical
analysis methods, e.g. Lyapunov theory.

In this dissertation, we develop analysis and control synthesis tools for uncertain nonlin-
ear, and NN controlled systems with robustness guarantees using a unified framework based
on integral quadratic constraints (IQCs) [13] from robust control theory. We quantify robust-
ness of nonlinear and NN controlled systems using metrics including region of attractions,
forward /backward reachable sets, and tracking error bounds. In each case, we account for
external disturbances, and a general class of perturbations beyond parametric uncertainty:.

In the framework, we model both uncertain nonlinear, and NN controlled systems as an
interconnection (as shown in Fig. 1.1) of a nominal dynamical system and perturbations,
whose input-output properties are characterized by IQCs, with both soft and hard factoriza-
tions. The use of IQCs allows for various types of uncertainties and nonlinearities, including
unmodeled dynamics, and the nonlinear activation functions in the NNs. The robustness
metrics are all characterized by sublevel sets of storage functions that satisfy appropriate
dissipation inequalities merged with IQCs. The (generalized) S-procedure is used to formu-
late these dissipation inequalities as linear matrix inequalities (LMIs) and sum-of-squares
(SOS) constraints for computing robustness metrics, and synthesizing controllers.

The content and contributions of each chapter are outlined below.
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g
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Figure 1.1: Interconnection F,(G,A) of a nominal system G and a perturbation A

Chapter 2 presents the notation and required background materials from the controls
literature. First, the system level properties (dissipativity) are introduced. Several types of
dissipativity (e.g., stability, finite Lo gain, Lo reachability) and their corresponding supply
rates are discussed. Then we describe IQCs, a special class of dynamic supply rate, that
will be used to characterize perturbations. Finally, we briefly discuss how SOS problems
can be translated to semidefinite problems (SDPs), and the computation complexity of the
resulting SDPs.

Chapter 3 proposes a method to outer-approximate forward reachable sets on finite
horizons for uncertain nonlinear systems with polynomial dynamics. This method makes
use of time-dependent polynomial storage functions that satisfy appropriate dissipation in-
equalities to characterize the outer-approximations. The dissipation inequalities, combined
with the SOS technique allows us to simultaneously accommodate multiple sources of un-
certainty, including time-varying uncertain parameters, Lo disturbances, and perturbations
A characterized by IQCs. The use of 1QCs allows for various types of uncertainty, including
unmodeled dynamics.

The proposed analysis framework considers both hard and soft IQC factorizations. Dissi-
pation inequalities usually require IQCs to hold over all finite horizons (hard IQCs). However,
IQCs are often available in the infinite-time horizon (soft IQCs), while the hard IQCs are
not. To mitigate this issue, we incorporate soft IQCs in dissipation inequalities by making
use of a lower bound derived from [14], which is valid for soft IQCs over all finite horizons.

Chapter 4 extends the results from Chapter 3 to control synthesis. A method is proposed
to compute robust inner-approximations to the backward reachable set of uncertain nonlinear
systems, and to generate a robust control law that drives trajectories starting in these inner-
approximations to a target set. The method also incorporates both hard and soft 1QC
factorizations. Moreover, we overcome a technical challenge that arises when the input
of the perturbation depends directly on the control command, as in the case of actuator
uncertainty. This dependence creates a source of nonconvexity, which we circumvent by
introducing auxiliary states in the control law.

Chapter 5 proposes a hierarchical trajectory planning and control framework for nonlin-
ear systems. In this framework, a low-fidelity model is used to generate planning trajectories
satisfying planning constraints, and a high-fidelity model is used to design tracking con-
trollers to track planned trajectories with a bounded tracking error. An SOS optimization
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is proposed to compute the polynomial tracking controller and its associated tracking er-
ror bound. The tracking error bound is then used to redesign the planning constraints to
guarantee safety of the system.

Chapter 6 presents a method to analyze the stability of feedback systems with NN
controllers. Two stability theorems are given to prove asymptotic stability and to compute
an ellipsoidal inner-approximation to the ROA. The first theorem addresses linear time-
invariant systems, and merges Lyapunov theory with local (sector) quadratic constraints to
bound the nonlinear activation functions in the NNs. The second theorem allows the system
to include perturbations using IQCs to capture their input/output behavior. This in turn
allows for off-by-one IQCs to refine the description of activation functions by capturing their
slope restrictions. Both results rely on semidefinite programming to approximate the ROA.

Chapter 7 presents a method to learn NN controllers with stability and safety guaran-
tees through imitation learning. The stability condition from Chapter 6 is nonconvex in the
Lyapunov function, and the weights of NN controllers, and thus computationally intractable
for NN control synthesis; here we convexify this constraint (using loop transformation) for
its efficient enforcement in the learning process. A cost function is proposed for the learning
process, which encourages small imitation learning loss, and a large-volume ROA, simulta-
neously. An alternating direction method of multipliers based algorithm is proposed to solve
the constrained imitation learning problem. Notably, a well-known challenge in imitation
learning is the existence of suboptimal demonstrations. As demonstrated in the case studies,
while the proposed approach can train a policy that imitates the expert demonstrations,
it can potentially improve local stability over suboptimal expert policies, thus enhance the
robustness of imitation learning.



Chapter 2

Background

2.1 Notation

R™ ™ and S™ denote the set of m-by-n real matrices and n-by-n real, symmetric matrices.
S and S7, denote the sets of n-by-n symmetric, positive semidefinite and positive definite
matrices, respectively. RIL., is the set of rational functions with real coefficients that have
no poles on the imaginary axis. RH,, C RL., contains functions that are analytic in the
closed right-half of the complex plane.

For a vector w € R"™, the Euclidean norm is denoted as |w|. £5" is the space of measurable
functions r : [0,00) — R™, with ||r||, = (fg° ]r(t)\th)l/Q < 0. Associated with £5" is
the extended space L57, consisting of functions whose truncation rp(t) := r(t) for ¢t <
T; rp(t) == 0 for t > T, is in L5 for all T" > 0. Define the finite-horizon Lo norm as
17l 25,1077 = (ftf |r(t)|2dt)1/2. If r is measurable, and ||r(|., , 71 < oo then r € L3"[to, T].
The finite horizon induced L5 to £; norm is denoted as |||, ., 4,7+ €2° is the set of
sequences = : N — R™ with [z, = (X2 |z(k)[*)/? < co. The extended space (52
consists of sequences whose truncation zy (k) = z(k) for k < N; xy(k) =0 for £ > N, is in
¢5* for all N > 0. When applied to vectors, the orders >, < are applied elementwise.

For £ € R™, R[¢] represents the set of polynomials in £ with real coefficients, and R™[¢]
and R™*?[¢] to denote all vector and matrix valued polynomial functions. The subset X[¢] :=
{r=ni+mi+ .. +7%:m,..,7u € R[]} of R¢] is the set of SOS polynomials in &. For
n € R, and continuous r : R" — R, define the sublevel set:

Q i={r e R" :r(x) <n}. (2.1)
For n € R, and continuous g : R x R” — R, define the ¢t-dependent sublevel set:
Qf, ={xeR":g(t,x) <n}. (2.2)
For P € S% ., x. € R", define the ellipsoid
E(P,x,) ={zcR": (v —x,) Plx —x,) <1}. (2.3)



CHAPTER 2. BACKGROUND 3

If x, = 0, the ellipsoid centered around the origin is defined as
E(P):={zeR":z"Px <1} (2.4)

KY P denotes a mapping to the block 2-by-2 matrix:

T T
KYP(Y,A,B,C,D,M) = [A Y +YA YB] [(]

BTy 0 DT] M[C DI (2.5)

2.2 Dissipativity

The notion of dissipativity, introduced in [15, 16], describes how the inputs and outputs
of systems correlate. This correlation is characterized by the chosen scalar-valued supply
rate. Different choice of supply rate determines different types of dissipativity. Consider the
following dynamical system

#(t) = fx(t),u(?),  f(0,0)=0

y(t) = h(z(t),u(t), h(0,0)=0 (2.6)

with z(t) € R", u(t) € R™, y(t) € R™, and continuously differentiable mappings f :
R" x R™ — R" and A : R™ x R™ — R"™.

Definition 1. The system (2.6) is dissipative with respect to a supply rate s(u,y) if there
exists V : R™ — R such that V(0) =0, V(z) > 0 for all x € R™, and

V((r) = V(@) < [ s(ult),y(t))at (2.7)

for every input signal u(-) and every T > 0 in the interval of existence of the solution
x(t). V(-) is called a storage function, and Equation (2.7) is referred to as the dissipation
inequality.

Important types of dissipativity and their corresponding supply rates are described below.
e Stability: 5(0,0) = 0 and s(0,y) <0 for all y € R™

If V is positive definite, then this supply rate implies that the origin is Lyapunov stable.
e Finite £, gain: s(u,y) = ¥?|ul? — |y|* with v > 0

Substituting this supply rate into (2.7), and using a zero initial condition z(0) = 0
yields

V(e(r) <2 / (1) 2dt — / ly($)|%dt  for all u, and 7 > 0, (2.8)
0 0

Apply V(z) > 0 to show that the Lo gain of the system is 7.
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e L, Reachability: s(u,y) = |ul?

Substituting this supply rate into (2.7), and using a zero initial condition z(0) = 0
yields

V(z(r)) < /T lu(t)[?dt  for all u, and 7 > 0. (2.9)
0

If the energy of the input is bounded: |ul|Z, < 7, then all the trajectories starting
from z(0) = 0 are bounded by the sublevel set Y, defined in (2.1).

e Passivity: s(tu,y) =u'y
Using x(0) = 0, this supply rate implies [ u(t) y(¢)dt > 0 for all u and 7 > 0.

In the rest of the thesis, we will mainly use supply rates related to stability and Lo
reachability to certify the corresponding properties of systems.

2.3 Integral Quadratic Constraints (IQCs)

Integral quadratic constraints (IQCs) play a key role in the rest of the thesis. We will
replace the perturbation A with IQCs that encapsulate the input-output properties of A.
The definitions of IQCs are given as follows.

Continuous-time Case

Definition 2. Let II = II™ € RL&’”’L”’“)X("”JF"“’) be given. A bounded, causal operator A :
5 — Lo satisfies the frequency domain IQC defined by the multiplier 11, if the following
inequality holds for all v € L5 and w = A(v),

I [Qz(j.w)rﬂ(jw) [g}(j.‘")] dw > 0, (2.10)

where U and W are Fourier transforms of v and w.

To help define IQCs in time domain, we introduced a virtual filter ¥ (shown in Fig 2.1)
that is a continuous-time linear time invariant (LTI) system, driven by the input v and
output w of A, and with zero initial condition (0) = 0,,, 1. Its dynamics are given by

w(t> :Aww(t) + B¢1U(t) + B¢2U)(t), (211&)
Z(t) :Cwﬁi(t) + D¢1v(t) + Dwgﬂ)(t), (21113)

where ¥ (t) € R™ is the state, and z(t) € R™* is the output. For many types of perturbations
(e.g. the ones in Example 1-3), we can choose ¥ to be an identity matrix, i.e., z = [v;w].
But dynamic filters are able to capture the relation between the input and output signals
of A across time, which enriches the description of A. For examples on dynamic filters, the
reader is referred to [13,17,18].
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w
> A >

Figure 2.1: Graphical interpretation for time domain IQCs

Definition 3. Let ¥ € RH’;X(n””w) and M € S"™ be given. A bounded, causal operator
A L5 — L5 satisfies the hard IQC defined by (V, M) if the following condition holds for
allve L3, and w = A(v):
T
/ ()T M=(t)dt > 0, VT > 0, (2.12)
to
where z =V [ 5] (Eq. 2.11b) is the output of ¥ driven by the inputs (v, w).
Definition 4. Let ¥ € RHZ;X(””JF”W) and M € S™ be given. A bounded, causal operator
A L3 — L5 satisfies the soft IQC defined by (V, M) if the following inequality holds for
allv e L3 and w = A(v):
/ 20T M2(t)dt > 0, (2.13)
to

where z =V [ 5] (Eq. 2.11b) is the output of ¥ driven by the inputs (v, w).

Discrete-time Case

Definition 5. Let II = II™ € RL&Z””“’)X(””W) be given. A bounded, causal operator A :
5 — Layv satisfies the frequency domain IQC defined by the multiplier 11, if the following
inequality holds for all v € £3° and w = A(v),

[ o] e [

where V- and W are discrete-time Fourier transforms of v and w.

dw >0 (2.14)

Again, to help define time domain IQCs, we introduce a ‘virtual’ filter ¥ applied to the
input v and output w of A. The filter ¥ is a discrete-time LTI system with zero initial
condition 1(0) = 0,,,x1. Its dynamics are of the form:

Z(l{}) = Cq/) ¢(k) + le U(k)) + D¢2 w(k:) (215b)

where (k) € R™ is the state, z(k) € R™* is the output, and A, is a Schur matrix. The
state matrices have compatible dimensions. The dynamics of ¥ can be compactly denoted

by | v | Bu B |
Cy | Dy1 Dy
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Definition 6. Let ¥ € RHZ‘;X("””W and M € S™ be given. A bounded, causal operator A :
by — (5> satisfies the time domain hard IQC defined by (¥, M) if the following inequality
holds for allv € 05, w = A(v) and for all N > 0

i 2(k) T Mz(k) >0, (2.16)

k=0

where z =V [ 5] (Eq. 2.15b) is the outpul of ¥ driven by the inputs (v, w).

Definition 7. Let ¥ € ]R]HIZ;X(””"“’) and M € S" be given. A bounded, causal operator
A lyr — Uy satisfies the time domain soft 1QC defined by (V, M) if the following inequality
holds for all v € 3", and w = A(v)

i 2(k)"Mz(k) > 0. (2.17)

k=0

where z =V [ 5] (Eq. 2.15b) is the output of ¥ driven by the inputs (v, w).

We will use the notations A € FreqlQC(II), A € SoftIQC(¥, M), and A € HardIQC(¥, M)
to indicate that A satisfies the corresponding (continuous-time or discrete-time) frequency
domain, time domain soft, and time domain hard IQC, respectively.

2.4 Sum-of-Squares (SOS) Programming

If we restrict our attention to LTT systems, searching for their storage functions such that an
algebraic expression holds for all values of the independent variables can be formulated as an
LMI. However, if the systems under consideration have polynomial vector fields, the corre-
sponding algebraic expressions are higher order polynomials, and checking nonnegativity of
polynomials is generally an NP-hard problem [19]. If we can show that a polynomial is a sum
of squares of finitely many polynomials, that is to say, it is a sum-of-squares (SOS) polyno-
mial, then it is nonnegative. Moreover, checking whether a polynomial is a SOS polynomial
can be formulated as a semidefinite programming. As a result, in the following sections, we
will replace polynomial nonnegativity constraints with SOS constraints.

Definition 8. For x € R", a polynomial p € R[x] is a SOS polynomial, if there exist

polynomials p1, ...,pn € Rlx] such that p = SN | p?.

Let z(z) be a vector of all monomials in z up to degree d,

ar, (2.18)

z(x) == [1,21, Tay vy Ty T1 T2, ..y T

Definition 9. For every polynomial p with degree 2d, there is a symmetric matriz () such
that

pla) = =) Q=(x). (2.19)

This is called a Gram matrix representation of p.
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In general, given a polynomial p, the () matrix that satisfies (2.19) is not unique. Let Q)
be a particular solution of (2.19), and let {N;}*_; be a basis for the homogeneous solutions,
i.e, z(x)" N;z(z) = 0. Then @ belongs to the set {Qo + X", \iN; : A € R"}. Gram matrix
representation plays a key role in sum-of-squares verification.

Theorem 1. A polynomial p in x € R™ of degree 2d, is SOS if and only of there exists Q = 0
such that

p(z) = 2(2) " Qz(x). (2.20)

Consequently, p is a SOS polynomial if and only if there exists A\ € R" such that Q, +
Sh U \N; = 0. That is to say, checking if a polynomial is a SOS polynomial can be done
by solving a SDP. For a polynomial of degree 2d in n variables, its corresponding vector of
monomials z(z) defined in (2.18), and Gram matrix representation are of the size m x 1, and

m X m, where m = (”jgd).
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Chapter 3

Robust Forward Reachability Analysis
for Uncertain Nonlinear Systems

In this chapter, we present a method for finding the smallest achievable outer bounds to the
forward reachable sets (FRS) on finite horizons. The FRS is the set of all the successors to a
set of initial conditions subject to the given dynamics under all possible model uncertainties
and disturbances on a finite horizon. The computation of the FRS plays an important role in
safety-critical systems, as it can verify whether a system is able to reach a target and avoid
an obstacle [8,20]. Indeed, if an outer bound avoids obstacles and is encompassed by the
target set at the final time, then one can ascertain the same properties for all trajectories.

The algorithm presented in this chapter uses a storage function that satisfies a dissipation
inequality to characterize the outer bound. The dissipation inequality framework, combined
with the Sum-of-Squares (SOS) technique [21] and the generalized S-procedure [22], allows
us to simultaneously accommodate multiple sources of uncertainty, including time varying
uncertain parameters, Lo disturbances, and perturbations A whose input output properties
are characterized by integral quadratic constraints (IQCs) [13]. IQCs can model a rich
class of uncertainties and nonlinearities, including hard nonlinearities (e.g. saturation), and
unmodeled dynamics, as summarized in [13] and [18]. Therefore, although our nominal
systems are assumed to be polynomials, including IQCs allows us to extend our analysis
framework to the class of systems beyond polynomial systems.

The proposed analysis framework considers both hard and soft IQC factorizations. Dissi-
pation inequalities usually require IQCs to hold over all finite horizons (hard IQCs) [23,24].
However, IQCs are often available in the infinite-time horizon (soft IQCs), while the hard
IQCs are not. To mitigate this issue, we incorporate soft IQCs in dissipation inequalities by
making use of a lower bound derived from [14], which is valid for soft IQCs over all finite
horizons. We formulate the reachable set computation as a set of SOS optimization prob-
lems, which can be solved effectively by bisection. In addition, our optimization problems
do not require a feasible initialization of the storage function.

In this chapter, we first present the reachability analysis framework for outer-bounding
the reachable sets for the nominal system: nonlinear system with L, disturbances and time
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varying uncertain parameters. Then we extend the framework to the uncertain nonlinear
system, which is modeled as an interconnection of nominal system and perturbations A
described by soft/hard IQCs. Finally, we illustrate the method on several aircraft examples.

3.1 Nominal Reachability Analysis

Consider the nominal nonlinear system N defined on [ty, T'):

:L’(t) = f(t,l’(t), d(t)’ 6(t))7 (31)

where z(t) € R" is the state, d(t) € R™ is the external disturbance, d(t) € R™ is the time
varying uncertain parameter, and the vector field f : R x R™ x R™ x R"™ — R" is locally
Lipschitz continuous.

Assumption 1. (i) Functions d and § are measurable and locally essentially bounded, (ii)
the disturbance d satisfies d € Ly* with ||d| ., o) < B for some R >0, (iii) there exists a
non-decreasing polynomial function h : R — Rsq with h(ty) =0, h(T) = 1 such that

/ "d()[2dr < B2A(E), ¥t € [to, T, (3.2)

(iv) for each t € [ty,T], 6(t) € D := {6 € R™ : ps(d) > 0}, where the polyomial ps € R[J]
describes the prior knowledge that bounds the uncertainty 6.

The function A is used to describe how fast the energy of d can be released on the interval
[to, T]. Next, the definition of the forward reachable set (FRS) is given as follows:

Definition 10. The FRS of the system N (3.1) from Xy at time T is defined as
FRS(T;N,ty, Xy, R, h,D) :={z(T) € R" : Jz(ty) € Xy, d satisfying (3.2) and 6(t) € D,
such that x(-) is a solution to (3.1)}.

Our goal is to outer bound this FRS, and the following theorem provides a way of
achieving it based on dissipation inequalities.

Theorem 2. Let Assumption 1 hold. Given vector field f : R x R" x R" x R™ — R",
time interval [to, T|, local region X; C R"™, set of initial conditions Xy C R™, disturbance

bound R, function h, and set of uncertain parameters D, suppose there exists a C' function
VR x R" = R that satisfies

OV (t,x) + 0,V (t,x)- f(t,x,d,0) <d'd, V(t,x,d o) € [to,T] x Xy x R" x D, (3.3a)
Xo €O, (3.3b)
QXRQh(t) C A, Vte [tO,T]. (33C)

Then x(T) € QY po for all x(to) € Xy, where x(-) is a solution to the system N (3.1),
and o, Y papy and Qf po are defined in (2.2). Therefore Q. po is an outer bound to the
FRS(T: N, to, Xo, R, h, D).
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Proof. Combining constraints (3.3a) and (3.3c), we have the following dissipation inequality:

OV (t,x)+ 0,V (t,x) - f(t,x,d,0) <d'd, Y(t xzd,50),
s.t.t € [to, T, © € Qpapgyy, d €R™, 6 €D.

Since this dissipation inequality only holds on the set Q}/ r2n(ry» We need to first prove that
all the states starting from X won’t leave QY R2h(t)> for all ¢t € [ty,T]. Assume there exist
a time instance Ty € [to, T, o € AXp, and signals d satisfying (3.2), §(t) € D, such that a
trajectory of the system N starting from z(tg) = x satisfies V (11, z(T1)) > R*h(T;). Define
T, = infy s@))>r2n@)t- Therefore, the dissipation inequality holds on [ty, T3], and we can
integrate it over [tg, T5):

V(T o) = Vlta,alio)) < [ (o)

By assumption zy € Ap, it follows from (3.3b) that V(tg,z(ty)) < 0. Combing it with d
satisfying (3.2) to show

R2h<T2) = V(TQ, SL’(TQ)) < R2h<T2)

This is contradictory. Therefore there doesn’t exist a 17 € [to,T], such that x(Ty) ¢
QF, reneryy- As a result, for all 2(tg) € Ay, we have x(t) € Q)pay,, for all t € [to, T,
and thus z(T) € QY po. O

If the function h is not given, then there is no a priori knowledge on how [; |d(7)|?dr
depends on ¢. In this case the constraint (3.3c) is modified to be

O g2 C X, Vt € [t, T). (3.4)

This case is more restrictive for the storage function and yields larger outer bounds on the
FRS.

We are interested in a tight outer bound to the FRS. Thus it is natural to search for a
storage function V' that minimizes the volume of Q¥ r2- However, an explicit expression is
not available for the volume of Q¥ e for a generic storage function. Instead, we introduce a
user-specified shape function ¢ and its corresponding variable sized region Q4 = {z € R" :
q(z) < a}. The shape function ¢ can be associated with the user’s initial guess of the shape
of the actual reachable set or can signify the desired shape of the outer bound. An example
of ¢ is given in Section 3.1. The volume of Q¥ g2 can be shrunk, by enforcing

Q%RQ - ng (35)

while minimizing «. For more heuristic metrics for the volume of semi-algebraic sets, the
reader is referred to [25].
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To find a storage function V' that satisfies the constraints in (3.3) and (3.5), we leverage
SOS programming. To do so, we assume that Xy and A) are semi-algebraic sets: Xy := {z €
R™ : ro(z) < 0}, and

X ={x € R" : p(x) < n}, (3.6)

where 19, p € R[z] are specified by the user, and 7 € R is a decision variable that deter-
mines that volume of A;. Additionally, we restrict the system model, shape function, and
storage function to polynomials, i.e., f € R"[(¢,z,d, )], ¢ € Rlz], V € R|[(t,x)]. Also de-
fine g(t) := (t — to)(T — t), whose value is nonnegative when t € [to, T]. The polynomial
functions are used to formulate the set containment constraints. With these ideas, sufficient
SOS conditions for the set containment constraints (3.3) and (3.5) are obtained. Also by
choosing « as the cost function, we obtain the following SOS optimization problem, denoted

as sosopt, (f,p, g,q,70, R, h, ps),

min «
a1n7s7v

s.t. s5—e€ € X[x], 56 — €2 € X[(z,t)],e1 > 0,2 > 0,

s; € X[(x,d,0,t)],Vi € {1,2,3}, s4 € Xx], s7 € X(x,1)],V € R[(¢, x)], (3.7a)
— (@V +0, V- f— de) + (p—n)s1 — s2g — s3ps € Xl(x,d, d,1)], (3.7b)
= Vli=ty + 8470 € X[z], (3.7¢)
—(p—n)s¢ +V — R*h — s7g € X[(x,1)], (3.7d)
— (¢ — )ss + V]|er — R* € S[a], (3.7¢)

where s;,7 € {1,..., 7}, are SOS polynomials, called multipliers, whose coefficients are to be
determined, €; and €, are small positive numbers chosen by the user to guarantee that sj
and sg cannot take the value of zero. The optimization sosopt; is nonconvex as it is bilinear
in two groups of decision variables («,7n) and (sy, s5,5¢). Since we can’t bisect on both «
and 71 at the same time, we propose Algorithm 1 that solves the problem in two steps, and
bisects on one decision variable at one step.

Algorithm 1 Computing the outer bound

IanIt: f7p7 9,4,70, R> hapé
1: Preparation Step: solve for n* = argminn s.t. (3.7a)—(3.7d) by bisecting on 7.
2: Main Step: solve for a* = argmina s.t. (3.7a)—(3.7e) by using n = n* and bisecting
on a.
Output: Minimized o*, outer bound Q¥ R2-

The first step of Algorithm 1 is to find the smallest feasible local region X; (with respect
to p) by setting aside the original objective function and constraint (3.7¢), and minimizing 7.
The second is to find the least conservative outer bound. The first and second steps bisect
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on 1 and «, respectively. Each iteration of bisection involves holding a//n fixed and solving a
feasibility problem, which is a standard semidefinite programming problem and is convex. If
the fixed value of /7 leads to infeasibility of the problem, then try to solve it with a larger
a/n; otherwise, decrease the value of a/n.

Proposition 1. The SOS constraints (3.7b)—(3.7e) are sufficient conditions for (3.3) and
(3.5).

Proof. (3.7b) = (3.3a): The proof follows from the generalized S-procedure [22]. In (3.7b),
when (z,t,0) satisfies p(z) <1 (i.e. x € &), g(t) > 0 (i.e. t € [to,T]), ps > 0 (i.e. 0 € D), for
the polynomial in (3.7b) to be nonnegative, then —(0,V (t,z) + 9,V (t,z) - f(t,z,d,d) —d"d)
must be nonnegative. Thus (3.7b) implies (3.3a).

(3.7¢) = (3.3b): In (3.7c), when a state x satisfies ro(x) < 0 (i.e. z € Ap), for the
polynomial in (3.7¢) to be nonnegative, then —V (o, ) must be nonnegative (i.e. = € Q};O).

(3.7d) = (3.3¢c): In (3.7d), when a state and time pair (z,t) satisfies V (¢, ) < R?h(t) (i.e.
x € QXRQh(t)) and g(t) > 0 (i.e. t € [ty,T]), for the polynomial in (3.7d) to be nonnegative,
then —sg(t, x)(p(z) —n) must be nonnegative (i.e. © € &}).

(3.7e) = (3.5): In (3.7e), when a state = satisfies V(T,z) < R* (i.e. o € QY p»), for
the polynomial in (3.7e) to be nonnegative, then —(g(x) — a)ss(x) must be nonnegative (i.e.
x € Q). O

Application to a 2-state example

Consider the following academic example from [26]:

Ztl :—ZL’1—|—JI2—I1JI§, (3 8)

, 2
Tg = — X9 — 2722 + d,

where d is the disturbance satisfies (3.2) with R = 1 and h(t) = t*/T2. In this example
the uncertain parameter is not considered. We take [to, T] = [0, 1 sec], ro(z) = 'z — 1.
In Figure 3.1, the green points are simulation points z(7"), at T' = 1 sec, for the system
(3.8) using disturbance signals d, with initial conditions inside Aj, which is shown with
the red dotted curve. In this example, the shape function ¢ is obtained by computing the
minimum volume ellipsoid 7 that contains all the simulation points x(T) at T = 1 sec,
and ¢q(z) = 4.842% — 3.05x179 + 1.5022. A more accurate shape function can be obtained
by fitting a higher degree polynomial to the simulation points [27]. Here, the polynomial
p that defines the local region is obtained by computing the minimum volume ellipsoid €}
that contains some sampling points on the simulation trajectories x(t), for ¢ € [0,7], and
p= 0.989x% —0.051zy29 + 0.949963 +0.001z1 4+ 0.001x5. Solving the first step of Algorithm 1
we obtain n* = 1.044, and A] is determined. Solving the second step gives a* = 1.37. The
outer bound is shown with the black curve, which tightly encloses all (7).
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0.5

-0.5f

Figure 3.1: Outer bound of reachable set at T" = 1 sec for the 2-state example with Lo
disturbance.

3.2 Robust Reachability Analysis with Hard IQCs

Consider the uncertain nonlinear system shown in Figure 1.1, which is an interconnection
F.(G,A) of a nonlinear system G and a perturbation A. The dynamics of the nonlinear
system G are of the form:

ta(t) =1t za(t), w(t), d(t),6(1)),
v(t) =r(t, xa(t), w(t), d(t),0(t)),
where z¢(t) € R"¢ is the state of G, and §(¢) € R™ is the uncertain parameter. The inputs

of G are d(t) € R™ and w(t) € R™ while the output is v(¢) € R™. The system G is defined
by the mappings f : R x R"¢ x R" x R™ x R™ — R"¢ and r : R x R"¢ x R™ x R" x R™ —

(3.9)

RY. The perturbation is a bounded and causal operator A : L£5° — L5*. Assume the
interconnection F,(G,A) formed by G and A through the constraint
w(-) = A(v(")) (3.10)

is well-posed. The well-posedness of the interconnection F,(G,A) is defined as follows.

Definition 11. F,(G,A) is well-posed if for all zg(ty) € R™ and d € L3¢ there exist

Ty

unique solutions xg € L3¢, v € L5Y, and w € LyY satisfying (3.9) and (3.10) with a causal
dependence on d.

Again, assume all the trajectories of F,(G,A) start from z¢(tg) € Xy C R*¢. The FRS
of F,(G,A) from A} at time 7" is then defined as

FRS(T; F,(G,A), tg, Xo, R, h,D) := {xc(T) € R" : Jzg(ty) € Xy, d satisfying (3.2) and
d(t) € D, such that z¢(-) is a solution to (3.9) and (3.10)}.  (3.11)
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From robust control modeling [28], the perturbation A can represent various types of
nonlinearity and uncertainty, including hard nonlinearities (e.g. saturation), and unmodeled
dynamics. Different types of perturbation have different input-output properties, and each
property can be described by its corresponding IQCs [13]. IQCs can be either defined
in frequency domain or time domain. The use of time domain IQCs is required by the
dissipation inequality used in the dissertation. Time domain IQCs consist of soft IQCs and
hard 1QCs, which are quadratic constraints on the output z associated with a matrix M
over infinite (soft IQC) or finite (hard IQC) horizons. The definition for hard IQCs is given
in Definition 3, the use of soft IQCs is discussed in Section 3.3.

We use the notation A € HardIQC(¥, M) to indicate that A satisfies the hard IQC
specified (¥, M), i.e., given any input v of A, the output w must be such that z = W[} ]
satisfies the constraint (2.12) characterized by (W, M). Next, we give two examples on
different types of uncertainties and the corresponding hard IQCs.

Example 1. Consider the set S; of LTI uncertainties with a given norm bound o > 0, i.e.,
A€ Sy, if A € RHy with ||All, < 0. It’s proved in [29] that A € HardIQC(¥, Mp) over
any finite horizon T < oo, where ¥ := [‘1’0“ \121} with Wy, € R]HIZ;XI and

M
MD € Ml = {[U 0 11 _](\2_11] : M11 ~ 0} . (312)
A typical choice for Uyy [18] is
-
Ui = (1 ke k] with m> 0, (3.13)

where m and d are selected by the user.

Example 2. Consider the set Sy of nonlinear, time varying, uncertainties with a given
norm-bound o, i.e. A € Sy, if HAHLQ%@#O’T] < o. If A €8, then the perturbation A
satisfies the hard I1QCs defined by (V, M) defined below:

2
U =1l ip, MEMy:= {l" %I"v _AOI ] LA > 0}. (3.14)

Since the behavior of the perturbation A can be described by an IQC associated with a
filter ¥ and a matrix M, then the robust analysis on the original uncertain system F, (G, A)
can be instead conducted on the extended system shown in Fig. 3.2 with an additional
constraint (2.12). The precise relation w = A(v), for analysis, is replaced by the constraint
on z. This extended system is an interconnection of G and ¥, with A been removed. The
dynamics of the extended system are of the form:

F(t,z(t),w(t), d(t),6(t)), (3.15a)
2(t) = H(t, 2(t), w(t), d(t), 6(t)), (3.15b)
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where the state © := [zg; 9] € R",n = ng +ny, gathers the state of G and ¥. The mappings
F, and H are given by (dropping the dependence on t):

L f(t,l(;,’lﬂ,d, 5)
F(t;xawada 5) Ch [A¢¢+ B¢1T(t7xG,w,d, 5) +B¢2w 9 (316)
H(t,x,w,d, 5) = C¢¢—|—Dwﬂ“(t,l’g,’w,d, 6) +D1/12w7

where Ay, Byi1, By2, Cy, Dy1, and Dy, are state space matrices of U defined in (2.11).

o ¥ R
T with
P /z(t)TMz(t)dtzo
> A 0
oo
v w
G l—d

Figure 3.2: Extended system of G and ¥

The original uncertain system to be analyzed is F,(G,A), which has a set of initial
conditions & and an input d. The analysis is instead conducted on the extended system
(3.15), which has a set of initial conditions Xy x {0™}, and two inputs d and w. For any
input d € £5* and initial condition zg(ty) € R"¢, the solutions v € £5* and w € L5* to the
original system F, (G, A) satisfy the constraint (2.12). The extended system (3.15) with the
IQC (2.12) “covers” the responses of the original uncertain system F,(G,A). Specifically,
given any input d € £5¢ and initial condition zg(tg) € R"¢, the input w € L£5* is implicitly
constrained in the extended system so that the pair (v, w) satisfies the IQC (2.12). This
set of (v, w) that satisfies the IQC (2.12) includes all input/output pairs of A. Therefore,
the response of this extended system subject to this implicit constraint (2.12) includes all
behaviors of the original uncertain system F,(G,A). The following theorem provides the
method for outer bounding the FRS of the uncertain system F, (G, A) by conducting analysis
on the constrained extended system (3.15).

Theorem 3. Let G be a nonlinear system defined by (3.9), and A : L5 — L5* be a bounded
and causal operator. Let Assumption 1 hold. Additionally, assume (i) F,(G,A) is well-posed,
(i) A € HardlQC(V, M), with ¥ and M given, and (iii) all the trajectories of the extended
system start from Xy x {0™}. For some F, H defined in (3.16), time interval [to, T, local
region X; C R"¢ | set of initial conditions Xy C R"¢, disturbance bound R, function h, and
set of uncertain parameters D, function q : R"¢ — R, and o € R, suppose there exists a C*
function V : R x R™ — R that satisfies

oV (t,x)+ 0,V (t,x)  F(t,z,w,d,§) + 2 Mz <d'd,
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V(z,t,w,d,0) € X x R™ X [to, T] x R™ x R"™ x D, (3.17a)

Xy x {0} C {z e R": V(ty,z) < 0}, (3.17b)
{ze €R™ :V(T,2) < R?} CQI, Vi € R™, (3.17¢)
{26 €R™ : V(t,2) < R?h(t)} C &, V(t,¢) € [to, T] x R™, (3.17d)

where z is the output of the map H. Then all trajectories of F,(G,A) (defined by (3.9)-
(3.10) ) starting from xzg(ty) € Xy satisfy xa(T) € QL. Therefore QL is an outer bound to
the FRS(T; F\(G, A), to, Xo, R, h, D) (3.11).

Proof. By assumption that F,(G,A) is well-posed, the signals (z,v,w, z) generated for the
extended system for the input d € L3¢ are Lo, signals. By combining (3.17a) and (3.17d)
we have the following dissipation inequality:

OV (t,x)+ 0,V (t,x) F(t,x,w,d, )+ 2" Mz <d'd,
V(z,t,w,d,0) s.t. x € QXth(t),t € [to, T],w e R"™ d e R"™ §€D. (3.18)

Since (3.18) only holds on the set QY R2h(t): We need to first prove that all the states starting
from X x {0™} won’t leave Q) rengry for all ¢ € [to, T]. Assume there exist a time instance
Ty € [to, T, zo € Xox {0™}, and signals d satisfying (3.2), §(t) € D, w(t) € R™, such that a
trajectory of the extended system starting from z(tg) = z¢ satisfies V (T, x(Ty)) > R*h(T}).
Define T, = infy (4 »(4))>r2n() t, and integrate (3.18) over [to, T3):

V(Ty, 5(T)) — Vite a(te) + [ 2(0)T Mt < [ d(t)Td(t)dt.

to to

By assumnption zo € Xy x {0™}, it follows from constraint (3.17b) that V (to, z(to)) < 0.
Comibining it with w satisfing (3.2) yields

V(T a(D) + [ 2(t) M(t)dt < R2h(Ty). (3.19)

to

Next it follows from the hypothesis that A € HardIQC(W¥, M) that
R*W(Ty) = V(Ty, 2(Ty)) < R*h(Ty). (3.20)

We can see the contradiction in (3.20). Therefore there doesn’t exist a T} € [to, T, such that
x(Th) ¢ Q¥1,R2h(T1)' As a result, for all z(ty) € &y x {0™}, we have z(t) € QXRQh(t), for all
t € [to, T], and thus z(T') € Q p.. Finally, it follows from (3.17c) that z¢(T) € Q4. O

Notice that from the proof, Q¥ Rz 1s an outer bound to the FRS of the extended system

from Xy x {0™}. The set Q2, a projection of ) . on the z¢ space, is an outer bound to

the FRS of the actual uncertain system F,(G, A).
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There is a large library of IQCs for various types of perturbations A [13]. It is common to
formulate optimization problems that search over combinations of valid 1QCs. Specifically,
let {(Wy, My)},_, be a collection of valid time-domain IQCs for a particular A. If 2 is the
output of the filter ¥y and Ay, ...., Ay are non-negative scalars then it follows that:

T N
Z )\kzk(t)TMk(t)Zk(t)dt >0, Yo, € £;Zk, Wg = A(’Uk), and T > t,.

to p—1

In other words, a conic combination of time-domain IQCs is also an IQC. This conic com-
bination can be represented as ¥ := [Wy;...; Wy| and M := blkdiag(A My, ..., \nMy). The
scalars A1, .. Ay > 0 are typically decision variables in an optimization used to find the
best IQC for the robustness analysis. In this parameterization V¥ is fixed and M is a linear
function of variables A1, ..., Ay subject to non-negativity constraints. More general IQC pa-
rameterizations can be found in [18]: given the type of the perturbation, the corresponding
IQCs are parametrized by a fixed filter ¥ chosen by the analyst and M in a feasible set M
described by linear matrix inequality (LMI) constraints. These general parametrizations will
be used in the rest of the dissertation. Note that Example 1 and 2 also provide instances of
the general parametrization, where Mp and M are restricted to convex sets M; and M.

Along with V| we also treat M € M as a decision variable to give the optimization
more flexibility. Assume the set M is convex and described by LMIs. Again, assume A},
Xy are parametrized by p € Rlzg| and ry € Rlzg|, respectively, and restrict ¢ € R[zg],
f € R"|[(t,zg,w,d, )], and r € R™[(t,zq,w,d,d)]. Therefore, F' and H in (3.15) are
polynomials. By applying the generalized S-procedure [22] to (3.17), we obtain the following
SOS optimization problem, sosopt,(F, H,p, g,q,70, R, h, ps, ¥, M),

min o
04:77’37V:M7€1 s€2

st.  s5—e € Xx], 56 — €2 € X[(x,t)], €1 > 0,62 >0, M € M, V € R[(t,x)],
sy € Blzg|, s7 € Xl(x,t)], si € El(x,d,w,t,6)], Vi e {1,2,3},
— (@V +0,V-F+2"Mz— de) + (p—1n)s1 — s29
— s3ps € X(x,d,w,t,0)],
— Vlizty pmfzei0me] + 5470 € X[zal,
— (¢ — )s5 + V|er — R? € T[a], (3.21c
—(p—n)sg +V — R*h — s7g € X[(x,1)], (3.21d

which is again bilinear in («,7n) and (sq,s5,Ss), and can be solved by using Algorithm 1.
Although in the SOS formulation, M is restricted to be time-invariant, extensions to allow
for time-varying M are possible.

To keep track of all the tuning parameters in the dissertation, we provide a table that
summarizes them, their corresponding physical meanings, and some of their examples:
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Table 3.1: List of tuning parameters

Phy81§al Shape of X, Outer bound shape Energy releasing Filter for A
meanings rate

Parameters D q A T

Examples geéftlons 31 Sections 3.1, 3.4 Section 3.1 ge;tlons 3.4,

3.3 Robust Reachability Analysis with Soft IQCs

The previous section gives the result using hard 1QCs, however, the library of IQCs are
usually provided in frequency domain [13], whose definition is given in Definition 2.

The frequency domain multiplier can be factorized as Il = U~ MWV where M € S™ and
U is a stable, LTI system of appropriate dimension. Such a factorization always exists [18]
but is not unique. This factorization (W, M) gives rise to a time-domain soft IQC as defined
in Definition 4.

We use the notation A € FreqIQC(II) and A € SoftIQC(W¥, M) to indicate that A satisfies
the corresponding frequency domain and time domain soft IQC, meaning that given any v,
the output w of A must be such that (2.10) and (2.13) hold, respectively. By Parseval’s
theorem [28], frequency domain and time domain soft IQCs are equivalent. Specifically, if
A € FreqIQC(II) then A € SoftIQC(¥, M) for any factorization IT = U~ MU with ¥ stable.
Conversely if A € SoftIQC(¥, M) then A € FreqlQC(V~M W) as well. It also follows that
A € HardIQC(W, M) implies A € FreqlQC(V~MW). However, A € FreqlQC(II) does not
imply, for general factorizations, that A € HardIQC(W, M). As a result, soft IQCs are always
available while hard ones are not, which necessitates the use of soft IQCs in the dissipation
inequality. Next, we give one example of uncertainty and its corresponding soft IQC.

Example 3. Consider the set S3 of real constant parametric uncertainties with given norm
bound o > 0, i.e. A € S, if w(t) = A(v(t)) = orrv(t) with |0rr| < o. From [13], the

frequency domain filter is chosen as s = {U;[?;(lj(igj) _Hr}fl(g;j)}, where 1111 (jw) = 115, (jw) > 0

d,m
and 12 (jw) = =115, (jw) for allw. A soft IQC factorization for Il is ¥ = \1/101 ij , where
11
UH™ is defined in (3.13), and Mpg = {"12\%211 f\ﬁfl], where decision matrices are subject to

My = M, My, = =M, and "My UE™ > 0. The constraints W™ My OH™ > 0
can be enforced by a KYP LMI [30]. Notice that o7y is a special case of the perturbation
considered in Example 1, and thus o7 € HardIQC(V, Mp) as well. However, since Mp is
a special case of Mpg with Myy = 0, the reachability analysis using (V, Mpg) can be less

conservative than using (¥, Mp). A method is proposed in [31] to iteratively refine the choice
of V.

Soft IQCs are constraints that hold over the infinite time horizon and hence they cannot
be directly incorporated in the analysis based on finite-horizon dissipation inequalities. The
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following Lemma is a remedy for this issue: it provides a lower-bound for soft 1QCs on
finite horizons then enabling their use for reachability analysis. This in turn enables us
to: (i) conduct reachability analysis when the hard IQC factorization does not exist; (ii)
reduce conservatism resulting from the hard IQC factorization when it exists, as discussed
in Example 3 .

Lemma 1. ([14]) Let U € RH™*"+) gnd M € S™ be given. Define 11 := U~MV. If
[y (jw) < 0 Vw, then*

° D;QMDW < 0 and there exists a Yoy € S™ satisfying
KYP(}/QQ,A¢,B¢Q,C¢,D¢Q,M) < 0. (322)

o [fA e SoftIQC(¥, M) then for all T >0, v € L5 and w = A(v),

[ =0T M0t > () Vo (1) (3.23)
for any Yoy € S™ satisfying (3.22).

Lemma 1 is valid for multipliers that satisfy I1,, < 0. Multipliers satisfying the non-strict
conditions Iy < 10 can be handled by a perturbation argument [32]. Based on the lemma
given above, the following theorem considers the analysis for the interconnection F,(G,A)
with A that has a soft IQC factorization.

Theorem 4. Let G be a nonlinear system defined by (3.9), and A : L5 — L5* be a bounded
and causal operator. Let Assumption 1 hold. Additionally, assume (i) F,(G,A) is well-posed,
(ii) A € SoftIQC(V, M), with ¥ and M given, (iii) 11 .= W~ MY satisfying I < 0 Yw, and
(iv) all the trajectories of the extended system start from Xy x {0™}. For some F', H defined
in (3.16), time interval [to, T|, local region X; C R", set of initial conditions Xy C R"¢,
disturbance bound R, function h, and set of uncertain parameters D, function q : R"¢ — R,
and o € R, suppose there exists a C' function V : R x R® — R, and a matriz Yoy € S™
satisfying (3.22), such that the following constraints hold

OV (t,x) + 0,V (t,x) - F(t,r,w,d,6)+ 2" Mz <d'd,

V(z,t,w,d,0) € X x R™ X [to, T] x R™ x R"™ x D, (3.24a)

Xo x {0} C{z € R": V(ty,x) <0}, (3.24b)
{ze € R™ - V(T x) < R?} C Q1 Ve € R™, (3.24¢)
{z6 € R™ 1 V(t,x) < R?h(t)} € A, V(t,¢) € [to, T] x R™, (3.24d)
where YV =V — T Yaoth, and z is the output of the map H. Then all trajectories of Fy,(G,A)

(defined by (3.9)—(3.10) ) starting from xg(to) € Xy satisfy vo(T) € QL. Therefore QL is an
outer bound to FRS(T; F,(G,A), ty, Xo, R, h,D) (3.11).

*The notation Ilsg refers to the partitioning IT = [gg g;i} conformably with the dimensions of v and

w.
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Proof. By assumption that F,(G, A) is well-posed, the signals (z, v, w, z) generated for the
extended system for the input d € L3¢ are Lo, signals. By combining (3.24a) and (3.24d)
we have the following dissipation inequality:

OV (t,x) + 0,V (t,x)- F(t,x,w,d,8) + 2" Mz <d'd,
Y(x,t,w,d,0) s.b. 2 € W papey, t € [to, T, w e R™, d e R™, 6 € D.  (3.25)

Since (3.25) only holds on the set Qf Rr2n()» We need to first prove that all the states starting

from Xy x {0™} won’t leave QXRQh(t), for all ¢t € [ty, T]. Assume there exist a time instance
Ty € [to, T], xg € Xox{0™}, and signals w satisfying (3.2), 6(t) € D, w(t) € R™ such that a
trajectory of the extended system starting from z(ty) = x¢ satisfies V(T1, z(T3)) > R*h(T}).
Define T5 = infy(; »1))> r2n) ¢, and integrate (3.25) over [to, Tb):

T2 T2
V(Ty, 2(Ty)) — V(to, x(to)) + z(t)TMz(t)dtg/ d(t) T d(t)dt.
to to
By assumption zo € Xy x {0"}, it follows from constraint (3.24b) that V' (to,z(ty)) < 0.
Combining it with d satisfying (3.2) to show

T
V(To,2(T)) + [ 2(6)TMz(t)dt < R*h(T»). (3.26)
to
It follows from Lemma 1, A € SoftIQC(W, M), IIss < 0 Vw and Y, satisfies (3.22) that
(3.23) holds for the Lo, signals (v, w, z), and thus

V(Ty, 2(Ty)) — (1) " Yoorh(To) < R*h(T3). (3.27)

Thus (3.27) is a contradiction, since V (Ty, 2(T%)) =t (Ty) " Yaorb (Ty) = V(T3 2(T3)) = R*h(T3).
Therefore there doesn’t exist a Ty € [to, T, such that x(T1) ¢ QY. ren(ry)- As a result, for
all x(tg) € Ay x {0™}, we have z(t) € QXRQh(t), for all t € [to, T], and thus (T) € QY ps.
Finally, it follows from (3.24c) that z¢(T') € Q4. O

Remark 1. The use of soft IQCs requires some care as they are only defined in the frequency
domain for Ly inputs and yet the analysis must be performed using Lo, signals (to prevent
circular arguments). Section 3.2 is restricted to the use of hard IQCs for which the time-
domain IQC holds over finite time horizons. This removes the technical details associated
with soft 1QCs. This restricts the analysis to 1Q)Cs that can be parameterized so that they
are hard. In Section 3.3, however, analysis conditions are derived based on soft IQQCs. The
issues related to soft IQCs are resolved by constructing a finite horizon lower bound valid for
Lo signals (Lemma 1). This lower bound is then incorporated in the reachability analysis
in Theorem 4. The proof of Theorem 4 demonstrates that that the reachability analysis uses
the lower bound (3.23) valid for Lo signals (v, w, z), instead of using (2.13), which requires
(v,w, 2) to be Ly signals.
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Note that the characterization of a frequency domain IQC as “soft” vs. “hard” depends
on the factorization of the frequency domain multiplier. The J-spectral factorization in [32]
always yields a “hard” IQC for any frequency domain multiplier (although this may not be
an ideal parameterization for numerical implmentations)

By applying the generalized S-procedure [22] to (3.24), and using « as the cost function,
we obtain the following SOS problem, sosopt,(F, H,p, g,q,r0, R, h, ps, ¥, M):

min o}
(1777757‘/,M,Y22 ,€1,€2

st.  VeR|[(t,x)], M € M and Yy € S™ satisfying (3.22),
S5 — €1 € Xlx], 56 — €2 € Xl(x,t)], €1 > 0,€9 > 0,
sq € Xlzg|, sr € X[(z,1)], s € X[(z,d,w,t,0)], Vi e {1,2,3},
— OV +0,V-F4+2"Mz—d"d)+ (p—n)s1 — s2g

— s3ps € Bl(x,d,w,t,6)], (3.28a)
= Vlizty omfogi0me) + 8470 € Xz, (3.28D)
— (¢ — a)ss + V]j=r — R* € X1}, (3.28c¢)
—(p—n)sg +V — R*h — s7g € X[(x,1)]. (3.28d)

Compared with sosopt,, the optimization sosopts has one more decision matrix Y5, and an
associated KYP LMI convex constraint, and it can also be solved by using Algorithm 1.

3.4 Examples

A workstation with a 2.7 [GHz] Intel Core i5 64 bit processors and 8{GB] of RAM was used
for performing all computations in the following examples. The SOS optimization problem
is formulated and translated into SDP using the Sum-of-Squares module in Yalmip [33]
on MATLAB, and solved by the SDP solver Mosek [34]. Table 3.2 shows the degree of
polynomials we chose, and the computation time it took for each example.

Table 3.2: Computation times for each example

Examples / sections # of x | Degree of f | Degree of V' | Degree of s | Time[sec]
Section 3.1 2 3 8 6 6.1 x 10
Section 3.4 4 3 6 4 1.1 x 102
Section 3.4: GTM 4 6 8 6 1.1 x 10°
Section 3.4: GTM with d 4 3 8 6 3.2x 103
Section 3.4: GTM with d, § | 4 3 8 6 5.0 x 10°
Section 3.4: GTM with d, A | 6 3 6 4 8.2 x 10°
Section 3.4 7 3 6 6 3.7x10°
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The dynamics f in the following examples are all time-invariant, but since our reachability
analysis is addressed in finite-time horizon, we use time-varying storage functions.

Van der Pol example

Consider the following Van der Pol oscillator dynamics in reverse time with time-invariant
uncertain parameter dry € [—3, 3]:

j?l = $2<1 + 0.2577),
Ztg =T + (l’% — ].)ZEQ

In this case o7 is treated as a perturbation, where w = A(v) = dpv, and v = 0.2x9. As
discussed in Example 3, the time invariant uncertain parameter dr; satisfies both hard and
soft IQCs: d7; € HardIQC(W¥, Mp) and o7, € SoftIQC(W¥, Mpg), where the constraints for
Mp and Mpe are given in Example 1 and 3, respectively. The robust reachability analysis
is performed using both kinds of IQCs. In both cases, we use the same filter ¥, and choose
d and m from (3.13) to be d = 1, m = 4, which correspond to ¥ described by the following

dynamics:
-4 0 1 0
e O R A

C, = lg’é’g’gr,pw = [1,0,0,0]", Dy = [0,0,1,0] "

Therefore the filter ¥ introduces two filter states ¢ € R? to the extended system. Take the
time horizon as [to, 7] = [0, 1.5] and the initial set as Xy = {(z1, x2) : 23 + 23 < 1}. Choose
polynomials ¢ = p = 0.31502% — 0.0976z,25 + 0.081623 — 0.0023z; + 0.0002x5. The local
region A is picked as QY. The optimal o computed using soft and hard IQCs are 1.21 and
1.60, respectively, which states the fact that the soft IQC achieves a less conservative outer
bound and captures the nature of the uncertainty. In Fig 3.3, the simulation points z(7") of
the Van der Pol dynamics with the initial set Ay, and with values of 7y randomly drawn from
[—3, 3] are shown with green dots. We can see from Fig 3.3 that the outer bound obtained
using the soft IQC (shown with the black solid curve) is enclosed by the one computed using
the hard IQC (shown with the purple dash-dotted curve). It also indicates that the outer
bound obtained using the soft IQC is less conservative.
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Figure 3.3: Outer bounds using soft /hard IQCs and simulation points (7") at 7" = 1.5 under
uncertain parameter, with the initial condition set A

NASA'’s Generic Transport Model (GTM) around straight and
level flight condition

The GTM is a remote-controlled 5.5% scale commercial aircraft [35]. Its longitudinal model
[36] is

1
Ty :E(_D — mgsin(xy — xa) + Ty cos(x2) + T sin(xq)),

1
&g =——(—L 4+ mgcos(zy — x3) — Ty sin(za) + T’ cos(xs) + 3),

mi
M+T,
g =2t Tm (3.29)
Iyy
Ty =x3,

where states x; to x4 represent air speed (m/s), angle of attack (rad), pitch rate (rad/s)
and pitch angle (rad) respectively. The control inputs are elevator deflection g, (rad)
and engine throttle u,, (percent). The drag force D (N), lift force L (N), and aerodynamic
pitching moment M (Nm) are given by D = ¢SCp(x2, teier, 4), L = ¢SCL(xa, Ueten, G), and
M = gScCly (@2, Ueiew, §),Where ¢ := £ pz} is the dynamic pressure (N/m?), and § := (¢/2z1)xz3
is the normalized pitch rate (unitless). Cp,Cp, and C,, are unitless aerodynamic coefficients
computed from look-up tables provided by NASA.

A degree-6 polynomial model, provided in [37], is obtained after replacing all nonpolyno-
mial terms with their polynomial approximations. The polynomial model takes the form
i = fe(z,u), where x := |11, 29,235,747 and u = [Ueier, usn]". The following straight
and level flight condition is computed for this model: x;;, = 45 m/s, xo; = 0.04924 rad,
x3y = 0 rad/s, x4, = 0.04924 rad, with uee,; = 0.04892 rad, and wuy, = 14.33%. The
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subscript ¢ denotes a trim value. A polynomial closed-loop model, denoted as & = fg(x),
is obtained by holding w, at its trim value, applying a proportional pitch rate feedback
Uelev = qu3 + Uelev,t = OO698$5 + Uelew,t -

Analysis for the GTM

Reachability analysis is carried out on # = fs(x) around its trim point. The set of initial
conditions Xy = {x € R*: (v — 2;) "C~}(z — ;) — 1 < 0} is a 4-dimensional ellipsoid inside
the region of attraction, where C' = diag(20?, (207/180)?, (507/180)2, (207/180)?), z; is the
trim point. Take the local region X} = {z € R* : (z — 2,)'C; ' (z — 2,) — 1 < 0}, where
C; = diag(30%, (307 /180)2, (757 /180)2, (307 /180)%). Qf is chosen as the minimum volume
ellipsoid containing all the simulation points at terminal time.

To improve the numerical conditioning, we define the scaled states ., = Nz, where
we set Ngy 1= diag(20, 207/180, 507 /180, 207/180), since 20 m/s, 207 /180 rad, 507 /180
rad/s, 207 /180 rad are farthest distances observed in simulation that each state can be away
from their trim point value given the initial condition set Ay. Then we have the dynamics
for the scaled states: ©,q = N ;cll f6(Nsaxse), and this scaled dynamics is the one we will
use in the SOS optimization problem. Before scaling, the coefficients of fg(x) vary from
1.6 x 1077 to 4.5 x 10%; after scaling, they vary from 4.5 x 1073 to 1.8 x 10'. Before plugging
the polynomial functions rg, ¢, p into the SOS optimization problem, the parameters were
scaled accordingly.

Figure 3.4 and Figure 3.5 show the outer bound of reachable set in x5 — x5 space and
x1 — x4 space respectively, at different simulation times. We can observe that Q¥,o (black
curve) contains all the simulation points x(7T') (green points) at each terminal time 7.



CHAPTER 3. ROBUST FORWARD REACHABILITY ANALYSIS FOR UNCERTAIN
NONLINEAR SYSTEMS 27

50 50
z T,0 z i,“
£ o o1) o
g g
-50 -50
-10 0 10 20
T2 [deg]
T=04
50 50
£ o \ £ o @J
§ | ! §
-50 ‘.""---..........----""" -50 .
-10 0 10 20 -10 0 10 20
3 [deg]

Zo [deg]

Figure 3.4: Outer bounds for GTM model in x5 — x3 plane.
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Figure 3.5: Outer bounds for GTM model in x; — x4 plane.
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GTM with £, disturbance

To save computation time, reachability analysis is conducted on a 4-state degree-3 model
obtained from the 4-state degree-6 model, with the same initial condition set A as that
from the previous section. But an input disturbance d at the elevator channel is taken into
consideration this time. The control input becomes ucje, = Ky23 + Ueient + d = 0.0698x3 +
Uelevt + d. Figure 3.6 shows outer bounds at time 7" = 0.4 s with disturbances of different
L5 bounds.

1 — x4 plane

50 @1 - plane »
20+
g oo i Rx W % by
=, ol
5 ——ldl|z, o) = 0 Tad g
- - HdHEL[rUJ'] < 0.002 rad
— HdHﬁz.[tu.T] < 0.004 rad| -10f
= = |ldl|£,.to.r < 0.006 rad
[d]|z,jto,r) < 0.008 rad |
; : -20
-50 ¢ ) R trim point ‘ ‘ ‘ |
-20 -10 0 10 20 2 0 o .
xy [deg] 0 /]

Figure 3.6: Outer bounds for GTM model at T' = 0.4 sec with £, disturbances.

GTM with £, disturbances and time varying uncertain parameters

In addition to an input disturbance d at the elevator channel, satisfying ||d||., ;,, 7j < 0.004

rad, assume that the inertia I,, in (3.29) is also uncertain: I, = v(t)I,,, where () is a
time varying uncertain parameter and [,, is the nominal value of inertia. Define ¢ := 1/,

assume y(t) € [12, 2], then 6(¢) € [0.9,1.1] =: D. Equation (3.29) becomes

. M+T, M+T, M+1T,,
-IS e = — = (5 = .
Iyy Yy Iyy
The result is shown in Figure 3.7, where the outer bounds with and without uncertain
parameter are shown with blue and magenta curves, respectively.

GTM with £, disturbance and unmodeled dynamics A

Assume the control input at elevator actuator of the GTM system is corrupted by an L,
disturbance d, satisfying ||d||, ;;, 71 < 0.004 rad, and an LTT uncertainty A with [|A[| < o,
where o > 0. Figure 3.8 shows a block diagram for the uncertain GTM system. The input to
the perturbation is v = K;x3 + Ueer s + d, and the signal that actually goes into the elevator
channel i8S ey = v + w, where w = A(v). As discussed in Example 1, this LTI uncertainty
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Figure 3.7: Over bounds for GTM model at T' = 0.4 sec with L, disturbance and parameter.

A satisfies hard IQCs defined by (¥, Mp) from Example 1. In this example, we choose d
and m from (3.13) to be d = 1, m = 1, and they correspond to ¥ of the following dynamics:

~1 0 1 0
szlg —1]’ B“:M’ B“’FH’

0.1.0,0] " U T
o= [0 b= [r0.0]" D= o000

Again, the filter ¥ introduces two filter states 1) € R? to the extended system. We solve for
the outer bounds with two values of o using sosopt, with the constraint set M; defined in
(3.12). The results are shown in Fig 3.9, where the outer bound with ¢ = 0.1 is shown with
the magenta curve, and the one with o = 0.4 is shown with the blue curve.

d + v +J\Uelev =v+w
+ L oy, = Uth,t GTM
A w

Figure 3.8: Uncertain nonlinear model for GTM.

F-18 around falling-leaf mode flight condition

In this example, we analyze a 7T-state, cubic degree F-18 closed-loop polynomial model & =
f3(z) from [38], where the states w1, ...,x7 represent sideslip angle (rad), angle-of-attack
(rad), roll rate (rad/s), pitch rate (rad/s), yaw rate (rad/s), bank angle (rad), controller
state (rad) respectively. The trim point of the states is x; = [0 degree, 20.17 degree, -1.083
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Figure 3.9: Outer bounds for GTM model at T = 0.4 sec with £, disturbance and pertur-
bation A.

degree/s, 1.855 degree/s, 2.634 degree/s, 35 degree, 0 degree]. Consider the flight condition
for a coordinated turn (x1; = 0°) at a 35° bank angle and at the air speed of 350 ft/s.
Around this condition the aircraft is more likely to experience the falling-leaf motion. The
analysis is performed around this flight condition.

The given initial set Xy = {z € R" : (v — ;) 'C~}(x — x;) — 1 < 0} is a 7-dimensional
ellipsoid inside the region of attraction, where C' = diag((107/180)2,(257/180)2, (357 /180)2,
(307/180)2, (15m/180)2, (257/180)2, (207/180)?). Again, in order to improve the numerical
conditioning, we scale the states x,q = N~ 'z, where N = diag(107 /180, 257 /180, 357 /180,
57/180, 157 /180, 257 /180, 207 /180). Take X} with radii twice as long as those of X,. Take
Qf as the minimum volume ellipsoid containing all the simulation points (7).

Figure 3.10 and Figure 3.11 show the outer bound of reachable set in z; — x5 space and
x3 — x5 space respectively, at different simulation times. The red dotted curve is a slice
of initial set Xy. We can see that QY o (shown with the black curve) tightly contains z(T)
(shown with green points). We verified the reliability of the solutions of this example from
SOS programming with a post-processing step as advocated in [39].
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Figure 3.11: Outer bounds for F-18 model in x3 — x5 plane.
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Comparison to the V. s iterations method

The outer bound of the reachable set at T' = 0.4 sec is also computed using the V, s iterations
method from [7] with the same shape function ¢ as the one we used before. The outer-
approximations obtained using the V, s iterations and quasi-convex methods are shown with
the brown curves and black curves in Figure 3.12, respectively. We can see that the brown
curves enclose the black curves in both plots, and thus the outer bound from the quasi-convex
method is less conservative.

r1 — X9 plane T3 — x5 plane

quasi-convex
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Figure 3.12: Comparison of outer bounds at 7" = 0.4 sec for F-18 model.

The computation details are shown in Table 3.3, including the obtained o and computa-
tion time. We can see that compared with the V| s iterations, within the similar amount of
computation time, using the same shape function, the quasi-convex method from this disser-
tation is able to achieve smaller «, i.e. less conservative outer bound. Also, from the value
of a* reported in Table 3.3, we can see that the outer bound obtained using our method is
contained by Qf 5., whose radii are 1.166 times those of Qf, the minimum-volume ellipsoid
that contains all the simulation points. This indicates the tightness of the outer bound.

Table 3.3: Computation results and details for the two methods

Methods o Degree of V' | Degree of s | Time[sec]
V. s iterations 1.70 4 4 5.2 x 103
quasi-convex 1.36 |6 6 3.7 x 10°

3.5 Chapter Summary

In this chapter a method for computing outer bounds of reachable sets using time varying
storage functions that satisfy “local” dissipation inequalities is proposed. The method is
developed for nonlinear systems with polynomial vector fields and simultaneously accounts
for L, disturbances, parametric uncertainties, and perturbations described by time-domain
integral quadratic constraints (IQCs). A key aspect is that IQCs can be used to account
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for unmodeled dynamics. The computational algorithms rely on SOS programming and
the generalized S-procedure. This leads to quasi-convex optimizations for computing the
tightest outer bound of the reachable set. It is thus possible to compute the global optima
for this optimization and no initialization is required for the storage function. We applied
the proposed method to several examples including several using nonlinear aircraft models.
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Chapter 4

Robust Backward Reachability
Analysis and Control Synthesis for
Uncertain Nonlinear Systems

The backward reachable set (BRS) is the set of initial conditions whose successors can be
driven to a target set at the end of a finite time horizon with an admissible controller. The
BRS is of vital importance for safety-critical systems, since it indicates where the trajectories
should start from in order to reach the target set.

Backward reachability has been extensively studied with several approaches, including
occupation measure-based methods [10,40,41], Hamilton-Jacobi methods [8,42,43], relaxed
Hamilton-Jacobi methods [6,44], and Lyapunov-based methods [5]. A shortcoming of the
existing reachability tools is that they rely on accurate system models. Only limited forms of
uncertainty have been addressed, such as parametric uncertainty in [5,6,8,10,44] and both
parametric uncertainty and £, disturbances in our earlier work [45, 46].

In this chapter, we propose a method to compute inner-approximations to the BRS that
are robust to a more general class of perturbations. We model the uncertain nonlinear system
as an interconnection of the nominal system G and the perturbation A, as in Fig. 1.1. The
input-output relationship of A is described using the integral quadratic constraint (IQC)
framework [13,18], which accounts for parametric uncertainties, and unmodeled dynamics.
We characterize BRS inner-approximations by sublevel sets of storage functions that satisfy
a dissipation inequality that is compatible with IQCs. We then formulate an iterative convex
optimization procedure to compute storage functions and associated control laws using the
generalized S-procedure [22] and sum-of-squares (SOS) techniques [21].

The proposed framework incorporates both hard and soft IQC factorizations. The use of
dissipation inequalities typically requires IQCs that are valid over any finite time horizon,
known as hard IQCs. However, many [QCs are specified in the frequency domain, which are
equivalent to time-domain constraints over infinite horizons (soft IQCs). We obtain improved
BRS bounds by incorporating soft IQCs by means of the finite-horizon bound derived in [18].
Moreover, we overcome a technical challenge that arises when the input of the perturbation
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A depends directly on the control command, as in the case of actuator uncertainty. This
dependence creates a source of nonconvexity, which we circumvent by introducing auxiliary
states in the control law.

In this chapter, we first present the robust backward reachability framework using hard
IQCs. Then we adapt the method to actuator uncertainties. Next, we extend the robust
reachability analysis to soft IQCs. Finally, we illustrate the effectiveness of the proposed
framework on a 6-state quadrotor system with actuator uncertainty:.

4.1 Backward Reachability with Hard 1QCs

Problem Setup

Consider an uncertain nonlinear system defined on [0, T7:

ia(t) = f(ea(t), w(t), d(t) + glea(t), wt), d(t))u(t), (4.1a)
o(t) = hlac(t), w(t), d(t)). (4.1b)
() = Aw()), (1.10)

which is an interconnection (Fig. 1.1) of the nominal system G and the perturbation A,
denoted as F,(G,A). In (4.1), x¢(t) € R™¢ is the state, u(t) € U C R™ is the control input,
d(t) € R™ is the external disturbance, and v(t) € R™ and w(t) € R™ are the inputs and
outputs of A. The mappings f, g, and h define the nominal system G. The perturbation
A L5 — L5* is a bounded and causal operator. Note that in (4.1b), v does not depend
directly on u. Well-posedness of F,, (G, A) is defined as follows.

Definition 12. F, (G, A) is well-posed if for all x¢(ty) € R"¢ and d € L3¢ there exist unique

Ty Nw

solutions rg € L5, v € L5, and w € LY satisfying (4.1) with a causal dependence on d.
Assumption 2. (i) The disturbance d satisfies d € L3¢ with:
||z, 07 < R. for some R >0, and (4.2)

(ii) the set of control constraints is given as a polytope U = {u € R™ : Pu < b}, where
P e R™ ™ gnd b € R™.

Let z¢(t; €, u,d) define the solution to the uncertain system (4.1), at time ¢ (0 <t <T),
from the initial condition &, under the control u and the disturbance d. Let Xp C R"¢
denote the target set for zg(t; &, u,d) to reach at time 7.

Definition 13. Under Assumption 2, the BRS of F,,(G,A) (4.1) is defined as

BRS(T,Xr,U,R, F,(G,A)) :={( € R"¢ : Ju, s.t. u(t) e UV te|0,T], and
r6(T5& u,d) € Xp ¥V d with ||d||y 7 < R}

Our goal is to compute an BRS inner-approximation and an associated controller.
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Robust Backward Reachability

As discussed in the previous chapter, the perturbation A can represent various types of
uncertainties and nonlinearities. In this section, we only consider perturbations that can be
described by hard IQCs, and soft IQCs are incorporated in the framework in Section 4.3.
Since the behavior of the perturbation A can be described by an IQC associated with a filter
U and a matrix M, and the analysis on F, (G, A) can be instead performed on the extended
system shown in Fig. 3.2, with an additional constraint A € HardIQC(W¥, M). The extended
system is an interconnection of G and ¥, with combined state vector = := [zg;¢] € R™,
n = ng + Ny, whose dynamics can be rewritten as

8
=
~—

Il

)
—

8
=

S

(t), d(t), u(t)), (4.3a)
() = H(x(t), w(t), d(t)), (4.3b)

where F' and H depend on the dynamics of G and V. F' is still affine in u. For any input
d € £5* and initial condition xg(tg) € R™, the solutions v € L5Y and w € L5 to F,(G, A)
(4.1) satisfy the IQC (2.12). The extended system (4.3) with the IQC (2.12) “covers” the
responses of the original uncertain system F,(G,A). Indeed, given any input d € £5* and
initial condition zg(tg) € R™¢, the input w € L5 is implicitly constrained in the extended
system so that the pair (v, w) satisfies the IQC (2.12). This set of (v, w) that satisfies the
IQC (2.12) includes all input/output pairs of A.

We consider the memoryless, time-varying state-feedback control u(t) = k(t,z¢(t)), k :
R x R"¢ — R™. We don’t allow k to depend on 1, since v is introduced by the virtual filter
V. The following theorem provides a BRS inner-approximation for the extended system G
and ¥, and therefore for the original uncertain system F,(G, A).

Theorem 5. Let Assumption 2 hold, and further assume (i) F,(G,A) is well-posed, (ii)
A € HardIQC(V, M), with ¥ and M given. Given Xy C R"¢, P € R™»*™ b R™ R >0,
F, H defined in (4.3), T > 0, and v € R, if there exists a C* function V : R x R® — R, and
a control law k : R x R"¢ — R™ that is continuous in t and locally Lipschitz in x¢q, such
that

OV (t,x) + 0,V (t,x) - Fx,w,d k) + 2" Mz <d"d,V (t,z,w,d) € [0,T] x R" x R™ x R"

s.t. V(t,x) <v+ R% (4.4)
{v¢:V(T,z) < v+ R*} C Xp, V¢ €R™, (4.5)
Pik(t,zq) < b, V(t,z) € [0,T] x R", s.t. V(t,2) < v+ R* Vi=1,..n,, (4.6)
where © = [xg;v], then the intersection of ng with the hyperplane v = 0 is an inner-

approzimation to BRS(T, X1,U, R, F,,(G,A)) under the control law k.

V4 r2» we first need

Proof. Since the dissipation inequality (4.4) only holds on the region €
to prove that all the state trajectories starting from QK , won't leave Ql‘t/ Lepe forall t €

[0,7]. This is proven by contradiction. Assume there exists a time instance T} € [0, 7],
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such that a trajectory starting from z(0) € € satisfies V(T1,2(T1)) > v 4+ R?. Define
T, = infy »())>1+r2 t, and integrate (4.4) over [0, T5):

V(Ty, 2(Ty)) — ) + / ()T Mz(t)dt < / d(t)Td(¢)dt.
Apply 2(0) € Qf and A € HardIQC(¥, M) to show

Ty
V(Tya(T) < v+ [ d(t) d(t)a.

0

Next recall that d is assumed to satisfy (4.2):
v+ R =V(Ty,z(Ty)) < v+ R?,

which is a contradiction. As a result, z(0) € €, implies z(t) € Q) p. for all ¢ € [0, 7], and
thus V(T,z(T)) < v+ R?. Combining it with (4.5) shows that Qf  is an inner-approximation
to the BRS of the extended system, and the intersection of {15 with ) = 0 is an inner-
approximation to BRS(T, X7,U, R, F,,(G,A)). Lastly, constraint (4.6) ensures the control

signal derived from wu(t) = k(t,z¢(t)) satisfies the control constraints Pu(t) < b, Vt €
[0, 7]. O

Robust Backward Reachability with SOS Programming

To find a V and a k satisfying (4.4)—(4.6), we make use of sum-of-squares (SOS) pro-
gramming. To do so, we restrict the decision variables to polynomials V' € R[(¢,x)],
k € R™[(t,z¢)], and make the following assumption.

Assumption 3. The nominal system G given in (4.1) has polynomial dynamics: [ €
R [(zg,w,d)], g € R"¢*™[(zxq,w,d)], and h € R™[(zg,w,d)]. Therefore, F and H in (4.3)
are polynomials. Xr is a semi-algebraic set: Xt = {x¢ : p.(xg) < 0}, where p, € Rlxg] is
provided.

In Example 1 and 2, we have seen that for each type of perturbation, any IQC defined
by a properly chosen ¥ and a M drawn from the constraint set M is valid. Therefore, along
with V' and k, we also treat M € M as a decision variable. Assume M is described by linear
matrix inequalities [18]. Define p; := ¢(T" — t), which is nonnegative for all ¢ € [0,7]. By
applying the generalized S-procedure [22] to (4.4)~(4.6), and choosing the volume of Qg as
the objective function (to be maximized), we obtain the following optimization:

sup Volume(QK 5)
V,M,k,si
s.t. V eR[(t,2)],k € R™[(t,z¢)], M € M,
—(OV + 0,V - Flym + 2" Mz — d"d) — sip;
+ (V -7 R2)52 € E[<t7 T, w, d)]? (473)
— 83z + Vl]per — v — R* € 2[z], (4.7b)
— (PZI{Z — bl> — S4,iPt + (V -7 — R2>S5’i c E[(t,l‘)], V = ]., ...,np, (47C)
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where s1, 52 € X[(¢,z,w,d)], (s3 —€) € X[x], and s4,, S5, € X[(t,z)]. The positive number
¢ ensures that s3 is uniformly bounded away from 0. The optimization (4.7) is nonconvex,
since it is bilinear in two sets of decision variables, V' and (k, ss,s5;). As summarized in
Algorithm 2, the nonconvex optimization (4.7) is handled by alternating the search over
these two sets of decision variables, since holding one set fixed and optimizing over the other
results in a convex problem. Since an explicit expression is not available for the volume of
Qgﬁ for a generic V', we instead enlarge it by maximizing 7 in the (k,~)-step when V is

fixed. Combining it with the constraint (4.8) in the V-step, which enforces QY ,}y;l c QY i]-,
we are able to prove that the volume of the inner-approximations will not decrease with each
iteration [46, Theorem 2]. A linear state feedback for the linearization about the equilibrium

point was used to compute the initial iterate V.

Algorithm 2 Alternating direction method for hard 1QCs

Input: function V° such that constraints (4.7) are feasible by proper choice of s;, k,~v, M.
Output: k,v,V, M.
1: for j =1: Njer do
2: (k,~)-step: decision variables (s;, k,~v, M). Maximize 7 subject to (4.7) using
V = V71 This yields (s}, sl ;, k/) and optimal reward 7.
3: V-step: decision variables (s, $1, 83, 4.4, V, M). Maximize the feasibility subject to
(4.7) as well as sy € X[x], and

(7 = Vlemo) + (V' im0 — 7/)s0 € B[], (4.8)

using (v =17, 8o = s, 85, = sL;, k = k7). This yields V7.
4: end for

4.2 Extension to Actuator Uncertainty

This section considers the case where the control inputs are subject to actuator uncertainty.
For example, unmodeled actuator dynamics can be modeled by a plant input upe given as
the sum of the controller command u and a norm-bounded nonlinearity A: upet = u+ A(u).
The input v to A and the IQC filter output z were previously defined (Equations (4.1b) and
(4.3b)) to be independent of the control command u. However, the inclusion of the actuator
uncertainty implies that v and z must now depend on w.

This motivates the following generalization of the proposed method. Assume the entire
input vector u is subject to the actuator uncertainty. The perturbation input and IQC filter
output are now given by the following modifications to Equations (4.1b) and (4.3b):

v(t) = h(za(t), w(t), d(t), u(t)), (4.9)
(1) = H(x(t), w(t), d(t), u(t)). (4.10)
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A consequence of this generalization is that optimization over k is nonconvex even when V'
is fixed, since z' Mz in (4.4) depends nonlinearly on k. A remedy is to introduce auxiliary
state T € R™ for the perturbed control input u, and to design a dynamic controller of the
form

E(t) = k(t,xa(t), (1)), (4.11a)
u(t) = i(t). (4.11b)

where & : R x R"¢ x R™ — R™ is to be determined. If we restrict the initial condition of &
to be zero: Z(0) = 0™, allow k to depend on Z, but not on v, and V' to depend on the new
state Z: V : R x R® x R™ — R, then the dissipation inequality becomes:

OV (t,x, %) + 0,V (t,x,&) - F(a,w,d, %) + 0:V (t,x, %) - k(t,xq, 7) + 2" Mz < d'd,
Y (t,z,%,w,d) € [0,T] x R" x R™ x R™ x R"™ s.t. V(t,z,7) < v+ R>.  (4.12)

The term z' Mz in (4.12) is then nonlinear in the state variable ¥, rather than in the
control law. The dissipation inequality is therefore bilinear in V' and k, and can be solved
in a way similar to Algorithm 2. Next, we provide the theorem that incorporates actuator
uncertainties.

Theorem 6. Let Assumption 2 hold, and further assume (i) F,(G,A) is well-posed, (ii)
A € HardlQC(V, M), with ¥ and M given. Given Xy C R"¢, P € R™»*™ b e R™, R >0,
F defined in (4.3a), H defined in (4.10), T > 0, and v € R, if there exists a C* function
V:RxR"x R™ — R, and control law k : R x R"¢ x R™ — R™  sych that (4.12),

{vg:V(T,z,%) < v+ R*} C X7,V (¢, %) € R™ x U, (4.13)
Pii < b, V(t,r,%) € [0,T] x R" x R™ s.t. V(t,2,8) < v+ REVi=1,..,n,  (4.14)

where x = [xg; )], then the intersection of QKW with the hyperplane (v, %) = 0 is an inner-
approximation to BRS(T, Xr,U, R, F,,(G,A)) under the control (4.11).

The conditions of Theorem 6 can be formulated as an SOS optimization similar to (4.7),
and is omitted. Although we assumed all control inputs are perturbed by uncertainty, the
results can be extended to the case where a subset of the actuators are perturbed. This
extension involves mainly notational changes and is also omitted.

4.3 Backward Reachability with soft IQCs

Previously we assumed A € HardIQC(V¥, M). However, many IQCs are specified in the
frequency domain [13]. Their time domain representation results in so called ‘soft IQC”. The
definitions for frequency domain and time domain soft IQCs are given in Definition 2 and 4.

Let A € FreqlQC(II) and A € SoftIQC(W¥, M) indicate that A satisfies corresponding
frequency domain and time domain soft 1QCs, respectively. As discussed in the previous



CHAPTER 4. ROBUST BACKWARD REACHABILITY ANALYSIS AND CONTROL
SYNTHESIS FOR UNCERTAIN NONLINEAR SYSTEMS 40

chapter, the library of IQCs specified in frequency domain can always be translated into soft
IQCs, but not into hard IQCs, and when both hard and soft factorizations exist, the latter
is usually less restrictive. Therefore, it is helpful to incorporate soft IQCs in the analysis.

Since soft IQCs hold over the infinite horizon, they cannot be incorporated in the analysis
based on a finite-horizon dissipation inequality directly. To alleviate this issue, we use
the results from Lemma 1 again, which provides lower bounds for soft IQCs over all finite
horizons, and thus allows for soft IQCs in the finite horizon reachability analysis.

Based on this lemma, the following theorem provides a BRS inner-approximation for
F,(G,A) with A € SoftIQC(¥, M), also allowing for actuator uncertainties.

Theorem 7. Let Assumption 2 hold, and further assume (i) F,(G,A) is well-posed, (ii)
A € SoftlQC(W, M), with ¥ and M given, (iii) 11 = W*MV satisfying [y < 0 Vw.* Given
Xr C R, PeR»™ bpeR™, R>0,F defined in (4.3a), H defined in (4.10), T > 0,
and v € R, if there exists a C* function V : Rx R*" x R™ — R, a matriz Yoy € S™ satisfying
(3.22), and a k : R x R"6 x R™ — R™, such that

OV (t,x, &)+ 0,V (t,x, ) - Flx,w,d, %) + 0:V(t,x, &) - k(t,xq, &)+ 2" Mz < d"d,

V (t,z,%,w,d) €[0,T] x R" x R™ x R™ x R™ s.t. V(t,r,%) < v+ R? (4.15a)
{vg :V(T,r,%) < v+ R*} C X7,V (¢,%) € R™ x U, (4.15b)
Pz < b, V(t,z,%) € [0,T] x R* x R™ s.t. V(t,z,%) <y+ R*Vi=1,..,n, (4.15¢c)

where V = V — " Yooub, & = [xg;1], then the intersection of QV with the hyperplane
(¢, %) = 0 is an inner-approximation to BRS(T, Xr,U, R, F,(G, A)) under (4.11).

Proof. Similar to the proof of Theorem 5, it follows by contradiction that ((0),Z(0)) € Q,
implies (z(t), #(t)) € | g, for all t € [0, T]. Therefore, we are able to integrate (4.15a)
over [0, T7:

V(T,(T), #(T)) — V(0,z( +/ (6)T M=(t)dt </ Td(t)dt.
Use (2(0),(0)) € Q. and |||/, oy < R to show

V(T, (T +/ ()T M=(t)dt < v + B> (4.16)
Next it follows from A € SoftIQC(V¥, M) and Lemma 1 that
V(T,z(T),z(T)) — (T) Yoo (T) < v + R (4.17)

Combining (4.17) with (4.15b), it holds z¢(T') € Xy for all ((0), £(0)) € Q. Therefore, the
intersection of Q(‘)f7 with (¢, ) = 0is an inner-approximation to BRS(T, X1,U, R, F\,(G, A)).
[

*The notation Ilys refers to the partitioning IT = [gi; g;z} conformably with the dimensions of v and

w.
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Similar to (4.7), we formulate an SOS optimization using the constraints of Theorem 7 :
sup Volume( 5)
V,M, Y22 k,s;
st. VeR[(t,z,2)], k € R™[(t, z¢, 7)),
M € M and Yy € S™ satisfy (3.22),
—(OV 4+ 0,V - Flyez + 0:V - k
+2'Mz—d"d)+ (V -~ — R¥)sy — s1p; € 3[(t, 2,7, w,d)], (4.18a)

— 83p2 + V)ier — 7 — R+ X2 (Pid — b;)se € X[(w, 7)), (4.18Db)

— (Pzi’ — bz) + (V - — R2)S5’Z’ — 84Dt € 2[(t, I,i‘)],v 1= 1, vy N,y (418C)
where s1, 50 € X[(t, 2,2, w,d)], (s3 —€),56; € X[(x,Z)] and s44,55; € X[(t,x,2)]. The opti-
mization (4.18) is bilinear in (V,Ya) and (s2, 854, k). Similar to Algorithm 2, Algorithm 3
tackles (4.18) by decomposing it into convex subproblems, and it also guarantees the im-
provement of the quality of the inner-approximation through iterations. Yy = 0™ and a
M € M can be used as initializations.

Algorithm 3 Alternating direction method for soft IQCs

Input: VO M° and Y3} such that constraints (4.18) are feasible by proper choice of s;, k,~.
Output: k, v, V, M, Ya.
1: for j =1: Njer do
2: (k,~)-step: decision variables (s;, k,~). Maximize v subject to (4.18)
using V = VI=1, M = Mi~' and Yy, = Yy, '. This yields (s, sg,i, k9, ~7).
3: V-step: (So, S1,S3, S44, S6,i, V, M, Yao) are decision variables. Maximize the feasibility
subject to (4.18) as well as sy € X[(x, 7)], and

(77 = Vlt=o) + (V" im0 = 7')50 € (=, 7)),

using v =7, 8o = s}, 85, = s, k = k. This yields V7, M7 and Y3).
4: end for

Computational complexity: A polynomial decision variable of degree 2dpo1y in 7yay vari-

nvar+dpoly

ables has a m x m Gram matrix representation where m := ( ), and thus introduces

dpoly
O(m?) decision variables due to the Gram matrix. Using higher-degree polynomial decision
variables can provide a less conservative BRS estimate, but it takes longer to solve and might

be intractable for high-dimensional systems.

4.4 Numerical Examples

In the following examples, the SOS optimization problem is formulated using the SOS module
in SOSOPT [47] on MATLAB, and solved by the SDP solver MOSEK [34].
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Generic Transport Model (GTM) Example

The GTM is a remote-controlled 5.5% scale commercial aircraft [35]. The longitudinal
dynamics are approximated by a cubic degree polynomial model provided in [37]:

i1 = —1.4922% + 4.2392° + 0.003z,25 + 0.00622 — 3.2362, + 0.923z5 + (0.240z; — 0.317)u,
iy = —7.2282% + 1.10323 + 18.3652% — 45.339z; — 4.3732 + (41.505z, — 59.989)u,

where xg = [71; 2] is the state, z; is the angle of attack (rad), x5 is the pitch rate (rad/s),
and the control input u is the elevator defection (rad). Assume the control input u generated
by the controller C' is corrupted by an additive uncertainty A exerted on the actuator, as
shown in Fig. 4.1. The actual signal that goes into the elevator channel is uge, = u + w,
where w is the output of A.

»O— GTM

\ 4

g

L
_|_

C

Figure 4.1: The diagram of the GTM with input perturbation

Sector IQCs

Assume that A lies within the sector [, 5], where a = 0, and § = 0.2. The filter ¥ and
constraint set M given below define a hard IQC:

V=1, M= {A [;?g O‘fﬂ P E[(wc,i,w)]} :

where A is a polynomial decision variable, which introduces more freedom to the optimization.

Take the target set as Xp = {xg : vfxg < (7/27)%} (shown in Fig. 4.2 with red solid
curve), and assume the actuator limit on w is |u(t)| < 0.261 rad. Degree-4 polynomial
storage functions are used to compute two inner-approximations on time horizons [0, 1 sec]
and [0, 2 sec], which correspond to the blue dashed curve and black dotted curve in Fig. 4.2,
respectively. Solid curves with crosses represent simulation trajectories starting from the
inner-approximation with time horizon [0, 2 sec| in the presence of actuator uncertainty, and
crosses represent different initial conditions. In Fig. 4.3, the simulations of control inputs
for different initial conditions are shown. We note that they are all within the control limits
during the time horizon.
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Figure 4.2: Simulation trajectories, and inner-approximations of the GTM example with the
sector IQC for two time horizons.

1.5 2

t (s)

Figure 4.3: Simulations of control inputs

Hard and soft IQCs

This time we assume that the perturbation A in Fig. 4.1 is a time invariant parametric
uncertainty: w(t) = A(v(t)) = dv(t), with 6 € R, || < 0.2. Therefore, the actual signal that
goes into the elevator channel iS e, = u+w = (14+J)u. As discussed in Example 3, 0 satisfies
both HardIQC(W, Mp) and SoftIQC(V, Mpe). The backward reachability is performed using
both kinds of IQCs. In both cases, we use the same filter ¥, and choose \Ifil’lm from (3.13)
with m = 10 and d = 1. Therefore, ¥ introduces two filters states 1) € R? to the extended
system. Take the time horizon as [0, 2 sec], and use the same target set and actuator limits
from the previous example.

In Fig. 4.4, the inner-approximations computed using the hard and soft IQCs are shown
with the dashed purple curve, and the dash-dotted black curve. We see that with soft IQC
we are able to certify a larger inner-approximation. This is because the soft IQC has richer
knowledge of the time invariant parametric uncertainty than the hard IQC.
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Figure 4.4: Inner-approximations with soft and hard IQCs

Quadrotor Example

Consider the 6-state planar quadrotor dynamics [48]:

i‘l = I3,
Ty = Xy,
jfg = ulK sin($5),

iy = u1 K cos(zs) — gn,

T5 = g,
tg = —doxs — d1 T + noua,
where xg = [x1,..., 2] is the state, x1 to x4 are horizontal position (m), vertical position

(m), horizontal velocity (m/s), vertical velocity (m/s), roll (rad), and roll velocity (rad/s),
respectively. u; and us are total thrust and desired roll angle. Control saturation limits are
ui(t) € [-1.5,1.5] + g,/ K, and us(t) € [—7/12,7/12]. ¢, = 9.8, K = 0.89/1.4, dy = 70,
d; = 17, and ny = 55 are taken from [48].

The control objective of this example is to design controllers for u; and us to main-
tain the trajectories of the quadrotor starting from the BRS to stay within the safe set
X, during the time horizon [0,7] with T = 2. X, is given as X; = {xg : 2Nzg < 1},
where N = diag(1/1.7%,1/0.85%,1/0.8%,1/1%,1/(x/12)?,1/(7/2)?). sin(xs) is approximated
by (—0.166x2 4+ x5) and cos(xs) is approximated by (—0.498x2 + 1), using least squares re-
gression for x5 € [—m/12,7/12]. The validity of this bound on z; is guaranteed by the state
constraint X;. Assume that the control input us is perturbed by an additive norm-bounded
nonlinearity ||All., ;- o7 < 0.2, which introduces one auxiliary state & to the analysis. We
use the hard IQC discussed in Example 2 with a fixed filter ¥ and search for M over the
constraint set given in (3.14). The computation of BRS inner-approximations takes 1.1 x 103
and 3.6 x 10* seconds using degree-2 and degree-4 polynomial storage functions.
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Fig. 4.5 shows the projections of the resulting inner-approximations. The one computed
using degree-2 storage function is shown with the solid magenta curve, and the one computed
using degree-4 storage function is shown with the red dash-dotted curve. The projections of
X, are shown with the blue solid curves.

1
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gl N _Xt
05 —-—-degree 4|
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§ 0 g
-0.5
-1
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Figure 4.5: BRS inner-approximations for the quadrotor

4.5 Chapter Summary

In this chapter, a method for computing robust inner-approximations to the BRS and robust
control laws is proposed for uncertain nonlinear systems, modeled as an interconnection of
the nominal system G and the perturbation A. The proposed framework merges dissipation
inequalities and IQCs, with both hard and soft factorizations. The use of IQCs enabled us
to address a large class of perturbations, including unmodeled dynamics. The generalized S-
procedure and sum-of-squares programming are used to derive computational algorithms. We
applied the proposed method to uncertain nonlinear systems, including a 6-state quadrotor
examples with actuator uncertainties.
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Chapter 5

Safe by Design Motion Planning and
Control for Nonlinear Systems

An important task for cyber-physical systems is to design controllers that perform complex
tasks while providing safety guarantees. Formal methods approaches [49] allow one to specify
desired behaviors and then compute control strategies that achieve them, but are often
limited to systems with small state dimension. Thus, it is beneficial to represent the system
of interest with a lower dimensional model that is amenable to such approaches, and to
design controllers based on that model. However, applying such controllers directly to the
original system might lose the safety guarantees established on its lower dimensional model.

This chapter tackles this issue, and presents a hierarchical trajectory planning and control
framework for nonlinear dynamical systems. In this framework, a low-fidelity model (e.g.,
reduced order model, or linearized model) is used to plan feasible trajectories satisfying the
planning constraints, and a high-fidelity model is used for designing a tracking controller to
track the planned trajectories. With the tracking controller, the error state between the low-
and high-fidelity models is guaranteed to be bounded, and this tracking error bound can be
then used for redesigning the planning constraints to “robustify” the planning algorithm.

The hierarchical trajectory planning and control framework has also been explored by
the trajectory planning community [7,50-52]. In [50], a Hamilton-Jacobi equation based
method is presented to synthesize a tracking error bound and an optimal tracking controller.
An extension in [51] shows how this may also be done with SOS optimization. A robust
forward reachable set used for planning is computed in [52] by considering the difference
between the planning and tracking models. Compared with these works, in this chapter, the
error state between low- and high-fidelity models explicitly depends on the control input of
the low-fidelity model, which offers more freedom in the choice of the low-fidelity model and
provides lower error bounds than when only the states of both models are considered.

In this chapter, we first describe the problem setup, and the hierarchical control frame-
work. Then we present a method for computing tracking controllers, and their associated
tracking error bounds. Next, we extend the method to the error state that depends on the
planner’s control input. Finally, we demonstrate the method on a ship docking example.
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5.1 Problem setup

In this chapter we describe our hierarchical approach to safe-by-design trajectory planning
and control which consists of two layers: a planning layer, which uses a low-fidelity system
model, and a tracking layer, with a high-fidelity system model. For example, the low fidelity
model might be a model with a lower state dimension than the high fidelity model to reduce
the computational burden of planning, or a linearized model of the high fidelity model. By
analyzing the dynamics of the error between these two systems’ states, we will show how we
can bound this error by synthesizing an appropriate tracking controller. This controller and
the corresponding bound for the error are designed via sum-of-squares (SOS) programming.

High-Fidelity System Model
The high fidelity model used is of the form:

&(t) = f(x(t), w(t)) + g(x(t), w(t)) - ult), (5.1)
with state z(t) € X C R™ | disturbance w(t) bounded in a set W, i.e., w(t) € W C R™ and
bounded control u(t) € U C R™ f:R™ xR™ — R"_ and g : R"™ x R™ — R™ xR"™. The
sets X and U are the constraint sets imposed on the states and control inputs in high-fidelity
model, respectively.

Low-Fidelity Planning Model

The low-fidelity model, which is a simplified version of (5.1), is of the form:

2(t) = f(2(1), a(t)), (5:2)

where #(t) € X C R, a(t) € U C R™, and f : R%>*™ — R  The sets X and U are
constraint sets enforced by the planning layer. The control input for the low-fidelity model,
computed via the planning algorithm of choice, is assumed to be a zero-order hold signal
with sampling time 75 > 0. This means:

a(t) = a(ry), Vt € [T, Tkr1), with 7, = k- T, (5.3a)
W) = 6(7) + D7), (5.3b)

where Ty is the sampling time, Ad(¢) is the periodic change in the control, restricted to a set
AU C R™. We note that the zero-order hold behavior of the input will become important
in Section 5.2, where it will necessitate additional analysis in order to provide a tracking
error bound.

In order to use a planning algorithm such as model-predictive control (MPC) we require
a discrete-time version of our low-fidelity model. To this end, we discretize (5.2) using one
step forward Euler integration, resulting in:

(Thi1) = 2(6) + T - f(2 (), 0(70)). (5.4)



CHAPTER 5. SAFE BY DESIGN MOTION PLANNING AND CONTROL FOR
NONLINEAR SYSTEMS 48

Remark 2. Note that our planner-tracker synthesis framework is not restricted to any spe-
cific planning algorithm. The framework is applicable to any planning algorithm that is able
to bound z(t),u(t), and Au(t). For example, our framework has been applied to different
planning algorithms, including NMPC' in [53,54], signal temporal logic (STL) in [55], and
discrete abstraction in [50].

Error Dynamics

The goal is to design a controller for system (5.1) to track a reference trajectory planned
using its approximation (5.2). In order to do so, we proceed by deriving the evolution of the
error between (5.1) and (5.2).

Since A, < n, in general, we define a map 7 : R* — R" and define the tracking error
as:

e(t) = x(t) — m(2(t)). (5.5)

Differentiating (5.5) with respect to time (dropping time arguments to improve readability),
and eliminating the variable x, we obtain:

e=5- 2 .
N o7
or . .
:f(x,w)—kg(x,w)u—?f(x,u) )
z r=e+m(Z)
= f.(e, &, 0, w) + ge(e, &, w) - u, (5.6)
where we have defined:
. . or . .

fe(eaxauvw) = f(ﬂ'(flf) + eaw) - % : f($7u)a

ge(e, T,w) = g(m(2) + e, w). (5.7)

Assumption 4. Assume the initial condition of error-state, e(0), starts within the set Ey C
R", i.e., e(0) € Ey.

For this dissertation, we consider a policy parametrization of the tracking controller given
by:
u(t) = r(e(t), 2(t), (1)), k€ Ky (5.8)

where the set Ky := {k : R"™ x R% x R™ — U} defines a set of admissible error-state
feedback control laws. The tracking controller (5.8) is to be designed such that e(t) € E for
a bounded set E, for all ¢ > 0, evolving with the dynamics (5.6) and (5.8). This set E is
called the Robust Infinite-Time Forward Reachable Set of Ej, and is formally defined next.
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Definition 14 (Robust Infinite-Time Forward Reachable Set). Consider (5.6) in closed-loop
with (5.8) for allt >0 as:

é = fele,z,0,w) + ge(e, T, w) - k(e, &, 1), (5.9)

with &, @, and w constrained by X , U , and W. Then a robust infinite-time forward reachable
set E of Ey is defined as:
E:={e(t)eR™:3e(0) € Ey, 1:R. = X, 4: R, — U,
w:Ry =W, t >0, s.t. e(t) is a solution to (5.9)}.
As computing the robust infinite-time forward reachable set E for a general nonlinear
error dynamics (5.9) is hard, we find a tracking control law x and compute an outer-bound

e D E. We refer to ¢ as a “tracking error bound” (TEB), and k as the corresponding
“tracking controller”.

e(t)

Figure 5.1: Illustration of Definition 14, with initial error set Ej, error trajectory e(t), and
robust infinite-time forward reachable set E.

Computing the TEB and Tracking Controller

The TEB ¢ and the tracking controller £ can be obtained with the following theorem.

Theorem 8. Given the error dynamics (5.6) with mapping f. : R x R x R x R™ — R"
ge : R x R x R™ — R"% ~ c R, X CR%, 6 U C R, and W C R™, if there exists a C*
function V : R™ — R and k : R x R% x R% — R™ such that

Ey C QY (5.10a)
W (e )+ gule. ) - (e, 3,0) < 0,

Ve, z,0,w, s.t. V(e)=~, € X, a €U, weW, (5.10Db)
QY C{e e R™ :k(e,2,4) € U}, V(3,0) € X x U, (5.10¢)

hold, then the sublevel set QX, defined by (2.1), is a TEB, denoted by €, achieved by the
tracking control law k.
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Proof. The theorem is proved by contradiction. Assume there exist a time t3 > 0, an
initial condition ey € Ey, and a trajectory e(-) such that e(0) = eg, and V(e(t3)) > . Since
V(e(0)) < from (5.10a), by continuity of V' there exists t; and t, such that 0 < t; < t5 < t3,
Vie(t1)) = V(e(t2)) = 7, 1 = SUDy(re))<y b and ty = infy (4>, t. Integrating (5.10b)
over [t1,ts] gives V(e(t2)) — V(e(t1)) < 0. Recall that V'(e(t1)) = V(e(t2)) = 7, which is a
contradiction. O

Finding generic functions V' and k that satisfy constraints (5.10) is a difficult problem.
In this dissertation we use SOS programming to search for these functions by restricting
ourselves to polynomial candidates V' € R[e], and x € R™[(e, &, @)]. Besides this restriction,
we make the following assumption:

Assumption 5. The mappings f. € R"[(e,Z,1,w)], and g. € R™*"™[(e, &, w)] in error
dynamics (5.6) are polynomials. Sets Fy, X, lj and W are semi-algebraic sets, i.e., there
ezists pp € Rle] such that Ey = {e € R™ po( ) < 0}; with similar definitions for X U,
and W with polynomials p; € R[Z], ps € R[], and p, € Rlw]. The control constraint set U
is a hypercube U = {u € R™ : u < u < u}, where u,u € R™.

By applying the generalized S-procedure [22] to the set containment constraints (5.10),
and using the volume of Q‘v/ as the cost function to minimize, we obtain the following SOS
optimization problem for finding V' and «:

min volume(QV)

V,k,s,l
s.t. sp € Xle], s153 € X[(e, 2,4, w)], | € R(e, Z, 4, w)]
54-9,i S E[(Q‘%aﬂ)]vz S {17 anu} (5118’)
—(V(e) =)+ s0-po € Xlel, (5.11Db)
oV

~ e (fe+ ge- )—eeTe—l—l‘(V—’y)—l—sl-pj

+82'pa+83'pw62[( , T, U w)], (5110)
U — ki + 84 (V=) + 850 pa + 86 - pa € B[(e, 2,4)], i € {1,...,n,}, (5.11d)
ki — U+ 57 (V=) + 588 Da+ S0, - pa € X[(e, Z,0)], i € {1,...,n,}.  (5.11e)

In the formulation above, SOS polynomials s;_,3 and s4_,9; are multipliers used in the gener-
alized S-procedure, and € > 0 is on the order of 107®. The optimization (5.11) is non-convex
as there are two groups of decision variables V' and (x, [, $44, s7,) bilinear in each other. To
tackle this problem, similar to [57, Algorithm 1], we decompose it into two tractable sub-
problems to iteratively search between the two groups of decision variables. This is shown
in the Appendix A.

So far, we have used a map 7 that only depends on the planning state Z in (5.5). In
some cases, however, this map may fail to provide reference signals for all the tracker states.
That is why we now move to a more general map 7 that also depends on the planner inputs
4, following [56].
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5.2 More General Map ()

We begin this section with a motivating example to show why a more general map m(-) over
the one in (5.5) is useful.

Example 4. The ship motion at moderate speed can be modeled as in [58]:

n= R+ v,
Mp+ C(W)v+ Dv =7+ R(¥) Twind,

where n = [N; E;4] are the South-North and West-Fast positions and heading of the ship

(b = 0 points North, ¥ = 7/2 points East), v = [u;v;r| are the surge and sway velocities,

cos(y) —sin(vy) 0
and yaw rate of the ship. R(Y) = [sin((¢)) cos(fp)) 0] is a rotation matriz. T € R® is the
0 0 1

control input affecting the three acceleration states of the ship. v. € R?® and Tyinga € R?
are disturbances corresponding to current velocities and wind forces. The inertia matrix

. . . 874 0 0 . . 658 0 0
including hydrodynamic added mass M = [ 0 983 %.243}, damping matrix D = { 0 g7 %963}

and Coriolis matriz C(v) = v(1) [§ § g%g} are chosen for a 1 : 30 scale model of a platform

(5.12)

supply vessel.
Using the notations from (5.1), we have state v = [n;v] € R®, control input u = 7 € R?

and disturbance input W = [Ve; Twind] € RS. The planning model is chosen as the kinematics
part of the high-fidelity model (5.12):

i = R()D + b, (5.13)

where the planning states, inputs and disturbances are & =10, 4 = U and W = 0.. If we use
the map w(&) = [#;03x1], then v will become part of the resulting error state. As a result,
the magnitude of the absolute state v will be minimized in optimization (5.11), which doesn’t
make sense practically. To eliminate this issue, we can use a map (&, 4) = [&;40], which
also provides reference signals for v.

Modified Error Dynamics

As motivated above, we will use a more general map 7 : R% x R%™ — R" to better
provide reference trajectory for the tracking model, while all other methods in the literature
(50,54, 55,59] only rely on the planning state. Correspondingly, the error state is redefined
as

e=x—7(Z,1). (5.14)

The error dynamics resulting from (5.14) are given as
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Time Varying Tracking Controller Synthesis

Note that planner input is applied in a zero order hold fashion between each sampling time as
descirbed in (5.3). As the tracking error dynamics in (5.15) has a term containing @ (unlike
(5.6)), this dynamics change discontinuously at each sampling time. Therefore, instead of
considering a tracking controller for all times, we consider only a time interval between any
two sampling steps. This leads to a time varying tracking controller. Since the signal @ is
piece-wise constant, we thus have

ﬁ(t) =0, Vt € [Tk,Tk+1). (516)
Therefore, the error dynamics (5.15) during the sampling time [7g, 741) is:
é= fole,z,0,w) + ge(e, &, U, w)u. (5.17)

Given the bounded set of initial conditions Ejy, we want to enforce the boundedness of the
error state during [0, T%) by introducing a tracking controller

u(t) = K(t, e(t), (1), a(t)), (5.18)

which is now defined by a time-varying, error-state feedback control law & : R x R™ x R x
R? — R™. Below, we provide the detailed explanation and the design requirements on &
to obtain such an error bound.

Proposition 2. Given the error dynamics (5.17) with mappings fo : R xR xR x R —
R, g, : R™ x R x R x R™ — R" and y € R, Ty > 0, X C R* U C R W C R™,
if there exists a C' function V : R x R™ — R, and x : R x R x R"” x Rt — R such
that

0 C Q. (5.19a)
8V t oV (t
ge’ Ve w) e, w) (e 2, ) + P <
Vi, e, &, 0,w, s.t.te[0,Ty),V(te)=~ 2€X, acl, weW, (5.19b)
O, C{e€R™ 1 k(t,e,2,4) € U}, V(t,2,4) € [0,T,) x X x U, (5.19¢)
then for all e(0) € Ey, we have e(t) € Q., for all t € [0,T,).
Proof. The proof follows the proof of Theorem 8. O]

Remark 3. Although Proposition 2 is stated for the first sampling period [0,T}), it can be
used for any other sampling period [Ty, Tyy1) with 7, = k-Ts. Let e(1y) € Q(‘J/n' Then we have
e(th+1t) € QY. for all t € [0,T), under the control signal u(ty +t) = k(t, (i, +t), 2(7p +
t), 4(me +1))).
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Next, we focus on the effect of the input jump A at the end of each sampling period as
n (5.3b). From (5.14), A4 induces a jump on the error. We quantify this jump next. For
this we make the following simplifying assumption.

Assumption 6. The map 7(-,-) is an affine map in its arguments: ©(&,4) = P - [#;4] + o
where P € R%*(atiu) gnd o € R,

Let 7., and i 1 denote sampling instant 7,1 before and after the discrete jump, re-
spectively. Then using Assumption 6, we write

e(Tyr1)
= x(TIj_-i-l) P [2(r ++1)5 a( ’ii—l)] -0,
= JJ(T,;H) P [2(r Tht1)s ﬁ(Tk-H) +Au(Tk+1)] o,
= e(rgp1) — P+ 05 Ad(ry)] . (5.20)

We introduce the additional condition below to characterize the error jump induced by the
control jump A% in terms of the funnel QX .

Proposition 3. Given v € R, AU € R™:, if there exists a function V : R x R™ — R
satisfying

V(0,6 — P-[0; AQ)) <, Ve, A, s.t. V(Ty,e) <~, At e AU, (5.21)
then for all e(7,,) € Q. ., we have e(;,) € Q.
Proof. Assume e(7;,,) € Qf, ., which is the same as V(T,e(r;,,)) < . From (5.21) and
Ad(7,,,) € AU, it holds
V(0 e(r1y) = P[0 Ad(riy)]) <. (5.22)
Use (5.20) to show V (0, e(7;;,)) < 7, that is to say e(7;,) € Q. O

We next combine the conditions for the error boundedness for each sampling period and
discrete jump from Propositions 2 and 3, respectively, to obtain the main result on the
boundedness of the error at all time, formulated below and illustrated in Figure 5.2.

Theorem 9. If there exist V and k satisfying (5.19a)—(5.19¢), and (5.21), define ¢ C R™
such that
Ute[o,Ts)QX7 Ce.

Then for all #(t) € X, a(t) € U, Au(t) € AU, and w(t) € W, the error system (5.15) under
control law u(t) = (f e(t), 2(t),a(t))) with t = (t mod Ty) € [0,T,) satisfies:

e(0) e By = e(t)ee, Vt>0,

that is to say, € is a TEB achieved by the tracking control law k.
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Proof. From Remark 3 and for all 7, = k - Ty, we have if e(r;) € Q, then e(7, +1) € ng

and e(7;,,) € Qf, .. Then it follows from Proposition 3 that e(7;,,) € Q. As a result, for

all e(0) € Ey C Qy ., we have e(k - T, +1) € Q}{V Ce, forall k>0, and t € [0, T}). O

Figure 5.2: Mlustration of Theorem 9, with initial error set Ej, funnels Q,Y -

period, bounded error jumps at sampling times, and TEB «¢.

on each sampling

Again, to use SOS optimization to search for V' and k, we restrict them to polynomials:
V e R[(t,e)], and x € R[(t,e,2,4)]. In addition to Assumption 5, we assume AU = {Ad €
R™ : pa(Ad) < 0}, where pa € R[Ad]. By choosing the integral of the volume of Q(V,t,~)
over the time interval [0, T;] as the cost function, and applying the generalized S-procedure
to (5.19a)—(5.19¢), and (5.21), we obtain the following optimization problem:

Ts
min / volume(€)). )dt
V7’{/787l 0 7’y

s.t. s154 € X(t, e, 2,0, w)], 55,6 € X(e, Al)],
[ € R[(t,e,&,0,w)],so € Xle],

s7—1a; € X[(t,e,2,0)],4 € {1, ..., ny}, (5.23a)

v —V(0,€) + s - po € Xle], (5.23b)
ov. IV .

—<8t+86'(fe+ge/€)>—€€ €+l'(V—’7)

+ 81 ps+ S pat 83 pw— Sa-t(Ts —t) € X[(t,e,2,0,w)], (5.23¢)
— (V(0,e = P-[0; AG]) — ) + s5- (V(Ts,e) — ) + s - pa € X[(e, Ad)], (5.23d)
U —Ki+ 57, (V=) —s8; - t(Ts —t) + 59, - pa

-+ $10,i " Pa € 2[(t, e,i’,ﬂ)],i - {1, ...,nu}, (5236)
Ki— W+ 811 (V=) = s12; - t(Ts — t) + s13, - D2
+ S14,i " Pa € E[(t, e,f,ﬁ)],i - {1, ,nu} (523f)

The optimization is bilinear in two groups of decision variables V' and (1, ss, $7, S114),
and can also be solved using alternating direction method similar to Algorithm 4 in the
Appendix A.
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After the funnel QX , is found, the next step is to compute a TEB ¢ by solving a convex
optimization:
min volume(e)

5.24
s.t. Q) Ce, Vte[0,Ty]. (5:24)

The set ¢ is restricted to a semi-algebraic set in order to convert the set containment con-
straint into an SOS constraint. Depending on the parameterization of e, different cost
function can be chosen. For example, if € is an ellipsoid: € = {e € R™ : e P.e < 1}, where
P. € S"7_is a decision variable, then — log det(P.) can be used as a cost function; and if € is
a polytope: e = {e € R™ : A.e < b.}, where A, € R"*"= is fixed, and b. € R™ is a decision
variable, then »71, b.; can be used as a cost function, where b, ; is the i-th element of b..

Once a TEB ¢ is computed from the SOS optimizations (5.11), or (5.23)-(5.24), it can be
used to “robustify” the planner, meaning that the planner will be redesigned to account for
the computed TEB to guarantee safety. What we mean by safety is the high-fidelity state
satisfying: z(t) € X for t > 0. Specifically, to ensure safety, the following condition needs to
hold:

S@®eC X, where § = {n(#,a): 2 € X, aeU}. (5.25)

Moreover, if the planner has the terminal constraint: z(T) € X, for some T, where X, C X.
The target sets X, C X and U, C U for the planning layer should also be redesigned:

A

S, ®e C X,, where S, = {n(#,0): 2 € X,, aeU,}, (5.26)

and the planner need to enforce #(T) € X, and 4(T) € U,.

5.3 Numerical Examples

We continue with the ship motion planning and control problem for autonomous docking
described in Example 4. The autonomous docking maneuver consists of four phases: transit,
transition from high speed to low speed maneuvering, docking, and dockside keeping a steady
contact force with the dock. In this dissertation, we focus on the transition phase, which
is challenging due to large changes in the ship dynamics when the speed is reduced. This
means that we consider a reach-avoid problem to reach the area near the dock (light blue in
Figure 5.3) while avoiding the piers (gray areas). The chosen reach-avoid problem focuses
on the first three states with the safety constraints X = [0,10] x [0,6.5] x [—7, 7| x R?, the
obstacles X, = X1 U X, with X, = [2,2.5] x [0,3] x [—m, 7] x R and X9 = [5,5.5] x
3.5,6.5] X [—m, 7] x R? (in grey in Figure 5.3), and the target set X, = [7,10] x [0,6.5] x
[7/3,27/3] x R? (light blue).

As described in Example 4, the map 7 is chosen as 7(Z,4) = [%; 4] to provide reference
signals for all the states of the high-fidelity model. However, instead of defining error as in
(5.14), we redefine the error state as e = ¢+ (z — (&, 1)), where ¢ = [Rfl(z/s), 03x3; 0353, Ig].



CHAPTER 5. SAFE BY DESIGN MOTION PLANNING AND CONTROL FOR
NONLINEAR SYSTEMS 56

6| X;re

—
c
s}
=]
v
o
a
<
=
s 5
=
;
<
S
>
[}
n
<l
z

1} X ¢

E (West-East position)

Figure 5.3: Closed-loop trajectories of the low-fidelity (red) and high-fidelity (blue) models
in the (N, E)-plane with the ship heading 1 (black arrows), the initial and shrunk state
constraints X and X ¢ (thick and thin black lines), the target set X, (light blue), the
obstacles X, (grey) and the shrunk target set X, ¢ and expanded obstacles X (green).

The matrix ¢ allows to replace the trigonometric functions in z/AJ in the error dynamics
(5.15) by trigonometric functions in e(3) = () — ), which can easily be approximated by
polynomials in certain range of e(3). The sampling period is T, = 3.

For the high-fidelity model, the controls are unconstrained (U = R3) and the disturbances
signals are assumed to be evolve in W = [—0.01,0.01]% x [-0.05, 0.05]. The input, input jump,
and disturbances spaces for the planning model are U = [0,0.18] x [—0.05,0.05] x [<0.1,0.1],
AU = [-0.18,0.18] x [=0.1,0.1] x [~0.2,0.2], and W = [—0.01,0.01]3. Optimization (5.23)
is run with degree-2 polynomials to characterize the storage function V', control law «, and
multipliers s, [, and terminates in 6 minutes on a computer with 3.6GHz processor and 62GB
of RAM. A TEB ¢ is computed by parameterizing it as a hypercube, and solving (5.24). The
obtained TEB ¢ on (N, E,v) are [—0.427,0.427] x [—0.432,0.432] x [—0.235,0.235]. Based
on the TEB, define the shrunk state constraint set, the expanded obstacle, and the shrunk
target set as X *i={r e R" |z +eC X,ecec}, X ={r+eecR" |z € X, ecc}
and X, ¢ :={r € R" | x +e C X,,e € ¢}, respectively, and they are shown in Figure 5.3.
According to (5.25) and (5.26) , the planner state Z needs to stay in the shrunk state
constraint set X ¢ avoid the expanded obstacles X, and reach shrunk target set X ¢ in
order for the state of the high-fidelity model to stay in X, avoid X,, and reach X,.

In this dissertation, we use the discrete abstraction method proposed in [60] as the
planning algorithm to enforce the constraint sets U and AU, and realize the reach-avoid
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specification. The initial state is chosen as a random point in the bottom left corner of the
(N, E)-plane, and both closed-loop trajectories with random disturbance signals are plotted
in red for (5.13) and blue for (5.12) in Figure 5.3. The black arrows represent the orientation
¥ of the ship at each discrete time step. We can first note that the low-level controller (5.18)
provides a very efficient tracking of the planning model’s trajectory (red) by the high-fidelity
model (blue). Both models satisfy their reach-avoid specifications by reaching the (shrunk)
target set in blue while avoiding the (expanded) obstacles in grey. Once the ship has reached
the desired [N; E] position (blue set) but not the correct orientation v, we can see it slowly
drift sideways while it turns to face East.

5.4 Chapter Summary

This chapter presents a hierarchical trajectory planning and control framework for nonlinear
dynamical systems. We use a hierarchy of system models for the planner-tracker synthesis:
a low-fidelity model initially plans a feasible trajectory satisfying the planning constraints,
and then the high-fidelity model is used to design the tracking controller and track the
planned trajectory. With the tracking controller, the error states between the planner and
the tracker are restricted to a bounded set, called the tracking error bound. We consider error
states that are functions of both the planner states and inputs, which offers more freedom
in the choice of the low-fidelity model. Both the tracking error bound and the controller
are designed offline using SOS programming. Finally, the method is demonstrated on two
detailed numerical examples.
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Chapter 6

Robust Stability Analysis for Systems
with Neural Network Controllers

This chapter presents a method to analyze the stability of feedback systems with neural
network controllers. Two stability theorems are given to prove asymptotic stability and
to compute an ellipsoidal inner-approximation to the region of attraction (ROA). The first
theorem provides a condition to prove stability and to inner-approximate the region of at-
traction (ROA) for a linear time-invariant (LTI) plant. It uses Lyapunov theory, and local
sector quadratic constraints (QCs) to bound the nonlinear activation functions in the NN.
The second theorem allows the plant to include perturbations such as unmodeled dynamics,
and slope-restricted nonlinearities, characterizing them with integral quadratic constraints
(IQCs) [13,18]. This in turn allows for the use of off-by-one IQCs [61] to capture the slope
restrictions of activation functions. Both results rely on semidefinite programming to ap-
proximate the ROA.

The proposed framework provides robustness guarantees for the feedback system with
uncertain plants, which is modeled as an interconnection of the nominal plant and pertur-
bations that are described by IQCs. The use of IQCs also allows for plants that are not
necessarily LTI. Moreover, the proposed framework allows for local (dynamic) off-by-one
IQCs to further sharpen the description of activation functions by capturing their slope
restrictions. This differs from [11,12,62-64], which derive only static QCs for activation
functions.

Local (static) sector IQCs have been used in the stability analysis of linear systems
with actuator saturation [65,66], and unbounded nonlinearities [67]. The description of
these nonlinearties are refined by incorporating soft (dynamic) IQCs in the stability analysis
framework for linear systems [14], and polynomial systems [68]. Compared with these works,
this work is specialized to NN-controlled systems: it exploits the specific properties of NNs
and uses the Interval Bound Propagation method [69] to derive non-conservative static and
dynamic local IQCs to describe NN controllers; and it also allows for the analysis of NN-
controlled nonlinear systems by accommodating perturbations.

In this chapter, we first present the problem formulation and the nominal stability analysis
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framework when the plant is LTI. Then we extend the framework to uncertain systems using
IQCs. Finally, we provide numerical examples, including a nonlinear inverted pendulum and
an uncertain vehicle model.

6.1 Nominal Stability Analysis

Problem Formulation

Consider the feedback system consisting of a plant G and state-feedback controller 7 as
shown in Figure 6.1. As a first step, we assume the plant G is a linear, time-invariant (LTT)
system defined by the following discrete-time model:

z(k+1) = Ag z(k) + Bg u(k), (6.1)

where z(k) € R™¢ is the state, u(k) € R™ is the input, Ag € R"¢*"¢ and Bg € R"e*™,
The controller 7 : R"¢ — R™ is an (-layer, feed-forward neural network (NN) defined as:

w’ (k) = x(k), (6.2a)
wi(k) = ¢ (Wi (k) + 5 ), i=1,....¢, (6.2b)
u(k) = Wb (k) + o+, (6.2¢)

where w' € R™ are the outputs (activations) from the i** layer and ny = ng. The operations
for each layer are defined by a weight matrix W? € R™*"i-1 bias vector b € R", and
activation function ¢' : R™ — R™. The activation function ¢' is applied element-wise, i.e.

, T

(bZ(rU) = {@(Ul)v o 790(’07%)} ) (63>
where ¢ : R — R is the (scalar) activation function selected for the NN. Common choices
for the scalar activation function include ¢(v) := tanh(v), sigmoid p(v) = ; +i,y, ReLU

o(v) = max(0,v), and leaky ReLU ¢(v) := max(av,v) with a € (0,1). We assume the
activation ¢ is identical in all layers; this can be relaxed with minor changes to the notation.

uh) |, [

Figure 6.1: Feedback system with plant G and NN 7

The state vector z, is an equilibrium point of the feedback system with input wu, if the
following conditions hold:

Ty = Ag x4 + Bg us, (6.4a)
s = 7(24). (6.4b)
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Let x(k;zo) denote the solution to the feedback system at time k from initial condition
x(0) = zp. Our goal is to analyze asymptotic stability of the equilibrium point and to find
the largest estimate of the region of attraction, defined below, using an ellipsoidal inner
approximation.

Definition 15. The region of attraction (ROA) of the feedback system with plant G and NN
18 defined as

R :={xo € R"¢ : klim X(k; o) = .} (6.5)
—00

NN Representation: Isolation of Nonlinearities

It is useful to isolate the nonlinear activation functions from the linear operations of the NN
as done in [62,70]. Define v" as the input to the activation function ¢':

vik) = Wi (k) + b, i =1,...,0 (6.6)

The nonlinear operation of the i*" layer (6.2b) is thus expressed as w(k) = ¢*(v'(k)). Gather
the inputs and outputs of all activation functions:

vl wh

Vo= || €R™and wy:= | : | € R™, (6.7)

vt w’

where ng 1= nq + - -- 4+ ny, and define the combined nonlinearity ¢ : R"¢ — R"¢ by stacking
the activation functions:

(0"
o) = | 1 |. (6.8)
o'(v")

Thus wy(k) = ¢(vs(k)), where the scalar activation function ¢ is applied element-wise to
each entry of v,. Finally, the NN control policy 7 defined in (6.2) can be rewritten as:

(6.9a)

wy (k) = ¢(vy(K)). (6.9b)
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The matrix N depends on the weights and biases as follows, where the vertical and horizontal
bars partition N compatibly with the inputs (z,wg, 1) and outputs (u, vy):

i 0 0 0 WE-H b€+1'
wrlo -~ 0 0 b!
Ne=| 0 |W? .. 0 0 |7 (6.10a)
00 - WEo0 | b
_Nuac Nuw Nu
= A sz. (6.10b)

This decomposition of the NN, depicted in Figure 6.2, isolates the activation functions in
preparation for the stability analysis.

1 N
1—]
we (k) vg(k)
¢

Figure 6.2: NN representation to isolate the nonlinearities ¢.

Suppose (z.,u,) satisfies (6.4). Then z, can be propagated through the NN to obtain
equilibrium values v?, w’ for the inputs/outputs of each activation function (i = 1,...,¢),
yielding (vy, wy) = (v, wy). Thus (2., us, vy, w,) is an equilibrium point of (6.1) and (6.2)
if:

r, = Ag T, + Bg u,, (6.11a)
U T
[ ] =N |w.|, (6.11b)
Vx
1
Wy = d(vs). (6.11c)

Quadratic Constraints: Scalar Activation Functions

The stability analysis relies on quadratic constraints (QQCs) to bound the activation function.
A typical constraint is the sector bound as defined next.

Definition 16. Let o < (8 be given. The function ¢ : R — R lies in the (global) sector [, (]
if:
(p(v) —av) - (Br —p(v)) >0 Yv € R. (6.12)
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The interpretation of the sector [«, 5] is that ¢ lies between lines passing through the
origin with slope o and 5. Many activation functions are bounded in the sector [0, 1], e.g.
tanh and ReLU. Figure 6.3 illustrates ¢(r) = tanh(r) (blue solid) and the global sector
defined by [0, 1] (red solid lines).

— Global Sector
----- Local Sector

Figure 6.3: Sector constraints on tanh

The global sector constraint is often too coarse for stability analysis, and a local sector
constraint provides tighter bounds.

Definition 17. Let o, 5, v, v € R with o < § and v < 0 < v. The function ¢ : R — R
satisfies the local sector [a, (] if

(p(v) —av)- (Br—o)) >0 Vv € [y, (6.13)

As an example, ¢(v) := tanh(v) restricted to the interval [—v, v] satisfies the local sector
bound [, 5] with « := tanh()/v > 0 and § := 1. As shown in Figure 6.3 (green dashed
lines), the local sector provides a tighter bound than the global sector. These bounds are
valid for a symmetric interval around the origin with ¥ = —; non-symmetric intervals
(v # —v) can be handled similarly.

The local and global sector constraints above were defined to be centered at the point
(v,(v)) = (0,0). The stability analysis will require offset sectors centered around an ar-
bitrary point (v, ¢(v)) on the function. For example, ¢(v) = tanh(v) satisfies the global
sector bound (red solid) around the point (v, tanh(v,)) with [a, 5] = [0, 1], as shown in Fig-
ure 6.4. It satisfies a tighter local sector bound (green dashed) when the input is restricted
to v € [v,V]. An explicit expression for this local sector is 5 = 1 and

® i min (tanh(y) — tanh(v,) tanh(v,) — tanh(y))

vV— U, ’ Ve — U

The local sector upper bound 3 can be tightened further. This leads to the following defini-
tion of an offset local sector.

Definition 18. Let «, 8, v, v, v, € R be given with o < § and v < v, < v. The function

¢ : R — R satisfies the offset local sector [a, B] around the point (v., p(vy)) if:
(Ap(v) —aAv) - (BAv — Ap(v)) >0 Yv € [y, V] (6.14)
where Ap(v) := o(v) — o(vy) and Av = v — v,.
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tanh(v)
A /(V*,tanh(y*))
---------- |

—= — > U

: 14
— Global Sector
----- Local Sector

Figure 6.4: Offset local sector constraint on tanh

Quadratic Constraints: Combined Activation Functions

Offset local sector constraints can also be defined for the combined nonlinearity ¢, given by
(6.8). Let v, v, v, € R™ be given with v < v, < v. Assume that the activation input v, € R™
lies, element-wise, in the interval [v, 9] and the i*" input/output pair is ws; = ¢(vs;). Further
assume the scalar activation function satisfies the local sector [a;, 5;] around the point v, ;
with the input restricted to vy, € [v;, 9] for i = 1,...,n4. The local sector bounds can be
computed for ¢ on the given interval either analytically (as above for tanh) or numerically.
These local sectors can be stacked into vectors ay, B, € R" that provide QCs satisfied by
the combined nonlinearity ¢.

Lemma 2. Let oy, By, v, U, v, € R™ be given with ay, < By, v < v, <0, and w, = ¢(vy).
Assume ¢ satisfies the offset local sector [ag, By] around the point (v.,w.) element-wise for
all vy € [, 0]. If X € R™ with A > 0 then:

-
Yo T U Vg — Vs 5w, =
L% _ w*] \I/;Mqﬁ()\)\lf(b L% _w, >0, Yy € [v,7], wy = P(vy), (6.15)
where
o= l— diag(ay) I, (6.16)
| 0n,  diag(N)
Mo(y) = [diag()\) On, | (6.17)

Proof. For any vg € R™ and wy = ¢(vy):
U)qs — Wk U)qs — Wk

— T _ e
lv¢ U ] \Ifqug()\)\I/(é lv¢ U ] = Z )\,(sz — AUZ) . (ﬁz A’UZ‘ — AU}Z)
i=1

where Aw; := ¢(vy;) — @(ve;) and Av; 1= vy; — v ;. If vy € [v, 0] then each term in the sum
is non-negative by the offset local sector constraints and A > 0. O
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In order to apply the local sector and slope bounds in the stability analysis, we must
first compute the bounds v, 7 € R™ on the activation input v,. The process to compute the
bounds is briefly discussed here with more details provided in [69]. Let v! be the equilibrium
value at the first NN layer. Select v, v* € R™ with v! < v! < @' If the activation
functions ¢! are monotonically non-decreasing, then the first activation output w! = ¢*(v!)
is bounded by [w!, w!], where w!' = ¢'(v'), and w' = ¢'(v'). The interval [w', w!] can
then be used to compute bounds [v?, 9% on the input v? to the next activation function,
where v? = W2w! + b%. Denote y' as the i row of W2, and define ¢ := (@' + w') and

r:= s(w' —w'). Then v* and v* are given as
ni
=yle+ b+ |yl (6.18a)
=1
ni
v=ylet b = lyml. (6.18b)
=1

The intervals computed for w! and v? will contain their equilibrium value w! and v2. This
process can be propagated through all layers of the NN to obtain the bounds v,7 € R™¢ for
the activation function input v,. The remainder of the dissertation will assume the local
sector bounds have been computed as briefly summarized in the following property.

Property 1. Let v, € R™ be an equilibrium value of the activation input and vl € R™
be the corresponding value at the first layer. Let v', o' € R™ with v} € [v!,0'] and their
corresponding activation input bounds v,V be given. There exist oy, By € R" such that ¢
satisfies the offset local sector around the point (v., ¢(vi)) for all vy € [v, 7).

Lyapunov Condition

This section uses a Lyapunov function and the offset local sector to compute an inner ap-
proximation for the ROA of the feedback system of G and n. To simplify notation, the
interval bound on v! is assumed to be symmetrical about v, i.e. v! = 2v! — o' so that
vt —o! = vl — o', This can be relaxed to handle non-symmetrical intervals with minor

notational changes.

Theorem 10. Consider the feedback system of plant G in (6.1) and NN m in (6.2) with
equilibrium point (T, U, Vs, wy) satisfying (6.11). Let o' € R™, v := 20! — ', and oy, By €
R" be given vectors satisfying Property 1 for the NN. Denote the i'" row of the first weight
W1 by W and define matrices

- I”G Onc XN —
RV = lNux Nuw y and R¢ = 0
If there exists a matriz P € S4, and vector A € R™ with A > 0 such that

p1 [AGPAc — P ALPBg
V| BLPA; BLPBc

va va‘|

NgXNg [n¢

1 Ry + R, U] My(\)WyR, < 0, (6.19)
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1,12 i/l

(Uz' 1?{;’2) WZ >0, i=1,---,ng, 6.20
W; P

then: (i) the feedback system consisting of G and w is locally stable around x., and (ii) the
set E(P,x,), defined by (2.3), is an inner-approzimation to the ROA.

Proof. By Schur complements, (6.20) is equivalent to:

WIPTWIT < (0} —vl)? i=1,- ny. (6.21)

It follows from Lemma 1 in [71] that:
E(P,x,) C{r eR™ o' —v! < Wz —2,) <v' —vl}.
Finally, use v! — v! = W'(z — ) to rewrite this as:
E(P,x,) C{zx:v' <o <o'}.
To summarize, feasibility of (6.20) verifies that if z(k) € E(P, z,) then v!'(k) € [v!, '] and
hence the offset local sector conditions are valid.

Next, since the LMI in (6.19) is strict, there exists € > 0 such that left / right multipli-
cation of the LMI by [(x(k;) — 2" (wy(k) — w*)T} and its transpose yields

]

T[ALPAG; — P ALPBg
BIPA; BLPBg

< —ela(k) — z, %

+[*}T@£A%LUW¢{£ﬁZ§:ZZ

where the entries denoted by * can be inferred from symmetry. Define the Lyapunov function
V(z) = (r —x,)"P(x — x,) and use (6.1) and (6.11) to show:

Via(k + 1) — V(a(k)) + < —el(k) -zt (6.22)

*

T ve(k) — v
Wy My(A) Vs [wz(k) —

Assume z(k) € E(P, x,) for some k > 0, i.e.,, V(z(k)) < 1. As noted above, z(k) € E(P, z,)
implies the offset local sector [y, B4] around v,. Then, by Lemma 2, the final term on the left
side of (6.22) is > 0, and thus from (6.22) we have V(z(k+1)) < 1,ie., z(k+1) € E(P, x.).
By induction, we have that £(P, z.) is forward invariant, i.e., 2(0) € E(P,z.) = z(k) €
E(P,x,) Yk > 0. As a result, if 2(0) € (P, x,), then the final term on the left side of (6.22)
is > 0 for all k > 0, and V(x(k + 1)) — V(z(k)) < —e€|z(k) — z.|? for all & > 0. Tt follows
from a Lyapunov argument, e.g. Theorem 4.1 in [72], that z, is an asymptotically stable
equilibrium point and £(P, z,) is an inner approximation of the ROA. H
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Remark 4. Note that v' should be chosen with care as it affects the size of ROA inner-
approzimations directly: decreasing (v —v}) gives rise to sharper local sector bounds, which is
beneficial on ROA estimation, but also restricts the region where ROA inner-approrimations
lie in; increasing (V' — v}) leads to a larger region that contains ROA inner-approzimations,
but also provides looser local sector bounds. A possible way of choosing U is to parameterize
@' —vl) as v' — ol = 8, X 1,1 with 6, € Ry, grid the interval [0,6,]* where &, lies
in, inner-approximate the ROA on the grid, and choose 9, that leads to the largest inner-
approximation.

Remark 5. In the dissertation, the NN controller is assumed to be state-feedback. For
the output-feedback case, i.e., w = w(Cx), where C € R™*"¢  the stability analysis can be
wlc }

performed similarly, using a new N,, defined as N,, := [O(nﬁ...mé)xm

6.2 Robust Stability Analysis

Problem Formulation

Consider the uncertain feedback system in Figure 6.5, consisting of an uncertain plant
F.(G,A) and a NN controller 7 as defined by (6.2). The uncertain plant F,(G,A) is an
interconnection of a nominal plant G and a perturbation A. The nominal plant G is defined
by the following equations:

z(k+1) = Ag (k) + Be1 q(k) + Bao u(k), (6.23a)
p(k) = Cg z(k) + D1 q(k) + D2 u(k), (6.23b)

where z(k) € R"¢ is the state, u(k) € R™ is the control input, p(k) € R™ and ¢(k) € R"
are the input and output of A, Ag € R"¢*"¢ By € R"6*" By € R"6¢*M (g € R™»*"a6,
Dg € R™*™ and Dgy € R™*™ ., The perturbation is a bounded, causal operator A :
(57 — (32, The nominal plant G and perturbation A form the interconnection F, (G, A)
through the constraint

q(-) = Alp()). (6.24)
Denote the set of perturbations to be considered as S.

Assumption 7. In this section, we assume (i) the equilibrium point (T, U, Vs, Wi, i, ¢ )
of the feedback system is at the origin, and (ii) 0 = A(0) for all A € S. Note that A is
modeled as an operator mapping inputs to outputs. If A has an internal state then there is
an implicit assumption that it has zero initial condition.

*§, is the largest value such that (6.19) and (6.20) stay feasible.
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Figure 6.5: Feedback system with uncertain plant F,(G,A) and NN controller 7

Let x(k; zo, A) denote the solution to the feedback system of F,(G,A) and 7 with A € S
at time k from the initial condition x(0) = x,'. Define the robust ROA associated with .
as follows.

Definition 19. The robust ROA of the feedback system with the uncertain plant F,(G,A)
and NN 7 is defined as:

R :={zxg € R" : klim X(k; o, A) = 2, VA € S}, (6.25)
—00

The objective is to prove the uncertain feedback system is asymptotically stable and, if
so, to find the largest estimate of the robust ROA using an ellipsoidal inner approximation.

Robust Lyapunov Condition

The perturbation can represent various types of uncertainty [13], [18], including saturation,
unmodeled dynamics, and slope-restricted nonlinearities. The perturbation A is character-
ized with an integral quadratic constraint (IQC). In this chapter, we will focus on the use
of time domain hard IQCs, which is defined in Definition 6. Note that it is possible to also
incorporate time domain soft IQCs [14,57,68, 73].

The notation A € HardIQC(Wa, Ma) indicates that A satisfies the hard IQC defined by
a filter W and a matrix Ma. The filter ¥, is an LTI filter defined by (2.15) with zero initial
condition 1 (0) = 0, where ¢» € R™ is the state. By (ps,¢«) = 0 from Assumption 7, the
equilibrium state 1, of WA is also zero. The filter WA is applied to the input p, and output ¢
of A, and the input-output relationship of A is characterized by the IQC (2.16) imposed on
r, the output of WA, where r := Wx [4]. Therefore, the precise relation (6.24), for analysis,
is replaced by the IQC on r associated with Ma:

N
S (k)" Mar(k) >0, VN >0, p € 65, and g = A(p). (6.26)
k=0

T An input/output model is used for the perturbation A so that its internal state and initial condition is
not explicitly considered.
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The QC proposed in Lemma 2 is a special instance of a time-domain 1QCs. Specifically,
Lemma 2 defines a QC that holds at each time step k and hence the inequality also holds
summing over any finite horizons. This is referred to as the offset local sector 1QC.

Let ¢ := [ ] € R™ define the extended state vector, n¢ = ng + ny, whose dynamics are

_ q(k)
C(k+1)=A((k)+B [u(k;)] (6.27a)

_ q(k)
r(k)=C((k)+D [U(@] (6.27b)
u(k) = m(x(k)) (6.27¢c)

where the state-space matrices are
A= AG 0 B = BGl BG2
By Cq Ayl’ By1Dg1 + Bya Byi1Dga|’

C=[DuCe Cy|, D=[DyDei+ Dy DyDos).

Let ¢, := [4.] = 0 define the equilibrium point of the extended system (6.27). Since IQCs
implicitly constrain the input p of the extended system (6.27), the response of the extended
system subject to IQCs “covers” the behaviors of the original uncertain feedback system. The
following theorem provides a method for inner-approximating the robust ROA by performing
analysis on the extended system subject to IQCs.

Theorem 11. Consider the feedback system of an uncertain plant F,(G,A) in (6.23)—
(6.24), and the NN 7 in (6.2) with zero equilibrium point ((s,Us, Vs, Wy, D, @x).  Assume
A € IQC(V A, Ma) with Ua and Ma given. Let o' € R™, v := —0', and oy, 85 € R™ be
given vectors satisfying Property 1 for the NN, and define matrices

(L, 0 0

RV = 0 0 Inq s Nug = [NumonuxnwL
| Nu¢e Nyw 0O
[Noe Npw 0

R¢ = - 0 ]n¢, O] X Nv( == [vi70n¢xn¢]a

Wi = [V[/i1 lenw} , Wi is the i™ row of W

If there exists a matriz P € S}, and vector A € R with \ > 0 such that

BT lATPA - P A'PB
1%

BTPA BTPB] Ry + R;qj;M¢(/\)‘IJ¢R¢

+Rl[c D] Malc D|Ry <0, (6.282)
~1\2 1
[%;)r VH S0 i=1 .ny, (6.28b)
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then: (i) the feedback system comprising F, (G, A) and 7 is locally stable around x, for any
A € IQC(VA, MA), and (i1) the intersection of E(P, () with the hyperplane ¥ = 0, i.e.
E(Py,x,) where P, € R"¢*"¢ s the upper left block of P, is an inner-approximation to the
robust ROA.

Proof. As in the proof of Theorem 10, feasibility of (6.28b) implies that if ((k) € E(P, ()
then v!'(k) € [v!,v'] and hence the offset local sectors conditions are valid. Since the LMI
in (6.28a) is strict, there exists € > 0 such that left/right multiplication of the LMI by
[(C(k) = C) T, (wy (k) —wi) T, (k) — q*)T] and its transpose yields:

T T _ T C(k) T C(k)*C*
] [t e e | ] e ol e o] [
+[x] wimmoow, [;;;5,3 - w < —eloh) &P

Define the Lyapunov function V() := (¢ — ()" P(¢ — ), and use (6.27) to show:

o vg(k) — vs 2
J oy, | B0 7 | < o ol

Sum this inequality from k£ = 0 to any finite time N > 0. The third and fourth term on the
left side will be > 0 by the local sector conditions and the IQC. This yields:

V(C(k+1)) = V(C(K)) +r(k) " Mar(k) +

VIC(IN +1)) = V(¢(0) < —;d((k) -G

Thus if (0) € E(P, () then ((k) € E(P,(.) for all k > 0. Moreover, this inequality implies
that ((N) — (. as N — oo. The initial condition for the virtual filter is ¢/(0) = 0 so that
¢(0) € £(P, () is equivalent to z(0) € E(P,, z.). Hence E(P,,x,) is an inner approximation
for the ROA. ]

For a particular perturbation A there is typically a class of valid time-domain IQCs
defined by a fixed filter W5 and a matrix M, drawn from a constraint set M. Therefore
when formulating an optimization problem, along with P and A\, we can treat Ma € Max
as an additional decision variable to reduce conservatism. In this dissertation, the set Ma
is restricted to one that is described by LMIs [18]. Using trace(P,) as the cost function
to minimize along with the LMIs developed before, we have the following optimization to
compute the “largest” ROA inner-approximation:

min trace(P,)
PAMa (6.29)
s.t. (6.28a) and (6.28b) hold,

which is convex in (P, A\, Ma). The strict inequality in (6.28a) can be enforced by either
replacing < 0 with < —el with € = 1 x 1079, or solving (6.29) with a non-strict inequality
< 0, and checking if the constraint is active afterwards.
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IQCs for Combined Activation Functions ¢

Now that we have the general framework that merges Lyapunov theory with IQCs, we will
revisit the problem of describing the activation functions ¢ using more general tools. Recall
that offset local sector QCs have been used in Sections 7.2 and 6.2 to bound activation
functions ¢. However, these local sectors fail to incorporate slope bounds of ¢. In this
subsection, in addition to local sectors, we will use off-by-one IQCs [61] to capture the slope
information of ¢ to achieve less conservative ROA inner-approximations.

Besides the local sector bound ay, 84, the bounds v,7 on activation input v, can also
be used to compute the local slope bounds [mg, Ls] of ¢, with my, Ly, € R™. For example,
¢i(vey;) = tanh(vgs;) restricted to the interval [v;, ;] for i = 1,...,n, satisfies the local
slope bound [myg,;, Ly, with m,,; = min (dtadnii(“i) vi=v, > dta;i(”") Ui:@.), and Ly, = 1. If
wy = ¢(vy) with ve(k) € [v,7], then ¢ also satisfies the hard IQC defined by (Wog, Mog),

where

[ On¢ ‘ _dlag(Lti)) [n¢
Vo := | I, | diag(Lyg) —In, |,
| On, | —diag(mg) I,
[ On¢ dlag(n) Ng :
.: S
Mog(n) : _diag(n) 0., |’ for all n € R" with n > 0.

This is the so-called “off-by-one” IQC [61], which is a special instance of the Zames-Falb
IQC [74,75]. It provides constraints that relate the activation at different time instances,
e.g. between ¢;(vs;(k)) and ¢;(vg;(k+ 1)) for any i = 1,...,ng.

The analysis on the feedback system of F,(G,A) and 7 can be instead performed on
the extended system made up by G, Va and Vg with additional constraints that A €
IQC(Va, Ma), and ¢ satsifies the offset local sector and ¢ € IQC(¥og, Mog). However,
since Wy introduces a number of ng states to the extended system, the size of the corre-
sponding Lyapunov matrix P will increase from S7%™ to $7%7™" which leads to longer
computation time. The effectiveness of the off-by-one IQC is demonstrated in Section 6.3.

6.3 Numerical Examples

In the following examples, the optimization (6.29) is solved using MOSEK with CVX. The
code is available at https://github.com/heyinUCB/Stability-Analysis-using-Quadratic-
Constraints-for-Systems-with-Neural-Network-Controllers.


https://github.com/heyinUCB/Stability-Analysis-using-Quadratic-Constraints-for-Systems-with-Neural-Network-Controllers
https://github.com/heyinUCB/Stability-Analysis-using-Quadratic-Constraints-for-Systems-with-Neural-Network-Controllers
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Inverted pendulum

Consider the nonlinear inverted pendulum example with mass m = 0.15 kg, length [ = 0.5
m, and friction coefficient ;1 = 0.5 Nms/rad. The dynamics are:

f(r) = mgtsin(0(1) —mulf(t) + sat(u(t)) (6.30)

where 6 is the angular position (rad) and w is the control input (Nm). The plant state
is = [A,0]. The saturation function is defined as sat(u) = sgn(u)min(|u|, tmay), With
Umax = 0.7 Nm. The controller 7 is obtained through a reinforcement learning process using
policy gradient [76-78]. During training, the agent decision making process is characterized
by a probability: u(k) ~ Pr(u(k) = u | (k) = x) for all v € R and x € R? where the
probability is a Gaussian distribution with mean m(x(k)), and standard deviation o. After
training, the policy mean 7 is used as the deterministic controller u(k) = m(x(k)). The
controller 7 is parameterized by a 2-layer, feedforward NN with n; = ny = 32 and tanh as
the activation function for both layers. The biases in the NN are set to zero during training
to ensure that the equilibrium point is z, = 0 and u, = 0. The dynamics used for training
are the discretized version of (6.30) with sampling time dt = 0.02 s.
We rearrange (6.30) into the form:

9(15) _ —mglq(t) + mglo(t) — ué(t) + sat(u(t))

- , (6.31a)

q(t) = A(0(t)) := 0(t) — sin(0(t)). (6.31Db)

The static nonlinearity A(¢) = 6 — sin(¢) is slope-restricted, and sector bounded. If we
assume that (k) € [0,0] with 6 = —0 = 0.73, then the nonlinearity is slope-restricted
in [0,0.2548], and sector bounded in [0,0.087]. We also assume that v' € [v',9'] with
ol = —vl = §, x 1391 using §, = 0.1. Both assumptions are verified using the ROA

inner-approximation. Two types of IQCs are used to characterize the nonlinearity A(:): an
off-by-one 1QC to capture the slope information, and a local sector IQC to express the local
sector bound. Only the local sector IQC is used to characterize the activation functions
¢. The saturation function is static and can also be described using a local sector bound.
Let u be the largest possible control command from 7 induced from the assumption that
v' € [v',0']. Then the saturation function satisfies the local sector [, ], where q = max
and 3 :=1.

Figure 6.6 shows the boundaries for the sets {z : v' <v' < o'} and {z : § < 6 < 0} with
orange and brown lines, the ROA inner-approximation with a blue ellipsoid, and the phase

portrait of the closed-loop system, with green and red curves representing trajectories inside
and outside the ROA.
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Figure 6.6: A ROA inner-approximation of the inverted pendulum
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Vehicle lateral control

Consider the vehicle lateral dynamics from [79]:

c1 o 1 0 0 . 0 0
0 Caf+car o Caf+ca7’ acaf_bcar . _C_ai acaf_bcow‘ o U2
e — mU m mU € + m u+ m c
é9 0 O O 1 6(9 0 0
é 0 Car—bCar _aCas—bCar a*Cas+bCar | |¢, _aC a2C\p j+b2Car
I,U I, I,U I, I,

(6.32)

where e is the perpendicular distance to the lane edge (m), and ey is the angle between the

tangent to the straight section of the road and the projection of the vehicle’s longitudinal
axis (rad). Let z = [e, é,eg, é9] " denote the plant state. The control u is the steering angle
of the front wheel (rad), the disturbance ¢ is the road curvature (1/m), and the parameters
are: longitudinal velocity U = 28 m/s, front cornering stiffness C,; = —1.232 x 10° N/rad,
rear cornering stiffness C,, = —1.042 x 10° N/rad, mass m = 1.67 x 10 kg, moment of
inertia I, = 2.1 x 10% kg/m?, distances from vehicle center of gravity to front axle a = 0.99
m and rear axle b = 1.7 m.

Again, the controller 7 is obtained using policy gradient, and is parameterized by a 2-
layer, feedforward NN, with n; = ny = 32 and tanh as the activation function for both layers.
The training process uses a discretized version of (6.32) with sampling time dt = 0.02 s and
draws the curvature c¢(k) at each time step from an interval [—1/200,1/200]. The control
command derived from wu(k) = 7(xz(k)) enters the vehicle dynamics through a saturation
function sat(-) with Uumax = 7/6. Let ugy := sat(m(z)) define the saturated control signal.

The analysis is performed for a constant curvature ¢ = 0, resulting in a zero equilibrium
state z, = 0. In the analysis problem, on top of saturation, we also add a norm-bounded LTI
uncertainty Appp € RHo with [[Apr|l,, < 0.1 to the control input. This is used to assess
the robustness of the NN controller against actuator uncertainty. As shown in Figure 6.7,
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the actual input to the vehicle dynamics is

upert(k) = usat(k> + q<k)7 and Q() = ALTI(Usat('))-

|usat(k)

sat(+)

Figure 6.7: Uncertain vehicle system with actuator uncertainty

It is assumed that v' € [v!, v!], where v! = —v! = §, X 13951 with &, = 0.6. To show
effectiveness of the off-by-one IQC, two experiments were carried out: one with only local
sector IQC to describe ¢, and one with both local sector and off-by-one IQCs. The achieved
trace(P,) for the two experiments are 4.4 and 2.9, respectively. Moreover, the achieved
det(P, 1) (proportional to the volume) for the experiments are 3.2 x 105, and 1.1 x 109,
respectively. Therefore, with the help of off-by-one IQC to sharpen the description of ¢, the
second experiment achieves a larger ROA inner-approximation. It is also important to note
that thanks to the off-by-one IQC, the SDP is able to tolerate looser local sector bounds.
The largest value of 9, such that the SDP is feasible is 0.67 for the first experiment, and 1.4
for the second experiment.

Figure 6.8 shows slices of the ROA inner-approximation from the second experiment on
the e—¢ and eg—¢éy spaces. Specifically, these are intersections of (P, z,) with the hyper-
planes (eg, ép) = (eqx, €ox) and (e, €) = (e, €4 ), respectively, where z, = [e,, €., €g«, €94] T. The
slices are shown with blue ellipsoids. The boundary of the polytopic set {z : v! < vl < o'}
is shown with the orange lines. The brown crosses represent the zero equilibrium state x,.
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Figure 6.8: ROA inner-approximation on the e—¢ and ey—éy spaces using both local sector

and off-by-one 1QCs with ¢, = 0.6.

6.4 Chapter Summary

This chapter presents a method to analyze stability and to inner-approximate the region
of attraction of equilibria in feedback systems with NN controllers. First, LTI plants were
analyzed using Lyapunov theory and local sector QCs for bounding nonlinear activation
functions. Second, the results were extended to uncertain plants with perturbations described
by IQCs, such as nonlinearities and unmodeled dynamics. The extended result allows for
the use of off-by-one IQCs to refine the description of activation functions. Finally, the
method was illustrated on a nonlinear inverted pendulum example, and uncertain vehicle
lateral dynamics with stabilizing NN controllers obtained using policy gradient.
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Chapter 7

Imitation Learning With Stability and
Safety Guarantees Using Quadratic
Constraints

Imitation learning (IL) is a class of methods that learns a policy to attain a control goal
consistent with expert demonstrations [80,81]. Used in tandem with deep neural networks
(NNs), IL presents unique advantages, including a substantial increase in sample efficiency
compared to reinforcement learning (RL) [82], and wide applicability to domains where the
reward model is not accessible or on-policy data is difficult /unsafe to acquire [80]. While IL is
closely related to supervised learning as it trains a mapping from observations to actions [83],
a key difference is the ensuing deployment of the learned policy under dynamics, which
consequently raises the issue of closed-loop stability. This problem naturally falls within the
realm of robust control, which provides rigorous analysis of stability for linear or nonlinear
systems [1]; however, a major technical challenge is to derive nonconservative guarantees
for highly nonlinear policies such as NNs that can be also tractably incorporated into the
learning process.

This chapter tackles this issue and presents a method to learn NN controllers with stabil-
ity and safety guarantees through IL. We first derive convex stability and safety conditions
by merging Lyapunov theory with local sector quadratic constraints (QCs) to describe the
activation functions in the NN. Then we incorporate these constraints in the IL process
that minimizes the IL loss, and maximizes the volume of the region of attraction associated
with the NN controller. Finally, we propose an alternating direction method of multipliers
(ADMM) based method to solve the IL problem.

The method of using QCs to characterize the activation functions has been proposed
in [62], and applied to Lipschitz constant estimation for NNs [63], reachability analysis of NN
controlled systems [11], and stability analysis of NN controlled systems [84-86]. Reference
[64] proposes an ADMM based robust NN training method that minimizes the training loss,
and the Lipschitz constant of NNs simultaneously. Reference [87] formulates convex sets of
recurrent NN with bounded incremental {5 gain using incremental QCs.
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Compared to existing works, our approach makes the following contributions. First,
to the best of our knowledge, this is the first attempt to ensure stability of IL based on
deep NNs. The stability condition from Chapter 6 is nonconvex and thus computationally
intractable for NN control synthesis; here we convexify this constraint (using loop transfor-
mation) for its efficient enforcement in the learning process. Notably, a well-known challenge
in IL is the existence of suboptimal demonstrations. As demonstrated in the case studies,
while the proposed approach can train a policy that imitates the expert demonstrations,
it can potentially improve local stability over suboptimal expert policies, thus enhance the
robustness of L.

In this chapter, we first present a loop transformation based method to convexify the
stability condition from Chapter 6. Then we formulate the safe IL problem with the convex-
ified stability condition. Finally we illustrate the method on an inverted pendulum example,
and an aircraft example.

7.1 Problem Formulation

In this chapter, we again consider the feedback system consisting of a plant G and state-
feedback controller 7w as shown in Figure 6.1. Similar to Chapter 6, we assume the plant G
is a linear, time-invariant (LTI) system defined by (6.1), and the controller 7 : R"¢ — R™ is
an (-layer, feedforward neural network (NN) defined by (6.2) associated with weight matrices
Wi € R%*ni—1_bias vectors b € R™, and activation functions ¢’ : R® — R™. We assume
the activation ¢ is identical in all layers; this can be relaxed with minor changes to the
notation. Finally, we assume xz(k) is constrained to a set X C R™¢ which is referred to
as the “safety condition”. This state constraint set is assumed to be a polytope symmetric
around the origin:

X={zeR":—-h<Hx<h, h>0}, (7.1)
where H € R"x*"¢ and h € R"X.

Remark 6. Note that the control constraint is not considered in this dissertation. However,
if the control constraint set is a hypercube, it can be addressed by scaling the dynamics (6.1)
so that the control constraint set becomes [—1,,x1, ln,x1], and applying tanh elementwise to
the output layer (6.2¢).

Assumption 8. We assume the equilibrium point of the closed-loop system is at the origin
Ty = Opgx1 with input u, = 0,,x1. To ensure this assumption holds, we restrict ourselves
to zero bias terms: b = 0,51, fori=1,...0+ 1, and we also assume that the activation @
satisfies ¢(0) = 0.

Given state and control data pairs from the expert demonstrations, our goal is to learn a
NN controller from the data to reproduce the demonstrated behavior, while guaranteeing the
system trajectories under the control of the learned NN controller satisfy the safety condition
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(x(k) € X Vk > 0), and are able to converge to the equilibrium point if they start from the
ROA associated with the learned NN controller.

7.2 Stability Condition for NN Controlled Systems

In this section, we treat the parameters of the NN controller as fixed and derive the safety
and local stability conditions of the NN-controlled L'TT systems.

We first isolate the nonlinear activation functions from the linear operations of the NN.
By Assumption 8 that b* = 0,,,x1, the NN controller 7 defined in (6.2) can be rewritten as:

] = )] (7.20)
we(k) = o(vs(k)), (7.2b)

where v4, and wy are defined by (6.7). The matrix N is redefined as follows, where the
vertical and horizontal bars partition N compatibly with the inputs (z,ws) and outputs

(u,vg):

0|0 0 .- WH]

wilo -~ 0 0

. . . . . vi va
0] 0 - W0 |

This decomposition of the NN, depicted in Figure 7.1, isolates the nonlinearities ¢ in prepa-
ration for the stability analysis.

| N
wg (k) v (k)

¢

A

Figure 7.1: NN representation to isolate the nonlinearities ¢.

The equilibrium state z, = 0,,x1 can be propagated through the NN. This yields the
equilibrium values v, = w, = 0p,x1 as well as the equilibrium control command w, = 0, x1-
Therefore, the activation functions ¢ can be described by the following local QC centered
around the origin (v.,w,) = (0,0), which is a special instance of the offset local QC in
Lemma 2.
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Lemma 3. Let ay, B4, v, v € R" be given with oy < By, and v < 0 < v. Suppose that ¢
satisfies the local sector oy, By] element-wise for all vy € [v,v]. For any A € R™ with A > 0,
it holds that

Vg T —2A¢B¢A (A¢ + B¢)A Vg >0
We (A¢ + B¢)A —2A we| —
Vog € v, 0], wy = P(vy), (7.3)

where Ay = diag(ay), By = diag(By), and A = diag(\).

Proof. For any v, € R™ and wy = ¢(vy): left-hand side of (7.3) = 0% \i(wi — a;vy) -
(Bivi —w;). If vy € [v,v] then each term in the sum is non-negative by the local sector
constraints and A > 0. ]

In order to apply the local sector bounds in the stability analysis, we must first compute
the bounds v,7 € R™ on the activation input vg. The first step is to find the smallest
hypercube that bounds the state constraint set: X C {x : z < 2 < T}. Therefore, w’°
(defined in (6.2a)) is bounded by w® = z and @W° = Z. Define ¢ = (@’ +w?), r = (@ —w?),
and denote y " as the i row of W'. Then the first activation input v* = W'w? is bounded by
[w', 0], where o} =y e+ X7 |y;r;], and v} = yTe—372, y;r;]. If the activation functions
¢! are monotonically non-decreasing, then the first activation output w! is bounded by
w! = ¢'(v!) and w' = ¢'(v'). This process can be propagated through all layers of the
NN to obtain the bounds v,7 € R" for the activation input vs. The remainder of the
dissertation will assume the local sector bounds have been computed as briefly summarized
in the following property.

Property 2. Let the state constraint set X and its corresponding activation input bounds
v, T be given. There exist oy, By such that ¢ satisfies the local sector for all v, € [v,7].

Lyapunov Condition

This section uses a Lyapunov function and the local sector to compute an inner approxima-

tion for the ROA of the feedback system of G and 7.

Theorem 12. Consider the feedback system of plant G in (6.1) and NN m in (6.2) with
equilibrium point x, = 0,1, and the state constraint set X. Let v,v, oy, By € R™ be given
vectors satisfying Property 1 for the NN and the set X. Denote the i*" row of the matriz H
by H,' and define
R ]nG 0ng><n¢ R
Ry = [Nm N , and Ry = 0

uw

NUJ? va]

Ny XNag ITL¢
If there exists a matriz P € S, and vector A € R" with A\ > 0 such that

ALPAc — P ALPBg

N
Ry BLPA; B} PBJ fv
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[ —24,B,A  (Ag+ By)A
+ R, [(A(b LB oA R, <0, (7.4a)
h? H .
[Hi P] =0 =Ly (7.4b)

then: (i) the feedback system consisting of G and 7 is locally asymptotically stable around
Ty, and (ii) the set E(P), defined by (2.4), is an inner-approximation to the ROA.

Proof. By Schur complements, (7.4b) is equivalent to:
H'P'H; <h? i=1,--- nx. (7.5)
It follows from Lemma 1 in [71] that:
EP)C{zeR™: —h <H'z<h;, i=1,..,nx}=X.

To summarize, feasibility of (7.4b) verifies that if (k) € £(P) C X then v,(k) € [v, 7] and
hence the local sector conditions are valid.
Next, define V(z) := 2" Pz. Since the LMI in (7.4a) is strict, there exist ¢ > 0 such that

left / right multiplication of the LMI [x(k:)T, w¢,(k)T] and its transpose yields:

x —V(x vol)] ' [ —244BoA  (Ag+ By)A] [we(h)
V(z(k+1)) — V(z(k) + L%(k)] [(A¢+B¢)A —2 1 [%(k‘)}

< —elz(k) — 247, (7.6)

Using the proof by induction argument from [84, Theorem 1], we can show that £(P) is
an invariant set: if (0) € E(P), then z(k) € £(P) Yk > 0. As noted above, z(k) € E(P)
implies the local sector [ay, 5y]. Then, by Lemma 3, if 2(0) € £(P), the final term on the
left side of (7.6) is > 0 for all k& > 0, and thus V(z(k + 1)) — V(x(k)) < —e|a(k) — z.|?
Vk > 0. Therefore, x, is an asymptotically stable equilibrium point, and £(P) is a ROA
inner approximation. O

The Lyapunov condition (7.4a) is convex in P and A if the weight matrix N is given,
and thus we can efficiently compute the ROA inner-estimates. However, this condition is
computationally intractable for NN controller synthesis, as it is nonconvex if we search over
N, P, and A\ simultaneously.

7.3 Convex Stability and Safety Conditions

In [64, 87], ay is set to zero to formulate convex constraints. However, this restriction
is too coarse for stability analysis of NN controlled systems. Instead, we perform a loop
transformation [1] as shown in Fig. 7.2 to convexify the stability condition without having
restrictions on oy and [,.
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W) N 2 st

Figure 7.2: Loop transformation. If ¢ is in the sector [, 8], then ¢ is in the sector

[_1n¢><17 11’L¢><1:|‘

Loop transformation

Through loop transformation, we obtain a new representation of the NN controller, which is
equivalent to (7.2),

LZ((Z))] - N [zz((m ’ (7.72)
zp(k) = d(vg(k)), (7.7b)

where N and ¢ are defined in Fig. 7.2. Here, we also partition N compatibly with the inputs
(x, z4) and outputs (u,vy)

\] Nux Nuz
N= [Nm N] (7.8)

The loop transformation normalizes the nonlinearity ¢ to lie in the sector [—1nyx1, Lngxal-
As a result, ¢ satisfies the sector QC for any A = diag(\) with A > 0:

EZEZ;T lﬁ —OA] L:;E’;ﬂ =0, Vo, € [v,7. (7.9)

The input to N is transformed by the following equation:

By — A Ay + B
wy(k) = %%(k) + %%(/{;). (7.10)
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The transformed matrix N can be computed by combining this relation with (7.2a). Substi-
tuting (7.10) into (7.2a) we obtain

u(k) = Nyzx(k) + Crzg(k) + Covg(k), (7.11)
Vp(k) = Nyg(k) + Cs24(k) + Cyvg(k), (7.12)
where
oo B oy AP
The expression for vy (k) can be solved from (7.12):
vy(k) = (I — Cy) 'Nyga(k) + (I — Cy) ' Cs24(k). (7.13)
Substituting (7.13) into (7.11) yields
u(k) = (Nuz + Co(I — Cy) "' Nyg)z(k) + (C1 + Co(I — Cy) 7' Cs)z4(k). (7.14)

Matching (7.13) and (7.14) with (7.7a) we get

N _ Num -+ CQ(I — 614)_1.]\[@m Cl + CQ(I — 04)_103
(I — 04)71]\/'“55 (] — 04)7103

Thus, N is a function of N denoted concisely as N = f (N). It is important to note that
N depends on N both directly, and also indirectly through its dependence on (Ay, By).
Specifically, suppose both N and a hypercube state bound [z,Z] are given. Then N is
constructed by: (i) propagating [z, Z] through the NN to compute bounds [7,v] on the
activation inputs, (ii) computing local sector bounds (Ay, By) consistent with [, v], and (iii)
performing the steps in this section to compute N from (N, Ay, By).

Stability condition after loop transformation

Similar to the original Lyapunov condition (7.4a), the new Lyapunov condition for the feed-
back system of G in (6.1) and NN in (7.7) can be written as

. [ALPA:— P ALPB:| = -~ A 0| =
T G G G G T
Ry, BgPAG BEPBJ Ry + R¢ lo —A] Ry <0, (7.15)
where
- (L, O N,. N,.
RV = [Nux Nﬂ;| s and R¢ = [ 0 [n¢1 (716)
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Lemma 4. Consider the feedback system of G in (6.1) and NN in (7.2) with the state
constraint set X. If there exist a matric P € S5, and vector A\ € R™ such that (7.15)
(where N = f(N)) and (7.4b) hold, then: (i) the feedback system consisting of G in (6.1)
and NN in (7.2) is locally asymptotically stable around x., and (ii) the set E(P) is a ROA
inner-approximation for it.

Proof. 1t follows from the assumption that (7.15) and (7.4b) hold that the feedback system
of G in (6.1) and NN in (7.7) is locally asymptotically stable around z,, and E(P) is its
ROA inner-approximation. Since the representations (7.2) and (7.7) of NN are equivalent,
the feedback system of G in (6.1) and NN in (7.2) is identical to the feedback system of
G in (6.1) and NN in (7.7). As a result, the feedback system consisting of G in (6.1) and
NN in (7.2) is locally asymptotically stable around z,, and the set £(P) is a ROA inner-
approximation for it. O

The new Lyapunov condition (7.15) is convex in P and A using N = f(N), where N is
given. To incorporate the stability condition in the IL process, we will proceed by treating
N € Rmwtno)x(no+no) g5 5 decision variable along with P and A, and try to derive a stability
condition that is convex in (P, A, N). Substitute (7.16) into (7.15) to obtain

AG + BGNux BGNUZ ! P 0 AG + BGNMU BGNuz . P 0 <0
vi N’vz 0 A vi sz 0 A .
Applying Schur complements yields the equivalent condition
P 0 AL+NLBL N
VT T T
0 A Nz Be Nos >0 (7.17)
AG +~BgNux BCiNuz P! 0 ’
vi sz 0 A_1

and P > 0, A > 0. Now (7.17) is linear in N, but still nonconvex in P and A. Multiplying
(7.17) on the left and right by diag(P~', A~ I, I,) we obtain

Q 0 AL+ LB, Lj
TpT T
X @ L Be Lat s o, (7.18)
Ac@Qy + BgLi BgLs Q1 0
Ls Ly 0 Q2

where Ql = Pl > 0, QQ = A1 > 0, L, = Nule, Ly = NuzQ2> Ly = viQl, and
L4 = NUZQQ-

The stability condition (7.18) is convex in the decision variables (Q1,Q2, L1, ..., L4),
where Q; € S1%, @, € S7?. and Q, is a diagonal matrix, L; € R™X"¢ [, € R™*" [ €
R™*"¢ and L, € R™*". Variables (P, A, N) that satisfy the Lyapunov condition (7.15)
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can be recovered using the computed (Q1,Q2, L1, ..., L) through the following equations:
P=Qi" A=0Q;" and

N=LQ™, (7.19)
where
1@ 0 _|Lh L
Q= lOl Qz] , and L := [L; Lj : (7.20)

Thus, the convex stability condition (7.18) allows us to search over P, A, and N simultane-
ously.

Moreover, to enforce the safety condition (z(k) € X Vk > 0) of the system, convex
constraints on (), are imposed:

which is derived directly from (7.4b) by Schur complements, and using @Q; = P~!. Again,
this ensures £(Q7') C X.

Denote the LMIs (7.18), (7.21) with @; > 0 and Q2 > 0 altogether as LMI(Q, L) > 0,
which will later be incorporated in the IL process to learn robust NN controllers.

Remark 7. Note that model uncertainties are not considered in the dissertation. They can be
incorporated in the Lyapunov condition (7.4a) or (7.15) using integral quadratic constraints
as in [84]. However, to derive convex stability conditions, only limited types of uncertainties
may be incorporated.

7.4 Safe Imitation Learning Algorithm

Given state and control data pairs from the expert demonstrations, we use a loss function
L(N) to train NN controllers with weights N to match the data. Common choices of the loss
function includes mean squared error, absolute error, and cross-entropy. In general, L(N) is
non-convex in N. We propose the next optimization to solve the safe IL problem,

]{fnér}; mL(N) — n9log det(Qy) (7.22a)
s.t. LMI(Q, L) > 0 (7.22b)
fIN)Q =1L (7.22¢)

where @ and L are defined in (7.20). The optimization has separate objectives. The cost
function (7.22a) combines the IL loss function with a term that attempts to increase the
volume of £(Q7") (which is proportional to det(Q;) ). The parameters 7,7, > 0 reflect the
relative importance between imitation learning accuracy and size of the robustness margin.
The optimization has two sets of decision variables: N and (@, L). The former is involved
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in mimicking the expert behaviour, and the latter are involved in the stability and safety
constraints (7.22b). The two sets of variables are connected through the equality constraint
(7.22¢). Note that (7.22¢) is equivalent to f(N) = L', and the term on the right-hand side
equals to N from (7.19). Therefore, (7.22¢) essentially means that the first set of decision
variable N, after being transformed by the nonlinear function f, satisfies the stability and
safety constraints.

Similar to [64], we use the alternating direction method of multipliers (ADMM) algorithm
to solve this constrained learning problem. We first define an augmented loss function

['a(Na Q? L? Y) = 771£(N) — 12 IOg det(Ql)
+u (YT (F(NQ- D)+ LIFNQ - LIl (7.23)

where ||-||» is the Frobenius norm, Y € R(mu#ne)x(na+n6) {5 the Lagrange multiplier, and
p > 0 is the regularization parameter typically affecting the convergence rate of ADMM.
The ADMM algorithm takes the following form:

1. N-update: N**! = argminy L,(N, Q%, L* Y%).

2. (Q, L)-update:

(QF, LF) = arg min L, (N Q, L, YF)
s.t. LMI(Q, L) > 0

3. Y-update: If Hf(]\f’““)@'erl - Lk“HF < o, where o > 0 is the stopping tolerance,

then the algorithm has converged, and we have found a solution to (7.22), so terminate the
algorithm. Otherwise, update Y and return to step 1.

YR+ — vk 4 p (f(Nk+1)Qk+l _ Lk-i—l)

Step 1 can be solved using gradient based algorithm, e.g., stochastic gradient descent. The
optimization in Step 2 is convex, and can be solved effectively using SDP solvers. The
variable Y in Step 3 accumulates the deviation from the constraint (7.22c) as in integral
control. Since the loss function £(N) is generally nonconvex, and the constraint (7.22c) is
also nonconvex, the proposed ADMM does not have the guarantee to converge to the global
optima. However, any converged solution (even local optima) provides a safe NN controller
with stability and safety guarantees.

7.5 Numerical Examples

In the following example, Step 1 of ADMM algorithm is implemented on Tensorflow, and
solved by ADAM [88]. Step 2 is formulated using CVX, and is solved by MOSEK. The
mean squared error is chosen as the loss function £(N). The code is available at https:
//github.com/heyinUCB/IQCbased _ImitationLearning.


https://github.com/heyinUCB/IQCbased_ImitationLearning
https://github.com/heyinUCB/IQCbased_ImitationLearning
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Inverted pendulum

Consider an inverted pendulum with mass m = 0.15 kg, length [ = 0.5 m, and friction
coefficient = 0.5 Nms/rad. The discretized and linearized dynamics are:

r(k+1) |1 4] x1(k) 0

] Lo [0 [ 5] 0
where the states 1, x5 represent the angular position (rad) and velocity (rad/s), u is the
control input (Nm), and 6 = 0.02 s is the sampling time. The state constraint set is X =
[—2.5,2.5] x [—6,6]. To generate state and control data pairs for IL, we design an explicit
model predictive controller (MPC) to serve as the expert. By fitting a NN controller to
the explicit MPC controller, we can expedite the evaluation of controllers during run-time
[89-91]. In this example, besides a NN controller, we will also provide its associated ROA
inner-approximation that guarantees stability and safety. The NN controller is parameterized
by a 2-layer, feedforward NN with n; = ny = 10 and tanh as the activation function for both
layers. Take p = 1, n; = 100, and 7, = 5. The ADMM algorithm is terminated after 16
iterations, and || f(N) — LQ ||, = 0.17.

In Fig. 7.3, the plot on the left shows the learned NN controller with a blue surface, and
state and control data pairs from expert demonstrations with orange dots; the plot on the
right shows the ROAs of the MPC controller and the NN controller with oranges dots and
a blue ellipsoid, respectively. We can notice that the ROA of the NN controller is tightly
contained by the state constraint set X (shown with a gray rectangle), which guarantees the
safety of the system.

NN policy 6 -
4 : - expert data
s o= 4 |
24 Y
2 4
30 &0 ]

) -2 ]
- ROA of MPC 1
-4 N
Y —x L j |
——ROA of NN | ‘
2 -5 -2 0 2

1 9 X1

Figure 7.3: Left: NN controller vs. expert data from demonstrations; Right: ROAs of MPC
controller and NN controller, and state constraint set X of the inverted pendulum
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Generic Transport Model

The Generic Transport Model (GTM) is a 5.5% scale commercial aircraft. Linearizing and
discretizing the longitudinal dynamics given in [37] with sampling time § = 0.02 s yields:

D] =[O o] [+ [0 000 wen,

where the states x1,xy represent angle of attack (rad), and pitch rate (rad/s), and the
control u represents the elevator deflection (rad). Take the state constraint set as X =
[—2,2] x [—3,3]. In this example, we design an LQR controller to produce expert data.
The NN controller is again parameterized by a 2-layer, feedforward NN with ny = ny, = 16
and tanh as the activation function for both layers. In this example, we will show how the
parameter 7, affects the result. To do so, two experiments are carried out using two sets of
parameters (p = 1,m; = 100,77, = 5) and (p = 1,5, = 100,72 = 20), meaning that we care
more about the size of the ROA inner-approximation, and less about the IL accuracy in the
second experiment than we do in the first experiment. In both experiments, the ADMM
algorithm is terminated in 20 iterations.

The ROA inner-approximations of the NN controllers from the two experiments are
shown in Figure 7.4. The one computed with 7, = 5 is shown with a magenta ellipsoid,
and the one computed with 7y = 20 is shown with a blue ellipsoid. First, it is important
to notice that both NN controllers” ROA inner-approximations are larger than that of the
expert’s LQR controller (shown with a dashed gray ellipsoid), thanks to the second term in
the cost function (7.22a), which enhances the robustness of IL. Also, as expected, the ROA
inner-approximation of the NN controller with 7, = 20 is larger than that with 7, = 5, since
a larger 7, leads to a larger ROA inner-approximation. However, the larger ROA inner-
approximation comes at the cost of less accurate regression to the expert data. As shown in
Figure 7.5, the mesh plot of the NN controller with 7, = 20 (shown with a blue surface) is
more off from the expert data (shown with orange stars) than that with n, = 5 (shown with
a magenta surface).

3t mm ROA with 7o =5 |
e mmm ROA with 7 = 20
ROA of LQR
| X

T2
o

Figure 7.4: ROA inner-approximations and state constraint set X of GTM
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[ INN withmp, =5
[ NN with 7, = 20
+ expert data

Figure 7.5: NN controllers vs. expert data of GTM

7.6 Chapter Summary

In this chapter, we present an IL algorithm with stability and safety guarantees for LTI
systems. First, we convexify the stability and safety conditions for NN controlled systems
from Chapter 6 using loop transformation. Then, these conditions are incorporated in the
IL process, which trades off between the IL accuracy, and size of the stability margin. We
propose an ADMM based algorithm to solve the IL problem. Finally, we illustrate the
method on an inverted pendulum example, and an aircraft example.
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Chapter 8

Conclusions and Future Work

In this dissertation we present an approach to control synthesis and analysis of nonlinear
and NN controlled systems with robustness guarantees. The approach merges dissipation
inequalities and IQCs that describe perturbations A and nonlinear activation functions in
the NNs. In Chapter 3, we present a method for outer-approximating the FRS of uncertain
nonlinear system on a finite time horizon. Both soft and hard factorizations of IQCs are con-
sidered to characterize perturbations. In Chapter 4, we switch from analysis problem to the
control synthesis problem: given a target set, we present a method for computing a control
law that steers the system to the target set, and its associated BRS inner-approximations.
In Chapter 5, we propose a hierarchical planning and control framework, where a tracking
controller is designed based on the missmatch between the planning and tracking models.
The tracking controller guarantees that the error between the planning and tracking trajec-
tories is bounded. In Chapter 6, stability conditions are derived to assess local stability and
compute ROA inner-approximations of NN controlled LTT systems. Local IQCs are used to
capture the sector and slope information of nonlinear activation functions. In Chapter 7, we
convexify the stability conditions from Chapter 6 using loop transformation. These convex
conditions are then incorporated in the IL process to robustify the learned NN controllers.

The key idea of this dissertation is to merge dissipation inequalities with IQCs to provide a
unified framework for analysis and control synthesis of uncertain nonlinear and NN controlled
systems. We briefly discuss several future directions along the path of this dissertation.

Disturbance accommodation and reachability analysis for NN controlled sys-
tems: In Chapter 6, we present a method for stability analysis of NN controlled LTI systems.
This method can be extended to the infinite time horizon reachability analysis for NN con-
trolled systems with £5 or polytopic bounded disturbances.

Compositional analysis of for interconnected NN controlled systems: In Chap-
ter 6, the proposed algorithm might not be able to scale to large-scale systems like power
systems, UAV swarms, or vehicle platoons that consist of many small interconnected subsys-
tems with NN controllers. A compositional approach (e.g. [92]) can be applied here to certify
the properties of the interconnected NN controlled systems, which decomposes the certifi-
cation problem into parallelizable, local problems for individual subsystems and a global
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problem that can be solved efficiently.

Stability analysis for NN controlled nonlinear systems: Although in Chapter 6 by
including IQCs we consider a limited types of nonlinearities (e.g., saturation, trigonometric
functions), we are not able to assess the stability of a general class of nonlinear system. It
is possible to apply SOS techniques to the framework in order to accommodate nonlinear
polynomial systems.

Reinforcement learning with stability and safety guarantees: In Chapter 7,
we derive and incorporate convex stability and safety conditions for LTI systems with NN
controllers in the imitation learning process, and these conditions are also possible to be
included in the reinforcement learning process, including policy gradient and actor-critic
algorithms.

Robust control of systems identified using neural state space models: Consider
a neural state space model © = fyn(z,u), where fyx is a NN function obtained through
system identification. We can design robust controllers for it by isolating the nonlinear
activation functions from the linear operations of the NN, and incorporating those activation
functions in the robust control framework using sector QCs. Other types of IQCs can be used
to cover the identification error between the neural state space model and the real dynamics.

Robust tracking of planning trajectories generated from Neural Network poli-
cies: In the literature, many planning algorithms are based on reinforcement learning and
imitation learning, and planning trajectories are generated using NNs. The tracking control
design method proposed in Chapter 5 can be combined with the IQC framework to account
for NN planning policies.

Improve the performance of robust controllers using reinforcement learning:
For a large batch of products with the same specification, like autonomous vehicles, each
individual product’s system dynamics are different from others’ due to the production error.
A robust controller can be designed to account for the dynamics difference between products.
Although this single robust controller guarantees to work on all the products, its performance
might be overly conservative for running each individual product, as it fails to consider the
specific dynamics of each product. Reinforcement learning can take the robust controller as
a good starting point for control design, and running reinforcement learning algorithm on
each product can further improve the control performance.
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Appendix A

Iterative Algorithm

The algorithm for solving optimization (5.11) is summarized below, the (k,y)-step of which
treats v as a decision variable. By minimizing v, the volume of Q‘W/J_l can be shrunk. In the

V-step, (A.1) enforces ny/jj C Q;/jj_l.

Algorithm 4 Alternating direction method

Input: function V° such that constraints (5.11) are feasible by proper choice of s, 1, &, 7.
Output: x,v,V.
1: for j =1: Ny do

2: (k,7)-step: decision variables (s,[, x,v). Minimize v subject to (5.11) using
V = V71 This yields (I, s}, 57 ;, k') and the cost 7/
3: V-step: decision variables (51,3, S5-56., Ss—9., V). Maximize the feasibility subject

to (5.11) as well as s1g — € € X[e], and
—s10- (V7 =)+ (V=) € e], (A1)

using (7 =7, 84, = siyi, S7i = 3]7‘71, k=r’, [ =17). This yields V7.
4: end for

The input to Algorithm 4 is a feasible initial guess V°. One candidate might be a
quadratic Lyapunov function V' obtained by solving Lyapunov equations using the linearized
error dynamics with LQR controllers. However, V' might be too coarse to be feasible for the
constraints (5.11). Here, we introduced a slack variable A > 0 to the constraint (5.11c) to
relax the constraint, and quantify how far V is away from a feasible candidate:

o

9% (fotge k) +A—ecTetl-(V—7)+s -ps

+ S2 - Pa + 53 Pw € E[(67£7 ﬁ'a w)] (AQ)

By iteratively search over two bilinear groups of decision variables, we minimize A until
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A < 0. Based on this idea, an algorithm to compute V° from V is proposed as Algorithm 5.

Algorithm 5 Computation of V°

Input: function V', and 7 > 0.
Output: V(i.

1. VPV
2: while A > 0 do
3: k-step: decision variables (s, [, k). Minimize A subject to

(5.11a-5.11b, A.2, 5.11d-5.11e), using V = VP ~ = 7.
(lprey Sg,riev 8173;'67 Hpre) — (la S4,i5 57,05 H)

4: V-step: decision variables (51,3, S5-56.4, Ss—9.4, V). Minimize A subject to
(5.11a-5.11b, A.2, 5.11d-5.11e) using (v = 7, 54, = Sy, 570 = Sp4 .,k = K>,
| = pe),

Ve v

5: end while

L VO ey

(=2}
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