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Abstract.   Incorporating uncertainty is critical to developing robust decision support tools for 
sustainable design. Currently, designers and consumers have few tools that compare the 
ranges of environmental and social impacts among potential supply chain options. 
Methodologies such as Life Cycle Assessment (LCA) often provide point estimates of the 
impacts of materials and manufacturing operations on unit bases, but they are not as well 
suited to express uncertainty associated with many supply chain choices. This work presents a 
decision support tool that assesses the sustainability of supply chains while incorporating 
uncertainty.  The core contribution is a methodology for assimilating uncertain impact data 
such that designers or consumers can compare the impacts of a product’s possible supply 
chains. This is possible even if data are missing, through the use of a form of Uncertainty 
Propagation that factors in data from similar supply chains. A web-based decision support tool 
combines impact information from disparate sources and visualizes the resulting uncertainty in 
an intuitive way. We discuss several application areas, as well as techniques for determining 
when our methodology might be limited.  

Introduction.  Where and how a product is made has significant impacts on its triple bottom 
line, or economic, environmental, and social impacts.  Much of the world’s manufacturing is 
moving from developed to developing countries where rules on occupational health and 
environmental emissions are less stringent.  Upfront design decisions determine the complexity 
of assembly and material selection, affecting where and how something will be made. Despite 
this importance, there are a limited number of tools that can help designers make informed 
decisions regarding their product supply chain amidst uncertain information. A case study of a 
laptop computer recycling supply chain demonstrates how the methodology handles and 
presents real, imperfect data to help the user make optimal supply chain choices. This 
methodology enables several applications ̀ 1) improving LCA estimates by better utilizing 
crowd-sourced data, 2) reducing LCA estimate uncertainty with targeted data gathering, and 3) 
robustly computing low-impact supply chain choices using uncertain LCA data. verall, ̀ this 
combined approach merges LCAs from various sources to create initial estimates, despite 
potential missing data ̀ a task none of the comprising estimates could do by itself.  

Related Work.  Related research falls under three areas: 1) LCA tools that incorporate 
tradeoffs amount Triple Bottom Line factors, 2) the use of quantitative Data Quality Indicators 
(DQI) for 
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propagating uncertainty, and 3) visualization techniques for encoding complex information about 
supply chains. This work synthesizes elements from each of these areas into a decision support 
tool, highlighting some promising research directions at their intersection. 

First, while LCA research has largely focused on modeling environmental burdens, sustainability 
research increasingly recognizes that factors such as social and economic sustainability are 
needed to make sustainable decisions. In the context of supply chains, Hutchins and Sutherland 
(2008), Yakovleva et. al. (2011), and Nagurney and Nagurney (2010), all provide frameworks for 
aspects of the triple bottom line. Our work extends this prior work in Triple Bottom Line (TBL) 
indicators by providing a method for visualizing those tradeoffs and the associated uncertainty. 

Second, a central problem for supply chain LCA is that data sources are diverse and of varying 
quality. Research in quantitative Data Quality Indicators (DQI) attempts to derive quantitative 
estimates of uncertainty using that data quality (Lloyd and Reis 2007). All of these approaches 
derive mathematical forms that allow them to translate subjective DQI indicators into numerical 
estimates; e.g., hybrid Monte Carlo simulations (Wang and Shen 2013) or Bayesian Hierarchical 
Models (Neuman et. al. 2012). Though both utilize DQIs, unlike traditional LCAs which are 
concerned with accurate measurement of existing products and processes, ImpactMap is aimed 
at earlier stages when a designer is selecting potential supply chains or processes. In these 
cases, the focus is not on the accuracy of the resulting LCA, but rather on identifying potential 
best or worst case scenarios to direct further research efforts and gather more information.  

Lastly, a number of online tools provide visualizations related to sustainability and supply chains, 
but few combine this information with TBL and uncertainty data. The most common visualization 
of supply chains is through a 2D map projection; i.e., Sourcemap (2010) and Patagonia’s The 
Footprint Chronicles (2012). For more specific TBL indicators, several sites offer dashboards 
that aggregate and display impact information. For example, The Social Hotspots Database 
(2010) aggregates social impacts, and Earthster (2012) aggregates environmental impacts. 
Sustainable Minds (2012) and EIO-LCA (2008) both aggregate TBL indicators across industry 
sectors, but they do not explicitly factor in supply chain decisions or uncertainty across that 
chain. ImpactMap combines the TBL indicators, uncertainty modeling, and visualization 
strategies of prior work which provides a more informative view than the sum of its parts. 

Methodology.  Impact Map allows a designer to compare different supply chain choices based 
on their own user-selected triple bottom line criteria. This tool accommodates data from a range 
of sources and displays the variance based on this quality. 

Data Collection and Categorization. Since TBL impacts data are typically found in different 
databases, a standard data collection protocol with four categories was established:  

• Question Selection- What type of information was being sought?
• Unit Selection – In what units is the information being stored? (e.g. USD/hour, kg CO2 eq.)
• Geographic Specification – Where is this data relevant?
• Level Selection – How  process-specific is this data?

Quality of data was rated based on three criteria: (1) Acquisition method (was the data 
measured, or an estimate), (2) Independence of data supplier (was data provided by 
independent source or interested party) (3) Temporal correlation (is this data taken within the 
last few years or is it old) (Junnila & Horvath, 2003). This data quality was later used to indicate 
the level of certainty, or variance, associated with the overall sustainability results obtained.  
Lastly, a precedence hierarchy was established to show the precision of the data by location 
and process (Fig. 1), allowing us to quantify how closely a data source matches the location and 
process we are interested in. For example, when classifying worker wages, finding an average 
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wage for the entire recycling sector is more general than finding wages for a worker working in 
an e-waste recycling plant performing the task of collection and sorting.  

 
Figure 1:  Data Approximation Levels.  If data is not available for a given facility or process, we approximate it with 
less accurate data from outer levels, such as the general industry or country. 
 
Uncertainty Propagation. Given a particular set of data, our goal is to determine how possible 
supply chains compare to each other, and what changes in the chain are likely to have a large 
impact. To do this, we normalize each of the triple bottom line impacts on a 0-100 scale and use 
data quality to estimate the uncertainty in that score, where 0 is the worst possible supply chain 
choice in the database, and 100 is the best. The TBL impact scores are composed of a 
weighted sum of sub-indicators that have been suitably normalized; for example, social impacts 
might be composed of estimates of child labor rates and living wage conditions. Each of these 
sub-indicators has its own associated uncertainty, and propagates that to the overall impact 
scores. The approach to handling this propagation centers around three main assumptions: 

1. The sub-indicators for a particular location or process are modeled as normally 
distributed random variables whose variance is controlled by the quality of data. 

2. If indicator data specific to a particular process or facility are missing, the model 
substitutes more general data in its place, at the cost of additional variance. 

3. If certain sub-indicators; e.g., child labor rates, eco-toxicity levels, etc. are more or less 
important to users, they can use a weighted linear combination of each indicator. 

 
Modeling Uncertainty in Individual Indicators. The first element of uncertainty in the impact of a 
supply chain lies in estimating a particular sub-indicator value for a process and location; e.g., 
CO2 Emissions for a silicon etching facility in Fremont, CA, USA. This paper treats each of those 
data points (𝑑𝑖  ;  𝑖 ∈ {1, … ,𝐷}) as a normally distributed random variable where 𝜇(𝑑𝑖) is the 
value of a sub-indicator at 𝑑𝑖  normalized to [0,1] by the max and min values over all data points 
for that indicator. Constants 𝑚𝑎𝑥𝐷𝑄 and 𝑚𝑖𝑛𝐷𝑄 are the max and min data quality numbers. 

𝜇𝑖𝑛𝑑(𝑑𝑖) =
𝑑𝑖−min𝑑𝑗 𝜇𝑖𝑛𝑑�𝑑𝑗�

max𝑑𝑗 𝜇𝑖𝑛𝑑�𝑑𝑗�−min𝑑𝑗 𝜇𝑖𝑛𝑑�𝑑𝑗�
  ;    𝜐(𝑑𝑖) =  𝛼 �𝑚𝑎𝑥𝐷𝑄−𝐷𝑄(𝑑𝑖)

𝑚𝑎𝑥𝐷𝑄−𝑚𝑖𝑛𝐷𝑄
� + 𝜀 (1) 

The first key assumption in this work lies in the definition of 𝜐(𝑑𝑖), which is a linear function of a 
point’s data quality 𝐷𝑄(𝑑𝑖). The 𝜀 parameter defines the minimum noise attainable, and the 𝛼 
parameter defines a penalization term for poor data quality. These constant can be set to mirror 
the DQI bounds given by prior work, or might be estimated from data.  
 
Borrowing Data from Related Processes. If sub-indicator data is missing for a supply chain 
process and location, we would adapt information from related locations and processes to 
approximate the estimate. Consider a process in a facility as being the deepest in a series of 
levels, shown in Fig. 1. If no information is available for that facility, but the average for that 
process across the city in which the facility is located is known, this gives a noisy estimate for 
that facility. If city information is unavailable, we propagate up to region and country level 
estimates. An analogous procedure happens for process, industry, and economic sector data. 
As the available indicator data becomes less related to the specific process and facility, w 
increase the variance using a variance multiplier 𝛽, which has the following linear form: 
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𝛽 =  1 + 𝛾 ∙
𝑙𝑜𝑐𝑙𝑒𝑣𝑒𝑙 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑙𝑒𝑣𝑒𝑙

#𝑙𝑜𝑐𝑙𝑒𝑣𝑒𝑙𝑠 + #𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑙𝑒𝑣𝑒𝑙𝑠
 ;     𝜈�𝑖𝑛𝑑 =  𝛽 ∙ �̅�𝑖𝑛𝑑 (2) 

where 𝑙𝑜𝑐𝑙𝑒𝑣𝑒𝑙 and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑙𝑒𝑣𝑒𝑙 refer to how many levels away from the bottom the data is 
from (e.g., facility = 0, city = 1, region=2, etc.), and #𝑙𝑜𝑐𝑙𝑒𝑣𝑒𝑙𝑠 and #𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑙𝑒𝑣𝑒𝑙𝑠 refers to the 
maximum number of levels (3 for location, 2 for process). The constant 𝛾 sets the strength of 
penalization for the approximation, and can either be set manually, or estimated from data. 
 
Combining Indicator Estimates. At this point, all sub-indicators for the entire supply chain have 
been estimated individually as normal random variables. For the entire supply chain, we use a 
weighted linear combination of these estimators, where the user can input values for how 
important various sub-indicators are. These weights are then normalized (∑ |𝑤𝑖|𝑖∈𝑠𝑢𝑏−𝑖𝑛𝑑 = 1), 
and the summary indicator mean and variance is given by: 

𝜇𝑖𝑛𝑑 = ∑ 𝑤𝑖 ∙ �̅�𝑖     ;     𝜐𝑖𝑛𝑑 = ∑ 𝑤𝑖2 ∙ 𝜈�𝑖𝑖∈𝑠𝑢𝑏−𝑖𝑛𝑑𝑖∈𝑠𝑢𝑏−𝑖𝑛𝑑   (3) 
This assumes that the error in each part is uncorrelated to the other parts. 
 
Map Visualization and Interaction. ImpactMap encodes supply chains through a 2D map that 
visualizes both the structure and impacts of the supply chain, as well as data about the supply 
chain impacts. As shown in Fig. 3(a) the map can represent data at different levels of fidelity: 
country, region, city, and facility. The colors for the map are derived from the weighted indicator 
factors calculated in Eqn. 3, which are linearly transformed into a red (worse) to green (better) 
color map. Clicking on a location creates a comparison view, shown in Fig. 2(b), where the color 
scale shifts to display the difference in means normalized by the selected location’s uncertainty: 

𝑆(𝑙, 𝑙′) =  𝑙−𝑙
′

𝜎(𝑙′)
  (4) 

where 𝑙 is any of the possible alternative locations, 𝑙′ is the selected reference location, and 
𝜎(𝑙′) is the standard deviation of the impact value for the reference location. This scaling makes 
it easier to determine net positive (green) vs. net negative (red) changes, and it incorporates the 
data uncertainty to help identify choices that will make a meaningful difference. For each impact, 
a gauge with 0-100 scale is provided where 0 represents the worst possible choice of supply 
chain and 100 the best. The grey region represents a 95% confidence interval.  
 
Indicator Components and Weightings. If a particular user desires more information, he or she 
can click on the name of a particular indicator and a set of additional information will drop down 
beneath that indicator, as shown in Fig. 3(c). In the cases where a user has different 
preferences regarding which indicators they think are important, they can adjust the weighting of 
each indicator as shown in Fig. 4(b). Negative values represent indicators where a higher 
amount of the indicator (such as emissions) is undesirable. 
 

  
(a) No location selected. (b) Australia as the selected reference. 

Figure 2:  Comparing Reference Locations.  Clicking on a particular country renormalizes impact estimates with 
respect to that location. 
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Figure 3:  Elements of ImpactMap.  (a) Indicator information at different granularity. (b) Summary gauges for each 

indicator. (c) Detailed source information for further investigation. 
 
Case Study.  An example case study was conducted by selecting a laptop recycling supply 
chain, and used ImpactMap to assess possible supply chain options. An example of a recycling 
chain is shown in Fig. 2(a), which has fairly good social impact performance, but relatively poor 
environmental performance. Of the supply chain locations, one can see that the processing 
location in Japan has the lowest environmental score across countries of interest (Fig. 2(a)). 
 
One can observe relative changes in environmental indicators by selecting alternative 
processing locations within Japan such as Kato, Japan. It has significantly better environmental 
performance, along good general performance in South Korea, though no specific facilities for 
that process exist in the database. This provides avenues for future identification of suppliers. 
Figure 4 demonstrates how these conclusions might change when shifting the weight of the 
environmental focus. If solely considering Greenhouse Gas (GHG) emissions by giving zero 
weight to other sub-indicators (e.g., water toxicity), then Japan far outperforms surrounding 
options (Fig. 4(c)). Depending on the priorities of the company, ImpactMap can be used to 
explore different combinations of economic, social, and environmental indicators. 
 

   
(a) Possible Alternatives near 

existing location. 
(b) Changing weightings to reflect only GHG 

Emissions. 
(c) Japan as better choice for 

minimizing GHG impacts 
Figure 4:  Selecting Alternate locations.  Under uniform environmental weightings, we may choose a different 

processing facility in Japan or South Korea to improve environmental impacts. 
 

Discussion and Conclusions.  This paper developed a scoring methodology and a map-based 
visualization tool to describe a supply chain’s end of life impacts in three different areas: 
economic, environmental, and social. A key element in the scoring methodology is how it 
propagates uncertainty among heterogeneous data sources and borrows information from 
related data. Without other prior knowledge regarding the relation between data quality and 

(a)

(b)

(c)
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variance, the linear form for variances in Eqns. 1 & 2 is a reasonably simple and interpretable 
model since the results are only used for comparison purposes.  
 
The tool compares available supply chain locations and lists specific sources by indicator for 
further research, with indicator weights that can be specified by the user. In the given case 
study, this weight sensitivity provided different and informative views of an example supply 
chain. Combined with the comparison map view, the gauges allow users to define priorities 
among the three impacts and explore possible alternative options. Further work could explore 
methods of visualizing or summarizing this sensitivity. ImpactMap was intended for use in the 
earlier process of a supply chain design and is rather a coarse-grained tool for directing more 
rigorous future investigation such as uses in  final analysis or optimization, limited in other 
existing LCA software. The current development enables designers to explore potential supplier 
relationships or make product design decisions that will alter the material or manufacturing 
processes used without requiring the depth of modeling required by professional LCA tools. 
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