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Quantum indistinguishability plays a crucial role in many low-
energy physical phenomena, from quantum fluids to molecular
spectroscopy. It is, however, typically ignored in most high-
temperature processes, particularly for ionic coordinates, implic-
itly assumed to be distinguishable, incoherent, and thus well
approximated classically. We explore enzymatic chemical reac-
tions involving small symmetric molecules and argue that in many
situations a full quantum treatment of collective nuclear degrees
of freedom is essential. Supported by several physical arguments,
we conjecture a “quantum dynamical selection” (QDS) rule for
small symmetric molecules that precludes chemical processes that
involve direct transitions from orbitally nonsymmetric molecular
states. As we propose and discuss, the implications of the QDS
rule include (i) a differential chemical reactivity of para- and ortho-
hydrogen, (ii) a mechanism for inducing intermolecular quantum
entanglement of nuclear spins, (iii) a mass-independent isotope
fractionation mechanism, (iv) an explanation of the enhanced
chemical activity of “reactive oxygen species”, (v) illuminating the
importance of ortho-water molecules in modulating the quantum
dynamics of liquid water, and (vi) providing the critical quantum-
to-biochemical linkage in the nuclear spin model of the (putative)
quantum brain, among others.

quantum chemical reactions | quantum indistinguishability | nuclear spin
coherence | Berry phases in chemical reactions

The far-reaching impact of quantum indistinguishability in
few-particle collisions, in molecular spectroscopy (1), and in

the low-temperature behavior of macroscopic many-body sys-
tems (e.g., superfluidity) is well appreciated and extensively stud-
ied (2). However, the role of indistinguishability for the dynamics
of macroscopic systems at high temperature remains virtually
unexplored, typically neglected due to the presumed absence
of necessary quantum coherence. For cohesion of both solids
and molecules, while electrons are treated quantum mechan-
ically, the much heavier ions are treated as distinguishable
and classical. Moreover, in chemical reactions of molecules
in solution, nuclear spins are generally believed to play little
role, despite their macroscopic quantum coherence times [espe-
cially for spin-1/2 nuclei (3, 4)]. However, for small symmetric
molecules the Pauli principle can inextricably entangle the coher-
ent nuclear spin dynamics with the molecular rotational prop-
erties. The latter must modulate chemical reaction rates, even
if weakly, thereby coupling nuclear spin dynamics to quantum
chemistry.

Molecular hydrogen offers the simplest setting for discussing
the interplay of indistinguishability and chemical reactivity.
While the two electrons are tightly bound in a symmetric molec-
ular orbital, the proton nuclear spins are weakly coupled, so
that molecular hydrogen comes in two isomers, parahydrogen
(nuclear spin singlet) and orthohydrogen (nuclear spin triplet).
Treating the motion of the nuclei quantum mechanically, the
Pauli principle dictates that molecular para- and orthohydrogen
rotate with even and odd angular momentum, respectively.

A natural question, that to the best of our knowledge has not
been asked, is whether the para- and orthospin isomers of molec-
ular hydrogen exhibit different chemical reaction rates in solvent.
If yes, as might be expected from the different rotational proper-
ties of the two spin isomers, what is the magnitude and “sign” of

the effect? Intuitively, one might expect such effects to be small,
especially at temperatures well above the rotational constant.

In this paper we explore this and related questions in a
number of systems, focusing on enzymatic reactions with the sub-
strate consisting of a small symmetric molecule, characterized
by a “quasi-angular momentum,” Lquasi (defined in Theoretical
Framework). As we elaborate and motivate in the next section,
and in contrast to the aforementioned “conventional wisdom,”
such bond-breaking chemical reactions can be very sensitive to
nuclear spin states, via Pauli transduction through the allowed
molecular rotations. Our central conjecture is that symmetric
molecules can have only a direct bond-breaking chemical reac-
tion from a state with an orbitally symmetric wavefunction, i.e.,
with zero quasi-angular momentum Lquasi = 0 (e.g., the symmet-
ric parahydrogen). On the other hand, a molecule constrained
by Fermi/Bose indistinguishability to have a nonzero odd orbital
angular momentum is precluded from breaking its bond by a
“quantum dynamical selection” (QDS) rule. Physically, this is
due to a destructive interference between the multiple possible
bond-breaking processes—one for each of the symmetry-related
molecular orbital configurations. We emphasize that QDS is
not of energetic origin and is predicted to be operational even
if the molecule’s rotational constant is much smaller than the
temperature.

It should be noted that the “radical-pair mechanism” (5) has
been proposed as a process for nuclear spins modulating chemi-
cal reaction rates. However, the radical-pair mechanism is quite
distinct from the QDS mechanism, with no role for the quantum
mechanics of the nuclear coordinates in the former and no role
for electron spins (free radicals) in the latter.
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Before exploring the role of quantum indistinguishability in
chemical processes, we briefly comment on the important issue
of quantum decoherence, the common prejudice being that rapid
decoherence in a wet solution will render all quantum phenom-
ena inoperative. Indeed, elevated temperatures will generally
move a system toward classical behavior. For example, when a
physical process oscillating with a characteristic frequency, ω,
is immersed in a thermal environment, quantum effects will
typically wash out for T ≥ ~ω/kB . At body/room temperature
it is thus only phenomena oscillating at very high frequencies
(1013 Hz, say, such as molecular vibrational modes) where quan-
tum mechanics can modify the dynamics. But this argument
implicitly presumes thermal equilibrium.

Nuclei with spin-1/2 in molecules or ions tumbling in water
are so weakly coupled to the solvent that macroscopic coher-
ence times of seconds or minutes are possible and regularly
measured in liquid-state NMR (6). But weak coupling is a two-
way street; if the solvent disturbs only weakly the nuclear spins,
the nuclear spin dynamics will only weakly disturb the dynam-
ics of the molecule and the surrounding solvent. However, small
symmetric molecules, where quantum indistinguishability can
entangle nuclear spin states with molecular rotations, provide an
exception.

As we detail in Theoretical Framework and Planar Symmet-
ric Molecules, the symmetry of the nuclear spin wavefunction
in such symmetric molecules will dictate a characteristic quasi-
angular momentum, Lquasi—equal to a small integer in units of
~—that is symmetry protected even in the nonrotationally invari-
ant solvent environment. And, provided the molecule’s thermal
angular momentum is much larger than ~ the environment can-
not readily measure Lquasi, so that the different nuclear-spin
symmetry sectors will remain coherent with one another for
exponentially long times. Remarkably, even though the solvent
is ineffective at measuring Lquasi, we argue that enzymes (which
catalyze irreversible bond-breaking chemical reactions) can, in
effect, measure Lquasi—implementing a projective measurement
onto Lquasi = 0.

The rest of this paper is organized as follows. In Theoreti-
cal Framework, focusing on small symmetric molecules with Cn

symmetry, we formulate the general problem and then for con-
creteness specialize to the case of n = 2 and n = 3. With this
formulation, in Quantum Dynamical Selection Rule we then state
our QDS conjecture, discussing both physical and mathematical
plausibility arguments for it in Arguments for QDS Conjecture.
We conclude in Conceptual and Experimental Implications with
experimental implications of the QDS rule, proposing a number
of experiments to test the conjecture.

Theoretical Framework
Beyond Born–Oppenheimer Approximation. In this section we
present the basic framework for our subsequent discussion of
the role of symmetry and quantum indistinguishability in chem-
ical processes involving catalytically assisted bond breaking in
symmetric molecules. In molecular processes the electrons, as
fast degrees of freedom, are appropriately treated as fully
quantum-mechanical indistinguishable fermions. In contrast,
the constraints of quantum indistinguishability on the nuclear
orbital degrees of freedom when treated within the Born–
Oppenheimer approximation are invariably neglected, especially
in solution chemistry [although not always in molecular spec-
troscopy (1)]. The molecular dynamics and chemical reactions
are thus assumed to be fully controlled by classical motion of
the molecular collective coordinates on the Born–Oppenheimer
adiabatic energy surface. While this may be adequate for some
systems, we argue that it can be wholly insufficient for chem-
ical reactions in small symmetric molecules. As we discuss, in
such systems, the nuclear and electron spin degrees of freedom
can induce Berry phases that constrain the molecular orbital

dynamics on the adiabatic energy surface, which must then
be treated quantum mechanically since these Berry phases
do not enter the classical equations of motion. As we argue,
the presence of Berry phases can have strong and previously
unappreciated order-one effects in chemical bond-breaking
processes.

Planar Symmetric Molecules. For simplicity of presentation we
focus primarily on molecules which possess only a single n-
fold symmetry axis that under a 2π/n planar rigid-body rotation
(implemented by the operator Ĉn) cyclically permutes n indistin-
guishable fermionic nuclei. A water molecule provides a familiar
example for n = 2 and ammonia for n = 3, wherein the protons
are cyclically permuted.

For such molecules the nuclear spin states can be conve-
niently chosen to be eigenstates of Ĉn , acquiring a phase fac-
tor (eigenvalue) ω−τn with ωn = e i2π/n and the “pseudospin”
τ taking on values τ = 0, 1, 2, ...,n − 1. Due to Fermi statistics
when the molecule is physically rotated by 2π/n radians around
the Cn symmetry axis, the total molecular wavefunction—
which consists of a product of nuclear rotations, nuclear spins,
and electronic molecular states—must acquire a sign (−1)n−1

due to a cyclic permutation of fermionic nuclei. Provided
the electron wavefunctions transform trivially under the Cn

rotation, this constraint from Fermi statistics of the nuclei,
e i(−2πτ/n+2πL/n−π(n−1)) = 1, implies that the collective orbital
angular momentum of the molecule is constrained by τ , tak-
ing on values L=Lquasi +nZ with the quasi-angular momentum
given by

Lquasi =

{
τ , n odd,
τ +n/2, n even. [1]

Molecular trimer of identical fermionic nuclei. For illustrative
clarity we first formulate the problem for the case of n = 3, spe-
cializing to three identical fermionic nuclei with nuclear spin 1/2
and electrical charge +1. We focus on a singly ionized trimer
molecule T≡A+

3 undergoing a chemical reaction,

A+
3 →A2 + A+, [2]

into a singly ionized atom, A+, and a neutral dimer molecule,
D≡A2. The process is schematically displayed in Fig. 1, where
the molecular trimer is composed of the three fermionic nuclei

Fig. 1. Schematic of a bond-breaking chemical reaction. (Left) Initial state
of a C3 symmetric molecule with two molecular electrons (blue) bonding
the three nuclei (red) together. (Center) An intermediate state where the
reaction is catalyzed by an enzyme that “grabs” two of the nuclei, weaken-
ing their bonds to the third by depletion of electronic charge. (Right) Final
product state composed of a molecular dimer and an isolated atom.
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with creation operators, F̂ †α, in spin state α= ↑, ↓, that form a C3

symmetric molecular configuration characterized by a collective
coordinate φ. The nuclei part of such a molecular state is created
by the three-nuclei operator,

T̂ †τ (φ) =
∑
αβγ

χταβγF̂
†
α(φ)F̂ †β(φ+ 2π/3)F̂ †γ (φ+ 4π/3). [3]

The three-nuclei spin wavefunction χταβγ is chosen as a τ

representation of cyclic permutations, an eigenstate of Ĉ3,

Ĉ3χ
τ
αβγ =χτγαβ =ωτ3χ

τ
αβγ , [4]

with ω3 = e i2π/3, required by (Ĉ3)
3

= 1. Thus, for this trimer
molecule, τ takes one of three values, τ = 0, 1, 2 (or equivalently,
τ = 0,±1). By construction T̂τ (φ) then also forms an irreducible
representation of Ĉ3, satisfying

T̂τ (φ+ 2π/3) =ωτ3 T̂τ (φ). [5]

We will at times refer to τ as a pseudospin that encodes both the
nuclear spin and the orbital qubits, entangled through the Pauli
principle of identical nuclei.

Because a discrete 2π/3 rotation executes a fermionic cyclic
interchange, the τ representation of the nuclear spin wavefunc-
tion imprints a nontrivial Berry phase ωτ onto the orbital degree
of freedom, φ, which we discuss below. For simplicity we have
suppressed the position coordinate describing the center of mass
of the trimer molecule as well as the orientation of the normal to
this planar trimer molecule.

In addition to the nuclei, a correct description of a molecule
must also consist of bonding electrons that, within the Born–
Oppenheimer approximation, occupy the molecular orbitals.
For concreteness we consider a (singly ionized) molecule with
only two electrons that form a spin singlet in the ground-state
molecular orbital ψT (r;φ), where the subscript denotes the
trimer nuclear configuration. This wavefunction transforms sym-
metrically under Ĉ3, satisfying ψT (r;φ+ 2π/3) =ψT (r;φ). We
denote the electron creation operator in this orbital as

ĉ†σ(φ) =

∫
r
ψT (r;φ)ĉ†σ(r). [6]

The trimer molecular state we thus consider can be written as

|T 〉=
∑
τ

∫
φ

Ψτ (φ)ĉ†↑(φ)ĉ†↓(φ)T̂ †τ (φ)|vac〉⊗ |E〉φ , [7]

characterized by an orbital wavefunction in the τ representation,

Ψτ (φ+ 2π/3) =ωτ3 Ψτ (φ). [8]

Were the general orbital wavefunction Ψτ (φ) expanded in
angular-momentum eigenstates, e iLφ, with L∈Z, this constraint
implies that L=Lquasi + 3Z with a quasi-angular momentum
Lquasi = τ , consistent with Eq. 1 for n = 3.

In Eq. 7 the ket |E〉φ denotes the initial quantum state of the
environment—i.e., the solvent and enzyme—that is entangled
with the molecular rotations through the angle φ, as generically
the environment can “measure” the molecular orientation. Note
that we have implicitly assumed that the initial state of the envi-
ronment does not depend on τ , so that |E〉φ+2π/3 = |E〉φ. For a
molecule with thermal angular momentum LT (defined through
~2L2

T/I = kBT , with moment of inertia I) that is much greater
than one, LT � 1, the solvent is ineffective in “measuring” the
molecular quasi-angular momentum, which is a small fraction
of LT . Indeed, the quasi-angular momentum decoherence time

should be exponentially long for large thermal angular momen-
tum, varying as tτcoh∼ t0 exp(cL2

T ) with an order one constant c
and t0 a microscopic time of order 1 ps.
Molecular dimer and atom products state. As illustrated in Fig.
1, the bond-breaking reaction proceeds through an intermediate
enzymatic stage that is challenging to describe microscopically.
Through its interaction with the electronic orbital degrees of
freedom the enzyme temporarily binds and “holds” two of the
nuclei, separating them from the third nucleus. This causes
molecular rotations to cease and also weakens the molecular
bonds. We assume that the final product state consists of a neu-
tral molecular dimer, D≡A2, held together by the two electrons
and a singly ionized atom A+. The orientation of the dimer
is characterized by a single angle coordinate, which we again
denote as φ (Fig. 1).

This final product state |P〉 can then be expressed as

|P〉=
∑
τ

aτ

∫
φ

∑
µ,αβγ

Ψµ(φ)χταβγ |Aα〉|Dβγ ,φ〉⊗ |E∗〉φ , [9]

where |E∗〉φ describes the state of the environment (solvent plus
enzyme) after the chemical reaction, |Aα〉= F̂ †rA,α|vac〉 denotes
the state of the atom (located at position rA), and the state of the
dimer molecule (located at position rD ) is given by

|Dβγ ,φ〉= F̂ †rD ,β(φ)F̂ †rD ,γ(φ+π)ĉ†↑(φ)ĉ†↓(φ)|vac〉. [10]

The electron creation operators on the dimer molecule are
given by

ĉ†σ(φ) =

∫
r
ψD(r;φ)ĉ†σ(r), [11]

with the ground-state molecular orbital for the dimer molecule
(when oriented at angle φ) ψD(r;φ) assumed to transform
symmetrically under the C2 symmetry of the dimer molecule,
ψD(r;φ+π) =ψD(r;φ). The dimer orbital wavefunction Ψµ(φ)
transforms as Ψµ(φ+π) = e iµπΨµ(φ) with µ= 0, 1.

Because we do not expect the nuclear spins state in each τ
sector to change appreciably through the chemical reaction, the
atomic and dimer states remain entangled through the original
nuclear spin wavefunction, χταβγ . We have introduced an overall
amplitude, aτ , which we discuss further in Quantum Dynamical
Selection Rule.

Since an enzymatic chemical reaction will typically be strongly
exothermic (releasing, for example, a fraction of electron volts in
energy), the quantum state of the environment after the reaction,
|E∗〉φ, will be very different from before the chemical reaction,
|E〉φ—that is, φ〈E∗|E〉φ = 0.
Generalization to arbitrary n-mer. Here we briefly generalize
from n = 3 to a planar molecule with n-fold symmetry consisting
of n fermionic spin-1/2 nuclei. The nuclear spin wavefunc-
tion χτα1α2...αn

can be chosen as an eigenstate of the cyclic
permutation symmetry, Ĉn ,

Ĉnχ
τ
α1α2...αn

=χταnα1α2...αn−1
=ωτnχ

τ
α1α2...αn

, [12]

with ωn = e i2π/n required by (Ĉn)
n

= 1. The pseudospin now
takes on one of n values, τ = 0, 1, 2, ...n − 1. Due to Fermi
statistics of the nuclei the total molecular wavefunction must
acquire a factor of (−1)n−1 under a molecular rotation by 2π/n .
Assuming that the bonding electrons transform trivially under
Cn , the molecular orbital wavefunction (as in Eq. 8) must satisfy
Ψτ (φ+ 2π/n) = (−1)(n−1)ωτnΨτ (φ). Equivalently, the allowed
orbital angular momenta are given by L=Lquasi +nZ with the
quasi-angular momentum Lquasi given in Eq. 1.

Fisher and Radzihovsky PNAS | vol. 115 | no. 20 | E4553



Quantum Dynamical Selection Rule
We can now state our conjecture, which we refer to as a QDS
rule: A bond-breaking enzymatic chemical reaction on a symmet-
ric planar molecule implements a projective measurement onto
zero quasi-angular momentum, Lquasi = 0.

More generally, including for molecules with 3D rotational
symmetries such as H2 and CH4, our QDS rule implies the
following: Enzymatic chemical reactions that (directly) break
the bonds of a symmetric molecule are strictly forbidden from
orbitally nonsymmetric molecular states.

Here, “direct” implies that the transition proceeds without
the molecule first undergoing a nuclear spin flip. For example,
the orthostate of molecular hydrogen (which has odd angular
momentum) cannot undergo a direct bond-breaking transition
without passing through the parastate. For the n = 3 planar
molecule described in Planar Symmetric Molecules our QDS rule
implies that the amplitude in Eq. 9 vanishes unless τ = 0; that is,
aτ = δτ0. In the following section we present an argument that
offers support for the QDS rule.

Arguments for QDS Conjecture
For conceptual reasons it is helpful to divide the enzyme-
mediated chemical reaction into three stages, each a distinct
quantum state of the molecule and enzyme: (i) a state ψa , in
which the molecule is free to rotate and dynamical processes
that exchange the atoms are allowed; (ii) a state ψb , in which
the molecule’s rotations are stopped by the enzyme and dynam-
ical processes that exchange the atoms are forbidden; and (iii) a
state ψc , in which the chemical bond is broken and the molecule
is fragmented into its constituents. For each of these three quan-
tum states a careful discussion of the properties of the accessible
Hilbert space is necessary and is taken up in the first three
subsections below.

The full enzymatic chemical reaction corresponds to a process
that takes the system from state ψa to ψb and then to ψc . In
Indistinguishable-to-Distinguishable Projective Measurement, we
explore the Born and tunneling amplitudes between these quan-
tum states. Since these transitions are either microscopically or
macroscopically irreversible, the full enzymatic reaction should
be viewed as implementing “projective measurements” on the
molecule. As we demonstrate, the Born amplitude for the pro-
jective measurement vanishes unless Lquasi = 0, which offers an
argument for the validity of the conjectured QDS rule.

A Rotating Symmetric Molecule. We begin with a precise definition
of the initial quantum mechanical state of the rotating symmetric
molecule, offering three representations of the accessible Hilbert

A B C

Fig. 2. Three representations of a rotating diatomic molecule composed
of identical nuclei. (A) An explicit physical representation. (B) An effective
model for the dynamics of the angular coordinate, ϕ= 2φ∈ [0, 2π), for a
molecule with C2 symmetry, represented as a quantum bead on a ring with
Berry flux, Φ0 determined by the nuclear spin wavefunction. The bead wave-
function, ψa(ϕ), is discontinuous across an nth root branch cut (red squiggly
line), ψ+ = eiΦ0ψ−. (C) Placing the bead on an n-fold cover of the ring
with ϕ∈ [0, 2πn)—a Mobius strip for the n = 2 double cover—resolves any
ambiguity in the placement of the branch cut.

space. For the case of a diatomic (n = 2) molecule, these are
illustrated in Fig. 2.
Mapping to quantum bead on a ring. To proceed requires a care-
ful discussion of the Hilbert space for the “angle” kets that are
eigenkets of the angle operator, φ̂|φ〉=φ|φ〉. They are defined
(for n = 3) as |φ〉= T̂ †τ (φ)|vac〉, where T̂ †τ (φ) was introduced
in Eq. 3, with a natural generalization for all n . For the n-fold
planar molecule we have

|φ+ 2π/n〉= e iΦ0 |φ〉, [13]

with
Φ0

2π
=

Lquasi

n
, [14]

so that the angle kets are redundant on the full interval [0, 2π).
As such, it is convenient to restrict the angle φ∈ [0, 2π/n). Then,
we can define a new angle operator ϕ̂∈ [0, 2π) and its canonically
conjugate angular-momentum operator ˆ̀∈Z with [ϕ̂, ˆ̀] = i via

φ̂= ϕ̂/n; L̂=n ˆ̀+Lquasi. [15]

Consider the simplest Hamiltonian for a rotating molecule,

Ĥn =
L̂2

2In
+Vn(φ̂), [16]

with Vn(φ+ 2π/n) =Vn(φ) an environmental potential (e.g.,
the enzyme, solution, etc.), with its periodicity encoding the Cn

symmetry of the molecule. Reexpressing this Hamiltonian in
terms of the “reduced” variables Ĥn→Ĥ gives

Ĥ=
(ˆ̀+ Φ0/2π)

2

2I +U (ϕ̂), [17]

with a 2π-periodic potential, U (ϕ+ 2π) =U (ϕ)≡Vn(ϕ/n),
and a rescaled moment of inertia, I =n2In . This Hamiltonian
can be viewed as describing a “fictitious” quantum bead on a ring,
with a fictitious magnetic flux, Φ0, piercing the ring, as shown in
Fig. 2.

To expose the physics of this flux it is useful to consider the
Lagrangian of the quantum bead on the ring,

L=
1

2
I(∂tϕ)2−U (ϕ) +LB , [18]

with Berry phase term LB = (Φ0/2π)(∂tϕ). In a real (or imag-
inary) time path integral this Berry phase term contributes an
overall multiplicative phase factor,

e iSB = e iΦ0W , [19]

with W ∈Z a winding number defined via 2πW=ϕ(tf )−ϕ(ti),
where ti , tf are the initial and final times, respectively.

It must be emphasized that the wavefunction for the bead
on the ring, which we denote as ψa(ϕ), is not single valued for
Lquasi 6= 0, since ψa(ϕ+ 2π) = e iΦ0ψa(ϕ), so that a branch cut is
required. For the planar molecule with Cn symmetry this will
be an nth root of unity branch cut, while for the ortho-dimer
molecule it is a square-root cut. In either case, the wavefunction
across the branch cut is discontinuous, with the value on either
side of the branch cut denoted ψ+,ψ−, being related by a phase
factor ψ+ = e iΦ0ψ− (Fig. 2B). For an isolated molecule this
branch cut can be placed anywhere (gauge invariance) but during
the enzymatic bond-breaking process a natural gauge invariant
formulation is not readily apparent.
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Mobius strip and umbilic torus. To resolve any ambiguity in the
placement of the branch cut with bond breaking present, it is
helpful to view the bead as living on an n-fold cover of the
ring. Mathematically, we simply extend the range of ϕ to lie
in the interval ϕ∈ [0, 2πn), so that the wavefunction is peri-
odic in this enlarged domain, ψa(ϕ+ 2πn) =ψa(ϕ). For n = 2
with Lquasi = 1 this corresponds to a quantum bead living on
the (single) “edge” of a Mobius strip, as depicted in Fig. 2C.
At a given angle on the Mobius strip the wavefunction on the
opposite edges of the strip must have a sign change, since in
this case ψa(ϕ+ 2π) =−ψa(ϕ). For n = 3 with Lquasi =±1 the
quantum bead lives on a (three-sided) umbilic torus, which
must be circumnavigated three times before returning to the
same edge.

A “Not-Rotating” Molecule. A first step in the bond-breaking pro-
cess requires stopping the molecule’s rotation as it binds to the
enzyme. What does it mean for a small symmetric molecule to
be not rotating and perhaps having zero angular velocity? For
1D translational motion the linear (group) velocity of a quan-
tum particle is vg = ∂Ep/∂p, suggesting that angular (group)
velocity should be likewise defined, Ω = ∂EL/∂L. But angu-
lar momentum is quantized in units of ~, so this definition is
problematic.

One plausible definition of a molecule to be not rotating is
for its orbital motion to be described by a real wavefunction.
For odd n this is equivalent to requiring zero quasi-angular
momentum, Lquasi = 0, while for n even it is not since for Lquasi =
n/2 6= 0 a real wavefunction can still be constructed. But in either
case, once we allow for quantum entanglement between the
molecule and the solvent/enzyme the notion of the “molecule’s
wavefunction” becomes problematic.

We believe the best way to impose a not-rotating restric-
tion of the molecule is to impose a constraint that disallows a
dynamical rotation which implements an exchange of the con-
stituent atoms. This can be achieved by inserting impenetrable
potential wedges at angles centered around φ= 0 and φ=π, as
illustrated in Fig. 3A for the diatomic molecule. These wedges
restrict the molecular rotation angle so that one of the nuclei
is restricted to the upper half-plane, δ/2<φ≤π− δ/2, while
the other resides in the lower half-plane, π+ δ/2<φ< 2π− δ/2.
Rotations that exchange the nuclei are thereby strictly forbidden.
And the two nuclei, while still identical, have effectively become
“distinguishable”—even if their spins are aligned.

Upon mapping to the effective coordinate, φ→ϕ/n , the
wavefunction of the bead on the ring in this not-rotating configu-
ration, which we denote asψb(ϕ), is restricted to the line segment
ϕ∈ (δ, 2π− δ). As illustrated in Fig. 3B, the “ring” has in effect

A B

Fig. 3. Two representations of a nonrotating diatomic molecule composed
of identical nuclei. (A) An explicit physical representation with impenetrable
potential wedges inserted around φ= 0 and π that restrict the molecular
rotation angle and constrain one nucleus to the upper half-plane and the
other to the lower half-plane. These wedges strictly forbid all rotational
motions that dynamically exchange the two nuclei. The identical nuclei thus
become effectively distinguishable. (B) An effective quantum bead model,
where the ring, now restricted to the angular range, ϕ∈ [δ, 2π− δ), has
been cut open—and the bead is constrained to move on a line segment.

been “cut open.” As such, there is no meaning to be ascribed
to the effective flux through the ring, present in Fig. 2 for the
rotating molecule. In contrast to the n-fold cover of the rotating
wavefunction, ψa(ϕ+ 2πn) =ψa(ϕ), the nonrotating wavefunc-
tion ψb(ϕ) is defined on a single cover of the cut-open ring with
ϕ∈ (δ, 2π− δ).

A Bond-Broken Molecule. Once the molecule is not rotating and
the identical fermions are effectively distinguishable, a breaking
of the chemical bond is greatly simplified. As illustrated in Fig.
4A, with the impenetrable barriers present the molecular bond
can break and the constituent atoms are free to move off into
the upper and lower half-planes, respectively. Once the atoms
are physically well separated, their distinguishability no longer
rests on the presence of the impenetrable barriers.

In the quantum-bead representation, illustrated in Fig. 4B, the
bond-breaking process corresponds to the bead tunneling off the
line segment. As such, the location of the bead must now be spec-
ified by both the angle ϕ and a radial coordinate, r , the bead
wavefunction taking the form ψc(r ,ϕ).

Since this bond-breaking process will typically be macroscop-
ically irreversible, we assume that once the bead tunnels off the
line segment it will not return. The tunneling rate for this pro-
cess can be then expressed in terms of a Fermi’s golden rule,
Γb→c ∼ |Ab→c |2, with tunneling amplitude

Ab→c =

∫ 2π−δ

δ

dϕHbc(ϕ)ψ∗c (R,ϕ)ψb(ϕ), [20]

with Hbc a tunneling Hamiltonian and R the radius of the
molecule.

Indistinguishable-to-Distinguishable Projective Measurement. We
now turn to the more subtle process where the “rotating”
molecule transitions into the not-rotating state, which occurs
when the enzyme “catches” the molecule. When the molecule
is rotating, in state ψa , dynamical processes that interchange the
identical fermions are allowed and will generally be present. As
such, these identical fermions are truly “indistinguishable” in
the rotating state. But when the enzyme catches and holds the
molecule in place, in the state ψb , a projective measurement of
the atomic positions has been implemented (the enzyme is the
“observer”) and the identical fermions are now “distinguished.”

The transition rate for this process, Γa→b , can be expressed
as a product of a microscopic attempt frequency, ωab , and a
Born measurement probability, Pab , that is Γa→b =ωabPab . The
Born probability can in turn be expressed as the squared over-
lap of the projection of the distinguishable state, ψb , onto the
indistinguishable state, ψa , that is Pab = |〈ψb |ψa〉|2.

Since the rotating molecule wavefunction, ψa(ϕ), is defined
on the n-fold cover of the ring (Mobius strip for n = 2) with
ϕ∈ (0, 2πn), while the not-rotating wavefunction ψb(ϕ) lives on
a single cover of the line segment, ϕ∈ (δ, 2π− δ), the two states
are seemingly defined in a different Hilbert space. This ambigu-
ity can be resolved by noting that the Born amplitude projecting
from the Mobius strip onto the open line segment can occur from
any of the n edges of the Mobius strip. We thus conjecture that
these n processes must be summed over,

〈ψb |ψa〉=
n−1∑
m=0

∫ 2π−δ

δ

dϕ ψ∗b (ϕ)ψa(ϕ+ 2πm). [21]

Upon using the 2π periodicity condition for the Mobius strip
wavefunction, ψa(ϕ+ 2πm) = e imΦ0ψa(ϕ) with Φ0 = 2πLquasi/
n , this can be reexpressed as

〈ψb |ψa〉= Cn
∫ 2π−δ

δ

dϕ ψ∗b (ϕ)ψa(ϕ), [22]

Fisher and Radzihovsky PNAS | vol. 115 | no. 20 | E4555



A B

Fig. 4. Two representations of a bond-broken diatomic molecule composed
of identical but distinguishable nuclei. (A) An explicit physical representa-
tion with impenetrable potential wedges inserted at φ= 0 and π, allowing
for a bond-breaking process to the distinguishable-nuclei state. (B) An effec-
tive quantum bead on a ring model, restricted to the angular coordinate
range ϕ∈ [δ, 2π− δ), with bond breaking modeled by tunneling the bead
off the ring.

with the amplitude

Cn =

n−1∑
m=0

e imΦ0 =

n−1∑
m=0

e i2πmLquasi/n =nδLquasi,0. [23]

The Born probability Pab = |〈ψb |ψa〉|2 thus vanishes unless
Lquasi = 0, as does the rate, Γa→b , that the enzyme grabs and holds
the molecule in a nonrotating distinguishable configuration.

Physically, for Lquasi 6= 0, there is a destructive interference
between the n-parallel paths, each projecting from an edge of
the Mobius strip/torus onto the line segment. For the diatomic
molecule this is illustrated in Fig. 5, where the two contributions
with opposite signs will destructively interfere. The rate for this
process which stops the molecule’s rotation, Γa→b , will vanish
unless Lquasi = 0—the molecule simply cannot get caught by the
enzyme for nonzero Lquasi.

Since the enzymatic reaction requires both stopping the
molecules rotation, with rate Γa→b , and subsequently breaking
the chemical bond, with rate Γb→c 6= 0, the full chemical reaction
rate is

Γa→c =
Γa→bΓb→c

Γa→b + Γb→c
∼ δLquasi,0 [24]

and vanishes unless Lquasi = 0. Mathematically, the chemical
bond-breaking process is “blocked” by the presence of the
Berry phase, operative whenever the orbital molecular state is
nonsymmetric.

More physically, this blocking is due to the destructive inter-
ference between the n-possible bond-breaking processes—one
for each of the symmetry-related molecular orbital configura-
tions. These considerations thus provide support for our con-
jectured QDS rule that states the impossibility of (directly)
breaking a chemical bond of a symmetric molecule rotating
nonsymmetrically.

Conceptual and Experimental Implications
There are numerous experimental implications of the QDS rule.
Since this rule should indeed be viewed as a conjecture, it will
have to be validated or falsified by comparison of theoretical pre-
dictions with experiments. Below, we discuss some implications
of QDS.

Differential Reactivity of Para-/Orthohydrogen. Hydrogen provides
the most familiar example of molecular spin isomers, parahy-
drogen with singlet entangled proton spins and rotating with

even angular momentum, and orthohydrogen with triplet spin
entanglement and odd rotational angular momentum. Since the
allowed rotational angular momentum of such homonuclear
dimer molecules with S = 1/2 fermionic ions (protons) is given
by L=Lquasi + 2Z, the quasi-angular momentum, while zero for
parahydrogen, is equal to one for orthohydrogen. The presence
of the Berry phase in the rotation of orthohydrogen will suppress
the bond-breaking chemical reactivity.

Many microbes in biology (7) use H2 as a metabolite, and the
enzyme hydrogenase catalyzes the bond-breaking chemical reac-
tion, H2→ 2H+ + 2e−. Based on the QDS rule we would expect
a differential reactivity between para- and orthohydrogen, with
the reaction rate suppressed for orthohydrogen. Indeed, if this
reaction were to proceed “directly”—without an ionized inter-
mediary or a flipping of nuclear spin—QDS would predict a
complete blocking of orthohydrogen reacting. At body temper-
ature in a thermal distribution the ortho:para ratio approaches
3:1 (set by triplet degeneracy), while it is possible to prepare
purified parahydrogen where this ratio is strongly inverted (say,
1:10). One might then hope to observe different enzymatic activ-
ity for hydrogenase catalysis in these two situations, with purified
parahydrogen being significantly more reactive.

Possible differential combustion of para- and orthohydrogen
with, say, oxygen might also be interesting to explore, even
though this reaction is not enzymatic.

Intermolecular Entanglement of Nuclear Spins. The ability to pre-
pare purified parahydrogen molecules in solvent and drive a
bond-breaking chemical reaction enables the preparation of two
protons with nuclear spins entangled in a singlet. If–when these
two protons bind onto a large molecule with different chemical
environments, it is sometimes possible to perform a π rotation on
one of the two nuclei to create alignment of the two spins, termed
hyperpolarization. These hyperpolarized proton spins can then
be used to transfer spin polarization to the nuclei of atoms on
the molecules to which they are bonded.

There is, of course, a long precedent for liquid-state NMR,
exploiting the fact of very long decoherence times in the rapidly
fluctuating liquid environment (3). Indeed, soon after Peter Shor
developed his prime factoring quantum algorithm, liquid-state
NMR quantum computing efforts were the first out of the gate
(8). In NMR quantum computing one uses a solvent hosting a
concentration of identical molecules with multiple nuclear spins
(say, protons). Ideally, the chemical environments of the differ-
ent nuclei are different, so that they each have a different NMR
chemical shift, and can thereby be addressed independently by
varying the radio frequency. In principle it is then possible to
perform qubit operations on these spins. However, there are two
major drawbacks to NMR quantum computing—the difficulty in
scalability and the challenge of preparing sufficiently entangled

Fig. 5. The enzymatic projective measurement that induces a transition
from a rotating to a not-rotating molecular state can be described as a pro-
jective overlap between the rotating state with the quantum bead on the
Mobius strip, ψa, and a not-rotating state where the bead is on the cut-
open outer ring, ψb. This projective measurement implements a transition
from an initial state in which the identical atoms are indistinguishable to a
final distinguishable state—the enzyme acting as an observer.
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initial states. As we now suggest, it is possible that both of these
can be circumvented by using small symmetric molecules which
are the substrate for bond-breaking enzymes.

By way of illustration, we consider the symmetric biochemical
ion pyrophosphate, P2O4−

7 (usually abbreviated as PPi), which
is important in metabolic activity. Pyrophosphate is a phosphate
dimer, which consists of two phosphate ions, PO3−

4 , that share
a central oxygen. (The inorganic-phosphate ion, abbreviated as
Pi, consists of a phosphorus atom tetrahedrally bonded to four
oxygens.) Since the phosphorus nucleus is an S = 1/2 fermion
and the oxygens are S = 0 bosons, the twofold symmetry of PPi,
which interchanges the two 31P nuclei and the three end oxygens,
will, like molecular hydrogen, have two isomers, para-PPi and
ortho-PPi. Moreover, para- and ortho-PPi will rotate with even
and odd angular momentum, respectively. Thus, ortho-PPi, with
Lquasi = 1, rotates with a nontrivial Berry phase.

In biochemistry there is an enzyme (called pyrophosphatase)
which catalyzes the bond-breaking reaction, PPi→ Pi + Pi. Due
to the Berry phase term in ortho-PPi, we expect that this reac-
tion will be strongly suppressed, if not blocked entirely. Then,
provided only para-PPi reacts, the two liberated Pi ions will have
nuclear spins which are entangled in a singlet. Such intermolecu-
lar entanglement of nuclear spins could, in principle, jump start
liquid-state NMR quantum computing efforts, allowing for both
scalability and highly entangled initial-state preparation.

QDS Mass-Independent Mechanism for Isotope Fractionation. Iso-
tope fractionation refers to processes that affect the relative
abundance of (usually) stable isotopes, often used in isotope
geochemistry and biochemistry. There are several known mech-
anisms. Kinetic isotope fractionation is a mass-dependent mech-
anism in which the diffusion constant of a molecule varies with
the mass of the isotope. This process is relevant to oxygen evapo-
ration from water, where an oxygen molecule, which has one (or
two) of the heavier oxygen isotopes (17O and 18O), is less likely
to evaporate. This leads to a slight depletion in the isotope ratios
of 17O/16O and 18O/16O in the vapor relative to that in the liquid
water.

Another mass-dependent isotope fractionation phenomenon
occurs in some chemical reactions, where the isotope abun-
dances in the products of the reaction are (very) slightly different
from those in the reactants. In biochemistry this effect is usually
ascribed to an isotopic mass-induced change in the frequency of
the molecular quantum zero-point vibrational fluctuations when
bonded in the pocket of an enzyme. This modifies slightly the
energy of the activation barrier which must be crossed for the
bond-breaking reaction to proceed.

However, there are known isotopic fractionation processes
which are “mass independent,” a classic example being the
increased abundance of the heavier oxygen isotopes in the for-
mation of ozone from two oxygen molecules (9). In ozone isotope
fractionation the relative increased abundance of 17O and 18O
is largely the same. While there have been theoretical propos-
als to explain this ozone isotope anomaly, these are not without
controversy (10).

Here, as we briefly describe, our conjectured QDS rule for
chemical reactions involving small symmetric molecules leads
naturally to the prediction of a mass-independent mechanism for
isotope fractionation, driven by the quantum distinguishability
of the two different isotopes. In the presence of isotopes that
destroy the molecular rotational symmetry, the QDS rule is no
longer operative and one would expect the chemical reaction to
proceed more rapidly.

By way of illustration we again consider the enzymatic hydrol-
ysis reaction, PPi→ Pi + Pi. As we now detail, in this experiment
one would predict a large heavy oxygen isotope fractionation
effect. Indeed, if one of the six “end” oxygens in PPi is a
heavy oxygen isotope, the symmetry of PPi under a rotation is

broken and the reaction becomes “unblocked” (independent of
the nuclear spin state).

If correct, we would then predict a very large mass-indepen-
dent oxygen isotope fractionation which concentrates the heavy
oxygen isotopes in the products (Pi + Pi). For the early stages of
this reaction, before the isotopically modified PPi are depleted,
one would, in fact, predict a factor of 4 increase in the ratios of
17O/16O and 18O/16O in the enzymatic reaction PPi→ Pi + Pi.

To be more quantitative we introduce a dimensionless func-
tion, R(f ), where R denotes the ratio of the heavy isotope of
oxygen in the products, relative to the reactants,

R(f ) =
[18O/16O]prod

[18O/16O]react

, [25]

and f ∈ [0, 1] is the “extent” of the reaction. In a conventional
isotope fractionation framework, one would expect a very small
effect; that is, R(f )≈ 1. But within our QDS conjecture, if
correct, one would have

R(f ) =
1− (1− f )λ

f
, [26]

with λ= 4. Experiments to look for this effect are presently
underway.

Activity of Reactive Oxygen Species. In biochemistry it is well
known that during ATP synthesis the oxygen molecule picks
up an electron and becomes a negatively charged “superoxide”
ion, O−2 (11). Having an odd number of electrons (with electron
spin-1/2) superoxide is a “free radical.” Together with hydrogen
peroxide (H2O2) and the hydroxyl radical (the electrically neu-
tral form of the hydroxide ion) the superoxide ion is known as
a reactive oxygen species (ROS). ROS ions can cause oxidative
damage due in part to their reactivity. Indeed, in the free-radical
theory, oxidative damage initiated by ROS is a major contributor
to aging. In biology there are specific enzymes to break down the
ROS to produce benign molecules (e.g., water) (12).

In contrast to the ROS, the stable state of molecular oxygen
(“triplet oxygen”) is less reactive in biology. As we detail below,
we propose that this difference from triplet molecular oxygen can
be understood in terms of our conjectured QDS rule.

First, we note that standard analysis of electronic molecular
states (that we relegate to Supporting Information) shows that
under C2 rotation the electronic states in the triplet molecu-
lar (neutral) oxygen exhibit an overall sign change. Because 16O
nuclei are spinless bosons, there is no nuclear contribution to the
Berry phase.

Thus, the triplet neutral oxygen molecule O2 exhibits a purely
electronic π Berry phase, despite a spinless bosonic character of
the 16O nuclei. It therefore rotates with odd angular momen-
tum, L=Lquasi + 2Z, with Lquasi = 1, identical to orthohydrogen.
Our QDS conjecture then implies that a direct bond-breaking
chemical reaction of triplet oxygen is strictly forbidden.

In contrast to triplet oxygen, the superoxide ion O−2 is not
blocked by the QDS rule and can thus undergo a direct chemical
bond-breaking transition. Indeed, as detailed in Supporting Infor-
mation, due to the electronic nonzero orbital and spin angular
momenta aligned along the body axis, the two ends of the super-
oxide ion are distinguishable. Thus, in contrast to triplet oxygen,
superoxide does not have any symmetry under a 180

◦
rotation

that interchanges the two oxygen nuclei. The superoxide ion can
thus rotate with any integer value of the angular momentum,
L= 0, 1, 2, 3, ....

As a result, the QDS is not operative and thus there is no selec-
tion rule precluding a direct bond-breaking chemical reaction of
the superoxide ion. We propose that it is this feature of superox-
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ide, relative to triplet oxygen, which accounts, at least in part, for
the high reactivity of superoxide and explains why it is a “ROS.”

Ortho-Water as a Quantum Disentangled Liquid. Molecular water
has a C2 symmetry axis which exchanges the two protons. Thus,
as for molecular hydrogen, water comes in two variants, para-
water and ortho-water which rotate with even and odd angular
momentum, respectively. QDS then predicts that the ortho-
water molecule (with Lquasi = 1) cannot undergo a direct chem-
ical reaction that splinters the molecule into a proton and a
hydroxide ion, OH−.

Since the difference between the rotational kinetic energy of
a parawater and an ortho-water molecule is roughly 30 K, liquid
water consists of 75% ortho-water molecules and 25% parawa-
ter molecules. In one remarkable paper (13) it was reported
that gaseous water vapor can be substantially enriched in either
ortho- or para-water molecules and then condensed to create
ortho- and para-liquid water—although attempts to reproduce
this work have been unsuccessful (14). If QDS is operative,
ortho-liquid water would be quite remarkable, having zero con-
centration of either “free” protons or free hydroxide ions, despite
these being energetically accessible at finite temperature. The-
oretically, ortho-liquid water would then be an example of a
“quantum disentangled liquid” in which the protons are enslaved
to the oxygen ions and do not contribute independently to the
entropy density (15).

Experimentally, one would predict that ortho-liquid water
would have vanishingly small electrical conductivity, nonzero
only due to ortho-to-para conversion. Data on “shocked” super-
critical water indicate that above a critical pressure the electrical
conductivity increases by nine orders of magnitude (16). Per-
haps this is due to a transition from a quantum-disentangled
to a thermal state, where most (if not all) of the ortho-water
molecules are broken into a proton and a hydroxide ion, leading
to a significant electrical conductivity?

The properties of ortho-solid ice might also be quite interest-
ing, provided QDS is operative. While an extensive equilibrium
entropy would still be expected (consistent with the ice rules), the
quantum dynamics would be quite different. Rather than protons
hopping between neighboring oxygen ions, in ortho-ice these
processes would actually correspond to collective rotations of the
water molecules. The nature of the quantum dynamical quench-
ing of the entropy when ice is cooled to very low temperatures is
worthy of future investigation.

Summary and Conclusions
In this paper we have explored the role of quantum indistin-
guishability of nuclear degrees of freedom in enzymatic chemical
reactions. Focusing on chemical bond breaking in small sym-
metric molecules, we argued that the symmetry properties of
the nuclear spins, which are entangled with—and dictate—the
allowed angular momentum of the molecules’ orbital dynamics,

can have an order one effect on the chemical reaction rate.
Our central thesis is a QDS rule which posits that direct bond-
breaking reactions from orbitally asymmetric molecular states
are blocked, and only orbitally symmetric molecular states can
undergo a bond-breaking reaction. This selection rule, which is
not of energetic origin, arises due to a destructive interference
in the Born amplitude for the enzymatically mediated projective
measurement.

The QDS rule is intimately linked to the importance of
Fermi/Bose indistinguishability of the nuclei during the enzy-
matic process which implements a projective measurement onto
orbitally symmetric molecular states. Mathematically, a Berry
phase term, which encodes the Fermi/Bose indistinguishability,
leads to an interference between the multiple bond-breaking
processes—one for each of the symmetry-related molecular
orbital configurations. For an orbitally nonsymmetric molecu-
lar state this interference is destructive, thereby closing off the
bond-breaking reaction—offering a mathematical description of
the QDS rule.

In much of this paper we focused on simple molecules with a
planar Cn rotational symmetry about a particular molecular axis.
In this case the Berry phase is determined by a quasi-angular
momentum, Lquasi, set by the symmetry of the nuclear spin
wavefunction. For this planar case our QDS rule predicts that
an enzymatic bond-breaking transition implements a projective
measurement onto Lquasi = 0.

Our QDS rule leads to a number of experimental implications
that we explored in Conceptual and Experimental Implications,
including (i) a differential chemical reactivity of para- and ortho-
hydrogen, (ii) a mechanism for inducing intermolecular quantum
entanglement of nuclear spins, (iii) a mass-independent isotope
fractionation mechanism, (iv) an explanation of the enhanced
chemical activity of ROS, and (v) illuminating the importance
of ortho-water molecules in modulating the quantum dynamics
of liquid water.
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