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ABSTRACT OF THE THESIS 

 

Analyzing Outliers in the Maven Central Repository with Object Oriented Design Metrics 

by 

Saumitra Prabhat Kadge 

Master of Science in Software Engineering 

University of California, Irvine, 2020 

Professor Cristina Lopes, Chair 

 

 

Software quality is increasingly becoming a differentiator between software products.  This 

resulted in the development of new and improved approaches to software development 

like object-orientation and the development of software metrics to better manage the 

process of software development. Analyzing a large collection of software projects that use 

object-oriented programming in terms of object-oriented design quality metrics that 

measure the size, complexity, performance and quality of software could give us a good 

idea of how object-oriented programming is used in practice. Analyzing software projects 

on the extreme ends of the distributions of these metrics could give us specific examples of 

coding practices which influence design qualities. This analysis can be used to inform 

machine learning models that estimate code quality based on design metrics. 

In this thesis, I generated a repository containing the latest version of 226,793 software 

projects taken from the Maven Central Repository. I statically analyzed each of these 

projects and measured 18 class-level design quality metrics for 10,608,920 classes and 8 

package-level design quality metrics for 2,107,577 packages. I analyze the outlier projects 

in terms of object-oriented design quality metrics and evaluate their suitability for 

inclusion in training sets for machine learning models. 
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Chapter 1 
 

Introduction 

 

1.1 Motivations 

Software quality is increasingly becoming a differentiator between software products.  This 

resulted in the development of new and improved approaches to software development 

like object-orientation and the development of software metrics to better manage the 

process of software development. Analyzing a large collection of software projects that use 

object-oriented programming in terms of object-oriented design quality metrics that 

measure the size, complexity, performance and quality of software could give us a good 

idea of how object-oriented programming is used in practice. Analyzing software projects 

on the extreme ends of the distributions of these metrics could give us specific examples of 

coding practices which influence design qualities. This analysis can be used to inform 

machine learning models that estimate code quality based on design metrics. 

 

1.2 Object Oriented Design Metrics 

1.2.1 Quality Model for Object Oriented Design (QMOOD) 

Bansiya and Davis [1] developed Quality Model for Object Oriented Design (QMOOD) as a 

hierarchical model to measure the design quality attributes of object-oriented designs. The 

development of their hierarchical model was driven by three needs. First was the need for 

a way to measure software quality of object-oriented designs in the early stages of the 

software development cycle. Second was the need for a way to relate measurable object-

oriented design properties like coupling, cohesion, encapsulation, inheritance, 

polymorphism etc. with desirable software quality attributes like reusability, effectiveness 

etc. Third was the need to have a process of measurement that could be automated and was 

non-intrusive. 
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Previously developed software quality models [2] assumed that internal product 

characteristics influence external product attributes. Thus, by evaluating the internal 

characteristics, conclusions can be drawn about the external attributes. McCall [3] had 

developed a model that defined software qualities as a hierarchy of factors, criteria and 

metrics and was one of the first hierarchical models. International efforts also resulted in 

the ISO 9126 standard for software product quality measurement. Bansiya and Davis 

identified two problems with these early models. First was that these models were vague  

about the details and metrics needed to assess product quality. Second problem was that 

these models could not account for the conflicting ways in which quality attributes could 

influence overall software quality. 

Dormey [4] proposed a framework to develop software quality models which involves 

breaking down design quality attributes into measurable design properties. Bansiya and 

Davis used this methodology in the development of Quality Model for Object-Oriented 

Design (QMOOD). They start by defining an initial set of design quality attributes which are 

abstract concepts. Table 1.2.1 shows these design quality attributes. 

Quality attribute Meaning 

Reusability Characteristics that allow a design to be applied to a new problem. 
Flexibility Characteristics that allow changes to be made in a design. 
Understandability Characteristics that allow a design to be comprehended. 
Functionality Responsibilities assigned to the classes of a design that are available 

through public interfaces. 
Extendibility Characteristics that allow the addition of new requirements in a 

design. 
Effectiveness Ability of a design to achieve desired functionality and behavior. 

Table 1.2.1 – Design quality attributes 

They then define a set of measurable design properties which can be calculated by looking 

at the structure of classes, attributes and methods. Table 1.2.2 shows these design 

properties. 

Design property Meaning 

Design Size Measure of the number of classes used in a design. 
Hierarchies Measure of the number of non-inherited classes that have children 

in a design. 
Abstraction Measure of the generalization-specialization aspect of a design. 
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Encapsulation Protecting the internal representation of objects by defining 
attribute declarations as private in a design. 

Coupling Number of other objects that would have to be accessed by an 
object for it to function correctly in a design. 

Cohesion Strong overlap in method parameters and attribute types indicates 
strong cohesion. 

Composition Measure of ‘part-of’, ‘has’, ‘consists-of’ or ‘part-whole’ relationships 
in a design. 

Inheritance Measure of ‘is-a’ relationship between classes. 
Polymorphism Measure of the services in an object that are dynamically 

determined at runtime. 
Messaging Measure of the services that a class provides to other classes. 

Complexity Degree of difficulty in comprehending the internal and external 
structure of classes and their relationships. 

Table 1.2.2 – Design properties 

Each of the design properties defined previously can be evaluated objectively using one of 

the design metrics. Table 1.2.3 shows all the design metrics and the corresponding design 

property they measure. 

Metric Description Design 
property 

Design Size in 
Classes (DSC) 

Number of classes in a design. Design Size 

Number of 
Hierarchies (NOH) 

Number of class hierarchies in a design. Hierarchies 

Average Number of 
Ancestors (ANA) 

Average number of classes from which a class 
inherits information. 

Abstraction 

Data Access Metric 
(DAM) 

Ratio of the number of private attributes to the 
total number of attributes declared in a class. 

Encapsulation 

Direct Class 
Coupling (DCC) 

Number of classes that a class is directly related 
to by attribute declaration and method 
parameters. 

Coupling 

Cohesion Among 
Methods of Class 
(CAM) 

Summation of the intersection of parameters of a 
method with the maximum independent set of all 
parameter types in a class. 

Cohesion 

Measure of 
Aggregation (MOA) 

Number of data declarations whose types are user 
defined classes. 

Composition 

Measure of 
Functional 
Abstraction (MFA) 

Ratio of the number of methods inherited by a 
class to the total number of methods accessible by 
member methods of the class.  

Inheritance 

Number of 
Polymorphic 
Methods (NOP) 

Number of methods that can exhibit polymorphic 
behavior.  

Polymorphism 
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Class Interface Size 
(CIS) 

Number of public methods in a class. Messaging 

Number of Methods 
(NOM) 

Number of all methods defined in a class. Complexity 

Table 1.2.3 – Design metrics 

Lastly, they weighted the contribution of individual design properties in influencing design 

quality attributes. Table 1.2.4 shows the contributions of design properties to calculate 

design quality attributes. 

Quality attribute Equation in terms of design properties 

Reusability -0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 * Design 
Size 

Flexibility 0.25 * Encapsulation – 0.25 * Coupling + 0.5 * Composition + 0.5 * 
Polymorphism 

Understandability -0.33 * Abstraction + 0.33 * Encapsulation – 0.33 * Coupling + 0.33 * 
Cohesion – 0.33 * Polymorphism – 0.33 * Complexity – 0.33 * Design 
Size 

Functionality 0.12 * Cohesion + 0.22 * Polymorphism + 0.22 * Messaging + 0.22 * 
Design Size + 0.22 * Hierarchies 

Extendibility 0.5 * Abstraction – 0.5 * Coupling + 0.5 * Inheritance + 0.5 * 
Polymorphism 

Effectiveness 0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition + 0.2 * 
Inheritance + 0.2 * Polymorphism 

Table 1.2.4 – Design quality attributes derived from design properties 

Bansiya and Davis also evaluated their metrics suite on different ver sions of Microsoft 

Foundation Classes (MFC) and Borland Windows Object Library (OWL) to study the 

variation in design quality attributes with versions. They found a decrease in 

understandability in the initial versions of these frameworks as more functiona lity was 

added with every version. As the frameworks matured, understandability remained stable. 

The scores for reusability, flexibility, functionality, extendibility and effectiveness went on 

increasing with every version. The QMOOD metrics suite was also  validated on a set of 14 

medium sized C++ projects. The rankings given by 13 human evaluators and those given by 

QMOOD were found to correlate significantly. I used the CKJM-extended [5] tool to 

calculate the DAM, MOA, MFA, CAM and CIS metrics. 

 

1.2.2 Chidamber and Kemerer Object Oriented Metrics 
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Chidamber and Kemerer [6] developed a suite of six metrics for object-oriented design. 

Their investigation of previous research in software metrics showed that it either lacked a 

theoretical basis, or lacked useful measurement properties, or was not adequately 

generalized, or depended heavily on the implementation, or the metrics developed were 

difficult to collect. They based their metrics on the ontology of Bunge [7] [8]. Per this 

ontology, the world is made up of ‘things’ called as ‘substantial individuals’ which possess 

properties. While ‘properties’ are inherent to ‘substantial individuals’, an observer can 

assign features to an individual called as attributes. A ‘substantial individual’ and its 

‘properties’ collectively form an ‘object’. The ontology also gives the general principles of 

coupling and cohesion. Good software design should minimize coupling i.e. the 

interdependence between parts of a design; and maximize cohesion i.e. the consistency 

within parts of a design. 

A need was felt to develop software metrics with a greater degree of theoretical and 

mathematical rigor. While traditional approaches to software development take a function-

oriented view which separates data from the procedures that operate on it, the object-

oriented approach involves modeling the real world in terms of objects. It was found that 

software metrics developed for the traditional approach could not be readily used for the 

object-oriented approach [9]. Several object-oriented design methodologies including the 

one proposed by Booch [10] consider class design as the most important in object-oriented 

design. The Chidamber and Kemerer metrics were thus developed to measure the design 

complexity of classes in an implementation independent manner. 

To evaluate their metrics, they used six of the nine properties in a formal list of criteria 

developed by Weyuker [11]. The properties that were used for analysis are listed below. 

1. Non-coarseness: Not every class should have the same value for a metric. 

2. Non-uniqueness: It is possible for two classes to have the same value for a metric. 

3. Design details are important: Even if two classes perform the same function, their 

metric values should be determined by the details of their design. 

4. Monotonicity: The metric value for a combination of two classes can never be less than 

the metric values of either of the component classes. 
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5. Non-equivalence of interaction: For classes 𝑃, 𝑄 and 𝑅 where classes 𝑃 and 𝑄 have 

the same metric value, it is possible that the metric value of the combination of classes 

𝑃 and 𝑅 is different from the metric value of the combination of classes 𝑄 and 𝑅. 

6. Interaction increases complexity: For classes 𝑃 and 𝑄 the sum of the metric values of 

𝑃 and 𝑄 should be less than the metric value of their combination. 

The metrics developed by Chidamber and Kemerer and their significance are described in 

the sections below. 

1. Weighted Methods per Class (WMC): Sum of the complexities of all methods of a 

class. If complexity is considered as unity for every method in a class, then this metric 

equals the total number of methods in that class. 

Significance: The number of methods in a class and their complexities can be used as 

an indicator of the time required to develop and maintain it. A class with many methods 

could have a significant impact on child-classes which would inherit its methods. A class 

with many methods could also mean that it is specialized thus limiting its reuse. 

2. Depth of Inheritance Tree (DIT): Maximum length from a class node to the root of the 

class hierarchy tree. 

Significance: A class that is deep in the class hierarchy tree is likely to inherit many 

methods. This could result in a greater reuse of the inherited methods. It could also 

increase the difficulty of predicting its behavior in response to messages. Deeper class 

inheritance trees result in greater design complexity. Looking at this metric it is 

possible to determine if a given design has too many classes close to/farther from the 

root of the hierarchy tree. 

3. Number of Children (NOC): Number of immediate subclasses of a class. 

Significance: More the number of immediate subclasses of a class, greater is the extent 

of reuse of its methods. This could result in a greater influence of that class on the 

overall design and thus increase the importance of testing the methods of that class. A 

large value for this metric may also indicate a problem with subclassing of a class due to 

improper abstraction. 

4. Coupling Between Object classes (CBO): Number of other classes to which a class is 

coupled. 
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Significance: To promote modularity and reuse of code it is desirable to have minimum 

coupling between classes. Greater the coupling, more is the sensitivity to changes in 

design. A higher value for this metric could indicate the need for more complex testing. 

This metric can also be tracked by designers to check if the system is developing any 

unnecessary interconnections. 

5. Response for a Class (RFC): Union of the set of methods in a class with sets of methods 

called by each of them. 

Significance: A higher value for this metric for a class means that a large number of 

methods could be invoked in response to a message received by an object of that class. 

This means the class has more complexity and the testing and debugging would require 

more effort. 

6. Lack of Cohesion in Methods (LCOM): Consider all pairs of methods of a class. Lack of 

cohesion in methods is the difference between the size of set formed by all method 

pairs which do not share any instance variable and the size of set formed by all method 

pairs which share at least one instance variable. 

Significance: This metric can be used to identify classes with disparate methods that 

try to do different things and split them into subclasses. Lower value of cohesion 

increases complexity. 

All the six metrics defined above were found to satisfy a majority of Weyuker’s properties 

except the sixth which was not satisfied by any metric. To calculate the Chidamber and 

Kemerer metrics for my purposes I used the CKJM-extended [5] tool. 

 

1.3 Datasets of Design Metrics 

In the following sections I look at various attempts to create datasets of metrics from the 

Maven Central Repository. 

 

1.3.1 Maven Dependency Dataset 
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Raemaekers et al [12] built the Maven Dependency Dataset (MDD) with the goal of 

facilitating large scale research on software releases, versions and evolving dependencies 

at the level of packages, classes and methods. They took a snapshot of the Maven Central 

Repository on July 30, 2011 consisting of 148,253 source and binary JAR files. The 

snapshot was found to contain 22,111 projects with an average of 6.7 versions per project. 

They collected a large amount of data from these JAR files which they split and stored into a 

MySQL database, a Berkeley database and a Neo4j graph database. 

The MySQL database contained four major tables along with a few other supporting tables. 

The ‘files’ table had metrics like number of methods, number of methods compared to the 

next version etc. The ‘stats’ table had metrics like lines of code, McCabe’s cyclomatic 

complexity, number of methods, number of classes etc. The ‘changes’ table stored both 

breaking and non-breaking changes between library versions along with the names of 

affected packages, classes, methods and attributes for every change. The ‘deps’ table stored 

all library dependencies present in the build configuration files of projects along with an 

‘isolation rating’ for every dependency which gave the percentage of files which did not 

import it. 

The Berkeley database being an on-disk key-value store, enabled the fast lookup of 

information about individual methods, classes and packages. Information about 36,695,764 

unique methods, classes and packages was stored in this database. This database can be 

used to obtain a list of all methods in a specific version of a library. 

The Neo4j database stored call graph information and could be queried with the Cypher 

query language. The call graph comprised of methods, classes, packages and JAR files  as 

‘Units’ where ‘Units’ are connected by either method call, inheritance, historical or 

containment relationships. The graph was stored as a collection of tuples where every 

tuple comprised of two ‘Unit Identifiers’ connected with any one of the four relationship 

types mentioned previously. This database can be used to track changes in a specific library 

through time. 

To process this large number of JAR files, the DAS-3 supercomputer [13] was used with the 

central node holding the databases and compute nodes doing the computation. One of the 



9 
 

limitations of this research is that any updates to the Maven Central Repository after the 

snapshot was taken were not considered. My research differs from this in that not only do I 

consider size related metrics, but I also compute and store object-oriented design quality 

metrics such as those from the Chidamber-Kemerer and QMOOD metric suites. 

 

1.3.2 Bug Catalog of the Maven Ecosystem 

Mitropoulos et al [14] built a dataset by statically analyzing the Maven Central Repository 

using FindBugs and storing the resulting FindBugs metrics along with size and dependency 

metadata for every JAR file in the repository. Their snapshot of  the Maven Central 

Repository taken in January 2012 was approximately 256GB in size, consisted of 115,214 

JAR files that made up 17,505 projects with a mean of 6.58 versions for every project.  

From the snapshot of the Maven Central Repository, they were able to obtain a list of every 

project version in the repository. They then filtered out projects written in languages other 

than Java and the resulting list was used to create a series of processing tasks with one task 

corresponding to every project version. These tasks were added to a RabbitMQ queue 

mechanism and 25 Python threads were started which would check out processing tasks 

form the queue, process them and store the results in a MongoDB database. Every 

processing task involved calculating and storing JAR file metadata of the corresponding 

project version, checking for the presence of .class files in the JAR file, executing FindBugs 

and storing the results in the database. 

For every JAR, FindBugs reports all the bugs present in that JAR along with the  category 

(nine categories), class, method, and line for every bug found. FindBugs also reports 

additional metadata like the number of classes etc. for every JAR. In addition to these 

metrics reported by FindBugs, the Python threads also calculated other metadata for every 

JAR file such as size, dependencies (taken from pom.xml) and version number (taken from 

maven-metadata.xml). 

The dataset was used to calculate the correlation between defect count and project version 

number, the correlation between defect count and project version size and the pairwise 
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correlations between defect categories. This dataset also has the issue of getting older as 

newer project versions are released. 

 

1.3.3 Metrics Dataset of the Java Ecosystem 

Karakoidas et al [15] built a dataset by statically analyzing the Maven Central Repository 

using CKJM [5], JDepend [16] and CLMT [17] tools. Their snapshot of the Maven Central 

Repository consisted of 22,730 JAR files that made up 11,365 projects. 

From their initial snapshot of the Maven Central Repository, they considered only Java 

projects with the latest project version. In addition to this, they also filtered out those 

projects which did not have both binary and source JARs. The rest of the process to build 

the dataset was like that used by Mitropoulos et al [14] with the only difference being the 

tools used to calculate metrics. The results were stored in a MySQL database and were used 

in experiments to determine the Domain-Specific Language (DSL) usage in Java projects. 

I take a similar approach to that taken by Karakoidas et al. However, instead of filtering o ut 

projects lacking both binary and source JAR files, I consider all projects with a binary JAR 

file and calculate object-oriented design quality metrics for all of them. I also consider JAR 

files with code written in languages that compile to Java bytecode like Scala, Groovy, Kotlin, 

Clojure etc. I also work with a much larger set of JAR files taken from the Maven Central 

Repository.  
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Chapter 2 

 

Building the Dataset 

 

2.1 Building the Dataset 

2.1.1 Maven Central Repository 

Apache Maven is a build automation tool used to manage the process of building software 

projects and managing their dependencies [18]. Although primarily used for Java projects, 

it can also be used for Scala, Ruby, C# and other languages. Maven uses the Project Object 

Model to provide general project configuration such as project name, owner, dependencies 

etc. It can also include configurations for plugins. Most Maven functionality is provided by 

plugins which provide a set of goals. It is possible to do things like compile Java projects 

using the ‘compile’ goal of the ‘compiler’ plugin, test source code using the ‘test’ goal of the 

‘surefire’ plugin, or package sources and resources into a JAR file using the ‘jar’ goal of the 

‘jar’ plugin. To avoid running each of these goals manually, Maven introduces build 

lifecycles which are lists of named phases. Every phase can be associated with a goal 

provided by a plugin. For example, the ‘compile’ goal of the ‘compiler’ plugin can be 

associated with the ‘compile’ phase of the ‘default lifecycle’. When a command like ‘mvn 

test’ is executed, all goals associated with all phases before and including the ‘test’ phase 

are executed. 

Dependency management is an important feature provided by Maven. The Project Object 

Model of a project can be used to specify its dependencies. A coordinate system is used to 

identify these dependencies which can be artifacts like software libraries or modules. 

Maven automatically downloads all dependencies and their transitive dependencies and 

stores them in a local repository. By default, the Maven 2 Central Repository is used to 

search for dependencies. As of this writing, the Maven Central Repository holds 5,7 45,274 
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JAR files [19]. Thus, the JAR files from the Maven Central Repository can be a good source 

to obtain object-oriented design metrics for the Java ecosystem. 

 

2.1.2 Reading the Maven Central Index 

The Maven Central Repository also provides the Maven Central Index [20] in gzip file 

format. This index is updated weekly and is available for download as a whole or as weekly 

increments. The index is built using Maven Indexer and offers various fields containing 

information about all artifacts in the Maven Central Repository. Table 2.1 shows all the 

fields present in the Maven Central Index [21]. 

Indexer type Index field Significance 

- u:  Artifact 
groupId|artifactId|version|classifier|extens
ion/packaging (keyword, stored) 

min i: Artifact 
packaging|lastModified|size|sourcesExists|
javadocExists|signatureExists (not indexed, 
stored) 

g: Artifact GroupID (keyword) 
groupId: Artifact GroupID (tokenized) 
a: Artifact ArtifactID (keyword) 

artifactId: Artifact ArtifactID (tokenized) 
v: Artifact Version (keyword) 
version: Artifact Version (tokenized) 
p: Artifact packaging/extension (keyword) 
l: Artifact classifier (keyword) 
n: Artifact name (tokenized, stored) 

d: Artifact description (tokenized, stored) 
m: Artifact last modified (not indexed, stored) 

1: Artifact SHA1 checksum (keyword, stored) 
jarContent classnames: Artifact Classes (tokenized) 

c: Artifact Classes (tokenized on newlines) 
maven-plugin px: MavenPlugin prefix (keyword, stored) 

gx: MavenPlugin goals (keyword, stored) 
maven-
archetype 

No field  

osgi-metadatas Bundle-SymbolicName: Bundle-SymbolicName (indexed, stored) 
Bundle-Version: Bundle-Version (indexed, stored) 

Export-Package: Export-Package (indexed, stored) 
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Export-Service: Export-Service (indexed, stored) 
Bundle-Description: Bundle-Description (indexed, stored) 
Bundle-Name: Bundle-Name (indexed, stored) 
Bundle-License: Bundle-License (indexed, stored) 
Bundle-DocURL: Bundle-DocURL (indexed, stored) 

Import-Package: Import-Package (indexed, stored) 
Require-Bundle: Require-Bundle (indexed, stored) 

Table 2.1 – Maven Central Index fields. 

I started by downloading the gzip file of the latest complete Maven Central Index and used 

the Maven Indexer CLI [22] to unpack it to a Lucene index in a directory. I then used Luke 

[23] which is a Lucene Index browser to examine the Maven Central Index. From Table 2.1 

the ‘u’ field gives a concatenated string containing the Group ID, Artifact ID and version of 

every artifact in the Maven Central Repository. I examined this field using Luke and found 

values like ‘abbot|abbot|0.12.3|NA’, ‘abbot|abbot|0.13.0|NA’, ‘abbot|abbot|1.4.0|NA’, 

‘abbot|abbot|1.4.0|javadoc|jar’, ‘abbot|abbot|1.4.0|sources|jar’ etc. I then wrote a Java 

program that would sort the entries in this field and write them to text files in chunks of 

10,000 entries per text file. While writing these entries to the text files, the program would 

skip entries ending with ‘javadoc|jar’ and ‘sources|jar’ as these would correspond to JAR 

files containing documentation or source code which I did not need for my analysis. The 

program also used the ‘ComparableVersion’ class provided by ‘Maven Artifact v3.0.3’ [24] 

to compare different artifact versions with the same Group ID and Artifact ID and 

eliminated all versions other than the latest version. As a result, I was left with text files 

containing a ‘GroupID|ArtifactID|Version’ entry for every unique artifact in the Maven 

Central Repository. Every text file had up to 10,000 entries, but the average number of 

entries per text file was much less because of the eliminations mentioned previously. The 

chunking was done so that I could run multiple threads and download multiple artifacts at 

the same time without having multiple threads read from the same file. 

 

2.1.3 Downloading project JAR files 

From the previous step I had the Group ID, Artifact ID and Version coordinates for every 

unique artifact in the Maven Central Repository written to text files. I then used Maven 

Dependency Plugin [25] to download all the JAR files from the Maven Central Repository to 
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a local cache directory and then copy them to my repository with a directory structure that 

matched the GroupID, ArtifactID and Version of the downloaded JARs. 

 

Figure 2.1 – POM file template. 

To use the Maven Dependency Plugin, I started by creating a template POM file with the 

required configuration. Figure 2.1 shows the template POM file. Note that the Maven 

Dependency Plugin has been configured with ‘copy’ as the goal and it has been associated 

with the ‘package’ phase of the build lifecycle. The ‘copy’ goal is used to resolve the artifacts 

configured inside the ‘artifactItems’ element of the POM file and place them in a 

configurable directory [26] [27]. For every entry of GroupID, ArtifactID and Version in the 

text files generated previously, I added an ‘artifactItem’ element to the template POM file to 
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get a complete POM file that could be used by Maven. Figure 2.2 shows one such complete 

POM file. 

 

Figure 2.2 – Complete POM file for an artifact. 

Once a complete POM file was generated, I executed the ‘copy’ goal and this would fetch the 

configured artifact from the Maven Central Repository and store it in a directory with a 

path that matched the GroupID, ArtifactID and Version of the retrieved artifact. I used 

Maven Invoker [28] to programmatically execute the ‘package’ phase in order to execute 

the ‘copy’ goal. 

All the steps in this section were executed by a single Java program running on a machine 

with an Intel Xeon X5675 CPU with 24 cores and 125GiB memory. Initially I tried executing 

all steps in a single-threaded program, but it was taking very long to download all JARs and 

the CPU was largely unutilized. I then reimplemented the program to make it multi-
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threaded. After decoding the Maven Central Index, it was split into several text files each 

holding up to 10,000 artifact coordinates. I then started 120 threads with each thread 

reading a range of text files and downloading the included artifacts. Every thread was 

assigned a number and the range of text files that it would read was based on this number. 

This prevented multiple threads from reading the same text file and allowed multiple 

threads to download artifacts at the same time. Also, every thread generated its  own copy 

of the POM file template, and for every artifact coordinate that it would read from the text 

files, it would modify its own copy of the template. After implementing multi-threading, I 

saw significant improvements in the artifact retrieval time, and I was able to complete 

downloading all artifacts in 6 days. Table 2.2 shows some statistics related to the 

download. 

Number of JAR files downloaded 269,211 
Total size of JAR files downloaded 219.911 GB 

Table 2.2 – Statistics of downloaded JAR files. 

After downloading all JAR files, I scanned them with a Python script that examined every 

JAR file for the presence of class files. JAR files that did not contain any class files were 

moved to a different directory and were not analyzed further. Table 2.3 shows the details of 

the remaining JAR files. 

JARs with class files 226,793 
JARs without class files 38,568 

Total size of JARs with class files 191.087 GB 

Table 2.3 – Statistics of JARs with and without classes. 

I ran two static analysis tools on the remaining JAR files to gather object-oriented design 

metrics. Following sections give more details of the analysis. 

 

2.2 Calculating the Design Metrics 

To calculate the object-oriented design metrics for all the downloaded JARs, I used CKJM-

extended and JDepend. To execute each of these tools and save their results, I ran two 

Python scripts: an ‘executor’ script and a ‘database’ script. The ‘executor’ script would scan 

through the downloaded JAR repository and for every JAR file in the repository, it would 
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add the path of that JAR file to a queue. The script would then start 24 threads running in 

parallel and reading JAR file paths from the queue. Each of these threads analyze one JAR 

file at a time and store the result of analysis in either a text file (in case of CKJM-extended) 

or in an XML file (in case of JDepend). Thus, for every JAR file, one text file and one XML file 

were generated and stored in the CKJM and JDepend result directories. Once the ‘executor’ 

script finished execution, I ran the ‘database’ script. The ‘database’ script would scan 

through the CKJM/JDepend result directory and for every text/XML file in the result 

directory, it would add the path of that text/XML file to a queue. In a manner like the 

‘executor’ script, the ‘database’ script would also start 24 threads running in parallel and 

reading text/XML file paths from the queue. Each of these threads parse one text/XML file 

at a time and store the extracted results in a MariaDB database. More details about each 

tool and the schema used for the MariaDB database are presented in the following sections. 

 

2.2.1 CKJM-extended 

CKJM-extended is a tool that can calculate size and object-oriented design metrics by 

processing bytecode of compiled Java files [5] [29] [30]. The metrics include all six metrics 

from the Chidamber and Kemerer metrics suite, six metrics from the QMOOD metrics suite 

and a few software quality-oriented extensions to the Chidamber and Kemerer metrics 

suite. Table 2.4 shows all the metrics calculated for every class. 

Name of the metric Metric description 

Weighted methods per 
class (WMC) 

Sum of the complexities of the methods of a class. 
Complexity is assigned as 1 to every method in a class. As a 
result, WMC of a class equals the number of methods in that 
class. 
(C&K metric) 
(Number of methods in QMOOD) 

Depth of inheritance tree 
(DIT) 

Number of inheritance levels from the top of the object 
hierarchy. 
(C&K metric) 

Number of children (NOC) Number of immediate descendants of a class. 
(C&K metric) 

Coupling between object 
classes (CBO) 

Number of classes coupled to a given class through 
inheritance, field access, method calls, arguments, return 
types and exceptions. 
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(C&K metric) 
Response for a class (RFC) Sum of the number of methods called in the method bodies 

of a class and the number of methods in that class. 
(C&K metric) 

Lack of cohesion in 
methods (LCOM) 

Difference between the number of method pairs which do 
not share any field and the number of method pairs which 
share at least one field. 
(C&K metric) 

Afferent couplings (Ca) Number of other classes which use a given class. 
Efferent couplings (Ce) Number of other classes used by a given class. 

Number of public methods 
(NPM) 

Number of public methods of a class. 
(Class interface size in QMOOD) 

Lack of cohesion in 
methods (LCOM3) 

Lack of cohesion in methods is given by, 

𝐿𝐶𝑂𝑀3 =  
(

1
𝑎

 ∑ 𝜇(𝐴𝑗)𝑎
𝑗=1 ) − 𝑚

1 − 𝑚
 

Where 
𝑚 = number of methods 
𝑎 = number of attributes 
𝜇(𝐴) = number of methods that access attribute 𝐴 
Constructors and static initializations are considered as 
separate methods. 
(Henderson-Sellers version) 

Lines of code (LOC) Number of lines of code in a class. 
Data access metric (DAM) Ratio of the number of private attributes in a class to the 

total number of attributes in that class. 
(QMOOD metric) 

Measure of aggregation 
(MOA) 

Number of attributes of a class whose types are user 
defined classes. 
(QMOOD metric) 

Measure of functional 
abstraction (MFA) 

Ratio of the number of methods inherited by a class to the 
total number of methods accessible by member methods of 
that class. 
(QMOOD metric) 

Cohesion among methods 
of a class (CAM) 

Cohesion among methods of a class is given by, 

𝐶𝐴𝑀 =  
∑ 𝑃𝑗

𝑚
𝑗=1

𝑚 ∗ 𝑝
 

Where 
𝑚 = number of methods 
𝑝 = number of unique method parameters in whole class 
𝑃𝑗 = number of unique method parameters in method 𝑗 

Preferred value is close to 1.0. 
(QMOOD metric) 

Inheritance coupling (IC) Number of parent classes to which a given class is coupled 
where coupling is defined by the conditions below. 
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• An inherited method calls a redefined method. 
• An inherited method is called by a redefined method and 

uses a parameter defined in the redefined method. 

• An inherited method uses a variable defined in a 
new/redefined method. 

Coupling between 
methods (CBM) 

Number of new/redefined methods to which all the 
inherited methods are coupled. 

Average method 
complexity (AMC) 

Average number of Java binary codes in all methods of a 
class. 

Table 2.4 – CKJM-extended field descriptions. 

 

I ran CKJM-extended for every JAR file in the downloaded JAR repository using the 

‘executor’ Python script mentioned previously. The tool can analyze multiple JAR files at 

the same time and return a single output for all of them. However, I ran the tool one JAR file 

at a time to separate the analysis results of every JAR file. The tool returns a textual output 

as shown in figure 2.3. I saved this textual output in text files separately for every JAR file. 

The output consists of a new line for every class and method in a package. For every class 

in the package, its fully qualified name is printed on a new line followed by the values of all 

the metrics separated by spaces. For every class, the tool also prints out the method 

signatures for all methods in that class. Every method signature is preceded by a ‘~’ symbol 

and is followed by the value of the McCabe’s cyclomatic complexity for that method. 

Keeping the analysis results separate for each JAR allowed me to associate the class names 

with their container JAR. 
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Figure 2.3 – CKJM-extended output. 

After this I used the ‘database’ Python script to read every output text file and store the JAR 

file names, their constituent class names and the metric values for every class in a MariaDB 

database. I did not save the method signatures or the McCabe’s cyclomatic complexity 

values, although the schema of the database does allow doing so. 

I used CKJM-extended release 2.3 and Java 15 (OpenJDK 15) in my analysis. When CKJM 

analyzes a JAR file, it requires all the dependencies of that JAR file to be present in the Java 

classpath. To analyze as many JAR files as possible I added the top 100 popular JAR files 

from the Maven Central Repository to the Java classpath along with the JAR file of CKJM-

extended. For every JAR file I analyzed, I would add it to the Java classpath and pass its path 
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to the main method of CKJM-extended. If all required dependencies are present in the Java 

classpath, a textual output is generated which I saved. However, if all dependencies are not 

present in the Java classpath, an exception is thrown, and the next JAR file is analyzed. 

Table 2.5 shows the results of this analysis. 

120,572 JAR files which could be analyzed by CKJM 
106,221 JAR files which could not be analyzed by CKJM 

Table 2.5 – CKJM analysis results. 

In my previous attempts, I used Java 8 (OpenJDK 8). However, I was experiencing errors 

like ‘org.apache.bcel.classfile.ClassFormatException: Invalid byte tag in constant pool’. This 

may be because some of the JAR files in the downloaded JAR repository had been compiled 

with versions of Java greater than Java 8 [25] [31]. To increase the number of JAR files that 

could be analyzed, I also tried adding all the JAR files in the downloaded JAR repository to 

the Java classpath. However, this resulted in ‘ jdk.internal.util.jar.InvalidJarIndexError: 

Invalid index’ error. This error is thrown when the INDEX.LIST file included with a JAR file 

in the classpath points to missing dependencies [32]. Most likely some of the JAR files have 

an invalid INDEX.LIST file which causes this error. 

 

2.2.2 JDepend 

JDepend is another tool that can calculate size and software package metrics by traversing 

through Java class file directories in a package [16]. Table 2.6 shows the metrics calculated 

for every package. 

Name of the metric Metric description 

Total Classes (NC) Number of classes and interfaces in a package. 
Concrete Classes (NCC) Number of concrete classes in a package. 
Abstract Classes (NAC) Number of abstract classes and interfaces in a package. 

Afferent Couplings (Ca) Number of other packages that depend upon classes within a 
given package. 

Efferent Couplings (Ce) Number of other packages that the classes in a package 
depend upon. 

Abstractness (𝐴) Ratio of the number of abstract classes and interfaces in a 
package to the total number of classes in that package. 

Instability (𝐼) 
𝐼 =  

𝐶𝑒

𝐶𝑒 + 𝐶𝑎
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Where 𝐼 = Instability 
𝐶𝑒 = Efferent couplings 
𝐶𝑎 = Afferent couplings 

Distance from Main 
Sequence (DMM) 

Perpendicular distance of a package from the line 𝐴 + 𝐼 = 1 
Where 𝐴 = Abstractness 
𝐼 = Instability 

Table 2.6 – JDepend field descriptions. 

 

I also ran JDepend for every JAR file in the downloaded JAR repository using the ‘executor’ 

Python script mentioned previously. JDepend can scan through multiple packages in a JAR 

file. For every JAR file, the tool produces a single output file containing information about 

every single package in that JAR file. For every package in a given JAR file, in addition to the 

software package metrics [33], JDepend also shows the fully qualified names of all abstract 

and concrete classes in that package, the names of all packages on which the given package 

depends upon and the names of all packages which use the given package. Figure 2.4 shows 

a sample output in XML format. JDepend can be configured to display graphical, textual or 

XML output. For my purposes, I chose the XML format as it could be reliably converted to 

JSON format using the ‘xmltodict’ Python library [34]. Once I had completed generating 

XML files for every JAR file in the downloaded JAR repository, I ran the ‘database’ script to 

save the metrics. The ‘database’ script used the ‘xmltodict’ library to parse one XML file at a 

time and store the JAR file names, their constituent package names and the metric values 

for every package in a MariaDB database. I used Java 15 (OpenJDK 15) and JDepend release 

2.10 in my analysis. Table 2.7 shows the results of this analysis. 

226,781 JAR files which could be analyzed by JDepend. 
12 JAR files which could not be analyzed by JDepend. 

Table 2.7 – JDepend analysis statistics. 
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Figure 2.4 – JDepend output. 

 

2.2.3 MariaDB database schema 
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I used a MariaDB database to save the metrics calculated by CKJM-extended and JDepend. 

Figure 2.5 shows the schema of this database. For every JAR file that I was able to analyze 

with CKJM-extended, I was able to extract all constituent class names and their 

corresponding design metrics. Similarly, for every JAR file that I was able to analyze with 

JDepend, I was able to extract all constituent package names and their corresponding 

design metrics. Thus, I had both package-level and class-level metrics. 

 

Figure 2.5 – Database schema. 

To effectively analyze the metrics I had extracted, I stored every metric measurement in 

the ‘measurement’ table and associated it with four parameters stored in the other tables . 

The ‘measurement’ table stores the numerical metric value calculated by the tools e.g. 5, 80 

etc. Every entry in the ‘measurement’ table is linked via foreign key constraints to the other 
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four tables. The ‘measurement_type’ table gives the name of the metric associated with a 

given measurement. Thus, it could be ‘NumberOfClasses_jdepend’ which tells us that the 

measurement is a value of the ‘Number of Classes’ metric calculated by JDepend. The 

‘project’ table gives the name of the JAR file associated with a given measurement. Thus, it 

could be ‘abbot-1.4.0’ which tells us that the measurement was taken from the ‘abbot-

1.4.0.jar’ file. The ‘identifier’ table gives the fully qualified name of the class/package 

associated with a given measurement. Thus, it could be ‘abbot.finder’ which tells us that the 

measurement is some metric of the ‘abbot.finder’ package. The ‘category’ table tells 

whether a given measurement is at the ‘package’ level or at the ‘class’ level. Table 2.8 

summarizes the significance of each table. 

Table name Purpose of table 

Measurement The numerical value of a measured metric. 
Measurement_type The type of metric measured. 
Project The name of JAR file from which metric was measured. 

Identifier The name of class/package for which metric was measured. 
Category The level of metric: class level/package level. 

Table 2.8 – Database table significance. 

In the following chapters I analyze my findings in detail.  
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Chapter 3 
 

Analysis of the Dataset 

 

3.1 Approach to analysis 

After analyzing every JAR file in the downloaded JAR repository with CKJM-extended, I was 

able to extract measurements for 18 class-level metrics for 10,608,920 classes from 

120,572 JAR files. Similarly, with JDepend I was able to extract measurements for 8 

package-level metrics for 2,107,577 packages from 226,781 JAR files. I extracted all 

measurements for each of these metrics into separate CSV files and plotted them with 

Matplotlib and Pandas to get the distribution of every metric. Along with the distribution 

plots I also calculated the minimum, maximum, 25th, 50th, 75th percentiles, mean and 

standard deviation for the measurement values of each of these metrics. 

From the distribution plots for class-level metrics WMC, NPM, RFC, AMC, LCOM, CBO, Ca, 

Ce, DIT, NOC, IC, CBM, LOC and MOA, I observed that most of the 10,608,920 classes had 

metric values below a certain number (that varies by every metric) and a very few 

thousand classes had metric values which were much greater than this number. I consider 

the top 10,000 (0.0943%) classes as the outlier classes for these metrics. Using Cochran’s 

formula for maximum variability, 50% confidence interval and ± 20% precision, I 

randomly sampled 12 of these outlier classes for every metric. For the class-level metrics 

LCOM3, CAM, MFA, DAM which are ratios between 0 and 1 (0 and 2 in case of LCOM3), I 

randomly sampled 5 classes from all 10,608,920 classes with metric values in different 

intervals. 

Similarly, from the distribution plots for package-level metrics like number of classes, Ca 

and Ce, I observed that most of the 2,107,577 packages had metric values below a certain 

number and a very few hundred packages had metric values which were much greater than 

this number. I consider the top 1,000 (0.0474%) packages as the outlier packages for these 
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metrics. I randomly sampled 12 of these outlier packages for every metric. For the package-

level metrics 𝐴, 𝐼 and DMM, I randomly sampled 5 packages from all 2,107,577 packages 

with metric values in different intervals. 

While gathering the outliers for every metric, I observed that many of the outlier JARs were 

outliers in terms of more than one metric. This suggested that there was some correlation 

between the metrics. To confirm this, I plotted the correlation matrix for the class-level and 

package-level metrics for the union of outliers for every metric. Figure 3.1 and figure 3.20 

show these plots for package-level and class-level metrics, respectively. The correlation 

matrices indicate the value of Pearson’s correlation coefficient for every metric pa ir. This 

value ranges from -1 to +1. A value of +1 means that a linear equation perfectly describes 

the relation between metric X and metric Y, where Y increases if X is increased. A value of -

1 means that a linear equation perfectly describes the relation between metric X and metric 

Y, where Y decreases if X is increased. A value of 0 means that there is no linear relation 

between metric X and metric Y. For my purposes, I consider two metrics to be correlated if 

the absolute value of their Pearson’s correlation coefficient is greater than 0.3. 

From the correlation matrices, I observed regions where there existed low to very high 

correlation between metric pairs. To further explore these correlations, I sampled 

classes/packages which were outliers for multiple metrics and examined their source code. 

In the following sections, I present my findings for every group of correlated metrics. For 

every metric, I also present one randomly sampled outlier class/package with details of its 

metric values in the appendix. 

 

3.2 Class level analysis 

Figure 3.1 shows the Pearson’s correlation coefficient matrix for the 18 class -level metrics. 

There are seven distinct regions of correlated metric pairs. Metrics LOC, WMC, NPM, RFC 

and LCOM have a low to high correlation. Metrics Ce, CBO, Ca and NOC have a low to high 

correlation. Metrics DAM and LCOM3 have a moderate negative correlation. Metrics CAM 

and RFC have a slight negative correlation. Metrics DIT, MFA, IC and CBM have low to high 
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correlation. Metrics AMC and MOA do not show any correlation with any other metric. In 

the following sections, I explore each of these metric groups and present my findings.  

 

Figure 3.1 – Correlation matrix for class level metrics. 

 

3.2.1 Size metrics (LOC, WMC, NPM, RFC and LCOM) 

LOC gives the number of lines of code in a class. WMC gives the number of methods in a 

class. NPM gives the number of public methods in a class. RFC gives the number of methods 

that could be called by an object of a class in response to a message received by that object . 

LCOM gives the difference between the number of method pairs which do not share fields 
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of a class and the number of method pairs which share fields of a class. The distribution 

plots for these metrics in figure 3.2 to figure 3.6 show that 75% classes have up to 124 lines 

of code, 10 methods, 8 public methods. 75% classes can call up to 22 methods in response 

to a message and have an LCOM up to 22. The distributions for these metrics also suggest 

that most classes have small values for these metrics, but the few thousand outliers have 

much larger values. I sampled outliers based on the LOC metric. The 10,000 outliers have 

more than 8,867 lines of code, with the maximum number being 2,424,724 lines of code. 

The 10,000 outlier classes contribute 205,868,829 lines of code out of the 1,794,955,210 

lines of code contributed by all classes. Thus 0.0943% classes contribute 11.4693% of the 

total lines of code. 

The sampled outliers included JDBC drivers, Scala classes, Scala libraries for asynchronous 

and concurrent programming, libraries to serialize/de-serialize JSON data to/from Java 

objects and APIs providing 3D graphics to applications written in Java. The database 

drivers had multiple autogenerated methods for different database operations. The Scala 

classes comprised of many static and synthetic methods generated by the compiler. Some 

other Scala classes had autogenerated methods that performed mathematical operations 

on collections of data. The serialization/de-serialization libraries had many autogenerated 

methods which manipulated the several elements of the JSON schemas they worked with. 

The 3D graphics APIs had several autogenerated methods to work with different graphical 

elements. 

A common observation in the outliers for these metrics is that all of them had 

autogenerated or synthetic methods. The 3D graphics API was a wrapper library around 

code written in non-object-oriented languages. The database driver and Scala classes too 

were entirely made up of autogenerated or synthetic methods. Because of the large number 

of methods, any object of these classes can call many methods in response to a message . In 

addition to this, the moderate positive correlation with the CBO and Ce metrics matches 

with the observation that many of these autogenerated methods have method parameters 

of several other class types. Since the methods of these classes are autogenerated, they do 

not represent how code would normally be written using an object-oriented programming 

language and should be excluded from datasets for training machine learning models.  
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Figure 3.2 – Lines of Code 

 

Figure 3.3 – Weighted Methods per Class 

 

Figure 3.4 – Number of Public Methods 
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Figure 3.5 – Response for a Class 

 

Figure 3.6 – Lack of Cohesion in Methods 

 

3.2.2 Coupling metrics (Ce, CBO, Ca and NOC) 

Ce gives the number of classes used by the class for which it is measured. CBO gives the 

number of classes coupled to a class through inheritance, field access, method calls etc. Ca 

gives the number of classes which use the class for which it is measured. NOC gives the 

number of immediate child classes of a class. The distribution plots for these metrics in 

figure 3.7 to figure 3.10 show that 75% classes use up to 8 other classes, are coupled with 
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up to 10 classes, are used by only one other class and have up to one child class. The 

distributions for these metrics are like those in the previous set where most classes have a 

small metric value, but the few thousand outliers have significantly larger values. I sampled 

outliers based on the CBO metric. The 10,000 outlier classes were coupled with more than 

299 classes with the maximum coupling being 15,560. The 10,000 outlier classes 

contribute 6,086,613 class couplings out of the 105,790,665 class couplings contributed by 

all classes. Thus 0.0943% classes contribute 5.7534% of the total couplings. 

The sampled outliers included interfaces in Java clients for various APIs, abstract classes or 

interfaces taken from message parsing APIs and APIs for communication protocols, 

interfaces taken from Java compile-time generators and decorators and classes from a 

functional programming language that compiles to Java and runs on the JVM. The interfaces 

in the Java clients for APIs had many nested interfaces along with several methods which 

would return objects implementing these nested interfaces. The interfaces from the Java 

compile-time generators and decorators had a single abstract method which was 

implemented by several other classes in the same project. 

A common observation in the outliers for these metrics is that all of them were either 

interfaces or abstract classes. In object-oriented programming, interfaces and abstract 

classes consist of abstract methods which define a set of behaviors that are expected from 

any class that implements or extends them. This general set of behaviors can be specialized 

to suit the needs of the implementing/extending class. Consider for example  a ‘Vehicle’ 

interface with a ‘drive’ method. Considering the large range of vehicles that can be driven, it 

is likely that such an interface would be implemented by many concrete classes. Thus, it is 

not surprising to find interfaces and abstract classes being used by many classes. All the 

outliers were used by many other classes in their projects either as method parameter 

types or method return types. Most of these outliers were also implemented/extended by 

several other classes in their project. This resulted in the large number of couplings with 

other classes. The positive correlation between coupling metrics and number of direct 

descendants indicates the need to add more levels to the hierarchy tree and split the direct 

descendants among the newly added subclasses/sub-interfaces. This will ensure loose 

coupling and code reuse at the same time. 
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Figure 3.7 – Efferent Couplings 

 

Figure 3.8 – Coupling Between Object Classes 

 

Figure 3.9 – Afferent Couplings 
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Figure 3.10 – Number of Children 

 

3.2.3 Encapsulation and Cohesion metrics (DAM and LCOM3) 

DAM gives the ratio of private class attributes to total class attributes. LCOM3 gives the 

degree of cohesiveness of the methods in a class. LCOM3 varies from 0 to 2. LCOM3 = 0 

indicates that every class method accesses every class attribute. This is the highest degree 

of cohesiveness. Higher values of LCOM3 result when some or all class methods do not 

access some or all class attributes. The distribution plots for these metrics in figure 3.11 

and 3.12 show that only 50% classes have DAM greater than zero. 25% of the classes have 

LCOM3 less than 0.62, 25% classes have LCOM3 between 0.62 and 0.91 and the remaining 

50% classes have LCOM3 greater than 0.91. 

The correlation matrix for class-level metrics in figure 3.1 indicates a moderate negative 

correlation between DAM and LCOM3. This means that classes with a greater proportion of 

private attributes tend to have lower lack of cohesion among their methods. In other 

words, classes with a greater proportion of private attributes tend to have cohesive 

methods. I sampled five classes with LCOM3 = 0.0. The sampled classes were taken from a 

cryptography API for Java. A common observation in the sampled classes was that all had 

private attributes with methods that accessed most of them. As an example, class 

‘org.bouncycastle.asn1.smime.SMIMECapabilityVector ’ in project ‘bcprov-jdk14-1.65’ has a 

single private attribute of type ‘org.bouncycastle.asn1.ASN1EncodableVector ’. There are 
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three public methods which take objects of type ‘org.bouncycastle.asn1 

.ASN1ObjectIdentifier’ and ‘org.bouncycastle.asn1.ASN1EncodableVector’ and add to the 

private attribute. The fourth public method returns the private attribute. Thus, the only 

attribute of this class is private and is accessed by all methods of that class. This results in 

the good scores for DAM and LCOM3. I also sampled five classes with 1.7 < LCOM3 < 1.8.  A 

common observation in these sampled classes was that all had static and final (constant) 

class attributes which were not accessed by any class methods. 

 

Figure 3.11 – Data Access Metric 

 

Figure 3.12 – Lack of Cohesion in Methods 3 

 



36 
 

3.2.4 Inheritance metrics (DIT, MFA, IC and CBM) 

DIT gives the depth of a class from the top of the object hierarchy. MFA gives the ratio of 

inherited class methods to total methods accessible by member methods of that class (not 

considering the methods inherited from the root of the object hierarchy). IC gives the 

number of parent classes to which a class is coupled by method calls between inherited and 

new/redefined methods. CBM gives the number of new/redefined methods in a class with 

which all inherited methods are coupled by method calls. The distribution plots for these 

metrics in figure 3.13 to figure 3.16 show that 75% classes are up to 2 levels below the root 

of the object hierarchy. Most classes are not coupled with any parent class by method calls 

between inherited and new/redefined methods. Most classes do not have any 

new/redefined methods with which all inherited methods are coupled by method calls. 

Most classes have zero functional abstraction. 25% of the classes have an abstraction 

between 0 and 0.83, while 25% of the classes have an abstraction greater than 0.83.  

I sampled outliers based on the IC metric. The 10,000 outlier classes are coupled with more 

than 4 parent classes with the maximum number being 17 parent classes. The 10,000 

outlier classes contribute 50,555 inheritance couplings out of the 3,010,975 inheritance 

couplings contributed by all classes. Thus 0.0943% classes contribute 1.679% of the total 

inheritance couplings. The sampled outliers included classes from libraries for parsing CSV 

files to Java POJOs, classes from APIs for Scala.js, classes from a Reactive Streams 

foundation for the JVM and toolkits for Java. 

A common observation in the outliers for these metrics is that all of them had many 

new/redefined methods which not only reused code inherited from methods of parent 

classes, but also added their own code on top of it. In object-oriented programming 

inheritance allows greater reuse of code. It involves parent classes with methods that 

provide generic behavior. These parent classes can be extended by one or more child 

classes. The child classes not only inherit methods from the parent class but are als o free to 

define their own new methods or redefine the inherited methods. All the outliers studied 

were many levels below the root of the object hierarchy. They had inherited methods from 

the many parent classes above them. This resulted in a greater propo rtion of inherited 

methods. In addition to the inherited methods, they also had many new/redefined methods 
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which were coupled with every inherited method by method calls. The need for these 

method calls can be explained by the fact that many of the new/redefined methods provide 

additional functionality on top of that provided by the parent classes. This requires 

invoking inherited methods from the new/redefined methods. As a result of these method 

calls, these classes were coupled with several parent classes. 

One of the outliers was class ‘reactor.util.function.Tuple8’ in project ‘reactor-core-

3.3.4.RELEASE’. This class has classes ‘Tuple7’, ‘Tuple6’, ‘Tuple5’, ‘Tuple4’, ‘Tuple3’, 

‘Tuple2’ in that order above it in the hierarchy tree. Class ‘Tuple2’ implements the ‘Iterable’ 

and ‘Serializable’ interfaces. Every class in the hierarchy tree from ‘Tuple8’ to ‘Tuple2’ 

defines its own versions of the ‘equals’ and ‘hashCode’ methods. Class ‘Tuple8’ for example 

inherits these methods from class ‘Tuple7’. Class ‘Tuple8’ also redefines these methods. 

Inside the ‘Tuple8’ definition of these methods, method calls are made to the ‘Tuple7’ 

definition of these methods (using the ‘super’ keyword). As a result, class ‘Tuple8’ can not 

only reuse code form class ‘Tuple7’, but also add its own code to it. This leads to greater 

reuse of code and the inheritance coupling between classes ‘Tuple8’ and ‘Tuple7’. The 

positive correlation between DIT, IC and CBM metrics suggests that greater use of 

inheritance allows greater reuse of code. 

 

Figure 3.13 – Depth of Inheritance Tree 
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Figure 3.14 – Measure of Functional Abstraction 

 

Figure 3.15 – Inheritance Coupling 

 

Figure 3.16 – Coupling Between Methods 
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3.2.5 Cohesion among methods of class (CAM) 

CAM gives the degree of cohesiveness of the methods in a class. It varies from 0 to 1. CAM = 

1 indicates that every class method uses every unique method parameter type in that class. 

This is the highest degree of cohesiveness. Lower values of CAM result when some or all 

class methods do not use every unique method parameter type. From figure 3.17, most 

classes have a score of one. 25% of the classes have a score of up to 0.32, 25% of the classes 

have a score between 0.32 and 0.5, 25% of the classes have a score between 0.5 and 0.67, 

and the remaining 25% classes have a score above 0.67. 

Five classes with the CAM > 0.98 were sampled. The sampled classes can be classified into 

two categories. One category is the set of classes which do not have any methods other than 

the constructor. In these classes, the constructor takes a parameter of a certain type which 

is the only parameter type in the entire class. This results in a perfect score for cohesion. 

The other category is the set of classes which have a few methods all of which work with 

mostly the same parameter types. Classes in this category were taken from APIs that 

automate the mapping between XML documents and Java objects. A weak negative 

correlation was found between CAM and RFC. This could be explained by the observation 

that the sampled classes had specialized methods that did not call many other methods. 

Since this metric considers method parameter types rather than the class attributes 

accessed by methods, some classes had conflicting values of CAM and LCOM3. 

 

Figure 3.17 – Cohesion Among Methods of Class 
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3.2.6 Average method complexity (AMC) 

AMC gives the average number of binary codes in all methods of a class. From figure 3.18, 

most classes have an average method complexity of 0, 3, 4, or 5 with 75% classes having an 

average method complexity less than 13.54. The 10,000 outlier classes have an average 

method complexity greater than 968.0 with the highest average method complexity being 

35,496.0. 

The sampled outliers included serializing/de-serializing libraries for AWS objects, Scala 

libraries for locales and time zones, Java libraries to generate PDFs, manage documents etc. 

The outlier classes from the libraries that serialized/de-serialized AWS objects had very 

large autogenerated constructors which added ‘mix-in’ annotations to several classes of the 

AWS SDK. Most of the outliers had zero or very few methods in addition to their 

constructors. The constructors were very large and had several lines of code  which 

increased their average method complexity. No correlation was found between this and 

any other metric. 

 

Figure 3.18 – Average Method Complexity 

 

3.2.7 Measure of aggregation (MOA) 
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MOA gives the number of class attributes whose types are user defined classes. It gives the 

extent to which composition is used in a class. From figure 3.19, most classes have zero or 

one attribute whose type is a user defined class, with 75% classes having not more than 

one such attribute. The 10,000 outlier classes have more than 48 such attributes with the 

maximum number being 3,424 attributes. 

The sampled outliers were mostly Scala classes and traits. One of the outliers was a Scala 

singleton object class ‘com.vitorsvieira.iso.ISOCountrySubdivision’ in project ‘scala-

iso_2.11-0.1.2’ with 3,424 user defined class type attributes. This singleton object class 

extends multiple Scala traits like ‘ISOCountrySubdivisionAfrica’, 

‘ISOCountrySubdivisionAsia’, ‘ISOCountrySubdivisionEurope’ etc. These Scala traits contain 

multiple fields of type ‘ISOCountrySubdivision’ for every country subdivision in the world. 

Considering the many country subdivisions in the world, the singleton object class 

‘ISOCountrySubdivision’ gets a few thousand attributes of type ‘ISOCountrySubdivision’. 

This results in a very high value for this metric. The other outliers also followed a similar 

pattern. No correlation was found between this and any other metric. 

 

Figure 3.19 – Measure of Aggregation 

 

3.3 Overall observations from class level analysis 
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The small number of outliers I sampled contribute a significant portion of the total lines of 

code, total number of methods, total number of couplings between classes and total 

number of inheritance couplings. If a machine learning model were to be trained by 

including these outliers, the outliers would have a significant influence over the 

performance of the model. Thus, one must be cautious when deciding which outliers to 

keep and which outliers to discard from the training set of the model. It is also important to 

consider the correlations between these metrics. I found that almost all outlier classes for 

the LOC, WMC, NPM, RFC and LCOM metrics had autogenerated code and did not really 

reflect how object-oriented programs could be written by a human programmer, some of 

them were even wrappers around code written in other languages. Considering this, these 

outliers can be safely discarded unless one wants to consider autogenerated code. The 

outliers for the Ce, CBO, Ca and NOC metrics were interfaces and abstract classes  and are 

examples of implementing generalization-specialization in code. The outliers for the 

metrics DIT, MFA, IC and CBM show examples of increased code reusability due to a greater 

use of inheritance. The outliers for average method complexity were also autogenerated 

and can be discarded. The outliers for the MOA metric are examples of extreme use of 

composition in classes but do reflect a realistic use of composition. 

 

3.4 Package level analysis 

Figure 3.20 shows the Pearson’s correlation coefficient matrix for the 8 package level 

metrics. There are three distinct regions of correlated metric pairs. Metrics NC, NCC and 

NAC have a moderate to high correlation. Metrics Ca, 𝐴, 𝐼 and 𝐷𝑀M have a moderately 

positive or negative correlation with each other. Metric Ce has negligible to zero 

correlation with the other metrics. In the following sections, I explore each of these metric 

groups and present my findings. 
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Figure 3.20 – Correlation matrix for package level metrics. 

 

3.4.1 Size metrics (NC, NCC and NAC) 

NC gives the total number of classes in a package. NCC gives the total number of concrete 

classes in a package. NOA gives the total number of abstract classes/interfaces in a package. 

The distribution plots for these metrics in figure 3.21 to figure 3.23 show that 75% 

packages have up to 17 total classes, 14 concrete classes, 3 abstract classes. The 

distributions for these metrics also suggest that most packages have very few concrete 

classes and zero or one abstract class, but the few hundred outlier packages have a 

significantly large number of classes. I sampled outliers based on the NC metric. The 1,000 
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outlier packages had more than 1,555 classes with the maximum number of classes being 

44,105. The 1,000 outlier packages contribute 2,997,284 classes out of the 47,318,319 

classes contributed by all packages. Thus 0.0474% packages contribute 6.3343% of the 

total classes. 

The sampled packages were mostly packages from projects like Apache Cassandra, Apache 

Zeppelin, Apache Spark, Google Guava Collections and Google Ads API client library. 

A common observation in the outliers for these metrics is that all of them had a greater 

proportion of concrete classes. Because of the large number of classes in these packages, 

they were coupled with many other packages. The ratio of afferent and efferent couplings 

differed from package to package and no pattern could be found; however, the total 

number of couplings was higher than typical. As an example, package 

‘com.google.ads.googleads.v2.resources’ in project ‘google-ads-5.0.0’ has 1,196 classes of 

which 1,039 are concrete and 157 are abstract. This package is used by three other 

packages including ‘com.google.ads.googleads.v2.services’ and 

‘com.google.ads.googleads.v2.utils’; and is used by 13 other packages including 

‘com.google.api’, ‘com.google.common.base’, ‘com.google.common.collect’, 

‘com.google.ads.googleads.v2.common’, ‘com.google.ads.googleads.v2.enums’, 

‘com.google.ads.googleads.v2.errors’, ‘java.lang’, ‘java.util’ etc. 

 

Figure 3.21 – Number of Classes 
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Figure 3.22 – Number of Concrete Classes 

 

Figure 3.23 – Number of Abstract Classes 

 

3.4.2 Efferent couplings (Ce) 

Ce gives the number of packages used by the package for which it is measured. From figure 

3.24, most packages have 4 to 6 efferent couplings with 75% of the packages not having 

more than 14 efferent couplings. The 1,000 outlier packages had more than 90 efferent 

couplings with the maximum number of efferent couplings being 684. The 1,000 outlier 

packages contribute 113,468 efferent couplings out of the 23,366,883 efferent couplings 

contributed by all packages. Thus 0.0474% packages contribute 0.4856% of the total 

efferent couplings. 
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The sampled outliers were mostly specialized packages from projects like Eclipse GlassFish 

etc. A common observation in the outliers for these metrics is that most packages had 

classes that used the more general classes present in the core packages of their projects. As 

an example, package ‘com.sun.enterprise.web’ in project ‘glassfish-embedded-all-5.1.0’ 

uses 130 packages including ‘org.glassfish.internal.api’, ‘javax.servlet.http’, 

‘com.sun.enterprise.web.connector’  etc. Each of these package dependencies holds core 

classes used by the various classes of ‘com.sun.enterprise.web’ package. The sampled 

outliers had more concrete classes than abstract classes. The correlation matrix in figure 

3.20 does not show any correlation between Ce and any other metric even though there is a 

formula that relates 𝐼, Ca and Ce. This can be explained by the fact that the relationship 

between 𝐶𝑒 and 𝐼 is non-linear. 

 

Figure 3.24 – Efferent Couplings 

 

3.4.3 Popularity metrics (Ca, 𝑨, 𝑰 and DMM) 

Ca gives the number of packages which use the package for which it is measured. 𝐴 gives 

the ratio of abstract classes and interfaces in a package to the total number of classes in 

that package. 𝐼 gives the ratio of efferent couplings of a package to the total number of 

couplings of that package. DMM gives the perpendicular distance of a package from the line 

𝐴 +  𝐼 =  1. It is desirable to have a DMM of 0 as it indicates the right balance between 

abstractness and instability. 
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The distribution plots for these metrics in figure 3.25 to figure 3.28 show that 75% of the 

packages had up to 4 afferent couplings, most packages had 𝐴 = 0, 𝐼 = 1, DMM = 0. I sampled 

outliers based on the 𝐶𝑎 metric. The 1,000 outlier packages had more than 191 afferent 

couplings with the maximum number of afferent couplings being 1,318. The 1,000 outlier 

packages contribute 267,379 afferent couplings out of the 8,796,206 afferent couplings 

contributed by all packages. Thus 0.0474% packages contribute 3.0397% of the total 

afferent couplings. 

The sampled outliers were mostly core packages from projects like the AWS SDK for Java, 

Apache Zeppelin, Apache Hadoop Client API and JUnit. A common observation in the 

outliers for these metrics is that most packages were the core packages in their project. 

These core packages had many general classes that were used by the specialized classes in 

the specialized packages of their project. The number of afferent couplings of these 

packages was several times greater than the number of efferent couplings. As an example, 

package ‘com.amazonaws’ in project ‘aws-java-sdk-bundle-1.11.99’ is used by 360 

packages including ‘com.amazonaws.services.ec2’, ‘com.amazonaws.services.dynamodbv2’, 

‘com.amazonaws.services.cloudwatch’ etc. Each of these package dependencies holds 

classes for the various AWS services that require core classes from the ‘ com.amazonaws’ 

package. The sampled outliers had different ratios of abstract and concrete classes.  

 

Figure 3.25 – Afferent Couplings 
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Figure 3.26 – Abstractness 

 

Figure 3.27 – Instability 

 

Figure 3.28 – Distance Main Measure 
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3.5 Overall observations from package level analysis 

Like what was found in the class level analysis, a small number of outlier packages 

contribute a significant portion of the total number of classes and total number of afferent 

and efferent couplings. The inclusion or exclusion of these outliers in the tra ining sets of 

machine learning models could have a significant impact on their performance. I also found 

correlations in some of these metrics which need to be considered too. Most outliers for the 

NC, NCC, NAC, Ce, Ca metrics were widely used packages linked with several other 

packages from their projects. Because of this large linkage, these should certainly be 

included in the training data sets for machine learning models. The metrics Ca, Ce and 𝐼 for 

every package are related by a formula. The metrics 𝐴, 𝐼 and DMM are also related in that 

𝐷𝑀𝑀 is the distance of a package from the line 𝐴 +  𝐼 =  1. These relationships must be 

taken into consideration to remove any redundant information. 
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Chapter 4 
 

Conclusion 

 

4.1 Limitations 

The JAR files that I downloaded from the Maven Central Repository were based on the 

GroupID, ArtifactID and Version coordinates extracted from the Maven Central Index. I 

used the complete Maven Central Index generated in March 2020. Since then, more JAR 

files have been added to the Maven Central Repository which I did not consider. This 

limitation can be overcome by using the weekly increments of the Maven Central Index 

published since then. These weekly increments of the Maven Central Index include the 

coordinates of the newly added JARs and can be used to update the downloaded JAR  file 

repository. 

For every unique combination of GroupID and ArtifactID, I only downloaded the JAR file 

with the latest Version coordinate. This was done to speed up the download process and do 

an analysis based on the latest versions of different projects. However, this limits me from 

tracking the evolution of projects from version to version. This limitation can be overcome 

by trying to download multiple JARs in a single execution of the Maven Invoker. 

There were some GroupID, ArtifactID and Version coordinates in the Maven Central Index 

for which there were no JAR files present in the Maven Central Repository. I have noted all 

such coordinates in a text file. For some JAR files, I could not execute CKJM extended and 

collect design metrics since the dependencies required to analyze these JAR files were not 

present in the Java classpath. I tried adding all the JAR files in the downloaded JAR file 

repository to the Java classpath to resolve this issue. However, some of the JAR files in the 

repository have an INDEX.LIST file which points to non-existent dependencies. This 

prevents me from adding all of them to the Java classpath. This limitation can be overcome 

by verifying the INDEX.LIST file corresponding to every JAR file in the repository. 
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4.2 Future Work 

The scope of this work can be greatly expanded by including all the previous versions of 

every project in the Maven Central Repository. This would enable us to study the evolution 

of projects and study the changes in their design quality metrics over time. These changes 

in the design quality metrics can then be correlated with the code changes that led to a 

change in metric values. This would allow us to study design quality metric evolution in 

much greater detail. 

Another area of future work could be to further refine the relationship between design 

quality metrics and software reusability, flexibility, understandability, functionality, 

extendibility and effectiveness based on the large empirical data obtained in this work. 

 

4.3 Conclusion 

I generated a repository containing the latest version of 226,793 software projects taken 

from the Maven Central Repository. I statically analyzed each of these projects and 

measured 18 class-level design quality metrics for 10,608,920 classes and 8 package-level 

design quality metrics for 2,107,577 packages. I analyzed the outlier projects in terms of 

object-oriented design quality metrics and evaluated their suitability for inclusion in 

training sets for machine learning models. 
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Appendix 
 
In this section I present the detailed metrics for a few of the sampled outliers for every 

metric. 

1. Class Level Metrics 

1.1 Weighted Methods per Class 

Class ‘org.emergentorder.onnx.package$QLinearConv’ in project ‘onnx-scala_2.13-0.2.0’ has 

13,139 methods. ONNX Scala is an open neural network exchange API, code generator and 

backend for functional deep learning in Scala [35]. This class has the highest number of 

methods all of which are public (WMC = NPM = 13,139) and most of them are static, 

synthetic or both. This also results in a high RFC and LOC (RFC = 13,148, LOC = 1,076,219). 

The average method complexity is very high (AMC = 80.9013). The class is right below the 

root and does not have any child classes (DIT = 1, NOC = 0). This results in zero functional 

abstraction (MFA = 0). It has a very high amount of coupling (CBO = 17, Ca = 0, Ce = 17) but 

also a high degree of cohesion in its methods (LCOM = 86,310,091, LCOM3 = 2.0, CAM = 

0.8563). LCOM suggests that no single pair of methods formed from the 13,139 methods 

accesses a common attribute. LCOM3 suggests that some attributes of this class are not 

accessed by some methods. However, the high value of CAM suggests that most methods 

work with the same method parameter types resulting in cohesion. Since this class does 

not inherit methods from any class, there is no coupling between inherited and class 

methods (IC = CBM = 0). None of the class attributes are private or user defined class types 

(DAM = 0.0, MOA = 0). 

Class ‘org.apache.derby.impl.sql.compile.SQLParser’ in project ‘derby-all-10.8.1.2’ has 993 

methods. Apache Derby is an open source relational database implemented in Java  [36]. 

This class has 385 public methods and in response to any message, an object of this class 

could potentially invoke many methods (WMC = 993, NPM = 385, RFC = 1181). This also 

results in many lines of code (LOC = 61,784). The average method complexity is on the 

higher side (AMC = 61.1339). The class is just below the root and does not have any 
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children (DIT = 1, NOC = 0). This results in zero functional abstraction (MFA = 0). It has a 

high amount of coupling (CBO = 75, Ca = 1, Ce = 74) and a severe lack of cohesion in its 

methods (LCOM = 385,626, LCOM3 = 0.9155, CAM = 0.0331). None of the methods are 

coupled with any parent class through inheritance (IC = 0, CBM = 0). Many attributes are 

private and 12 are user defined class types (DAM = 0.8325, MOA = 12). 

 

1.2 Number of Public Methods 

Class ‘javax.media.opengl.TraceGL’ in project ‘jogl-1.1.1’ has 2,097 public methods. JOGL 

hosts the Java Binding for the OpenGL API and provides hardware supported 3D graphics 

to applications written in Java [37]. This class is made up of 2,101 methods of which 2,097 

are public. Any object of this class could potentially call 4,216 methods (WMC = 2,101, NPM 

= 2,097, RFC = 4,216). Every method either returns void or some Java primitive type. Every 

method parameter is either a Java primitive or belongs to ‘java.nio’. As a result, this class 

does not have to depend on any other class (CBO = 0, Ca = 0, Ce = 0) and the methods are 

highly cohesive (LCOM = 0, LCOM3 = 0.0013, CAM = 0.1005). However, the average method 

complexity is much higher (AMC = 33.3660). This is also reflected in the number of lines of 

code (LOC = 72,206). This class is right below the root of the object hierarchy and does not 

have any children (DIT = 1, NOC = 0). Since no methods other than those of the root are 

inherited, functional abstraction is zero (MFA = 0.0). None of the methods are coupled with 

any parent class through inheritance (IC = 0, CBM = 0). All attributes of this class are 

private and are user defined types (DAM = 1.0, MOA = 1). 

 

1.3 Response for a Class 

Class ‘scalaz.Scalaz’ in project ‘scalaz-core_2.11.0-M7-7.1.0-M4’ can call up to 950 methods 

in response to a message. Scalaz is a Scala library for functional programming [38]. This 

class has 475 methods all of which are public but note that the number of methods that 

could be called is double the number of methods in this class (WMC = NPM = 475, RFC = 

950). This must mean that this class uses many methods from other classes. This is shown 
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by the coupling metrics for this class which indicate that it depends upon 168 other classes 

but is not used by any of them (CBO = 168, Ca = 0, Ce = 168). There is also a severe lack of 

cohesion among the methods (LCOM = 112,575, LCOM3 = 2.0, CAM = 0.0139). This class is 

right below the root of the object hierarchy and does not have any child classes (DIT = 1, 

NOC = 0). It has no functional abstraction (MFA = 0). None of the methods are coupled with 

any parent class through inheritance (IC = 0, CBM = 0). It has a typical average method 

complexity (AMC = 4.5263). Due to the large number of methods the number of lines of 

code is large (LOC = 2,625). The class has no private or user defined class type attributes 

(DAM = 0.0, MOA = 0). 

 

1.4 Average Method Complexity 

Class ‘com.netflix.awsobjectmapper.AmazonObjectMapper’ in project ‘awsobjectmapper -

1.9.33.1’ has an average method complexity of 7,889.0. AWS Object Mapper can be used to 

convert AWS model object to/from JSON [39]. This class has one public method which is a 

constructor, and an object of this class could call up to eight methods in response to a 

message (WMC = NPM = 1, RFC = 8). The single method has a significantly higher method 

complexity than typical (AMC = 7,889.0). This large method complexity can be explained by 

the several lines of code (LOC = 7,890). This class is four levels below the root of the object 

hierarchy and has no child classes (DIT = 4, NOC = 0). All methods other than the 

constructor have been inherited from the parents which results in full functional 

abstraction (MFA = 1.0). This class is coupled with six other classes (CBO = 6, Ca = 0, Ce = 6) 

and since it does not have any attributes of its own, the cohesion metrics indicate that its 

methods are highly cohesive (LCOM = 0, LCOM3 = 2.0, CAM = 1.0). Since it does not have 

any methods of its own, there is no coupling with any parent classes through inheritance 

(IC = 0, CBM = 0). None of its attributes are private or user defined class types (DAM = 0.0, 

MOA = 0). 

 

1.5 Lack of Cohesion in Methods 



60 
 

Class ‘zio.Chunk’ in project ‘zio_2.12-1.0.0-RC9-4’ has an LCOM of 10,344,426. ZIO is a Scala 

library for asynchronous and concurrent programming [40]. This class has 4,549 methods 

of which 4,547 are public and any object of this class could call up to 4,646 methods in 

response to a message (WMC = 4,549, NPM = 4,547, RFC = 4,646). The average method 

complexity is typical (AMC = 7.4929). This class is right below the root of the object 

hierarchy and has no child classes (DIT = 1, NOC = 0). This class calls methods from many 

other classes and is also called by the methods of many other classes (CBO = 85, Ca = 55, Ce 

= 44). There is a severe lack of cohesion among its methods (LCOM = 10,344,426, LCOM3 = 

2.0, CAM = 0.1388). This class has one method which is coupled with every method 

inherited from the parent class (IC = 1, CBM = 1) (the parent class is the root of the object 

hierarchy in this case). Since the only methods inherited are those defined in the root, it has 

zero functional abstraction (MFA = 0.0). It also has several lines of code (LOC = 38,634) and 

does not have any private or user defined class type attributes (DAM = 0.0, MOA = 0).  

 

1.6 Lack of Cohesion in Methods 3 

Class ‘org.bouncycastle.asn1.smime.SMIMECapabilityVector’ in package ‘bcprov-jdk14-

1.65’ has LCOM3 = 0.0. Bouncy Castle is a lightweight cryptography API for Java  [41]. This 

class has five methods all of which are public. An object of this class could potentially 

invoke 12 methods (WMC = NPM = 5, RFC = 12). All methods have a high method 

complexity (AMC = 12.2). The class is right below the root of the object hierarchy and has 

no child classes (DIT = 1, NOC = 0). It is coupled with six other classes which is typical (CBO 

= 6, Ca = 1, Ce = 5). However, the methods of this class are highly cohesive. Three methods 

work with ‘org.bouncycastle.asn1.ASN1ObjectIdentifier’ objects, and one method returns a 

‘org.bouncycastle.asn1.ASN1EncodableVector’ (LCOM = 0, LCOM3 = 0.0, CAM = 0.5). None 

of the methods are coupled with any parent class through inheritance (IC = 0, CBM = 0). 

Since no methods other than those of the root are inherited, functional abstraction is zero 

(MFA = 0.0). This class has 67 lines of code which is on the higher side but is typical (LOC = 

67). All attributes of this class are private and are user defined class types (DAM = 1.0, MOA 

= 1). 
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1.7 Cohesion Among Methods of Class 

Class ‘com.sun.msv.reader.relax.core.RELAXCoreReader$StateFactory’ in project ‘jaxb1-

impl-2.2.5.1’ has a CAM score of 0.9524. Java Architecture for XML Binding provides an API 

and tools that automate the mapping between XML documents and Java objects  [42]. This 

class has 14 methods of which 13 are protected and one is public. An object of this class 

could call up to 31 methods in response to a message (WMC = 14, NPM = 1, RFC = 31). 

Average method complexity is 4.9286 which is typical (AMC = 4.9286). This class is two 

levels below the root of the object hierarchy and has one child class (DIT = 2, NOC = 1). It 

has high functional abstraction (MFA = 0.35). It is highly coupled (CBO = 22, Ca = 6, Ce = 

17) however the values for cohesion are conflicting (LCOM = 89, LCOM3 = 0.9231, CAM = 

0.9524). LCOM3 suggests that the methods of this class lack cohesion, but CAM suggests 

otherwise. All methods of this class take ‘com.sun.msv.reader.State’ and 

‘com.sun.msv.util.StartTagInfo’ as parameters. CAM considers method parameter types, 

whereas LCOM3 considers class attributes accessed by methods. This may explain the 

conflicting results. None of the methods are coupled with any parent class through 

inheritance (IC = 0, CBM = 0). All attributes of this class are private, and one is a user 

defined class type (DAM = 1.0, MOA = 1). 

 

1.8 Coupling Between Object Classes 

Interface ‘ca.uhn.hl7v2.parser.ModelClassFactory’ in project ‘hapi-osgi-base-2.3’ is coupled 

with 6,149 other classes. HL7 is a messaging specification for healthcare information 

systems. HAPI provides an open source HL7 parser for Java [43]. This interface also has one 

of the highest values of afferent coupling (CBO = 6149, Ca = 6148, Ce = 2). This large value 

of coupling can be explained by the fact that this class is a method parameter in many other 

classes in the same project. As it is an interface, all methods are abstract and public (WMC = 

NPM = 6, RFC = 6). As a result, the average method complexity is zero (AMC = 0.0). This 

interface is right below the root of the object hierarchy and is not extended by any other 
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interface (DIT = 1, NOC = 0). As a result, the functional abstraction is zero (MFA = 0). This 

interface does not have any attributes as a result of which LCOM and LCOM3 suggest that 

there is no cohesion. However, CAM suggests that there is a small amount of cohesion 

(LCOM = 15, LCOM3 = 2.0, CAM = 0.6250). The interface has only six lines of code, one for 

each of the six methods (LOC = 6). None of the methods are coupled with any parent class 

through inheritance (IC = 0, CBM = 0). There are no static attributes in this interface (DAM 

= 0, MOA = 0). 

 

1.9 Afferent Couplings 

Interface ‘io.dekorate.deps.kubernetes.api.builder.Nested’ in project ‘dekorate -

dependencies-0.9.9’ is used by 5,180 other classes. Dekorate is a collection of Java compile-

time generators and decorators for Kubernetes manifests [44]. This interface has a single 

public and abstract method (WMC = NPM = 1, RFC = 1). Since it is an interface, method 

complexity is zero (AMC = 0.0). This interface is right below the root of the object hierarchy 

and is not extended by any other interface (DIT = 1, NOC = 0). Since no methods other than 

those of the root are inherited, functional abstraction is zero (MFA = 0.0). This  interface has 

been implemented by many other classes in its project and is thus highly coupled (CBO = 

5,180, Ca = 5,180, Ce = 0). Since there is only one method and no attributes, the cohesion 

metrics indicate that it is highly cohesive (LCOM = 0, LCOM3 = 2.0, CAM = 1.0). None of the 

methods are coupled with any parent class through inheritance (IC = 0, CBM = 0). The only 

method in this interface occupies a single line of code (LOC = 1). There are no static 

attributes in this interface (DAM = 0.0, MOA = 0). 

 

1.10 Efferent Couplings 

Interface ‘io.fabric8.kubernetes.api.model.WatchEventFluent’ in project ‘crd-generator-

0.17.0’ uses 1,702 other classes. ‘fabric8io/Kubernetes-client’ is a Java client for 

Kubernetes and OpenShift REST APIs [45]. This interface comprises of 1,702 public and 

abstract methods many of which return objects implementing WatchEventFluent or many 
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of its nested interfaces (WMC = NPM = 1,702, RFC = 1,702). Since it is an interface average 

method complexity is zero (AMC = 0.0). It is right below the root of the object hierarchy and 

has no children (DIT = 1, NOC = 0). Since no methods other than those of the root are 

inherited, functional abstraction is zero (MFA = 0.0). WatchEventFluent has several nested 

interfaces and nearly every method of this interface either returns an object that 

implements WatchEventFluent or one of its nested interfaces. This results in a very high 

amount of coupling (CBO = 1,591, Ca = 534, Ce = 1,058). There is a severe lack of cohesion 

in the methods of this interface (LCOM = 1,447,551, LCOM3 = 2.0, CAM = 0.0032). None of 

the methods are coupled with any parent class through inheritance (IC = 0, CBM = 0). Every 

method in this interface occupies a single line of code (LOC = 1,702). There are no static 

attributes in this interface (DAM = 0.0, MOA = 0). 

 

1.11 Depth of Inheritance Tree 

Class ‘org.simpleflatmapper.tuple.Tuple32’ in project ‘sfm-tuples-8.2.1’ is 31 levels below 

the root of the object hierarchy and has no children (DIT = 31, NOC = 0). SimpleFlatMapper 

is a lightweight alternative to Hibernate and provides fast parsing and mapping of CSV files 

to Java POJOs [46]. This class has 5 methods all of which are public, and an object of this 

class could potentially call many methods in response to a message (WMC = NPM = 5, RFC = 

47). The methods have a higher complexity (AMC = 53.0). The higher depth in the 

inheritance tree also results in a very high functional abstraction (MFA = 0.9758). The class 

has low coupling (CBO = 1, Ca = 1, Ce = 1) and its methods are very cohesive (LCOM = 0, 

LCOM3 = 0.0, CAM = 0.7). However, this class has 13 methods which are coupled with every 

inherited method, and it is coupled with 9 parent classes through inheritance, which is 

much higher than typical (IC = 9, CBM = 13). The class is rather large with many lines of 

code (LOC = 271). The class attributes are all private and none of them are user defined 

class types (DAM = 1.0, MOA = 0). 

 

1.12 Number of Children 
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Class ‘frege.runtime.Fun1’ in project ‘frege-3.22.367-g2737683’ has 9,101 children. Frege is 

a functional programming language that compiles to Java and runs on the JVM [47]. This 

class is two levels below the object root and has the highest number of children classes 

(DIT = 2, NOC = 9,101). It has 5 methods all of which are public, and any object of this class 

could call up to 6 methods in response to a message which is typical (WMC = NPM = 5, RFC 

= 6). The methods have a typical method complexity (AMC = 3.0). This class has a rather 

high functional abstraction (MFA = 0.5556). It also has a very high amount of coupling (CBO 

= 10,181, Ca = 10,178, Ce = 4) and less cohesion among its methods (LCOM = 10, LCOM3 = 

2, CAM = 0.6). However, none of the methods are coupled with any parent class through 

inheritance (IC = 0, CBM = 0). The class has 20 lines of code (LOC = 20) and has no private 

or user defined class type attributes (DAM = 0, MOA = 0). 

 

1.13 Measure of Functional Abstraction 

Class ‘org.scalajs.dom.raw.PerformanceMeasure’ in project ‘scalajs-dom_sjs1.0.0-

M1_2.13.0-M1-0.9.3’ has a functional abstraction of 1.0. ‘scala-js-dom’ is a statically typed 

DOM API for Scala.js [48]. This class has a single public constructor, and any object of this 

class can call up to 2 methods in response to a message (WMC = NPM = 1, RFC = 2). The 

average method complexity is typical (AMC = 3.0). This class is three levels below the root 

of the object hierarchy and has no child classes (DIT = 3, NOC = 0). This class has a 

functional abstraction of 1.0 which implies that all methods other than the constructor are 

inherited from parent classes (MFA = 1.0). It is coupled with only one other class which is 

typical (CBO = 1, Ca = 0, Ce = 1). Since it does not have any methods of its own, there is no 

coupling with any parent classes through inheritance (IC = 0, CBM = 0). Since this class 

does not have any attributes, the cohesion metrics suggest that the methods of this class 

are highly cohesive (LCOM = 0, LCOM3 = 2.0, CAM = 1.0). The class has only four lines of 

code (LOC = 4) and does not have any attributes which are private or user defined class 

types (DAM = 0.0, MOA = 0). 
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1.14 Inheritance Coupling 

Class ‘reactor.util.function.Tuple8’ in project ‘reactor-core-3.3.4.RELEASE’ is coupled with 7 

parent classes through inheritance. ‘reactor-core’ is a non-blocking Reactive Streams 

Foundation for the JVM [49]. This class has 42 methods, 41 of which are public. An object of 

this class could call up to 22 methods in response to a message (WMC = 42, NPM = 41, RFC 

= 22). The average method complexity is slightly higher than typical (AMC = 9.833). This 

class is seven levels below the root of the object hierarchy and has no  child classes (DIT = 7, 

NOC = 0). It has a high functional abstraction (MFA = 0.7405). It is coupled with eight other 

classes (CBO = 8, Ca = 2, Ce = 6) and there is a lack of cohesion in its methods (LCOM = 679, 

LCOM3 = 0.5244, CAM = 0.4762). This class has 23 methods which are coupled with every 

inherited method from the seven parent classes which is much higher than typical (IC = 7, 

CBM = 23). It has 457 lines of code (LOC = 457) and half of its attributes are private, but 

none of them are user defined class types (DAM = 0.5, MOA = 0). 

 

1.15 Coupling Between Methods 

Class ‘org.eclipse.swt.widgets.Shell’ in project ‘org.eclipse.swt.gtk.linux.x86_64-4.3’ has 157 

methods coupled with all inherited methods. Eclipse SWT is an open source widget toolkit 

for Java [50]. This class has 116 methods of which 45 are public. An object of this class 

could call up to 388 methods in response to a message. (WMC = 116, NPM = 45, RFC = 388). 

The average method complexity is much higher than typical (AMC = 49.1466). This class is 

seven levels below the root of the object hierarchy and has no children (DIT = 7, NOC = 0). 

It has very high functional abstraction (MFA = 0.8519). This class has a very high coupling 

(CBO = 105, Ca = 74, Ce = 39) and a severe lack of cohesion among its methods (LCOM = 

3,630, LCOM3 = 0.9486, CAM = 0.1121). It has 157 methods which are coupled with every 

inherited method, and it is coupled with 6 parent classes through inheritance, which is 

much higher than typical (IC = 6, CBM = 157). This class has 5,840 lines of code (LOC = 

5,840) and none of its attributes are private, but two of them are user defined class types 

(DAM = 0.0, MOA = 2). 
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1.16 Lines of Code 

Class ‘oracle.jdbc.driver.PhysicalConnection’ in project ‘ojdbc6_g-11.2.0.4’ has 65,430 lines 

of code. OJDBC6 is a database driver compatible with JDK 6, 7 and 8 [51]. This class has 408 

methods of which 312 are public and any object of this class could potentially call up to 744 

methods in response to a message (WMC = 408, NPM = 312, RFC = 744). The average 

method complexity is very high (AMC = 158.8260). This class is three levels below the root 

of the object hierarchy and has three child classes (DIT = 3, NOC = 3). It has a high 

functional abstraction (MFA = 0.3447). It also has a very high amount of coupling with 

other classes (CBO = 179, Ca = 94, Ce = 99) and a severe lack of cohesion among methods 

(LCOM = 0, LCOM3 = 0.9846, CAM = 0.0259). LCOM = 0 can be possibly explained by there 

being an equal number of method pairs which access a common attribute and method pairs 

which do not access a common attribute. This class has 13 methods which are coupled with 

every inherited method from the three parent classes which is much higher than typical (IC 

= 3, CBM = 13). Very few of the class attributes are private and 18 attributes are user 

defined class types (DAM = 0.0362, MOA = 18). 

 

1.17 Data Access Metric 

Class ‘org.apache.sling.junit.impl.servlet.XmlRenderer’ in project 

‘org.apache.sling.junit.core-1.0.8’ has a ratio of 0.8182. Apache Sling is a framework for 

RESTful web-applications based on an extensible content tree [52]. This class has 20 

methods of which 19 are public and an object of this class could potentially call up to 84 

methods in response to a message (WMC = 20, NPM = 19, RFC = 84). The average method 

complexity is very high (AMC = 21.65). This class is two levels below the root of the object 

hierarchy and has no child classes (DIT = 2, NOC = 0). It has a high functio nal abstraction 

(MFA = 0.3214). It is coupled with seven other classes which is typical (CBO = 7, Ca = 0, Ce 

= 7) but there is a lack of cohesion in its methods (LCOM = 144, LCOM3 = 0.9091, CAM = 

0.1545). None of the methods are coupled with any parent class through inheritance (IC = 
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0, CBM = 0). This class is very large with 464 lines of code (LOC = 464). Most of the class 

attributes are private but none of them are user defined class types (DAM = 0.8182, MOA = 

0). 

 

1.18 Measure of Aggregation 

Scala singleton object class ‘com.vitorsvieira.iso.ISOCountrySubdivision’ in project ‘scala-

iso_2.11-0.1.2’ extends multiple Scala traits like ‘ISOCountrySubdivisionAfrica’, 

‘ISOCountrySubdivisionAsia’, ‘ISOCountrySubdivisionEurope’ etc. These Scala traits contain 

multiple fields of type ‘ISOCountrySubdivision’ for every country subdivision in the world. 

‘scala-iso’ stores ISO related Scala types for country codes, country subdivisions, country 

currency etc. [53]. In Scala, a singleton object is a class with only one instance. Traits are 

used to share interfaces and fields between classes and are like interfaces in Java. The class 

‘ISOCountrySubdivision’ has 6,857 methods of which 6,856 are public and any object of this 

class could potentially call up to 6,883 methods (WMC = 6,857, NPM = 6,856, RFC = 6,883). 

These methods are getters and setters for every country subdivision in the world. The 

average method complexity is high (AMC = 14.0047). This class is right below the root of 

the object hierarchy and does not have any child classes (DIT = 1, NOC = 0). The class is 

coupled with many other classes (CBO = 34, Ca = 4, Ce = 33) and there is a severe lack of 

cohesion in its methods (LCOM = 22,640,196, LCOM3 = 0.9996, CAM = 0.3001). This lack of 

cohesion can be explained by the fact that there is a getter and setter for every country 

subdivision. None of the methods are coupled with any parent class through inheritance (IC 

= 0, CBM = 0). Most attributes are of type ‘com.vitorsvieira.iso.CountrySubdivision’ where 

every attribute of such type represents one of the many country subdivisions of the world. 

All attributes of such type are private and have public getters and setters. This results in 

very high values for DAM and MOA (DAM = 0.9997, MOA = 3,424). The large number of 

attributes and their getter and setter methods also result in an increase in the number of 

lines of code (LOC = 106,366). 
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2. Package Level Metrics 

2.1 Number of Classes 

Package ‘org.apache.cassandra.thrift’ in project ‘cassandra-thrift-3.9’ has 1,004 classes. 

Apache Cassandra is a highly scalable distributed database [54]. This package has 1,004 

classes of which 1,001 are concrete and 3 are abstract. This package is not used by any 

other package in the project, but uses 13 other packages (Ca = 0, Ce = 13). It uses packages 

like ‘java.io’ and ‘org.apache.thrift’. It has 0 abstractness and 1 instability resulting in a 

DMM of 0 (A = 0, I = 1, DMM = 0). 

Package ‘com.google.ads.googleads.v2.resources’ in project ‘google-ads-5.0.0’ has 1,196 

concrete classes. ‘google-ads-java’ is the Google Ads API client library for Java  [55]. This 

package has 1,196 classes of which 1,039 are concrete and 157 are abstract. This package  is 

used by 3 other packages in the project, and uses 13 other packages (Ca = 3, Ce = 13). It is 

used by ‘com.google.ads.googleads.v2.services’, ‘com.google.ads.googleads.v2.utils’ etc. and 

uses packages like ‘com.google.common.base’, ‘com.google.ads.googleads.v2.common’ etc. It 

has 0.13 abstractness and 0.81 instability resulting in a DMM of 0.06 (A = 0.13, I = 0.81, 

DMM = 0.06). 

Package ‘com.microsoft.azure.management.containerregistry.v2018_02_01_preview’ in 

project ‘azure-mgmt-containerregistry-1.0.0-beta-1’ has 101 abstract classes. ‘azure-

libraries-for-java’ is a set of Azure management libraries for Java  [56]. This package has 

163 classes of which 62 are concrete and 101 are abstract. This package is used by 1 other 

package in the project, and uses 12 other packages (Ca = 1, Ce = 12). It is used by 

‘com.microsoft.azure.management.containerregistry.v2018_02_01_preview.implementatio

n’, and uses packages like ‘com.microsoft.azure.arm.collection’, 

‘com.microsoft.azure.arm.model’ etc. It has 0.62 abstractness and 0.92 instability resulting 

in a DMM of 0.54 (A = 0.62, I = 0.92, DMM = 0.54). 
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2.2 Afferent Couplings 

Package ‘com.amazonaws’ in project ‘aws-java-sdk-bundle-1.11.99’ is used by 360 other 

packages. ‘aws-sdk-java’ is the official AWS SDK for Java [57]. This package has 33 classes 

of which 25 are concrete and 8 are abstract. This package is used by 360 other packages in 

the project, and uses 22 other packages (Ca = 360, Ce = 22). It is used by 

‘com.amazonaws.services.ec2’, ‘com.amazonaws.services.dynamodbv2’, 

‘com.amazonaws.services.cloudwatch’ and many other packages, and uses packages like 

‘com.amazonaws.auth’, ‘com.amazonaws.regions’ etc. It has 0.24 abstractness and 0.06 

instability resulting in a DMM of 0.7 (A = 0.24, I = 0.06, DMM = 0.7). 

 

2.3 Efferent Couplings 

Package ‘com.sun.enterprise.web’ in project ‘glassfish-embedded-all-5.1.0’ uses 130 other 

packages. Eclipse GlassFish is a Jakarta EE compatible implementation by the Eclipse 

Foundation [58]. This package has 67 classes of which 53 are concrete and 14 are abstract. 

This package is used by 19 other packages in the project, and uses 130 other packages (Ca 

= 19, Ce = 130). It is used by ‘com.sun.enterprise.security.webservices’, 

‘org.glassfish.webservices’ etc. and uses packages like ‘org.glassfish.internal.api’, 

‘javax.servlet.http’, ‘com.sun.enterprise.web.connector’ and many others. It has 0.21 

abstractness and 0.87 instability resulting in a DMM of 0.08 (A = 0.21, I = 0.87, DMM = 

0.08). 

 

2.4 Abstractness 

Package ‘org.springframework.web.portlet.bind.annotation’ in project ‘spring -webmvc-

portlet-4.3.9.RELEASE’ has an abstractness of 1. Spring Framework makes it easier to 

create enterprise Java applications [59]. This package has 4 classes, all of which are 

abstract. This package is used by 1 other package in the project, and uses 4 other packages 
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(Ca = 1, Ce = 4). It is used by ‘org.springframework.web.portlet.mvc.annotation’ and uses 

packages like ‘org.springframework.core.annotation’ etc. ‘ActionMapping’, ‘EventMapping’, 

‘RenderMapping’ and ‘ResourceMapping’ are the four abstract classes. It has 1 abstractness 

and 0.8 instability resulting in a DMM of 0.8 (A = 1, I = 0.8, DMM = 0.8). 

 

2.5 Instability 

Package ‘org.apache.tapestry5.jmx’ in project ‘tapestry-jmx-5.5.0’ has an instability of 0.5. 

Apache Tapestry is a component-oriented framework for web applications in Java [60]. 

This package has one abstract class. This package is used by 2 other packages in the 

project, and uses 2 other packages (Ca = 2, Ce = 2). It is used by 

‘org.apache.tapestry5.internal.jmx’ and ‘org.apache.tapestry5.jmx.modules’ and uses 

packages ‘java.lang’ and ‘javax.management’. It has 1 abstractness and 0.5 instability 

resulting in a DMM of 0.5 (A = 1, I = 0.5, DMM = 0.5). 

 

2.6 Distance Main Measure 

Package ‘org.junit.internal.requests’ in project ‘junit-4.9’ has a DMM of 0.0. JUnit is a unit 

testing framework for Java [61]. This package has 4 classes of which 3 are concrete and 1 is 

abstract. This package is used by 2 other packages in the project, and uses 6 other packages 

(Ca = 2, Ce = 6). It is used by ‘org.junit.runner’ and ‘org.junit.experimental.max’ and uses 

packages like ‘org.junit.internal.builders’, ‘org.junit.internal.runners’ etc. It has 0.25 

abstractness and 0.75 instability resulting in a DMM of 0.0 (A = 0.25, I = 0.75, DMM = 0.0).  

 




