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Abstract
Objective  Long axial field-of-view (LAFOV) PET/CT showed improved performance resulting from higher sensitivity. The 
aim was to quantify the impact of using the full acceptance angle (UHS) in image reconstructions with the Biograph Vision 
Quadra LAFOV PET/CT (Siemens Healthineers) compared to the limited acceptance angle (high sensitivity mode, HS).
Methods  38 oncological patients examined on a LAFOV Biograph Vision Quadra PET/CT were analysed. 15 patients under-
went [18F]FDG-PET/CT, 15 patients underwent [18F]PSMA-1007 PET/CT, and 8 patients underwent [68Ga]Ga-DOTA-TOC 
PET/CT. Signal-to-noise ratio (SNR) and standardised uptake values (SUVmean/max/peak) were used to compare UHS and HS 
with different acquisition times.
Results  The SNR was significantly higher for UHS compared to HS over all acquisition times (SNR UHS/HS [18F]FDG: 
1.35 ± 0.02, p < 0.001; [18F]PSMA-1007: 1.25 ± 0.02, p < 0.001; [68Ga]Ga-DOTA-TOC: 1.29 ± 0.02, p < 0.001).
Conclusion  UHS showed significantly higher SNR opening the possibility of halving short acquisition times. This is of 
advantage in further reduction of whole-body PET/CT acquisition.

Keywords  Whole-body PET/CT · LAFOV PET/CT · Ultra-high sensitivity · High sensitivity · Acquisition time

Introduction

Nuclear medicine techniques especially in hybrid imaging 
have undergone rapid development since the first introduc-
tion of a clinical positron emission tomography/computed 
tomography (PET/CT) system [1]. The recently introduced 
LAFOV scanners in Philadelphia, Pennsylvania, USA (Pen-
nPET Explorer), in Davis, California, USA (uExplorer, 
United Imaging Healthcare America) and in Bern, Swit-
zerland (Biograph Vision Quadra, Siemens Healthineers) 
demonstrated that the longer coverage of coincident photons 
results in higher count density and higher sensitivity of the 
LAFOV PET/CT systems. Accordingly, signal-to-noise ratio 
(SNR) of the scanner increases with longer FOV (2).

Recent work has shown that scan time can be reduced 
with a LAFOV PET system [3, 4]. Yet, at the time of the first 
publication of the latest LAFOV Biograph Vision Quadra 
PET/CT system, image reconstructions using the full accept-
ance angle (maximum ring difference (MRD) 322) were 
not available and reconstruction was restricted to a limited 
acceptance angle (MRD 85) [5, 6]. Detecting coincidences 
with full acceptance angle is known to be challenging in 
LAFOV system. Zhang et al. observed in the uEXPLORER 
total-body PET-scanner worsening axial resolution with 
increasing MRD since oblique lines-of-response (LOR) are 
more likely to be scattered in the patient with longer MRD 
[7]. Therefore, fast time-of-flight (TOF) resolution and accu-
rate scatter correction are crucial to avoid misinterpretation 
of the coincident events [8, 9].

Here, we present the first clinical data with the new ultra-
high sensitivity (UHS) reconstruction mode (MRD 322) in 
the Biograph Vision Quadra and aim to evaluate it with 
regard to noise rate, lesion quantification and acquisition 
time.
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Materials and methods

Patient population

38 previously published patients undergoing clinically 
routine oncological PET/CT between October 2020 and 
December 2020 were analysed retrospectively [5]. Data 
from 15 patients receiving a [18F]FDG-PET/CT, 15 patients 
receiving [18F]PSMA-1007 PET/CT and 8 patients receiv-
ing [68 Ga]Ga-DOTA-TOC PET/CT were analysed (Fig. 1) 
[10]. 10 min list-mode (LM) data acquisition was utilised 
for all scans.

Imaging protocol

The PET LM data were calculated using 600, 360, 240, 
120, 60, 30, 20, 10, 5 and 2 s durations to simulate shorter 
acquisition times. Long acquisition times were considered 
as > 120 s, short acquisitions as 120–30 s and very short 
acquisitions as < 30 s. Biograph Vision Quadra acquires the 
PET emission data using the maximum full ring difference 
(MRD 322), and offers two reconstruction modes: ultra-high 
sensitivity mode (UHS) with the full ring difference and 
full acceptance angle (54 degrees) and high sensitivity (HS) 
mode with limited ring difference (MRD 85) and acceptance 
angle (19 degrees) [11, 12]. In this work, we reconstructed 
the PET data with UHS and HS modes. Image reconstruc-
tion was performed using a dedicated image reconstruction 
software (e7-tools, Siemens Healthineers), which was avail-
able at our clinic at the time of analysis and will be provided 
by Siemens Healthineers to general users in the future. In all 
reconstructions, point-spread-function (PSF)-TOF method 
was used with four iterations and five subsets and were 
reconstructed with a 440 × 440 × 644 image matrix with 
a voxel size of 1.65 × 1.65 × 1.65 mm3. A Gaussian post-
reconstruction filter with 2 mm full width at half maximum 
(FWHM) was applied to the images. Attenuation correction 
was performed using the low-dose non-enhanced CT data. 
3D scatter correction was performed using a 3D residual-
based method which was shown to be more accurate than 
2D single scatter simulation method with large acceptance 
angles and oblique lines-of-response (i.e. MRD 322) [13]. 
All images in both MRD 85 and 322 were reconstructed 
using the 3D scatter correction.

Image evaluation

Image analysis and identification of target lesions (malignant 
tissue) were performed using a separate software (pmod; 
PMOD Technologies LLC, Zürich, Switzerland). Lesion 
uptake and metabolic tumour volumes were calculated by 
placing a volume-of-interest (VOI) with a 40%-iso-contour 
approach around the lesion as previously described [5, 14].

Peak and maximum standardised uptake values 
(SUVpeak/max) were used to evaluate target lesion knowing 
that SUVpeak has been shown to be less susceptible for vari-
ation at different acquisition times than SUVmax [15].

The background was measured by the placement of a 10 
cm3 VOI in healthy liver tissue in the right liver lobe as 
previously described [16]. Using the PMOD software, VOIs 
were automatically applied to all different images obtained 
from different frame durations. The SNR was defined as the 
reciprocal coefficient of variation (COV) for the liver back-
ground, where σ was the standard deviation of the back-
ground VOI and μ was the SUVmean of the background VOI 
[5].

Statistical analysis

Statistical analyses were performed using Graphpad 
Prism Version 9 (San Diego, California). The data are 
presented either as mean ± standard deviation (SD) or as 
median ± standard error (SE). Comparison between the 
different SNR and SUV measurements were characterised 
using paired Student`s T test and applying Bonferroni cor-
rection. p values less than 0.0011 were considered statisti-
cally significant (marked with an asterisk “*”) according to 
Bonferroni correction.

Results

Patient examination

In total, 153 target lesions were identified in 38 patients in 
the reference standard of 10 min acquisition time. Patients’ 
characteristics including the tumour type, mean adminis-
tered radiopharmaceutical activity ± standard deviation, and 
age are outlined in Table 1.

Fig. 1   Study flowchart showing 
patient recruitment and the 
patients who were included
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Signal‑to‑noise ratio (SNR) in three different 
radiopharmaceuticals from 2 to 600 s

We report significantly higher SNR in all three examined 
radiopharmaceuticals for UHS compared to HS reconstruc-
tions (SNR UHS/HS ratio: [18F]FDG: 1.35 ± 0.02, p < 0.001; 
[18F]PSMA-1007: 1.25 ± 0.02 p < 0.001; [68 Ga]Ga-DOTA-
TOC: 1.29 ± 0.02, p < 0.001) over all acquisition times. Fig-
ure 2 shows examples of the reconstructed images in both 
HS and UHS with various acquisition times. As supported 
by the visual impression (example images Fig. 2), liver sig-
nal increased with increasing acquisition time in all three 
radiopharmaceuticals (Fig. 3 A–C). Furthermore, the SNR 

in HS short acquisition time was comparable with half of its 
time counterpart in UHS ([18F]FDG: HS 60 s: 4.58 ± 1.12 
vs. UHS 30 s: 4.60 ± 1.24; HS 120 s: 6.32 ± 1.68 vs. UHS 
60 s: 6.27 ± 1.72 and HS 240 s: 8.59 ± 2.345 vs. UHS 120 s: 
8.34 ± 2.28). Detailed information of all three radiopharma-
ceuticals can be found in Fig. 3 D–F.

Target lesion values represented by SUVpeak 
and SUVmax

SUVpeak in HS was 5.34 ± 1.04 for [18F]FDG and 5.48 ± 1.02 
in UHS over all acquisition times. SUVpeak was constant over 
all acquisition times and there was no evidence of statistical 
significant difference between UHS and HS. Median ± stand-
ard error SUVmax was 13.63 ± 1.84 in HS and 12.14 ± 1.62 
in UHS. No evidence of statistical significant differences 
between HS and UHS SUVmax could be found. For [18F]
PSMA-1007, median ± standard error SUVpeak in HS was 
5.39 ± 1.23 and in UHS was 5.25 ± 1.22 over all acquisition 
times. SUVmax was 16.72 ± 3.20 in HS and 15.33 ± 2.87 in 
UHS. No statistical significant differences between HS and 
UHS SUVpeak/max could be seen. Median ± standard error 
SUVpeak for the patients with [68 Ga]Ga-DOTA-TOC in HS 
was 4.73 ± 1.2 and 4.74 ± 1.19 in UHS over all acquisition 
times. SUVmax was 14.05 ± 3.39 in HS and 12.68 ± 2.96 in 
UHS. No statistical significant differences between HS and 
UHS SUVpeak/max could be seen. Details of all SUVmax/peak 
at all acquisition times are outlined in Fig. 4.

Discussion

In this study, we show the first in-human evaluation of the 
ultra-high sensitivity mode (MRD 322) of the Biograph 
Vision Quadra PET/CT system. Previously published stud-
ies with the Biograph Vision Quadra were limited to a MRD 
of 85 crystal rings which limited the acceptance angle [5, 11, 
17]. Using the full acceptance angle to detect coincidences 
(MRD 322), the NEMA sensitivity of the Biograph Vision 
Quadra PET/CT increased in phantom studies by the factor 
of two compared to MRD 85 (sensitivity MRD 85: 83.4 cps/
kBq vs. MRD 322: 176 cps/kBq) [11].

In our clinical analysis, we report significant increase 
of the SNR as an indicator for the higher sensitivity of the 

Table 1   Patients’ characteristics of the included patients (n = 38). Given are radiopharmaceuticals, tumour types, mean and SD of the activity 
(MBq) and age (mean)

Radiopharmaceutical Tumour type Activity (MBq) Age (years)

[18F]FDG Lung: 6, lymphoma: 4, ORL: 3, breast: 2 265.6 ± 65.8 67.9
[18F]PSMA-1007 Biochemical recurrence: 13, primary: 2 243.9 ± 14.0 75.5
[68 Ga]Ga-DOTA-TOC SSTR-expressing neuroendocrine tumours: 8 154.1 ± 12.0 65.3

Fig. 2   Example images of liver signal (SUVmax) in both high sensitiv-
ity and ultra-high sensitivity reconstructions (HS: A–D; UHS: E–H) 
in different acquisition times (30 s, 60 s, 120 s, 600 s)
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scanner in UHS mode (MRD 322) compared to HS mode 
(MRD 85). We examined the SNR in the liver of patients 
receiving either [18F]FDG, [18F]PSMA-1007 or [68 Ga]
Ga-DOTA-TOC. In all three radiopharmaceuticals, SNR 
was significantly higher in UHS compared to HS mode. 
By increasing acquisition time, SNR also increased (Fig. 3 
A–C). SNR of 30 s/60 s acquisition in UHS was comparable 
to 60 s/120 s in HS mode (Fig. 3 D–F).Visual impression 
(Fig. 2) supported those findings.

Individual standardised uptake values (SUVpeak/max) for 
all 153 tumour lesions were similar between the three radi-
opharmaceuticals over different acquisition times. Compa-
rable SUVpeak/mean even in short acquisitions (30–120 s) and 
high SUVmax (up to 20% higher) in short acquisitions are 
already described due to higher noise rates [18–20].

Accordingly, in our study, SUVpeak was stable from 2 s 
acquisition up to 600 s acquisition in both reconstruction 
modes and SUVmax was high in the very short acquisitions 
(ca. 100% higher than after 60 s at 2 s of acquisition). Using 

UHS in short acquisition times (30–120 s) lead to reduced 
bias of SUVmax. After 30 s of scanning, SUVmax was compa-
rable to the longer acquisitions in UHS whereas, in HS, com-
parable SUVmax could be found after 60 s of scanning ([18F]
FDG: UHS 30 s: 12.27 ± 1.55, HS 120 s: 12.15 ± 1.52), only. 
The risk of misinterpreting the semi-quantitative SUVmax 
measurements in short acquisition times is a problem, which 
can be partially addressed using the UHS mode.

We note some limitations. UHS’s sensitivity profile is 
non-uniform, unlike in HS. Sensitivity in MRD 85 is uni-
form up to the very last centimetres at the scanner whereas 
MRD 322’s point of highest sensitivity is in the middle of 
the scanner and sensitivity decreases to the edges [11]. SNR 
might, therefore, differ in UHS when examining lesions at 
the edge of the scanner (e.g. brain or skin lesions at the 
lower extremities). Further experiments, especially phantom 
studies might be able to characterise the absolute Bq/ml in 
UHS and HS. This is not accounted for in our study where 
the analysis was limited to the liver, which is placed in the 

Fig. 3   Signal-to-noise ratios 
(SNR) of all three radiophar-
maceuticals in high sensitivity 
(HS) and ultra-high sensitivity 
reconstruction (UHS) as recip-
rocal coefficient of the variance 
(COV). Given are the SNR in 
all three radiopharmaceuticals 
for 2 s, 5 s, 10 s, 20 s, 30 s, 60 s, 
120 s, 240 s, 360 s and 600 s 
acquisition time (A–C). All 
SNR of UHS were significantly 
higher to HS mode. Shown are 
mean ± SD. Comparable SNR 
could be found between 30 s 
UHS and 60 s HS, between 60 s 
UHS and 120 s HS and between 
120 s UHS and 240 s HS in all 
three radiopharmaceuticals as 
visualised in the violin plots 
(D–F)
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middle of the LAVOV PET system and will be improved 
with the availability of continuous bed motion.

Conclusion

Using the UHS mode (MRD 322) on the LAFOV PET/CT 
Biograph Vision Quadra might be of clinical advantage due 
to significantly higher SNR relative to the HS mode (MRD 
85) in all examined radiopharmaceuticals. This opens the 
possibility of halving the acquisition time using UHS in 
short PET acquisitions, leading to an improvement in clini-
cal management of oncological patients.
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