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The Growth of Number Representation:
Successive Levels of Schematic Learning

Lauren B. Resnick
University of Pittsburgh

In a companion paper*, Greeno has outlined a
theory of learning as the successive construction
of new schemata. In this paper we explore the
effects of cumulating schemata on performance and
competence in the domain of number knowledge. We
begin with a brief consideration of the number
representation assumed to be available to children
before they have learned place value and decimal
notation. Then we outline several stages in the
acquisition  of decimal place-value knowledge.
Finally, we consider the implications of successive
stages of number representation for a theory of the
understanding of cardinality.

Early Number Representation

Varied databases on early counting abilities
(Gelman & Gallistel, 1978; Fuson, 1in press),
simple mental arithmetic (e.g., Groen & Resnick,
1977), and -story problem solution (Vergnaud, in
press; Carpenter & Moser, in press; Nesher, in
press) have provided the basis for formal models of
preschool and early school mathematical
performances (e.g., Riley, Greeno, & Heller, 1978;
Greeno, Gelman, & Riley, 1978; Briars & Larkin,
1981). These models converge on the following
features of pre-decimal number representation:

1. Children possess an ordered string of
“count words”, linked by “next” and "backward next”
relationships. Each position in the string has
come to stand for a quantity. The string can be
used to solve problems via counting. It can also
be used as an analog representation of quantity.
For example, the positions of two target quantities
can  he found and compared for relatlve “largeness”
(Sckuler & Mierkiewicz, 1977).

2. Children can interpret small numbers in
terms of a Part/Whole schema (Fipure 1) such that
any number can be interpreted either as a1 whole

composed of two smaller numbers or as a part in a
larger whole. The Part/Whole schema ilncludes the
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PART/WHOLE

lipure 1

The Part Whinle Schems

*Grecno, J. G. Mecaningful learning. Paper
presented at the meeting of the Cognitive Scicnce
Society, Berkcley, CA, August 1981.

constraint that the combined parts ncither exceed
nor fall short of the whole quantity. The schema
has bcen shown to function in  successful solution
of certain story problems (e.g., those with the
unknown in the first position) that younger
children (ind very difficult. It scems likely that
the schema also permits children to discover the
complementarity of addition and subtraction,

leading to a particularly efficient--and
mathematically clegant--solution to subtraction
problems. In this procedure, which has becen

observed in children as young as 7 years (Woods,
Resnick, & Groen, 1975; Svenson & lledenborg,
1979), children either count up from the smaller
number or count down from the larger, whichever
requires fewer counts.
NequinEtion of PlacesValue Schematn

In the course of learning the decimal  number
system, the string of count words is gradually
reorganized to reflect an understanding that
multidigit numbers are compositions of units and
tens (later also hundreds, thousands, etc.). This
is accompiished throupgh successive elaborations of
the Part/Whole schema. Several stages in the
acquisition of this compositional interpretation of
multidigit numbers can be identified in a program
(MOLLY) that simulates the performances of a
9-year-old girl (Moliy) as she acquired new
knowledge throuph special remedial instruction in
multidigit subtraction.

Four stapes  in MOLLY'S knowledge of place
value can be distinguished:

Stage 1: Unique partitioning of mulliQihit
numbers. At the earliest stage of place-value
knowledge, MOLLY has a knowledge structure which
organizes conventional information about the

structure of multidigit written numbers (Figure 2).

Figure 2

This structure identifies columns according to
their positional relationship to cach other (thus
the centrality of the Next relationship). Attached
to each column is a block shape (these refer to the
shapes of blocks used in teaching base arithmetic),
a counting string, a wvalue, a column name, etc.
Using the Next structure, MOLLY can:

1. construct a block display for any written
number. This 1is done by identifying which column
the number is in, finding the block shape that
match that column, and displaying the number of
blocks specifled by the digit in the column.

2. “"read” a block display. This is done by
starting with the largest block shape, finding the
counting string that matches {t, ecnumerating the
blocks wusing the appropriate string, and then
iterating through successively smaller block
shapes.
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3. interpret a written numeral as X
hundreds, y tens, and z ones.”

4. compare block displays on the basis of the
highest-valued block only (e.g., for 347 v. 734,
compare only the hundreds blocks).

As long as the Next structure alone is used to
interpret numbers, each written number can have
only one block representation--a  “canonical”
representation, with no more than 9 blocks per
column. This means that there is no basis for a
semantic interpretation of the operations of
carrying and borrowing. The next stage provides
the earliest basis for this interpretation.

Stage 2: Multiple partitionings arrived at
empirically. At this stage the Part/Whole schema
is elaborated to 1include a special restriction,
applied to two-digit numbers, that one of the parts
be a multiple of 10. Application of Part/Whole
permits multiple partitionings, and therefore
multiple block representations, for any written
number . Any specific partitions, however, must be
arrived at through a counting solution. For
example, to ~“show 47 with more ones,” MOLLY first
applies Part/Whole in a global fashion and then
concludes that if the whole is to stay the same but
more ones are to be shown, there must be fewer
tens. It therefore reduces the tens by a single
block. The schema is next instantiated with 47 in
the Whole slot, and 30 in one of the Parts. The
remaining Part is found by adding ones blocks and
counting up until 47 is reached.

Two important concepts have been added to the
number representation at this stage. First, the
equivalence of several partitionings has been
recognized. Second, the possibility of having more
than 9 of a particular block size has becn
admitted. This is crucial for wunderstanding
“borrowing”, where-—temporarily--more than 9 of a
given denomination must be understood to be
present, without changing the total wvalue of the
quantity. Interviews with a number of children in
addition to Molly make it clear that there 1is a
stage in which the possibility of borrowing or
trading to get more blocks is rejected because it
will produce an "illegal” (i.e., noncanonical)
display.

Stage 3: Preservation of quantlity by
exchanges that maintain cquivafgnce. A further
elaboration of Part/Whole appecars at Stage 3, when
MOLLY adds to 1its representation for multidigit
numbers an explicit 10-for-1 relationship for
ad jacent block sizes. This knowledge is
represented by a Trade schema (Figure 3) which
specifies a class of legal exchanges among blocks.

argument 3

Iigure 3
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The schema specifies that there is a "from™ pile of
blocks, from which blocks are removed. This pile
becomes smaller by one block. There 1s also an
"into" pile of blocks that becomes larger by 10
blocks. The value of the blocks in the "from™ and
"into” piles 1is established by multiplying the
number of blocks removed by the value of the block
shape (as specified in the Next structure). Thus,
when trades are made between adjacent block sizes,
the schema specifies that both the "into” and the
“from" values will be 10. Applied as an
elaboration of the Part/Whole schema, the Trade
schema allows MOLLY to conclude--without having to
count up--that there has been no change in the
whole quantity.

Stage 4: Application to written addition and
subtraction. MOLLY also provides a theory of how
the various levels of quantity representation
discusses above can come to be applied to written
numerals. MOLLY simulates the learning sequence
achieved as a result of instruction that forced
attention to the details of a mapping between the
operations of written borrowing and those of block
trading (Resnick, in press). Figure &4 shows the
result of construccing this mental mapping: an
abstraction that treats the two procedures as
expressions of the same cxchange principles, with
analogous eclements in the Trade and Borrow
schemata. Evidence for this level of understanding

A it Bt ond 1 rae Schemats

Iigure 4

ol  number comes from the following kinds of
performances, observed both in Molly and in a
number of other children whom we have intervicwed:

L. When asked to state the value of carry and
borrow marks, the child states the value according
to the column rather than simply naming the digit.
Thus the 1 at a in Figure 5 Ls said to be worth 10
(not 1), and the 1 at b 1s said to be worth 100.

L3 b, 9.9,
@___}, /P@ 17 M )",2
1 6 8 3 4 6 5
7 5 g h 8

Iigure 5 Figure 6




2. When asked to show the blocks that
represent a  given carey or borrow mark, the child
selects blocks according to value. A ten-block s
sclected for a, a hundred-block for b, and so
forth. - -

3. The child can construct justifications (or
the wvarious markings in written subtraction.  For
cxample, Molly explained that in  the =subtraction

problem  shown in Figure 6 above, she had borrowed
one thousand from the 7. When asked where she had
put the thousand, she was puzzled at [irst, because
there is no place where one can “sce™ 1000 in  the
markings glven. However, she then safd, "1t is
divided up. HNine hundred of it is here (indicating
the huandreds column), and the other hundred is here
(indlcating the tens and the ones colunns
together) . You see, this 9 is really 90 and this 1

is really 10 and that adds up to 100!" MOLLY is
able to construct this explanation by first calling
on the Exchange (Borrow) schema, which specifies
that 1{f a quantity of 1000 has been taken from a
column it must be put into another column. Unable
to find a column with 1000 put into it, MOLLY calls
on the Part/Whole schema, sets the Whole slot equal
to 1000 and 1looks for two Parts that add up to
1000. 1t finds 900, but cannot find a column with
the 100 necessary for completing the Whole. MOLLY
iterates through the Part/Whole schema again, this
time setting the Whole equal to 100 and now finding
90 and 10 as the Parts. :

An Interpretation of Cardinality

This characterization of children's developing
number knowledge permits us to give a more precise
psychological meaning to the understanding of
“cardinality” than has heretofore been possible.
Gelman and Gallistel (1978) included in thelr
principles of counting a cardinality principle,
which specifies that the final count word reached
when a set of objects is being enumerated is the
total number in the set--l.c., the set's
cardinality. For the preschool child, who has not
yet come to interpret quantity in terms of the
Part/Whole schema, this is the only meaning of
cardinality avalilable. This criterion of
understanding cardinality has been criticized,
however, (e.g., Comiti, 1980) as too weak, and in
particular as not reflecting the Piagetian
definition of cardinality. We can now see that a
higher stage of cardinality understanding can be
recognized in the child's subsequent application of
the Part/Whole schema to number. In applying this
schema, the child understands that a total (whole)
quantity remains the same even under variant
partitionings.

The meaning of cardinality is further
elaborated when the place-value schemata outlined
here are acquired. At Stage 2, when the Part/Whole
schema with the multiple-of-10 restriction is first
applied to two-digit numbers, the amount
represented by the number is now subject to
multiple partitionings without a change in
quantity. This 1is exactly parallel to the new
understanding of cardinality for smaller onumbers
that was achieved when the Part/Whole schema was
applied to them. Without application of the
Part/Whole schema the cardinality of a aumber
resides in the specific display set and the number
attached to it through legal counting procedures.
With Part/Whole, cardinality resides in the total
quantity, no matter how it is displayed or
partitioned.

The Trade stage of multidigit number
represcentation represents yet a higher level of
understanding of cardinality. Now it is recognized
that cardinality is not altered by a specified set

of legal exchanges. An analogy can be drawn with
an earlier recognition of quantity as unchanged
under various physical transformations (such as
spreading out a display of objects—- the classic
Piagetian test of conservation). However, the
transformations produced under control of the Trade
schema do in fact involve a change 1in the actual
number of objects present. Thus, recognition that
the value of the total quantity remains unchanged
requires a level of abstraction concerning the
nature of cardinality that was not required for
earlier stages of understanding.
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