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COMPUTATIONAL ASPECTS OF MULTILEVEL TRAJECTORY OPTIMIZATION cbC

Ronald D. Sugar, Staff Engineer, Space and Communications Group

PAPER No. TA5-5

Hughes Aircraft Company, El Segundo, California

Allen R. Stubberud, Professor of Electrical Engineering,
University of California, Irvine, California

Abstract

This paper presents new computational results in
multilevel trajectory optimization. The original
formulation of trajectory decomposition is extended
and applied to a difficult multiple arc trajectory
example, the low thrust interplanetary swingby prob-
lem. A numerical solution is obtained for this tra-
jectory which is characterized by nonlinear, time
variant differential equations and interior boundaries
and discontinuities. The time domain decomposition
of the trajectory is made at the boundaries between
arc segments. A three level optimization hierarchy
is employed to transform the first feasible trajectory
iterate into a final solution trajectory. This example
is characteristic of a large class of interplanetary
swingby problems which defy solution by conventional
computational methods because of multiple disconti-
nuities, constraints, and severe numerical sensitiv-
ities. The multilevel approach appears to be effective
in obtaining a solution to problems of this type when
other more conventional methods are unsatisfactory.

1. Introduction

The concept of trajectory decomposition was
first introduced by Bauman® as a technique for
optimizing trajectories with intermediate disconti-
nuities. Trajectory decomposition represents an
extension of multilevel systems theory, which has
been under development since the early 1960's
The original work in multilevel theory is due to
Mesarovic?s 3 who was concerned with creating a
general mathematical structure for the study of
organizations and hierarchies. Bauman devised a
two level procedure for optimization of discontin-
uous trajectories utilizing the concept of feasible
decomposition, first proposed for static systems
by Brosilow, Lasdon, and Pearson® and then for
nonlinear dynamic systems by Macko and Pearson,

Computational experience using trajectory
decomposition has been limited. This problem
unfortunately pervades all of multilevel systems
theory despite its existence for more than a decade.
The principal reason for a dearth of computational
results is that while the multilevel concept is theo-
retically appealing for complex systems, the numer-
ical solution of realistic problems is generally a
formidable task, Thus, the multilevel literature
abounds with theoretical papers and papers treating
simple examples analytically, but only a few works
presenting computational results have appeared
(see, for example, Refs. 1, 6, 7, 8, 9, and 10).

This paper presents the numerical solution of a
low thrust interplanetary swingby problem by means
of trajectory decomposition, This example is repre-
sentative of a variety of future unmanned missions
for exploration of the solar system. Low thrust
swingby trajectories are characterized by high initial
value sensitivities, nonlinear dynamics, and (for a
sphere of influence model) intermediate disconti-
nuities. Despite the interest in such trajectories, the
difficulty in obtaining numerical solutions has limited
the results published to date. Several examples of
computational results which attest to the difficulty of
this problem are Refs., 11, 12, 13, and 14, Because
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of its complexity and high numerical sensitivities,
the swingby problem provides an excellent test of the
utility of the multilevel approach.

A general decomposition procedure and its result-
ing three level optimization structure are presented
next, The low thrust swingby example is then formu-
lated, and results are given for a computational ex-
ample. Details of the variational analysis leading to
the set of decomposed necessary conditions may be
found in Refs. 9 and 15.

2. General Decomposition Procedure

Given a state space trajectory consisting of N
distinguishable arcs, it is required to minimize the
Bolza performance index
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Necessary conditions for optimization are gen-
erated by appending constraints (2) through (9) to
the performance index (1) as follows:
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For J* to possess a minimum, it is necessary
that dJ* vanish for arbitrary variations in all its
arguments. This requires the coefficient of each
perturbation quantity to vanish. Equating these coef-
ficients to zero results in a set of decomposed first
order necessary conditions which may be applied to
each arc and boundary. For a minimum time trajec-
tory problem, the decomposed necessary conditions
may be arranged in the three level structure shown
in Figure 1, with the following groupings:

STATE INTERFACE
CONTROLLER

LEVEL THREE
i i i i i
X, X Aoy o' g,
.y
LEVEL TWO T GNTROLLER
1 ARC N
LEVEL ONE | conYRoLLER te * * *|CONTROLLER

TRAJECTORY m . . ARC 1
T— \}
Figure 1. A Three Level Control Structure
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plus approupriate compcnents of Eqs, (22) and (23).

The third level State Interface Controller adjusts
the boundary conditions _)gg““l in order tu drive the
transversality conditions Eqgs. (28) ard (29) to zero
using information returned from below on the pre-
vious iteration. The second level Time Interface
Controller coordinates the arc endpoint times,
satisfies the intermediate time transvarsality con-
ditions of Eq. (26), and performs adjoint variable
rescaling to catisfy the terminal time transversality
condition for the trajectory. The first level Arc i
Controllers perform independent optimization of
each arc subject to the boundary conditions imposed
by the two higher level controllers. The iteration
procedure is feasible in that each third level itera-
tion results in a physically realizable (although
generally non-optimim)solution trajectory.

3. A Low Thrust Swingby Example

The example to be considered is an Earth-
Jupiter-Saturn continuous low thrust mission illus-



trated in Figure 2. A sphere of influence model is
adopted in order that the spacecraft will be affected
only by the sjravity of a single central body along
each arc., This approximation is usually adequate
for mission planning purposes®®» and results in a
tractable dynamic model of the trajectory. A precise
numerical definition of the so-called enlarged sphere
of influence used here may be found in Ref, 17.

SATURN

-~ ~

THRUST VECTOR
/ x$

THRUST
VECTOR

Figure 2. Geometry of the Low Thrust Interplanetary

Swingby Problem

The state vector x o (x, y, u, v)T consists of
two position variables and two velocity variables mea-
sured in a cartesian frame, The control variable is
B (t), the time varying steering angle measured from
the inertial directionT, the first point in Aries. The
vector XP(t) = [XP(t), YP(t), UPt), VP(t)]T repre-
sents the state of planet P, where P is replaced by
E for Earth, J for Juipter, and S for Saturn.

The sphere of influence model suggests an
obvious decomposition of the trajectory into three
arcs. Arc 1 will be defined as the heliocentric
segment between the spheres of influence of Earth
and Jupiter., Arc 2 is the planetocentric segment
entirely within the Jupiter sphere. Arc 3 is the
heliocentric segment from the Juipter sphere exit
point to the sphere of influence of Saturn. The state
variables and their derivatives are all discontinuous
across the Jupiter sphere of influence because of the
coordinate system switch and the change of the gravi-
tational constant of the central body.

_ Mathematically, the problem is to select Bi(ti),
th[té,t}], i=1, 2, 3 such that the duration of flight

i
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and c is a constant exhaust velocity, q is a constant
mass explusion rate, ml is the vehicle mass at t},
al(tl) is the time varying thrust acceleration, and p!
is the gravitational constant for the central body of

arc i. The p!, p.3 represent the Sun and HZ repre-

sents Jupiter.

Application of the necessary conditions Eqs.(14)—
(29) to the above dynamics and associated sphere of
influence entry and exit conditions produces a com-
plete set of arc and boundary relations for this prob-
lem.’ The next section presents computational
aspects of the swingby problem.

4., Numerical Solution of the Example

Construction of the three level process for a
given numerical problem requires the selection of
specific algorithms to perform the various optimi-
zation tasks. The requirements for each level are
as follows:

Level One

It is desirable to select an algorithm (or algo-
rithms) which converges quickly from various initial
regions, since each arc evaluation requires the com-
plete integration of a set of differential equations,

If an excessive number of function evaluations are
needed, the frequent repetition of the first level task
will use up most of the available computer time. If
a first level algorithm fails to converge, the entire
multilevel iteration procedures comes to a halt.

The optimizationtechnique selected for eachfirst
level controller is a modification of the Marquardt-
Levenberg maximum neighborhood method. The
basic technique was first introduced by Levenberg18
and later independently by Marquardt!? in connection
with the least squares estimation of nonlinear param-
eters. This mathematical programming approachhas
been applied recently to dynamic trajectory optimiza-
tion problems by Starr and Sugar20 and by Armstrong,
Childs, and Markos.%! Considerable computational
experimentation by Wertz22 has resulted in several
modifications to Marquardt's original algorithm.
These modifications, embodied in a subprogram
GAUSAUS, render the basic algorithm more adaptive
to irregular contour regions and also generally
accelerate its convergence. A description of this
algorithm is provided in Ref. 9.



Level Two

All necessary conditions assigned to the second
level are satisfied directly and do not require the
use of an iterative algorithm.

Level Three
With all lower level conditions satisfied, the
third level must adjust x5! to satisfy Egs. (27)—(29)

and thereby minimize J as given in Eq. (30).

The gradient of the performance index remain-
ing for the third level is

[~ —
2 1 [
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2 1
Mo T Mt
R
LIx =Tty = 2
3 .2 Yz 3
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x
f
3 2
Mo = Muf
3 2
Ao = A
i vo vf |
(37)
where t! is fixed, Equation (37) is used in conjunc-

tion witﬁ Eqg. (30) each iteration to select new values
for y§, ug, v%, yg, ug, v3, by means of a standard
gradient algorithm, Details of the procedure are

given in Ref. 9.

First Feasible Trajectory

A first feasible swingby trajectory was con-
structed after considerable numerical experimenta-
tion, The construction process was guided by vari-
ous physical characteristics known for free fall
swingby trajectories!? and by previous_experience
with single arc low thrust trajectories. The first
feasible trajectory satisfies all but the third level
adjoint conditions (i.e., the sphere of influence
entry and exit point transversality conditions), and
thus represents a physically realizable (non-optimum)
solution. The value of the performance index tf is
2.73 years, representing a high energy interplanetary
mission. The numerical characteristics of the tra-
jectory are given in Table 1, with distances in units
of astronomical units, time in years, and velocity in
au/yr. The interplanetary probe has an initial thrust
to weight ratio of 2.1 x 10-°, reflecting typical future
low thrust capability.

Three Level Iteration Sequence

The first feasible trajectory was used as the
initial iterate for the three level optimization proce-
dure. The behavior of the performance J = t? with
level three iteration number is shown in Figure 3.
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Figure 3, Behavior of the Performance Index with

Level Three Iteration

If an iteration was successful, the step size con-
trol employed in the third level gradient algorithm
was increased by 20 percent. This cautious increase
was necessary to prevent convergence failures in the
resulting arc optimizations. If a step failed to pro-
duce an improvement in J, or caused a lower level
convergence failure, the step size control was re-
duced by half until an acceptable step was found.

As indicated in Figure 3, the improvement in J
became very small beyond the 25th iteration. The
major gains were achieved on the first 11 iterations.
The procedure was terminated at iteration 29.

The final trajectory is shown in Figure 4. The
thrust direction along each gre is indicated by the
arrows. The value of J = t7 is 2.26 years, which
represents a reduction of 0,47 years in flight time
and a propellant savings of 86.7 kg based upon an
initial spacecraft mass of 1000.0 kg. The final tra-
jectory is characterized by a sharper turn angle at
Jupiter, giving it more energy at the swingby, and
by a Jupiter-Saturn leg which curves away from the
sun under the power of the vehicle's thrust in order
to intercept the Saturn sphere of influence earlier in
the planet's orbit. Computer time averaged 41 sec-
onds on CDC 6600 equipment for each level three
iteration. The majority of this time was spent in
numerical integration of the trajectory arcs.

THRRUST DIRECTION IS SHOWN
AT 10 EQUAL TIME INTERVALS
PER ARC.

4
-4
JUPITER AT
SATURN AT o TimE <!
1 o
T L3
ME to Jum-rens\” a
3 7 3 Rc,
2 1.0 80
S
\
f Neanm
1 L i A ° 1 >

ENLARGEMENT
OF ARC 2

Figure 4. The Final Trajectory



Table 1. Numerical Data for the First Feasible Trajectory
N b [V [ 4
i y i i
X D A=y H
u UJ [)‘u
v v Ay
Earth
9.52145480E- | 9. 66566570E- | -3.80924957E-3
i 2.56416313E- 1 2.56416313E- 1 -3.89273446E-3 <
t, ~ 90 -2.31714952E0 <1.61111090E0 5.51264121F-4 9-70600657E- |
8.36648670E0 6.07311570E0 S1.74484653F-3
ARC
Jupiter
-3.90451175E0 -S4, 25944841 EO 4.74113327E.3
i v 2. 61785051 EQ 2.98726299E0 -5.43964528E-3 o
tp 7 1.02913429 | 37 44085778E0 J1.58171263E0 -2.625640255.3 | 1+ 70048209E-1
-1.61022010E-1 _2.25531645E0 3.36220127E-3
3.54936662E- xJit2y - xTieh, 3.89031801E-3
2 . -3.69412482E-1 . , _8.02677113E-3
L [.02913424 1. 89914515E0 shown above. 7. 18105460F- 4 9,71230423E-1
2. 09429444 E0 <1, 2997T986E-3
ARC 2
-4.45050300E-1 xTad o xTed, 5,23543157E-3
2 - 2.53723957E- | ] -9, 89549324E.3 -
tf 1.37138948 .2, 52432036E0 shown below, 9. 36751255F-4 9, 71111352E-1
1. 20738972E0 1.69731152E-3
Jupiter :
-5.17314013E0 -4.72808983E0 22.53909574E-1
3 - 2, 42439379E0 2. 17066983E0 5. 47498195E- | e
T, 1 3TI3BOAE | 573655700 1. 14933834E0 -2.48473834E-| |-+ 07906T53E-]
-1.29606560E0 -2.50345532F0 7.73707574E- |
ARC 3
Saturn
-8.86260383E0 -9.40751800E0 -1, 63432643E- 1
3, . - -1.35626032E0 -1.67086666E0 5.82156996E- 1
tp 7 2.730%2720 ) g1477434E0 3.55461771E-1 | 4.82072010E.9 | |-22320233E0
-4.33680038E0 -2.0013648E0 -2.98084076E- 10
5. Conclusions 5., Macko, D., and Pearson, J.D., ""A Multilevel

This paper has demonstrated the feasibility of a
trajectory decomposition technique for numerical
solution of a difficult multiple arc trajectory example.
A multilevel formulation for minimum time trajec-
tories was presented and certain computational 6.
aspects of the example problem were investigated.
The principal conclusion from this study is that
use of hierarchial techniques for the optimization
of trajectories is a useful approach when other
more conventional methods prove inadequate.,
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