UC Berkeley Archaeological X-ray Fluorescence Reports

Title

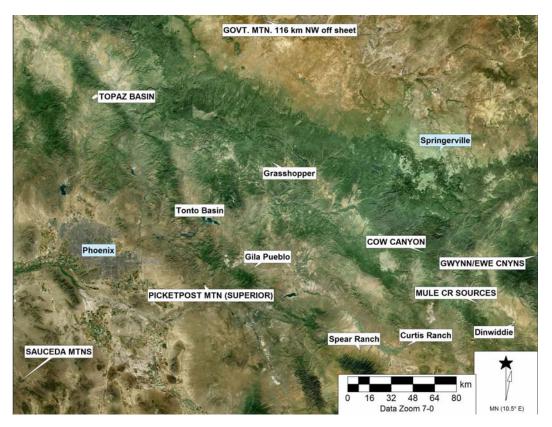
Source Provenance of Obsidian Artifacts from Late Classic Contexts in Western and Southern New Mexico

Permalink https://escholarship.org/uc/item/93b8t8qn

Author Shackley, M. Steven

Publication Date 2011-04-11

Supplemental Material https://escholarship.org/uc/item/93b8t8qn#supplemental


Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at <u>https://creativecommons.org/licenses/by-nc/4.0/</u>

Department of Anthropology 232 Kroeber Hall University of California Berkeley, CA 94720-3710

SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM LATE CLASSIC CONTEXTS IN WESTERN AND SOUTHERN NEW MEXICO

SPOT image of study area. Sources in upper case, sites and geographic features in lower case

by

M. Steven Shackley, Professor and Director Geoarchaeological XRF Laboratory University of California, Berkeley

Report Prepared for

Rob Jones The Center For Desert Archaeology Tucson, Arizona

11 April 2011

INTRODUCTION

The analysis here of 132 obsidian artifacts from five sites in eastern Arizona and western New Mexico exhibits are very diverse assemblage. At Gila Pueblo four sources in opposing directions are in nearly equal proportions: Antelope Creek (Mule Creek, NM), Cow Canyon, AZ, Picketpost Mountain (Superior, AZ), and Government Mountain, AZ. At Curtis Ranch and Dinwiddie in western New Mexico the sources are all from western New Mexico and eastern Arizona sources, what I would consider local. Grashopper area sites and Spear Ranch are a mix, but the sample sizes are small.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

All archaeological samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

All analyses for this study were conducted on a ThermoScientific *Quant'X* EDXRF spectrometer, located in the Archaeological XRF Laboratory, El Cerrito, California. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μ m (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 1 min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter. Elemental composition is identified with digital filter background removal, least

squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity Ka-line data for elements titanium (Ti), manganese (Mn), iron (as Fe₂O₃^T), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a least-squares calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements but Fe where a derivative fitting is used to improve the fit for iron and thus for all the other elements. When barium (Ba) is analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2011; Shackley 2011). Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute

of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

The data from the WinTrace software were translated directly into Excel for Windows software for manipulation and on into SPSS for Windows for statistical analyses. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS obsidian standard is analyzed during each sample run for obsidian artifacts to check machine calibration (Table 1). Source assignments were made by reference to Shackley (1995, 1998a, 2005; see Tables 2 and 3 and Figures 1 through 4 here), as well as source standard data at this lab.

ANALYTICAL TRAJECTORY

In order to effectively discriminate the large number of sources, a combination of a multivariate statistical analysis (Ward's method, Euclidean distance hierarchical cluster) and three-dimensional and bivariate plots of the elements was used in tandem. For the cluster analysis, only those elements with relatively large variability were entered into the analysis, in this case Rb, Sr, Y, Nb. In general, the cluster groupings were mirrored in the plots (Figures 1 through 4 and Appendix).

Due to varying artifact sizes, particularly small size debitage, separating Government Mountain and Cow Canyon required the acquisition of Ba which is a highly charged incompatible element and consequently an excellent discriminating element (Shackley 2005; Figure 4 here). Barium and Zr were plotted to separate four artifacts where the assignment to one of these two sources was difficult (Figure 4). Still, specimen #248 from Gila Pueblo exhibits Sr and Ba slightly outside the source standard data for Cow Canyon and is designated by a question mark in Table 1 (see Figure 4).

RESULTS

Obsidian Sources in the Mogollon-Datil Volcanic Province

Since all of these sites and most sites in the region are dominated by sources in the Mule Creek region, a brief outline of the two major source groups at Mule Creek is helpful.

Mule Creek. One of the most startling discoveries in the 1990s was the chemical variability in Mule Creek obsidian (Shackley 1995, 1998b). In earlier studies, I noted two "outliers" collected at Mule Creek with significantly higher rubidium concentration values (Shackley 1988:767). These outliers have now been identified as a distinct chemical group, often mixed in the regional Gila Conglomerate with three other chemical groups. The geology in the area is complex and has been studied by Ratté, and others for some time (Brooks and Ratté 1985; Ratté 1982; Ratté and Brooks 1983, 1989; Ratté and Hedlund 1981; Rhodes and Smith 1972). Primary in situ perlite localities for three of the chemical groups have been located, but the secondary distribution of these source groups within the Mule Creek Basin is less well understood.

At least four distinct chemical groups are evident, distinguished by Rb, Y, Nb, and Ba, and a lesser extent Sr, and Zr elemental concentrations, and are named after the localities where marekanites have been found in perlitic lava: Antelope Creek; Mule Mountains; and Mule Creek/North Sawmill Creek all in New Mexico (see Shackley 1995, 1998b). It is quite evident that the obsidian at the Antelope Creek locality and adjacent secondary deposits constitute the volumetrically largest source of all the Mule Creek sources. The Tertiary Age dome complex at Antelope Creek covers hundreds of hectares and virtually all of it exhibits artifact quality marekanites. Parenthetically, surveys to the west in the Big Lue Mountains on the Arizona/New Mexico state line indicate a mix of North Sawmill Creek and Antelope Creek marekanites in secondary alluvium at a ratio of about six North Sawmill Creek to one Antelope Creek similar to

5

the ratio reported in Shackley (1988). The Antelope Creek eruptive event about 17 mya was quite extensive.

Additionally, during the 1994 field season, a fourth sub-group was discovered in the San Francisco River alluvium near Clifton, Arizona and in older alluvium between Highway 191 and Eagle Creek in western Arizona north of Clifton called provisionally San Francisco River nodules. While in situ nodules have not yet been found they are certainly located somewhere west of Blue River and north and west of the San Francisco River since none of this 'low zirconium' sub-group was discovered in alluvium upstream from the juncture of the Blue and San Francisco Rivers. The genetic relationship between the Mule Creek localities is apparent in the bivariate plots of trace elements (Figures 1 and 2), and signifies the very complex nature of the Mule Creek silicic geology, with subsequent depositional mixing in the Gila Conglomerate. Glass at other Tertiary sources in the Southwest, such as Sauceda Mountains, Cow Canyon and Antelope Wells, also appear to exhibit more than one chemical mode, although not as distinct as Mule Creek or Mount Taylor, discussed below (Shackley 1988, 1990, 1998b). The Mule Creek case is analytically frustrating because the chemical groups are not always spatially discrete and occur together in the extensive Gila Conglomerate which is mainly composed of Mule Creek rhyolite and tuffs in the area where the marekanites do occur (see Ratté and Brooks 1989).

The Mogollon-Datil Province and the Mule Creek area. The Mule Creek Source Region is one of the most geologically explored archaeological sources of obsidian in the American Southwest (Brooks and Ratté 1985; Ratté 1982; Ratté and Brooks 1983, 1989; Ratté and Hedlund 1981; Rhodes and Smith 1972; Figure 3.5). Ratté has organized most of the research in the area focusing on mapping and establishing the origin of the volcanics during the Tertiary as originally described by Rhodes and Smith (1972). This region, which is on the boundary between the Basin and Range complex to the west and southwest, and the southeastern edge of

6

the Colorado Plateau, exhibits a silicic geology that is somewhat distinctive; from the decidedly peraluminous glass of Cow Canyon with relatively high strontium values and the distinct chemical variability of the Mule Creek glasses (Elston et al. 1976; Ratté et al. 1984; Rhodes and Smith 1972; Shackley 2005). The province has been named Mogollon-Datil for its location and major floristic association (Elston et al. 1976). The region is, in part, characterized by pre-caldera andesites and later high-silica alkali rhyolites in association with caldera formation, subsequent collapse and post-caldera volcanism. Most recently, fieldwork and chemical analyses by Ratté and Brooks (1989) lead them to conclude that the Mule Creek Caldera is actually just a graben, although the typical succession from intermediate to silicic volcanism apparently holds.

The obsidian has been directly dated at the Antelope Creek locality (locality 1 in Figure 3.5 here) to 17.7 ± 0.6 mya by K-Ar, and at the Mule Mountain locality at the same age (17.7 ± 1) mya by K-Ar; Ratté and Brooks 1983, 1989). A single obsidian marekanite taken from the perlitic lava at the Antelope Creek locality was used in the analysis. Unusual in geological descriptions, the obsidian proper was discussed as an integral part of the regional geology.

Rhyolite of Mule Creek (Miocene). Aphyric, high-silica, alkali-rhyolite domal flows from the Harden Cienega eruptive center along southwestern border of quadrangle [Wilson Mountain 1:24,000 Quad, New Mexico; Figure 4 here]. Unit **ob**, commonly at the base of the flows, consists of brown, pumiceous glass that grades upward into gray to black perlitic obsidian and obsidian breccia. Extensive ledges of partly hydrated, perlitic obsidian contain nonhydrated obsidian nodules (marekenites) which, when released by weathering, become the Apache tears that are widespread on the surface and within the Gila Conglomerate in this region. Age shown in Correlation is from locality about 1 km south of tank in Antelope Creek in Big Lue Mountains quadrangle adjacent to west edge of Wilson Mountain quadrangle. Thickness of flows is as much as 60 m and unit **ob** as much as 25 m (Ratté and Brooks 1989:map text, bold as in original).

This description adequately characterizes what is found at the other two primary localities (Mule Mountains, and Mule Creek/North Sawmill Creek). Aphyric, artifact quality marekanites are remnant within perlitic glass and tuff lava units. Nodules at all localities are up to 15 cm in diameter although most are under 10 cm. The devitrified perlitic lava, quite friable, erodes easily into the local alluvium. As discussed elsewhere, this is relatively unique in Tertiary sources in the Southwest where most of the obsidian breccia and perlitic lava is often completely eroded away leaving only the rhyolite interior of the dome and a consequent inability to assign the surrounding marekanites to a specific dome structure (Shackley 2005; see also Hughes and Smith 1993).

The aphyric glass ranges from opaque black to translucent smoky gray with some gray banding. In over 1000 specimens collected from the Mule Creek/North Sawmill Creek group, three are mahogany-brown and black banded similar to Slate Mountain (Wallace Tank) material. Some of the cortex exhibits a silver sheen, but most is a thin black-brown. The material is a fair medium for tool production, but is very brittle much like Los Vidrios. The pressure reduction potential is, however, very good as seen in the sites in this study. The Mule Mountain glass, however, is as good as any in the Southwest, but surprisingly relatively rare in sites in the region.

GILA PUEBLO (AZ V:9:52 ASM)

One hundred-four of the 132 samples analyzed were from Gila Pueblo east of the Phoenix Basin, Arizona (see cover page digital image). The obsidian provenance of these 104 samples is very diverse with nearly equal proportions of Antelope Creek/Mule Creek (26%; 171 km linear) and Cow Canyon (18.3%; 131 km linear) to the east in eastern Arizona and western

8

New Mexico, Picketpost Mountain/Superior (25%; 38 km linear) nearby to the west, and Government Mountain (22.1%; 245 km linear) well to the north in the San Francisco Volcanic Field on the Coconino Plateau (see Table 2). Distance is not a predictor of assemblage proportion: $r^2 = 0.032$. Sig. = 0.822. If the distance correlate was operating, Superior obsidian would dominate the assemblage. Indeed, Antelope Creek at Mule Creek at 171 km linear has the highest proportion, and Government Mountain at 245 km has the third highest proportion at 22.1%.

DISCUSSION

Based on the long-term NSF funded social network study, Clark has suggested, "late types of Salado pottery...found at several sites in the Upper Gila...[indicating] that displaced Salado groups from southeastern Arizona came to this region in the late fourteenth century" (2010:2). The Gila Pueblo obsidian assemblage could support that inference. While similar to southern Tonto Basin sites, where Government Mountain was present in the assemblage indicating contact to the north, the remaining obsidian assemblage here indicates a strong relationship with the Upper Gila region: Cow Canyon and the Antelope Creek (Mule Creek) sources comprise nearly 70% of the assemblage. In the Tonto Basin, Schoolhouse Point (AZ U:8:24) exhibited nearly the same mix of sources in slightly different proportions, a reflection of distance to source (Shackley 2005, 2006). Similar to the relationship Clark noted above, an affiliation appears to have existed between groups in the southern Tonto Basin, the Globe, Arizona area and the Upper Gila.

Additionally, the Sauceda Mountains source west in western Maricopa County, Arizona comprised nearly 9% of the Gila Pueblo assemblage. Sauceda Mountains was a prominent source for obsidian toolstone in the Classic in the Phoenix and Tucson Basins, and taken with

Picketpost Mountain (Superior) obsidian nearby to the west of Gila Pueblo, some kind of social

relationship with the Hohokam is apparent (Shackley 2005).

REFERENCES CITED

Brooks, W. E., and Ratté, J. C.

1985 Geologic map of Bear Mountain Quadrangle, Grant County, New Mexico. U.S. Geological Survey Miscellaneous Field Studies Map MF-1782.

Clark, J.J.

2010 Following the Kayenta and Salado Up the Gila. Archaeology Southwest 24:1-3.

Davis, K.D., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel

2011 Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 45-64. Springer, New York.

Elston, W., R. Rhodes, P. Coney, and E. Deal

1976 Progress Report on the Mogollon Plateau Volcanic Field Southwestern New Mexico. New Mexico Geological Society Special Publication 5:3-18.

Govindaraju, K.

1994 1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

Hampel, Joachim H.

1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In *Obsidian Studies in the Great Basin*, edited by R.E. Hughes, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley.

Hildreth, W.

1981 Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research 86:10153-10192.

Hughes, Richard E., and Robert L. Smith

1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. *In Scale on Archaeological and Geoscientific Perspectives*, edited by J.K. Stein and A.R. Linse, pp. 79-91. Geological Society of America Special Paper 283.

Mahood, Gail A., and James A. Stimac

1990 Trace-Element Partitioning in Pantellerites and Trachytes. *Geochemica et Cosmochimica* Acta 54:2257-2276.

McCarthy, J.J., and F.H. Schamber

1981 Least-Squares Fit with Digital Filter: A Status Report. In *Energy Dispersive X-ray Spectrometry*, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Ratté, J. C.

- 1982 Geologic map of the Lower San Francisco Wilderness Study Area and contiguous roadless area, Greenlee County, Arizona, and Catron and Grant Counties, New Mexico. U.S. Geological Survey Miscellaneous Field Studies Map MF-1463-B.
- Ratté, J. C., and Brooks, W. E.
- 1983 Geologic map of the Mule Creek Quadrangle, Grant County, New Mexico. U.S. Geological Survey Miscellaneous Studies Map MF-1666.
- 1989 Geologic map of the Wilson Mountain Quadrangle, Catron and Grant Counties, New Mexico. U.S. Geological Survey Geologic Quadrangle Map GQ-1611.
- Ratté, J. C., and Hedlund, D.C.
- 1981 Geologic map of the Hells Hole Further Planning Area (RARE II), Greenlee County, Arizona and Grant County, New Mexico. U.S. Geological Survey Miscellaneous Field Studies Map MF-1344-A.
- Ratté, J. C., Marvin, R.F., and Naeser, C.W.
- 1984 Calderas and ash flow tuffs of the Mogollon Mountains, southwestern New Mexico. *Journal of Geophysical Research* 89:8713-8732.
- Rhodes, R. and E. Smith
 - 1972 Geology and Tectonic Setting of the Mule Creek Caldera, New Mexico, USA. *Bulletin Volcanologie* 36:401-411.

Shackley, M. Steven

- 1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53(4):752-772.
- 1990 Early Hunter-Gatherer Procurement Ranges in the Southwest: Evidence from Obsidian Geochemistry and Lithic Technology. Ph.D. dissertation, Arizona State University, University Microfilms, Ann Arbor.
- 1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. *American Antiquity* 60(3):531-551.
- 1998a Geochemical Differentiation and Prehistoric Procurement of Obsidian in the Mount Taylor Volcanic Field, Northwest New Mexico. *Journal of Archaeological Science* 25:1073-1082.
- 1998b Intrasource Chemical Variability and Secondary Depositional Processes in Sources of Archaeological Obsidian: Lessons from the American Southwest. In *Archaeological Obsidian Studies: Method and Theory*, edited by M.S. Shackley, pp. 83-102. Advances in Archaeological and Museum Studies 3. Springer, New York.
- 2005 *Obsidian: Geology and Archaeology in the North American Southwest*. University of Arizona Press, Tucson.

- 2006 Preliminary Report: Tonto Basin Obsidian Provenance Study. Report prepared for the Center for Desert Archaeology.
- 2011 An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 7-44. Springer, New York.

Table 1. Recommended values for USGS RGM-1 obsidian standard and the mean and central tendency analyses from this study. $\pm = 1^{st}$ standard deviation.

SAMPLE	Ti	Mn	Fe	Rb	Sr	Y	Zr	Nb	Ba	Pb	Th
RGM-1 (Govindaraju 1994)	1600	279	12998	149	108	25	219	8.9	807	24	15.1
RGM-1 (USGS recommended) ¹	1619±12 0	279±50	13010±21 0	150± 8	110±1 0	25 ²	220±2 0	8.9±0. 6	810±46	24± 3	15±1. 3
RGM-1, pressed powder standard (this study, n=11)	1579±32	289±6. 2	13167±28	149± 2	108±3	24± 1	217±3	9.2±1. 6	832±79 3	22± 3	19±4

¹ Ti, Mn, Fe calculated to ppm from wt. percent from USGS data. ² information valu ³ instrument error calculated from this single acquisition

Table 2. Elemental concentrations and	source assignments for th	e archaeological specimens.	All measurements in pa	arts per million (ppm).

Sample	Site	Ti	Mn	Fe	Rb	Sr	Y	Zr	Nb	Ba	Pb	Th	Source
186	Gila Pueblo	1189.08	484.13	9014.25	115.77	22.71	23.09	88.30	30.55		20.30	15.28	Superior
188	Gila Pueblo	1066.69	516.83	8505.18	122.63	26.29	26.02	95.71	30.46		24.38	15.80	Superior
190	Gila Pueblo	924.98	406.52	10144.96	261.92	22.98	42.54	114.45	28.17		32.00	35.91	Antelope Cr (Mule Cr)
191	Gila Pueblo	1135.00	461.40	8654.00	154.20	93.50	18.80	85.60	17.00	1080.00	25.20	13.60	Cow Canyon
192	Gila Pueblo	851.25	353.58	9585.92	244.71	21.67	38.98	110.19	28.80		28.29	32.35	Antelope Cr (Mule Cr)
193	Gila Pueblo	1722.86	656.58	10870.87	130.10	36.14	22.93	105.10	33.64		22.12	16.45	Superior
194	Gila Pueblo	992.37	508.22	8084.19	127.83	21.13	25.60	92.16	36.31		19.65	17.15	Superior
195	Gila Pueblo	929.09	399.42	10022.21	257.08	22.19	41.51	114.00	32.49		31.10	33.84	Antelope Cr (Mule Cr)
196	Gila Pueblo	999.75	514.83	8045.71	126.08	23.96	26.79	93.60	30.99		22.60	18.82	Superior
197	Gila Pueblo	918.63	545.08	10021.80	114.86	80.47	14.18	78.15	51.24		34.06	6.74	Government Mtn
198	Gila Pueblo	1501.25	381.52	10582.74	158.13	75.20	34.58	204.98	26.95		19.60	22.25	Sauceda Mtns
199	Gila Pueblo	823.43	557.59	10035.41	114.26	84.36	20.65	85.00	53.74		33.41	12.67	Government Mtn
200	Gila Pueblo	1307.52	473.96	9440.05	133.54	110.71	20.55	125.51	17.17		19.99	14.27	Cow Canyon
201	Gila Pueblo	1177.38	499.35	9334.11	139.40	114.31	24.02	130.02	19.71		19.15	17.44	Cow Canyon
202	Gila Pueblo	984.29	456.01	7746.33	115.54	18.91	22.97	94.48	31.19		21.34	16.66	Superior
203	Gila Pueblo	984.55	499.61	8132.12	129.76	23.12	25.40	99.73	37.20		25.32	16.12	Superior
204	Gila Pueblo	967.87	424.66	10685.31	250.66	21.20	41.24	110.11	30.08		30.96	40.49	Antelope Cr (Mule Cr)
205	Gila Pueblo	904.81	401.96	10180.68	242.64	18.54	37.75	108.30	28.84		29.84	32.71	Antelope Cr (Mule Cr)
206	Gila Pueblo	998.92	534.61	8290.71	128.37	21.18	23.43	92.11	33.12		21.75	12.66	Superior
207	Gila Pueblo	1595.35	503.24	9563.89	141.60	109.20	21.73	126.12	17.27		21.69	10.71	Cow Canyon
208	Gila Pueblo	783.40	513.85	9922.90	106.97	79.32	19.73	73.29	51.84		32.29	9.70	Government Mtn
209	Gila Pueblo	1174.58	485.33	9492.18	136.20	110.94	22.50	131.21	17.98		17.96	15.91	Cow Canyon
210	Gila Pueblo	1247.91	542.57	9749.47	144.79	112.51	23.26	135.94	21.48		18.97	15.80	Cow Canyon
211	Gila Pueblo	1398.06	532.90	10661.26	142.38	115.39	24.73	135.91	17.15		19.81	12.25	Cow Canyon
212	Gila Pueblo	1230.14	461.86	9190.22	138.13	110.19	23.94	128.33	19.68		19.15	13.68	Cow Canyon
213	Gila Pueblo	816.08	510.45	9420.95	108.70	79.41	18.74	79.60	53.41		28.49	12.57	Government Mtn
214	Gila Pueblo	726.45	516.00	9695.24	110.76	85.11	19.60	77.79	52.18		35.32	7.04	Government Mtn
215	Gila Pueblo	939.76	372.88	10106.72	261.28	18.87	42.87	114.49	24.35		34.61	37.16	Antelope Cr (Mule Cr)
216	Gila Pueblo	939.39	460.11	7808.91	117.16	19.90	26.19	91.92	29.42		22.95	14.13	Superior
217	Gila Pueblo	932.62	385.04	9888.75	242.13	17.65	40.79	112.62	25.91		23.74	33.86	Antelope Cr (Mule Cr)
218	Gila Pueblo	936.91	475.75	7996.00	120.61	21.96	24.25	97.29	30.18		22.42	21.63	Superior
219	Gila Pueblo	1554.67	389.74	10816.69	156.58	72.88	35.40	196.78	26.40		22.82	22.37	Sauceda Mtns
220	Gila Pueblo	777.76	520.34	9467.86	104.65	78.46	21.04	79.25	54.87		29.46	13.60	Government Mtn
221	Gila Pueblo	1298.84	436.36	9309.61	140.05	132.10	14.89	123.96	12.75		20.48	17.62	Cow Canyon
222	Gila Pueblo	797.76	557.91	10094.92	116.21	81.93	18.98	78.64	50.20		34.17	5.38	Government Mtn
223	Gila Pueblo	996.69	522.30	8077.26	125.13	21.24	26.14	101.83	30.97		19.47	9.10	Superior
224	Gila Pueblo	1543.77	370.91	10829.66	163.79	71.99	34.87	195.96	23.79		20.03	25.10	Sauceda Mtns

Sample	Site	Ti	Mn	Fe	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th	Source
225	Gila Pueblo	787.19	498.33	9394.01	110.19	81.27	17.32	78.24	51.20		31.92	9.70	Government Mtn
226	Gila Pueblo	935.80	389.87	10299.55	251.72	18.74	44.90	110.59	26.10		29.71	38.50	Antelope Cr (Mule Cr)
227	Gila Pueblo	992.92	473.08	7932.26	120.47	26.17	28.34	94.70	32.92		22.65	17.26	Superior
228	Gila Pueblo	929.09	354.72	9568.48	228.71	21.01	42.72	107.15	24.11		27.90	36.98	Antelope Cr (Mule Cr)
229	Gila Pueblo	1591.98	354.03	10233.18	149.48	72.78	31.58	188.19	18.41		21.17	23.00	Sauceda Mtns
230	Gila Pueblo	1482.16	357.90	10723.73	160.09	76.92	28.89	189.98	22.44		20.29	19.94	Sauceda Mtns
231	Gila Pueblo	757.37	565.92	10226.97	115.78	87.85	19.74	81.85	53.61		35.06	6.39	Government Mtn
232	Gila Pueblo	989.17	487.18	8090.12	121.70	22.19	24.16	90.27	29.48		24.23	17.76	Superior
233	Gila Pueblo	924.38	360.76	9549.09	237.18	19.54	42.36	111.56	28.72		24.99	33.33	Antelope Cr (Mule Cr)
234	Gila Pueblo	761.82	521.06	9572.56	111.44	81.28	19.52	79.61	54.43		33.17	11.67	Government Mtn
235	Gila Pueblo	901.80	359.48	9850.01	256.24	19.44	44.29	112.44	27.40		29.09	40.59	Antelope Cr (Mule Cr)
236	Gila Pueblo	888.32	395.94	10198.39	244.84	23.42	45.95	113.74	27.81		28.09	26.84	Antelope Cr (Mule Cr)
237	Gila Pueblo	1200.71	392.62	9137.19	133.94	126.57	19.66	123.04	14.17		21.23	18.55	Cow Canyon
238	Gila Pueblo	1051.64	495.75	8054.46	123.22	19.93	22.80	93.03	31.13		20.92	8.66	Superior
239	Gila Pueblo	812.66	504.20	9597.99	106.58	78.94	17.06	76.49	50.85		34.62	13.26	Government Mtn
240	Gila Pueblo	907.24	374.56	9917.34	248.60	22.23	42.58	117.76	26.24		25.73	33.87	Antelope Cr (Mule Cr)
241	Gila Pueblo	1285.42	490.07	9571.00	139.85	110.52	23.94	131.92	18.28		21.28	10.95	Cow Canyon
242	Gila Pueblo	1240.92	408.24	9025.14	131.12	128.62	18.64	118.23	13.43		20.32	16.41	Cow Canyon
243	Gila Pueblo	828.52	572.78	10177.57	120.46	88.75	20.77	83.61	56.52		36.08	17.86	Government Mtn
244	Gila Pueblo	924.18	368.22	10100.11	248.65	21.19	44.75	111.15	28.27		29.85	40.66	Antelope Cr (Mule Cr)
245	Gila Pueblo	1195.37	409.77	11179.68	247.60	20.73	46.47	136.06	27.17		30.36	39.42	Antelope Cr (Mule Cr)
246	Gila Pueblo	1483.45	380.60	10749.99	167.98	75.86	34.66	192.62	22.18		21.41	23.96	Sauceda Mtns
247	Gila Pueblo	934.62	449.30	10543.04	262.23	19.18	46.75	116.30	31.55		32.59	39.50	Antelope Cr (Mule Cr)
248	Gila Pueblo	1401.33	431.83	9655.21	144.19	141.08	19.57	122.53	14.87	1407.44	21.61	18.04	Cow Canyon?
249	Gila Pueblo	1005.24	358.62	10329.22	240.92	24.79	36.74	112.92	25.54		28.97	35.84	Antelope Cr (Mule Cr)
250	Gila Pueblo	1369.98	360.74	9955.62	150.58	71.49	32.40	190.65	20.86	1013.29	16.73	18.30	Sauceda Mtns
251	Gila Pueblo	1234.80	411.31	9146.46	136.83	131.16	17.22	119.96	15.04		19.11	12.74	Cow Canyon
252	Gila Pueblo	918.75	376.48	9900.59	244.76	19.81	45.26	110.46	28.51		27.99	36.38	Antelope Cr (Mule Cr)
253	Gila Pueblo	777.27	501.58	9491.85	104.62	81.39	20.89	74.77	48.73		29.58	14.31	Government Mtn
254	Gila Pueblo	1515.37	376.99	10690.84	161.92	75.15	33.26	193.19	24.46	1120.82	20.54	20.49	Sauceda Mtns
255	Gila Pueblo	1117.29	549.18	8449.22	123.28	21.77	26.42	91.54	29.99		21.32	14.16	Superior
256	Gila Pueblo	782.00	566.00	10219.00	126.10	91.60	20.50	82.30	57.80	360.00	35.50	17.68	Government Mtn
257	Gila Pueblo	737.33	540.13	9642.73	109.27	83.96	22.19	80.80	55.13		32.52	14.95	Government Mtn
258	Gila Pueblo	804.63	576.50	10119.80	118.34	83.39	21.45	83.21	52.81		35.75	17.56	Government Mtn
259	Gila Pueblo	1020.40	518.27	8161.99	129.09	22.97	25.41	92.40	32.24		22.51	18.78	Superior
260	Gila Pueblo	758.71	491.18	9312.72	102.51	76.15	18.18	79.05	53.87		27.50	11.51	Government Mtn
261	Gila Pueblo	1045.15	505.00	8085.39	122.20	24.45	25.43	98.74	28.62		24.17	18.98	Superior
262	Gila Pueblo	974.96	342.88	9377.82	234.05	19.68	43.23	108.63	26.23		26.39	32.73	Antelope Cr (Mule Cr)
263	Gila Pueblo	931.64	373.01	9836.46	245.31	20.49	35.87	110.32	29.36		30.15	36.09	Antelope Cr (Mule Cr)

Sample	Site	Ti	Mn	Fe	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th	Source
264	Gila Pueblo	755.72	507.46	9735.69	107.41	79.80	20.10	75.11	55.60		31.65	15.94	Government Mtn
265	Gila Pueblo	965.51	398.82	10469.81	253.54	24.13	44.60	112.24	31.87		29.25	33.45	Antelope Cr (Mule Cr)
266	Gila Pueblo	920.69	376.95	9834.72	244.29	19.36	41.14	111.79	25.72		29.78	37.66	Antelope Cr (Mule Cr)
267	Gila Pueblo	741.28	552.96	9917.74	114.81	85.72	17.95	77.22	54.42		32.81	12.23	Government Mtn
268	Gila Pueblo	803.24	560.28	10206.22	116.66	85.95	23.32	80.14	49.90		35.60	15.24	Government Mtn
269	Gila Pueblo	777.81	527.94	9618.56	108.85	80.53	19.39	78.07	48.24		27.65	9.35	Government Mtn
270	Gila Pueblo	1162.46	396.00	10454.86	249.51	21.14	41.64	116.56	29.47		31.77	39.95	Antelope Cr (Mule Cr)
271	Gila Pueblo	933.84	465.62	7799.32	116.72	22.79	22.20	87.84	29.27		18.50	13.20	Superior
272	Gila Pueblo	1218.05	488.58	9277.60	134.86	111.00	23.78	131.44	18.25		15.89	16.44	Cow Canyon
273	Gila Pueblo	1002.12	471.88	7837.17	121.77	21.16	24.83	90.23	28.90		22.38	15.48	Superior
274	Gila Pueblo	1304.24	522.84	9870.40	147.64	115.97	21.32	134.89	18.48		21.35	15.02	Cow Canyon
275	Gila Pueblo	744.97	521.44	9704.36	111.16	83.47	17.12	80.10	51.13		31.92	14.03	Government Mtn
276	Gila Pueblo	888.32	401.64	10005.59	240.89	23.51	44.11	110.64	25.69		27.41	31.76	Antelope Cr (Mule Cr)
277	Gila Pueblo	913.57	359.74	9698.60	240.30	17.69	39.80	108.19	26.01		25.79	28.08	Antelope Cr (Mule Cr)
278	Gila Pueblo	1027.58	476.13	7966.75	119.27	21.94	24.17	90.67	26.19		21.74	9.92	Superior
279	Gila Pueblo	1009.34	518.85	8103.69	125.63	23.52	26.51	93.80	31.60		21.58	13.35	Superior
280	Gila Pueblo	849.28	522.87	9703.95	109.02	81.59	22.06	78.06	49.39		38.49	14.73	Government Mtn
281	Gila Pueblo	915.74	373.82	9798.18	245.21	22.84	45.37	113.81	32.07		27.82	41.00	Antelope Cr (Mule Cr)
282	Gila Pueblo	1380.83	455.42	10272.44	139.36	137.24	21.08	126.67	10.72		19.90	7.08	Cow Canyon
283	Gila Pueblo	1055.88	508.62	8464.35	123.25	21.93	27.72	93.74	32.45		20.85	15.66	Superior
284	Gila Pueblo	1240.52	496.67	9035.67	118.18	29.12	23.89	93.34	31.17		20.43	13.56	Superior
285	Gila Pueblo	927.48	506.95	8059.97	125.85	23.13	26.88	94.83	34.47		20.40	17.97	Superior
286	Gila Pueblo	1183.20	534.38	8944.72	126.32	25.41	23.10	96.17	30.80		21.24	10.63	Superior
287	Gila Pueblo	1251.37	527.20	9692.53	145.32	115.56	25.15	129.39	17.51		19.48	13.00	Cow Canyon
288	Gila Pueblo	912.00	397.08	9948.20	241.47	25.77	43.78	111.71	28.55		29.21	38.33	Antelope Cr (Mule Cr)
289	Gila Pueblo	1336.68	431.43	9510.82	142.46	135.04	22.24	119.56	17.96		22.26	15.07	Cow Canyon
290	Gila Pueblo	1040.35	551.36	8454.31	125.54	20.50	22.10	91.09	36.31		25.99	23.16	Superior
292	Grasshopper	875.82	352.56	9586.80	237.67	23.70	43.14	111.57	25.33		27.74	41.60	Antelope Cr (Mule Cr)
293	Grasshopper	1312.00	398.00	8776.00	121.50	121.90	16.70	117.50	14.40	1310.00	16.02	10.65	Cow Canyon
291	Grasshopper	996.27	483.55	8038.85	123.23	21.64	24.19	92.18	29.41		23.65	11.90	Superior
299	Dinwiddie	1077.40	497.79	8612.12	180.77	14.75	26.56	119.54	33.08		19.41	22.56	Mule Mtns (Mule Cr)
300	Dinwiddie	1067.84	489.15	8848.70	193.49	15.46	22.18	113.43	30.44		23.37	30.86	Mule Mtns (Mule Cr)
294	Dinwiddie	1019.51	454.79	8505.03	184.52	15.47	27.77	116.83	31.74		19.03	29.51	Mule Mtns (Mule Cr)
297	Dinwiddie	1015.89	474.39	8687.01	184.47	16.66	22.21	113.51	34.56		23.43	31.01	Mule Mtns (Mule Cr)
295	Dinwiddie	881.92	378.28	9465.41	233.97	20.24	41.96	106.19	25.95		26.60	31.13	Antelope Cr (Mule Cr)
298	Dinwiddie	992.96	491.98	8655.49	186.61	13.70	26.69	113.34	31.88		22.48	27.71	Mule Mtns (Mule Cr)
296	Dinwiddie	1028.97	467.02	8735.34	182.80	11.93	23.76	110.83	28.47		24.77	29.69	Mule Mtns (Mule Cr)
301	Dinwiddie	886.65	344.52	9581.39	226.85	21.14	41.23	107.08	22.80		24.21	30.82	Antelope Cr (Mule Cr)
317	Spear Ranch	1177.11	493.40	9414.46	136.58	110.91	20.00	129.01	21.01		17.64	10.90	Cow Canyon

Sampla	Sito	т	Mo	Fo	Dh	Sr	V	Zr	Nb	Po	Dh	Th	Source
Sample	Site	Ti	Mn	Fe	Rb		ľ		Nb	Ba	Pb		
318	Spear Ranch	886.50	391.43	9896.16	250.76	22.21	42.66	107.93	27.86		26.64	37.46	Antelope Cr (Mule Cr)
302	Curtis Ranch	1337.12	516.60	9910.72	145.60	119.02	27.01	132.42	17.07		22.15	17.42	Cow Canyon
303	Curtis Ranch	1264.70	534.41	9791.78	142.24	119.85	23.40	131.23	14.34		21.47	11.45	Cow Canyon
304	Curtis Ranch	872.96	367.90	9631.00	237.02	18.52	40.46	107.67	28.81		26.31	32.96	Antelope Cr (Mule Cr)
305	Curtis Ranch	922.53	386.12	9724.31	243.65	21.98	47.72	112.29	24.98		30.88	35.44	Antelope Cr (Mule Cr)
306	Curtis Ranch	901.20	351.96	9207.33	228.97	19.24	41.71	105.60	29.12		26.18	28.65	Antelope Cr (Mule Cr)
307	Curtis Ranch	931.31	383.38	9750.99	245.06	22.57	44.21	112.02	25.39	63.13	28.37	39.31	Antelope Cr (Mule Cr)
308	Curtis Ranch	921.37	409.65	10458.11	258.74	21.92	46.10	115.21	28.45		31.22	36.09	Antelope Cr (Mule Cr)
309	Curtis Ranch	879.13	602.69	9096.35	435.08	10.22	76.17	108.92	126.32		34.01	40.04	N Sawmill Cr (Mule Cr)
310	Curtis Ranch	892.24	372.05	9563.67	234.48	19.50	39.60	110.87	25.18		25.66	34.83	Antelope Cr (Mule Cr)
311	Curtis Ranch	874.17	358.70	9489.83	237.05	20.94	44.49	105.47	25.27	131.96	25.42	35.09	Antelope Cr (Mule Cr)
312	Curtis Ranch	876.21	394.65	9652.70	240.59	19.68	44.77	115.20	26.35		28.01	33.54	Antelope Cr (Mule Cr)
313	Curtis Ranch	922.54	361.49	9510.76	233.15	22.02	39.24	111.52	22.54		28.05	30.90	Antelope Cr (Mule Cr)
314	Curtis Ranch	918.17	364.19	9685.53	241.48	24.91	39.51	110.90	24.67		29.57	37.43	Antelope Cr (Mule Cr)
315	Curtis Ranch	898.92	350.80	9489.87	240.07	20.35	39.36	108.92	24.55		29.16	33.80	Antelope Cr (Mule Cr)
316	Curtis Ranch	932.44	364.71	9831.43	233.65	22.56	43.49	112.38	23.94		27.94	35.56	Antelope Cr (Mule Cr)

Table 2. Crosstabulation of site by source.

					S	lite		
			Gila Pueblo	Curtis Ranch	Dinwiddie	Grasshopper	Spear Ranch	Total
Source	Antelope Cr (Mule Cr)	Count	27	12	2	1	1	43
		% within Source	62.8%	27.9%	4.7%	2.3%	2.3%	100.0%
		% within Site	26.0%	80.0%	25.0%	33.3%	50.0%	32.6%
		% of Total	20.5%	9.1%	1.5%	.8%	.8%	32.6%
	Mule Mtns (Mule Cr)	Count	0	0	6	0	0	e
		% within Source	.0%	.0%	100.0%	.0%	.0%	100.0%
		% within Site	.0%	.0%	75.0%	.0%	.0%	4.5%
		% of Total	.0%	.0%	4.5%	.0%	.0%	4.5%
	N Sawmill Cr (Mule	Count	0	1	0	0	0	1
	Cr)	% within Source	.0%	100.0%	.0%	.0%	.0%	100.0%
		% within Site	.0%	6.7%	.0%	.0%	.0%	.8%
		% of Total	.0%	.8%	.0%	.0%	.0%	.8%
	Cow Canyon	Count	18	2	0	1	1	22
		% within Source	81.8%	9.1%	.0%	4.5%	4.5%	100.0%
		% within Site	17.3%	13.3%	.0%	33.3%	50.0%	16.7%
		% of Total	13.6%	1.5%	.0%	.8%	.8%	16.7%
	Superior	Count	26	0	0	1	0	2
		% within Source	96.3%	.0%	.0%	3.7%	.0%	100.0%
		% within Site	25.0%	.0%	.0%	33.3%	.0%	20.5%
		% of Total	19.7%	.0%	.0%	.8%	.0%	20.5%
	Government Mtn	Count	24	0	0	0	0	24
		% within Source	100.0%	.0%	.0%	.0%	.0%	100.0%
		% within Site	23.1%	.0%	.0%	.0%	.0%	18.2%
		% of Total	18.2%	.0%	.0%	.0%	.0%	18.2%
	Sauceda Mtns	Count	9	0	0	0	0	9
		% within Source	100.0%	.0%	.0%	.0%	.0%	100.0%
		% within Site	8.7%	.0%	.0%	.0%	.0%	6.8%
		% of Total	6.8%	.0%	.0%	.0%	.0%	6.8%
otal		Count	104	15	8	3	2	132
		% within Source	78.8%	11.4%	6.1%	2.3%	1.5%	100.0%
		% within Site	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
		% of Total	78.8%	11.4%	6.1%	2.3%	1.5%	100.0%

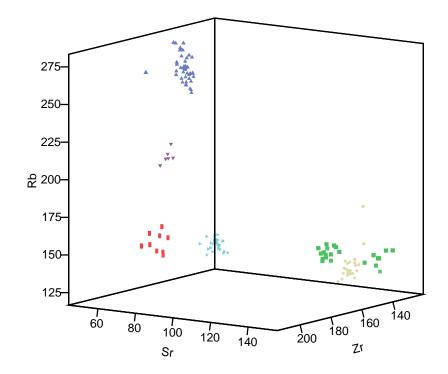


Figure 1. Sr, Rb, Zr three-dimensional plot of all the archaeological specimens. The high Rb North Sawmill Creek not plotted.

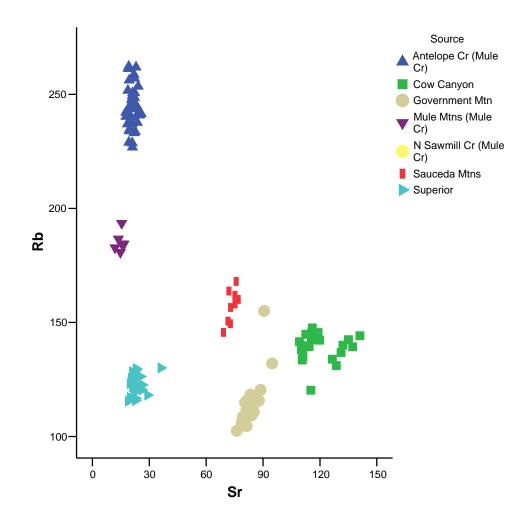


Figure 2. Sr versus Rb bivariate plot of all the archaeological specimens. The high Rb North Sawmill Creek not plotted.

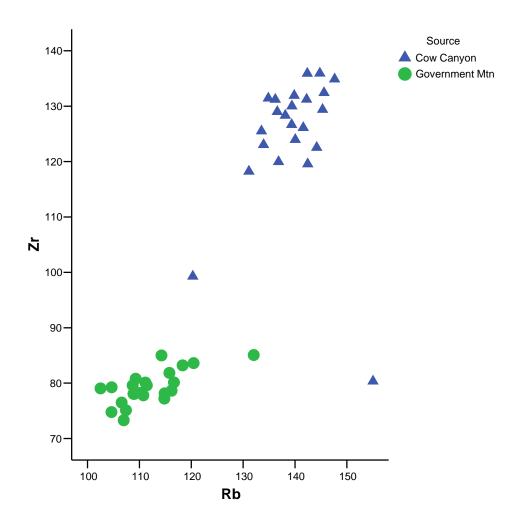


Figure 3. Rb versus Zr bivariate plot discriminating Cow Canyon and Government Mountain (see text).

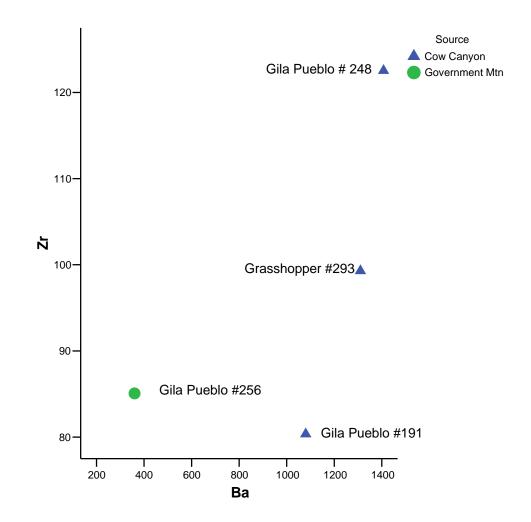


Figure 4. Ba versus Zr bivariate plot effectively discriminating four Cow Canyon and Government Mountain artifacts (see text).

APPENDIX

Ward's method, squared Euclidean distance cluster dendrogram of source assignments (Rb, Sr, Y, Nb variables)

		Resca	led Distance (Cluster Coml	oine	
C A S E Source	Num		5 10 ++		20	25
Superior	24	ŶР				
Superior Superior	101 43					
Superior	83	Û-				
Superior	52					
Superior Superior	17 74	ΰ.				
Superior	51					
Superior	65					
Superior Superior	15 22					
Superior	76					
Superior	63	Φ				
Superior Superior	53 82	ΰ.				
Superior	86					
Superior	21	Û₀ □∧□□□·				
Superior Superior	7 48	ዮ₀ ⇔ የ\$የየየ				
Superior	25	0• ⇔				
*	107					
Superior Superior	88 80	↑• ⇔ ↑• ⇔				
Superior	1	0• ⇔				
Superior	33					
Superior Superior	45 68	∱∿ ⊡∱∱ ∱⊓ ⇔	ዕዕዕዕዕዕሪ			
Government Mtn	28	∱⁄7 ⇔	⇔			
Government Mtn		0- ⇔	\$			
Government Mtn Government Mtn		↑• ⇔ ↑• ⇔	\$ \$			
Government Mtn	81	0- ⇔	\Leftrightarrow			
Government Mtn		↑• ⇔ ↑• ⇔	\$ \$			
Government Mtn Government Mtn			\$ \$			
Government Mtn	39	¢• ⇔	\$			
Government Mtn Government Mtn	71 102	ዕዕዕዕዕ∿				
Government Mtn Government Mtn	102	℃ ℃	\$ \$			
Government Mtn	30	Û⊓	⇔			
Government Mtn	14		\$			
Government Mtn Government Mtn	18 19		\$ \$			
Government Mtn	34	Û¤	⇔			
Government Mtn	60	Û.	\Leftrightarrow			
Government Mtn Government Mtn	85 94		⇔			
Government Mtn	47	Û-	÷			
Government Mtn	93		⇔			
Government Mtn Sauceda Mtns	100 16		\$ \$			
Sauceda Mtns	67	Û- ^ 7	÷			
Sauceda Mtns	55	Û°	\Leftrightarrow			
Sauceda Mtns Sauceda Mtns	96	∱⊓ ⇔ የ₿የሰየ ^-	\$ \$			
Sauceda Mtns	58	↓• ⇔	\$			
Sauceda Mtns	99	0- ⇔	\$			
Sauceda Mtns Sauceda Mtns	79 11	1r ⇔	\$ \$			
Cow Canyon	44	∱∂ ⇔ 	⇔			
Cow Canyon	46	0- ⇔	\$			
Cow Canyon Cow Canyon	78 42	↑• ⇔ ↑• ⇔	\$ \$			
Cow Canyon	75	0- ⇔	\Leftrightarrow			
Cow Canyon	117		የዕዕዕዕዕው			
Cow Canyon Cow Canyon	57 98	↑ ⇔ ↑ ⇔				
Cow Canyon	23	0• ⇔				
Cow Canyon	73	0- ⇔				
Cow Canyon Cow Canyon	70 3	↑• ⇔ ↑• ⇔				
Cow Canyon	119	0• ⇔				
Cow Canyon	121	0- ⇔				
Cow Canyon? Cow Canyon	6 97	↑• ⇔ ↑• ⇔				
Cow Canyon Cow Canyon	97 95	∱n ⇔				
Cow Canyon	40	ዕ₿ዕዕዕ∿				
Cow Canyon	49 87	ሆ። ሆ።				
Cow Canyon Cow Canyon	87 104	Ûα Φα				
Cow Canyon	106	Û.				
Cow Canyon Mule Mtns (Mule Cr)	10 110	① 忍 ①∿				
	110	①= 42.23				
Mule Mtns (Mule Cr)	111	Û¤				
	108	∱ቆ የወ				
Mule Mtns (Mule Cr) Mule Mtns (Mule Cr)	114 109	∱∿ ⇔ ↑î↑2				
Antelope Cr (Mule Cr	9	û~ ⇔				
Antelope Cr (Mule Cr	118					
Antelope Cr (Mule Cr Antelope Cr (Mule Cr	38 92	↑° ⇔ ↑° ⇔				
Antelope Cr (Mule Cr	64	0• ⇔				
Antelope Cr (Mule Cr	5	î⊓ ⇔ î⊓ ⇔				
Antelope Cr (Mule Cr Antelope Cr (Mule Cr	50 20	∱⊓ ⊡∱ <i>ମ</i> ↑⊓ ⇔				
	-	-				

Antelope Cr	(Mule Cr	103	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	91	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	116	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	56	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	69	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	4	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	31	\uparrow • \Leftrightarrow \Leftrightarrow
Antelope Cr	(Mule Cr	127	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	8	$\uparrow \circ \Leftrightarrow \Leftrightarrow$
Antelope Cr	(Mule Cr	120	ዕዕዕ∿ ⇔
Antelope Cr	(Mule Cr	129	0• ⇔
Antelope Cr	(Mule Cr	32	0• ⇔
Antelope Cr	(Mule Cr	72	0• ⇔
Antelope Cr	(Mule Cr	41	0- ⇔
Antelope Cr	(Mule Cr	29	0• ⇔
Antelope Cr	(Mule Cr	61	0- ⇔
Antelope Cr	(Mule Cr	2	0• ⇔
Antelope Cr	(Mule Cr	90	Φ°
Antelope Cr	(Mule Cr	126	0• ⇔
Antelope Cr	(Mule Cr	37	0• ⇔
Antelope Cr	(Mule Cr	105	0• ⇔
Antelope Cr	(Mule Cr	12	0- ⇔
Antelope Cr	(Mule Cr	84	0- ⇔
Antelope Cr	(Mule Cr	115	0• ⇔
Antelope Cr	(Mule Cr	128	0• ⇔
Antelope Cr	(Mule Cr	122	0• ⇔
Antelope Cr	(Mule Cr	130	0• ⇔
Antelope Cr	(Mule Cr	123	0• ⇔
Antelope Cr	(Mule Cr	62	0• ⇔
Antelope Cr	(Mule Cr	112	0• ⇔
Antelope Cr	(Mule Cr	125	0• ⇔
Antelope Cr	(Mule Cr	59	0• ⇔
Antelope Cr	(Mule Cr	131	0• ⇔
Antelope Cr	(Mule Cr	35	0• ⇔
Antelope Cr	(Mule Cr	124	02 ⇔
N Sawmill C	r (Mule Cr)132	<u> </u>