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2Department of Electrical and Computer Engineering, Michigan State University, East Lansing, 
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Abstract

Sensors in everyday devices, such as our phones, wearables, and computers, leave a stream of 

digital traces. Personal sensing refers to collecting and analyzing data from sensors embedded in 

the context of daily life with the aim of identifying human behaviors, thoughts, feelings, and traits. 

This article provides a critical review of personal sensing research related to mental health, 

focused principally on smartphones, but also including studies of wearables, social media, and 

computers. We provide a layered, hierarchical model for translating raw sensor data into markers 

of behaviors and states related to mental health. Also discussed are research methods as well as 

challenges, including privacy and problems of dimensionality. Although personal sensing is still in 

its infancy, it holds great promise as a method for conducting mental health research and as a 

clinical tool for monitoring at-risk populations and providing the foundation for the next 

generation of mobile health (or mHealth) interventions.
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1. INTRODUCTION

This article is the story of the collision of several innovations—ubiquitous sensing, big data, 

and mobile health (or mHealth)—and their potential to revolutionize mental health research 

and treatment. A sensor is any device that detects and measures a physical property. Sensors 

are as old as civilization itself. The Sumerians developed scales, which are essentially 

weight sensors, some 9,000 years ago, and we have continued to develop new sensors ever 

since. The use of sensors to measure physical properties for the purpose of understanding 

psychological states, or psychophysiology, has long been a core discipline within 

psychology. Advances in sensor technology have accelerated throughout the past decades, 
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with sensors becoming smaller, lighter, and more accurate. Furthermore, they have become 

increasingly ubiquitous and embedded into networks such that they can provide vast 

amounts of data almost anywhere and nearly instantaneously.

Today, people are measured continuously by sensors. Many sensors are embedded in mobile 

phones, measuring location, movement, communication or social interaction, light, sound, 

digital devices in the area, and more. Smartwatches and wearable devices containing 

onboard sensors that track activity and physiological functions are increasingly popular. 

People leave digital traces when they make credit card purchases, send a tweet, or visit a 

website. This digital exhaust produced by sensors has rich information about people’s 

behavior, and, potentially, about their beliefs, emotions, and, ultimately, mental health.

Various terms have been used to describe the utilization of ubiquitous sensor data to estimate 

behaviors, such as reality mining (Eagle & Pentland 2006), personal informatics (Li et al. 

2010), digital phenotyping (Jain et al. 2015, Torous et al. 2016), and personal sensing 

(Klasnja et al. 2009). We use the term personal sensing because it is easily understood and 

conveys the intimacy of the information. In this article, we provide an overarching model of 

personal sensing, review the literature on using sensors to detect mental health conditions 

and related behavioral markers, provide an overview of methods, and describe some of the 

grand challenges and opportunities in this emerging field.

2. FROM DATA TO KNOWLEDGE: A HIERARCHICAL MODEL

The goal of applying personal sensing to mental health is to convert the potentially large 

amount of raw sensor data into meaningful information related to behaviors, thoughts, 

emotions (for simplicity, in this article we refer to these collectively as behavioral markers), 

and clinical states and disorders. Although there are many approaches to sensemaking, we 

present a layered, hierarchical sensemaking framework, as this illustrates a number of 

processes and issues. In this framework, raw sensor data are captured and converted into 

features that contain information. These features can then be used to define behavioral 

markers, often through machine learning. In the end, the entire set of features and behavioral 

markers can be used to identify clinical states, similar to diagnosing a disorder. Although 

some methods, such as deep learning (discussed in Section 4.4), do not necessarily require 

these steps, we believe this framework is useful both because it is more likely to be viable in 

most academic research contexts and because it illustrates several important issues in 

sensemaking. We use a simplified version of a mobile-phone sensing platform for detecting 

common mental health problems as an example (Figure 1); however, platforms could include 

data from any source.

2.1. Raw Sensor Data

The boxes at the bottom of the figure represent the inputs to the sensing platform in the form 

of raw phone sensor data. For the most part, unprocessed, raw sensor data do not contain 

sufficient information for the inferences we aim to make.
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2.2. Feature Extraction: Data to Information

To add information, raw sensor data must be transformed into features. Features are 

constructs measured by, and proximal to, the sensor data. In Figure 1, features are depicted 

in the layer above the inputs. This is, arguably, the most important step in sensemaking 

(Bengio et al. 2013). There are a number of ways to construct and extract features. One 

common approach is to use domain expertise or brainstorming to inject human intelligence 

for feature construction. For example, raw data about phone usage may be of minimal value. 

If you are interested in in-phone communication, relevant features might be the number and 

duration of incoming calls or short message service (SMS) text messages, the number and 

duration of outgoing calls and SMS messages, the number of missed calls, and the ratios of 

these features. In addition, features can also be extracted statistically using algorithms, such 

as slow feature analysis and stacked autoencoders (Vincent et al. 2010, Wiskott & Sejnowski 

2002), that can automatically discover new feature representations. Finally, some features 

estimate observable states using machine learning. For example, bedtime or waketime can be 

estimated using a number of sensors and features related to light, sound, and phone use 

(Zhenyu et al. 2013).

2.3. Behavioral Markers: Information to Knowledge

Behavioral markers are higher-level features, reflecting behaviors, cognitions, and emotions, 

that are measured using low-level features and sensor data. This is similar to the notion of 

latent constructs in psychological methodology. Some examples of potential high-level 

behavioral markers are represented in Figure 1. Behavioral markers are most commonly 

developed using machine-learning and data-mining methods to uncover which features and 

sensor data are useful in detecting the marker. For example, a behavioral marker for 

circadian sleep rhythm might include features such as bedtime and waketime, sleep duration, 

and phone usage. Markers of sleep quality might include ambient sound features, but may 

also include bedtime and wake time (Abdullah et al. 2014). Furthermore, the accuracy of 

such features may be enriched by including additional helper features, such as age (older 

people use phones differently from younger people) or whether it is a workday or non-

workday.

2.4. Clinical Targets

One would not attempt to diagnose a mental health disorder on the basis of one or two 

questions about symptoms (although one might use them for screening purposes). Similarly, 

as discussed in Section 3, limited sets of features have been only modestly successful at 

predicting clinical targets. We expect that clinical targets will be better predicted by applying 

machine-learning methods to a larger number of behavioral markers and features. However, 

these may not have a one-to-one correspondence to symptoms used to diagnose disorders. 

Some symptoms may simply not be detectable, and personal sensing may uncover other 

predictors that have not been considered to date.
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3. REVIEW OF PERSONAL SENSING RESEARCH

Most work on personal sensing for mental health has used mobile phone sensors. Therefore, 

we review this work before reviewing work from other areas, including wearables, social 

media, and computers.

3.1. Mobile Phones

Mobile phones are commonly used for research because they are widely owned: 72% of 

Americans own a smartphone, up from 35% in 2011 (Poushter 2016). Furthermore, people 

keep their phones on or near them and use them frequently. On average, people check their 

phones 46 times per day, and for younger people that figure is 85 times per day (Andrews et 

al. 2015, Eadicicco 2015). The phone also has an increasingly large number of embedded 

sensors. Here, we focus on behavioral markers in three areas related to mental health: sleep 

and social context, which are potentially more observable, and mood and stress, which are 

internal states.

3.1.1. Behavioral markers.—Although a growing literature examines detection of an 

increasingly broad range of behavioral markers using mobile phone sensors, we describe the 

work on detection of sleep, social context, mood, and stress as examples because these 

markers have received the most attention.

3.1.1.1. Sleep.: Sleep disturbance is a common symptom, occurring across many mental 

health conditions (Sivertsen et al. 2009, Taylor et al. 2005). Those disturbances can be 

reflected by patients’ sleep periods (i.e., when and how long a person sleeps) and sleep 

quality (i.e., how well a person sleeps). By leveraging built-in sensors, a number of 

smartphone-based sensing systems have been developed to passively monitor sleep periods. 

Several groups have shown that sleep duration can be estimated with approximately 90% 

accuracy, without asking the user to do anything special with the phone, by using data from 

a number of sensors, such as the accelerometer, microphone, ambient light sensor, screen 

proximity sensor, running process, battery state, and display screen state (Chen et al. 2013, 

Min et al. 2014). Among heavy phone users, such as undergraduate students, sleep periods 

can be detected simply by observing phone screen lock and unlock events, which is less of a 

drain on the phone battery than other methods (Abdullah et al. 2014). Sleep period markers 

can then be used to create circadian-aware systems. For example, non-workday sleep 

duration can be used to estimate a person’s chronotype (e.g., morning lark versus night owl), 

and changes in sleep patterns across workdays and non-workdays can identify social jet lag, 

which is the difference between a person’s biological sleep rhythm and external 

requirements (Abdullah et al. 2014, Murnane et al. 2015). Such sleep period markers have 

also been correlated with the severity of depressive symptoms (Wang et al. 2014).

Sleep quality can also be effectively inferred by using smartphone sensors. For example, 

common events that interfere with sleep quality, such as body movement, coughing and 

snoring, and ambient noise, can be reliably detected using a smartphone’s microphone when 

the phone is kept in the user’s room. Acoustic features have been associated with both short-

term (i.e., 1-night) and long-term sleep quality measured using actigraphy and self-report 

(Hao et al. 2013). A number of studies have used multimodal sensing schemes—including 
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the accelerometer, microphone, light sensor, screen proximity sensor, running process, 

battery state, and display screen state—to infer sleep stages and sleep quality (Gu et al. 

2014, Min et al. 2014).

3.1.1.2. Social context.: Here, we focus on phone-based research; we discuss work using 

social media networks in Section 3.2.2. Large population-based phone datasets can provide 

dynamic information about individual movement and proximity to others that can be used to 

calculate people’s proximity in a social network. Patterns of movement and of colocation 

can be used to infer relationships and predict new social ties (Hsieh & Li 2014, Pham et al. 

2013, Wang et al. 2011).

On a smaller scale, in a classic study, Eagle and colleagues (Eagle & Pentland 2006, Eagle et 

al. 2009) were able to identify friends and non-friends with a high degree of accuracy using 

Bluetooth sensors, which can detect other Bluetooth-enabled devices up to 15 meters away. 

People in proximity to one another only during work hours were more likely to be 

colleagues than friends, but proximity during the evening or weekends was an indicator of 

friendship. Relational status can then be used to identify other psychological targets. For 

example, calling friends during work hours was associated with lower job satisfaction (Eagle 

et al. 2009). Although such methods hold promise, their application is limited by the small 

percentage of people who leave their Bluetooth sensors in discoverable mode. Nevertheless, 

this work (Eagle & Pentland 2006, Eagle et al. 2009) underscores the utility of colocation 

and time as important features that indicate the nature of relationships.

Other forms of social sensing have used remote communication tools within the phone, 

including calls and SMS messages. Contact lists (address books) within a person’s phone 

can contain information about relationships. For example, contact fields sometimes include 

family role (e.g., Aunt Julie), relationship context [e.g., Kaitlyn (Peg’s friend)], phone type 

(e.g., Mom at home), or an honorific (e.g., Mrs., Mr., or Dr.), which can be mined to infer 

relationships (Wiese et al. 2014). However, contact lists are vulnerable to idiosyncratic 

labeling methods and tell us little about the frequency of contact.

Patterns of time and frequency and the regularity of incoming and outgoing calls and SMS 

messages have also been have been used to classify a person’s contacts into a relationship 

domain (family, friend, or work colleague), with more than 90% accuracy (Min et al. 2013). 

For example, longer calls were associated with family; the work domain was characterized 

by fewer weekend calls and a lower likelihood of SMS messages; and friends and social 

contacts were characterized by more SMS messages sent during the week. The strength of 

social ties can also be estimated to some degree, with higher levels of in-phone 

communication frequency, call duration, and communication initiated by the phone owner 

being associated with a stronger relationship (Wiese et al. 2015). However, this signal is 

noisy because low levels of communication do not necessarily mean weak ties (we speak 

infrequently with some people who are very close to us), as much communication may occur 

outside of the phone, such as face to face or using other media, and, increasingly, other 

applications (or apps) such as Snapchat and WhatsApp.
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3.1.1.3. Mood and stress.: Mood and stress are internal states that are likely to be more 

distal from the sensors and features normally used in personal sensing. A number of studies 

have attempted to leverage a broad array of built-in mobile phone sensors to predict mood 

(LiKamWa et al. 2013, Ma et al. 2012, Madan et al. 2010). In the earliest study, Madan et al. 

(2010) found that decreases in calls, SMS messaging, Bluetooth-detected contacts, and 

location entropy (a measure of the temporal dispersion of locations) were strongly related to 

feeling sad and stressed among students, as measured by daily ecological momentary 

assessments (EMAs). Moodscope (LiKamWa et al. 2013) was used to infer mood, labeled 

by daily EMAs, from data from 32 participants over 2 months. The number and length of 

communications (calls, SMS text messages, and emails), the number of apps used and usage 

patterns, web browser history, and a person’s location could be used to estimate a user’s 

daily mood average with an initial accuracy of 66%, which gradually improved to 93% after 

a 2-month personalized training period. Similarly, using location, motion detectors, light, 

and ambient sound, Ma et al. (2012) achieved approximately 50% accuracy for daily moods 

during a 30-day period with 15 participants. A recent attempt to replicate the Moodscope 

findings with a cohort of 27 students failed to perform better than chance (Asselbergs et al. 

2016). The varying results and failure to replicate suggest that although a number of small 

studies have demonstrated the technical feasibility of sensing mood, these findings do not 

appear to generalize.

At least one study has attempted to detect stress using the swipe, scroll, and text-input 

interactions with a phone (Ciman et al. 2015). This work, based in part on literature showing 

that stress can be detected through computer mouse and keyboard interactions (see Section 

3.2.3), found that under laboratory conditions, features derived from a person’s scroll, swipe, 

touch, and text-input interactions with a phone could differentiate a laboratory-induced 

stressful state from a normal state. It remains an open question whether real-world instances 

of these interactions provide a strong enough signal of stress.

A large body of literature has demonstrated that affect and mood can be detected through the 

paralinguistic features of speech (Calvo & D’Mello 2010). StressSense (Lu et al. 2012) is a 

smartphone sensing system that uses the phone’s built-in microphone to capture human 

speech during social interactions to infer a user’s level of perceived stressed by analyzing 

paralinguistic information, such as pitch and speaking rate. Under quasi-experimental 

conditions using a mock job interview and a marketing task, StressSense achieved 76–81% 

accuracy in identifying stress. These findings were then extended to a real-world evaluation. 

Following 7 participants over 10 days, the sensed stress marker correlated with self-reported 

stress at r = 0.59 (Adams et al. 2014). Another example, Emotion Sense (Rachuri et al. 

2010) proposed that audio-based emotion recognition could identify up to 14 different 

emotions clustered into five broader emotion groups (happy, sad, fear, anger, and neutral). In 

an initial proof-of-principle 10-day study involving 18 participants, the distribution of the 

emotions detected through Emotion Sense generally reflected the self-reports of the 

participants.

Detecting mood or subjective stress is likely a challenge for many commonly available 

sensors in smartphones. Given the history of paralinguistic voice features predicting mood, 

using a built-in microphone would seem promising from an analytical perspective, but it 
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may pose challenges from logistical and ethical perspectives for acquiring samples of 

sufficient quantity and quality. This illustrates a disconnect that sometimes occurs between 

technical and laboratory proof-of-concept and real-world feasibility.

3.1.2. Clinical disorders.—Some studies have examined the possibility of using 

smartphone sensor data to detect the presence and severity of mental health disorders, 

including depression, bipolar disorder, and schizophrenia.

3.1.2.1. Depression.: Early work using smartphones for personal sensing began by 

examining depression. Madan et al. (2010) followed 70 undergraduates living in a residence 

hall and found that decreases in total communication were associated with greater 

depression. Depression, however, was assessed using only a single item. A second study, 

StudentLife, used the Patient Health Questionnaire-9 (PHQ-9) to assess depression among 

48 students over 10 weeks (Wang et al. 2014). Similar to the study by Madan et al. (2010), 

conversation frequency and duration, measured using the microphone, as well as colocation 

with other students, detected using a global positioning system (GPS) and Bluetooth, were 

significantly related to depression. In addition, depression was associated with a previously 

developed sleep-duration classifier (Chen et al. 2013). The relationship between sensed 

social contact and depression was also observed in a nonstudent population using elderly 

people living in a retirement community (Berke et al. 2011).

These relationships are perhaps unsurprising, given that sleep disruption is a symptom of 

depression and social withdrawal and avoidance are factors significantly related to common 

mental health problems, such as depression and anxiety (Hames et al. 2013). The fact that 

sleep, social withdrawal, and anxiety were inferred through smartphone sensors 

demonstrates the utility of the hierarchical model displayed in Figure 1.

Although sensing has the potential to automate the detection of behaviors we know are 

related to disease states, it also has the potential to uncover new information that may lead to 

new understanding. A case in point is the emerging work on the relationship of GPS data to 

depression. The first study in this area, using 2 weeks of data from 28 participants, found 

that a number of GPS-derived location features were associated with depression (Saeb et al. 

2015). The number of places a person visited was not related to depression; however, 

location entropy (the variability in time spent in different locations) was, such that the more 

time clustered around a few locations, the more likely the person was to be depressed; more 

equal time distributions were related to lower depression scores. A feature measuring 

periodicity, or the circadian rhythm of movement through geographical space, was 

particularly strongly related to depression, suggesting that disruption in the regularity of 

movement was associated with a greater severity of depressive symptoms. These findings 

were then replicated in the StudentLife dataset described above (Saeb et al. 2016). A third 

study, using somewhat different methods, similarly found that similar GPS features could 

estimate depression (Canzian & Musolesi 2015).

This general relationship between mobility and depression has been explored in more detail. 

For example, the relationship between GPS features and depression is stronger on non-

workdays than it is on workdays when much movement is driven by social expectations 
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(Saeb et al. 2016). This suggests that distinguishing between times when behaviors are more 

under the individual’s control versus when they are not may identify features that can be 

used to increase the accuracy of models. GPS features appear to predict depression many 

weeks in advance, although the relationship between depression and subsequent GPS 

features degrades quickly over time, suggesting that a lack of mobility may be an early 

warning signal of depression.

3.1.2.2. Bipolar disorder.: The MONARCA project (MONitoring, treAtment and 

pRediCtion of bipolAr Disorder Episodes) pioneered the use of smartphone-based behavior 

monitoring technologies for mental health (Gravenhorst et al. 2015). MONARCA leveraged 

a variety of phone sensors to detect the mental states of patients, as well as changes in 

mental states. To validate the effectiveness of their smartphone-based sensing system, the 

MONARCA team conducted a series of real-world studies among bipolar patients from a 

rural psychiatric hospital in Austria. Based on 12 patients followed for 12 weeks, 

accelerometry, location, or fused accelerometry–location features produced clinical state 

(depression/mania) recognition accuracy of 72–81% and state-change detection with a 

precision and recall of, respectively, 96% and 94% (Grünerbl et al. 2014). By fusing phone 

call features with paralinguistic information, a state-recognition accuracy of 76%, as well as 

a precision and recall accuracy of, respectively, 97% and 97% for state-change detection, 

were achieved (Grünerbl et al. 2015). Another analysis of 18 patients over 5 months 

indicated that a smartphone app can be used to identify stress and mood (Alvarez-Lozano et 

al. 2014). For example, higher use of social and entertainment apps was associated with 

lower stress and irritability.

Work has also examined the potential for GPS features, originally developed for depression 

(Saeb et al. 2015), to detect depressive episodes among bipolar patients. The same features, 

including entropy and circadian rhythm, remain strongly related to the severity of depression 

in this population (Palmius et al. 2016). Furthermore, when combined, these features could 

distinguish depressed from non-depressed states with 85% accuracy. This underscores the 

potential utility of features across diagnoses when examining similar states.

3.1.2.3. Schizophrenia.: Work on sensing in schizophrenia has begun just recently. A 

survey of patients with schizophrenia suggested that most are comfortable using a 

smartphone with sensing, and are interested in potentially receiving feedback and 

suggestions from such a system, although a minority voiced concerns that it might upset 

them or were concerned about a loss of privacy (Ben-Zeev et al. 2016). In a first study, 34 

patients with schizophrenia were provided with a smartphone for 2–8.5 months that 

collected a variety of sensor data. Personalized models used a number of features to predict 

EMA responses. For example, changes in physical activity, detected conversations, and later 

bedtimes were associated with self-reported worry that someone was intending to harm the 

participant, and with self-reported auditory and visual hallucinations (Wang et al. 2016).

3.2. Other Devices and Platforms

We have described personal sensing using mobile phones because this is the most ubiquitous 

personal sensing platform, harnessing data from people’s lives with little to no ongoing 
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effort or actions on the part of the user. However, many other sources of data exist, which 

have their own strengths and weaknesses. Below we review data from wearables, social 

media, and computers.

3.2.1. Wearables.—Wearable devices (or wearables) are sensor-enabled technologies 

designed to be worn for specific purposes, most commonly health and fitness. These devices, 

such as Fitbit and Jawbone, track activities continuously, for example, how many steps 

people take, how many miles they run, and how long they sleep. Wearables, which use 

sensors designed for their specific targets, and that are intended to be worn in a specified and 

consistent manner (e.g., on the wrist or clipped to the belt), may provide data that is of 

significantly higher quality than that provided by smartphones, which are not designed 

specifically for health tracking. However, the increase in data quality may be offset by other 

drawbacks. Wearables are less prevalent than smartphones, with only 19% ownership among 

Americans (Ricker 2015). Their use is higher among those already motivated to keep a 

watchful eye over their health, and many people abandon using them soon after purchase 

(Piwek et al. 2016).

The most widely used sensor in wearables is the accelerometer. Accelerometer-based 

wearable devices have been developed for tracking physical exercise (Choudhury et al. 

2008), detecting falls (Li et al. 2009), and monitoring activities of daily living (Spenkelink et 

al. 2002). In a large study of 2,862 participants, greater levels of accelerometer-based 

physical activity were strongly associated with decreased rates of depression (Vallance et al. 

2011).

Increasingly, wearable devices are including a broader range of sensors that can measure 

variables that are useful for mental health researchers, such as skin conductance and heart 

rate. For example, investigators have noted that greater asymmetries in skin conductance 

amplitude on the left and right sides of the body are an indicator of emotional arousal 

(Picard et al. 2016). Many of these sensors are now available in smartwatches, which 

attempt to leverage a behavioral and cultural pattern to avoid the problem of abandonment 

seen with other wearables. It remains to be seen whether smartwatches will attain the 

ubiquity enjoyed by smartphones.

Wearables are being developed that are dedicated to behaviors that have been difficult to 

sense. Eating and appetite, for example, are often disrupted in mental health conditions, but 

are difficult to detect through commonly available sensors. Two specific methods of 

detection, gestures and sound, may be particularly useful for assessing these behaviors. 

Because eating and drinking activities normally involve repetitive wrist movements and 

rotations, wrist-worn wearables that include an accelerometer and gyroscope have shown 

promise in capturing these activities (Edison et al. 2015, Sen et al. 2015). Eating and 

drinking may also produce idiosyncratic sounds through chewing and swallowing. A 

microphone attached at the neck can classify sounds produced by eating and drinking with 

reasonable accuracy (Kalantarian et al. 2015, Rahman et al. 2014, Yatani & Truong 2012).

3.2.2. Social media.—With 65% of Americans using social media in 2015 (Perrin 

2015), platforms such as Facebook and Twitter have become common places where people 

Mohr et al. Page 9

Annu Rev Clin Psychol. Author manuscript; available in PMC 2019 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



share their opinions, feelings, and daily experiences. The field of psycholinguistics has long 

demonstrated that the linguistic analysis of speech can be used for diagnostic classifications 

(Oxman et al. 1982, Rude et al. 2004). Thus, social media postings, which consist largely of 

language, are a potential source of information about mental health, as well as people’s 

thoughts and feelings related to those conditions. Using a large dataset of more than 28,000 

Facebook users who completed a personality survey, Schwartz et al. (2014) found that 

features generated from posts were modestly related to depression severity. Themes related 

to depression include depressed mood, hopelessness, hopelessness and helplessness, 

symptoms, relationships and loneliness, hostility, and suicidality. Similarly, De Choudhury 

(2013b) found that depressed Twitter users can be distinguished from non-depressed users 

based on later posting times, less frequent posting, greater use of first person pronouns, and 

greater disclosure about symptoms, treatment, and relationships. Furthermore, the 

development of a future depressive episode could be predicted with 70% accuracy. In a large 

sample of Twitter users, rates of depression were consistent with geographical, demographic, 

and seasonal patterns reported by the US Centers for Disease Control and Prevention (CDC) 

(De Choudhury et al. 2013a).

Social media likely will be helpful in identifying behavioral markers that are strongly related 

to cognitive and motivational factors, which are difficult to evaluate through nonverbal 

sensors. For example, language features from Facebook posts have shown modest but 

consistent correlations with Big 5 personality factors (Park et al. 2015). Twitter-derived 

features related to suicidal ideation have been shown to correlate strongly with rates of 

completed suicides from the CDC (Jashinsky et al. 2014). Suicidal ideation has also been 

associated with language used in social media that shows heightened self-attention focus, 

poor linguistic coherence and coordination with the community, reduced social engagement, 

and manifestations of hopelessness, anxiety, impulsiveness, and loneliness (De Choudhury et 

al. 2016). Thus, language generated naturalistically through social media may be a useful 

tool for sensing mental health conditions, and it may be particularly well suited for 

behavioral markers that involve cognitive or motivational states that are beyond the reach of 

nonverbal sensors.

3.2.3. Computers.—Many people spend a considerable amount of their lives at 

computers and many interactions still take place through the mouse and keyboard. A number 

of studies have examined whether mouse movements and keyboard taps can provide 

information about a person’s mental state. An early study explored a broad range of possible 

features derived from mouse movements to predict experimentally induced emotions (Maehr 

2008). Although most features showed no relationships to emotions, motion breaks, or 

discontinuities in movement, were related to overall arousal and discrete emotions, such as 

disgust and anger. Motion breaks resemble the pause features observed in speech that have 

been related to stress, and it is possible that this is a general behavioral pattern when one is 

stressed, observable across multiple channels. Another study explored whether muscle 

tension would change the dynamics of the movement (resonant frequency and damping 

ratio) and, thus, be an observable correlate of stress. Data collected in a laboratory setting 

demonstrated that simple models of arm–hand dynamics applied to mouse motions were 

strongly related to concurrently collected physiological measures of stress and arousal (Sun 
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et al. 2014). This signal remained strong across a variety of mouse tasks, including clicking, 

dragging, and steering.

Similar affective inferences have been made from keyboard activity. One study tracking 

everyday computer use for 1 month among 12 participants found promising accuracy (70–

88%) for self-reported emotion (Epp et al. 2011). Models were trained using a decision-tree 

classifier and features derived from short key sequences, such as duration of and latency 

between keystrokes, to predict common discrete emotional states. Although these results 

were encouraging, classification rates represented only a modest gain over baseline 

classification.

3.2.4. Additional sources of data.—Phones, wearables, social media, and computers 

are far from the only technologies that produce digital traces. Other potential streams of data 

include purchasing behavior, browsing history, or productivity apps, such as calendars and 

email. Furthermore, social context could be better understood by making use of Google 

maps or other repositories of images of environments. Such images can be mined to 

determine the environmental factors that affect mental health and well-being (e.g., the 

amount of green space or number of trees in a neighborhood, or cleanliness or number of 

surfaces tagged with graffiti). We have not discussed these, primarily because they have not 

yet been investigated in relationship to mental health. Another rapidly expanding area is 

ambient intelligence, in which sensors are installed on everyday objects and in places where 

people live to sense people’s movements, gestures, habits, and intentions, and respond to 

needs in a seamless and nonintrusive manner (Acampora et al. 2013). Indeed, such ambient 

systems have the potential to provide visibility into the most intimate spheres of a person’s 

life.

4. METHODS

The field of personal sensing is young, with almost all of the research occurring during the 

past few years. Most of the studies have been conducted by computer science and 

engineering groups using research models that are very different from those commonly used 

in the clinical and behavioral sciences (Intille 2013). As we in the behavioral sciences begin 

work in this area, it is important to understand the fundamental differences between the 

methods used by computer scientists and those with which we are more familiar.

First, engineering and computer science research is typically exploratory in nature, focused 

on solving a problem. In the area of personal sensing, computer scientists tend to collect as 

much data as possible, using data-mining methods to develop classification algorithms. 

Although these analytical methods employ techniques such as cross-validation to avoid 

overfitting in the models, these methods are, nonetheless, quite different from commonly 

used clinical methods, which come from a positivist tradition and are hypothesis driven and 

confirmatory rather than exploratory. Said in a different way, clinical scientists tend to 

design a study to test an answer to a question. Engineers tend to design a study to find an 

answer to a question.
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Second, engineers and computer scientists, in their quest for novel solutions, tend to have a 

higher tolerance for risk and change in their research than do clinical scientists. Clinical 

scientists place a much higher value on eliminating as many threats to internal validity as 

possible, and have a low tolerance for methods that might limit confidence in the results. As 

such, clinical scientists aim to avoid type I errors or spurious positive findings, but engineers 

and computer scientists see type II errors as a greater threat because they may lead to 

overlooking a potentially novel and useful solution.

Finally, engineering and computer science are frequently focused on a proof of principle, but 

clinical scientists value generalizability. It is perhaps only a slight exaggeration to say that 

computer scientists in personal sensing are asking, “Does this work at all?”; clinical 

scientists want to ask, “Will this work for a population under all circumstances?” Thus, most 

of the studies in personal sensing have been small, generally with sample sizes of 7–30 

participants, commonly using convenience samples consisting of college students. (The 

social media studies are the exception, using very large datasets.) It is not uncommon for 

comparatively large percentages of enrolled participants, sometimes on the order of half the 

sample, to be excluded from analyses due to any number of problems in data acquisition or 

data quality. Thus, a clinical scientist might see these as offering little assurance that the 

findings might extend outside of the research context. However, engineers and computer 

scientists have demonstrated that a novel solution may have value.

The main analytical method used for personal sensing is machine learning (Bishop 2006). 

The goal of machine learning is to identify potentially complex relationships among data, 

and to use the identified relationships to make predictions about new data. We review three 

commonly used machine-learning analytical methods: supervised learning, unsupervised 

learning, and semisupervised learning, as well as a new trend in machine learning called 

deep learning.

4.1. Supervised Learning

Supervised learning is a category of algorithms in machine learning that aims to learn a 

function that maps data to labels provided by a set of training samples. A label in machine 

learning refers to that which is being predicted, similar to a dependent variable in statistics. 

In personal sensing, labels are often users’ self-reports. A training sample is a pair consisting 

of a data instance and its label. Like a teacher supervising learning in a classroom, the labels 

supervise the learning process, which occurs through training samples. The learned mapping 

function is then applied to data in the absence of labels to predict their labels. If labels are 

categorical values, the supervised learning algorithms are called classification algorithms, 

and the mapping function is referred to as a classifier. Learning algorithms for continuous 

values are called regression algorithms, and the mapping function is called a regression 

function.

Classification is the most commonly used supervised learning method. For example, activity 

recognition can be formulated as a classification problem in which sensor data are mapped 

to different activity labels, such as walking, running, or sleeping. There are two families of 

classification algorithms: generative algorithms and discriminative algorithms. Generative 

algorithms learn a classifier of the joint probability of the data instances and their labels, and 
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then calculate the posterior probability by applying Bayes’ theorem to predict labels of new 

data instances (Ng & Jordan 2002). Naive Bayes’ models, hidden Markov models, and 

Gaussian mixture models are some of the most commonly used generative algorithms. In 

contrast, discriminative algorithms build a model to describe the boundaries that separate 

different labels. Examples of discriminative algorithms include logistic regression, support 

vector machine, and conditional random fields. Generative and discriminative algorithms 

have unique strengths and weaknesses. In practice, the classification performance of 

discriminative algorithms tends to be better than that of generative algorithms (Bishop & 

Lasserre 2007). However, generative algorithms can identify data that come from a new 

label that is not included in the training samples, for example, identifying the new activities 

of a user (e.g., yoga) that are not included in the training samples.

4.2. Unsupervised Learning

The goal of unsupervised learning is to find hidden structure within the data. In 

unsupervised learning, the training samples do not have labels and contain only data 

instances. There are three families of unsupervised learning algorithms: clustering, anomaly 

detection, and dimensionality reduction, each aiming to identify different structures within 

the data. Clustering algorithms (such as K-means and hierarchical clustering) aim to divide 

data instances into separate clusters such that data in the same cluster are similar but they are 

dissimilar from data in different clusters. Anomaly detection algorithms (such as one-class 

support vector machines) aim to identify the few instances that are very different from the 

majority of the data. Finally, dimensionality reduction algorithms (such as feature selection 

and principal component analysis) aim to remove multicollinearity and retain the most 

important information about the data to avoid the effects of the curse of dimensionality 

(Bishop 2006), thereby improving the generalization performance of machine-learning 

models.

In personal sensing, unsupervised learning algorithms are often used to preprocess sensor 

data before using supervised methods for further processing. For example, clustering 

algorithms have been applied to GPS data (i.e., pairs of latitudes and longitudes) to create a 

heat map and to find points of interests to the user (e.g., home, workplace) (Saeb et al. 

2015). Anomaly detection algorithms have been used to detect changes in the mental states 

of bipolar patients so that just-in-time interventions can be delivered (Grünerbl et al. 2014). 

Finally, dimensionality reduction algorithms have been applied to identify the most 

important behavioral markers to best predict the mental states of depressive patients (Saeb et 

al. 2015).

4.3. Semisupervised Learning

As its name implies, semisupervised learning is in between supervised and unsupervised 

learning. It uses training samples that contain both labeled and unlabeled data to achieve 

better performance than could be achieved by simply using supervised learning trained on 

the labeled data (Zhu & Goldberg 2009). Semisupervised learning is practical for personal 

sensing, in which there is a large ratio of unlabeled to labeled data. For example, it would be 

burdensome, expensive, and time-consuming, if not impossible, to label every minute of 

GPS or accelerometry data collected throughout a day (Chapelle et al. 2006). 
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Semisupervised learning addresses this problem by leveraging the intrinsic structure of the 

unlabeled data taken together with information provided by the labeled data.

4.4. Active Learning

Active learning is a special case of semisupervised learning. Active learning algorithms 

query a user to provide additional labels when the algorithm detects that a user’s behavior or 

state deviates from what it has been trained to before and, thus, the algorithm is uncertain 

how to classify it. Therefore, in contrast to supervised learning models, which are static and 

cannot be updated after the training period, active learning algorithms are able to update 

users’ models after getting additional labels. In this way, they can provide evolving models 

that adapt to users’ changing behaviors and states.

Active learning is especially useful in generating personalized models from group models. 

Group models are algorithms that, once developed, are intended to run passively, with no 

input from the user (much like activity-tracking devices). Personalized models require user 

labeling to create a model that is specific to the individual. Personalized models tend to 

perform better than group models, but they incur labeling burden. However, this labeling 

burden may be somewhat mitigated with hybrid models that are initiated with group models 

and optimized through user labeling via active learning. In particular, active learning can 

help derive personalized models with less labeling, as the algorithm requests labels only 

when they are needed (Settles 2010).

4.5. Deep Learning

During the past decade, deep learning, a new trend in machine learning, has emerged 

(Schmidhuber 2015). Methods developed based on deep learning have dramatically 

improved the state of the art, and have beaten other machine-learning methods in a wide 

range of applications, such as identifying objects in images (Krizhevsky et al. 2012), 

recognizing speech (Hinton et al. 2012), translating languages (Sutskever et al. 2014), 

understanding the genetic determinants of diseases (Xiong et al. 2015), and predicting health 

status using electronic health records (Miotto et al. 2016).

The success of deep learning is rooted in a revolutionary way of extracting features from 

data. It is well understood that the performance of machine-learning methods largely 

depends on the features chosen (Bengio et al. 2013), which traditionally has required 

considerable human effort and domain knowledge. Although these hand-engineered features 

exhibit great performance in small datasets, they do not generalize well to challenging 

problems involving large-scale datasets (LeCun et al. 2015). In contrast, deep learning 

adopts a data-driven approach in which a general-purpose procedure automatically learns 

features from data, with no prior domain knowledge needed. These self-learned features are 

organized in a multilevel hierarchy in which higher-level features are defined from lower-

level ones, similar to the layered, hierarchical sensemaking framework illustrated in Figure 

1.

Deep learning may be vulnerable to overfitting at smaller sample sizes, thus often making 

traditional machine-learning methods a better fit. However, once an adequate sample size 

has been obtained, deep learning exhibits superior capability at capturing the intricate 
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characteristics of data that traditional machine-learning methods fail to capture. Therefore, 

deep learning achieves much better performance than other methods as the sample size 

increases. Furthermore, although self-learned, multilevel features generated purely by 

machines may not be well understood by humans, it is possible that these features may 

uncover new understanding about the constructs we are measuring, but may do so by 

increasing the complexity beyond human understanding.

5. CURRENT CHALLENGES IN PERSONAL SENSING

5.1. Study Quality and Reproducibility

A growing number of studies appears to replicate the findings of other studies (albeit using 

small, narrow samples) using machine-learning methods that estimate behavioral markers, 

such as mood, stress (LiKamWa et al. 2013, Ma et al. 2012, Madan et al. 2010), and sleep 

(Abdullah et al. 2014, Chen et al. 2013, Min et al. 2014), by using a combination of phone 

sensor data and features. However, because computer science and engineering tend to value 

technical novelty over generalizability, studies that appear to address the same behavioral 

marker usually use different sensors, different sets of features, different methods of 

measuring the behavioral markers, and varying research designs (e.g., giving people phones 

versus having them use their own, studying them for varying periods of time, or having 

varying numbers of participants excluded). The machine-learning methods used vary, and 

the results or weightings, particularly for group models, are not necessarily comparable 

across studies. In addition, it is unclear how many attempts have not been published due to 

failure. The one replication study we are aware of that used nearly identical methods to the 

original research was unable to reproduce the very strong findings in the original paper on 

prediction of mood (Asselbergs et al. 2016). Thus, studies examining the use of machine-

learning methods to estimate behavioral markers indicate that it is feasible under narrow 

conditions; however, the reliability needed for clinical use has not been demonstrated.

Furthermore, the availability of easy-to-use tools for machine learning is expanding faster 

than the expertise, resulting in a growing number of publications using questionable 

methods. A recent review of papers that used sensor data to detect disease states found that 

half used inappropriate cross-validation techniques, which greatly overestimated prediction 

accuracy (Saeb et al. 2016). Furthermore, papers that used these inappropriate techniques 

were cited just as often as papers using proper techniques, suggesting that poor-quality 

information is having the same impact as high-quality information. Although the papers 

cited in this review did not evidence these types of methodological problems, it would 

behoove interested scientists to explore the field with a healthy mix of excitement and 

skepticism.

5.2. The Curse of Variability

As we move from narrow proof-of-concept studies to testing in broader populations, the 

sources of variability expand enormously, emanating from a variety of sources, including 

data types, characteristics of people, and different environments. Sensors in smartphones 

vary from manufacturer to manufacturer, model to model, and version to version, affecting 

the data collected. People’s characteristics might impact the relationship between constructs 
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or how they use the measurement devices. For example, age may be related to the number of 

social contacts, with older people having fewer contacts and wanting less contact, but it may 

also be related to how social activity is measured with a phone (e.g., older people are more 

likely to call and less likely to send text messages than younger people). Where people carry 

their smartphone (pocket, handbag, backpack) can profoundly affect the sensor data. 

Environment and seasonality represent additional important dimensions. For example, GPS 

and accelerometer data in winter will look different in Minneapolis relative to Miami.

When dimensionality is high, individual small studies are unlikely to be adequately powered 

to create reliable and generalizable classifiers for use in larger populations. Efforts such as 

the Precision Medicine Initiative (Collins & Varmus 2015), which plans to enroll more than 

1,000,000 people, may provide such opportunities, but it is unclear what data will be 

collected and how. An approach used in other fields that have similar problems, such as 

genomics, is to pool data across studies. A challenge in pooling data is to find a scientifically 

valid balance between identifying uniform variables, which makes data pooling 

straightforward (e.g., using the exact same questions) but can be hard to implement, and 

using statistical methods to manage heterogeneity by providing similar, if not identical, data 

points (Fortier et al. 2011). The field of personal sensing in mental health is still young and 

small enough that some agreement on a core set of clinical assessment methods (EMA or 

self-report) may be possible, thereby providing uniform anchors to which the broad range of 

sensor data could be tied as it evolves and changes over time and across research projects.

5.3. The Unknown Expiration Date

Personal sensing algorithms will likely have shelf lives, which may be relatively short. As 

devices and sensors are updated, the associated raw data will change over time. Additionally, 

the way we use these devices and platforms will change as well. Just in the past few years, 

smartphone use has changed dramatically. We spend more time reading and watching 

movies on our phones, and communications have shifted away from calls and SMS texts to 

messaging apps and social media. Social media are becoming increasingly more visual 

relative to being text based, and interfaces and notification methods are changing when, how, 

and what people write. As people change how they use the devices that provide the data, 

machine-learning algorithms will become increasingly inaccurate.

Google Flu Trends offers a high-profile, cautionary tale. Launched in 2008, it mined flu-

related search terms, producing results that closely matched the CDC’s surveillance data and 

provided the information more rapidly (Butler 2013). The system was rolled out to 29 

countries and extended to other diseases. It performed remarkably well until it stopped 

working. How people conducted searches changed over time, rendering the algorithms 

ineffective. The changes in people’s search strategies were driven at least in part by 

Google’s own efforts to optimize search algorithms, which also altered the search 

recommendations provided to users, thus changing people’s search behaviors and, 

ultimately, undermining Google Flu Trends’ models.
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5.4. Balancing Accuracy and Invisibility

A common goal in personal sensing is to make acquiring data and predicting behavioral 

markers as unobtrusive or invisible to the user as possible. On the one hand, requiring user 

actions will likely result in abandonment of the tool by some percentage of users. On the 

other hand, personalized, active-learning models, which require user labeling, perform better 

than static group models. Active-learning models also allow for recalibration over time, 

potentially eliminating the shelf-life problem.

Thus, users who provide a little bit of data would enjoy substantially higher predictive 

accuracy from the models. Rather than thinking of a sensing platform as a technology that 

autonomously creates information, it may be more useful to think of the sensing platform as 

a social machine in which the quality of prediction reflects a shared endeavor. The ability to 

accurately predict a marker or phenotype depends upon using data, passively and actively 

collected, from many other individuals who have come before. Returning labeled data back 

into the system can improve the accuracy for that individual user, as well as for all 

subsequent users, thus harnessing the wisdom of the crowd while contributing to the crowd.

5.5. The Certainty of Uncertainty

The output of any personal sensing system, even under the best of circumstances, will 

always have some degree of error and uncertainty. This error is always user-facing, affecting 

the quality of the experience. This raises several questions that can and should be considered 

from the early stages of research. First, how much uncertainty is acceptable, and how much 

accuracy is good enough (Lim & Dey 2011)? For example, if a system were designed to 

detect likely depression among general internal medicine patients, how many false positives 

would be acceptable to clinic staff? What levels of false negatives would be acceptable to a 

care system or to patients, and how could the effect of false negatives be mitigated? In 

addition, error can be shifted between false positives and false negatives, depending on 

where it can best be managed and produce the least harm. Or perhaps a metric can be used in 

a way that minimizes the effect of inaccuracy. For example, step counts from activity 

trackers may be inaccurate; however, to the degree that they are consistent within user, they 

can be used for day-to-day comparisons. Early stage research can explore the understanding 

and acceptability of error and uncertainty and how best to mitigate it (Kay et al. 2015).

5.6. Privacy, Ethics, and the Naked Truth

The use of passively collected digital data raises many issues of privacy and security, about 

which there are disagreements within the community of researchers, and there is also a lack 

of guidelines (Shilton & Sayles 2016). We review some general themes and topics that are 

most relevant to leveraging passively collected data for mental health purposes.

The principle of privacy refers to ensuring that people have choice and control over the use 

of their own data and, some would argue, that they understand those choices (Shilton 2009). 

Security refers to the protections put in place to ensure that people’s choices are followed. 

People’s agreement to share their data usually revolves around two key concepts: trust and 

value. Trust refers to the notion that the data will be used appropriately, given a person’s 
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wishes and expectations. Value refers to the benefit that is accrued to the user or society 

based on the use of data.

An important aspect of trust has traditionally been the severance of the identity of the 

individual from the data provided from that individual, or de-identification. This is 

challenging because even a few pieces of information, such as sex, zip code, and birthdate, 

can identify most of the US population (Sweeney 2000). The data collected from devices 

may pose even greater risks of identification. GPS traces are the most personally identifying 

type of data; with only 4 spatiotemporal points, 95% of individuals can be identified (de 

Montjoye et al. 2013). Various methods can help obfuscate location data; however, none of 

these successfully preserves privacy and retains the usefulness of the data (Brush et al. 

2010).

Privacy management needs to give participants as much control over their data as possible 

(Shilton 2009). Participants should be informed what the data might reveal about them, for 

how long the data will be used, who will be using it, and why. Data management tools can 

be designed to help people manage their data, including the abilities to define acceptable 

use, limit data access, delete data, or revoke consent altogether.

Encouraging greater openness, more transparency, and the development of better methods to 

share data is desirable for several reasons, including improving the quality of the scientific 

literature, providing opportunities to replicate findings, and creating tools that are valid, 

reliable, and generalizable. As standards and best practices evolve to ensure participants’ 

privacy, the field will be best served if those standards place the participant at the center, 

such that trust can be established by providing clear understanding, choice, and control.

6. POTENTIAL APPLICATIONS OF PERSONAL SENSING

6.1. Integration into Existing Models of Care

A personal mental-health sensing platform with sufficient accuracy could enhance mental 

health care by helping identify people in need of treatment, accelerating access to treatment, 

and monitoring functioning during or after treatment. The inability to identify patients in 

need of treatment is a major failure point in our health-care system. In any given year, nearly 

60% of all people with a mental health condition receive no treatment. Our health-care 

system relies almost entirely on people with mental health conditions presenting themselves 

for treatment. Thus, accessing care in a timely manner relies primarily on the patient, whose 

condition may involve a loss of motivation, stigmatization, a sense of hopelessness and 

helplessness, and, in some cases, impaired judgment, all of which may interfere with seeking 

help.

Although personal mental-health sensing holds great promise for monitoring at-risk 

populations to deliver care more rapidly and effectively, developing accurate algorithms 

alone will not solve these problems. This will require user-centric approaches to privacy and 

control, as well as providing sufficient value to all end users (patients and providers) to 

promote use. Such systems will also likely present situations for which there are no care 

guidelines. For example, if a mental-health sensing system forecasts that a bipolar patient 
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has a high likelihood of having a relapse during the next 2 weeks, would clinic staff know 

what to do (Mayora et al. 2013)? Thus, the ability to detect potential mental health problems 

opens enormous potential to improve access to care, but the solution will require 

considerable clinical and design research beyond the personal sensing described in this 

article.

6.2. Behavioral Intervention Technologies

Behavioral intervention technologies for mental health, such as websites or mobile apps, 

consist largely of psychoeducational content (as text or video) and interactive tools. The 

development of sensing capacity for health behaviors, such as physical activity or sleep, has 

resulted in apps that are less reliant on patients to log activities, presumably making apps 

easier to use and, therefore, more effective. As attractive as that may sound, here too, 

previous efforts have demonstrated many unknowns beyond personal sensing (Burns et al. 

2011). Although research has discovered a lot about behavioral and environmental factors 

that contribute to mental illness, it has produced little granular knowledge about the wishes, 

goals, challenges, and aspirations of people on a moment-to-moment, hour-to-hour basis. 

This information is critical to designing the next generation of intervention technologies to 

fit into the fabric of people’s daily lives. Applications have tended to be designed using a 

top-down approach, trying to get people to do what we think will help them. But the 

technologies that are adopted and widely used are commonly those that make some aspect of 

people’s lives easier, helping people do or achieve something they are motivated to do. 

Success will be more likely if what is sensed, and how sensed data are used, speak to the 

user’s personal goals, thus integrating treatment aims with making their goals and tasks 

easier on a daily basis, and thereby fitting treatment activities into people’s common patterns 

and actions.

6.3. Epidemiology

Databases with genomic, epigenetic and other biological data are being integrated into 

clinical databases to explore genetic influences on disease. Although there is growing 

recognition that behavior is a critical factor, behavioral data have traditionally been collected 

using self-report measures, which provide only a periodic subjective snapshot. Personal 

sensing platforms can provide a continuous stream of objective data that can be used to 

explore interactions among behavioral markers, genetic and biological factors, and disorders.

7. SUMMARY AND CONCLUSIONS

A growing cloud of digital exhaust is emitted from our daily activities and actions. Some of 

these data are produced intentionally, such as through the use of wearables. But much of the 

data are a by-product of our daily actions captured through our smartphones, computers, 

purchasing, and the increasingly sensor-enabled objects in our lives. The promise for 

research into mental health, as well as for clinical care, is enormous. But the challenges are 

also large and manifold. Although the feasibility of personal sensing for mental health has 

been demonstrated, enormous challenges remain to move from proof of concept to tools that 

are useful in broader populations. The ultimate success of personal sensing in mental health 

will likely depend on the continued engagement of users who supply both passively 
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collected data and some measure of active labeling. This, we believe, will require an 

infrastructure that is a social machine, sufficiently engaging to users to prevent 

obsolescence. Creating trust in these systems will require a recognition of the primacy of the 

user, instantiated by enabling people to understand, control, and own their data. Although 

the tasks are considerable, the potential benefits are also game-changing. The ability to 

continuously identify behaviors related to mental health has the potential to transform the 

delivery of care, speeding recognition of people who are at risk or in need of treatment, and 

ushering in a new generation of highly personalized, contextualized, dynamic mobile health 

(or mHealth) tools that can listen rather than ask, and that seamlessly interact, learn, and 

grow with users.
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Ubiquitous sensing:

use of networked sensors weaved into everyday life to capture information about humans, 

environments, and their interactions anytime and everywhere
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Sensor:

a device that measures a physical property and produces a corresponding output
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Wearable:

a computing technology designed to be worn; many contain embedded sensors for 

specific purposes, most commonly for monitoring health or fitness
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Behavioral marker:

behaviors, thoughts, feelings, traits, or states identified using personal sensing
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Feature:

a measureable property of a phenomenon, which is proximal to, and constructed from, 

sensor data

Mohr et al. Page 30

Annu Rev Clin Psychol. Author manuscript; available in PMC 2019 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Machine learning:

a subdiscipline of artificial intelligence that builds algorithms that have the ability to learn 

without explicitly programmed instructions
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Social media:

technological tools that allow people, companies, and organizations to share user-

generated information and connect with other users through networks
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Global positioning system (GPS):

sometimes refers to location services that fuse GPS with other signals, such as Wi-Fi, to 

obtain greater accuracy with less battery drain
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Supervised learning:

a category of machine learning that uses labeled data provided by a set of training 

samples to construct an algorithm
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Unsupervised learning:

a category of machine learning that attempts to uncover underlying structure in data and 

does not require labeled data
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Semisupervised learning:

a category of machine learning that combines aspects of supervised and unsupervised 

methods by using samples with both labeled and unlabeled data
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Label:

in machine learning, a label refers to that which is being predicted, similar to a dependent 

variable in statistics
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Curse of dimensionality:

as the number of dimensions expands, the data in the space become sparse, which 

prevents machine-learning methods from being efficient
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Active learning:

subset of semisupervised learning; an algorithm queries a user for additional labels when 

it is uncertain how to classify a set of data
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SUMMARY POINTS

1. Because we use sensors in our everyday lives, personal sensing offers the 

potential to measure human behavior continuously, objectively, and with 

minimal effort from the user.

2. Translating raw sensor data into knowledge can be achieved using a layered, 

hierarchical approach in which sensor data are converted into features, and 

features are combined to estimate behaviors, moods, and clinical states.

3. A growing number of studies have found that phone sensor data (e.g., from 

the GPS, accelerometer, light or microphone) can, using machine learning, 

provide markers of sleep (e.g., bedtime or waketime, duration), social context 

(e.g., who is in the vicinity, relationship to in-phone contacts), mood, and 

stress.

4. Depression and mood states in bipolar disorder have been estimated using a 

variety of phone sensor data. GPS features measuring entropy and the 

circadian rhythm of movement have been correlated with depression.

5. Posts on social media (e.g., on Facebook or Twitter) can identify people who 

are depressed or likely to become depressed.

6. Although the work on phone sensor data has been promising, most studies 

have been small, on the order of 7–30 participants, who frequently are college 

students; there is little evidence to support replicability.

7. Machine-learning methods vary, some relying on user-generated labels and 

others uncovering patterns in unlabeled data. Labeling often improves and 

helps algorithms adapt to new circumstances. Thus, rather than an 

autonomous prediction machine, it may be more useful to think of a mental-

health sensing platform as a social machine in which the quality of prediction 

is ensured through a shared endeavor.

8. Research suggests that it is feasible to obtain data from personal sensing using 

everyday sensors. However, numerous challenges must be overcome before it 

is viable for clinical deployment.
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FUTURE ISSUES

1. Because of the amount of variability coming from differences in hardware, 

device-usage patterns, lifestyle, and the environment, personal sensing 

platforms will likely require a large user base to have widespread 

applicability.

2. Some data, such as those generated from GPS tracking, are impossible to de-

identify while retaining utility. Thus, creating trust in these systems among 

participants will require a recognition of the primacy of the user, instantiated 

by enabling people to understand, control, and own their data.

3. Personal sensing offers the potential to develop a new class of intervention 

technologies that can reduce users’ burden while creating highly tailored and 

contextualized interactions.

4. No sensing system will be 100% accurate and, thus, researchers, developers, 

and users must come to consensus about how much error is acceptable and 

how to better explain and display error to relevant stakeholders.

5. Improving systems will likely require some action on the part of users, and 

discovering ways to ensure that actions are directly associated with benefits 

will likely create more engaging and empowering systems.

6. Personal sensing can help improve screening for disorders and access to 

treatment, but it will require making advances in infrastructure and ensuring 

that it is integrated into the workflow, as well as making improvements in the 

underlying technology and knowledge, and improving algorithmic accuracy.

7. The field of personal sensing will likely continue to experience a tension 

between what is possible and what is feasible, which is related to a trade-off 

that occurs between small proof-of-concept studies demonstrating novelty and 

large studies demonstrating robustness and generalizability.

8. Integrating personal sensing data with clinical and genomic databases will 

offer the opportunity to deepen our understanding of the relationship between 

behavior and gene × behavior interactions on health, wellness, and disease.
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Figure 1. 
Example of a layered, hierarchical sensemaking framework. Green boxes at the bottom of 

the figure represent inputs to the sensing platform. Yellow boxes represent features. Blue 

boxes represent high-level behavioral markers. Abbreviations: GPS, global positioning 

system; SMS, short message service.
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