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I thank the Editor for the invitation to comment on the recent paper by Craigmile and Guttorp (hereafter CG21) regarding
a precision-weighted estimate of the global mean temperature anomaly time series.

Proper statistical modeling of global environmental data is challenging, due to both imperfect underlying data and the
nonstationary covariance structure on a sphere. Weather station-based observations are nonrandomly distributed, both
in terms of their surrounding environment (e.g., urban vs. rural) and their specific location in space, with large swaths
of Africa and South America, as well as high-latitude locations, containing few if any weather stations that contribute
to global land-based databases like the Global Historical Climatology Network (Menne et al., 2018). Similarly, ocean
temperature data have historically been collected primarily along shipping routes, or were available at fixed moorings.
Further, the temperature measurements themselves can contain artifacts unrelated to climate: weather stations can be
moved from one location to another and/or the underlying land cover can change; temperature data are often recorded
with different rounding conventions (Rhines et al., 2015); and different protocols across ships can lead to country-specific
biases in sea surface temperature measurements (Chan et al., 2019). While many of these data issues have been corrected
for monthly temperature data, others may remain. Finally, as noted above, the covariance structure of temperature is not
expected to be stationary or isotropic across the globe, and performing inference on a global dataset with thousands of
observations can become computationally challenging.

Historically, major governmental organizations have produced time series of global mean temperature anomalies
using a wide range of statistical approaches, from simple bin averages (HadCRUT, although the latest version, HadCRUT5,
uses geostatistical methods to extrapolate to data-sparse regions; Morice et al., 2021) to assuming a globally fixed “radius
of influence” of 1200 km for each station, leading to substantial spatial smoothing (GISS; Hansen et al., 2010). More
recently, Berkeley Earth, a nongovernmental organization, began producing its own estimates of global mean temperature
anomalies using Gaussian process regression (Rohde & Hausfather, 2020), with a particular focus on whether issues with
station data (e.g., urbanization around stations) were influencing trends in global mean temperature anomalies, which
they did not find evidence for (Wickham et al., 2013). Perhaps surprisingly, given the wide range of statistical methods
and, in some cases, use of slightly different underlying datasets, estimates of global mean temperature anomalies from
different organizations are astoundingly similar, as is shown in figure 1 of CG21.

The contribution of CG21 is to take a more quantitative look at the shared structure and differences between five
different commonly used global mean temperature anomaly datasets: Berkeley (Rohde & Hausfather, 2020), HadCRUT5
(Morice et al., 2021), NOAA (Vose et al., 2012), GISS (Hansen et al., 2010), and JMA (Ishihara, 2006). The authors propose
a hierarchical Bayesian model that describes each global mean temperature anomaly time series as the sum of the desired
latent global mean temperature anomaly time series (Yt), and two noise terms (𝛿j,t + 𝜖j,t), where j indexes the product and
t indexes time, in years. The latent global mean temperature anomaly is itself a function of a slowly varying mean and a
stationary Gaussian AR(4) process. The variance of the second noise term, 𝜖j,t, is taken from the uncertainty measurement
provided in each dataset, whereas 𝛿j,t (called the discrepancy term) is inferred in the modeling process.

What do we learn from the model? In my view, given the strongly shared signal between the raw value of each data
product, the most interesting insights are in the error terms. It is encouraging to see the inferred positive correlations
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between the 𝜖j,t values across most of the products, excepting JMA, reflecting the shared sources of raw data. Of greater
interest is the deviation term. Just as each data product uses quite different models to create their global mean temper-
ature anomaly estimates, they also take different approaches in modeling the errors. As shown in figure 1b in CG21,
three products (JMA, Berkeley, and GISS) have reasonably similar estimates of the uncertainty throughout their records,
whereas NOAA provides a much larger estimate and HadCRUT5 suggests relatively high uncertainty earlier in the period
with a large peak during World War II, but relatively small error by the end of the record. These differences could properly
reflect different uncertainties for each product, and/or they could reflect different approaches to measuring uncertainty;
the deviation term allows for accounting of differences within each data product that are not captured by these provided
error estimates. While the 95% credible intervals of the discrepancy terms are small (generally ±0.1◦C) compared to the
global mean temperature anomaly, they can be comparable or larger than the standard error (as measured by 2𝜎 for com-
parison), indicating the potential importance of accounting for additional uncertainties specific to each dataset. That said,
a proper interpretation of the deviation term is challenging without additional information about its relationship to 𝜖j,t.
For example, the 95% credible interval for the NOAA dataset is notably larger than the others, which the authors inter-
pret as indicating that the provided standard errors in NOAA are too large, or the others are too small. This comment
suggests that the authors find that 𝜖NOAA,t and 𝛿NOAA,t are anticorrelated, in that the larger deviation term counteracts the
variability from 𝜖NOAA,t, although this is not mentioned in the text. In order to better understand the full magnitude of the
observational error, then, it would be helpful to present additional analyses of the summed 𝛿j,t + 𝜖j,t term.

It is interesting to note that some of the largest posterior mean discrepancies are in the recent period when data
coverage is reasonably good, with HadCRUT5 and GISS generally exhibiting positive discrepancies whereas those from
JMA are likely to be negative. The underestimate of global mean temperature anomalies in JMA, at least as compared
to the inferred latent time series and the other datasets, is almost certainly related to treatment of data in the Arctic.
The Arctic, although small in area, has been warming at a rapid pace compared to the rest of the globe, so can have an
outsize influence on estimates of global mean temperature anomalies. As first highlighted in Cowtan and Way (2014)
with respect to HadCRUT4 (the prior version of the HadCRUT dataset), calculating a global mean with missing data in
the Arctic will bias global mean temperature anomalies to be low, because the true mean value across the Arctic cannot
be represented by the mean across the remainder of the globe. The Berkeley, HadCRUT5, NOAA, and GISS datasets all
use various statistical methods to infer Arctic data, whereas JMA continues to leave out areas with few observations, as
was done in HadCRUT4. The authors argue that “removing JMA from [the AR6 report] can not be justified on statistical
grounds,” but it does seem justifiable from the perspective that a known issue (exclusion of Arctic data) leads to a negative
bias.

As a climate scientist with a foot in statistics, I will conclude with some thoughts on how to make analyses such as
these more accessible to the climate science community, if desired. In general, it can be helpful if parameters inferred in
the statistical modeling process can also have a valid scientific interpretation. For example, the authors divide the latent
global mean temperature anomaly into a slowly varying mean term,𝜇t, and an autocorrelated residual component, 𝜈t. This
is potentially analogous to a common goal in climate science of dividing an observed time series or spatiotemporal field
into a “climate change signal” and “internal variability noise,” where the latter is driven by large-scale modes of climate
variability, such as the El Niño-Southern Oscillation (Haustein et al., 2019). However, it is unlikely that the decomposition
proposed by the authors also reaches this scientific goal. As noted in the final sentence of the paper, an appealing way to
do so is to draw on information from climate models. In particular, single-model initial condition large ensembles (Deser
et al., 2020a) and single-forcing simulations (e.g., Deser, Phillips, et al., 2020) can allow for clear separation of the climate
change signal from internal variability, and could be used as additional information in developing the model for the
latent global temperature anomaly. Relatedly, it should be noted that the term “natural variability,” while used in CG21
to represent observational errors, almost always refers to the internal, dynamic variability within the climate system to
climate scientists.

In addition, many climate scientists remain only minimally familiar with Bayesian methods, so it could be advanta-
geous to “unpack” some of the methodological choices and results. In particular, describing the logic behind the choice
of priors, and showing single samples from the MCMC sampler rather than only summary statistics would be helpful.
The latter approach would help make the results more concrete for those unfamiliar with sampling methods, and also
address prior concerns regarding missing information about the correlation structure between the two error terms.

In sum, the Bayesian hierarchical model for combining global mean temperature anomaly estimates from different
research groups confirms the strength of the shared signal (the underlying latent global temperature time series), despite
the use of a range of different methods across groups. Future work could clarify the behavior of the full error term, and
make stronger links to scientific interpretations of each term in the model.
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