
UC Berkeley
UC Berkeley Previously Published Works

Title
Investment, capital stock, and replacement cost of assets when economic depreciation is 
non-geometric

Permalink
https://escholarship.org/uc/item/93d5d1qn

Journal
Journal of Financial Economics, 142(3)

ISSN
0304-405X

Authors
Livdan, Dmitry
Nezlobin, Alexander

Publication Date
2021-12-01

DOI
10.1016/j.jfineco.2021.05.021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/93d5d1qn
https://escholarship.org
http://www.cdlib.org/


Investment, Capital Stock, and Replacement Cost of Assets when

Economic Depreciation is Non-Geometric?

Dmitry Livdana, Alexander Nezlobinb,∗

aWalter A. Haas School of Business, University of California, Berkeley, S545 Student Services Bldg.,
#1900, Berkeley, CA 94720, USA

bLondon School of Economics and Political Science, Houghton St., London, WC2A 2AE, UK

Abstract

This paper extends the Q-theory of investment to capital goods with arbitrary efficiency
profiles. When efficiency is non-geometric, the firm’s capital stock and the replacement cost
of its assets are fundamentally different aggregates of the firm’s investment history. If capital
goods have constant efficiency over a finite useful life, simple proxies are readily available
for both the replacement cost of assets in place and capital stock. Under this assumption,
we decompose the total investment rate along two dimensions: into its net and replacement
components, and into its cash and non-cash components. We show these components exhibit
significantly different economic determinants and behavior.
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1. Introduction

Traditional Q-theoretic models of investment rely on the assumption that the economic
depreciation of capital goods is either geometric (in discrete-time) or exponential (in con-
tinuous time); see, for example, Hayashi (1982). This assumption is analytically convenient
because it leads to a homogeneous capital stock whose future economic efficiency is indepen-
dent of its current vintage composition. Although geometric efficiency may be descriptive
for some assets, its general applicability has long been challenged on both empirical and
theoretical grounds (see, e.g., Feldstein and Rothschild, 1974; Ramey and Shapiro, 2001).
Moreover, firm-level data on capital goods, such as property, plant, and equipment (PP&E),
are prepared in practice almost exclusively under the assumption that the capital goods’
efficiency is constant over a finite useful life. The latter assumption also underlies one of the
most commonly used empirical procedures for estimating Tobin’s Q suggested by Lewellen
and Badrinath (1997). However, from a theoretical perspective, whether and how the insights
from models with geometric efficiency carry over to other settings is unclear. In this paper,
we fill this gap by extending the Q-theory of investment to capital goods with arbitrary
efficiency profiles.

In traditional Q-theory, a firm’s current productive capacity, that is, its capital stock, is
the only aggregate of its investment history that is relevant for future investment decisions.
This property is an artifact of the geometric-depreciation assumption: because the productive
capacity of capital goods of all vintages declines at the same rate, the aggregate current
capacity of assets in place fully determines how much capacity these assets will provide in all
future periods. To see why this result does not hold outside the geometric setting, consider a
firm investing in capital goods with constant efficiency over a finite useful life. The economics
literature often refers to such an efficiency pattern as the one-hoss-shay.1 Although the same
productive capacity today can be generated by either old or new capital goods, the firm will
need to replace its existing assets sooner if they are old. Consequently, all future investment
decisions of such a firm depend not only on its current capital stock but also on the vintage
composition of its assets in place.

Our model of capital goods is based on Rogerson (2008), who provides a simple closed-
form expression for the user cost of capital for assets with arbitrary efficiency profiles. Con-
sistent with much of the earlier literature, the value of the firm in our model is equal to the
sum of the replacement cost of its assets in place and the present value of the expected fu-
ture economic profits (see, e.g., Lindenberg and Ross, 1981; Salinger, 1984; Abel and Eberly,
2011; and Nezlobin, 2012). However, under non-geometric efficiency, the replacement cost of
the firm’s assets in place is not equal to the value of its capital stock – they are two different
aggregates of the firm’s investment history. We formally define the firm’s capital stock as the
amount that the firm would have to pay today to replicate its current productive capacity
with new capital goods. By contrast, the replacement cost of assets in place reflects the age
composition of the firm’s capital goods: it is equal to the value of the capital goods’ current
and future productive capacity in a hypothetical competitive rental market. Whereas capital

1The term originates from a 19th-century poem by Oliver Wendell Holmes that tells a story of a wonderful
one-hoss-shay that “ran a hundred years to a day” and went to pieces all at once in the Great Lisbon
earthquake.
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stock is the appropriate measure of the firm’s current scale of operation, the replacement
cost of assets in place effectively measures the prepaid future capital costs.

Our model generates particularly crisp empirical predictions when the efficiency of cap-
ital goods follows the one-hoss-shay pattern. In this special case, we show both the firm’s
effective capital stock and the replacement cost of its assets can be readily measured from
the information reported in its financial statements. Furthermore, the ratio of these two
quantities, which we label RC/K, serves as one of the main determinants of the future
investment rates. To estimate firm-level total investment, we adopt a variant of the mea-
sure developed in Lewellen and Badrinath (1997) that relies on the information reported
in two consecutive balance sheets. The main advantage of this measure over the widely
used capital expenditures (CapEx) numbers reported in firms’ cash-flow statements is that
it accounts for capital goods acquired with non-cash transactions, such as capital leases
and business combinations. Armed with a total investment measure, we then decompose it
along two alternative dimensions: into its cash and non-cash components, and the net- and
replacement-investment components. Whereas the former decomposition holds for arbitrary
efficiency patterns, the latter one relies on the one-hoss-shay efficiency assumption. This
assumption once again allows us to construct simple proxies for both net and replacement
investment that rely only on two periods of data and do not require a perpetual inventory
procedure.

Outside the case of geometric efficiency, both net and replacement-investment rates con-
tribute to the variation in the firm’s total-investment rate. The firm’s replacement investment
is the amount the firm needs to spend today to maintain its current capital stock for another
period. As such, replacement investment does not depend on the current conditions in the
firm’s output product markets and is determined solely by the vintage composition of its as-
sets in place. The firm’s net investment is the amount that the firm spends on capital goods
in excess of the replacement investment, that is, to grow its capital stock. In our model,
the firm’s net-investment rate is determined solely by the expected growth in demand for its
output and is unaffected by the vintage composition of its assets in place.

We show that in the one-hoss-shay setting, the net- and replacement-investment rates
have fundamentally different economic behavior and determinants. For instance, because
net investment is primarily driven by growth in the firm’s product markets, it should be
positively associated with Q and RC/K. On the other hand, the replacement-investment rate
is shown to be negatively associated with the realized past growth rates and RC/K. This
effect obtains because faster-growing firms have, on average, newer assets and a higher RC/K
ratio. Under geometric efficiency, asset newness has no effect on the future replacement-
investment rates; yet under the one-hoss-shay assumption, newer capital goods lead to a
lower future replacement rate.

To validate our empirical measures of net and replacement investment, we first study
their explanatory power for future sales growth. As expected, the variation in the future
sales growth is primarily explained by the variation in the net-investment rate, and the
relation between the two retains economic and statistical significance after controlling for
a host of other explanatory variables. This finding supports the notion that our proxy for
the net-investment rate indeed captures the growth-related component of total investment.
Next, we find the sensitivity of total investment to Q and cash flow is almost entirely due to
the net-investment component. In most specifications, the replacement-investment rate does
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not have economically significant relations with these two variables. In addition, consistent
with our theory, the net-investment rate is positively associated with RC/K.

The main determinants of replacement investment are the two variables that we label
vintage-capital proxies: RC/K and the estimated reciprocal of the useful life of capital
goods, T−1. In agreement with our theoretical predictions, replacement investment is posi-
tively associated with T−1 and negatively with RC/K. Whereas the latter variable exhibits
strong explanatory power for both future net- and replacement-investment rates, it is less
significant in regressions of the total-investment rate because the relations with the individ-
ual components are of opposite signs. Still, however, in most of our multivariate analyses,
vintage-capital proxies have higher economic and statistical significance than cash flow and
comparable statistical significance to that of Q and lagged investment rates.

Our second decomposition of total investment – into its cash and non-cash components
– demonstrates the importance of non-cash investment, which is largely overlooked in the
existing literature. For instance, we find total investment is almost twice as sensitive to Q as
its cash component. In fact, in all specifications, the net-investment component alone is more
sensitive to Q and cash flow than the cash component. The sensitivity of total investment
to cash flow is highly dependent on the estimation procedure. When we use plain OLS
estimates, the sensitivity of total investment to cash flow exceed that of cash investment by
about two thirds. However, when we use Erickson, Jiang, and Whited’s (2014) estimates
corrected for the errors-in-variables problem in Q, the effect of cash flow on total investment
disappears completely. Although cash investment is still positively associated with lagged
cash flow, the sensitivity of non-cash investment to cash flow is negative, and the two effects
offset each other. A possible interpretation for this finding is that cash-constrained firms do
not necessarily reduce their total investment but simply acquire a larger share of new capital
goods under non-cash arrangements such as capital leases.

Our paper is related to several strands of literature in economics and finance. First, mul-
tiple papers analyze investment problems with capital goods with non-geometric economic
efficiency. Particularly closely related are the studies by Rogerson (2008), which serves
as a basis for our model, and Lewellen and Badrinath (1997), from which we derive our
measure of total investment. Models with vintage-capital effects are also considered in, for
instance, Benhabib and Rustichini (1991), Sakellaris (1997), Sakellaris and Wilson (2004),
and Rampini (2019). To the best of our knowledge, our paper is the first to emphasize the
difference between the replacement cost of assets in place and capital stock arising from re-
laxing the assumption of geometric efficiency, as well as to suggest simple empirical proxies
for these quantities.

Our study provides new insights on the structure of total investment by decomposing it
along two dimensions: into the net and replacement, and cash and non-cash components.
The former decomposition has been studied at least since Jorgenson (1963), yet no empirical
measures have been suggested for the net- and replacement-investment components outside
of the geometric-efficiency case. Our model allows us to construct such measures and verify
their empirical behavior is consistent with the analytical predictions. Our second investment
decomposition – into the cash and non-cash components – sheds more light on the structure
of non-cash investment expenditures. The importance of non-cash investment is recognized
in, for example, Eisfeldt and Rampini (2009), but no measure for non-cash investment has
been widely accepted for use in broad samples of firms.
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The rest of the paper is organized as follows. Our theoretical model is set up in section
2. Section 3 presents the main theoretical results. Section 4 focuses on data selection and
empirical variable construction. Section 4 reports empirical findings. Section 5 concludes.

2. Model setup

2.1. Production technology

Consider a firm that uses a single type of capital good to produce a single non-storable
output good. Capital goods have a useful life of T periods, and their efficiency declines with
age. Specifically, a unit of capital good purchased in period t comes online in period t + 1
and allows the firm to produce xτ units of the output good in period t+ τ , where

1 = x1 ≥ ... ≥ xT .

The vector x = (x1, . . . , xT ) is referred to as the efficiency pattern of the firm’s assets. For
notational convenience, let xT+1 ≡ 0. The firm’s effective capital stock in period t, that is,
its aggregate production capacity, can then be written as:

Kt =
T∑
τ=1

xτ · It−τ , (1)

where It−τ is the firm’s gross investment in period t− τ .2 Let Θt−1 ≡ (It−1, ..., It−T ) denote
the firm’s relevant investment history in period t. We normalize the purchase price of new
capital goods to unity, so that the direct cost of investment in period t is measured by It.

Earlier literature focuses primarily on two efficiency patterns: geometric economic de-
preciation and one-hoss-shay efficiency. In the geometric-depreciation scenario, assets are
infinitely lived, T = ∞, and the amount of investment surviving to date τ of its life is
declining exponentially in τ :

xτ = (1− δ)τ−1 (2)

for some 0 ≤ δ ≤ 1. An important property of this pattern is that the rate by which the
productive capacity of a unit of capital good decreases over a given period is independent of
the age of that unit. Under this assumption, the firm’s capital stock becomes homogeneous;
that is, the vintage composition of the firm’s current stock is irrelevant for future investment
choices. The efficiency pattern in (2) has been observed to be descriptive for some types
of capital goods but not for others. For instance, solar PV installations appear to comport
well with this assumption; see, for example, Reichelstein and Yorston (2013). However,
Ramey and Shapiro (2001) strongly reject the geometric-efficiency model in their analysis of

2Our model of vintage capital builds on Rogerson (2008). Similar to that paper, we assume the firm
purchases only new capital goods. For models with investment in used capital goods, see, for example,
Eisfeldt and Rampini (2007) and Jovanovic and Yatsenko (2012). For a more general but arguably less
analytically tractable model of vintage capital, see, for example, Benhabib and Rustichini (1991). Several
papers examine, empirically and analytically, the behavior of Tobin’s Q in models with vintage capital (e.g.,
Lewellen and Badrinath, 1997; McNichols, Rajan, and Reichelstein, 2014; Nezlobin, Rajan, and Reichelstein,
2016).
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equipment-level data from the aerospace industry. Hulten, Robertson, and Wykoff (1989)
consider a broad class of efficiency patterns and find geometric efficiency is reasonably de-
scriptive for their data on machine tools and construction equipment.

Although the assumption of geometric efficiency is prevalent in the academic literature
due to its analytical convenience, it is rarely used in practice. Instead, managers often
view capital goods as having an approximately constant productive capacity over a finite
useful life. This assumption is usually invoked to justify the widespread use of the straight-
line depreciation rule in financial reporting. The academic literature usually refers to this
efficiency pattern as one-hoss-shay (see, e.g., Fisher and McGowan, 1983; Laffont and Tirole,
2000; and Rogerson, 2011). In our notation, one-hoss-shay productivity is given by

1 = x1 = ... = xT ,

for some finite T . In the investment literature, this pattern underlies the popular empirical
procedure for estimating Tobin’s Q suggested by Lewellen and Badrinath (1997). We discuss
the relation between the assumptions in Lewellen and Badrinath (1997) and one-hoss-shay
efficiency in greater detail below. The one-hoss-shay assumption is also applied by McNichols,
Rajan, and Reichelstein (2014) in developing an alternative methodology for Tobin’s Q
estimation. Because this assumption appears to be widely used by managers in practice and
therefore is already largely incorporated in the reported financial statements, we adopt it as
a natural foundation for our empirical analysis later in this paper. Moreover, as we show
below, it also leads to simple empirical proxies for many economic quantities of interest.

Let Kt,t+j denote the capacity provided in period t+ j by assets already in place at the
beginning of period t . Formally, it can be expressed as

Kt,t+j =

T−j∑
τ=1

xj+τ · It−τ

for j ≥ 0. Note Kt = Kt,t. If depreciation is geometric, we have

Kt,t+j = (1− δ)jKt;

that is, the current capacity of the firm’s assets in place determines how much capacity those
assets will provide in each future period. Consequently, in this case, we obtain the usual law
of motion for the firm’s capital stock:

Kt+1 = (1− δ)Kt + It.

However, in general, Kt does not uniquely determine Kt,t+j, which depends on the full vintage
composition of the capital stock at date t, Θt. Then, the firm’s capital stock in period t+ 1
can be written as

Kt+1 = Kt,t+1 + It. (3)

Assume capital is the only input required for production. Suppose further that the inverse
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demand function for the firm’s output good takes the following form:

P
(
Ẑt, Kt

)
=

(
Kt

Ẑt

)α−1

,

where 0 < α < 1, and Ẑt is a stochastic demand-shift parameter. In this specification, 1−α
is the price elasticity of demand, with α→ 1 corresponding to the case of perfect competition

and α→ 0 to the case of high monopoly power. The firm’s revenue in period t, R
(
Ẑt, Kt

)
,

can then be written as
R
(
Ẑt, Kt

)
= Ẑ1−α

t Kα
t ,

and the firm’s net cash flow is equal to R
(
Ẑt, Kt

)
− It. In Appendix B, we discuss how

our results carry over to a model with a competitive product market and convex capital-
adjustment costs.

Each period, the firm faces two types of demand shocks: permanent and transitory. Let
Zt denote the permanent component of the demand-shift parameter. We assume it evolves
according to

Zt+1 = µt+1 · Zt, (4)

where the (gross) growth rates µt+1 are independently drawn from some time-invariant dis-
tribution with a bounded support on [µmin, µmax] and mean µ̄.

The actual, realized, demand-shift parameter is different from its permanent component
by an additional multiplicative transitory error term:

Ẑt+1 = εt+1 · Zt+1,

where εt are distributed identically and independently of each other and of {µs}∞s=1, with a
mean of 1. Recall that investments “come online” with a lag of one period; that is, when
the firm decides on the investment level It, it effectively chooses its capital stock for period
t + 1, Kt+1. To simplify the exposition, we assume the firm and the equity market observe
µt+1, εt+1, and, therefore, Ẑt+1 just before the choice of It is made. It is straightforward
to extend our results to a setting where investment It has to be made before µt+1 and εt+1

are observed. In Appendix B, we also consider an extension of our model in which the
permanent component of demand follows a regime-switching process as in Eberly, Rebelo,
and Vincent (2008), Abel and Eberly (2011), and Eberly, Rebelo, and Vincent (2012). This
extension is important because these papers demonstrate that the assumption of regime-
switching demand can significantly improve the empirical plausibility of the model. Fig. 1
illustrates the evolution of the demand-shift parameter, Ẑt, in our main model.

[Fig. 1 here]

The firm is all-equity financed, and all cash flows are disbursed to (or supplied by) the
firm’s shareholders immediately. Let r > 0 be the firm’s discount rate and γ ≡ 1

1+r
be the

corresponding discount factor. To ensure the firm’s value is always finite, we impose that
1 + r > µmax. The firm makes its investments to maximize the expected present value of
its future cash flows. As in Abel and Eberly (2011), we focus on a setting where the firm’s
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investments are fully reversible, that is, where It can be less than zero. In periods in which
It is negative, the firm sells a capacity stream that is equivalent to |It| units of new capital
goods for the price of |It| units of new capital goods. Equivalently, the firm can be assumed
to be able to sell its used capital goods at their perfectly competitive price, which is formally
defined below.

2.2. User cost of capital and replacement cost of assets

To characterize the optimal investment policy, we employ the notion of the user cost of
capital, that is, a hypothetical perfectly competitive rental rate per unit of capital stock
(see, e.g., Jorgenson, 1963; Arrow, 1964). The user cost of capital is denoted by c. In the
geometric-depreciation scenario, c is known to be equal to r + δ.

The generalization of the concept of the user cost of capital to the setting with arbitrary
efficiency patterns is due to Rogerson (2008). Following the approach of that paper, consider
a hypothetical perfectly competitive rental market for capital goods. In this market, a
provider of rental services can buy one unit of the capital good (at a cost of one dollar)
and then rent out its capacity in future periods. In period τ of the asset’s useful life, the
asset will generate xτ · c in rental income. Then, the net present value of the rental firm’s
investment project will be

−1 + γx1c+ ...+ γTxT c.

Because the rental market is assumed to be perfectly competitive, the quantity above must
equal zero; that is,

1 =
T∑
τ=1

γτxτc. (5)

Then, it follows that the user cost of capital is given by

c =
1∑T

τ=1 γ
τxτ

. (6)

It is straightforward to verify that when the economic depreciation of assets is geometric and
given by (2), the right-hand side of (6) reduces to r + δ. On the other hand, for assets with
one-hoss-shay efficiency, the user cost of capital is given by

c =
1∑T

τ=1 γ
τ

=
r

1− γT
. (7)

We refer to cKt as the current cost of the capital stock in period t. Note the current cost
of capital can be expressed as a function of past investment cash outflows:

cKt = c

T∑
τ=1

xτIt−τ . (8)

Furthermore, let πt be the firm’s economic profit in period t defined as the difference between
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its operating cash flow and the current cost of the capital stock in that period:

πt ≡ R
(
Ẑt, Kt

)
− cKt.

In our model, an important difference arises between the firm’s effective capital stock in
a given period and the replacement cost of assets in place at the beginning of that period.
To formally define the latter quantity, consider a unit of asset purchased in period t−τ from
the perspective of date t. This asset will provide the following stream of capacity in the
remaining T − τ periods of its useful life: {xτ+1, ..., xT}. If we again consider a hypothetical
rental market for capital goods, the value of such a stream in that market would be

vτ ≡
(
γxτ+1 + ...+ γT−τxT

)
c. (9)

In the equation above, vτ can also be interpreted as the perfectly competitive price for a unit
of capital good of age τ . Note v0 = 1; that is, the replacement cost of an asset just acquired
is equal to its price, and vT = 0. The total replacement cost of assets in place at date t (just
after the new investment It is made) is equal to

RCt ≡
T−1∑
τ=0

vτIt−τ . (10)

It can be verified that in the scenario with geometric depreciation,

vτ = (1− δ)τ .

It follows that the replacement cost of assets under the assumption of geometric depreciation
is

RCt =
∞∑
τ=0

(1− δ)τ It−τ = Kt+1;

that is, the replacement cost of assets in place at the beginning of period t + 1 is simply
equal to that period’s capital stock.

However, for arbitrary efficiency profiles, the replacement cost of assets in place and
the effective capital stock will be two different linear aggregates of the relevant investment
history. Specifically, according to (8), the weights on past investments in the calculation of
Kt+1 are proportional to the current efficiency of those investments. On the other hand, eqs.
(9)-(10) show the weight on It−τ in the expression for RCt is proportional to the present
value of all capacity levels that a unit of capital good of that vintage is yet to generate in
the future periods.

Of key importance for our empirical analysis is the case of one-hoss-shay efficiency, in
which the difference between the replacement cost of assets in place, RCt, and capital stock,
Kt+1, is particularly pronounced. For assets with one-hoss-shay efficiency, the capital stock
in period t+ 1 is given by

Kt+1 =
T−1∑
τ=0

It−τ . (11)
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Note that, at least under the assumptions imposed so far, Kt+1 is simply equal to the firm’s
gross investment up to time t. This equality holds as long as the price of new capital goods
is constant over time and the firm’s accounting system correctly estimates the useful life of
capital goods, T .

Now consider the replacement cost of assets in place in the case of one-hoss-shay efficiency.
Applying the expression for c in eq. (7), vτ in eq. (9) can be calculated as

vτ ≡ c
(
γ + ...+ γT−τ

)
=

1− γT−τ

1− γT
. (12)

Therefore, the total replacement cost of assets in place at date t is equal to

RCt =
T−1∑
τ=0

1− γT−τ

1− γT
It−τ . (13)

Comparing eqs. (11) and (13), one can see that whereas both RCt and Kt+1 are determined
by the same investments, the two quantities are not equal to each other.

[Fig. 2 here]

Fig. 2 illustrates how the replacement cost of one unit of the capital good declines with
its age for assets with one-hoss-shay efficiency, that is, the behavior of vτ in (12) as a function
of τ . Note that whereas the current capacity of such assets, xτ , is constant over their useful
life and vanishes instantaneously at T , their replacement cost declines to zero gradually. Fig.
2 shows that for relatively low values of the discount rate, r, the pattern of decline is almost
linear. In this case, RCt would be close to the net book value of capital goods calculated
under the straight-line depreciation rule.3 Therefore, when efficiency is one-hoss-shay and r
is low, both RCt and Kt+1 can be measured as simple aggregates of the firm’s investment
history – the gross and net book value of the capital goods, respectively. For assets such
as property, plant, and equipment, both gross and net book values are directly provided by
firms in the annual reports.

3. Model analysis

3.1. Optimal investment policy and firm valuation
We now jointly characterize the firm’s optimal investment policy and its equity value

on the optimal investment path. Let V
(
Ẑt, Zt+1, εt+1,Θt−1

)
denote the firm’s cum-dividend

3Applying L’Hôpital’s rule to eq. (12) yields vτ = 1 − τ
T when r → 0. The assumption of straight-

line economic depreciation is used as a starting point in constructing an empirical measure of Tobin’s Q in
Lewellen and Badrinath (1997). Although the two assumptions, one-hoss-shay efficiency and straight-line
economic depreciation, are consistent for low values of r, Fig. 2 suggests they diverge from each other as
r increases. In fact, it can be verified that the assumption of straight-line economic depreciation translates
into the following linear efficiency pattern (see, e.g., Rajan and Reichelstein, 2009):

xτ = 1− r

1 + rT
(τ − 1) .
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value of equity at date t. In our model, the firm’s cum-dividend value at date t depends on the
following: (i) the current demand-shift parameter, Ẑt, because it determines the operating

cash flow at date t, R
(
Ẑt, Kt

)
; (ii) next period’s demand-shift parameter, Ẑt+1 = εt+1Zt+1,

because the firm makes its investment decision It after observing Ẑt+1; (iii) the permanent
component of next period’s demand, Zt+1, because, as will become clear later, this parameter
affects the expected value of the firm’s economic profits after period t+1; and (iv) investment
history, Θt−1, because it determines Kt and also affects future investments.

The function V
(
Ẑt, Zt+1, εt+1,Θt−1

)
must satisfy the following Bellman equation:

V
(
Ẑt, Zt+1, εt+1,Θt−1

)
= Ẑ1−α

t Kα
t︸ ︷︷ ︸

R(Ẑt,Kt)

+ max
It

{
γEt

[
V
(
Ẑt+1, Zt+2, εt+2,Θt

)]
− It

}
. (14)

In the proof of Proposition 1, we show the optimal investment policy is to choose It to
maximize the firm’s economic profit in the following period:

I∗t = arg max
I

Ẑ1−α
t+1 K

α
t+1 − cKt+1︸ ︷︷ ︸
πt+1

. (15)

The first-order condition for the optimal level of capital stock in period t+ 1 then is

αẐ1−α
t+1 K

α−1
t+1 = c,

from which it follows that the optimal capital stock is given by

K∗t+1 = M
1
α Ẑt+1, (16)

where the constant M is defined as M ≡ (α/c)
α

1−α . Furthermore, it is straightforward to
check that the maximized economic profit in period t+ 1 is

π∗t+1 =
1− α
α

cK∗t+1

= (1− α)MẐt+1. (17)

Let V ex (Zt+1, εt+1,Θt) denote the firm’s ex-dividend value at date t:

V ex (Zt+1, εt+1,Θt) ≡ V
(
Ẑt, Zt+1, εt+1,Θt−1

)
−R

(
Ẑt, Kt

)
+ It.

Note that because V ex (Zt+1, εt+1,Θt) depends on It, we write the last argument of this
function as Θt, not Θt−1. Proposition 1 characterizes the firm’s equity value on the optimal
investment path.

Proposition 1. On the optimal investment path,

K∗t+1 = M
1
α Ẑt+1 (18)
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and
I∗t = K∗t+1 −Kt,t+1. (19)

The firm’s ex-dividend equity value at date t is given by

V ex (Zt+1, εt+1,Θt) = RCt + γ (1− α)MẐt+1︸ ︷︷ ︸
π∗t+1

+ν (µ̄)Zt+1, (20)

where

ν (µ̄) ≡ γ (1− α)Mµ̄

1 + r − µ̄
. (21)

Eq. (20) in Proposition 1 shows the firm’s equity value consists of the following three
components: the replacement cost of assets in place, RCt, the present value of next pe-
riod’s economic profit, γπ∗t+1, and the present value of all future expected economic profits,
Zt+1ν (µ̄). If the firm could rent its capacity on an as-needed basis at the cost of c per unit
per period of time, its value would be simply given by the sum of the last two terms of eq.
(20). The replacement cost of assets in place, RCt, can be viewed as the present value of
future rental costs that the firm has effectively “prepaid” by investing in long-lived assets
in the past. The two shaded areas in Fig. 3 illustrate the two components of firm value:
the darker shaded (orange) area represents the future economic profits, whereas the lighter
shaded (blue) area corresponds to the replacement cost of assets.

[Fig. 3 here]

Recall that in the case of geometric efficiency, RCt = K∗t+1 in all periods. It then follows
from eqs. (18) and (20), we find

V ex (Zt+1, εt+1,Θt) = Ẑt+1

(
constant +

ν (µ̄)

εt+1

)
︸ ︷︷ ︸

Tobin’s Q

.

The firm’s ex-dividend value on the optimal investment path then turns out to be indepen-
dent of its investment history Θt, and the state variable effectively reduces to the vector
(Zt+1, εt+1) . For arbitrary efficiency profiles, however, RCt and K∗t+1 will generally be two
different linear aggregates of the firm’s investment history up to date t. Accordingly, the
firm’s value will depend not only on Zt+1 and εt+1 but also on RCt. Furthermore, the firm’s
optimal investment policy will also be path dependent: from eqs. (18)-(19), we find I∗t is
determined not only by Ẑt+1 but also by past investments I∗t−τ entering Kt,t+1. Accordingly,
the problem of forecasting next period’s investment becomes more complex because at each
point in time, one needs to take into account the full vintage composition of assets in place.
In the next section, we decompose the firm’s investment rate into its net and replacement
components and examine more closely the relations between these components and several
explanatory variables.
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3.2. Net-investment rate

Let i∗t+1 be the firm’s investment rate in period t+ 1:

i∗t+1 ≡
I∗t+1

K∗t+1

.

We now turn to the main question of the paper: How is investment rate i∗t+1 related to the
observable information at time t? As we demonstrate below, the total-investment rate in our
model consists of two components, both of which vary over time but for different economic
reasons. Specifically, we decompose i∗t+1 into its net component, int+1,

int+1 ≡
K∗t+2 −K∗t+1

K∗t+1

,

and replacement component irt+1,

irt+1 ≡
K∗t+1 −Kt+1,t+2

K∗t+1

.

Under these definitions, i∗t+1 = int+1 + irt+1.
Fig. 3 depicts the decomposition of investment i∗t+1 into its net and replacement com-

ponents. Such decomposition is often considered even in models with geometric efficiency,
yet in such models, the replacement-investment rate is always constant and equal to δ. In
our setting, the replacement-investment rate varies over time and is generally path depen-
dent. The main determinants of irt+1 are the firm’s T -period investment history and the
efficiency profile of its capital goods. This component of the firm’s investment rate captures
the share of the capital stock in period t + 1 going offline in that period. By contrast, the
firm’s net-investment rate reflects the expected growth in demand for the firm’s output and
is independent of the current vintage composition of assets in place.

In this section, we focus on the net-investment rate. From Proposition 1, we find this in-
vestment component has a particularly straightforward relation with future sales growth.
Recall that K∗t+1 is proportional to Ẑt+1. Because revenue in period t + 1 is equal to

Ẑ1−α
t+1

(
K∗t+1

)α
, it is also proportional to K∗t+1. Therefore, on the optimal investment path,

the net-investment rate in period t is equal to the sales growth rate in period t+ 1, that is,
the net-investment rate leads the sales growth rate by one period. The two rates are equal
in our model because we assume the firm’s manager perfectly foresees demand one period
ahead. Without such foresight, the net-investment rate would be an imperfect predictor of
future demand growth. In the empirical part of our paper, we use the predictive ability of the
net-investment rate for future sales growth to validate our decomposition of total investment
into its net and replacement components: a decomposition is valid if it is the net-investment
component that predicts future sales growth.

Let us now turn to the question of predicting future net investment. Note int+1 can be
expressed as

int+1 ≡
K∗t+2 −K∗t+1

K∗t+1

=
Ẑt+2

Ẑt+1

− 1 = µt+2
εt+2

εt+1

− 1. (22)
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Therefore, the conditional expectation on date t of int+1 can be calculated as

Et
[
int+1

]
=

1

εt+1

Et [µt+2]− 1 =
µ̄

εt+1

− 1. (23)

The expected value of the net-investment rate is increasing in µ̄ and decreasing in εt+1.
Intuitively, the firm’s expected net-investment rate deviates from the long-term growth rate
in demand due to the transitory demand shocks. For instance, a firm can experience a
period of higher-than-expected demand growth (high εt+1). Then, in future periods, its net-
investment rate should be expected to be lower, because the firm has just built up extra
capacity to accommodate short-term growth. Whereas in our main model, µ̄ is assumed
to be a firm-level constant, in Appendix B, we present a variant of our model in which
demand follows a regime-switching process. In this extended model, the firm-level variation
in Et

[
int+1

]
arises not only due to the transitory shocks to demand but also due to the shocks

to the growth rate of the permanent demand component.
One of the traditional arguments linking Tobin’s Q to the expected investment rate is

based on the observation that both quantities reflect the underlying growth rate in demand.
With non-geometric efficiency, at least two possible definitions of Tobin’s Q are consistent
with the original idea of this measure: the market value of equity divided by the replacement
cost of assets in place and the market value of equity divided by the current capital stock.
We proceed with the second definition:

Qt ≡
V ex (Zt, µt+1, εt+1,Θt+1)

K∗t+1

. (24)

Applying Proposition 1, we then arrive at the following decomposition of Tobin’s Q for
non-geometric efficiency patterns:

Qt =
RCt
K∗t+1

+ γ (1− α)M +
ν (µ̄)

εt+1︸ ︷︷ ︸
AdjustedQ

. (25)

The first term in the right-hand side above (RCt/K
∗
t+1) is always equal to 1 in models

with geometric efficiency. In general, this term is time varying and path dependent; we will
analyze its behavior in greater detail below. For convenience, we refer to the sum of the last
two terms in (25) as the Adjusted Q. Note the second term, γ (1− α)M , is a time-invariant
constant for a given firm. In the cross-section, however, this term will reflect variations in
profitability across firms, because M determines the economic (monopoly) profit generated
by a firm per unit of capital stock. The last term in (25) increases in µ̄ and decreases in the
current transitory shock to demand, εt+1, which is directionally consistent with the relations
between these variables and the expected net-investment rate (see eq. 23). Therefore, the
traditional argument linking Q to the firm’s investment rate carries over to our model with
non-geometric efficiency with the qualification that it now describes the relation between
Adjusted Q and the expected net-investment rate.

Another explanatory variable commonly considered in the investment literature is the
firm’s scaled cash flow from operations. Operating cash flows are typically scaled in invest-
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ment regressions by the same variable that is used in the denominator of Tobin’s Q. As
discussed above, in our model, this scaling variable has two natural generalizations: RCt
and K∗t+1. For consistency with the definition of Tobin’s Q, we scale operating cash flows
by K∗t+1. Using once again Proposition 1, we obtain the following expression for the scaled
operating cash flow on the optimal investment path:

R
(
Ẑt, K

∗
t

)
K∗t+1

=
MẐt

M
1
α Ẑt+1

= M− 1−α
α

εt
εt+1µt+1

. (26)

Recalling that the expected future net-investment rate is proportional to µ̄/εt+1, the
expression above suggests two relations between the normalized cash flow and Et

[
int+1

]
.

First, note εt+1 affects both variables in the same direction. A high value of scaled cash flow
in period t may be due to relatively low growth in total capacity from period t to t + 1.
If this low growth is due to a transitory unfavorable demand shock (low εt+1), the future
net-investment rate should be expected to be higher because it will be calculated relative
to a temporarily depressed capacity level K∗t+1. On the other hand, the long-term expected
growth rate µ̄ has opposite effects on scaled cash flow, which decreases in µ, and the expected
net-investment rate, which increases in µ. Scaled cash flow decreases in µ because growth in
capital stock leads revenue growth in our model. The denominator of period-t scaled cash
flow is usually the firm’s period-t + 1 capital stock. This denominator already captures the
growth in demand between periods t and t + 1,whereas the numerator is unaffected by this
growth.

To summarize, for a given µ̄, our model predicts a positive relation between cash flow
and expected net investment. However, this relation should be weaker, possibly turning
negative, if µ̄ is not controlled for. We note this cash-flow effect arises in our model because
of its discrete nature and the presence of transitory demand shocks. Abel and Eberly (2011)
demonstrate the cash-flow effect can arise in continuous-time models with reversible invest-
ment, due to fluctuations in the firm’s user cost of capital. In our model, the user cost of
capital, c, is constant and the effect is largely driven by the assumption of discrete time.

When economic depreciation is geometric, RCt = K∗t+1, and Tobin’s Q exceeds Adjusted
Q by one. However, as discussed above, the equality between the replacement cost of assets
and the effective capital stock is an artifact of the geometric-depreciation assumption. In
general, the relation between Tobin’s Q and future net investment will also depend on the
relation between the ratio of RCt to K∗t+1 and Et

[
int+1

]
. Recall the ratio of RCt to K∗t+1 is

a function of the firm’s relevant investment history and the efficiency pattern of the firm’s
capital goods:

RCt
K∗t+1

=

∑T−1
τ=0 vτI

∗
t−τ∑T−1

τ=0 xτ+1I∗t−τ
. (27)

Even in the case of one-hoss-shay efficiency and constant growth in demand, the ratio above
can follow different processes depending on the long-term (i.e., prior to year t − T ) history
of the firm.

Consider, for instance, the case of zero growth in output. With one-hoss-shay assets, a
firm can maintain constant capacity if it makes the same investment every period. Then,
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using eq. (13), the firm’s ratio of RCt to K∗t+1 will be constant over time and equal to

RCt
K∗t+1

=
1

T

T−1∑
τ=0

1− γT−τ

1− γT
=

1

1− γT
− 1

rT
.

The firm can also maintain constant capacity by making a T times larger investment every
T -th period and zero investments in all other periods. Then, its RCt/K

∗
t+1 ratio will fluctuate

over time from the value of 1 (right after an investment period) to 1−γ
1−γT right before a new

investment period. Yet, under our assumption, the firm’s net-investment rate is equal to
zero in all periods under both scenarios. This example demonstrates that general claims
about the relation between the RCt/K

∗
t+1 ratio and the firm’s future net-investment rate are

unlikely to hold for all investment paths.
To proceed further, we make two additional simplifying assumptions. First, we restrict

attention to the case of one-hoss-shay capital goods because this efficiency profile serves
as the foundation for our empirical analysis and is also often invoked to justify the use of
straight-line depreciation in practice. Second, we abstract from considering the effects of
the replacement components of past investments on the RCt/K

∗
t+1 ratio; that is, we consider

a “new” firm that did not have any significant capital stock more than T periods ago.
This assumption is descriptive of firms whose most recent T vintages are significantly larger
than the older ones. Formally, consider a firm that starts operations at date 0 and builds
up its capital stock for T periods. Proposition 2 characterizes how the time-τ conditional
expectation of the ratio of RCT/K

∗
T+1 depends on µτ+1.

Proposition 2. Assume capital goods have one-hoss-shay efficiency. Then, for each 0 ≤
τ ≤ T , Eτ

[
RCT
K∗T+1

]
increases in µτ+1.

Proposition 2 demonstrates that, at least if one ignores the replacement components of
the past T investments, the ratio of RCt to K∗t+1 increases in the past T realized growth
rates of demand. To the extent that each µτ is informative about the expected demand
growth rate µ̄, Proposition 2 suggests a positive relation between RCt/K

∗
t+1 and future net

investment. The intuition behind this result is as follows. Firms that have experienced
faster growth in recent periods tend to have newer assets. On a per unit of current capacity
basis, a newer capital good has a higher replacement cost: the ratios vi/xi+1 decrease in i.
Specifically, in the one-hoss-shay scenario, xi+1 = 1 for all i, and {vi}T−1

0 are declining in i to
zero as depicted in Fig. 2. Therefore, for firms with newer assets, the ratio of RCt to K∗t+1

in eq. (27) moves in the direction of vi/xi+1 corresponding to lower values of i; that is, it is
lower than what it would have been for older capital goods. The ratio of RCt to K∗t+1 thus
captures the “newness” of the firm’s capital stock, which is irrelevant for future investment
decisions if and only if capital goods have geometric efficiency.

[Fig. 4 here]

In Fig. 4, we reproduce the structure of capital goods from Fig. 3 to illustrate the
behavior of RCt/K

∗
t+1. The shaded area in Fig. 4 can be interpreted as RCt: according to

eqs. (9) and (10), the replacement cost of capital goods in place at date t is equal to the
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present value of the future (hypothetical) rental payments that would be needed to replicate
the productive capacity of these capital goods. The area of the rectangle ABCD can be
interpreted as the firm’s current capital stock, K∗t+1, because it is equal to the replacement
cost of brand new capital goods with the current capacity equal to K∗t+1. For a firm that
has experienced high growth in the past, the newer vintages of assets (depicted in Fig. 4
at the bottom of the stack) are relatively larger, leading to a higher value of RCt/K

∗
t+1. If,

for instance, the firm’s capacity has gone from 0 to K∗t+1 in period t, all of the firm’s capital
goods are brand new, and thus, RCt/K

∗
t+1 = 1. The special case of geometric efficiency

studied extensively in the earlier literature is degenerate in the sense that RCt/K
∗
t+1 = 1

regardless of the firm’s investment history.

3.3. Replacement-investment rate

Now consider the firm’s replacement-investment rate in period t+ 1, given by

irt+1 ≡
K∗t+1 −Kt+1,t+2

K∗t+1

= 1− x2It + ...+ xT It−T+2

x1It + ...+ xT It−T+1

.

In the geometric scenario, irt+1 is constant and equal to δ. In general, the equation above
demonstrates the firm’s replacement-investment rate depends on its entire investment his-
tory as well as on the efficiency profile of its capital goods. Even when demand for the
firm’s output follows a relatively simple process, the dynamic behavior of irt+1 can be quite
complicated.

Consider, for instance, two firms facing a completely stationary product market, with all
µt = εt = 1,and using one-hoss-shay assets. One firm makes a constant investment each T -th
period and zero investment in periods not divisible by T . The second firm makes a constant
(T times smaller) investment in each period. Both firms maintain constant capacity. The
replacement-investment rate of the first firm is equal to 0 in all periods not divisible by T ,
and 1 in each investment period. The replacement-investment rate of the second firm is
always equal to 1/T .

Note the firm’s replacement-investment rate in period t+1 is generally not random given
the information available at date t. For example, under the assumption of one-hoss-shay
efficiency

irt+1 =
It−T+1

K∗t+1

;

that is, it can be estimated by dividing the investment made exactly T periods ago by the
current capital stock. The equation above would produce correct estimates of irt+1 for both
firms described in the previous paragraph. In practice, however, this approach is not useful
for at least two reasons. First, for large values of T , information about It−T+1 may not be
available, due to data limitations or special circumstances, such as mergers and acquisitions,
which we discuss in greater detail in the next section. Second, this approach relies heavily on
the precision of the employed estimate of T because it is used to pinpoint the investment being
replaced. In the next section, we describe a procedure for measuring replacement investment
that requires only information from the firm’s contemporaneous financial statements; in the
current section, our goal is to describe explanatory variables for irt+1 that can be constructed
from the firm’s one-period-lagged (i.e., period-t) financial statements.
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At least two variables emerge as natural candidates for explaining the firm’s replacement-
investment rate. First, consider the case of one-hoss-shay productivity and a stationary
market for the firm’s output. As the two-firm example above illustrates, any T -periodic
investment process leads to a constant amount of productive capital stock over arbitrary
many periods. Consequently, any T -periodic replacement-investment-rate process is consis-
tent with the assumptions of one-hoss-shay efficiency and stationary product market. Yet
all such processes share one feature in common: the firm’s average replacement-investment
rate over any T subsequent periods will be equal to 1/T . The assumption of one-hoss-shay
efficiency will be imposed throughout the empirical part of the paper; the assumption of
a stationary product market should not be expected to hold in general but is likely to be
descriptive of firms operating in low-growth environments. We expect T−1 to be positively
associated with the firm’s replacement investment.

Our second explanatory variable for irt+1 is the ratio RCt/K
∗
t+1 introduced in the previ-

ous section. In contrast to the net-investment rate, we expect RCt/K
∗
t+1 to be negatively

associated with irt+1. The intuition for this prediction can be gleaned from Fig. 4. If the
firm has been growing its capacity at a high rate, its more recent investments (depicted in
Fig. 4 at the bottom of the stack) will be relatively large. Thus, only a small portion of
its current capacity is generated by its oldest surviving investment It−3, which determines
the replacement-investment rate in period t + 1. This intuition also holds up in the two-
firm example discussed above. The firm making constant investments in all periods has a
constant RCt/K

∗
t+1 ratio as well as a constant replacement-investment rate. The RCt/K

∗
t+1

ratio of the firm that invests every T -th period will vary from the value of 1 at the end of
each investment period to the value of vT−1 at the end of periods preceding investment. Note
the lowest value of this ratio predicts the highest value of the replacement-investment rate.

In fact, a more formal theoretical argument suggests a negative relation betweenRCt/K
∗
t+1

and the firm’s replacement investment for one-hoss-shay capital goods. To state it, let us
consider the following long-term measure of replacement investment. Let PV RIt+1 be the
present value of the replacement investments in periods t + 1 to t + T . Because in period
t+ τ , the firm replaces its investment made in period t+ τ − T, PV RIt+1 is given by

PV RIt+1 = γIt−T+1 + γ2It−T+2 + ...+ γT It.

Moreover, PV RIt+1 can be expressed as the following linear combination of K∗t+1 and RCt.

Observation 1. Assume capital goods have one-hoss-shay efficiency; then

PV RIt+1 = K∗t+1 −
r

c
RCt.

According to Observation 1, if instead of calculating instantaneous replacement invest-
ment we focus on the present value of the future T replacement investments, the ratio of
PV RIt+1 to K∗t+1 will be decreasing in RCt/K

∗
t+1:

PV RIt+1

K∗t+1

= 1− r

c

RCt
K∗t+1

.

To summarize, we expect the ratio of RCt to K∗t+1 to be positively associated with the firm’s
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net-investment rate and negatively associated with its replacement-investment rate.
A natural question to ask in this situation is whether the firm’s total investment is

increasing in RCt/K
∗
t+1 together with its net-investment rate. As one might expect, in

general, different possibilities may exist. However, we can, in fact, demonstrate RCt/K
∗
t+1

is positively associated with the total investment rate at least for natural “constant growth”
investment paths. To this end, consider a firm that grows its investments in one-hoss-shay
capital goods by factor µ̄ in every period, so that

It+1 = µ̄It (28)

for all t.
This firm’s capital stock grows by factor µ̄ each period, and its net-investment rate is

always equal to µ̄−1. To calculate its replacement-investment rate, note that in period t+1,
it replaces investment It−T+1, so

irt+1 =
It−T+1

It−T+1 + ...+ It
=

1

1 + µ̄+ ...+ µ̄T−1
=

µ̄− 1

µ̄T − 1
. (29)

For future reference, observe that while the net-investment rate increases in µ̄, the replacement-
investment rate in the equation above declines in µ̄. The firm’s total-investment rate is given
by

µ̄− 1

µ̄T − 1︸ ︷︷ ︸
irt+1

+ µ̄− 1︸ ︷︷ ︸
int+1

=
µ̄T (µ̄− 1)

µ̄T − 1
.

It can be verified that the expression above increases in µ̄ for both growing and shrinking
firms, µ̄ ∈ (0,∞).

Finally, we can also calculate the RCt to K∗t+1 ratio for this scenario. After some algebra,
this ratio reduces to

RCt
K∗t+1

=
µ̄T (1− γµ̄) + γ (µ̄− 1) (γµ̄)T + γ − 1

(µ̄T − 1) (1− γT ) (1− γµ̄)
. (30)

In Appendix A, we show the ratio above increases in µ̄. Hence, this ratio is positively
associated with the demand growth rate, which is consistent with the behavior of the net-
investment rate and opposite that of the replacement-investment rate.

Observation 2. Assume capital goods have one-hoss-shay efficiency, and the firm’s invest-
ment growth rate, µ̄, has been constant over the last T periods. Then, RCt/K

∗
t+1 is increasing

in µ̄.

To summarize, we expect the replacement-investment rate to be increasing in T−1 and
declining in RCt/K

∗
t+1. As illustrated by the above discussion, we further expect the positive

relation between the net-investment rate and RCt/K
∗
t+1 to dominate the negative relation be-

tween replacement investment and RCt/K
∗
t+1, leading to an overall positive relation between

the total-investment rate and RCt/K
∗
t+1.
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4. Data and variable construction

4.1. Data selection

Our sample consists of firms in the Compustat North America annual files from 1971 to
2017. We start our sample in 1971 because several of our variables require information from
the statement of cash flows, which is available in Compustat from 1971. We employ a screen-
ing procedure similar to that in Hennessy, Levy, and Whited (2007), Erickson and Whited
(2012), and Peters and Taylor (2017). First, we remove firms with SIC codes between 4900
and 4999 (regulated utilities), between 6000 and 6999 (financial services), or greater than
9000 (public services). The excluded sectors are arguably subject to significant accounting
and economic conditions that are outside the scope of our model, such as extensive regulatory
and government oversight.

We drop firm-year observations in which any of the required data values are missing and
apply the following four additional screens. First, we require that a firm’s net Property, Plant,
and Equipment (Compustat item PPENT) measured in real 2012 dollars not be less than
5 million. To calculate the real net PP&E, we use the Gross Private Domestic Investment
price deflator from NIPA Table 1.1.9 (item 7). Second, we drop firm-years in which the
absolute value of pre-tax writedowns (item WDP) exceeds 10% of the beginning-of-period
gross PP&E (item PPEGT). Significant write-downs can indicate the firm’s capital stock is
impaired or obsolete, yet they can also be related to other accounts on the firm’s balance
sheet such as inventory, accounts receivable, or goodwill. When write-downs are very large
relative to the firm’s gross PP&E, they are particularly likely to be at least partially driven
by these items. We also drop observations in which our estimate of the useful life of the
firm’s capital goods (presented below) is less than zero. Finally, we only keep firms that have
at least five years of usable data. All variables that are defined as ratios are winsorized at
the 0.1% level. Our ultimate sample consists of 124,728 firm-years with 8,255 unique firms.

4.2. Capital stock and replacement cost of assets

In this section, we describe the main empirical measures employed in our study. In
defining these measures, we seek to make them easily constructable from the firms’ most
recent financial statements and not reliant on the availability of long investment histories.
Such measures are useful for two reasons. First, sufficiently long investment histories are
only available for a relatively small share of firm-years. Second, even when such histories are
available, the earlier literature questions the performance of perpetual inventory algorithms
for estimating the replacement cost of assets (see, e.g., Erickson and Whited, 2006).

According to our model, two important economic quantities describe the composition
of the firm’s capital goods: its current capital stock, Kt+1, and the replacement cost of its
assets in place, RCt. The importance of the capital stock comes from the fact that it serves
as a natural deflator in the calculation of Tobin’s Q and other variables that need to be
scaled by some measure of size of the firm’s productive capacity. Under the assumption of
one-hoss-shay productivity that we impose throughout this section, Kt+1 is simply equal to
the sum of all investment expenditures that survive up to date t:

Kt+1 = It + ...+ It−T+1.
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Therefore, a straightforward measure for Kt+1 in our model is the firm’s gross PP&E (item
PPEGT) at date t. Although the use of PPEGT as a scaling variable is relatively common
in the investment literature (see, e.g., Fazzari, Hubbard, and Petersen, 1988; Erickson and
Whited, 2012; Peters and Taylor, 2017; and Lin et al., 2018), our model appears to provide
the first theoretical justification for this measure.

Now let us turn to the replacement cost of assets in place, given by eq. (13) in the
one-hoss-shay setting. Even under all the simplifying assumptions imposed so far, precise
estimation of this quantity requires measures of r, T, and the latest T investments. Note,
however, that according to Fig. 2, the net book value of a capital good, calculated under
the straight-line depreciation rule, approximates its replacement cost reasonably well, in
particular, for low values of r.4 We therefore use the net book value of PP&E (item PPENT)
as our proxy for RCt. Accordingly, our measure ofRCt/Kt+1 is the ratio of net-to-gross PP&E
at date t.

4.3. Cash and non-cash investment

The most prevalent measure of a firm’s total investment used in the earlier literature is the
firm’s capital expenditures as reported in its statement of cash flows (item CAPX). Another
commonly used measure is the firm’s net investment cash flow, which is also reported in
the cash-flow statement (item IVNCF). Both of these measures, however, exclude significant
components of investment in capital stock and only capture the cash component of the firm’s
investment.

Firms often acquire capital goods without immediately paying their full value in cash.
Particularly common examples of such transactions include leasing, purchases of capital
goods in exchange for a firm’s stock or liability, and capacity expansion through mergers
and acquisitions. Consider, for instance, capital leases. Both accounting standard-setters
and practitioners have long recognized such transactions are essentially equivalent to a com-
bination of a debt issuance (for the present value of future lease payments) and an asset
acquisition (for the same amount). Property, plant, and equipment acquired on capital
leases have long been included in firms’ PP&E accounts. In fact, under the new accounting
standards for leases (IFRS 16 and ASC 842), the capitalization of lease obligations and the
corresponding right-of-use assets is extended to most leases with a duration of more than 12
months. Yet, the acquisition of capital goods with leases is never reflected in the firm’s cap-
ital expenditures or its investment cash flow. The reason is that the interest component of
lease payments is usually included in the firm’s cash flow from operations, and the principal
repayment component is a part of the cash flow from financing activities.5 We expect this
discrepancy between the balance-sheet PP&E accounts and capital expenditures reported in
cash-flow statements to become even more pronounced under the new accounting standards

4See McNichols, Rajan, and Reichelstein (2009) for numerical estimates of this bias. When r = 0, RCt is
in fact equal to PPENT at date t.

5Somewhat surprisingly, Compustat documentation states that item CAPX includes “expenditures for
capital leases.” Firms are not required to disclose the present value of new lease obligations that they had
entered in during the latest accounting period. Some firms provide this information voluntarily, but at least
in cases that we were able to identify, those amounts were not included in item CAPX. We elaborate on this
point below in our discussion of Amazon disclosures.
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for leases. For example, ASC 842 is expected to add $2 trillion to balance sheets of S&P
500 firms (see, e.g., “Transforming The Balance Sheet: Navigating New Lease Standards For
Success,” Forbes, May 1, 2019).

Lewellen and Badrinath (1998) suggest a more comprehensive approach to measuring
total investment, which involves comparing the PP&E values in the firm’s two successive
balance sheets. Both at the beginning and at the end of each period, the firm’s balance
sheet reflects all PP&E that are recognized by accountants as of the current measurement
date, regardless of how the equipment was procured and paid for. The firm’s total investment
in period t+ 1 can then be measured according to the following relation:

Total Investmentt+1 = PPENTt+1 − PPENTt +WDPt+1 +DPCt+1, (31)

where PPENTt is the net book value of PP&E at date t, WDPt+1 is the pre-tax write-down
in period t + 1, and DPCt+1 is the firm’s depreciation expense in period t + 1 as reported
on its cash-flow statement.6 Intuitively, the firm’s investment in period t+ 1 should explain
the change in the PP&E balance from the beginning to the end of the accounting period.
We know, however, that in the absence of new investment, the balance of PP&E would have
been reduced by the depreciation expense and write-down of period t + 1. Therefore, we
define the firm’s total investment as the change in PP&E unexplained by depreciation and
write-downs.

To illustrate the more comprehensive nature of the investment measure in (31), consider
the financial disclosures of Amazon.com, Inc. for financial year 2014. The amount of capital
expenditures reported in its statement of cash flows is $4,893 million, which is the same value
reported in Compustat item CAPX. At the same time, Amazon recognized $4,746 million in
depreciation expense in 2014, and its net PP&E increased by $6,018 million during the year.
Clearly, this increase in net PP&E cannot be explained by CAPX alone. Our measure of total
investment for Amazon in 2014 is equal to $10,764 million. Conveniently for our purposes,
Amazon also voluntarily discloses its own measure of free cash flow used by management
and reconciles this measure with the numbers reported in its cash-flow statement. This
reconciliation makes clear that in addition to $4,893 million in CAPX, Amazon also acquired
$4,008 million in PP&E under capital leases in 2014.7

Both academics and practitioners have long recognized the importance of leasing and non-
cash asset acquisitions. For instance, Eisfeldt and Rampini (2009) show leasing is comparable

6Note that taking the value of the firm’s depreciation expense from its cash-flow statement rather than
its income statement is important. The reason is that in the income statement, the depreciation expense
related to the manufacturing equipment must be reported as a part of the cost of goods sold (COGS) and not
as a separate expense below the gross margin line. If an income statement of a manufacturing firm includes
a depreciation expense outside of COGS, such an expense is related to the administrative facilities of the
firm and not its manufacturing property or equipment. The depreciation expense reported on the cash-flow
statement includes in most cases both the manufacturing and administrative components.

7See subsection “Non-GAAP Financial Measures” in Item 7 (Management Discussion and Analysis) of
Amazon’s 2014 10-K report. The report states that in the calculation of the free-cash-flow measure, “property
and equipment acquired under capital leases is reflected as if these assets had been acquired with cash.” In
Supplemental Cash Flow Information, Amazon further discloses that it acquired $920 million of PP&E under
build-to-suit leases.
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in importance to long-term debt for large firms and is perhaps the most important source
of external finance for small firms. They also find it surprising that “given its quantitative
importance, leasing has been essentially ignored in the theoretical and empirical literature
on investment in both finance and macroeconomics.” Both IASB and FASB have long
tried to achieve an equivalence in presentation between long-term leases and levered asset
acquisitions; they have recently passed standards (IFRS 16 and ASC 842, respectively) that
call for capitalization of not only capital but also operating leases. As a consequence of these
standards, the investment measure in eq. (31) will become even more comprehensive in the
future.

To relate our results to the earlier literature that has largely focused on CAPX, we break
down total investment into its cash and non-cash components. We define cash investment
in period t+ 1 as

Cash Investmentt+1 = CAPXt+1 − SPPEt+1, (32)

where SPPEt+1 denotes cash proceeds from sales of PP&E as reported on the firm’s cash-
flow statement (item SPPE). Then, non-cash investment in period t + 1 can be measured
as

Non-Cash Investmentt+1 = Total Investmentt+1 − Cash Investmentt+1. (33)

We acknowledge that these measures are imperfect for at least two reasons. First, some
part of what we label “Non-Cash Investment” may actually be paid for in cash, which can
happen, for instance, if a firm obtains new capital stock as a part of a cash acquisition of
another company. The newly acquired PP&E will be reflected in the ending balance of the
combined PP&E account, but the corresponding share of the cash expenditure will not be
included in CAPX. Second, when PP&E is sold, an issue arises with the realized gains or
losses on such sales. The firm’s total investment should perhaps be unaffected by such gains
or losses. A gain, for instance, might indicate a firm’s capital good was more valuable than
expected (which can be treated as a positive investment), but, because this capital good is
now sold, the firm’s disinvestment increases by the same amount. If a firm makes significant
gains on sold assets, however, our measure of cash investment will be biased downward and
non-cash investment upwards.8

4.4. Net and replacement investment

Our model suggests another economically meaningful decomposition of the firm’s total
investment: into its net and replacement components. Because we measure Kt+1 as gross
PP&E at date t, we have a correspondingly simple expression for net investment in period
t+ 1:

Net Investmentt+1 = PPEGTt+1 − PPEGTt. (34)

Consequently, replacement investment in period t+ 1 is estimated as

Replacement Investmentt+1 = Total Investmentt+1 − Net Investmentt+1. (35)

8A potential solution here would be to add gains on sales of PP&E to our definition of cash investment. An
issue with this approach is that the corresponding Compustat item (SPPIV) includes not only gains/losses
on sales of PP&E but also gains/losses on sales of other long- and short-term investments (e.g., minority
interests in other companies).
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Following the exposition of our model, we scale all measures of investment in period t + 1
by our measure of capital stock in that period. For instance, our empirical measure of the
total-investment rate in period t+ 1 is given by

it+1 ≡
Total Investmentt+1

PPEGTt
,

where Total Investmentt+1 is measured according to (31). As in the theory part of the paper,
int+1 and irt+1 denote our measures of the net- and replacement-investment rates, respectively.
Let ict+1 and inct+1 denote the cash and non-cash-investment rates. All these rates are scaled
by our proxy for K∗t+1, namely PPEGTt.

Although our empirical measures for net and replacement investment require little data
and are easy to construct, they have several important limitations. For instance, our result
equating the firm’s capital stock to its gross PP&E relies on the assumption that the price of
new capital goods stays constant over time. In inflationary environments, gross PP&E will
understate the firm’s capital stock, which generally needs to be adjusted for inflation. On
the other hand, new vintages of capital goods can become more productive over time due to
technological progress. In that case, the firm’s gross PP&E can overstate its capital stock
because older asset vintages owned by the firm are not as valuable as an equivalent dollar
amount of capital goods of the newest vintage.

The accounting system introduces further biases in our measure of capital stock. First,
although as discussed above, PP&E accounts in our sample include assets on capital leases,
they still do not include assets on operating leases, thus leading to a downward bias in our
measure of Kt+1. Conversely, accountants often underestimate the useful life of capital goods,
in which case some capital that is still providing useful capacity may not be reflected in the
PP&E account. The overall effect of these biases on net investment is even more ambiguous
because it is measured as the change in gross PP&E. Conceivably, these biases can also affect
the breakdown between net and replacement investment in non-trivial ways. For instance,
consider a firm that invests $I in a plant, uses it for 25 years, and, in year 25, replaces it
with a new one. Assume further that accountants estimate the useful life of the firm’s plants
to be only 20 years. Then, our measure of replacement investment will spike from zero to I
in year 20, that is, five years ahead of the actual replacement. The net-investment rate will
drop to −I in year 20 year, thus offsetting the spike in replacement investment, and then
jump to I when the actual replacement takes place. Economically, however, the firm’s net
investment remains zero in all periods in this example and replacement investment equals I
every 25th year. Despite these potential biases, we show below that our measures of both
net and replacement investment have empirical properties consistent with the theoretical
predictions.

4.5. Other variables

In our model, the useful life of capital goods, T , is assumed to be constant over time. In
the empirical section, we measure T for each firm-year as the rounded ratio of the average of
the beginning and ending balances of gross PP&E to the depreciation expense for that year:

Tt ≡
∥∥∥∥PPEGTt + PPEGTt−1

2 ·DPCt

∥∥∥∥ . (36)
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Financial analysts often use the measure in (36) to estimate the average useful life of a
firm’s PP&E. It is justified by the observation that firms overwhelmingly use the straight-
line depreciation rule to account for their fixed assets, and under this rule, the ratio of gross
PP&E to the depreciation expense should be roughly equal to the useful life assumed by the
accountants.

Although eq. (36) provides a reasonable estimate of T in most cases, in some situations,
this estimate is significantly biased upwards. For example, for a firm building its PP&E but
not yet using it, the amount of depreciation recognized in a construction year can be close
to zero, whereas the gross PP&E balance already reflects the amount of investment incurred
up to date. To mitigate the impact of very high estimates of T , we winsorize our measure
at 25 years. In addition, we provide robustness checks based on the subsample of firms for
which the estimated value of T is strictly below 25 years. Fig. 5 graphs the distribution of
our estimates of T for all firm-years in the sample, as well as for firms in the Manufacturing
and HiTech industries. The mean (median) estimated value of T for all firm years is 12.6
(12) years, whereas the corresponding numbers for the HiTech industry are 8.4 (8) years,
and for the Manufacturing industry, 14.7 (14) years. Approximately 5.7% of firm-years in
our sample have an estimated value of T equal to 25 years.

[Fig. 5 here]

Following earlier literature, we define the market value of a firm as the sum of the book
value of its long-term debt, DLTT, the book value of debt in current liabilities, DLC, and the
product of the annual closing price of equity, PRCC F, and the number of common shares
outstanding, CSHO. Tobin’s Q is then calculated as the ratio of the firm’s market value to
its capital stock:

Qt =
DLTTt +DLCt + PRCC Ft · CSHOt

PPEGTt
. (37)

Cash flow is measured as the sum of the following two items from the firm’s cash statement:
income before extraordinary items (IBC) and depreciation expense (DPC). As with other
variables, we scale cash flow by PPEGT.

5. Empirical analysis

5.1. Descriptive statistics

Table 1 reports summary statistics for our main investment variables. The first row of
Panel A reports statistics for the total-investment rate; this rate is then decomposed into
the net and replacement components in rows two and three, and, alternatively, into cash
and non-cash components in rows four and five. Prior literature has largely focused on the
cash component of investment, ict+1. Whereas Table 1 indicates ict+1 is a large component
of it+1, the mean non-cash-investment rate still accounts for approximately one quarter
of the average total-investment rate. The average net-investment rate is about twice the
magnitude of the replacement-investment rate. Therefore, the net-investment rate appears
to be more volatile than any other investment components regardless of the total variance
decomposition. In terms of volatility, irt+1 is the least volatile investment component, whereas
int+1 is the most volatile. Notably, the replacement-investment rate also has the lowest
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percentages of variance attributable to within-firm variation, 64.5%, and within-industry
variation, 96.1%. For the net-investment rate, both of these percentages are the highest at
91.3% and 99.2%, respectively.

The cash-investment rate is the most persistent component: its AR(1) coefficient is
more than four times that of non-cash investment when estimated using either Han and
Phillips’ (2010) or Arellano and Bond’s (1991) procedure. Consistent with conventional
wisdom, Arellano and Bond’s (1991) procedure leads to lower persistence parameters in
most cases, which is arguably due to the weak instruments problem. At least two reasons
exist for the low persistence of non-cash investment. First, firms often resort to non-cash
investment when the amount to be invested is particularly large, and such large investments
are relatively transitory. Second, our measure of non-cash investment includes capital stock
acquired through mergers and acquisitions, that is, events that also have relatively low
persistence. Column “Large it+1” presents some additional evidence on these observations.
In this column, we report the mean values of the different investment rates in the subsample
with unusually large total-investment rate, defined as at least three times its unconditional
mean. According to this column, such investment spikes are primarily driven by jumps in the
net-investment rate (which explain, on average, 86% of the total spike) and by increases in the
non-cash-investment rate. Although the non-cash-investment rate is ordinarily responsible
for 25% of total investment, increases in this rate explain 54% of the extreme investment
spikes.

[Table 1 here]

Panel B of Table 1 documents correlations among different investment components. The
bottom triangle presents Pearson correlations in the full sample, and the upper triangle
reports firm-level time-series correlations averaged across firms. One notable finding present
in both triangles is the negative correlation between int+1 and irt+1. According to our model,
one can expect this correlation to be negative because the net- and replacement-investment
rates have opposite relations with firm growth. When a firm is growing, its net investment is
high, whereas the replacement-investment rate is low because an investment made T periods
ago contributes a relatively smaller share of the current capital stock. Several correlations
have opposite signs in the upper and lower triangles of Panel B. For instance, the correlation
between total- and replacement-investment rates is positive when estimated in the whole
sample, 0.25, but it is, on average, negative when estimated at the firm level, -0.09. We note,
however, that due to a significant variation in firm-level estimates of correlation coefficients,
all negative estimates in the upper triangle of Panel B are not statistically different from
zero.

Table 2 presents summary statistics for other variables used in our empirical analysis.
The main variable that we use to validate our measure of capital stock is future sales growth
- the ratio of sales in period t + 1 to sales revenue in period t minus 1. According to
the model, this variable should be directly related to the growth in capital stock because
revenues in period t + 1 are proportional to K∗t+1 on the optimal investment path. Table 2
shows the mean value of the sales growth rate is 14.4%, and 92% of its variance is due to
the within-firm component. These numbers are comparable to the ones reported in Panel
A of Table 1 for the net-investment rate. However, sales growth appears to be significantly
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more volatile than int+1. This finding indicates our assumption that managers have a perfect
foresight of the transitory shocks to demand (εt+1) is not descriptive. If this assumption is
relaxed to accommodate transitory shocks that are not perfectly observable at investment
time, we can verify that demand growth will in fact be more volatile than net investment.
Importantly, the mean sales growth rate suggests CAPX is indeed an incomplete measure of
total investment, because to sustain a sales growth rate of 14.4% with an investment rate of
14.7%, the replacement-investment rate would have to be only 0.3%, which is an improbably
low long-run value.

Lastly, we note the estimates of the average sales growth rate and the net-investment
rate are relatively high in our sample because we winsorize all ratios only at the 0.1% level.
Such a small level of winsorization preserves some of the extreme growth rates: for instance,
the maximum sales growth in our sample is 1311%, and the maximum net-investment rate
is 488%. Excluding the top 1% of observations for each of these variables leads to the means
of 10.7% for the sales growth rate and 11.2% for the net-investment rate. In calibrating our
model below, we consider 10.7% as an alternative value for the sales growth rate.

[Table 2 here]

5.2. Determinants of future sales growth

One of the main implications of our model is that a firm’s gross PP&E at date t can be
used as a proxy for the firm’s capital stock in period t+1. If a measure is a good proxy for the
firm’s capital stock, then, according to model, its growth rate should be directly related to the
future sales growth. Therefore, studying the determinants of future sales growth is a natural
way to validate our model-implied measures of capital stock and net investment. Table 3
reports regression results of sales growth in period t + 1 onto different sets of dependent
variables, all of which are measured as of date t to avoid a potential look-ahead bias.

[Table 3 here]

Our model suggests three variables that should be associated with a higher future sales
growth – the firm’s net-investment rate, Q (by Proposition 1), and RCt/K

∗
t+1 (by Proposition

2). Columns (1), (3), and (4) of Table 3 show all of these variables are indeed positively
associated with SalesGrowtht+1, and the lagged net-investment rate has the best explanatory
power for future sales growth in specifications both with (Panel A) and without (Panel B)
firm fixed effects. Columns (2) and (5) demonstrate our measure of the net-investment
rate captures almost entirely the growth-related component of the total-investment rate: irt
does not have a significant explanatory power for SalesGrowtht+1. In columns (6)-(10), we
explore whether the coefficient on the net-investment rate retains its economic and statistical
significance once we control for additional variables that can explain SalesGrowtht+1. This
coefficient declines only mildly as more explanatory variables are included, and it remains
statistically significant in all specifications.

Columns (8)-(10) show scaled cash flow is negatively associated with future sales growth.
This finding can be consistent with our model but only in situations in which the permanent
component of growth is not fully controlled for. We note, however, that our theoretical
results relating to cash flow should be interpreted with caution because, for instance, we
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do not model the difference between revenues and operating cash flow. In columns (9) and
(10), we add two more variables to the specification: cash-investment rate (column (9)) and
T−1 (column (10)). Although a statistically negative relation appears to exist between T−1

and future sales growth, neither of the two new variables contributes significantly to the
explanatory power of the empirical model. In an unreported result, we confirm the growth
in, for instance, net PP&E does not predict future sales growth after controlling for int .

[Table 4 here]

To provide a quantitative link between our model and the empirical evidence reported in
Tables 1-3, we perform a simple calibration exercise based on the special case of the model
presented in section 3.3 (eq. 28) with a constant (steady-state) investment growth. Although
this special case is arguably quite restrictive because, for example, it implies all investment
rates are constant at the firm level, this exercise can still shed light on the expected magnitude
of the main variables and sensitivities in our model. Table 4 presents the model calibration
results.

The main parameters to be calibrated are α (capital elasticity of revenue), T (useful life
of capital goods), µ̄ − 1 (sales growth rate), and r (cost of capital). Following Abel and
Eberly (2011), we set α = 0.7. As discussed above, the average sales growth rate is relatively
high in our sample due to our high winsorization threshold. In column (1), we report results
in which the sales growth rate is matched to the one estimated from the full sample; in
columns (2) and (3), we set the sales growth rate equal to the mean of the bottom 99%
quantile. We set T equal to the sample median of 12 years. Lastly, recall that our model
requires that 1 + r > µ̄. Therefore, in columns (1) and (2), we set r equal to 16.5% and
12.5%, respectively. Although these values are higher than what CAPM-like models typically
imply, they are close to the range of values considered in Table 1 of Abel and Eberly (2011),
8%-14%, and broadly consistent with the hurdle rates used by CEOs internally as reported in
Poterba and Summers (1995). Finally, recall the net-to-gross PP&E ratio under the straight-
line depreciation rule corresponds to RCt/K

∗
t+1 only when r is close to zero. Accordingly, we

consider this case in column (3), even though it does not allow us to calculate Q, because it
violates the assumption that 1 + r > µ̄. For comparison, column (4) reports the estimated
values from the full sample.

The calibrated values of Q and int+1 appear to be close to their counterparts estimated
in the data. The calibrated values of RCt/K

∗
t+1 are somewhat higher and the calibrated

values of the replacement-investment rate are lower than the ones observed in the data. This
findings suggests the constant-growth special case is limited in its ability to describe the
actual investment processes: the average composition of capital goods in the sample is older
than the one that would be implied by maintaining the investment rate equal to the average
sales growth for a long period of time. In terms of sensitivities, one notable result is that the
model implies a low coefficient on Q even in the absence of financing frictions. This result is
consistent with Abel and Eberly (2011). The model predicts correct signs for the remaining
three sensitivities that we consider in Table 4 and matches the order of magnitude for the
sensitivities of µ̄ to RCt/K

∗
t+1 and int+1. The absolute value of the estimated sensitivity of µ̄ to

irt+1 is, however, statistically not different from zero and is significantly below its predicted
value. This finding is again indicative of only limited descriptive ability of the constant

28



investment-growth assumption, because for the replacement-investment rate to be highly
sensitive to µ̄, that growth rate would need to be maintained for T periods.

5.3. Determinants of investment components

Table 5 presents results of multivariate regressions for different components of the total-
investment rate. Panel A shows that among the investment-rate components studied in
columns (2)-(4), the net-investment rate is the one that is most sensitive to Q. The net-
investment rate is almost entirely responsible for the sensitivity of it+1 to Q. The coefficient
on Qt in the regression of the cash-investment rate in column (4) is close in magnitude to
the values reported in the earlier literature, yet it only amounts to about 60% of the total
sensitivity of it+1 to Qt. This result suggests the focus on cash investment, which is prevalent
in the earlier literature, can lead to significant underestimation of the investment-Q relation.
In the OLS specification of Panel A, both cash- and non-cash-investment rates are positively
associated with lagged cash flow. As we discussed in connection with eq. (26), our model
implies the net-investment rate should be positively associated with lagged cash flow even
in the absence of financing frictions. Column (2) of Table 5 indeed shows a strong positive
relation between int+1 and CFt/Kt+1. In unreported univariate tests, we confirm the relation
between int+1 and CFt/Kt+1 becomes weaker without firm fixed effects, consistent with our
discussion immediately following eq. (26).

[Table 5 here]

Panel A also provides strong support for our analytical predictions regarding the relations
between investment rates and two vintage-capital proxies, RCt/Kt+1 and T−1. RCt/Kt+1 is
positively associated with the future net-investment rate and negatively with the replacement-
investment rate. Both of these effects are significant; for instance, the t-statistic of RCt/Kt+1

in the regression for future net investment, 11.613, is almost as high as that of Q, 13.003, and
significantly higher than that of cash flow, 5.264. Because the relations between RCt/Kt+1

and net- and replacement-investment rates are of opposite signs, the overall effect on the
total-investment rate is less pronounced, but it is comparable to that of cash flow. T−1 has a
significant positive relation with the total-investment rate but only through the replacement-
investment channel. Comparing the net/replacement and cash/non-cash decompositions of
the total investment, we can see the non-cash-investment rate leans more toward the re-
placement component (although it is more sensitive to Q and cash flow), whereas the cash
component behaves more similarly to the net component.

The estimates reported in Panel A are still subject to the potential problem of measure-
ment errors in Tobin’s Q identified in the earlier literature (see, e.g., Erickson and Whited,
2000; Erickson and Whited, 2012; Erickson, Jiang, and Whited, 2014). Panel B reports esti-
mates corrected for this error-in-variables (EIV) problem using the high-order cumulants and
moments approach developed in Erickson, Jiang, and Whited (2014). Consistent with the
results from these earlier studies, the coefficients on Qt increase significantly (approximately
doubling) in all regressions. This finding reflects a correction for the attenuation bias in
OLS stemming from the EIV problem. By contrast, the cash-flow effect on total investment
declines. The regression coefficient on cash flow is no longer statistically and economically
significant for it+1. An interesting observation in Panel B is that the cash-investment rate
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is still positively associated with cash flow, yet the relation between non-cash investment
and cash flow switches sign. A possible explanation for this finding is that in the absence of
internally generated funds, firms do not reduce the total amount of investment but simply
switch to non-cash options, such as leases.

The magnitudes of coefficients on RCt/Kt+1 increase relative to Panel A. The signs
are still consistent with our model predictions: RCt/Kt+1 is positively associated with net
investment and negatively with replacement investment. Judging by z-statistics, RCt/Kt+1

has the highest explanatory power for the net-, replacement-, and cash-investment rates.
However, because the effects on net and replacement investment have opposite signs, the
coefficient on RCt/Kt+1 for it+1 ends up with a lower z-statistic than that on Qt. The
coefficients on T−1 are now statistically significant for all investment components, yet, as
expected, and consistent with Panel A, this variable has by far the highest explanatory power
for the replacement-investment rate.

[Table 6 here]

Following the earlier literature, in Table 6, we investigate lagged investment effects (see,
e.g., Eberly, Rebelo, and Vincent, 2012). Because for each firm, we only have a relatively
short time series of data, fixed-effect estimators in regressions with lagged dependent vari-
ables are subject to Nickell (1981) bias and are inconsistent as the number of firms gets
large while the number of periods remains small. In Panel A, we present Han and Phillips
(2010) estimates that are consistent in large-N, small-T asymptotics. As in Table 1, the
cash-investment rate is the most persistent component of investment. Regression coefficients
on Qt and cash flow for all components remain similar to those reported in Panel A of Table
5. The RCt/Kt+1 ratio is again positively associated with net investment and negatively
associated with replacement investment, but notably it is now negatively associated with
total investment.

The econometric model in Panel A of Table 6 treats all variables other than the lagged rate
as strictly exogenous in all specifications. However, this assumption is unlikely to hold for
our vintage-capital proxies. For instance, RCt/Kt+1 is a direct function of past investments,
and, as such, it is related to structural errors incorporated in them. Likewise, our estimate of
T−1 is fully determined by past investments and the depreciation expenses associated with
them. Therefore, this variable is also likely to be related to the past values of the structural
error term. We address this problem in Panel B of Table 6 using Arellano and Bond’s
(1991) dynamic panel-estimation procedure and treating Qt and cash flow as exogenous,
and RCt/Kt+1 and T−1 as predetermined. Comparing Panels A and B of Table 6, we note
Arellano and Bond (1991) estimates of the persistence of investment-rate components are
consistently lower than the corresponding Han and Phillips (2010) estimates. This finding
is in agreement with the conventional wisdom that Arellano and Bond (1991) estimates
suffer from the weak-instruments problem. The most significant consequence of treating
RCt/Kt+1 and T−1 as predetermined is the drastic increase in the coefficient on RCt/Kt+1

in the regression of the net invested rate reported in column (2), from 0.161 in Panel A to
0.696 in Panel B. When treated as predetermined, RCt/Kt+1 is strongly positively associated
with the total-investment rate even after controlling for the lagged total-investment rate.
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5.4. Determinants of vintage-capital proxies

Having characterized the performance of our two vintage-capital proxies, RCt/Kt+1 and
T−1, we now turn to analyzing their determinants. Recall that RCt/Kt+1 captures the
“newness” of assets in our model. In Table 7, we present the results of multivariate regressions
of RCt/Kt+1 and T−1 on four variables: Qt, firm size, firm age, and the lagged net-investment
rate. Because RCt/Kt+1 is expected to be higher for newer and growing firms, we expect
this ratio to be positively associated with Q and int , and negatively associated with firm age.
Note RCt/Kt+1 reflects growth in investment over the firm’s full relevant (T -period) history.
Because large firms are the ones that have undergone more aggressive expansion, one can
expect RCt/Kt+1 to be positively associated with size. Our model does not make predictions
regarding the determinants of T−1, so in Table 7, we use the same explanatory variables for
T−1 as for RCt/Kt+1.

[Table 7 here]

Table 7 shows that when only year fixed effects are included in specification (1), Age
and the lagged net-investment rate have the strongest association with RCt/Kt+1. The
signs of these relations are as expected: RCt/Kt+1 declines with Age and increases with the
lagged net investment. Qt does not appear to be related to RCt/Kt+1 after controlling for
other variables, primarily because our multivariate specifications include int , which captures
the impact of current growth. In unreported univariate results, we find Qt is positively
associated with RCt/Kt+1 in empirical models both with and without firm fixed effects.
Once firm fixed effects are included in specification (2), Age and Size become the two most
important determinants of RCt/Kt+1. Note that Size appears to play a more important
role at the firm level than in the cross-section. Whether larger or smaller firms should have
higher RCt/Kt+1 ratios is not a priori clear. Yet, for a given firm, both RCt/Kt+1 and Size
capture the cumulative effect of growth over the past several years. Therefore, one should
expect these two variables to be positively correlated at the firm-level. Table 7 confirms this
intuition. Multivariate results for RCt/Kt+1 show the coefficients on Size and Age increase
significantly when firm fixed effects are included, whereas the coefficient on int declines.

Columns (3) and (4) of Table 7 show Qt and Age have the strongest association with
T−1. The explanatory power of Qt is most evident in the cross-section and is subsumed
significantly by firm-level fixed effects. By contrast, the explanatory power of firm size
again increases when firm fixed effects are included. We note, however, that the adjusted
within-R2 in specification (4) is only 3.2%, suggesting these relations are of limited economic
significance.

5.5. Industry analysis

In addition to the determinants discussed above, one might expect to find significant
differences in investment variables across industries. In Table 8, we report summary statis-
tics for our investment, sales growth, vintage-capital variables, and Qt in Fama-French 10-
industry portfolios. The main focus of our discussion is on Panel A, which reports mean
values for each variable by industry as well as industry rankings per each variable’s mean.

[Table 8 here]
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Several industries stand out in a casual inspection of Panel A of Table 7. HiTech has the
highest total- and cash-investment rates, yet its average sales growth is only ranked fourth.
This difference is explained by the fact that the HiTech industry employs the shortest-lived
capital goods as indicated by the highest average value of T−1 and the highest average
replacement-investment rate. The net-investment rate for the HiTech industry is ranked
fourth, which is consistent with its sales-growth ranking. Tobin’s Q is the second highest
for HiTech, closely following that of Healthcare, perhaps because the physical capital stock
represents only a small share of the economic capital for this industry. By way of contrast,
the Energy industry utilizes the longest-lived capital goods (i.e., has lowest mean of T−1)
and, accordingly, has the lowest average replacement-investment rate. However, Energy
ranks first both in average sales growth and net-investment rate. As a consequence, its
total-investment rate is ranked fifth, just below the middle of the pack. Also, being a
capital-intensive industry, Energy exhibits the lowest Q. Finally, Manufacturing ranks last
or next to last on all components of the investment rate, the sales growth rate, and Tobin’s
Q. This industry also has the second-longest useful life of capital goods. Panel B further
reveals all of the variables have a fairly low volatility in the Manufacturing sector.

Given the differences between Manufacturing and HiTech industries in terms of sales
growth, investment rates, and vintage-capital proxies, it is worthwhile to compare the re-
lations between investment and its determinants between these two industries. Because
of its capital intensity, the Manufacturing industry has played a central role in the earlier
investment research. For the HiTech industry, PP&E is generally understood to be a sig-
nificantly incomplete measure of long-lived assets because it does not include intangibles.9

The differential importance of PP&E in these two industries is also transparent in our data:
whereas the mean (median) Qt is equal to 2.46 (1.53) for Manufacturing, it is equal to 8.88
(3.79) for HiTech. Still, the reported PP&E for technology firms generally includes signifi-
cant components of the internally developed IT infrastructure costs and, under more recent
standards, certain components of the infrastructure costs incurred under cloud-computing
arrangements.

[Table 9 here]

Table 9 reports investment regression results for HiTech and Manufacturing, obtained
using the EIV methodology detailed in Erickson, Parham, and Whited (2017). In Table
10, we present model-calibration results for these two industries that are based on the same
special case of constant investment growth explored in Table 4. In this calibration exercise,
we keep the cost of capital, r, and revenue elasticity of capital, α, at their values in Table
4 (16.5% and 0.7, respectively) and only change the values of T and µ̄. Conceivably, the
parameters that we hold fixed are, in fact, different for these two industries, but our goal in
Table 10 is solely to illustrate the qualitative impact of the parameters that we empirically
estimate in this paper.

Two observations stand out as noteworthy. First, investment is much less sensitive to
Q in the HiTech industry. The estimates in the blue columns of Table 10 show future sales

9Peters and Taylor (2017) construct a new proxy for Q that takes into account investment in intangibles
and show the Q-theory holds more closely when intangibles are included in the definition of capital stock
and investment.
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growth is also less sensitive to Q in the HiTech industry.10 The model also predicts that when
r− µ̄ is low (and thus Qt is high), Qt is relatively more sensitive to µ̄, and therefore, growth
is less sensitive to Qt. Calibrated sensitivities in columns (1) and (3) of Table 10 confirm
this observation. In addition, the omission of intangible investment, which is important for
HiTech firms, from our measure of capital stock is likely to further contribute to the low
sensitivity of investment rates to Qt.

The second interesting observation in Table 9 is that both vintage-capital proxies are
significantly more important in explaining investment in the HiTech industry. For instance,
the average values of RCt/Kt+1 are close between the two industries, yet int+1 is significantly
more sensitive to RCt/Kt+1 for HiTech firms. Calibration results in Table 10 confirm this
finding is expected given the significantly shorter useful life of capital goods in the HiTech
sector. Note that although the average values of RCt/Kt+1 are approximately the same
in columns (1) and (3), the sensitivity of future sales growth to RCt/Kt+1 in column (1) is
significantly greater than that in column (3). The main force driving this calibration result is
the significantly shorter assumed useful life of capital goods in column (1), which is matched
to the median estimated value of T in the HiTech industry. Consistent with results for the
net-investment rate, columns (2) and (4) of Table 10 show the future sales growth is also
more sensitive to RCt/Kt+1 for HiTech firms.

[Table 10 here]

6. Conclusion

In this paper, we extend the Q-theory of investment to capital goods with non-geometric
efficiency. When efficiency is non-geometric, a firm’s replacement cost of assets in place and
its current capital stock are two different linear aggregates of its investment history. For
capital goods with one-hoss-shay efficiency, we construct simple proxies for the net- and
replacement-investment rates, capital stock, and the replacement cost of assets-in-place. We
further decompose the total-investment rate into its cash and non-cash components. Our
findings demonstrate the investment components we propose have substantially different
economic behavior. For instance, the net-investment rate has the best explanatory power
for future sales growth and has the strongest association with Q. By contrast, replacement
investment is mostly determined by the vintage-capital proxies that capture the age profile
of capital goods.

Our analysis in this paper relies on several simplifying assumptions. For example, we as-
sume the firm does not face financing constraints. Conceivably, the effects of such constraints
on the firm’s decisions can depend on the vintage structure of the firm’s assets-in-place. For
instance, in the model of Hennessy, Levy, and Whited (2007), the cost of equity financing
decreases in the firm size (which is captured in our model by its capital stock), and the
amount of credit available to the firm is bounded from above by the liquidation value of
the firm’s capital goods (which in our model, would be determined by the replacement cost
of assets-in-place). Although these two quantities are the same in models with geometric

10Recall that in the special case of constant growth considered in Tables 4 and 10, the sales growth rate
is equal to the net-investment rate in all periods.
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efficiency, they are different when efficiency is non-geometric. It is therefore natural to ex-
pect an interplay between the effects of financing constraints and asset vintage composition.
Rampini (2019) makes the first steps in this area by characterizing the relation between asset
durability and financing under the assumption of one-hoss-shay efficiency over a two-period
useful life.

Although in the theoretical part of paper, we present our main results for arbitrary
efficiency patterns, the empirical analysis relies exclusively on the one-hoss-shay assumption.
In our setting, the main advantage of this assumption is that it is largely consistent with
the assumptions that managers make in preparing financial statements. This assumption,
therefore, enables the construction of simple proxies for net and replacement investment
that can be readily calculated for a broad sample of firms. Clearly, however, not all types
of capital goods are well described by the one-hoss-shay efficiency. Our model can provide
guidance on the measurement of capital stock, replacement cost of assets, and the net- and
replacement-investment rates for capital goods with efficiency patterns other than one-hoss-
shay. Given the availability of equipment-level data, future studies can use our model to
tailor their measures of these quantities to the efficiency patterns identified in the data.
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Appendix A. Proofs

Proof of Proposition 1.
Recall the cum-dividend value function must satisfy the following Bellman equation:

V
(
Ẑt, Zt+1, εt+1,Θt−1

)
= Ẑ1−α

t Kα
t + max

It

{
γEt

[
V
(
Ẑt+1, Zt+2, εt+2,Θt

)]
− It

}
. (A.1)

Consider the following candidate solution for V
(
Ẑt, Zt+1, εt+1,Θt−1

)
:

V
(
Ẑt, Zt+1, εt+1,Θt−1

)
= Ẑ1−α

t Kα
t +

T−1∑
τ=1

vτIt−τ + γ (1− α)MẐt+1 + ν (µ̄)Zt+1, (A.2)

where ν (·) is some function yet to be determined.
Substituting the candidate solution in (A.2) into the Bellman eq. (A.1), we obtain

T−1∑
τ=1

vτIt−τ + γ (1− α)MẐt+1 + ν (µ̄)Zt+1 =

max
It

{
γEt

[
Ẑ1−α
t+1 K

α
t+1 +

T−1∑
τ=1

vτIt−τ+1 + γ (1− α)MẐt+2 + ν (µ̄)Zt+2

]
− It

}
. (A.3)

It is straightforward to verify that for vτ given by (9), the following condition holds:

γvτ − vτ−1 = −cγxτ . (A.4)

Applying (A.4) and recalling that Zt+1 and Ẑt+1 are realized at date t, eq. (A.3) can be
rewritten as

γ (1− α)MẐt+1 + ν (µ̄)Zt+1 =

= max
Kt+1

{
γ
(
Ẑ1−α
t+1 K

α
t+1 − cKt+1

)
+ γEt

[
γ (1− α)MẐt+2 + ν (µ̄)Zt+2

]}
. (A.5)

It follows that K∗t+1 is given by (16).
Because

max
Kt+1

{
Ẑ1−α
t+1 K

α
t+1 − cKt+1

}
= (1− α)MẐt+1,

eq. (A.5) reduces to

ν (µ̄)Zt+1 = γEt
[
γ (1− α)MẐt+2 + ν (µ̄)Zt+2

]
. (A.6)

Given that Et
[
Ẑt+2

]
= Et [Zt+2] = µ̄Zt+1, we have

ν (µ̄) = γ2 (1− α) µ̄M + γµ̄ν (µ̄) , (A.7)
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which implies

ν (µ̄) =
γ (1− α) µ̄M

1 + r − µ̄
.

�

Proof of Proposition 2.
We show RCT/K

∗
T+1 increases in µt+1 for any given trajectory of future uncertainty

resolution, which implies Et
[
RCT/K

∗
T+1

]
increases in µt+1. Observing all realizations of εs

and µs up to s = t + 1, the ratio of the replacement cost of assets at date T to the capital
stock in period T + 1 can be written as

RCT
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v0I
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τ

)
, (A.8)

where the last equality follows from the fact that on the optimal investment path,

K∗τ
K∗τ−1

=
µτετ
ετ−1

,

and that I∗i = K∗i+1 −K∗i for a new firm under the one-hoss-shay productivity assumption.
We now show RCT/K

∗
T+1 increases in each µt+1 holding constant all future values of µt+i

and εt+i. Differentiating (A.8) with respect to µt+1 yields
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It remains to be shown that

vT−tKt ≥
t−1∑
i=1

vT−t+iIt−i.
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Observe that

vT−tKt ≥ vT−t+1Kt = vT−t+1It−1 + vT−t+1Kt−1

≥ vT−t+1It−1 + vT−t+2Kt−1

= vT−t+1It−1 + vT−t+2It−2 + vT−t+2Kt−2

≥ ... ≥
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vT−t+iIt−i,

where the last inequality follows by recalling that K0 = 0. �

Proof of Observation 1.
Note

PV RIt+1 = γIt−T+1 + γ2It−T+2 + ...+ γT It
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r
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where the last two equalities are obtained using eqs. (7) and (13). �

Proof of Observation 2.
When a firm with one-hoss-shay capital goods follows a constant-growth investment path,
its RCt/Kt+1 ratio can be written as
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and only if τ ≥ s∗.
Now consider the expression on the right-hand side of eq. (A.9) and note it can be

rewritten as
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where the inequalities in the underbraces follow from the fact that for one-hoss-shay capital
goods, vT−1 ≤ ... ≤ v0 and the definition of s∗ above. The expression above is then not less
than (
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Appendix B. Model extensions

In this Appendix, we discuss two extensions of the main model of the paper. The goal
of the first extension is to make the model more empirically plausible by introducing a
lagged investment effect documented in the earlier literature (see, e.g., Eberly, Rebelo, and
Vincent, 2012). To this end, we allow for a regime-switching process for the stochastic
demand-shift parameter as in Eberly, Rebelo, and Vincent (2008), Abel and Eberly (2011),
and Eberly, Rebelo, and Vincent (2012). The goal of the second extension is to demonstrate
the main results from our model carry over to variants of the neoclassical investment model
with adjustment costs and perfectly competitive product markets; see, for example, Hayashi
(1982).

In the main model of the paper, the expected growth rate (µ̄) in the permanent component
of the demand-shift parameter (Zt) is constant for each firm; see eq. (4). Due to this
assumption, all variation in the expected net-investment rate comes from the transitory
demand shocks, as demonstrated in eq. (23). Therefore, our main model does not capture the
lagged investment effect observed in the data. Earlier literature shows the lagged investment
effect and cash-flow effects can arise naturally in models with regime-switching demand
growth; see, for example, Eberly, Rebelo, and Vincent (2008), Abel and Eberly (2011),
and Eberly, Rebelo, and Vincent (2012). In particular, the model in Abel and Eberly
(2011) is similar to ours along several dimensions (e.g., investment reversibility, zero capital-
adjustment costs, and a Cobb-Douglas production function) but relies on the assumption of
a homogeneous capital stock.

It is straightforward to extend our model to a regime-switching demand scenario in the
spirit of Abel and Eberly (2011). Specifically, assume that in each period,

Zt+1 = µt+1 · Zt, (B.1)

where with probability λ, the gross rate µt+1 is drawn from some time-invariant distribution
with a finite support in [µmin, µmax], and with probability 1−λ, the growth rate remains the
same as in the previous period, µt+1 = µt. Let Eµ̃ [·] denote the expectation operator over
the values of µ conditional on the arrival of a new regime, and let µ̄ ≡ Eµ̃ [µ̃]; that is, now µ̄
is the unconditional mean of µ.
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It can be verified that in this extended model, the following results hold. First, the
optimal investment policy is still linear in Ẑt+1: K∗t+1 = M

1
α Ẑt+1. Second, the firm’s ex-

dividend equity value at date t is given by

V ex (Zt, µt+1, εt+1,Θt+1) = RCt + γ (1− α)MẐt+1 + Zt+1ν (µt+1) , (B.2)

where

ν (µt+1) ≡ (1− α)Mω

1 + r − (1− λ)µt+1

− γ (1− α)M (B.3)

and ω is a constant given by

ω ≡
{
Eµ̃
[

1 + r − µ̃
1 + r − (1− λ) µ̃

]}−1

. (B.4)

Note that now the last term in the value function depends not only on the current value of
Zt+1, but also on the current growth regime µt+1. Finally, the expected value of the future
net-investment rate is given by

Et
[
int+1

]
=

1

εt+1

{(1− λ)µt+1 + λµ̄} − 1.

The equation above shows Et
[
int+1

]
depends on the current growth regime, µt+1, which with

some probability is the same as the growth regime of the previous period. Therefore, in
this model, the lagged investment rate is positively associated with the expected future net-
investment rate. Because µt+1 also enters the last term of the value function in (B.2), Q
is positively associated with Et

[
int+1

]
, and both of these variables vary over time for each

individual firm.
Let us now turn to the second extension of our model. So far, we have assumed the firm

faces decreasing returns to capital in the product market and does not incur any capital-
adjustment costs. As discussed in Abel and Eberly (2011), these modeling assumptions are
historically more prevalent in the industrial organization literature. In the finance literature,
a common assumption is that the firm participates in a perfectly competitive product market
but its capital-adjustment decisions are costly. Our results can be extended to this latter
setting, albeit with some additional assumptions on the adjustment-cost function.

Specifically, assume the firm’s revenue is linear in Kt,

R
(
Ẑt, Kt

)
= ẐtKt,

but, in addition to the direct cost of investment (It), the firm also incurs a capital adjustment
cost of the following form:

φ

(
Kt+1

Kt

)
Kt,

where φ (·) is a convex function. The assumption that the adjustment-cost function is ho-
mogeneous of degree one, as in the expression above, is standard in the literature. It is
important for our analysis, however, that the adjustment cost depends only on the firm’s
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net, not total, investment rate. In this model, the firm incurs adjustment costs when it
changes its scale of operations; replacement investment is subject only to the direct cost. As
before, we assume Ẑt+1 is observed just before investment It is made.

It is well-known that in the model described above, under the assumption of geometric
economic depreciation, the optimal net-investment rate is a function of Ẑt+1 alone, so that

K∗t+1 = ξK

(
Ẑt+1

)
Kt,

where ξK (·) is some function that depends on the structure of the adjustment cost. Fur-
thermore, the ex-dividend value function is also linear in Kt due to the homogeneity of the
problem:

V ex
(
Ẑt+1, Kt

)
= ξV

(
Ẑt+1

)
Kt.

It can be verified that when the assumption of geometric economic depreciation is relaxed,
the optimal net-investment rate is still determined solely by Zt+1. Yet, the value function
now depends on two aggregates of the investment history – RCt and Kt:

V ex
(
Ẑt+1,Θt

)
= RCt + ξ̃V

(
Ẑt+1

)
Kt.

This result is consistent with the valuation function presented in Proposition 1. Tobin’s Q

can be again written as a sum of two components: one capturing the current state, ξ̃V

(
Ẑt+1

)
,

and another determined by the firm’s investment history, RCt/Kt. Our results in this paper
are primarily driven by assumptions that are imposed on the capital evolution process and
are robust to alternative specifications of the revenue and cost functions commonly used in
the literature.
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Fig. 1. Time evolution of the stochastic demand-shift parameter.
The permanent component of the demand-shift parameter evolves according to Zt+1 = µt+1 ·Zt. The actual
value of the demand-shift parameter in period t+ 1 is given by Ẑt+1 = εt+1 · Zt+1.
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Fig. 2. One-hoss-shay efficiency - replacement cost per unit investment.

The useful life of assets is 15 years. The discount rates are 5% (solid line), 12% (dash-dotted line), and 20%

(dashed line).
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Fig. 3. Optimal investment and valuation with vintage capital.

Assets have a useful life of four periods. In period t + 1, the firm’s capital stock, K∗t+1, consists of four

vintages corresponding to investments It−3 through It, depicted along the vertical axis. The firm generates

revenues of R(Ẑt+1,K
∗
t+1) and has a current cost of capital of cK∗t+1, leaving it with optimal economic profits

of π∗t+1. At the end of period t+1, the oldest vintage, It−3, is fully retired, and the firm experiences a positive

demand shock. The firm’s total investment at date t + 1 is decomposed into its replacement component,

K∗t+1 −Kt+1,t+2, and net investment, K∗t+2 −K∗t+1.
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Fig. 4. Ratio of RCt to K∗t+1.
Assets have a useful life of four periods. In period t + 1, the firm’s capital stock, K∗t+1, consists of four
vintages corresponding to investments It−3 through It, depicted along the vertical axis. At the end of period
t + 1, the oldest vintage, It−3, goes offline. The shaded area represents RCt, and the area of the rectangle
ABCD represents K∗t+1.
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Fig. 5. Distribution of useful life estimates
The useful life of capital goods, T , is estimated as the minimum between the value of eq. (36) and 25 years.
The figure shows the probability distribution of estimated T for all firms in our sample (solid line), and firms
in the HiTech (dashed line) and Manufacturing (dotted line) industries. Each bar shows the percentage of
the sample with the corresponding T .
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Table 1
Summary statistics: investment variables.
The data is obtained from the Annual Compustat Files from 1971 to 2017. Total-investment rate, it+1,
is the ratio of Total Investmentt+1 defined in eq. (31) to PPEGT at date t. Net-investment rate, int+1, is
the ratio of Net Investmentt+1 (eq. 34) to PPEGT at date t. Replacement-investment rate, irt+1, is the
ratio of Replacement Investmentt+1 (eq. 35) to PPEGT at date t. Cash-investment rate, ict+1, is the
ratio of Cash Investmentt+1 (eq. 32) to PPEGT at date t. Non-cash-investment rate, inct+1, is the ratio
of Non-Cash Investmentt+1 (eq. 33) to PPEGT at date t. All investment rates are winsorized at the
0.1% level. In Panel A, column “Large it+1” presents the mean values of different investment rates in
the subsample of firm-years for which it+1 exceeds three times its unconditional mean of 0.198. Columns
“Within-Variation %” report the share of the total variance that remains unexplained after accounting
for the variation in the firm-level and industry-level means. Industry definitions are based on the Fama-
French 10-industry portfolios. Column titled “AR(1)” reports Han and Phillips (2010) dynamic panel
estimates of the first-order autoregressive coefficients (subcolumn “HP”) and the corresponding Arellano
and Bond (1991) estimates (subcolumn “AB”). Panel B reports correlations among different investment
measures. Red-colored elements in the lower triangle report Pearson correlations calculated from the full
sample. Blue-colored elements in the upper triangle report firm-level time-series correlations averaged
across firms. The sample consists of 124,728 firm-years with 8,255 unique firms for all columns except
“Large it+1.” The sample size for the latter column is 7,533 firm-years with 3,786 unique firms. ‡, †,
and ∗ in the upper triangle of Panel B indicate whether the average correlation coefficient is statistically
different from zero at the 1%, 5%, and 10% levels, respectively.

Panel A: Summary Statistics

Mean Std. 25% 50% 75% Large Within-Variation % AR(1)

Dev. it+1 Firm Industry HP AB

it+1 0.198 0.339 0.060 0.124 0.236 1.131 0.844 0.980 0.272 0.224
int+1 0.134 0.329 0.020 0.081 0.181 0.937 0.913 0.992 0.219 0.194
irt+1 0.063 0.135 0.012 0.033 0.076 0.185 0.645 0.961 0.154 0.173
ict+1 0.147 0.193 0.056 0.101 0.176 0.565 0.818 0.978 0.546 0.367
inct+1 0.050 0.239 -0.003 0.007 0.049 0.556 0.851 0.990 0.119 0.085

Panel B: Correlation Matrix

it+1 int+1 irt+1 ict+1 inct+1

it+1 1 0.91‡ -0.09 0.75‡ 0.65∗

int+1 0.91 1 -0.37 0.72‡ 0.58
irt+1 0.25 -0.17 1 -0.09 -0.05
ict+1 0.71 0.71 0.04 1 0.17
inct+1 0.81 0.68 0.32 0.18 1
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Table 2
Summary statistics: explanatory variables.
The data are obtained from the Annual Compustat Files from 1971 to 2017. SalesGrowtht+1 is the ratio
of revenues in period t + 1 (Compustat item SALE) to revenues in period t minus 1. Qt is measured
according to eq. (37). CashFlowt is the sum of Compustat items DPC and IBC scaled by PPEGT. Our
measure for RCt/Kt+1 is the ratio of PPENT to PPEGT at date t. Useful life T is defined in eq. (36),
and T−1 is the inverse of this variable. Age is the number of years between the current one (Compustat
item FYEAR) and the year of the IPO as reported in Compustat item IPODATE. Size is the natural
logarithm of the market value of the firm as defined in the numerator of our Tobin’s Q measure in eq.
(37). All variables that are defined as ratios (i.e., all variables other than Size and Age) are winsorized
at the 0.1% level. Column “Within-Var(%)” reports the percentage of the total variance that remains
unexplained after accounting for the variation in the firm-level unconditional means. For variables other
than Age, the sample consists of 124,728 firm-years with 8,255 unique firms. Using Age reduces the
sample size to 42,301 firm-years with 3,364 unique firms.

Variable Mean SD 25% 50% 75% Within-Var

SalesGrowtht+1 0.144 0.555 -0.012 0.086 0.204 0.920
Qt 4.454 9.462 1.044 1.904 4.126 0.473
CashFlowt 0.187 0.488 0.081 0.156 0.278 0.605
RCt/Kt+1 0.569 0.164 0.455 0.568 0.682 0.463
T 12.580 5.891 8.000 12.000 16.000 0.280
T−1 0.112 0.105 0.062 0.083 0.125 0.356
Age 8.887 9.283 3.000 7.000 13.000 0.492
Size 5.875 2.155 4.233 5.712 7.324 0.198
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Table 3
Future sales growth.
The dependent variable is SalesGrowtht+1. See captions of Tables 1 and 2 for data and variable defini-
tions. Standard errors used to construct the t-statistics (reported in parentheses) are two-way clustered
by year and industry (four-digit SIC code). All regressions include year fixed effects; Panel A (B) reports
results with (without) firm-level fixed effects. ‡, †, and ∗ indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: With Firm FE

int 0.104‡ 0.104‡ 0.100‡ 0.094‡ 0.094‡ 0.090‡ 0.091‡

(8.882) (8.937) (8.823) (8.085) (8.108) (5.953) (6.029)

irt 0.058 0.024

(1.221) (0.513)

Qt 0.009‡ 0.008‡ 0.007‡ 0.009‡ 0.009‡ 0.009‡

(8.108) (7.846) (7.521) (8.893) (9.049) (9.501)

RCt
Kt+1

0.516‡ 0.297‡ 0.305‡ 0.297‡ 0.323‡

(9.53) (5.982) (6.164) (6.545) (6.826)

CF t
Kt+1

-0.090‡ -0.089‡ -0.088‡

(-3.688) (-3.686) (-3.677)

ict 0.015 0.015

(0.613) (0.616)

T−1 -0.477‡

(-5.896)

Adj. R2 0.131 0.100 0.111 0.108 0.131 0.139 0.142 0.146 0.146 0.148

Adj. Within-R2 0.035 0.000 0.013 0.012 0.035 0.045 0.050 0.054 0.054 0.057

Panel B: Without Firm FE

int 0.127‡ 0.127‡ 0.121‡ 0.109‡ 0.108‡ 0.092‡ 0.092‡

(11.425) (11.503) (11.026) (9.888) (9.747) (6.366) (6.367)

irt 0.053 0.012

(1.128) (0.300)

Qt 0.008‡ 0.007‡ 0.007‡ 0.008‡ 0.008‡ 0.009‡

(7.600) (7.145) (7.493) (9.803) (9.264) (9.830)

RCt
Kt+1

0.528‡ 0.374‡ 0.367‡ 0.349‡ 0.341‡

(8.945) (7.136) (7.124) (7.536) (7.603)

CF t
Kt+1

-0.117‡ -0.116‡ -0.114‡

(-4.778) (-4.724) (-4.719)

ict 0.056∗ 0.059†

(1.913) (2.006)

T−1 -0.142‡

(-2.990)

Adj. R2 0.063 0.012 0.029 0.034 0.063 0.075 0.086 0.095 0.096 0.097

Adj. Within-R2 0.051 0.000 0.018 0.023 0.051 0.064 0.075 0.084 0.085 0.086
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Table 4
Model calibration.
Columns (1), (2), (3), and (5) present calibration results for the constant-growth steady-state version
of the model described by eq. (28): It+1 = µ̄It for all t. Parameters α, T , µ̄,and r are primitives of
the model. User cost c is calculated using eq. (7). The model-implied value of RCt/K

∗
t+1 and irt+1 are

calculated using eqs. (30) and (29), respectively. Tobin’s Q is calculated using the following variant
of eq. (20) obtained under the additional assumption that Ẑt+1 = Zt+1; that is, in the absence of
transitory demand shocks,

Qt =
V ex (Zt+1,Θt)

K∗t+1

=
RCt
K∗t+1

+
(1− α) c

α (1 + r − µ̄)
.

In the constant-growth steady state described above, int+1 ≡ µ̄ − 1. Color-coded column (4) presents
estimates of the model parameters and variables for the whole sample. The sensitivities presented in this
column are estimated from univariate OLS regressions of one-period-ahead sales growth on RCt/Kt+1,
Qt, i

n
t+1, and irt+1, with year fixed effects but without firm fixed effects. ‡, †, and ∗ indicate statistical

significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) Data
Calibration parameters

α 0.70 0.70 0.70 -
T 12 12 12 12.58
µ̄− 1 0.144 0.107 0.107 0.144
r 0.165 0.125 →0 -
c 0.196 0.165 0.083 -

Calibrated variables

RCt/K
∗
t+1 0.793 0.742 0.640 0.569

Qt 4.801 4.676 - 4.454
irt+1 0.036 0.045 0.045 0.063
int+1 0.144 0.107 0.107 0.134

Calibrated sensitivities

∂µ̄/∂
(
RCt/K

∗
t+1

)
1.640 1.391 1.200 0.528‡

∂µ̄/∂Qt 0.005 0.005 - 0.008‡

∂µ̄/∂int+1 1 1 1 0.618‡

∂µ̄/∂irt+1 -4.544 -3.695 -3.695 -0.143
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Table 5
Multivariate regressions for investment components.
The dependent variables are different components of the investment rate in period t+1. See captions of
Tables 1, 2, and 3 for more details on data and variable definitions. Panel A includes firm and year fixed
effects; the standard errors are two-way clustered by year and industry (four-digit SIC code). Panel B
reports estimates corrected for the measurement error in Qt using the methodology from Erickson et
al. (2017). The highest cumulant order used is 5. In Panel A, the pairs of coefficients in columns (2)
and (3) and in columns (4) and (5) sometimes do not exactly add up to the corresponding coefficient in
column (1), due to the winsorization of dependent variables. The econometric model applied in Panel
B is non-linear; therefore, the sums of coefficients in columns (2) and (3) and in columns (4) and (5)
are generally different from the corresponding coefficient in column (1).

(1) (2) (3) (4) (5)
it+1 int+1 irt+1 ict+1 inct+1

Panel A: Multivariate OLS with Firm and Year FE
Qt 0.014‡ 0.012‡ 0.002† 0.008‡ 0.006‡

(11.710) (13.003) (2.390) (15.945) (5.094)
CFt/Kt+1 0.060‡ 0.066‡ -0.004 0.036‡ 0.022†

(4.833) (5.264) (-0.874) (5.005) (2.568)
RCt/Kt+1 0.173‡ 0.336‡ -0.161‡ 0.234‡ -0.059‡

(7.063) (11.613) (-20.041) (11.211) (-4.583)
T−1 0.566‡ 0.022 0.521‡ 0.039‡ 0.525‡

(11.649) (0.837) (13.924) (2.987) (11.846)

Adj. R2 0.296 0.208 0.446 0.349 0.207
Adj. Within-R2 0.143 0.103 0.129 0.163 0.063

Panel B: Using Erickson, Parham, and Whited (2017) EIV model
Qt 0.030‡ 0.024‡ 0.010‡ 0.015‡ 0.023‡

(35.73) (19.81) (32.32) (28.31) (39.94)
CFt/Kt+1 0.004 0.024† -0.036‡ 0.015‡ -0.041†

(0.46) (2.44) (-9.01) (3.05) (-5.00)
RCt/Kt+1 0.221‡ 0.413‡ -0.214‡ 0.297‡ -0.113‡

(14.72) (28.02) (-34.63) (34.56) (-9.36)
T−1 0.277‡ -0.211‡ 0.393‡ -0.091‡ 0.248‡

(5.64) (-4.99) (15.91) (-4.40) (5.32)

ρ2 0.237 0.171 0.185 0.248 0.139
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Table 6
Lagged investment effect.
The dependent variables are different components of the investment rate in period t + 1. See captions
of Tables 1, 2, and 3 for details on data and variable definitions. Variable LaggedRate represents the
lagged (period-t) value of the dependent variable in each regression. Both panels include year fixed
effects. Panel A presents Han and Phillips (2010) estimates of the following econometric model:

yt+1 = a1 + a2yt + a3 (xt − a2xt−1) + εt+1,

where yt is the investment rate corresponding to the given column, a1 is a firm-level constant, a2 is the
persistence parameter, xt is the vector of firm-level explanatory variables (Qt, CFt/Kt+1, RCt/Kt+1,
and T−1), and a3 is the vector of coefficients on explanatory variables. The first row in Panel A reports
a2, and the subsequent rows report the individual components of a3. For this estimation procedure,
the resulting sample consists of 8, 255 unique firms and 111, 971 firm-years. Arellano and Bond (1991)
estimates in Panel B are calculated under the assumptions that Qt and CFt/Kt+1 are exogenous, and
RCt/Kt+1 and T−1 are predetermined. In Panel B, z-statistics are calculated based on robust standard
errors. The sample size in Panel B is 8, 244 unique firms and 103, 802 firm-years.

(1) (2) (3) (4) (5)
it+1 int+1 irt+1 ict+1 inct+1

Panel A: Han and Phillips (2010) estimates
LaggedRate 0.227‡ 0.184‡ 0.095‡ 0.513‡ 0.102‡

(14.03) (13.71) (6.75) (30.10) (6.85)
Qt 0.013‡ 0.011‡ 0.002‡ 0.007‡ 0.006†

(74.93) (59.39) (28.20) (74.33) (42.33)
CFt/Kt+1 0.062‡ 0.065‡ -0.003‡ 0.034‡ 0.027‡

(24.35) (24.47) (-3.17) (26.63) (13.89)
RCt/Kt+1 -0.108‡ 0.161‡ -0.188‡ -0.166‡ -0.117‡

(-10.56) (15.56) (-55.95) (-24.96) (-16.58)
T−1 0.413‡ 0.021 0.469‡ 0.049‡ 0.448‡

(25.70) (1.27) (84.98) (5.43) (38.66)

Panel B: Arellano and Bond (1991) estimates
LaggedRate 0.091‡ 0.073‡ 0.111‡ 0.250‡ 0.034‡

(9.54) (9.30) (9.13) (27.29) (3.52)
Qt 0.015‡ 0.014‡ 0.001‡ 0.007‡ 0.007‡

(14.91) (14.75) (3.83) (15.41) (10.49)
CFt/Kt+1 0.053‡ 0.058‡ -0.005 0.033‡ 0.021‡

(5.96) (6.13) (-1.53) (9.63) (3.13)
RCt/Kt+1 0.584‡ 0.696‡ -0.074‡ 0.223‡ 0.224‡

(14.95) (17.50) (-4.81) (12.06) (7.21)
T−1 0.229‡ -0.139? 0.395‡ -0.065? 0.373‡

(3.75) (-2.45) (13.66) (-2.47) (7.39)
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Table 7
Determinants of RCt/Kt+1 and T−1.
See captions of Tables 1, 2, and 3 for variable definitions and presentation details. In Panel A, for all
variables other than Age, the sample consists of 124,728 firm-years with 8,255 unique firms. For Age
and all regressions in Panel B, the sample size is 42,301 firm-years with 3,364 unique firms.

(1) (2) (3) (4)
RCt/Kt+1 RCt/Kt+1 T−1 T−1

Qt -0.001‡ -0.000 0.004‡ 0.001‡

(-3.636) (-0.204) (8.513) (4.721)
Size 0.014‡ 0.044‡ -0.001 0.006‡

(5.677) (17.857) (-0.810) (3.202)
Age -0.006‡ -0.012‡ -0.001‡ -0.001‡

(-10.202) (-28.484) (-4.451) (-4.217)
int 0.031‡ 0.016‡ 0.004† 0.004‡

(8.977) (7.101) (1.972) (2.626)

Year FE Y Y Y Y
Firm FE N Y N Y
Adj. R2 0.668 0.730 0.506 0.664
Adj. Within-R2 0.109 0.304 0.167 0.032
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Table 9
Investment regressions for Manufacturing and HiTech industries.
See caption of Table 5 for details on data and variable definitions. Both panels report estimates corrected
for the measurement error in Qt using the methodology from Erickson, Parham, and Whited (2017), with
the highest cumulant order used set equal to 5. Panels A and B report the results for the Manufacturing
(27,832 firm-years) and HiTech industries (20,241), respectively. Industry classification is based on
the Fama-French 10-industry portfolios. The econometric model is non-linear; therefore, the sums of
coefficients in columns (2) and (3) and columns (4) and (5) are generally different from the corresponding
coefficient in column (1).

(1) (2) (3) (4) (5)
it+1 int+1 irt+1 ict+1 inct+1

Panel A: Manufacturing Industry
Qt 0.054‡ 0.055‡ 0.002† 0.035‡ 0.003∗

(6.59) (6.81) (5.50) (9.91) (1.94)
CFt/Kt+1 -0.010 0.005 -0.028‡ -0.018 0.068‡

(-0.28) (0.14) (-4.65) (-1.04) (4.42)
RCt/Kt+1 0.100‡ 0.229‡ -0.138‡ 0.173‡ -0.038†

(3.35) (7.49) (-18.06) (10.76) (-2.58)
T−1 0.196 -0.341† 0.518‡ -0.240‡ 0.556‡

(1.17) (-2.29) (7.47) (-3.22) (5.07)

ρ2 0.181 0.165 0.078 0.288 0.027

Panel B: HiTech Industry
Qt 0.013‡ 0.008‡ 0.011‡ 0.007‡ 0.024‡

(11.27) (12.25) (32.03) (17.51) (45.54)
CFt/Kt+1 0.054‡ 0.075‡ -0.050‡ 0.037‡ -0.090‡

(3.74) (6.97) (-7.47) (5.47) (-6.67)
RCt/Kt+1 0.355‡ 0.598‡ -0.345‡ 0.440‡ -0.373‡

(11.46) (21.11) (-18.93) (22.75) (-10.77)
T−1 0.504‡ 0.033 0.330‡ 0.013 0.175‡

(10.57) (0.97) (9.40) (0.55) (2.93)‡

ρ2 0.293 0.229 0.278 0.298 0.394
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Table 10
Model calibration for HiTech and Manufacturing industries.
See caption of Table 4 for details on model calibration. Color-coded columns (2) and (2) present esti-
mates of the model parameters and variables for the HiTech and Manufacturing industries, respectively.
The sensitivities presented in these columns are estimated from univariate OLS regressions of one-
period-ahead sales growth on RCt/Kt+1, Qt, i

n
t+1, and irt+1, with year fixed effects but without firm

fixed effects. ‡, †, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) HiTech (3) (4) Mfg
Calibration parameters

α 0.70 - 0.70 -
T 8 8.355 14 14.660
µ̄− 1 0.155 0.155 0.097 0.097
r 0.165 - 0.165 -
c 0.234 - 0.187 -

Calibrated variables

RCt/K
∗
t+1 0.742 0.499 0.787 0.540

Qt 10.768 8.883 1.966 2.464
irt+1 0.072 0.114 0.037 0.042
int+1 0.155 0.158 0.097 0.095

Calibrated sensitivities

∂µ̄/∂
(
RCt/K

∗
t+1

)
2.176 0.603‡ 1.303 0.341‡

∂µ̄/∂Qt 0.001 0.007‡ 0.055 0.012‡

∂µ̄/∂int+1 1 0.589‡ 1 0.533‡

∂µ̄/∂irt+1 -3.808 0.147 -3.770 -0.626‡
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