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Abstract

Most host-parasite systems exhibit remarkable heterogeneity in the contribution to transmission of 

certain individuals, locations, host infectious states or parasite strains. While significant 

advancements have been made in the understanding of the impact of transmission heterogeneity in 

epidemic dynamics and parasite persistence and evolution, the knowledge base of the factors 

contributing to transmission heterogeneity is limited. We argue that research efforts should move 

beyond considering the impact of single sources of heterogeneity and account for complex 

couplings between conditions with potential synergistic impacts on parasite transmission. Using 

theoretical approaches and empiric evidence from various host-parasite systems, we investigate the 

ecological and epidemiological significance of couplings between heterogeneities and discuss their 

potential role in transmission dynamics and the impact of control.
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Transmission Heterogeneity in Host-Parasite Systems

Heterogeneity, broadly defined as the variability of a property of a system across space, 

time, and/or the system’s individual constituents [1], is a pervasive feature of all host-

parasite transmission systems. Empirical evidence shows that individual hosts can vary in 

their susceptibility to infection and parasite infectiousness or shedding rates (mediated by 

immunological factors or complex host-pathogen interactions); contacts between hosts or 

hosts and vectors tend to be highly variable in space and time and dependent on social, 

behavioral or environmental conditions; and pathogen strains can vary in their level of 

virulence and transmissibility. One of the properties emerging from such individual, 

temporal and spatial variability is the consistent finding of transmission heterogeneity (TH), 

in which certain individuals, locations, age or social groups, host species, or pathogen strains 

are responsible for a high proportion of overall transmission events [2–6]. Superspreading is 

an extreme case of TH in which a disproportionately large amount of transmission events are 

driven by very few individuals [7, 8]. Theoretical and empirical studies indicate that 

interventions that account for TH can have a disproportionately high impact on pathogen 

transmission in comparison to blanket or random implementations [3, 6, 7, 9]. While the 

public health impacts of TH have been extensively evaluated theoretically (e.g., [6, 7, 10–

12]) and manifested in recent infectious disease outbreaks (e.g., the recent Ebola outbreak in 

West Africa [13]), the causal drivers leading to TH are not well understood. In order to 

better account for those extremely important yet rare contributors to transmission and 

improve disease prevention programs, two key questions will first need to be addressed: (1) 

Is TH the result of identifiable traits inherent to specific individuals and/or locations? 2) Can 

we use such traits to predict TH across different epidemiological settings and time points?

Given that TH can arise from a wide array of putative factors, a major challenge infectious 

disease researchers face when addressing these questions is the integration of available 

parasite-related information into a mechanistic framework that allows identification of the 

most epidemiologically relevant sources of heterogeneity [2, 14, 15]. When confronting 

mechanistic models of parasite transmission with epidemiological data, it also becomes 

apparent that there are often multiple factors that could potentially contribute to TH. The 

ways in which these factors interact to determine overall TH is a largely unexplored topic. 

Here, we introduce the concept of “coupled heterogeneities” to capture the interrelated and 

complex interactions among conditions contributing to TH. We apply this concept to dengue 

virus (a multi-strain, vector-borne viral pathogen with well-identified heterogeneities at the 

virus, mosquito vector, and human host levels) and expand it to other vector-borne and 

parasitic diseases to support the notion that accounting for the couplings between key 

heterogeneities could lead to a more effective mechanistic interpretation of parasite 

transmission dynamics and programs designed to prevent disease.
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From Individual to Coupled Heterogeneities

Initial quantifications of TH by Woolhouse et al. [6] and Lloyd-Smith et al. [7] focusing on 

the role of individual heterogeneities, primarily contact rates and infectiousness, provide a 

foundation for understanding the role of functional heterogeneities (see Box 1 for a 

definition) in disease systems. Extensions of these seminal studies have led to the 

development of novel approaches for accounting for functional heterogeneities, including 

the explicit simulation of pathogen transmission within heterogeneous contact networks [16–

18], the consideration of individual- and population-level variability in infectiousness [7, 

19–21], the evaluation of the role of spatial heterogeneity in the emergence of disease hot-

spots [5, 22, 23], and the evaluation of disease severity (or the inclusion of asymptomatic 

infections) in forecasts of pathogen transmission [24–26]. The magnitude of such effect is, 

however, compounded by correlations between functional heterogeneities. As Woolhouse et 

al. [6] note, “The magnitude of the effect of these other heterogeneities at the population 

level is unknown; but they will not decrease R0 unless negatively correlated with the 

variables analyzed here. There may also be effects of ‘higher order’ heterogeneities, all of 

which may further increase R0.”. This observation underscores a key, but poorly explored, 

aspect relevant for the identification of the drivers leading to TH; i.e., the coupled nature of 

functional heterogeneities. Specifically, system properties may be strongly coupled with one 

another for a number of reasons, including multiple symptoms associated with disease 

manifestation, behavioral syndromes, or other phenotypic suites [27], or because of trade-

offs in pathogen fitness [28]. As intimated by Woolhouse et al. [8], the sign of this coupling 

(positive or negative) between functional heterogeneities can significantly influence 

estimates of the basic reproduction number (R0 see Box 1 for a definition), or other 

measures of pathogen transmission.

Box 1

System Properties and Functional Heterogeneities Relevant for Dengue 
Virus Transmission

All individual-level, temporal or spatial attributes of potential epidemiological interest 

(e.g., parasitemia, duration of infectiousness, spatial distribution of people and 

households) can be referred to as ‘system properties’ of a particular disease system [1]. 

For dengue virus (DENV), the most important mosquito-borne viral infection of humans 

[70], a wide array of system properties at the human, virus, vector and environmental 

levels have been identified as crucial for persistent virus transmission (Figure I). At the 

virus level, each of the four DENV serotypes elicits different immune responses in 

humans [71, 72] as well as variable effects on vector competence [20, 73]. Spatial and 

temporal variability in productivity of larval habitats and abundance of the primary 

worldwide vector, Aedes aegypti [74], together with variations in adult Ae. aegypti 
longevity, impact vector survival, virus’ extrinsic incubation period, and, consequently, 

transmission probability [75]. Temperature fluctuations impact Ae. aegypti vectorial 

capacity [76], and immune and/or serotype-specific interactions within human hosts can 

impact disease severity and, likely, the individual infectiousness of humans to mosquitoes 

[35, 77]. Mosquito dispersal and human movement and other behavioral responses to 
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infection are key determinants of effective human-mosquito contacts and thus virus 

transmission [78, 79].

If system properties vary from individual to individual, location to location, or over time 

in a way that impact an epidemiological or ecological measure such as vectorial capacity 

or transmission potential (e.g., the pathogen’s basic reproduction number, R0, defined as 

the expected number of secondary cases produced by a single infection in a completely 

susceptible population), then we refer to this variability as ‘functional heterogeneity’ [1]. 

For dengue, several functional heterogeneities have been identified (black bold font 

words in Figure I). They involve heterogeneous biting, variability in human 

infectiousness to mosquitoes, disease-related behavioral response, herd immunity, vector 

competence and incubation periods in humans and mosquitoes and human daily 

movement patterns Some system properties cannot be predicted exactly but their 

variability may be accurately described through probability distributions. Such properties 

can be said to exhibit ‘stochastic variability’. Stochastic variability can emerge from 

environmental stochasticity (e.g., increase in mosquito larval habitats due to a scattered 

rain event), measurement error (which can increase the variability in estimates of a 

system property) or sampling bias (which can lead to an incomplete characterization of a 

system property). Thus, TH is determined by a combination of functional heterogeneities 

specific to a given transmission system and stochastic variability that obscures and 

potentially alters the relationship between functional heterogeneities and TH. We further 

posit that focusing research efforts on the quantification of couplings between functional 

heterogeneities with strong influence in DENV transmission could increase our ability to 

develop realistic estimates of pathogen transmission and innovative concepts for disease 

prevention.
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Figure I. System properties responsible for dengue virus transmission
Colored boxes identify specific traits known to vary in space (yellow), time or among 

individual people (blue), mosquitoes (red), or viruses (green). Black bold text identify 

functional heterogeneities known to have a direct impact in virus pathogen transmission 

and propagation.

One of the earliest theoretical explorations of coupled heterogeneities was provided by Dietz 

[29] in a model for schistosomiasis transmission. Specifically, he extended Barbour’s [30] 

formulation of the classic Ross-Macdonald model for malaria transmission to include a 

correlation structure between two functional heterogeneities: times for which different 

individuals are exposed to parasites at water ponds (heterogeneity in susceptibility) and rates 

at which different hosts contaminated ponds (parasite shedding rates, i.e. heterogeneity in 

infectiousness). Dietz’s findings, summarized in the following formula:

concluded that the impact of the modeled heterogeneities on R0 depends on their magnitudes 

(quantified by their standard deviations, SD) and the correlation between them (ρhet1,het2). 
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Later, Koella [31] followed Dietz’s approach by extending Dye and Hasibeder’s [32] 

formulation of R0 for malaria transmission (developed to better account for heterogeneous 

biting) to include a covariance structure between three functional heterogeneities: biting rate, 

host susceptibility, and duration of infectiousness [31]. Both theoretical approaches arrived 

to a similar conclusion: positive correlations between two heterogeneous system properties 

increase R0 relative to the situation in which the properties vary independently or do not 

exhibit heterogeneity, whereas negative correlations have the opposite effect. Here, we build 

on these finding by calling attention to these and other effects of coupling between 

heterogeneities, and we use dengue as a case study to investigate the empirical plausibility 

and epidemiological significance of coupled heterogeneities.

Figure 1 is a conceptual summary of known or hypothesized relationships between 

functional heterogeneities and TH that are typical of dengue transmission systems. The 

distribution of the number of secondary infections generated by any one individual in a 

population could be a function of a specific confluence of functional heterogeneities that 

lead to some individuals contributing more to transmission, infecting more mosquitoes, and 

thus generating a higher number of secondary infections (Figure 1A). For instance, a 

negative coupling between out-of-home human mobility and disease severity [33] may result 

in severely ill individuals reducing their movement because of fever, fatigue, and other 

symptoms, and, perhaps, reducing the overall number of mosquito encounters within their 

infectious period across their activity space (Figure 1B). Dengue disease severity may be 

positively coupled with viral titer [34, 35] and thus overall infectiousness to mosquitoes. 

Due to increases in body temperature and lethargy, we may also expect disease severity to be 

positively correlated with attractiveness to mosquitoes and mosquito feeding success (Figure 

1B). Figure 1C summarizes all known couplings between the four functional heterogeneities 

considered here.

To focus on a specific example with plausible couplings between heterogeneities, in Box 2 

we consider a simplified model wherein either positive or negative coupling between 

infectiousness and host-vector contact clearly impacts R0. Even in this basic example, 

different couplings can lead to differing conclusions regarding transmission potential and the 

difficulty associated with parasite elimination; increasing it in one case and decreasing it in 

another. Another implication of this simple model is that if heterogeneities are negatively 

coupled, targeting control efforts on individuals who are at the upper extreme with respect to 

one heterogeneity may have no net effect if those individuals are simultaneously at the lower 

extreme with respect to another epidemiologically relevant heterogeneity. Similarly, benefits 

of targeted control on a single heterogeneity that is positively coupled with another should 

yield greater marginal returns on control than if the heterogeneities were uncoupled. Without 

a mechanistic understanding of couplings, incorrect predictions of control impacts and 

biased inferences about drivers of transmission could be commonplace (particularly if, after 

the consideration of couplings, transmission systems respond much differently to 

perturbation than we think). Given that multiple functional heterogeneities are present in 

dengue transmission systems (Box 1), it is critical that future research address the 

population-level effect of coupled heterogeneities so that interventions can be designed and 

deployed to take better advantage of the inner workings of this complex transmission 

system.
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Box 2

Moving beyond single heterogeneities

Consider a host population with four distinct types representing a two-by-two 

combination of high and low states of infectiousness to vectors (qh, ql) and high and low 

contact with vectors when sick (γh, γl) (Figure IA). Heterogeneity in the latter is assumed 

to derive from heterogeneity in the proportion of time that individuals spend at home 

versus elsewhere. If we consider only a single type of vector and assume that encounters 

between vectors and hosts are well mixed, then R0 is

where parameters are defined in Table I ([32, 80]).

We explored two aspects of coupling between heterogeneities in infectiousness and 

contact with vectors: (1) the direction of coupling (three scenarios in Figure IA, with 

shaded boxes denoting which types are present), and (2) the overall extent of 

heterogeneity (from left to right in Figure IB). Colors in Figure IA and IB are coordinated 

across the three scenarios (i.e., positive, blue; none, black; negative, red), with Figure IA 

indicating the proportion of individuals of each type that are present in a population 

under each scenario. For example, under the positive coupling scenario, the only 

individuals present are those who either have high contact and high infectiousness or low 

contact and low infectiousness. Positive coupling increases R0, negative coupling 

decreases it, and no coupling leads to no change in R0 (Figure IB). As the overall extent 

of heterogeneity increases (i.e., as lows become lower and highs become higher), 

differences due to either positive or negative coupling lead to increasingly large 

departures in R0 relative to the situation in which the heterogeneities are uncoupled (from 

left to right in Figure IB).

Intuitively, a decrease in R0 in the presence of negatively coupled heterogeneities can be 

thought of as a consequence of the two heterogeneities canceling each other out. In an 

extreme example, if highly infectious hosts are never bitten by vectors, then transmission 

cannot occur, despite the presence of highly infectious hosts. Applying similar intuition, 

positive coupling leads to ‘superspreaders’ that are capable of individually contributing 

far more to transmission than individuals who possess either high infectiousness or high 

contact, but not both. Although infectiousness and contact may be much more continuous 

than ‘low’ and ‘high’, the qualitative results about the effects of negative and positive 

couplings on R0 are general. Coupling between other heterogeneities, such as contact 

rates when sick versus healthy, may lead to different results and merit further theoretical 

investigation.
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Figure I. Epidemiologic impact of coupling contact rates and infectiousness
(A) The proportion of the population assigned to each of four types (i.e., low-low, low-

high, high-low, high-high) under different scenarios about coupling. (B) Effects of 

positive (blue), negative (red), or no (black) coupling on R0 given different levels of 

heterogeneity in contact when sick and infectiousness. The extent of heterogeneity in 

contact and infectiousness are assumed to be equal under a given scenario (i.e., at a given 

point on the x-axis in (B)). The overall extent of heterogeneity—i.e., how low is low and 

how high is high—is increased from left to right on the x-axis in (B).

Table I

Parameter definitions and specific values for the 

model in Box 2.
Symbol Definition Value

K Vector biting rate 0.3

V Vector density 1.0

Δ Vector death rate 0.15

P Vector-to-host infectiousness 0.5

Q Host-to-vector infectiousness 0–1

γ Host-vector contact rate 0–1

Ξ Host recovery rate 0.33

H Host density 1.0
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Empirical Support for Coupled Heterogeneities

The perspectives emerging from the study of within host-dynamics and ecological 

immunology are beginning to shed light on the complexities associated with the process of 

host infection and parasite transmission [14, 36], providing fertile ground for the study of 

couplings among functional heterogeneities across a range of disease systems. Such insights 

are also changing the field of epidemiological modeling by providing a higher level of 

granularity in the elaboration of model parameters contributing to TH, the evolution of 

virulence, and the impact of interventions [2, 14, 37–39]. For instance, the recognition that 

pathogen transmission is dependent on trade-offs between individual-level factors affecting 

infectiousness or parasite load (driven by disease severity, immune response, genetic 

attributes of the host and/or pathogen, etc.) and host behavioral changes exerted by those 

conditions (e.g., changes in mobility or frequency of contacts, behavior change due to 

vaccination, etc.) is beginning to gain traction as an important factor driving parasite 

transmission dynamics and evolution [14, 37].

Evidence from multiple host-parasite systems emphasize the epidemiological impact of 

couplings between disease severity, infectiousness, parasite load, and host behavior. A recent 

empirical evaluation of TH in amphibian-parasitizing trematodes used mechanistic 

experiments manipulating host size, behavior, and immunity to evaluate their impact in 

parasite burden. Aggregation of parasites within hosts was dependent on the occurrence of 

particular dyads, of which those including reductions in host behavior (inactivity simulating 

presence of a predator) had the highest influence on patterns of parasite aggregation [40]. 

For malaria, expanding mathematical models by compartmentalizing the human reservoir 

into multiple sub-classes with different infectiousness and exposure profiles (e.g., 

uninfected, subpatent, asymptomatic, and symptomatic) may allow for better estimates of 

disease burden and the impact of interventions [24, 25]. Submicroscopic gametocyte carriers 

(individuals that transmit the sexual stage of the Plasmodium parasite infectious to 

mosquitoes) are primarily asymptomatic and have a lower infectiousness to mosquitoes 

compared to symptomatic individuals with microscopically detectable malaria infections 

[41]. Coupling disease severity status, infectiousness and localized exposure to mosquito 

bites is thus an important new frontier for malaria modeling [5, 42], as is the identification of 

parasite transmission hotspots [22, 25]. A survey performed during the 2009 influenza 

pandemic showed that sick individuals had significantly fewer contacts compared with 

healthy individuals, leading to the general notion of a negative coupling between contact 

rates and disease severity [43].

Due to the role of multiple dynamic, interacting populations of different kinds of hosts (i.e., 

insect and human), many vector-borne and zoonotic systems are more complex than those in 

which transmission is direct and restricted solely to human-human contact networks [44]. In 

particular, reservoir host heterogeneity is a significant functional heterogeneity for zoonotic 

systems. The aggregation of ticks in specific rodent species, age groups, and individuals 

leads to heterogeneous bacteremia of Borrelia burgdorferi, Babesia microti, and Anaplasma 
phagocytophilum, and these heterogeneities appear to be explained by system properties 

such as high population density, small body size, and short generation time [45–47]. In the 

US, American robins (Turdus migratorius) were identified as potential superspreading 
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species for West Nile virus (WNV) transmission in the East and Midwest [48, 49], but not in 

the Southeast [50]. This difference in epidemiological role of robins may be due to intrinsic 

(heterogeneity in infectiousness, e.g., [51, 52]) and extrinsic (avian community composition 

and bird-mosquito encounters, e.g., [49]) factors. Thus, in order to understand how much 

host heterogeneity matters for the dynamics of zoonotic parasites, more information will be 

needed on the structure and magnitude of couplings between heterogeneities with an 

influential role connecting individual reservoir host traits to reservoir species (and 

potentially vector species) community assemblages [44].

These examples point to the value of explicitly understanding how pathogen load, host 

immunity, symptom severity, and host behavior combine to drive TH. Whether such 

information could lead to improved disease management strategies (e.g., by identifying and 

targeting those individuals that disproportionately contribute to TH [3, 6, 7]) will depend on 

the impact of such couplings at the population or community levels. In an elegant 

assessment of the role of anthelmintic treatment on the regulation of the host immune 

response system by parasitic worms on Mycobacterium bovis (bovine tuberculosis) infected 

African buffalo, Ezenwa and Jolles [53] showed that treatment significantly increased 

buffalo survival (i.e., a positive individual-level impact), leading to an increase in the 

duration of bovine tuberculosis infectiousness and an eight- fold increase in M. bovis’s R0; 

i.e., a negative population-level impact. Thus, defining the quantitative link between 

functional heterogeneities and pathogen transmission will depend on carefully collected 

data, proper statistical and quantitative approaches, and the evaluation of the individual- and 

population/community-level implications of couplings for pathogen transmission and 

disease management.

Data and Quantitative Challenges to Reveal Coupled Heterogeneities

The empiric quantification of the structure of couplings between functional heterogeneities 

will require complex study designs focusing on the within-host dynamics, but also capturing 

the inter-individual variability embedded in host populations. Such data needs can be best 

met if studies track (either experimentally or observationally) traits responsible for pathogen 

infection dynamics, the structure of contacts leading to pathogen propagation, the host 

behavioral attributes that may be influenced by infection, and the environmental context 

within which transmission occurred. Experimental infection studies have provided evidence 

of couplings among heterogeneities in non-human infectious diseases and parasites (e.g., 

[40, 51, 54]). For human infectious diseases, however, experimental infection studies are 

unethical, rarely capture disease-related behavioral attributes of individual hosts, and often 

involve small sample sizes. Longitudinal cohort studies examining naturally infected 

individuals to quantify infection-related quantities (e.g., pathogen load, immune response, 

symptoms), together with the structure of their contact networks and behavioral responses to 

infection represent a more amenable design to the study of coupled heterogeneities. Datasets 

meeting such criteria are now being generated for malaria and dengue, as well as other 

infectious agents (e.g., [20, 41, 55, 56]).

As adequate data become available, the quantification of the ecological and epidemiological 

role of coupled heterogeneities will strongly rely on quantitative approaches involving both 
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statistical models of observed associations and mathematical models to illustrate the impact 

of propagating uncertainty through the dynamic system [57]. Here we highlight three classes 

of analytic approaches and the potential strengths and challenges each brings to the 

quantification and understanding of the epidemiological role of couplings (Table 1). 

Importantly, each class of quantitative analysis brings different strengths and challenges, and 

all three will provide valuable insight into the nature and impact of coupled heterogeneities.

Within empiric statistical models, extensions to consider complex correlation structures 

between covariates are technically straightforward but often computationally intensive (e.g., 

structural equation models [58], hierarchical and measurement error models [59]). Such 

approaches could provide information on both the epidemiologic role of couplings as well as 

the functional relationship between heterogeneities after accounting for stochastic effects 

embedded within a models’ random effects [33, 60]. Unfortunately, applications of such 

methodologies to identify coupled heterogeneities in real datasets are rare. One exception is 

the use of time- varying frailty models to explore the effect of host heterogeneities in the 

force of infection of infectious diseases occurring sequentially on the same individual [61, 

62]. The basic assumption of this approach is that high correlation in the occurrence of two 

infections within the same individual should be found for parasites that share a similar route 

of transmission (due to shared conditions associated with exposure such as social contacts, 

mobility, etc.). Such correlations can be equivalent to couplings between functional 

heterogeneities, and frailty models allow embedding individual-level covariates in the 

estimation of force of infection [61, 62]. The observational nature of the data and the non-

unique links between pattern and process mentioned above, however, can create challenges 

in both the statistical identifiability of parameters and the interpretation of the output of 

dynamic models. Coupling empiric quantifications with simulation or modeling could help 

overcome some of the challenges outlined for statistical approaches (e.g., [63]).

Simulation-based analyses (especially with individual-based models [64] or mechanistic 

Bayesian approaches) allow for a high level of flexibility in the consideration of couplings. 

Such approaches can play a crucial and complementary role relative to other quantitative 

approaches, because they allow for the impacts of a nearly endless variety of couplings to be 

explored. A strength of simulation models is their ability to facilitate the development of 

biological intuition and to assess the quantitative plausibility of the impacts of coupled 

heterogeneities on epidemiological outcomes. Confronting these models with data can be 

challenging, however, and development of simulation models always involves a cost 

associated with obtaining sufficient data to parameterize them. Estimation of covariance 

structure between heterogeneities (e.g., disease severity and infectiousness) by fitting 

simulation models to empirical data will be crucial before these or any other models can be 

used to accurately and reliably predict dynamics. Simulations evaluating the role of 

uncertainty in estimation of couplings [65] could, however, provide critical insights about 

their role in overall model performance, as well as, to identify data needs to improve the 

measurement of heterogeneities.

Approaches that utilize somewhat simpler, but nonetheless mechanistic, mathematical 

models will encounter significant analytical challenges in terms of mathematical tractability 

once multiple heterogeneities and their couplings are accounted for. Nonetheless, they also 
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represent a crucial tool in the theoretical exploration of the role of couplings, as outlined in 

Box 2. Extensions of classic modeling frameworks to incorporate couplings (e.g, 

metapopulation, household, or network models) are possible [66, 67]. As we point out in 

Table 1, there is considerable room for improvement in the thoughtful design of 

epidemiological, statistical, and theoretical studies and, importantly, the interactions of the 

three toolsets in order to focus insight on these challenging problems.

Concluding Remarks

The time is ripe for more explicit consideration of the ecological and epidemiological role of 

coupling between functional heterogeneities in host-parasite transmission systems. As 

disease eco-epidemiologists searching for traits responsible of TH and researchers focusing 

on understanding within-host dynamics converge in their questions, data, and analytic 

methodologies, there is an emerging need for a framework that enables them to consider the 

role of multiple, overlapping, and correlated sources of heterogeneity. Given the potential 

synergistic, antagonistic, or additive role of such couplings, the empirical quantification of 

the functional relationship among heterogeneities and the influence they may have on 

parasite transmission metrics (e.g., R0, outbreak size distribution, vectorial capacity) should 

become a focus for future research. Hypothetically, intervention strategies that 

simultaneously target couplings that act synergistically could have a higher impact than if 

only one source of heterogeneity is targeted in isolation (e.g., individuals who engage in 

risky sexual behaviors may have sex with more partners and also be less likely to use 

condoms). Similarly, couplings that contribute disproportionately to transmission could be 

exploited by evolving parasites that are constantly exploring new opportunities for 

maximizing fitness [68, 69]. Such possibilities will not come about though without carefully 

developed field studies and advances in quantitative methods that allow for a comprehensive 

mechanistic understanding of the epidemiological and evolutionary mechanics of coupling 

between functional heterogeneities. Forthcoming endeavors along these lines have the 

potential to contribute to a range of timely questions (see Outstanding Questions Box) that 

must be addressed before the promise of leveraging knowledge of heterogeneities for 

improved control and evolutionary management can be realized.

Outstanding Questions

• To what extent is TH a function of individual-level characteristics, coupled 

heterogeneities or stochastic variation?

• Within a host species, how do within-individual and (meta) population level 

interactions couple?

• If significant couplings are identified and predicted to have a disproportionate 

role in the emergence of TH: How will such information be used to develop 

rational disease mitigation strategies that take such information into 

consideration to identify those who disproportionately contribute to 

transmission?

• Can disease mitigation strategies that target coupled heterogeneities be more 

efficacious than those focused on individual traits?
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• Can couplings among specific heterogeneities modulate rates of pathogen 

evolution?
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Trends Box

• The uneven contribution of certain individuals, locations, parasite strains or 

reservoir host species to transmission --termed transmission heterogeneity-- is a 

widespread attribute of most host-parasite systems.

• Multiple conditions contributing to transmission heterogeneity can be correlated 

with each other, leading to non-linear impacts on parasite transmission potential 

(R0).

• Targeting epidemiologically relevant couplings can lead to more impactful 

control interventions.
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Figure 1. Coupled heterogeneities in dengue virus transmission
(A) The contribution of each individual in a population to dengue virus (DENV) 

transmission (expressed as the individual-level R0, R0,i, defined as the espected number of 

secondary infections produced by each individual in a fully susceptible population) may 

differ between endemic and epidemic settings due to the levels of virus circulation and the 

proportion of individuals that are immune to the circulating serotype(s). With endemic 

transmission, the distribution of R0,i is significantly biased towards zero (due to the high 

proportion of immune individuals) whereas during epidemics a much larger proportion of 

the population contributes to transmission. Despite this difference, the expected distribution 

of R0,i allows grouping the individual contribution of individuals to transmission as poor 

(blue box), intermediate (yellow box) and high (red box). (B) Multiple functional 

heterogeneities can lead to this uneven distribution of R0,i. As an extreme example, 

individuals with high out of home mobility, high infectiousness to mosquitoes, and high 

mosquito attractiveness will infect more mosquitoes and contribute more to transmission 

compared to individuals in the low end of the spectrum for these characteristics. Such 

heterogeneities are not independent from each other. For instance, disease manifestations 

(severity of dengue infection) may be correlated with multiple conditions, positively (green 

lines) or negatively (orange lines). (C) Diagram outlining what is known about the 

correlation structure among various sources of heterogeneity in DENV transmission.
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Table 1

Quantitative approaches to unveil the epidemic role of coupled heterogeneities.

Analytic approach Analytic goals and challenges. Example approaches and potential insights into 
coupled heterogeneities

Theoretical (Mathematical) GOALS:

• Quantification of general properties 
(e.g., R0) derived from dynamical 
systems adjusted for coupled 
heterogeneities.

• Can capture stochastic variability.

• Closed form analytic solutions.

CHALLENGES:

• Complexity of model limited by 
analytic tractability.

• Most past work limited to individual 
heterogeneities.

• Generalizability of group level results 
to individual dynamics with more 
complex transmission heterogeneities.

Patch and metapopulation models

• Assessment of spatial heterogeneities due to 
neighborhood and population-level 
couplings (e.g., movement as a function of 
disease severity class or infectiousness and 
severity class).

Household models

• Allow heterogeneity in contact between risk 
categories (e.g., between household 
members and community members). Could 
allow assessment of impact of 
heterogeneities impacting the relative time 
spent with household members compared to 
community members. Extensions to other 
risk categories possible.

Network models

• Allow assessment of coupling 
heterogeneities between risk factors and 
individual attributes of the contact network 
(e.g., edge/node weights).

Hybrid (Simulation) GOALS:

• Quantify impact of changes in 
dynamic parameters (e.g., through 
heterogeneity or intervention) by 
simulating complex individual-level 
dynamics.

• Generates realizations of the modeled 
process allowing quantification of 
changes, variability, and patters due to 
predefined coupled heterogeneities.

CHALLENGES:

• How to best define coupled 
heterogeneities. Simulation of 
correlated values? Functional 
associations?

• Must assess sensitivity to model 
assumptions and potential impact of 
model misspecification for the 
coupled heterogeneities.

• Impact of model assumptions may be 
difficult to assess.

• Complexities in parameter estimation 
to capture complex relationships

• Uncertainty quantification of impact 
of coupled heterogeneities.

Individual based models.

• Allow implementation of complex couplings 
of heterogeneities but require clear 
specification of the couplings and the 
heterogeneities (dependent on statistical/
mathematical quantification of relationships 
between heterogeneities).

• Provide the largest flexibility in accounting 
for couplings.

• Allow for parameter uncertainty estimations.

• Coupling between contacts and other 
functional heterogeneities easily modeled 
through network models.

Bayesian mechanistic inference (mechanistic TSIR 
models, approximate Bayesian computation).

• Allow combining equation-based 
simulations with data.

• Could address coupled heterogeneities 
through specific equations and mathematical 
structures or through multivariate random 
effects with coupling defined via the 
covariance between random effects.

Empirical (Statistical) GOALS:

• Data-based estimation of associations 
between risk factors and probability 
of infection, adjusted for coupled 
heterogeneities.

Structural equation models.

• Allow specification of families of coupled 
heterogeneities.

• May be quite difficult to fit.

Hierarchical models (multilevel models, random 
effects).
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Analytic approach Analytic goals and challenges. Example approaches and potential insights into 
coupled heterogeneities

• Model coupled heterogeneities 
through correlated error terms, often 
via random effect distributions.

CHALLENGES:

• Repeated measures, temporal, spatial, 
and spatiotemporal correlations.

• Measurement error.

• Confounding factors (measured and 
unmeasured).

• Typical data (e.g., number of reported 
cases per day) may be insufficient to 
support accurate and precise estimates 
of the underlying structure of the 
coupled heterogeneities.

• Computational complexity.

• Limitations in data availability.

• Allow multilevel impacts.

• Allows adjustment for repeated measures on 
the same individual.

• Allow use of random effects to assess both 
group level average associations and 
individual level variation from the group 
level average.

• Could address coupled heterogeneities 
through multivariate random effects with 
coupling defined via the covariance between 
random effects.

• Allows temporal, spatial, and spatiotemporal 
correlations in outputs.

Measurement error models.

• Can allow coupled heterogeneities in risk 
factors through correlated measurement error 
models.

• Could be incorporated into hierarchical 
models above.
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