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MODULAR OPERADS OF EMBEDDED CURVES

SATOSHI KONDO, CHARLES SIEGEL, AND JESSE WOLFSON

Abstract. For each k ≥ 5, we construct a modular operad E
k

of “k-log-
canonically embedded” curves. We also construct, for k ≥ 2, a stable cyclic

operad E
k

c of such curves, and, for k ≥ 1, a cyclic operad E
k

0,c of “k-log-
canonically embedded” rational curves.

1. Introduction

Definition 1.1. Let S be a scheme. We define a k-log-canonically embedded stable
marked curve (C, {σi}ni=1, η) over S to be a stable marked curve (π : C //S, {σi}ni=1),
along with a projective embedding by a complete linear system

η : C // PS



π∗ωC/S

(

n
∑

i=1

σi

)⊗k




∨

.

Isomorphisms of k-log-canonically embedded stable marked curves are defined in
the natural manner.

A pair of stable marked curves (C1, {σi}ni=1) and (C2, {τj}mj=1) can be glued to-
gether to obtain a third such curve (C1∪σk∼τℓ C2, {σi, τj}i6=k,j 6=ℓ), for any choice of k
and ℓ. Similarly, two points σk and σℓ on the same curve (C, {σi}ni=1) can be glued
together to obtain a new curve (C/σk ∼ σℓ, {σi}i6=k,ℓ). In this article, we construct
analogous gluings for k-log-canonically embedded curves. More conceptually, de-

note by E
k

g,n the moduli of k-log-canonically embedded stable curves of genus g
with n marked points (see Definition 4.1). For k ≥ 2 (or k ≥ 1 when g1 = g2 = 0),
we construct maps

(1.1) E
k

g1,n1+1 × E
k

g2,n2+1
// E

k

g1+g2,n1+n2

encoding the gluing of two embedded curves. For k ≥ 5, we construct maps

(1.2) E
k

g,n+2
// E

k

g+1,n

which encode gluing two points together on the same embedded curve. Our main
result is now the following.

Theorem 1.2.

(1) For each k ≥ 5, the maps (1.1) and (1.2) endow the collection {E
k

g,n} with

the structure of a modular operad (in DM-stacks) which we denote E
k
.
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(2) For k ≥ 1, the maps (1.1) endow the collection {E
k

0,n} with the structure of

a cyclic operad (in schemes), which we denote E
k

0,c.

(3) For each k ≥ 2, the maps (1.1) endow the collection {E
k

g,n} with the struc-

ture of a stable cyclic operad (in DM-stacks), which we denote E
k

c .

Further, the maps

E
k

g,n
//Mg,n

given by forgetting the embedding determine maps

(1) of modular operads (in DM-stacks)

E
k

//M,

(2) of cyclic operads (in schemes)

E
k

0,c
//M0,

(3) and of stable cyclic operads (in DM-stacks)

E
k

c
//M.

We refer to the operads E
k

0,c, E
k

c and E
k
as the cyclic, stable cylic, and modu-

lar operads of k-log-canonically embedded curves. These operads expand the small
collection of examples of cyclic, stable cyclic and modular operads in schemes and
DM-stacks. We were led to them by the analogy between M and the topological
modular operad Mtop of smooth, connected, oriented surfaces with boundary. Be-
cause the space of embeddings of a manifold M in R

∞ is contractible, the operad
Mtop is equivalent to the operad (up to coherent homotopy) E∞

top of smooth, con-
nected, oriented surfaces with boundary inside R

∞. This equivalence provides the
starting point for many results on moduli of topological surfaces (e.g. Madsen and
Weiss’s proof of the Mumford conjecture [MW07]). It is natural to ask whether
one can similarly obtain information about the moduli of stable marked curves by
studying moduli of embedded curves. We hope to pursue this in future work.

Acknowledgements. We are very grateful to Kyoji Saito and Kavli IPMU for
making this collaboration possible by hosting the third author during the 2013–
2014 academic year. We thank the editors and the anonymous referees for helpful
comments and suggestions.

2. Preliminaries on Curves

Definition 2.1 (cf. [Knu83]). Let S be a scheme, and let g and n be non-negative
integers such that n ≥ 3−2g. A stable marked curve of genus g over S, (C, {σi}ni=1),
is a flat, projective morphism

π : C // S,

of relative dimension 1, along with pairwise disjoint sections

σi : S // C

for i = 1, . . . , n. We require that, for all geometric points s of S,

(1) the fibers Cs are reduced, connected curves with at most nodal singularities,
(2) the points σi(s) lie in the smooth locus of Cs for all i,
(3) h1(Cs,OCs

) = g, and
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(4) the normalization Cν
a,s of each irreducible component of Cs contains at least

3−2ga,s special points, where ga,s is the arithmetic genus of Cν
a,s and where

a point is special if it is either a point of the form σi(s) or the pre-image of
a node.

Now let C //S be a curve, i.e. a flat, projective morphism of relative dimension
1, not necessarily connected. We further assume that for each geometric point
s of S, the fiber Cs has at most nodal singularities. Let σ1, σ2 : S // C be two
disjoint sections such that for each geometric point s of S, σ1(s) and σ2(s) lie in
the smooth locus of the fiber Cs. Define Cgl := C/σ1 ∼ σ2, denote the quotient map
by gl : C // Cgl, and let σ := gl ◦ σ1 = gl ◦ σ2. Recall that for each line bundle L
on Cgl we have a short exact sequence

(2.1) 0 // L // gl∗gl
∗L // σ∗σ

∗L // 0.

Next, recall that the canonical line bundle ωC/S of a family of nodal curves, defined

as det(Ω1
C/S), admits the following description (cf. [Knu83, p.163]). Every section

α of ωC/S, when restricted to the fiber Cs over a geometric point s of S, is a rational
1-form αs on the normalization of Cs. Moreover, αs has at most simple poles at
the pre-images {p±,s} of the nodes {ps} and

resp+,s
αs + resp

−,s
αs = 0

for each node ps of the fiber Cs. Along with Nakayama’s Lemma, this implies that
we have a canonical exact sequence of OCgl-modules

(2.2) 0 // ωCgl/S
// gl∗ωC/S(σ1 + σ2) // σ∗OS

// 0.

Choosing L = ωCgl/S and taking the obvious vertical maps from (2.1) to (2.2), an
application of the 5-lemma tells us that gl∗gl

∗ωCgl/S
∼= gl∗ωC/S(σ1 + σ2).

Lemma 2.2. In the situation above, let D ⊂ Cgl be a divisor such that D // S is
a flat map of degree d, and such that for each geometric point s of S, the fiber Ds

is supported on the smooth locus of the fiber Cgl
s . Then for each k ≥ 1, there is a

short exact sequence

0 // ωCgl/S(D)⊗k
// gl∗ωC/S(D + σ1 + σ2)

⊗k
// σ∗OS

// 0.

Proof. If we take L = ωCgl/S(D)⊗k, then (2.1) becomes

0 // ωCgl/S(D)⊗k
// gl∗gl

∗ωCgl/S(D)⊗k
// σ∗OS

// 0.

It remains to show that gl∗gl
∗ωCgl/S(D)⊗k ∼= gl∗ωC/S(D + σ1 + σ2)

⊗k.
Using Nakayama’s Lemma, it suffices to check that this isomorphism holds at

each geometric point s of S. Let Us ⊂ Cs be an open set such that either both
or neither of the points σ1(s) and σ2(s) are in Us. So long as both gl∗ωCgl

s
(Ds)

⊗k

and ωCs
(Ds + σ1(s) + σ2(s))

⊗k agree on every such Us, the pushforwards will be
isomorphic. By the above discussion, we see that

Γ(Us, gl
∗ωCgl

s
(Ds)) ∼= Γ(Us, ωCs

(Ds + σ1(s) + σ2(s)))

for each such Us, and therefore

Γ(Us, gl
∗ωCgl

s
(Ds)

⊗k) ∼= Γ(Us, ωCs
(Ds + σ1(s) + σ2(s))

⊗k)

as required. �
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Now let C be a nodal curve over a field κ and let ν : Cν //C be its normalization.
Recall that for any line bundle L on C we have a short exact sequence

(2.3) 0 // L // ν∗ν
∗L //ON

// 0

analogous to (2.1). By reasoning analogous to the proof of Lemma 2.2, we also
have the following.

Lemma 2.3. In the situation above, let D be a divisor on C. Denote by N the
divisor of nodes on C, and denote by P the divisor of pre-images of nodes in the
normalization Cν . Then for each k ≥ 1, there is a short exact sequence of OC-
modules

0 // ωC(D)⊗k
// ν∗ωCν (D + P )⊗k

//ON
// 0.

Proposition 2.4 (Riemann–Roch). Let κ be a field, and let C be a curve of arith-
metic genus g over κ, with at most nodal singularities. Let L be a line bundle on C
of total degree d. Then we have

h0(C, L)− h1(C, L) = d− g + 1.

Proof. Let ν : Cν // C be the normalization of C and let N be the divisor of nodes
in C. The sequence (2.3) gives a long exact sequence on cohomology

0 //H0(C, L) //H0(Cν , ν∗L) //H0(N,ON ) //H1(C, L) //H1(Cν , ν∗L) // 0.

Exactness then implies that

h0(C, L)− h0(Cν , ν∗L) + j − h1(C, L) + h1(Cν , ν∗L) = 0,

where j is the length ofN . We can rearrange terms and apply the smooth Riemann–
Roch theorem:

h0(C, L)− h1(C, L) = h0(Cν , ν∗L)− h1(Cν , ν∗L)− j

=
∑

a

da −
∑

a

ga + ℓ− j

where ℓ is the number of irreducible components Cν
a of Cν , da is the degree of L

restricted to the component Cν
a , and ga is the geometric genus of Cν

a . Using that
d =

∑

a da and g =
∑

a ga − (ℓ− 1) + j, we conclude the result. �

Lemma 2.5. Let (C, {σi}ni=1) be a stable marked curve over a field κ. Then, for
k ≥ 2, we have

h0



C, ωC

(

n
∑

i=1

σi

)⊗k


 = (2k − 1)(g − 1) + kn.

When C has arithmetic genus 0, the same formula holds for k ≥ 1.

Proof. Stability and k ≥ 2 (or k ≥ 1 for genus 0) imply that ωC⊗
(

ωC (
∑n

i=1 σi)
⊗−k

)

has negative degree on each component of C, and thus

H1



C, ωC

(

n
∑

i=1

σi

)⊗k


 = 0.
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If C is smooth (or even just irreducible), then by Riemann–Roch, we have

h0



C, ωC

(

n
∑

i=1

σi

)⊗k


 = k(2g − 2 + n)− g + 1

= (2k − 1)(g − 1) + nk.

For non-smooth C, let N be the divisor of nodes of C and let j be the length of N .
Let ν : Cν // C be a normalization of C, and let P be the divisor of pre-images of

the nodes. Because H1
(

C, ωC (
∑n

i=1 σi)
⊗k
)

= 0 (as we showed above), Lemma 2.3

shows that we have a short exact sequence
(2.4)

0 H0
(

C, ωC (
∑n

i=1 σi)
⊗k
)

// H0
(

C, ωC (
∑n

i=1 σi)
⊗k
)

H0
(

Cν , ωCν (
∑n

i=1 σi + P )
⊗k
)

// H0
(

Cν , ωCν (
∑n

i=1 σi + P )
⊗k
)

κj// κj 0// .

Write Cν as a union of its irreducible components Cν =
⋃ℓ

a=1 C
ν
a . Denote by {σ(a,i)}

the set of marked points on the component Cν
a , and define na := |{σ(a,i)}|. Denote

by ga the geometric genus of Cν
a . Denote by Pa the restriction of P to Cν

a , and
define pa := deg(Pa). Then:

h0



C, ωC

(

n
∑

i=1

σi

)⊗k


 = h0



Cν , ωCν

(

n
∑

i=1

σi + P

)⊗k


− j,

h0



Cν , ωCν

(

n
∑

i=1

σi + P

)⊗k


 =

ℓ
∑

a=1

h0






Cν
a , ωCν

a





∑

(a,i)

σ(a,i) + Pa





⊗k





,

and

h0






Cν
a , ωCν

a





∑

(a,i)

σ(a,i) + Pa





⊗k





= deg






ωCν

a





∑

(a,i)

σ(a,i) + Pa





⊗k





− ga + 1

= k(2ga − 2 + na + pa)− ga + 1

= (2k − 1)(ga − 1) + k(na + pa).

Substituting back, we get

h0



Cν , ωCν

(

n
∑

i=1

σi + P

)⊗k


 =

ℓ
∑

a=1

h0






Cν
a , ωCν

a





∑

(a,i)

σ(a,i) + Pa





⊗k






=

ℓ
∑

a=1

((2k − 1)(ga − 1) + k(na + pa))

= (2k − 1)
ℓ
∑

a=1

(ga − 1) + k
ℓ
∑

a=1

(na + pa)

= (2k − 1)

(

ℓ
∑

a=1

ga − ℓ

)

+ k(n+ 2j).
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Using that g =
∑ℓ

a=1 ga − (ℓ− 1) + j, we have

h0



Cν, ωCν

(

n
∑

i=1

σi + P

)⊗k


 = (2k − 1)(g − 1) + j + kn.

In light of the exact sequence (2.4), this implies the result. �

3. Gluing Embedded Curves

Definition 3.1. Let S be a scheme. A marked, k-log canonically embedded curve
over S consists of the data (C, {σi}

n
i=1, η), where

(1) π : C // S is a flat, projective morphism of relative dimension 1,
(2) the pair (C, {σi}) is a disjoint union of stable marked curves over S,
(3) η denotes a projective embedding over S by a complete linear system

η : C // PS



π∗ωC/S

(

n
∑

i=1

σi

)⊗k




∨

.

Our goal in this section is to prove the following.

Theorem 3.2 (Gluing Embedded Curves). Let S be a scheme. Let (C, {σi}ni=1, η)
be a marked, k-log-canonically embedded curve over S. Denote by ℓσ1,σ2

the line in

PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

spanned by σ1 and σ2. If k ≥ 5, then:

(1) There exists a section

γ : S // ℓσ1,σ2

depending functorially in S.
(2) The projection from γ gives an embedding

Cgl := C/σ1 ∼ σ2
ηgl

// PS



π∗ωCgl/S

(

n
∑

i=3

σi

)⊗k




∨

.

If σ1 and σ2 live on different connected components of C, then the claims hold for
k ≥ 2. If, in addition, all components of C have arithmetic genus 0, then the claims
hold for k ≥ 1.

Remark 3.3. We choose σ1 and σ2 for notational convenience. Our proof applies
equally well to any choice of i and j.

Proof. To prove the theorem, we need to establish the claims 1 and 2.

1. Constructing the Section.

Lemma 3.4 (Claim 1). Let S be a scheme, let k ≥ 2, and let (C, {σi}ni=1, η) be
a marked, k-log-canonically embedded curve over S. Denote by ℓσ1,σ2

the line in

PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

spanned by σ1 and σ2. Then there exists a section

γ : S // ℓσ1,σ2
,

depending functorially in S.
If all irreducible components of C have arithmetic genus 0, and if σ1 and σ2 lie

on different connected components, then we can take k ≥ 1.
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Proof. Define Cgl := C/σ1 ∼ σ2. Denote the quotient map by gl : C // Cgl, and let
σ := gl ◦ σ1 = gl ◦ σ2. By Lemma 2.2, we have a short exact sequence

0 ωCgl/S (
∑n

i=3 σi)
⊗k

// ωCgl/S (
∑n

i=3 σi)
⊗k

gl∗ωC/S (
∑n

i=1 σi)
⊗k

// gl∗ωC/S (
∑n

i=1 σi)
⊗k

σ∗OS
// σ∗OS 0// .

Pushing this sequence forward to S along the projection πgl : Cgl // S, we obtain
a long exact sequence

0 πgl
∗ ωCgl/S (

∑n
i=3 σi)

⊗k
// πgl

∗ ωCgl/S (
∑n

i=3 σi)
⊗k

πgl
∗ gl∗ωC/S (

∑n
i=1 σi)

⊗k
// πgl

∗ gl∗ωC/S (
∑n

i=1 σi)
⊗k

πgl
∗ σ∗OS

//

R1πgl
∗ ωCgl/S (

∑n
i=3 σi)

⊗k
// R1πgl

∗ ωCgl/S (
∑n

i=3 σi)
⊗k

R1πgl
∗ gl∗ωC/S (

∑n
i=1 σi)

⊗k
// R1πgl

∗ gl∗ωC/S (
∑n

i=1 σi)
⊗k

0// .

Because k ≥ 2 (or k ≥ 1 if C and Cgl have arithmetic genus 0), degree considerations
combine with Grothendieck–Riemann–Roch to show that the higher direct image
sheaves vanish. Because πglσ = 1S and πglgl = π, we can rewrite the cohomology
long exact sequence as the short exact sequence

0 πgl
∗ ωCgl/S (

∑n
i=3 σi)

⊗k
// πgl

∗ ωCgl/S (
∑n

i=3 σi)
⊗k

π∗ωC/S (
∑n

i=1 σi)
⊗k

// π∗ωC/S (
∑n

i=1 σi)
⊗k

OS
// OS 0// .

Dualizing and projectivizing, we obtain the sequence

S PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨γ

// PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

PS

(

πgl
∗ ωCgl/S (

∑n
i=3 σi)

⊗k
)∨

//❴❴❴

where the dashed arrow indicates the projection from the point γ.
The first map gives the desired section

S PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨γ

// .

We must still show that γ factors through ℓσ1,σ2
. We have the map

C PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨η

// PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

PS

(

πgl
∗ ωCgl/S (

∑n
i=3 σi)

⊗k
)∨

//❴❴❴

which comes from restricting the linear system π∗ωC/S (
∑n

i=1 σi)
⊗k

to the sections

in πgl
∗ ωCgl/S (

∑n
i=3 σi)

⊗k
. These sections, by construction, agree on σ1 and σ2.

Thus, this composition factors through Cgl, and γ factors through ℓσ1,σ2
. �

2. Verifying that Projecting Gives an Embedding. It remains to show that project-
ing from γ induces an embedding ηgl of the glued curve Cgl. Because the projection
from γ is a map over S, it suffices to check that it gives an embedding on fibers.
Therefore, throughout this section, we assume that S = Spec(κ) for a field κ.

The following proposition provides the basis for our approach.

Proposition 3.5. [Har77, Proposition IV.3.7] Let κ be a field, let C be a curve in
P
3
κ, let γ be a κ-point not on C, and let η′ : C // P

2
κ be the morphism determined

by projection from γ. Then η′ is birational onto its image and η′(C) has at most
nodes as singularities if and only if:

(1) γ lies on only finitely many secants of C,
(2) γ is not on any tangent line of C,
(3) γ is not on any secant with coplanar tangent lines, and
(4) γ is not on any multisecant of C.
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Now let (C, {σi}ni=1, η) be a marked k-log-canonically embedded curve over the
field κ. We show that any κ-point γ ∈ ℓσ1,σ2

on the line spanned by σ1 and σ2

satisfies an analogue of Proposition 3.5. As a first step, we have:

Lemma 3.6. Let k ≥ 2, and let (C, {σi}ni=1, η) be a marked k-log-canonically em-
bedded curve over the field κ, and suppose C is a disjoint union C1⊔C2 with σ1 ∈ C1
and σ2 ∈ C2. Then the projection from a point γ ∈ ℓσ1,σ2

\ {σ1, σ2} is an iso-
morphism on C \ {σ1, σ2} with a nodal singularity at σ = ℓσ1,σ2

. Further, if all
components of C have arithmetic genus 0, then the result holds for k ≥ 1.

Proof. By Lemma 3.4, our assumptions on C and k guarantee the existence of γ.
The fibers of the projection restricted to C are intersections with lines through γ.
In other words, any line through γ intersecting C in more than one point is a fiber
where the map is non-injective. Thus, to show the map is injective, it suffices to
show that γ lies on a unique secant line of C. To see that it is an isomorphism,
we note that, if γ lies on a unique secant, then the projection from γ will be an
isomorphism at any point where the line intersects the curve transversely, so we
just need to rule out the existence of tangent lines to C containing γ.

We first observe that any k-log-canonical embedding of C = C1 ⊔ C2 will embed
Ci in disjoint projective subspaces, which, up to a projective linear transformation,
we can take to be

P(H0(Ca, ωCa
(Da)

⊗k)) ⊂ P(H0(C, ωC(
∑

i

σi)
⊗k)),

where Da denotes the divisor Ca ∩
∑

i σi for a = 1, 2. From this, we immediately

see that, if γ ∈ ℓσ1,σ2
\ {σ1, σ2}, then γ is not contained in P(H0(Ca, ωCa

(Da)
⊗k))

for a = 1, 2. Therefore, γ does not lie on any tangent line of C. Similarly, if p, q ∈ C
are two points in Ca, then the secant line ℓp,q is contained in P(H0(Ca, ωCa

(Da)
⊗k))

and therefore does not contain γ. From this we also see that C has no multisecants
connecting C1 and C2. Therefore, for any four points σ1 6= p ∈ C1 and σ2 6= q ∈ C2
are in general position, and ℓσ1,σ2

∩ ℓp,q = ∅. We conclude that ℓσ1,σ2
is the unique

secant containing γ. �

For k ≥ 5 and no assumptions on σ1, σ2, we can prove a stronger statement than
the conditions of Proposition 3.5. A priori, it suffices to change the first requirement
so that γ lies on a unique secant ℓσ1,σ2

. Using ℓp,q for the line between p and q,we
now rephrase (and strengthen) the four criteria as:

(1) for all p, q ∈ C, ℓp,q ∩ ℓσ1,σ2
= ∅ unless {p, q} ∩ {σ1, σ2} 6= ∅,

(2) for all p ∈ C, TpC ∩ ℓσ1,σ2
= ∅ unless p ∈ {σ1, σ2},

(3) for all p, q ∈ C, TpC ∩ TqC = ∅ unless p = q, and
(4) C has no multisecant.

We can further simplify as follows. Recall that the length of a zero-dimensional
scheme X over a field κ is the dimension of the κ-vector space H0(X,OX). We
now note that conditions 1–3 are special cases of the same thing. In particular,
if we begin with condition 1, and take the limit as q approaches p, we arrive at
condition 2, and as σ1 approaches σ2, we get 3. Second, C has no multisecants if
and only if C has no trisecants. With these changes, the statement becomes the
following.

Proposition 3.7. Let C be a curve in P
N
κ , and let σ1, σ2 ∈ C. Then the projection

from a point γ ∈ ℓσ1,σ2
\ {σ1, σ2} is an isomorphism on C \ {σ1, σ2} if:
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(1) C ⊂ P
N
κ has no trisecant.

(2) No length 4 sub-scheme of C is contained in a plane.

Proof. As noted above, the fibers of the projection restricted to C are intersections
with lines through γ. The absence of a trisecant line guarantees that fibers consist
of at most two points. The lack of a quadrisecant plane guarantees that there is
only one line through γ which intersects the curve in at least two points. Thus,
away from ℓσ1,σ2

, the projection map is injective on the curve C. As noted above,
to see that it is an isomorphism, it remains to rule out the existence of tangent lines
to C containing γ. Such a line would, along with ℓσ1,σ2

give a length 4 sub-scheme
of C contained in a plane (through γ); by hypothesis, none exists. �

We now verify that every marked k-log-canonically embedded curve satisfies the
conditions of the proposition.

Lemma 3.8. Let C =
⋃

Ca be a nodal curve (with irreducible components Ca) of
arithmetic genus g over a field κ. Let ga be the geometric genus of the normalization
Cν
a of Ca. Let L be a line bundle of degree d on C, let La be the pullback to Cν

a of
L, and let da := degLa. Assume that, for all a, da ≥ 2ga + 2 + ja, where ja is the
number of preimages of nodes in Cν

a . Then C has no trisecant lines when embedded
by the complete linear system |L|.

Proof. A trisecant is an effective divisor T of degree 3 that is contained in a line. For
a curve embedded by the complete linear system of a line bundle L, this condition
on T can be rewritten as h0(C, L)−h0(C, L(−T )) = 2. Riemann–Roch (Proposition
2.4) tells us that

h0(C, L)− h1(C, L) = d− g + 1, and

h0(C, L(−T ))− h1(C, L(−T )) = d− g − 2.

Applying Serre duality and then subtracting one from the other, we get
(

h0(C, L)− h0(C, L(−T ))
)

−
(

h0(C, ωC ⊗ L−1)− h0(C, ωC(T )⊗ L−1)
)

= 3.

This equation implies that, in order to show that T is not a trisecant, it suffices to
show that

h0(C, ωC ⊗ L−1)− h0(C, ωC(T )⊗ L−1) = 0.

In particular, it suffices to show that both terms vanish. A line bundle can be shown
to have no global sections by checking that there is no component on which the
degree is positive. Thus, we want 2ga−2+ja−da < 0 and 2ga−2+3+ja−da < 0.
We see that da ≥ 2ga + 2+ ja suffices for both. �

Lemma 3.9. In the situation of Lemma 3.8, assume that, for all a, da ≥ 2ga+3+
ja. Then, when embedded by the complete linear system |L|, C has no quadrisecant
planes.

Proof. Let T be an effective divisor of degree 4 on C that is contained in a plane.
Then, by a similar calculation as in the proof of Lemma 3.8, the divisor T must
satisfy

h0(C, ωC(T )⊗ L−1)− h0(C, ωC ⊗ L−1) = 1.

By the degree condition, ωC ⊗L−1 already has negative degree on each component,
and so has no global sections. Therefore, T is contained in a plane if and only if

h0(C, ωC(T )⊗ L−1) = 1.
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However, we can compute that the degree on each component is

2ga − 2 + ja + 4− da = 2ga + 2 + ja − da.

By hypothesis, this is negative. �

A direct computation now shows that if (C, {σi}ni=1) is a disjoint union of stable

curves, then deg
(

ωC (
∑n

i=1 σi)
⊗k
)

satisfies the conditions of Lemma 3.9 (and thus

Lemma 3.8) so long as k ≥ 5.

Corollary 3.10 (Claim 2). Let k ≥ 5. Let S be a scheme, and let (C, {σi}ni=1, η)
be a marked, k-log-canonically embedded curve over S (as in Theorem 3.2). Then

the projection from γ in PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

induces an embedding ηgl of

Cgl in PS

(

π∗ωCgl/S (
∑n

i=3 σi)
⊗k
)∨

.

This concludes the proof of Theorem 3.2. �

4. Moduli of Pluri-Log-Canonically Embedded Curves

We now introduce a smooth DM stack E
k

g,n parameterizing stable curves C, of
genus g, with n marked points {σi}ni=1 in the smooth locus of C, equipped with a

projective embedding η by the complete linear system ωC (
∑n

i=1 σi)
⊗k

.

Definition 4.1. Let k ≥ 2. We define the moduli stack of k-log-canonically em-

bedded marked curves E
k

g,n to be the DM stack representing the functor

S 7→ {(C, {σi}
n
i=1, η)}

which maps a scheme S to the groupoid of stable curves of genus g with n-marked

points and a k-log-canonical embedding η : C // PS(π∗ωC/S (
∑n

i=1 σi)
⊗k

)∨. When

g = 0, we can take k ≥ 1, in which case E
k

0,n is in fact a scheme.

Remark 4.2. We see that E
k

g,n is representable and smooth over Spec(Z) as follows.

Denote by V (g, n, k) //Mg,n the “k-log-Hodge” bundle, whose fiber at (C, {σi})
is given by H0(C, ωC(

∑

i σi)
⊗k)∨. Because any two projective embeddings by a

complete linear system differ by a change of basis, E
k

g,n
//Mg,n is a torsor for the

relative group scheme PGL(V (g, n, k)) //Mg,n of projective linear automorphisms

of V (g, n, k). Further, the torsor E
k

g,n has a section, given by sending a curve C to the

embedding which sends a point x ∈ C to the hyperplane Hx ⊂ H0(C, ωC(
∑

i σi)
⊗k)

consisting of sections vanishing at x. Therefore the torsor trivializes, and E
k

g,n is

isomorphic to PGL(V (g, n, k)) over Mg,n. In less elementary fashion, one could

also directly exhibit a smooth atlas for E
k

g,n by a construction analogous to the

construction of Mg,n from the Hilbert scheme.

Every S-point of E
k

g,n+2 or E
k

g1,n1+1 × E
k

g2,n2+1 determines an embedded curve

satisfying the conditions of Theorem 3.2.1 Because the section γ in Theorem 3.2 is
natural with respect to base change, Theorem 3.2 immediately implies the following.

1For E
k

g1,n1+1 × E
k

g2,n2+1, take the disjoint union of the factors.
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Corollary 4.3. For each k ≥ 2 (and k ≥ 1 for g1 = g2 = 0), there exists a map

E
k

g1,n1+1 × E
k

g2,n2+1
// E

k

g1+g2,n1+n2
.

For k ≥ 5, there exists a map

E
k

g,n+2
// E

k

g+1,n.

These maps fit into commuting squares

Mg1,n1+1 ×Mg2,n2+1 Mg1+g2,n1+n2
//

E
k

g1,n1+1 × E
k

g2,n2+1

Mg1,n1+1 ×Mg2,n2+1

��

E
k

g1,n1+1 × E
k

g2,n2+1 E
k

g1+g2,n1+n2

// E
k

g1+g2,n1+n2

Mg1+g2,n1+n2

��

and

Mg,n+2 Mg+1,n
//

E
k

g,n+2

Mg,n+2

��

E
k

g,n+2 E
k

g+1,n
// E

k

g+1,n

Mg+1,n

��

.

Remark 4.4. In the case g = 0, k = 1, the discussion of Section 3 could be carried
out for embedded stable genus 0 curves (C, {σi}ni=1, η) which are further equipped
with the canonical isomorphism

ϕ : Pn−2
S

∼=
// PS

(

π∗ωC/S(

n
∑

i=1

σi)

)∨

.

which sends the standard coordinate points of P
n−2 to the n points in general

position {σi}ni=1 . We could then consider the functor

S 7→ {(C, {σi}
n
i=1, η, ϕ)}

which maps an S-scheme to a stable, marked log-canonically embedded curve of
genus 0 with the specified trivialization of the ambient projective bundle. In the
notation of the previous remark, this functor is represented by the closed subscheme
H1

0,n of the Hilbert scheme of Pn−2. Kapranov [Kap93] has shown that the forgetful

map H1
0,n

//M0,n is an isomorphism. Kapranov’s work can thus be understood
as a first instance of gluing maps for log-canonically embedded stable curves.

For larger g and k, one could similarly consider framed k-log-canonically em-
bedded stable marked curves, i.e. curves as above equipped with a collection of
(2k − 1)(g − 1) + nk + 1 points in general position containing the n marked points
as a subset. The constructions of Section 3 extend to framed k-log-canonically em-
bedded curves. However, we do not know, even in the genus 0 case for k > 1, how
to ensure that the gluing maps for framed curves satisfy the necessary equivariance
properties required of a cyclic (and thus a modular) operad as required for the next
section.

5. Modular Operads of Embedded Curves

In this section, we prove Theorem 1.2. For the reader familiar with modular
operads, we remark that, given the above construction of the gluing maps, the only
non-trivial point which remains is to prove that the gluing maps are associative.
For the rest of our readers, we begin by recalling the definition of modular operads
and stating what it is we need to show. Readers familiar with these notions should
feel free to skip the following paragraph.
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Review of Modular Operads. Our goal in this paragraph is to provide a minimal
list of things one must produce to exhibit a modular operad. For a more elegant
and thorough treatment, we refer the reader to the article [GK98], which we take
as our primary reference.

Definition 5.1. Denote by Sn the permutation group on n elements {1, . . . , n}.2

For π ∈ Sm, ρ ∈ Sn, and 1 ≤ i ≤ m, denote by

π ◦i ρ ∈ Sm+n−1

the permutation which re-orders {i, . . . , i+n−1} according to ρ and then re-orders
the set of sets {{1}, . . . , {i− 1}, {i, . . . , i+ n− 1}, {i+ n}, . . . , {m+ n− 1}} by π.
Explicitly,

(π ◦i ρ)(j) :=























π(j) j < i and π(j) < π(i),
π(j) + n− 1 j < i and π(j) > π(i),
π(i) + ρ(j − i+ 1)− 1 i− 1 < j < i+ n,
π(j − n+ 1) j ≥ i+ n and π(j − n+ 1) < π(i),
π(j − n+ 1) + n− 1 j ≥ i+ n and π(j − n+ 1) > π(i).

Let (D,⊗, σ) be a symmetric monoidal category3 such that ⊗ preserves coprod-
ucts, for example D could be the category of DM-stacks with the Cartesian product.
We further assume that there exists an initial object 0 ∈ D; e.g. 0 could be the
DM-stack ∅.

Definition 5.2. An operad in (D,⊗, σ) consists of:

(1) for each non-negative integer n ∈ N, an object P(n) ∈ D with a homomor-
phism Sn

// Aut(P(n)), and
(2) for each 1 ≤ i ≤ m, a map ◦i : P(m)⊗ P(n) // P(m+ n− 1).

We require that these satisfy the following conditions. For π ∈ Sm, ρ ∈ Sn, and
1 ≤ i ≤ m, we require

(5.1) (π ◦i ρ) · ◦i = ◦π(i) · (π ⊗ ρ)

as maps P(m)⊗ P(n) // P(m+ n− 1).
For 1 ≤ i < j ≤ ℓ, we require

◦j+m−1 · (◦i ⊗ 1P(n)) = ◦i · (◦j ⊗ 1P(m)) · (1P(ℓ) ⊗ σ)(5.2)

and for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ m, we require

◦i+j−1 · (◦i ⊗ 1P(n)) = ◦i · (1P(ℓ) ⊗ ◦j)(5.3)

as maps P(ℓ)⊗ P(m)⊗ P(n) // P(ℓ+m+ n− 2).
We define a map of operads P1 // P2 in the obvious manner, i.e. it consists of

a collection of equivariant maps P1(n) //P2(n) for all n ∈ N which intertwine the
various maps ◦i for P1 and P2.

Remark 5.3. To make sense of these axioms, it is helpful to picture P(n) as a
collection of labels for trees with one outgoing leaf and n incoming leaves marked
1, . . . , n; the group Sn acts by permuting the markings of the incoming leaves. In
this picture, the map ◦i corresponds to gluing the outgoing leaf of a tree in P(n) to
the ith-incoming leaf of a tree in P(m) to obtain a tree in P(n+m−1). Axiom (5.1)

2By convention, S0 is the trivial group, i.e. the group of automorphisms of the empty set.
3σ denotes the symmetry isomorphism.
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requires that if we first relabel and then glue, this is equivalent to gluing first and
then relabelling in the natural fashion. Axioms (5.2) and (5.3) require the gluing
of three trees to be associative in the natural fashion.

Denote by Sn+ the permutation group on n+1 letters {0, . . . , n}. Denote by τn
the cycle (01 · · ·n).

Definition 5.4. A cyclic operad is an operad P in (D,⊗, σ) such that, for each
n ∈ N, the Sn-action on P(n) extends to an Sn+-action

4 and such that

(5.4) τn+m−1 · ◦m = ◦1 · (τn ⊗ τm) · σ

as maps P(m)⊗ P(n) // P(m+ n− 1).
We define maps of cyclic operads in the obvious manner.

Remark 5.5. In the picture of Remark 5.3, the objects P(n) of a cyclic operad can
be pictured as a collection of labels for trees with one outgoing and n incoming
leaves, where we are also allowed the permute the outgoing leaf with the incoming
leaves. Equivalently, we can view P(n) as a collection of labeled trees with n + 1
leaves marked 0, . . . , n, where Sn+ acts by permuting the markings on the leaves.
Axiom (5.4) requires that if we first relabel using the extra symmetry in Sn+ and
then glue, this is equivalent to gluing first and relabelling in the natural fashion.

Notation 5.6. If P is a cyclic operad, we write P((n+1)) for the object P(n). In
this notation, we have

◦i : P((m))⊗ P((n)) // P((m+ n− 2))

for m,n > 1. We will also consider cyclic operads P for which we define P((0)).
However, we do not assume the existence of maps ◦i with source P((m))⊗ P((n))
for either m or n equal to 0.

Definition 5.7. A stable cyclic operad is a cyclic operad P such that for each
non-negative integer n ∈ N, there exists an Sn-equivariant decomposition

P((n)) :=
∐

g∈N

P((g, n))

such that P((g, n)) = 0 if n < 3 − 2g, and such that, for all 1 ≤ i ≤ m and n > 0,
the map ◦i restricts to a map

P((g,m))⊗ P((h, n)) // P((g + h,m+ n− 2)).

Remark 5.8. In a stable cyclic operad, we can picture the object P((g, n)) as a
collection of labels for dual graphs of stable curves of genus g with n marked points.
In this picture, the maps ◦i correspond to gluing the first leg of a graph in P((h, n))
to the ith leg of a graph in P((g,m)), and relabelling the remaining legs accordingly.

Definition 5.9. Let n ≥ 2, let ρ ∈ Sn, and let i 6= j ∈ {1, . . . , n}. Denote by
ρ\{i,j} ∈ Sn−2 the induced bijection

{1, . . . , n−2}
∼=

//{1, . . . , n}\{i, j}
ρ

//{1, . . . , n}\{ρ(i), ρ(j)}
∼=

//{1, . . . , n−2},

where the first and last bijections are the canonical order-preserving bijections.

4Under the embedding Sn →֒ Sn+ corresponding to the inclusion {1, . . . , n} ⊂ {0, . . . , n}.



14 SATOSHI KONDO, CHARLES SIEGEL, AND JESSE WOLFSON

Definition 5.10. A modular operad is a stable cyclic operad P such that for each
g, n and i 6= j ∈ {1, . . . , n}, there exists a map

ξij : P((g, n)) // P((g + 1, n− 2))

such that the following properties are satisfied. For each ρ ∈ Sn, we require

(5.5) ρ\{i,j} · ξij = ξρ(i)ρ(j) · ρ

as maps P((g, n)) // P((g + 1, n− 2)).
For 1 ≤ i 6= j 6= k 6= ℓ ≤ n, we require

(5.6) ξij · ξkℓ = ξkℓ · ξij

as maps P((g, n)) // P((g + 2, n− 4)).5

We further require

ξ12 · ◦m = ◦m−2 · (ξ12 ⊗ 1P((h,n)))(5.7)

ξm,m+1 · ◦m = ◦m · (1P((g,m)) ⊗ ξ12)(5.8)

and

ξm−1,m · ◦m = ξm+n−2,m+n−1 · ◦m−1 · (1P((g,m)) ⊗ τ−1
n )(5.9)

as maps P((g,m))⊗ P((h, n)) // P((g + h+ 1,m+ n− 4)).
We define maps of modular operads in the obvious manner.

Remark 5.11. A modular operad is a stable cyclic operad with extra structure
encoded by the maps ξij . If we picture P((g, n)) as a collection of labels for dual
graphs of stable marked curves, then the maps ξij correspond to gluing together
the i and j legs of a graph Γ to obtain a new graph Γ′. As usual, Axiom (5.5)
requires that relabelling and then gluing is equivalent to gluing first and relabelling
in the natural fashion. Similarly, Axioms (5.6)–(5.9) require the various operations
involving gluing two pairs of legs together to be associative in the natural fashion.

Proof of Theorem 1.2. Because the forgetful maps E
k

g,n
//Mg,n are Sn-equivariant,

by Corollary 4.3, it suffices to verify that the gluing maps on {E
k

g,n} form a modular
operad in order to conclude that the forgetful maps

E
k

g,n
//Mg,n

determine a map of operads (the analogous observation applies to the cyclic and

stable cyclic operads E
k

0,c and E
k

c ).
Further, the construction of the gluing maps in the proof of Theorem 3.2 imme-

diately implies that the equivariance axioms (5.1), (5.4) and (5.5) are all satisfied
in each case. Therefore, it only remains prove that the gluing maps satisfy the
associativity properties (5.2), (5.3) and (5.6)–(5.9). These will all be immediate
consequences of the following lemma.

5Note that we are abusing notation slightly on the left hand side of (5.6) by writing ξij to denote
the map which corresponds to the image of the pair i, j under the identification {1, . . . , n}\{k, ℓ} ∼=
{1, . . . , n− 2}. An analogous abuse of notation also occurs on the right hand side.
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Lemma 5.12. Let k ≥ 5, let S be a scheme, and let (C, {σi}ni=1, η) be a marked
k-log-canonically embedded curve over S. Denote by

(Cgl12,34 , {σi}
n
i=5, η

gl12,34 )

the embedded curve obtained by first gluing σ1 to σ2, and then gluing σ3 to σ4.
Likewise, denote by

(Cgl34,12 , {σi}
n
i=5, η

gl34,12 )

the embedded curve obtained by first gluing σ3 to σ4, and then gluing σ1 to σ2. Then
there exists a canonical isomorphism

(Cgl12,34 , {σi}
n
i=5, η

gl12,34 ) ∼= (Cgl34,12 , {σi}
n
i=5, η

gl34,12 ).

The same conclusion holds if k ≥ 2 and {σ1, σ2}, {σ3, σ4} lie on disjoint compo-
nents of C and Cgl. In addition, if all components of C have arithmetic genus 0,
then we can take k ≥ 1.

Proof. The associativity of the classical gluing maps for curves guarantees the ex-
istence of a canonical isomorphism

(Cgl12,34 , {σi}
n
i=5)

∼= (Cgl34,12 , {σi}
n
i=5).

Using this isomorphism, our observations about the vanishing of higher direct image
sheaves imply that there exists a commuting diagram of OS-modules with exact
rows and columns:

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k

π∗ωC/S (
∑n

i=1 σi)
⊗k

//

π∗ωCgl12,34/S (
∑n

i=5 σi)
⊗k

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k

��

π∗ωCgl12,34/S (
∑n

i=5 σi)
⊗k

π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k
// π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k

π∗ωC/S (
∑n

i=1 σi)
⊗k

��

π∗ωC/S (
∑n

i=1 σi)
⊗k

OS
//

π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k

π∗ωC/S (
∑n

i=1 σi)
⊗k

��

π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k

OS
// OS

OS

OS OS

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k

OS

��

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k

π∗ωC/S (
∑n

i=1 σi)
⊗k

// π∗ωC/S (
∑n

i=1 σi)
⊗k

OS

��

OS 0//

π∗ωC/S (
∑n

i=1 σi)
⊗k

OS

��

π∗ωC/S (
∑n

i=1 σi)
⊗k

OS
// OS

0
��

.

Dualizing and projectivizing, we obtain a commuting diagram

S PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

//

∅

S
��

∅ S// S

PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

��

PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

PS

(

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k
)∨

//❴❴❴❴❴

S

PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

��

S SS

PS

(

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k
)∨

��

S PS

(

π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k
)∨

//

S

S

S PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

// PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

PS

(

π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k
)∨

��
✤

✤

✤

PS

(

π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k
)∨

PS

(

π∗ωCgl12,34/S (
∑n

i=5 σi)
⊗k
)∨

//❴❴❴❴

PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

PS

(

π∗ωCgl34/S

(

∑

i6=3,4 σi

)⊗k
)∨

��
✤

✤

✤

PS

(

π∗ωC/S (
∑n

i=1 σi)
⊗k
)∨

PS

(

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k
)∨

//❴❴❴❴❴ PS

(

π∗ωCgl12/S (
∑n

i=3 σi)
⊗k
)∨

PS

(

π∗ωCgl12,34/S (
∑n

i=5 σi)
⊗k
)∨

��
✤

✤

✤

where the dashed arrows indicate the projections. The commutativity of the lower
right square implies that ηgl12,34 = ηgl34,12 . �
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Remark 5.13. There is an equivalent, although more manifestly geometric, formula-
tion of the above argument. Each of the pairs of points {σ1, σ2} and {σ3, σ4} lying
over eventual nodes gives a point on the line between them. Then, projection from
one point followed by projection from the image of the other, in either order, is the
same map as projection from the line spanned by the two points. Here, the equiva-
lence of the embeddings follows from the fact that these are just two factorizations
of the same projection map, with one-dimensional center.
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