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ABSTRACT 

 

Correlated Structure-Property Relationships in Cementitious Solids via 

Unconventional Spin Polarization Transfer  

 

by 

 

Nathan Andrew Prisco 

 

Mechanical properties of composite materials are often hierarchical emerging from 

atomic-level structures, chemical and physical interactions, dimensions and distributions of 

ordered or disordered domains, and dynamics over time scales relevant to the process or 

system. Identifying correlated structure-property relationships is central to the rational design 

of advanced structural composites, but is challenging for systems with heterogeneous 

compositions, poor long-range order, and low particle surface areas. Advanced solid-state 

nuclear magnetic resonance (NMR) techniques are sensitive to ordered and disordered 

environments and enable the preferential detection of surface species or interactions, the 

resolution of distinct local atomic structures in bulk materials, and the measurement of domain 

sizes ranging from <1nm to micrometer length scales. In contrast to conventional NMR, 

Dynamic Nuclear Polarization (DNP) involves the manipulation of coupled electron-nuclear 

spin ensembles to generate a large nuclear magnetization gradient that dramatically enhances 

NMR signal sensitivity.  An advantage of DNP-NMR is that hyperpolarization emanates from 

paramagnetic centers, enabling surface-enhanced NMR spectroscopy of porous or nonporous 
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solids. Despite the widespread application of this technique, quantitative models of DNP 

polarization transfer are difficult to implement and rely on coupled spin polarization 

generation, propagation, and dissipation processes that bridge quantum mechanical and 

classical phenomena. In Chapter two and three of this manuscript, a constitutive model is 

derived to quantitatively describe aspects of mesoscopic spin polarization transfer. From 

dimensional property analysis, spin polarization analogs of the dimensionless Biot number 

(Bi), Hatta number (Ha), Damköhler number (Da), and Thiele modulus (𝜙) are discovered 

and their general relevance to spin polarization transport processes demonstrated. Importantly, 

by analogy to heat and mass transfer film theory, a DNP transfer coefficient, kDNP, with units 

of m/s is empirically measured and reveals new insights into the transfer of spin 

hyperpolarization across the electron-nuclear spin interface (i.e., spin-diffusion barrier). In 

Chapter four and five of this manuscript, combined DNP-enhanced 1H-1H spin diffusion 

experiments and modelling analyses are used to measure the compositions and dimensions of 

silicate hydrates which form on tricalcium silicate particles in contact with water. The 

dimensions and compositions of these surface hydrates are believed to crucially influence the 

early hydration kinetics of industrially relevant cement-water mixtures, thus by understanding 

these processes at the atomic-level, new criteria is provided to inform chemical admixture 

design and to aid in the prediction of hydration rates. Lastly, in Chapter six of this manuscript, 

advanced two-dimensional 27Al{29Si} heteronuclear correlation experiments are used to 

monitor hydration processes involving volcanic glasses in cementitious mixtures. These 

analyses provide new geochemical insights regarding the structure of vitreous pyroclastic 

minerals and informs the design of modern Roman-inspired pozzolanic concretes with 

improved longevity and a lower carbon footprint in comparison to traditional cements.                   
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Chapter I.  

Synopsis 

By analogy to heat and mass transfer film theory, in Chapter two and three of this 

manuscript, a general approach is introduced for determining hyperpolarization transfer rates 

between dilute electron spins and a surrounding nuclear ensemble. These analyses provide 

new quantitative relationships for understanding, predicting, and optimizing the effectiveness 

of hyperpolarization protocols, such as Dynamic Nuclear Polarization (DNP) under magic-

angle spinning conditions. An empirical DNP polarization-transfer coefficient is measured as 

a function of the bulk matrix 1H spin density and indicates the presence of two distinct kinetic 

regimes associated with different rate-limiting polarization transfer phenomena. Dimensional 

property relationships are derived and used to evaluate the competitive rates of spin 

polarization generation, propagation, and dissipation that govern hyperpolarization transfer 

between large coupled spin ensembles. The quantitative analyses agree closely with 

experimental measurements for the accumulation, propagation, and dissipation of 

hyperpolarization in solids and provide evidence for kinetically-limited transfer associated 

with a spin-diffusion barrier. The results and classical approach yield general design criteria 

for analyzing and optimizing polarization transfer processes involving complex interfaces and 

composite media for applications in materials science, physical chemistry and nuclear 

spintronics. 

In Chapter four and five of this manuscript, dynamic nuclear polarization (DNP) surface-

enhanced NMR analyses enable the simultaneous measurement of the molecular-level 

compositions and meso-scale dimensions of hydrated surface domains and offer new insights 



 

2 

 

into the early hydration of industrially relevant cementitious mixtures. Hydration of 

cementitious silicate particles is initiated at surfaces in contact with water and proceeds over 

different timescales which are commonly described as distinct kinetic stages (e.g., induction, 

acceleration, deceleration). Despite several decades of detailed investigation, the 

transformations occurring at the liquid-solid interface during early times (ca. hours) have 

remained elusive. Characterization of these hydrated near-surface silicates is challenging due 

to the poor long-range order of cement hydrates and the exceedingly dilute quantities of 

hydration products formed at early times. Such transformations occurring at the silicate 

particle surface are important to understand as they are thought to influence silicate 

dissolution, hydration, and subsequent strength development. The results demonstrate the use 

of non-equilibrium NMR spin polarization transfer to assess the compositions of complicated 

multicomponent materials over challenging ca. <1 nm to 100 nm length scales which may be 

inaccessible by other means. These analyses suggest that silicate particle surfaces initially 

form a thin layer of disordered hydrates (<10 nm) upon contact with water that continue to 

evolve over the course of the induction period until relatively ordered calcium silicate hydrates 

are detected that are associated with surface nucleation products.  

 In Chapter six of this manuscript, advanced two-dimensional solid-state NMR 

techniques are used to monitor the hydration of Roman-inspired concrete. Hydrothermal 

conversion of multicomponent aluminosilicate glasses into value-added products including 

zeolites and cementitious solids depend on complex heterogeneous hydration, dissolution, and 

precipitation processes that are difficult to monitor by conventional characterization methods. 

Despite similarities in bulk compositions, local structural differences between vitreous 

precursors may result in significant variations in the quantities, distributions, and types of 
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hydrothermal products formed. This has important consequences for Roman-inspired 

pozzolanic concretes which are of high modern interest due to their improved durability and 

reduced carbon footprint.  Importantly, in such cementitious mixtures, similar volcanic ashes 

(i.e., rhyolite) procured from different geographic formations may, nonetheless, exhibit vastly 

different propensities for mechanical strength development. Advanced 1D and 2D solid-state 

nuclear magnetic resonance (NMR) techniques, small-angle neutron scattering (SANS), and 

complementary bulk analyses suggest that certain volcanic glass specimen are 

compositionally heterogeneous and are comprised of locally ordered subunits similar to 

crystalline tectosilicate minerals, zeolites, or SiO2 polymorphs over <1 nm to 25 nm length 

scales. Specifically, 2D 27Al{29Si} heteronuclear correlation experiments allow for the 

measurement of Al-O-Si distributions in unhydrated volcanic glasses and, upon hydration, 

enable 27Al isotopic tracking of the conversion of volcanic glass-Al into into cementitious 

binder phases.  These analyses indicate that hydration activity is negatively correlated to the 

extent of Al/SiO2 intermixing and that Al-rich tectosilicate regions of volcanic glass are 

preferentially converted into cementitious hydrates. Additionally, mechanical strength is 

correlated to the formation of binder phases including calcium aluminosilicate hydrate, a 

complex layered mineral with varying extents of condensation, distributions of several distinct 

AlIV sites, and local structural order. New structure-property relationships are obtained which 

inform the molecular optimization of modern concrete systems, reveal fundamental insights 

into the geological formation of vitreous pyroclastic minerals, and provide new understanding 

of structural mortars similar to those used in the construction of important cultural heritage 

sites. 
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Chapter II.  

Thermodynamics and Scaling Analyses of Polarization 

Transport in Heterogeneous Solids 

2.1. Introduction 

In coupled energy transfer and dissipation processes, dimensional property analyses 

provide bases for understanding complex phenomena in large systems ranging from 

industrial-scale process equipment1 to complex micromechanical systems2. Extending such 

analyses to the propagation of spin polarization is important for emerging applications of 

hyperpolarized magnetic resonance3–7 and processes based on spin transport over multiple 

length scales8,9. In quantum computing, the coupling of electron qubits with highly polarized 

nuclear spin packets (e.g., nuclear spintronics) is a promising strategy for extending coherence 

lifetimes and for facilitating short-term data storage functions10,11. Another example is 

dynamic nuclear polarization (DNP), which exploits the coupling of electron-nuclear spin 

ensembles to enhance dramatically NMR signal sensitivity in solids12. Quantitative models of 

DNP polarization transfer13,14, are often challenging to implement as the generation, 

propagation, and dissipation of hyperpolarization can span time scales ranging from 10–9 to 

105 s, length scales from <1 nm to µm, and involve considerations of both quantum 

mechanical and classical phenomena. Materials systems on which these examples are based 

share key features, specifically complex and poorly defined interfaces between the electron 

spin(s) and surrounding nuclear ensemble15. In Chapter two, an introduction to spin 

thermodynamics is presented for describing the transfer of net nuclear magnetization (i.e., 
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spin polarization) from dilute paramagnetic centers to a surrounding nuclear spin ensemble. 

By application of a material energy balance, a general model is derived for meso-scale (1–100 

nm) spin transport phenomena that enables rate-limiting processes to be identified and 

quantitative prediction of hyperpolarization performance. In large systems, the generation, 

dissipation, and propagation and spin polarization exhibit fundamental similarities to thermal 

energy transfer, molecular diffusion, and to charge transport but importantly combines distinct 

aspects of these phenomenon and emerges from different physical origins.  

2.2. Discovery of Spin Angular Momentum 

The discovery of spin angular momentum, its modern applications in advanced medical 

imaging, molecular-level spectroscopy, and quantum computing may be best understood from 

a series of theoretical and hardware advancements over the past century. At the end of the 19th 

century, there was widespread interest in the line spectra of elements. Line spectra are 

produced when an atomic gas is excited by electrical discharge in a vacuum tube and the 

produced electromagnetic radiation is passed through a prism to separate frequencies of 

radiation into a series of discrete spectral lines unique to each element. Zeeman first observed 

spectral line-splitting in the presence of a magnetic field, which seemed to suggest the 

magnetic field influenced the motion of electrically charged ions.16 An early classical 

electrodynamical theory arose shortly thereafter from the important contributions of Larmor 

who demonstrated that Zeeman splitting could be accounted for by the orbital oscillations of 

a single-type of charged particle.17 Through the work of Thomson and Rutherford a general 

picture of the atom and its interactions with electromagnetic radiation emerged18,19, yet the 

theory of line spectra at that time was not consistent with Planck’s quantized theory of black 

body radiation.   
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In classical electrodynamical theory, an electron may orbit the nucleus, yet as energy is 

released from the atom in the form of radiation the electron’s orbit must decay continuously 

with no restriction until it is eventually touching the nucleus. Within this framework, the 

frequency of revolution is a continuous function of the energy; therefore, it is not possible to 

obtain a result where a finite amount of homogeneous radiation is produced. Many of these 

issues were reconciled by the introduction of quantum electrodynamical theory in 1913 by 

Niels Bohr.20,21 Bohr postulates that, W, the energy required to remove an electron to an 

infinite distance from the nuclei (e.g., flame ionization) is directly related to Planck’s 

quantized theory of black body radiation, see equation (2.1). The frequency of revolution (ω) 

for a single electron in a circular orbit around the nucleus is given by equation (2.2).  

𝑊 = 𝑛ℎ
ω

2
 (2.1) 

ω =  
4𝜋2𝑚𝑒2𝐸2

𝑛3ℎ3
 

(2.2) 

Further analysis shows that as an electron transitions from one allowed state to another 

allowed state it transmits a frequency of radiation which corresponds with the half the 

frequency of revolution of the electron in the final allowed state. From application of equations 

(2.1) and (2.2) it is demonstrated that the ordinary hydrogen line spectrum from electrical 

discharge in a vacuum tube, or the Balmer series, is generated in the scenario where the atom 

transitions from a state of n = 1 to a state of n = 2. Bohr’s method of analysis supplanted the 

classic electrodynamical atomic theories of the time and provides a physical intuition for 

atomic equilibrium based on the notion of stable mechanical states which are preserved 

through the universal constancy of angular momentum. 

 Although Bohr’s early quantum electrodynamical theory provides for a general 

description of spectral emission lines, it does not immediately explain the phenomenon of 
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Zeeman splitting in the presence of a magnetic field. Experimental evidence for the quantized 

nature of the electron’s magnetic dipole moment, or spin, was first provided by the Stern-

Gerlach experiment which measured the deflection of silver (Ag) atoms through an 

inhomogeneous magnetic field.22 In this experiment, a beam of silver atoms is passed through 

an inhomogeneous magnetic field which exerts a torque on the particles resulting in a 

deflection in their trajectory. Full interpretation of these experimental results took many years, 

but several important realizations were made. For particles with randomly oriented magnetic 

dipoles, classical theories would predict that the deflected atoms would strike the detector in 

a broad continuous pattern. Instead, the beam is split into two, roughly equal components 

which indicates that the orientation of the magnetic dipole of a silver atom is spatially 

quantized exhibiting a spin quantum number of ½. Furthermore, although 107Ag has a total of 

47 electrons, 47 protons, and 60 neutrons its measured magnetic dipole moment roughly 

corresponds to that of only a single electron. Importantly, the magnetic moments of the other 

46 electrons cancel each other out to a very good approximation. As will be discussed in 

following sections, the electron magnetic dipole moment is vastly larger in comparison with 

nuclear magnetic dipole moments which do not contribute much to the observed deflection of 

the silver atom. More generally, measurement of magnetic dipole moments of the elements 

led to the identification of electron p and s orbitals and improved understandings of atoms and 

their chemical interactions. After these pioneering advancements, Rabi developed similar 

experimental apparatuses, but with higher levels of precision, and was able to measure nuclear 

magnetic dipole moments which are typically several orders of magnitude weaker than that of 

the electron.23 This has important consequences for nuclear magnetic resonance (NMR) 
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spectroscopy which exploits the resonant phenomena of nuclear spin ensembles to probe local 

atomic structures and bonding environments. 

2.3. General Principles of Magnetic Resonance 

In the presence of a magnetic field (B0), nuclei that have a net magnetic moment align 

either parallel (spin-up) or anti-parallel (spin-down) with respect to the B0 field which is 

defined as the z-axis. These nuclear spins precess about the magnetic field at the Larmor 

frequency (ω) which depends on the intrinsic gyromagnetic ratio of the nuclei (γ) and the 

strength of the applied B0 field, 

ω =  −γB0 . (2.3) 

The differences in the Larmor frequency between dissimilar nuclei such as 1H, 13C, and 29Si 

are quite large such that at a conventional field strength of 11.74 T their resonant frequencies 

are 499.85 MHz, 125.72 MHz, and 99.38 MHz, respectively. This large degree of separation 

enables manipulations and detection of nuclear spin ensembles by isotope selective excitation 

of their nucleus specific Larmor frequency by use of narrow < 1.5 MHz broadband 

radiofrequency pulses. After r.f. saturation, the recovery of nuclear magnetization produces a 

weak oscillating voltage response, or resonance, which is recorded by the detector coil. 

Importantly, as a spectroscopic tool, the effective magnetic field, B = B0+Bloc, experienced by 

a nuclear spin is influenced to a relatively small degree by its local bonding environment or 

by interactions with neighboring spins. Thus, there are small differences in the precession 

frequencies of chemically inequivalent nuclei that allow for the resolution of distinct chemical 

environments in ordered and disordered systems. The magnitude of the measured NMR signal 

intensity is proportional to the total spin polarization per unit volume, or the specific 

magnetization.   
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At a specific temperature and magnetic field strength, a Boltzmann distribution of spin 

states is established at thermal equilibrium yielding net spin polarization, the origin of NMR 

signal intensity. Spin polarization, P, refers to the expectation value of the bulk nuclear spin 

orientation in the z-axis and is given: 

𝑃 =  
𝑁+ − 𝑁−

𝑁+ + 𝑁−
 

(2.4) 

where N+ and N- correspond to the total number of nuclear spins oriented parallel or anti-

parallel with the B0 field, respectively. At thermal equilibrium, the spin polarization is given 

as follows, 

𝑃 =  tanh (
γħ𝐵0

2𝑘𝐵𝑇
) 

(2.5) 

where is the gyromagnetic ratio (MHz/T), ħ is the reduced Planck’s constant (J·s), kB is the 

Boltzmann constant (J·K-1), B0 is the static magnetic field strength (T), and T is temperature 

(K). To simplify the following analyses which are concerned with nonthermal polarization 

levels, or spin hyperpolarization, a normalized spin polarization, 𝑃̃, is defined, 

𝑃̃ =  
𝑃

tanh (
γħ𝐵0

2𝑘𝐵𝑇
)
 

(2.6) 

such that 𝑃̃ is equal to unity at thermal equilibrium under isothermal conditions which are 

most commonly employed in magnetic resonance. Of course, it is possible to imagine 

circumstances where isothermal conditions may not be applicable including in in-situ gas-

phase analyses of heterogeneous reactions or in the delivery of a hyperpolarized substance for 

in vivo medical imaging3. For these examples, transient effects associated with the recovery 

of nuclear magnetization by thermally driven spin-lattice relaxation must be considered. 
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 Early investigation of magnetic resonance phenomena led to the identification of two 

types of relaxation processes termed spin-lattice relaxation and spin-spin relaxation with 

characteristic relaxation times corresponding to T1 and T2 respectively24. These quantities 

correspond to the response of a nuclear spin ensemble to a series of r.f. pulse manipulations 

and its eventual recovery to thermal equilibrium. In Figure 2.1a, the net nuclear magnetization 

vector is depicted for both types of relaxation processes. The T1 relaxation time corresponds 

to the return to z-axis after a train of excitation pulses is used to randomize the orientation of 

the nuclear spin ensemble by varying the experimental delay, see Figure 2.1b. The T2 

relaxation time corresponds to the irreversible dephasing of net magnetization that occurs in 

the x,y-axis due to spin-spin interactions and can be approximately measured by increasing, n 

= 1, 2, 3…, the total number of 90°-180° spin echoes, see Figure 2.1b. For large spin systems, 

these processes are most conveniently described using continuum Bloch equations which 

describe the net magnetization of a nuclear spin ensemble, 

𝑑𝑀𝑧(𝑡)

𝑑𝑡
=  γ(M(t) × B(t))𝑧 −

𝑀𝑧(𝑡) − 𝑀0

𝑇1
 

(2.7a) 

𝑑𝑀𝑥(𝑡)

𝑑𝑡
=  γ(M(t) × B(t))𝑥 −

𝑀𝑥(𝑡)

𝑇2
 

(2.7b) 

𝑑𝑀𝑦(𝑡)

𝑑𝑡
=  γ(M(t) × B(t))𝑦 −

𝑀𝑦(𝑡)

𝑇2
 

(2.7c) 

where M is the net magnetization vector, B = B0 +Bloc is the effective field experienced by the 

spin ensemble, and M0 is the equilibrium magnetization vector. The previously defined spin 

polarization is proportional to the z-component of the net magnetization vector per unit 

volume (specific magnetization25,26) such that, 

𝑃(𝑡) ~ 
𝑀𝑧(𝑡)

𝜌𝑛𝑉
 

(2.8a) 
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𝑃0 ~ 
𝑀0

𝜌𝑛𝑉
 

(2.8b) 

where 𝜌𝑛 is the nuclear spin density and V is the total sample volume. The latter description 

is preferred for complex heterogeneous spin systems where the compositions (i.e., 𝜌𝑛 values) 

are not spatially uniform. Because the spin-lattice relaxation time is always longer than the 

spin-spin lattice relaxation time (T1 > T2), the rate at which measurements can be repeated 

depends on the value of T1 which typically range from 10-2 s to 104 s for nuclear spin 

ensembles. In addition to the sensitivity limitations arising from the low spin polarization of 

the nuclear spin ensemble at thermal equilibrium, the time required for an NMR experiment 

depends importantly on the T1 relaxation time. The relative sensitivity (snmr) of a conventional 

NMR experiment may be represented as, 

𝑠𝑛𝑚𝑟 =  
𝜌𝑛𝑉𝑃0

√𝑇1

 
(2.9) 

which provides an index for the total amount of NMR signal intensity that can be measured 

per time for a given sample. Although the first successful measurement of nuclear magnetic 

resonance was performed by Purcell (awarded the 1952 Nobel Prize in Physics), an earlier 

 

FIGURE 2.1) Schematic diagram for (a) the net magnetic dipole moment in response to r.f. 

manipulations, and (b) an r.f. pulse sequence for measuring either the T1 or T2 relaxation time 

of an 1H spin ensemble.  
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negative result reported by Gorter occurred due to the misfortune of choosing crystalline 

samples with excessively long T1 values. As will be developed in the following sections, the 

process of spin hyperpolarization by cross-effect DNP can be considered to be a type of 

relaxation phenomenon involving the interactions of electron and nuclear spin ensembles. 

2.4. Hyperpolarization and Spin Temperature 

Applications of NMR spectroscopy typically rely on the manipulation of nuclear magnetic 

dipole moments by radiofrequency excitation. By exploiting nuclear magnetic resonance 

phenomena, small differences in the precession frequency of the nuclear magnetic moment 

may be detected allowing for resolution of chemically distinct environments in solids, liquids, 

or gases.  The energy involved in these spin transitions is exceedingly low in comparison to 

other physical processes for example: nuclear fission (109 – 1011 kJ/mol), chemical reaction 

(101 – 103 kJ/mol), and the nuclear Zeeman interaction (10-7 – 10-4 kJ/mol). The sensitivity of 

NMR is intrinsically limited by the relatively weak nuclear magnetic dipole moment and 

associated gyromagnetic ratio. Even at the world’s largest currently available magnetic field 

strength of 45 T (National High Magnetic Field Laboratory, Tallahassee, Fl, U.S.A) and at 

room temperature, 13C nuclei are polarized to 0.0039 % such that only 39 out of 1,000,000 

nuclear spins contribute to the resonant phenomena as determined by Equation 2.5. Under 

otherwise identical conditions, due to its larger gyromagnetic ratio, the electron spin is 

polarized to 10.2 % such that 102,000 out of 1,000,000 electron spins contribute to the 

resonant phenomena. Recent advancements in dynamic nuclear polarization (DNP) NMR 

spectroscopy partially overcome these sensitivity limitations by transferring the high spin 

polarization of the electron to surrounding nuclear spins improving sensitivity by two to five 

orders of magnitude. Specifically, in cross-effect DNP, unpaired electron spins (e.g., on dilute 
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nitroxide biradicals) are partially saturated by microwave irradiation, resulting in hyperfine 

transfer to nearby nuclear spins generating large amounts of spin hyperpolarization.12 

By definition, spin hyperpolarization refers to non-equilibrium polarization levels which 

are generated and maintained by pumping energy into a nuclear spin ensemble. For DNP 

mechanisms12 including the Overhauser effect, solid-effect, cross-effect, or thermal mixing 

that rely on the transfer of the electron spin polarization to nearby nuclear spins the maximum 

polarization increase that can be achieved relative to thermal equilibrium is determined by the 

gyromagnetic ratios, γe/γn, which corresponds to 658 for 1H nuclei or 2,620 for 13C nuclei. 

Figure 2.2) is schematic diagram representing cross-effect DNP which involves microwave 

saturation of electron-electron spin pairs to generate non-equilibrium nuclear spin 

hyperpolarization, 

 

FIGURE 2.2) Comparison between DNP polarization of 1H nuclei mediated by the cross-

effect and conventional 1H polarization levels (thermal equilibrium) which are governed by 

Curie’s law under the high-temperature approximation. Temperature dependent plot 

corresponds to 9.4 T field strength adapted from reference27. Further details of the cross-effect 

mechanism will be discussed in Chapter 3. 
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where the initial state of the 1H spin system corresponds to a temperature of 100 K. Cross-

effect DNP is driven by partial microwave saturation of an electron spin ensemble to achieve 

frequency matching condition, 𝜔𝑛 = |𝜔𝑒1 − 𝜔𝑒2|, where the frequency difference between 

two coupled electron spins matches the nuclear precession frequency28,29. In this schematic 

diagram the 1H polarization level is increased by a factor of γe/γ1H = 658 from 96 per 1,000,000 

spins to 63,200 per 1,000,000 spins. To reach the same 1H polarization level without DNP, it 

would be necessary to cool the system from 100 K to 0.2 K following the relationship given 

by Curie’s law. This leads to the concept of the Zeeman spin temperature introduced by 

Abragam25, which is the inverse of Equation 2.5, 

𝑇𝑍 =
γħ𝐵0

2𝑘𝐵 ∙ atanh (𝑃)
 

(2.10) 

such that the Zeeman spin temperature (TZ) of the 1H ensemble is cooled to 0.2 K by cross-

effect DNP at a thermal temperature of 100 K. Partial saturation by microwave irradiation 

maintains an effective polarization difference between the coupled electron spins driving 

hyperpolarization transfer when the frequency matching condition is met. However, due to 

competing electron relaxation processes, quantum conversion efficiencies12 less than the 

theoretical maximum, 658, are often encountered28,30. DNP is a kinetic process, and as soon 

as 1H spin hyperpolarization is generated it will be attenuated back to equilibrium polarization 

levels by thermally driven spin-lattice relaxation. Thus, depending on the relative rates of 

hyperpolarization generation and dissipation, steady-state 1H hyperpolarization levels will be 

diminished in accordance to classical spin thermodynamics25. Finally, because cross-effect 

DNP relies on short-range (~1/r6) hyperfine couplings, this hyperpolarization must be 

transferred away from the paramagnetic centers by nuclear spin-diffusion to improve the 
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sensitivity for applications in nuclear spintronics, medical imaging, or molecular-level 

spectroscopy.                

2.5.  Comparisons between Heat, Mass, and Spin Polarization Transfer  

As discussed in Section 2.3, the process of spin-lattice relaxation is directly analogous to 

a first-order irreversible chemical reaction that returns polarization levels to thermal 

equilibrium. Due to this feature of spin polarization, the dissipation and propagation of 

hyperpolarization through a bulk nuclear ensemble is partially analogous to the reaction and 

diffusion of a chemical species31,32. Whereas molecular diffusion is driven by, ∇C, a 

concentration gradient; nuclear spin diffusion is driven by, ∇P, a polarization gradient25,33. 

This is an important distinction, because polarization does not depend on volume density, 

instead it corresponds to a Zeeman spin-temperature associated with the expectation value of 

the net nuclear spin orientation. For this reason, a polarization gradient is more closely 

analogous to a temperature gradient, ∇T, than it is to a molecular concentration gradient. 

Under the spin-temperature hypothesis25, the relationship between Zeeman energy and spin 

polarization is analogous to the relationship between thermal energy and temperature. In this 

manuscript the propagation of hyperpolarization is described as the conduction of Zeeman 

energy (in units of Watts) from regions of high to low polarization levels. Table 2.1 below, 

compares the propagation of heat, mass, and Zeeman energy in response to a potential 

gradient.  
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Table 2.1. Comparing Thermal, Mass, and Zeeman energy (spin polarization) transfer 

Heat Conduction 

 

𝒒 = −𝒌𝛁𝑻 

q ≡ heat flux in units of W m-2 

k ≡ thermal conductivity in units of W m-1 K-1 

∇T ≡ temperature gradient in units of K m-1 

Molecular Diffusion 

(no ionic charge) 
𝒋 = −𝓓𝛁𝑪 

j ≡ molecular flux in units of mol s-1 m-2 

𝒟 ≡ molecular diffusion coefficient in units of m2 s-1 

∇C ≡ concentration gradient in units of mol m-4 

Spin Polarization Diffusion 

(homogeneous magnetic 

field) 

𝒒𝒏 = −𝝆𝒏𝑪𝒛𝓓𝒏𝛁𝑷 

𝑞𝑛 ≡ Zeeman energy flux in units of W m-2 

𝒟𝑛 ≡ spin diffusion coefficient in units of m2 s-1 

∇P ≡ spin polarization gradient in units of P’ m-1 

𝜌𝑛 ≡ nuclear spin density in units of mol m-3 

𝐶𝑧 ≡ Zeeman heat capacity in units of W mol P’-1 

P’ ≡ unitless polarization-level 

 Although the SI unit of magnetization is the Weber, the spin thermodynamic 

conduction equation in Table 2.1 allows for a more intuitive description of hyperpolarization 

processes. Unlike molecular diffusion, nuclear spin diffusion in rigid solids do not involve the 

physical migration of species, instead it involves dipole-dipole mediated spin flips that 

propagate spin polarization from regions of high to low polarization. The Zeeman heat 

capacity is given by 𝐶z = 𝐶𝐵0
2, where C is Curie’s constant, and B0 is the magnetic field 

strength34. For nuclei with spin quantum number, I = 1/2, the energy exchanged per mol spin 

flips is given, 

𝐶𝑧 = 𝛾𝑛ħ𝐵0𝑁𝐴 (2.11) 

where γn is the gyromagnetic ratio and NA is Avogadro’s number, and B0 is the magnetic field 

strength. In the presence of a homogeneous magnetic field, spin-diffusion is a non-activated 

process with a net energy change of E = 0. For spin-diffusion across an inhomogeneous 

magnetic field gradient, Equation 2.11 implies that there an energy penalty of E = γnħBi,j 
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for spin flips between inequivalent nuclei. For such conditions, simple thermal-like 

conduction relationships32 like those proposed in Table 2.1 due not strictly apply, and the 

process of nuclear spin-diffusion is fundamentally altered.  

2.6.  Nuclear Spin Diffusion and Paramagnetic Relaxation  

In principle, in a rigid solid, the spin-diffusion coefficient depends on the strength of 

nuclear dipole-dipole couplings and the separation distance between neighboring spins. Due 

to the short range of the dipolar interaction (~1/r3), the spin-diffusion coefficient (𝒟𝑛) may 

depend on molecular structure and be highly anisotropic35. In this manuscript, tensorial 

dependences of 𝒟𝑛 are neglected such that the spin-diffusion coefficient is assumed to be a 

constant that depends on nuclear spin density, magnetic field strength, and the magnitude of 

the dipole-dipole interaction. The propagation of spin polarization is then a random-walk type 

of process involving mutual spin flips between dipole-dipole coupled nuclei, 

 

FIGURE 2.3) Schematic illustration of spin diffusion as a random-walk process depending 

on the nuclear spin density. 

          

where certain frequency-matching criteria (n,i  n,j) must be met to facilitate a spin flip over 

time scales relevant to DNP NMR27. An order of magnitude approximation of the spin-

diffusion coefficient in a rigid lattice under static conditions (no sample spinning) was first 

developed by Bloembergen32, 
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𝒟𝑛 = 𝑤 ∙ 𝑎2 (2.12) 

as a function of the transition probability (w) and the distance between spins (a). The transition 

probability is related to the magnitude of the dipolar interaction, which contributes to dipolar 

broadening of the spectral linewidth and shorter spin-spin relaxation times (T2). 

Bloembergen32 obtains the following relationship, 

𝑤 
1

𝑐 ∙ 𝑇2
 

(2.13) 

between the transition probability, a numerical constant c = 50, and the T2 relaxation time. 

Under more realistic assumptions, a similar result, but with c = 12, was obtained by 

Khutsishvili31 for polycrystalline solids by averaging up to six-nearest neighbors and 

accounting for spin-diffusion between non-equivalent nuclei. Khutsishvili31 reports that under 

static conditions, 

𝑇2 = 0.65
𝑎3

ħ𝛾𝑛
2
 

(2.14) 

neglecting chemical shift anisotropy or other forms of line broadening. As demonstrated by 

Pinon27, these results may be combined yielding a scaling relationship, 

𝒟𝑛~ 𝛾𝑛
2𝜌𝑛

1/3  
 

(2.15) 

between the gyromagnetic ratio (𝛾𝑛
2) and nuclear spin density (𝜌𝑛) under the assumption that 

the nuclear spins are randomly distributed and experience a constant B0 field strength. This 

situation becomes more complex under magic-angle-spinning conditions which reduces the 

effective strength of the dipole-dipole interactions. Nonetheless, under MAS conditions, a 

similar 𝜌𝑛
1/3 dependence of the diffusion coefficient has been predicted by reduced Liouville 

space (LCL) calculations35. The scaling dependence in Eq. 2.15 is expected to be generally 

valid in the presence of a homogeneous magnetic field, however the process of nuclear spin 
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diffusion across an inhomogeneous magnetic field gradient (such as in the vicinity of a 

paramagnetic center) under MAS conditions is fundamentally altered and remains an active 

area of research.          

Exceedingly dilute concentrations of paramagnetic ions in a solid sample can 

significantly shorten T1 relaxation times by paramagnetic enhanced relaxation (PRE) effects. 

These phenomena are often exploited in spectroscopy to improve sensitivity and in magnetic 

resonance imaging (MRI) where patients are typically injected with a Gd3+ paramagnetic 

“contrast agent” to shorten measurement times. In comparison to nuclear T1 relaxation times 

of solids which commonly range between ~0.1 s to 1,000 s at conventional 11.7 T field 

strengths, the electron T1,e relaxation time is typically on the order of 10-7 to 10-4 s. The 

hyperfine interaction broadly refers to electron-nuclear interactions (Fermi contact shift, 

Knight shift, spin-orbital coupling, etc.), however for this section, emphasis is on the 

paramagnetic electron-nuclear dipole-dipole interaction which is expected to dominate PRE 

relaxation processes in diamagnetic solids. The paramagnetic dipole interaction is a short-

range interaction with a ~1/r3 scaling dependence with a classical energy of, 

E𝑑𝑖𝑝𝑜𝑙𝑎𝑟 =
𝜇𝑒 ∙ 𝜇𝑁

𝑟3
−

3(𝜇𝑒 ∙ 𝑟)(𝜇𝑁 ∙ 𝑟)

𝑟5
~

1

𝑟3
 

(2.16) 

where r is the nuclear-electron separation distance, μe is the electron magnetic dipole moment, 

and μN is the nuclear magnetic dipole moment. Importantly, while direct paramagnetic 

relaxation is a short-range interactions, PRE effects can propagate through a nuclear spin 

ensemble by the process of nuclear spin diffusion as first recognized by Bloembergen.  
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2.7. Zeeman Energy Shell Balance 

In cross-effect DNP, a dilute suspension of stable nitroxide biradical polarizing agents are 

suspended in a frozen glassy solvent matrix. Under microwave excitation, spin 

hyperpolarization emanates radially from the paramagnetic centers, see Figure 2.4a, which are 

assumed to be homogeneously distributed and spherically symmetric, see Figure 2.4b.  

 

FIGURE 2.4) Schematic diagram of (a) a differential energy shell balance at an arbitrary 

radius, ri, away from a paramagnetic center, and (b) a homogeneously distributed suspension 

of paramagnetic centers (here, nitroxide biradicals) in glassy solid matrix.     

 

In real systems, paramagnetic centers may aggregate or physically interact such that multi-

electron spin clusters can form significantly altering cross-effect DNP rates.36 Additionally, 

quantum mechanical simulations indicate that DNP activities may have strong orientational 

dependences with respect to the static B0 field. Despite these mechanistic complexities, it can 

be shown that simple spin thermodynamic relationships can be used to extract 

hyperpolarization build-up rates and generalize polarization transfer phenomena in large, 

heterogeneous spin systems. By an energy-shell balance, the total Zeeman energy must be 

conserved such that, 
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Accumulation = Generation – Consumption + In – Out (2.17) 

where excess Zeeman energy (i.e., hyperpolarization) is generated by the cross-effect or other 

DNP mechanisms, is propagated by nuclear spin diffusion, and is dissipated by thermally 

driven T1 relaxation processes.  As discussed above, the Zeeman energy refers to the potential 

energy experienced by a nuclear spin ensemble in the presence of a magnetic field. The 

apparent rate of Zeeman energy generation by cross-effect DNP, QDNP, will depend on the 

efficiency of the quantum excitation and proximity to the paramagnetic center. Within the 

bulk of the frozen solvent matrix (r >λsdb), the Bloc field is negligible small such that, QDNP = 

0, however, hyperpolarization is propagated throughout the bulk matrix by nuclear spin 

diffusion and attenuated by thermally driven T1 relaxation. This results in the dissipation of 

excess Zeeman energy at a total rate of, QT1, by reorientation of the nuclear spins with respect 

to the static magnetic field. This energy may be dissipated as minute amounts of heat (as 

Gorter’s first experimental set up attempted to detect), or as electrical work as detected by the 

radiofrequency coil in modern NMR instruments. The Zeeman energy balance through the 

frozen solvent matrix is thus, 

Accumulation = 𝜌𝑛𝐶𝑧(𝑃̃(𝑟, 𝑡) − 𝑃̃(𝑟, 𝑡 + ∆𝑡)) ∙ 4𝜋𝑟2∆𝑟 (2.18a) 

Generation = 𝑄𝐷𝑁𝑃 ∙ 4𝜋𝑟2∆𝑟∆𝑡 (2.18b) 

Consumption = 𝑄𝑇1 ∙ 4𝜋𝑟2∆𝑟∆𝑡 (2.18c) 

In = (𝑞𝑛 ∙ 4𝜋𝑟2)|𝑟∆𝑡 (2.18d) 

Out = (𝑞𝑛 ∙ 4𝜋𝑟2)|𝑟+𝑟∆𝑡 (2.18e) 



 

22 

 

through a differential annular slice of thickness Δr. The constitutive equation is obtained by 

dividing by 4πΔrΔt and taking the limit of Δr → 0 and Δt → 0, respectively, 

lim
∆𝑡→0

[𝜌𝑛𝐶𝑧
𝑃̃(𝑟,𝑡)−𝑃̃(𝑟,𝑡+∆𝑡)

∆𝑡
∙ 𝑟2] = lim

∆𝑟→0
[

(𝑞𝑛∙𝑟2)|𝑟−(𝑞𝑛∙𝑟2)|𝑟+∆𝑟

∆𝑟
+ (𝑄𝐷𝑁𝑃 − 𝑄𝑇1)𝑟2]  (2.19a) 

𝜌𝑛𝐶𝑧

𝜕𝑃̃

𝜕𝑡
= −

1

𝑟2
∙

𝜕(𝑞𝑛 ∙ 𝑟2)

𝜕𝑟
+ 𝑄𝐷𝑁𝑃 − 𝑄𝑇1 

(2.19b) 

where qn = -𝜌𝑛𝐶𝑧,𝑛𝒟𝑛∇𝑃̃ corresponds to the Zeeman energy flux due to nuclear spin diffusion 

given in Section 2.5. From the Bloch equation, the total Zeeman energy relaxation rate, QT1, 

is given, 

𝑄𝑇1 = 𝜌𝑛𝐶𝑧,𝑛

(𝑃̃0 − 𝑃̃(𝑟, 𝑡))

𝑇1
 

(2.20) 

noting that the normalized polarization level at thermal equilibrium, 𝑃̃0, is equal to unity. By 

substitution of qn and QT1 the constitutive equation obtained for 1D radial symmetry is, 

𝜌𝑛𝐶𝑧

𝜕𝑃̃(𝑟, 𝑡)

𝜕𝑡
= 

1

𝑟2
∙

𝜕

𝜕𝑟
(𝜌𝑛𝐶𝑧,𝑛𝒟𝑛

𝜕𝑃̃(𝑟, 𝑡)

𝜕𝑟
∙ 𝑟2) + 𝑄𝐷𝑁𝑃 − 𝜌𝑛𝐶𝑧,𝑛

(𝑃̃(𝑟, 𝑡) − 1)

𝑇1
 

(2.21) 

where to a very good approximation QDNP = 0 in the bulk frozen matrix. Under the given 

assumptions, this energy balance satisfies the first Law of Thermodynamics and is valid for 

coupled nuclear spin ensembles in homogeneous magnetic fields and for polarization transfer 

across interfaces. However, special consideration is needed in evaluation of the boundary 

conditions of this system considering that hyperpolarization emanates from paramagnetic 

centers which induce a strong inhomogeneous Bloc field gradient that impedes spin transport 

by nuclear spin diffusion.  
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2.8. Thermal-like Conduction Relations Between Spin Ensembles 

An advantage of DNP-NMR is that hyperpolarization emanates from paramagnetic centers, 

enabling surface-enhanced NMR spectroscopy of porous or nonporous solids. This is highly 

enabling to the characterization of heterogeneous catalysts37, hydrating cementitious solids38, 

organic-inorganic hybrid structural materials, and solid-particle systems involved in additive 

manufacturing where the desirable material properties depend crucially on the compositions 

and interactions present at the surface. In a typical DNP sample formulation, small amounts 

of solid sample are mixed with a DNP solvent matrix containing stable biradical polarizing 

agent under conditions of incipient wetness impregnation. In the idealized process diagram in 

Figure 2.5, the DNP solvent matrix perfectly wets the target particle surface such that there is 

strong dipole-dipole contact between the dissimilar materials. In this diagram 

hyperpolarization of the DNP solvent matrix can lead to theoretical polarization values as high 

as 658 times thermal equilibrium. This hyperpolarization is relayed through 1H nuclei which 

act as spin carriers delivering excess Zeeman energy to the target particle surface by the 

process of nuclear spin diffusion. The transient accumulation, propagation, and dissipation of 

nuclear spin hyperpolarization in this process can be described by a series of coupled partial 

differential equations that are comparable to those employed in transient heat transfer 

analyses. The spatial polarization in the frozen DNP solvent matrix, 𝑃̃𝑀(𝑧, 𝑡), and the solid-

particle surface, 𝑃̃𝑆(𝑧, 𝑡), are given, 

 
𝜌H,𝑀𝐶z

𝜕𝑃̃𝑀

𝜕𝑡
= ∇(𝜌H,𝑀𝐶z𝒟H,𝑀∇𝑃̃𝑀) −  𝜌H,𝑀𝐶z

(𝑃̃𝑀 − 1)

𝑇1,𝑀
+ 𝑄𝐷𝑁𝑃 

 

(2.22) 
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𝜌H,𝑆𝐶z

𝜕𝑃̃𝑆

𝜕𝑡
= ∇(𝜌H,𝑆𝐶z𝒟H,𝑆∇𝑃̃𝑆) −  𝜌H,𝑆𝐶z

(𝑃̃𝑆 − 1)

𝑇1,𝑆
 

(2.23) 

noting that hyperpolarization is only generated within the DNP solvent matrix which contains 

biradical polarizing agents. Meanwhile, the solid-particle target acts as a hyperpolarization 

“sink” and dissipates excess Zeeman energy at a rate proportional to 𝜌H,𝑆𝐶z𝑇1,𝑆
−1 until thermal 

polarization is attained, 𝑃̃𝑆 = 1. Thermal-like boundary conditions describe the rate of 

Zeeman energy transfer across the interface, z = 𝛿, such that, 

 

FIGURE 2.5) Idealized process diagram for DNP polarization transfer to a solid-particle 

surface. This system depicts a frozen solution of TEKPol in partially deuterated 1,2-

dichlorobenzene in contact with an anhydrous tricalcium silicate, Ca3SiO5, particle surface 

coated with a monolayer of sucrose. Region M refers to the frozen DNP solvent matrix and 

Region S refers to the adsorbed sucrose monolayer. Yellow arrows depict direct transfer 

by cross-effect DNP to hyperfine coupled 1H nuclei and red arrows depict transfer mediated 

by 1H-1H spin diffusion.    
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𝑃̃𝑆(δ, t) =  𝑃̃𝑀(δ, t), (2.24) 

the polarization is a continuous function across the interface. Additionally, the total amount 

of Zeeman energy flowing across the interface is conserved,  

𝜌H,𝑆𝐶z𝒟H,𝑆

𝜕𝑃̃𝑆(δ, t)

𝜕𝑧
=  𝜌H,𝑆𝐶z𝒟H,𝑆

𝜕𝑃̃𝑆(δ, t)

𝜕𝑧
 , 

(2.25) 

and is proportional to the grouping, 𝜌H,𝑖𝐶z𝒟H,𝑖, which is the Zeeman spin conductivity with 

units W/m per polarization-level. This is directly analogous to a thermal conductivity which 

has units of W/m per degree Kelvin. Similar boundary conditions have previously been 

implemented for conventional NMR spin diffusion analyses by Clauss and coworkers.39 By 

Equation 2.25, the total Zeeman energy flowing across an interface is dependent on the 

relative propensity of each media to accept and conduct spin polarization. Although the 

process of nuclear spin diffusion has many features that are similar to reaction-diffusion type 

processes, it is most directly analogous to thermal energy conduction.  

In real systems, interfacial polarization transfer processes can be exceedingly complex. 

This is also true for thermally conducting systems, where poor interfacial contact may 

necessitate the use of jump-boundary conditions or other physically justified descriptions of 

heat transfer at disordered interfaces or grain boundaries.40 In many regards, for spin 

polarization transfer, interfaces are even more sensitive to interfacial phenomena which can 

significantly influence polarization transfer in the bulk media. For example, assuming dipolar 

relaxation dominates, different conformations of molecular species or neighbor interactions 

at the interface can lead to significantly faster dipolar relaxation. Additionally, as depicted in 

the schematic diagram in Figure 2.5, the biradical polarization agent can adsorb or interact 

with particle surfaces.41 At the very least, this may result in non-negligible DNP generation 

rates, QDNP, penetrating into the solid-particle surface that can strongly influence 
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hyperpolarization build-up rates observed in the bulk media. For strongly favorable 

adsorption, concentration of the polarizing agent at the surface can lead to enhanced PRE 

effects that propagate through the system. In Chapter 3, more detailed experimental evidence 

and discussion will be devoted to understanding complex interfacial phenomena which are 

important both in hyperpolarized magnetic resonance and quantum computing applications.  

2.9. Film Approximation Applied to the Electron-Nuclear Interface 

In a frozen DNP solvent matrix containing dilute concentrations of paramagnetic centers, 

as in Figure 2.4, the average separation distance between paramagnetic centers is 

approximately two times the Wigner-Seitz radius, d = 2λws.
33 More generally in condensed 

matter physics, the Wigner-Seitz radius represents a fictitious sphere formed around a single 

dopant representing a volume of bulk material corresponding to the bulk dopant concentration 

and is given, 

𝜆𝑤𝑠 = (
3

4𝜋𝜌𝑝𝑐𝑁𝐴
)

1/3

 , 
(2.26) 

where ρpc is the concentration of paramagnetic centers (i.e., nitroxide biradicals) and NA is 

Avogadro’s number. For example, a 2 mM biradical solution would have a Wigner-Seitz 

radius corresponding to 5.83 nm and a mean separation distance of 11.6 nm. The mesoscopic 

spin transport model, Equation 2.21, would only be applicable over the region λsdb < r < λws. 

Due to periodicity, there will be a local minimum in the spatial polarization profile as r 

approaches λws such that, 

𝜌H𝐶z𝒟H

𝜕𝑃̃

𝜕𝑟
|𝜆ws

= 0 , 
(2.27) 
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beyond the Wigner-Seitz radius, r > λws, it is statistically probable that the 1H nuclei will be 

closer to another paramagnetic center and thus will have a higher polarization level. Because 

Zeeman energy diffuses from regions of high to low polarization, Equation 2.27, corresponds 

to a zero Zeeman energy flux condition. As discussed in Section 2.6, the process of nuclear 

spin-diffusion is fundamentally altered near a paramagnetic center. By analogy to heat and 

mass transfer film theory, it is possible to describe the electron-nuclear interface by use of a 

DNP polarization transfer coefficient (units m/s) that is directly analogous to a mass transfer 

coefficient (units m/s). In this section the physical justification for use of a film theory will be 

introduced, full derivation and experimental validation of this approach is provided in Chapter 

three.  

A significant general challenge encountered in the description of hybrid electron-

nuclear spin systems in quantum computing11 and hyperpolarized magnetic resonance15 

applications is the existence of a complex and poorly defined interface impeding coherence 

(spin-spin dipolar ordering dominated by T2 relaxation-type processes) or hyperpolarization 

transfer (z-component of the nuclear magnetization vector dominated by T1 relaxation-type 

processes) away from paramagnetic centers. Within the context of solid-state NMR, which is 

primarily concerned with the z-component of the nuclear magnetization vector, this interface 

is called the spin-diffusion barrier and has been the subject of fundamental interest since the 

seminal work of Bloembergen. As discussed in Section 2.6, nuclear spin-diffusion in a 

homogeneous magnetic field involves spin flip transitions between neighboring spins with a 

similar precession frequency, ωi = ωi+1, and is an energy-conserving, ΔEi(i+1) = 0, process that 

occurs spontaneously. However, in DNP-NMR, hyperpolarization emanates from 

paramagnetic centers where local fields (Bloc) are inhomogeneous, see Figure 2.6. For 1H-1H 
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spin diffusion to occur between frequency-shifted neighbours, ωi ≠ ωi+1, an energy penalty of 

ΔEi(i+1) = γΔBi(i+1) is incurred.42 This energy barrier must be overcome or supplied by some 

other kinetic or relaxation driven process impeding the transport of hyperpolarization away 

from paramagnetic centers.43 The physical significance of this energy barrier is that diffusive 

flux of Zeeman energy, qH, is a complex function of the Bloc field and is no longer suitably 

described by simple conduction relationships (i.e., Fourier’s law, Fick’s 1st law). 

 By measurement of nuclear spin diffusion through a spatially varying magnetic field, 

Genack and Redfield proposed that this energy penalty can be accommodated by coupling 

between the Zeeman energy reservoir (a.k.a. Zeeman Hamiltonian) and the dipolar energy 

reservoir (a.k.a. Dipolar Hamiltonian). The significance of the Genack-Redfield model is that 

 

FIGURE 2.6) Schematic representation of (a) hyperpolarization transfer away from a 

paramagnetic center across a spin-diffusion barrier of radius λsdb, and (b) representation of 

frequency-shifted nuclei which is a contributing factor to the existence of the spin-diffusion 

barrier.   
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the Zeeman energy flux, qH, through an inhomogeneous magnetic field gradient (i.e., a Bloc 

field) can be described by a set of coupled differential equations which represent a magnetic 

analogue of the Nernst-Planck equation that may partially account for the physical origin of 

the spin-diffusion barrier. The Genack-Redfield model, with notation consistent to the 

previous discussion, is given as, 

∂𝑀𝑧

∂t
= 𝒟𝑧∇ ∙ [∇𝑀𝑧 − 𝜒(𝑇𝑑)∇𝐵𝑖(𝑖+1)] 

(2.28) 

∂𝜒(𝑇𝑑)

∂t
= −𝑞𝐻 ∙

∇𝐵𝑖(𝑖+1)

𝐻𝑑
2 + 𝒟𝑑∇2𝜒(𝑇𝑑) 

(2.29) 

where 𝑀𝑧 is the z-component of the net magnetization, 𝒟𝑧 is the spin-diffusion coefficient 

associated with the diffusion of Zeeman energy, 𝒟𝑑 is the spin-diffusion coefficient associated 

with the diffusion of dipolar order, 𝐻𝑑
2 is the mean square of the effective dipole-dipole 

magnetic field (e.g., strength of the dipole interaction), 𝜒(𝑇𝑑) is a dipolar magnetic 

susceptibility which can be regarded as a dipolar heat capacity, and 𝑇𝑑 is the spin-temperature 

of the dipolar reservoir. In Equation 2.28, spin-lattice T1 relaxation is omitted because the 

Genack-Redfield model was developed to describe situations where the diffusion time scale 

was much shorter than the T1 relaxation time, τ << T1. As described in Section 2.4, the notion 

of a Zeeman spin temperature (Tz) can be used interchangeably with either the spin 

polarization, P, or the z-component of the net nuclear magnetization, Mz. There is also a 

thermodynamic temperature associated with spin-spin ordering, or the dipolar energy 

reservoir which is the Dipolar spin temperature (Td). Dementyev and coworkers measured the 

rate at which dipolar order diffuses away from paramagnetic centers in DNP-NMR and found 

that this property is influenced less by the spin-diffusion barrier than is the Zeeman spin 

temperature.34,43 Importantly, for in the presence of a homogeneous field, ΔBi(i+1) = 0, then 
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Equation 2.28 is reduced to a similar form as presented in Section 2.6 which represents the 

Fourier-like or Fickian-like transport of polarization. The Genack-Redfield model identifies 

an important contribution to polarization transfer through an inhomogeneous gradient, the 

influence of the dipole-dipole energy reservoir. This challenges the application of spin 

thermodynamic models, such as Equation 2.21, which implicitly rely on knowledge of 

electron-nuclear interactions that are not easily measured directly15. A novel contribution of 

this manuscript is demonstrating how under conditions of both microwave irradiation and 

MAS, simple analytical solutions consistent with the Genack-Redfield model may be obtained 

by dimensional scaling analyses. By relatively simple experiments, rate-law parameters can 

be extracted which provide detailed quantitative insights regarding the nature of quantum 

interfaces (e.g., the spin-diffusion barrier) and other rate-limiting processes that emerge in 

complex spin systems. 

By analogy to Newton’s law of cooling, many challenges associated with the 

thermodynamic description of the electron-nuclear interface can be circumvented by use of a 

DNP polarization-transfer coefficient (kDNP, with units of m/s). This approach is best 

understood by analogy to convective heat transfer at an interface, where a similar energy 

barrier impedes the flow of heat due to the formation of a viscous boundary layer. Newton’s 

law of cooling states that the rate of heat transfer at a surface is proportional to the temperature 

gradient and, despite its names, was formulized by French scientists Jean-Baptiste Joseph 

Fourier (1768 – 1830) and Jean-Baptise Biot (1774 – 1862).45 Here the Zeeman energy flux, 

𝑞H = −(𝜌H𝐶z𝑘DNP)∆𝑃̃, is defined at the spin-diffusion barrier interface r=λsdb. The grouping, 

𝜌H𝐶z𝑘DNP, has units of W/m2 per polarization-level and is mathematically analogous to a heat-

transfer coefficient (W/m2·K), but here represents polarization transfer across a local magnetic 
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field gradient. Far from paramagnetic centers (r≥λsdb), the DNP generation rates, QDNP, are 

negligible. Assuming that polarization propagates radially (via dipolar couplings) from each 

paramagnetic center, the Zeeman energy flux into the bulk ensemble can be represented by a 

Neumann boundary condition: 

𝜌H𝐶z𝒟H

𝜕𝑃̃

𝜕𝑟
|𝜆sdb

= (𝜌H𝐶z𝑘DNP)∆𝑃̃ , 
(2.30) 

where ∆𝑃̃ ≡ (𝑃̅CE − 𝑃̃|𝜆sdb
) is the polarization difference across a “spin diffusion barrier”. 

Equation 2.30 represents a generation boundary condition, with rate-law parameters 𝑘DNP and 

𝑃̅CE governing the apparent rate of Zeeman energy into the bulk nuclear spin ensemble. 

Further discussion and justification for this approach will be provided in Chapter three, Here, 

it is noted that λsdb has a physical significance that is at least partially analogous to the Debye 

length in electrolyte solutions47. In Figure 2.7, a comparison is made between thermal energy, 

ion diffusion, and hyperpolarization transfer at an interface where simple conduction-like 

relationships do not apply. For thermal energy transfer, heat transfer to the bulk fluid is 

impeded by a viscous boundary layer. For dilute electrolyte solutions, an electric field 

associated with the surface potential is screened by charges resulting in the accumulation of 

ion density near the surface. For polarization transfer, the precession frequency of nuclei near 

the paramagnetic centers are displaced resulting in an energy barrier of ΔEi(i+1) = γΔBi(i+1) as 

suggested by the Genack-Redfield model. By introducing the DNP film transfer coefficient, a 

foundational basis is provided for the description of large coupled spin systems by 

dimensionless property analysis similar to those employed in heat and mass transfer.  
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FIGURE 2.7) Comparison between  (a) polarization transfer across the spin-diffusion 
barrier (λsdb), (b) heat transfer across a stagnant boundary layer (λheat), (c) ion density 
near a charged interface characterized by a Debye length (λD). 
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2.10. Motivating Dimensional Scaling Analyses 

 To motivate the use of dimensional analysis, which is widely employed in engineering 

analyses involving heat, momentum, and mass transfer, it is useful to discuss an interesting 

problem involving bacterial locomotion. Although awarded with the 1952 Nobel Prize in 

Physics for the discovery of nuclear magnetic resonance and, later, making pioneering 

contributions to the field of radioastronomy, Purcell is widely known among chemical 

engineers for a paper titled, “Life at Low Reynold’s Number”.2 Given their small size, bacteria 

swimming in solution do not have the benefit of inertial forces to maintain their momentum 

and trajectory. In fact, most forms of reciprocal motion employed by human swimmers at such 

length scales would exactly negate any forward momentum leaving the microscopic swimmer 

suspended in place. This requires an active forward moving force of magnitude ~η2/ρ where 

η is viscosity and ρ is density to constantly drive the organism towards nutrient rich zones. 

Most of their nutrients are collected by diffusion, however, motile microscopic organisms will 

swim a path length equal to several times the characteristic diffusion length to sample new 

environments. There was significant interest in the type of motion used by their flagellum, 

however due to its small size it was not possible to observe flagellar motions by in-situ 

microscopy. Instead, by tracking the swim path of a bulk E. coli organism through solution, 

the dynamic modes (i.e., period of motion, waving vs. rotating, etc.) of their flagellar motions 

could be extracted. Purcell showed that, by means of nondimensional scaling analysis, the 

mechanical efficiency, dynamic modes, and swim path of E. coli could be fully described by 

use of a symmetric matrix consisting of three measurable parameters. These types of analyses 

would have been intractable if it were necessary to solve the complete Navier-Stokes equation 

for different types of flagellar motions and demonstrates the utility of dimensional scaling in 
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identifying the most important physics of the problem. In Chapter three, it will be similarly 

demonstrated that spin thermodynamics of large coupled spin systems can be accurately 

described by polarization analogues of the Biot number, Thiele modulus, Damköhler number, 

and Hatt number. These dimensional groups are used to identify conditions under which 

classical spin thermodynamic treatments (see Figure 2.8) can accurately describe spin 

polarization transfer in large spin systems. 

   

 

FIGURE 2.8) Schematic representation of DNP across multiple length and time scales, 

including (a) individual electron-nuclear spin reorientation over 10-6 s, diagram reproduced 

from (Thurber and Tycko, 2012); (b) the range of direct DNP transfer to nuclei within a few 

nanometers and a slow transfer step across the spin-diffusion barrier over ~10-4 to 101 s, 

diagram reproduced from (Smith and Griffin et al., 2012); and (c) classical spin 

thermodynamics between large coupled dissimilar spin reservoirs over <1 nm to 10’s µm 

lengthscales, diagram reproduced from (Pinon and Emsley et al., 2017).  

  

2.11. Conclusions 

 In emerging applications of hyperpolarized magnetic dimensional scaling analyses 

provide a strong experimental foundation for the measurement of simple rate-late parameters 

to describe complex hyperpolarization transfer processes. It is demonstrated that continuum 

analyses can provide important insights near quantum interfaces (i.e., the spin-diffusion 
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barrier), as the Nernst-Planck equation does for electrolyte systems. Within the context of 

DNP-NMR, the dimensional analyses enable hyperpolarization transfer rates to be predicted 

from paramagnetic centers into surrounding composite solid media over relatively large 

distances, mediated by dipolar couplings and spin-lattice relaxation. In a broader context, 

these results provide a system-level description of complex composite spin systems. Such 

approaches may be used to guide the selection of material properties to optimize polarization 

transfer between dissimilar spin reservoirs which remains crucial to hyperpolarized magnetic 

resonance and quantum information applications. Similar scaling analyses are expected to 

yield system-level insights into spin-transfer phenomena in other condensed matter systems 

where transitions from quantum mechanical to classical properties feature prominently.  
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Chapter III.  

Scaling analyses for hyperpolarization transfer across a 

spin-diffusion barrier and into bulk solid media 

Nathan A. Prisco, Arthur C. Pinon, Lyndon Emsley, and Bradley F. Chmelka. Phys. 

Chem. Chem. Phys., in review. 

3.1. Abstract 

By analogy to heat and mass transfer film theory, a general approach is introduced for 

determining hyperpolarization transfer rates between dilute electron spins and a surrounding 

nuclear ensemble. These analyses provide new quantitative relationships for understanding, 

predicting, and optimizing the effectiveness of hyperpolarization protocols, such as Dynamic 

Nuclear Polarization (DNP) under magic-angle spinning conditions. An empirical DNP 

polarization-transfer coefficient is measured as a function of the bulk matrix 1H spin density 

and indicates the presence of two distinct kinetic regimes associated with different rate-

limiting polarization transfer phenomena. Dimensional property relationships are derived and 

used to evaluate the competitive rates of spin polarization generation, propagation, and 

dissipation that govern hyperpolarization transfer between large coupled spin ensembles. The 

quantitative analyses agree closely with experimental measurements for the accumulation, 

propagation, and dissipation of hyperpolarization in solids and provide evidence for 

kinetically-limited transfer associated with a spin-diffusion barrier. The results and classical 

approach yield general design criteria for analyzing and optimizing polarization transfer 
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processes involving complex interfaces and composite media for applications in materials 

science, physical chemistry and nuclear spintronics. 

3.2. Introduction 

In coupled energy transfer and dissipation processes, dimensional property analyses 

provide bases for understanding phenomena in systems ranging from industrial-scale process 

equipment1 to complex micromechanical systems2. Extending such constitutive analyses to 

the propagation of spin polarization is important for emerging applications of hyperpolarized 

magnetic resonance3–7 and processes based on spin transport over multiple length scales8,9. In 

quantum computing, the coupling of electron qubits with highly polarized nuclear spin packets 

(e.g., nuclear spintronics) is a promising strategy for extending coherence lifetimes and for 

facilitating short-term data storage functions10,11. Another example is dynamic nuclear 

polarization (DNP), which exploits the coupling of electron-nuclear spin ensembles to 

enhance dramatically NMR signal sensitivity in solids12. Quantitative models of DNP 

polarization transfer, however, have been challenging to implement13,14, as the generation, 

propagation, and dissipation of hyperpolarization can span time scales ranging from 10–9 to 

105 s, length scales from <1 nm to µm, and involve considerations of both quantum 

mechanical and classical phenomena. Materials systems on which these examples are based 

share key features, specifically complex and poorly defined interfaces between the electron 

spin(s) and surrounding nuclear ensemble15. Here, we show that the transfer of net nuclear 

magnetization (i.e., spin polarization) from dilute paramagnetic centers to a surrounding 

nuclear spin ensemble exhibits fundamental similarities to thermal energy transfer and to 

charge transport, but importantly combines distinct aspects of both. A general model is 

derived for meso-scale (1–100 nm) spin transport phenomena that enables rate-limiting 
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processes to be identified and quantitative prediction of hyperpolarization performance. The 

resulting insights provide criteria to guide the selection of material properties and conditions 

to exploit the enhanced sensitivity of hyperpolarization for diverse applications in materials 

science, biology and medicine, and quantum information processing. 

Recent advancements in magic-angle spinning (MAS) DNP-NMR spectroscopy enable 

large polarization gradients to be generated near paramagnetic centers. In DNP, unpaired 

electron spins (e.g., on dilute nitroxide biradicals) are partially saturated by microwave 

irradiation, resulting in hyperfine transfer to nearby nuclear spins12. A limitation inherent to 

DNP is that hyperpolarization emanates from paramagnetic centers that also impede 1H–1H 

spin diffusion, resulting in a spin-diffusion barrier15–18. Fundamental insights have typically 

come from quantum-mechanical treatments that have elucidated the cross-effect mechanism 

and field dependence19–21. While these approaches have been extended to realistically sized 

spin systems22,23, it remains challenging to quantitatively predict hyperpolarization transfer 

rates to distant 1H nuclei, particularly across the spin-diffusion barrier (Fig. 3.1a) and across 

interfaces (Fig. 3.1b). Here, a film approximation is used to obtain dimensionless parameters  

that generalize spin polarization transport phenomena, elucidate rate-limiting processes, and 

identify conditions for which classical thermodynamic models24 can accurately reproduce spin 

polarization transfer kinetics.  This approach provides simple quantitative criteria that allows 

polarization build-up rates and gains to be predicted on the basis of sample composition, 

deuteration level, and radical concentration.  
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FIGURE 3.1. Schematic diagrams of (a) a spin-diffusion barrier and, (b) polarization 

transfer from paramagnetic centers in a partially deuterated glycerol-water matrix to a 

polymeric solid. Each biradical molecule is assumed to polarize a spherical region represented 

by the Wigner-Seitz radius, 𝜆ws = (3/4𝜋𝜌pc𝑁𝐴)1/3 where 𝜌pc is the biradical 

concentration24. The interface between the spin-diffusion barrier and the bulk diamagnetic 

matrix occurs at λsdb, and the mean biradical separation is 2λws. 

 

Rate-law descriptions have previously been used to describe solid-effect DNP25,26 and may 

be similarly justified for the cross-effect19,27. Notably, rate-law approximations are consistent 

with the Genack-Redfield model28, which is a magnetic analogue of the Nernst-Planck 

equation that may partially account for the physical origin of the spin-diffusion barrier. While 

spin-diffusion in a homogeneous magnetic field is non-activated, the presence of a strong local 

magnetic field gradient imposes an energy barrier impeding polarization transfer. We show 



 

43 

 

how under conditions of both microwave irradiation and MAS, simple analytical solutions to 

the Genack-Redfield model may be obtained by dimensional scaling analyses. By analyzing 

transient polarization levels of a bulk 1H spin ensemble and determining apparent rate 

coefficients, detailed quantitative insights may be obtained regarding the nature of quantum 

interfaces (e.g., the spin-diffusion barrier) and other rate-limiting processes that emerge in 

complex spin systems. 

3.3. Dimensional scaling analyses applied to the spin-diffusion barrier  

Classical descriptions have long been used to describe certain spin-relaxation phenomena 

and energy conduction processes in large coupled spin systems29. Under the spin-temperature 

hypothesis30, the relationship between Zeeman energy and spin polarization is analogous to 

the relationship between thermal energy and temperature. The Zeeman energy refers to the 

potential energy experienced by a spin ensemble in the presence of a magnetic field, which 

maintains a Boltzmann distribution of spin states yielding net magnetization, the origin of 

NMR signal intensity. Although transient polarization transfer processes are complicated, it 

has been shown31 that the net nuclear magnetization oriented with respect to a static magnetic 

field (B0) obeys simple relaxation equations that are amenable to thermodynamic descriptions. 

In hyperpolarization schemes, electron spin excitation processes are used to transfer excess 

Zeeman energy to a spin system to generate non-Boltzmann (i.e., hyper) polarization that leads 

to dramatically improved NMR signal sensitivity. Zeeman energy transfer occurs from regions 

of high to low polarization via dipole-mediated spin flips29 in a strongly coupled ensemble, 

which propagates over length scales that are suitable for a continuum description24. The 

Zeeman heat capacity is given by 𝐶z = 𝐶𝐵0
2, where C is Curie’s constant, and B0 is the 

magnetic field strength32. Notably, this implies that the Zeeman heat capacity of an ensemble 
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of nuclear spins can vary spatially with respect to the inhomogeneous local field Bloc that are 

induced near a paramagnetic center. For I = ½ nuclei such as 1H under MAS, 𝐶z,𝑛 = 𝛾𝑛ħ𝐵0𝑁𝐴, 

where γn is the gyromagnetic ratio and NA is Avogadro’s number, Cz = 2.54x10–2 J/mol for 1H 

nuclei at 9.4 T far from the paramagnetic center where magnetic fields are homogeneous. With 

the spin polarization, 𝑃̃, normalized with respect to Boltzmann equilibrium, the Zeeman 

energy flux, can be expressed as 𝑞𝑛 = −𝜌𝑛𝐶z,𝑛𝒟𝑛∇𝑃̃, where ρn is the spin density (mol·m–3) 

and 𝒟n is the spin diffusion coefficient (m2·s–1). In the rigid limit,33 spin diffusivities scale as 

𝒟n ∝ γn
2ρn

1/3 and can be directly measured.34–36 A similar ρn
1/3 scaling dependence of 𝒟n under 

MAS conditions has been predicted by reduced Liouville space (LCL) calculations.37 A 

transient energy balance for the equilibration of polarization, 𝑃̃(t) among 1H nuclei in a 

diamagnetic spin ensemble (e.g., the frozen DNP-solvent) yields: 

𝜌H𝐶z

𝜕𝑃̃

𝜕𝑡
− ∇ · (𝜌H𝐶z𝒟H∇𝑃̃) = 𝜌H𝐶z

(1 − 𝑃̃)

𝑇1
+ 𝑄̇ , (3.1) 

where 𝑄̇ (W/m3) is the DNP source term associated with the microwave excitation and 

hyperfine processes that generate hyperpolarization. In a bulk solid, such hyperpolarization 

propagates by spin diffusion and dissipates at a rate of T1
–1, the inverse of the 1H spin-lattice 

relaxation time (measured as described in the Supplementary Information, Section S1). A 

reference 𝒟H value of 5·10-16 m-2s-1 has been measured for polystyrene (𝜌H = 70 M) under 

similar MAS DNP NMR conditions38. This constitutive model is valid for coupled nuclear 

spin ensembles in homogeneous fields and for polarization transfer across interfaces. 

However, because hyperpolarization emanates from paramagnetic centers where local 

fields (Bloc) are inhomogeneous (Fig. 3.1a), thermodynamic models such as Eq. 3.1 implicitly 

rely on knowledge of electron-nuclear interactions that are not easily measured directly15. By 
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analogy to Newton’s law of cooling, this can be circumvented by use of a DNP polarization-

transfer coefficient (kDNP, with units of m/s), where the Zeeman energy flux, 𝑞H =

−(𝜌H𝐶z𝑘DNP)∆𝑃̃, is defined at the spin-diffusion barrier interface r=λsdb. The grouping, 

𝜌H𝐶z𝑘DNP, has units of W/m2 per polarization-level and is mathematically analogous to a heat-

transfer coefficient (W/m2·K), but here represents polarization transfer across a thin local 

magnetic field gradient. Far from paramagnetic centers (r≥λsdb), the DNP generation rates, 𝑄̇, 

are negligible. Assuming that polarization propagates radially (via dipolar couplings) from 

each paramagnetic center, the Zeeman energy flux into the bulk ensemble can be represented 

by a Neumann boundary condition: 

𝜌H𝐶z𝒟H

𝜕𝑃̃

𝜕𝑟
|𝜆sdb

= (𝜌H𝐶z𝑘DNP)∆𝑃̃ , (3.2) 

where ∆𝑃̃ ≡ (𝑃̅CE − 𝑃̃|𝜆sdb
) is the polarization difference between 𝑃̅CE, the effective 

polarization generated among core nuclei by cross-effect exchange or other DNP 

mechanisms12, and 𝑃̃|𝜆sdb
, the polarization at the thermal contact interface between core and 

bulk nuclei given by, λsdb, the barrier radius. In the context of the Genack-Redfield model, the 

barrier radius λsdb corresponds to a ‘vortex radius’ over which spin diffusion is partially 

suppressed due to the influence of the strong local inhomogeneous field Bloc. This imposes an 

energy barrier that can result in a steep reduction in steady-state hyperpolarization levels near 

the paramagnetic centers as recently corroborated by quantum mechanical simulations18. 

Thus, λsdb has a physical significance that is at least partially analogous to the Debye length in 

electrolyte solutions39, which corresponds to a characteristic length scale over which ion 

density surrounding a charged interface varies with respect to a decaying local electric field. 

Whereas the Debye length represents a the distance over which charge neutrality is violated 

due to electrostatic screening, the spin-diffusion barrier radius may represent a distance over 
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which hyperfine coupled nuclei undergo frequency-shifted spin precession that can impede or 

alter spin-diffusion rates.15,17,18   

Previous experimental and theoretical estimates of the barrier radius λsdb have ranged from 

0.3 to 1.7 nm for a monoradical due to differences in experimental conditions and conflicting 

definitions of the spin-diffusion barrier.16 Specifically, the spin-diffusion barrier is either 

defined as the distance over which spin-diffusion is completely suppressed or, alternatively, 

partially hindered in comparison to the bulk. Here, the latter definition is preferred, such that 

λsdb is regarded as a scaling distance over which local 𝒟H values rapidly approach bulk values. 

It is anticipated that λsdb is related to the pseudopotential radius derived, in the continuum 

limit, by de Gennes31 and Khutisivhili40. The pseudopotential radius gives a characteristic 

length scale over which direct paramagnetic relaxation and spin-diffusion are competing. A 

similar theory was advanced by Goldman41 and an experimental value of 1.7 nm reported for 

the steep transition in the local diffusion rate, albeit under static, low field, and low 

temperature conditions. It is inferred from these past approaches that λsdb has a complex 

dependence on sample composition, field strength, and MAS rate. However, determination of 

the barrier radius under DNP NMR conditions remains an active area of research.15,18,24  

Although λsdb values are not explicitly known, it is still possible to measure the apparent 

rate of polarization transfer across the barrier by means of a film approximation. The definition 

for the empirical DNP polarization-transfer coefficient is provided in Eq. 3.2. Notably, kDNP 

(m/s) accounts for the rate of polarization transfer to the bulk spin ensemble and, 𝑃̅CE, accounts 

for the polarization gain. For these analyses, λsdb is designated to be 1.8 nm from the biradical 

center which is larger than the 1.2 nm electron-electron separation distance of the commonly 

used AMUPol biradical.42 For the cross-effect mechanism, an upper-bound for 𝑃̅CE is 
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γe/γH=658, although lower values are often encountered due to electron spin-relaxation 

effects43,44 or due to an inhomogeneous distribution of microwave intensity 45.  Typically, film 

coefficients are measured empirically (by Eq. 3.2) and used to develop correlations in 

response to a change in process conditions. Film coefficients can also provide fundamental 

insights into the system by comparison to a film theory. A film theory often involves a 

reduction of the physics involved in the process, and may not quantitively match the empirical 

film coefficient, but provide a general understanding of the scaling dependences46. One of the 

earliest examples is the “two-film theory” developed by Whitman1 which, by analogy to mass 

transfer, predicts, 

𝑘DNP~ 
𝒟H

∆𝜆
 , (3.3a) 

that the transfer coefficient (m/s) scales with respect to a slow diffusion rate over an 

indeterminate film thickness (∆𝜆); a similar approach invoking a “heterogeneous reaction 

velocity” (m/s) was also introduced by Nernst47. Another mass transfer model of potential 

relevance to DNP NMR is the “surface renewal theory” developed by Danckwerts48 which, 

by analogy, predicts, 

𝑘DNP~ √𝒟H𝜔 , (3.3b) 

that the transfer coefficient depends on the square root of the product of the diffusion 

coefficient (m2/s) and a surface renewal frequency (s-1). In mass transfer, ω may correspond 

to the circulation of eddy currents which periodically replenishes the solute concentration at 

a gas—liquid interface in contact with a liquid bulk. For DNP NMR, cross-effect transfer 

events may occur at some frequency ω, replenishing hyperpolarization levels within the 

barrier which subsequently diffuses into the bulk. Although, Eq. 3.3a-b do not account for T1 

relaxation, both mass transfer models have been solved for the mathematically analogous 
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condition of a first-order irreversible chemical reaction49. Given the success of ab initio 

simulations in modelling cross-effect DNP18,23, it is anticipated that quantum mechanical 

calculations will afford greater mechanistic insights than can be obtained by a film theory. 

Nevertheless, the approach remains the same as it is employed in the design and optimization 

of industrial scale process equipment1,46. The empirical transfer coefficient kDNP provides a 

means to quantify rate-limitations, predict sensitivity improvements, and report scaling 

dependences in a simple experimental formulism. For example, it is generally known how a 

heat transfer coefficient scales with fluid velocity, and it would be similarly useful to know 

how a DNP transfer coefficient scales with 1H spin density, field strength, or MAS rate. It will 

be demonstrated that kDNP and 𝑃̅CE provide a foundational basis for the continuum description 

of large composite spin systems by dimensional property analyses. 

The relative rates of generation, propagation, and dissipation of hyperpolarization can be 

compared by using a scaling analysis, which leads to dimensionless parameters that are 

analogous to those characteristic of classical energy or mass transfer processes. Specifically, 

nondimensionalizing Eq. 1 for 𝑟 ̃= r/L and 𝑡̃ = t/T1 yields: 

𝜕𝑃̃

𝜕𝑡̃
 – 𝜙P

−2(
2

𝑟̃

𝜕𝑃̃

∂𝑟 ̃
+

𝜕2𝑃̃

∂𝑟 ̃2
) = (1 − 𝑃̃) , 

(3.4) 

where the dimensionless parameter 𝜙PL/(𝒟HT1)
0.5 arises naturally along with a characteristic 

dimension L=(λws
3−λsdb

3)/3λsdb
2, which corresponds to a classical spin packet around each 

paramagnetic center to which energy is transferred. The spin packet is defined by a Wigner-

Seitz sphere, see Fig. 3.1b, which is a fictitious spherical volume around a single biradical that 

accurately represents the bulk volume density of biradical species. Importantly, the Wigner-

Seitz radius, λws, is progressively larger at lower biradical concentrations24 with values of 5.8 

nm and 3.2 nm at 2 mM or 12 mM, respectively. At the center of this sphere, there is a 
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collection of core nuclei within the barrier radius, λsdb, that are in poor thermal contact with 

the bulk. By convention in similar heat transfer analyses, L corresponds to the ratio of the 

volume and thermal contact area as given above. The parameter 𝜙P is analogous to the well-

known Thiele modulus associated with mass transfer in heterogeneous catalysts, but, in the 

present context, 𝜙P represents the relative rates of polarization transfer by spin diffusion and 

energy dissipation by spin-lattice relaxation. 

Similarly, nondimensionalization of the boundary condition in Eq. 3.2 yields 

∂𝑃̃/∂𝑟 ̃=BiP∆𝑃̃, where BiPkDNPL/𝒟H corresponds to a dimensionless Biot number. In transient 

heat transfer processes, the Biot number reflects the rate of heat transfer at the surface of an 

object relative to the rate of internal heat conduction within its body 50. This has direct analogy 

to polarization transfer processes, where the Biot number reflects the rate of polarization 

transfer across the spin-diffusion barrier relative to the rate of spin diffusion within a 

diamagnetic bulk solid. Low Biot number conditions indicate that a solid medium is 

“thermally thin” on the basis of its internal transport properties, its dimensions, and the rate at 

which energy is delivered to or dissipated from it, as shown schematically in Fig. 3.2a. For a 

thin cooling fin, internal temperature gradients can be neglected to an extraordinarily good 

approximation enabling simple analytical descriptions of transient heat exchange (i.e., by 

means of a lumped-element approximation50). For spherical geometries with BiP <0.65 

(derivation in Appendix A2, A3), spin-diffusion resistances can be considered negligible, and 

hyperpolarization will be distributed essentially instantaneously and uniformly (∇2𝑃̃=0) into 

the bulk spin ensemble over a characteristic time scale (e.g., TDNP), as depicted in the upper 

solid trace of Fig. 3.2b. For DNP NMR, the condition “thermally thin” (low Biot number) 

indicate that polarization transfer across the spin-diffusion barrier is rate-limiting, and that 
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build-up times in the surrounding matrix do not depend significantly on bulk spin-diffusion 

properties. 

 

FIGURE 3.2. (a) Comparison between a thermally thick and thermally thin cooling fin 

and their analogy to bulk polarization transfer in dilute biradical suspensions. (b) Schematic 

steady-state polarization profiles, 𝑃̃(r), between two biradical species in a frozen DNP matrix 

with (𝑃̅CE(on)) or without (𝑃̅CE(off)) microwave excitation. For low BiP conditions (<0.65), the 

diamagnetic bulk approaches a nearly uniform polarization level (upper solid line), whereas 

for high BiP conditions (>0.65), a polarization gradient exists (upper dashed line). Thermal 

equilibrium corresponds to unity. The film-transfer model assumes a linear polarization 

gradient across the spin-diffusion barrier. 
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Furthermore, small values of BiP justify the use of a lumped-element approximation, 

similar to those employed in transient heat transfer analyses. For such an approximation, the 

rate of spin-diffusion in the diamagnetic bulk can be considered infinitely fast relative to the 

rate of exchange across the spin diffusion barrier, the latter of which is rate-limiting. This 

allows the boundary condition (Eq. 3.2) to be transformed into a uniform source term, 𝑄̇ =

𝜌H𝐶z𝑘DNP𝐿−1∆𝑃̃, as detailed in Appendix 3A2. The consequence of this is that the DNP 

matrix can be regarded as a homogeneous continuum, rather than as ~1016 interacting spin 

packets. In this description, the continuum element is the spin packet defined by the Wigner-

Seitz sphere. For an initial condition 𝑃̃(𝑟, 0) = 0 corresponding to saturation recovery, an 

analytical expression is obtained for the characteristic time to build-up polarization, 𝑇DNP
o : 

𝑇DNP
o =

𝑇1
o

(1 + 𝑘DNP𝐿−1𝑇1
o)

     , (3.5a) 

𝑘DNP𝐿−1 =
𝑇1

o − 𝑇DNP
o

𝑇1
o𝑇DNP

o      , (3.5b) 

from which kDNP is straightforwardly obtained from experimentally measured values of 

𝑇1
o and 𝑇DNP

o , and known values of L ; the superscript ‘o’ denotes properties of spin packets 

isolated from dipolar contact with dissimilar spin reservoirs. Here, the characteristic build-up 

time, 𝑇DNP
o , is associated with cumulative polarization transfer between core and bulk nuclei 

in a homogeneous frozen solution and the spin-lattice relaxation time, 𝑇1
o, is that of the bulk 

nuclei in the absence of biradical. Eq. 3.5b manifests the direct relationship between 𝑘DNP𝐿−1 

and experimental values for 𝑇1
o and 𝑇DNP

o , which are conveniently measured even if the spin-

diffusion barrier radius is not explicitly known. Importantly, under low Biot conditions, the 

film transfer model accounts for the mono-exponential kinetics for polarization build-up that 
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are commonly observed for 1H spin-diffusion-mediated DNP-NMR experiments in frozen 

biradical matrices24,27. From measured build-up times, values for kDNP are determined using 

Equation 3.5a and yield quantitative insights into rate-limiting polarization transfer processes. 

Specifically, kDNP is an apparent rate constant which lumps together the contributions of 

hyperfine interactions, relaxation processes, and slow diffusion steps that limit apparent 

polarization transfer rates between core and bulk nuclei.  

         As demonstrated in Eq. 3.5a, for a similar transfer coefficient, kDNP, and a similar 

biradical concentration, by means of L, it is expected that shorter bulk 𝑇1
o values will directly 

correspond to shorter characteristic build-up times (𝑇DNP
o ). This phenomenon can be 

understood by analogy to the mass transfer enhancement factor (E) which for spin polarization 

is, 

E ≡  
polarization transfer rate (with relaxation)

polarization transfer rate (no relaxation)
     , 

 

 

the ratio between the polarization transfer rate in the presence of 𝑇1
o relaxation versus the 

polarization transfer rate in the absence of 𝑇1
o relaxation. Thus, the depletion of polarization 

increases the ∇𝑃̃ driving force resulting in a greater polarization transfer rate within the 

barrier. Numerical simulations for the E factor have been tabulated by van Krevelen and 

Hoftijzer51, and are reported on a nondimensional basis with respect to the Hatta number (Ha). 

The spin polarization analogue of the Hatta number is Ha = (𝒟HT1
-1)0.5/kDNP, and provides the 

ratio between the rate of relaxation within the barrier region versus the apparent polarization 

transfer rate into the barrier region. For larger Ha number, polarization levels are expected to 

be depleted across the barrier from that of core nuclei, 𝑃̅CE, to that of bulk nuclei, 𝑃̃|𝜆sdb
, 

consistent with recent ab initio simulations18. To avoid referring to the quantity, E, as a 
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polarization transfer rate enhancement, polarization transfer away from paramagnetic centers 

accelerated by nuclear relaxation will be hereafter described as a “spin Hatta effect”. Such 

effects influence polarization build-up times and absolute polarization gains in DNP NMR 

experiments.    

Although cross-effect DNP is routinely used to enhance NMR signal intensity, 

determining absolute polarization levels is challenging52–54, even for low BiP conditions for 

which the polarization level of the diamagnetic bulk is nearly uniform. The effective 

polarization levels generated by cross-effect transfer can be obtained by lumped-element 

solution of Eq. 3.1 under conditions with and without microwave irradiation, 𝑃̅CE(on) and 

𝑃̅CE(off) respectively, which yield: 

 

𝜀θ
o =

1 + 𝑘DNP𝐿−1𝑃̅CE(on)𝑇1
o

1 + 𝑘DNP𝐿−1𝑇1
o     , (3.6) 

 

𝜃depo
o =

1 + 𝑘DNP𝐿−1𝑃̅CE(off)𝑇1
o

1 + 𝑘DNP𝐿−1𝑇1
o    , 

 

(3.7) 

  

where 𝜀θ
o and 𝜃depo

o  are the mean steady-state polarization levels 55 in the bulk with or 

without microwave irradiation respectively, normalized with respect to thermal equilibrium. 

For dilute paramagnetic centers, 𝜌pc, these quantities are directly related to the commonly 

reported signal enhancement,  𝜀∞
o ≈ 𝜀θ

o/𝜃depo
o , which is the ratio of NMR signal intensity with 

and without microwave irradiation, as discussed in the Methods section below. Here, 𝑃̅CE(on)  

provides an upper-bound for polarization levels that are attainable among bulk 1H nuclei under 

microwave irradiation, and 𝑃̅CE(off) quantifies the extent of MAS-induced depolarization, 



 

54 

 

which in the absence of microwave irradiation, results in partial inversion of the nuclear spin 

ensemble to polarization levels below thermal equilibrium54,55, as depicted schematically in 

the lower traces of Fig. 3.2. For dilute paramagnetic centers, low BiP conditions prevail for 

strongly coupled nuclei (e.g., 1H, 19F, 31P), while high BiP conditions are expected for dilute 

or low-γ nuclei (e.g., 13C, 15N, 29Si) which have weaker dipole interactions. Notably, the 

relationships developed in Eq. 3.5a, 3.6, and 3.7 provide a means to estimate polarization 

build-up times and signal gain as a function of sample composition and bulk relaxation 

properties. These expressions exhibit close agreement with T1 vs. TDNP and T1 vs. 𝜀θ
o scaling 

dependences predicted by first principle quantum mechanical simulations23, which provides 

validation for the present approach (see model fit in Appendix 3A6, Fig. 3A5). Furthermore, 

these analyses suggest that transient properties (as in Eq. 3.5a) can be inferred from steady-

state polarization gains (by Eq. 3.6 and 3.7). Thus, time-saving ab initio simulations18,22 that 

calculate steady-state polarization profiles may also be able to predict polarization build-up 

times. 

3.4. Hyperpolarization transfer rates in frozen dilute radical solutions 

Although hyperpolarization transfer by the cross-effect19 occurs on the order of µs to 

milliseconds and 1H spin diffusion between24 paramagnetic centers occurs on the order of tens 

of milliseconds, the characteristic time (𝑇DNP
o ) is often several seconds indicating the presence 

of a slow-exchange step26. Were this slow-exchange step overcome, many applications which 

rely on the detection of insensitive spin pairs could be greatly expedited56. For DNP-NMR 

experiments involving water-soluble biomolecules at conventional 9.4 T field strengths, the 

benchmark DNP matrix consists of frozen glycerol-water 60/30/10 (d8-glycerol/D2O/H2O) 

solutions containing AMUPol, a stable nitroxide biradical57. Although this system has been 
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empirically optimized, the accumulation of non-Boltzmann polarization levels depends on the 

competitive rates of spin polarization generation, spin diffusion, and spin relaxation which 

have not been systematically elucidated. As shown in Fig. 3.3a, measured values of the 

characteristic times 𝑇1
o and 𝑇DNP

o  are strongly influenced by the volumetric 1H spin density 

(ρH) which can be adjusted from 0 to 110 M for glycerol-water systems. The 1H spin-lattice 

relaxation time (𝑇1
o) is strongly dependent on 1H-1H dipole-dipole couplings and varies by an 

order of magnitude from 20 – 200 s over the measured ρH range. In the presence of AMUPol, 

characteristic build-up times (𝑇DNP
o ) are correspondingly shorter due to electron-nuclear 

interactions which propagate through the lattice. 

Although 𝑇DNP
o  values are often considered a metric of DNP performance, they inherently 

depend (Eq. 3.5a) on properties of the matrix and are shorter at higher biradical 

concentrations58,59. The polarization transfer coefficient, kDNP, depends on the effective local 

environment near the paramagnetic centers (r< λsdb), as opposed to the extensive properties of 

the bulk nuclear spin ensemble to which they are coupled. In Fig. 3.3b, kDNP values are plotted 

versus the cube root of the 1H density ρH
1/3 of the frozen DNP matrix, which scales 

proportionally with the mean 1H–1H distance and the 1H spin-diffusion coefficient 𝒟H in a 

homogeneous magnetic field as discussed above.  Importantly, for all conditions measured in 

Fig. 3.3, BiP <0.1 indicating that polarization transfer across the spin-diffusion barrier is rate-

limiting, which also validates the use of the lumped-element approximation. Specifically, for 

kDNP = 1.1 nm/s and a spin diffusivity of 𝒟H  330 nm2/s corresponding to ρH = 20 M estimated 

from the reference value above, the low Biot condition will be satisfied for biradical 

concentrations >0.25 mM as in Fig. 3.2a. Thus, polarization build-up times will not depend 

on diffusion rates among bulk 1H nuclei and are mono-exponential (see Appendix 3A1, Fig. 



 

56 

 

3A2) for typical DNP formulations of 1 – 16 mM AMUPol at 100 K, 9.4 T, and 12.5 kHz 

MAS. However, because spin flips rely on dipole couplings, the effective rate of polarization 

transfer across the spin-diffusion barrier, as reflected by kDNP, is expected to be sensitive to 

matrix 1H spin density. Larger kDNP values correspond to more effective polarization transfer 

across the barrier region and generally manifest shorter TDNP buildup times, as observed here. 

 

FIGURE 3.3. (a) Characteristic times 𝑇1
o or 𝑇DNP

o  measured by 1H spin-echo saturation 

recovery at 12.5 kHz MAS, 9.4 T, and 100 K for frozen glycerol-water matrices with different 
1H densities ρH and different concentrations of paramagnetic centers: without biradical ( ), 

with 2 mM ( ) or 12 mM ( ) AMUPol; (b) kDNP values as functions of ρH
1/3. Solid lines in (a) 

are from Eq. (4) using measured or fitted values for 𝑇1
o and kDNP. 
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Interestingly, two regimes are observed in Fig. 3.3b with distinct linear dependences of 

kDNP on ρH
1/3 associated with different rate-limiting polarization-transfer processes. The 

positively sloped linear dependence of kDNP on ρH
1/3 matches the predicted scaling relationship 

of the “two-film theory (without relaxation)” in Eq. 3.3a which describes a slow-diffusion step 

over a thick barrier. For low 1H spin densities (ρH<17 M), kDNP values tend to be small as a 

consequence of weak 1H–1H dipolar couplings, so that it is speculated that spin diffusion limits 

the rate at which hyperpolarization is delivered to the bulk. However, increasing kDNP values 

could also suggest that the rate of spin polarization generation is increasing due to a greater 

number of electron-nuclear spin pairs within the core. Generally, for higher ρH, 1H dipolar 

couplings become stronger, resulting in more effective polarization transfer, as manifested by 

larger values for kDNP, though only up to a point. At high ρH values, there are more 1H nuclei 

to polarize per biradical and shorter 1H T1 relaxation times, which render the DNP matrix and 

barrier region a stronger polarization sink. A subtle inversion point between regimes is 

identified by determination of kDNP, which by Eq. 3.5a, is intrinsically related to known or 

measured values of 𝑇1
o, 𝑇DNP

o , and AMUPol concentration (𝜌pc), the latter by means of, L, the 

characteristic spin packet length. The maximum value of kDNP occurs for ρH =17 M (ρH
1/3=2.55 

M1/3), above which kDNP values decrease with increasing 1H spin density. This spin-exchange-

limited regime is representative of the complicated dissipative spin dynamics occurring near 

paramagnetic centers, which depend upon  the relative rates of cross-effect DNP, 1H spin-

lattice relaxation, 1H spin-spin relaxation, or cross-relaxation phenomena.16,17 The decrease in 

kDNP values suggests that, at higher 1H spin density, either the rate of spin polarization 

generation by direct DNP transfer or propagation rates by spin-diffusion is insufficient to 

overcome paramagnetic relaxation within the barrier.  This is consistent with similar kinetic 
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phenomena reported for solid-effect DNP where build-up times for polarization agents such 

as Gd-DOTA are highly sensitive to 1H spin density and plateau at ~20 M, compared to trityl 

radicals that are less sensitive to such effects.26 Together, prior literature15,18,20,24 and the 

present analyses suggest that the influence of the spin-diffusion barrier can greatly depend on 

the structure of the polarizing agent.  

Here, these kinetic effects are phenomenologically encompassed within the polarization 

transfer coefficient, kDNP, the proportionality constant associated with the apparent rate of 

polarization transfer across the spin-diffusion barrier and can be used to predict polarization 

build-up times under different experimental conditions. By its definition in Eq. 3.2, the 

product, 𝜌H𝐶z𝑘DNP(𝑃̅CE − 𝑃̃(t)) corresponds to the Zeeman energy flux entering the bulk 

calculated at λsdb = 1.8 nm, the designated barrier radius in the film approximation. Larger 

kDNP values correspond to larger hyperpolarization transfer rates relative to the 1H spin density 

(an intensive property of the matrix) and more effective transfer between core and bulk nuclei. 

As demonstrated in Eq. 3.5a, in order to calculate a value for kDNP, it is necessary to measure 

the bulk solvent 𝑇1
o relaxation time. Importantly, the data in Fig. 3.3a-b, correspond to, 

𝑇DNP(on)
o , the microwave on build-up times, however there are slight differences in, 𝑇DNP(off)

o , 

microwave off build-up times, see data in Table 3A1 and Fig. 3A2 in Appendix 3A1. By 

plotting the normalized transient signal enhancement factor, ε(t), 

𝜀(t) =

1 − exp (−
𝑡

TDNP(on)
)

1 − exp (−
𝑡

TDNP(off)
)

  , 

 

(3.8) 

a phenomenon known to occur in heterogeneous matrix-particle suspensions with 

dissimilar relaxation times36,60,61 can be observed here and may also be used to identify kinetic 

regimes associated with different rate-limiting polarization transfer processes without 
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requiring knowledge of 𝑇1
o values. In Fig. 3.4a-b, ε(t) values are plot as a function of the 

recycle delay (see schematic pulse sequence in Appendix 3A1) and it is shown that initial 

profiles exhibit ε(t) < 1 for low 1H spin density and ε(t) > 1 for high 1H spin density. 

Interestingly, the crossover point occurs at roughly ~13 M for both 2 and 12 mM AMUPol, 

similar to the optimum value of the DNP transfer coefficient ca. 17 M in Fig. 3.3b. This 

phenomenon can be attributed to a “spin Hatta effect” as discussed above where polarization 

transfer rates are influenced by relaxation within the barrier.   

 

FIGURE 3.4. Normalized transient signal enhancement, ε(t), as a function of the recycle 

delay for (a) 2 mM AMUPol, and (b) 12 mM AMUPol in glycerol-water at different solvent 
1H spin density. In both (a) & (b), a crossover point occurs roughly at ρH  13 M similar to 

that observed in Fig. 3b. Schematic diagrams of mass transfer models including the “film 

theory” (c) without relaxation; and (d) with relaxation; applied to the description of 

hyperpolarization transfer between core and bulk nuclei, see text for discussion. It is 

hypothesized that (c) more closely resembles a diffusion-limited regime and (d) a spin-

exchange limited regime; note that (c) is not expected to be linear when curvature and 

relaxation are non-negligible.  
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The behavior observed for ε(t) < 1 is consistent with the slow and steady flow of 

hyperpolarization to the bulk expected for the slow-diffusion process depicted in Fig. 3.4c. 

For these conditions, 𝑇DNP(off)
o  will be slightly shorter than 𝑇DNP(on)

o  due to classical spin 

thermodynamic considerations24; the initial state is closer to the final state in the absence of 

microwaves. The behavior observed for ε(t) > 1 is consistent with a diffusion barrier exhibiting 

higher relaxation rates (larger Hatta number) as depicted in Fig. 3.4d. Higher polarization 

levels over thermal equilibrium directly correspond to higher relaxation rates, such that 

𝑇DNP(on)
o  will be slightly shorter than 𝑇DNP(off)

o  due to a “spin Hatta effect” consistent with the 

data in Fig. 3.4a&b. Although transfer across the barrier is accelerated for larger Hatta 

numbers, after a certain point no hyperpolarization will reach the bulk because it will be 

entirely consumed within the barrier. Together the data in Fig. 3.3b and Fig. 3.4a&b, suggest 

that net hyperpolarization transfer rates into the bulk are optimized near the point of crossover 

between the two regimes. For both limiting cases, mono-exponential build-up occurs among 

bulk nuclei 𝑃̃(𝑡) because polarization is rapidly and uniformly distributed over λsdb < r < λWS, 

under low Biot number conditions.  Interestingly, the ρH
1/3-dependence of the transfer 

coefficient resembles a Sabatier diagram62, which in heterogeneous catalysis, relates the 

adsorption enthalpy of a reactant to its apparent reaction rate; reaction rates are likewise 

highest for species with intermediate adsorption enthalpies. Here, polarization-transfer 

kinetics across an inhomogeneous field gradient are most effective at an intermediate value of 

ρH for which 1H–1H dipole-dipole interactions are sufficient to relay polarization without 

contributing excessively to dissipative spin dynamics (e.g, spin-lattice relaxation). These 

insights are consistent with quantum mechanical treatments that have attributed solid-effect 

DNP in large systems to a “kinetically constrained diffusion” mechanism.13   
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3.5. Hyperpolarization levels generated by cross-effect DNP 

Even if hyperpolarization transfer rates are slow, it is possible to accumulate large amounts 

of hyperpolarization, provided spin-lattice relaxation times are long. Understanding the extent 

of signal sensitivity enhancement achieved by DNP-NMR, however, can be challenging. As 

discussed above for absolute 1H polarization levels52, the situation is simplified when the 

paramagnetic centers are dilute (e.g., ρpc=2 mM), so that paramagnetic quenching is 

negligible58,59. Due to strong hyperfine interactions, 1H spins in closest proximity to 

paramagnetic centers (r<< λsdb) are typically quenched or rendered otherwise NMR 

“invisible”. Nevertheless, these hyperfine-coupled 1H spins are directly polarized by cross-

effect transfer, and the resulting hyperpolarization is propagated by spin diffusion to more 

distant 1H spins in the diamagnetic bulk (r> λsdb). Importantly, 𝑃̅CE  is indicative of the efficacy 

of cross-effect transfer for a given set of experimental conditions and corresponds to the 

magnitude of the effective hyperpolarization that is transferrable directly to hyperfine-coupled 

1H nuclei and indirectly to more distant 1H nuclei.  

For cross-effect DNP, quantum conversion depends on the effective polarization 

difference between two coupled electron spins (i.e., a nitroxide biradical) which satisfy a 

cross-effect frequency matching condition12,20,27. Partial saturation by microwave irradiation 

maintains an effective polarization difference between electron spins driving 

hyperpolarization transfer; however, in the absence of microwave irradiation, the cross-effect 

matching condition may still be satisfied under magic-angle-spinning, leading to 

depolarization effects19,63. Fitting the measured enhancements 𝜀∞
o  and 𝜃depo

o  in Fig. 3.5 using 

Eqs. 3.6 and 3.7 and ρH-dependent values for 𝑇1
o and kDNP (Fig. 3.3a,b) yields the blue and 

grey solid lines, which interestingly correspond to constant values for 𝑃̅CE(on)=148±14 and 
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𝑃̅CE(off)=0.42±0.09. The close agreements of the model fits with measured 𝜀∞
o  and 𝜃depo

o  

values establish that 𝑃̅CE(on) and 𝑃̅CE(off) are, under these conditions, independent of the 1H 

spin density in the frozen solvent (within experimental uncertainties) for 2 mM AMUPol.  For 

constant 𝑃̅CE(on), the biradical maintains the capacity to polarize nearby 1H nuclei, however 

enhancement values decline at higher 1H spin density due to a decreasing rate of polarization 

transfer, kDNP, and shorter bulk T1 values. It is unclear whether this observation would hold if 

the biradical molecule itself was deuterated because 1H species of the biradical may participate 

in spin-diffusion15,18,64. Currently, the dependence of 𝑃̅CE on AMUPol concentration is 

unknown, but it is anticipated that 𝑃̅CE  will be strongly influenced by AMUPol concentrations 

by means of the inter-radical separation distance. Strong electron-electron dipole 

interactions19,59, encountered at higher AMUPol concentrations or from radical clustering27 

may decrease 𝑃̅CE(on)  values, due to enhanced electron spin-relaxation effects that diminish 

the efficacy of cross-effect DNP. For a similar 𝑃̅CE  driving force, longer bulk 𝑇1
o values result 

in greater accumulation of hyperpolarization (larger 𝜀θ
o, Fig. 3.5). From previous ab initio 

simulations23, it is demonstrated that 𝑃̅CE values can be extracted from a T1 vs. 𝜀θ
o plot by 

taking the limit as the bulk T1 value approaches infinity (see Appendix 3A6). The analytical 

expressions obtained from the lumped-element analysis thus relate the rate of Zeeman energy 

generated by an ensemble of biradicals (𝑄̇) to the macroscopically observable accumulation 

of 1H spin hyperpolarization in a surrounding diamagnetic spin bath (e.g., the frozen solvent 

matrix). DNP injection rates in units of Watts are calculated for 2 mM AMUPol in glycerol-

water in Appendix 3A7. 
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FIGURE 3.5. Steady-state NMR signal enhancements 𝜀∞
o  (inset: depolarization factors 𝜃depo

o ) 

and 𝜀θ
o=𝜀∞

o 𝜃depo
o  versus ρH for frozen 2 mM AMUPol glycerol-water measured by 1H spin-

echo saturation recovery at 12.5 kHz MAS, 9.4 T, and 100 K. Solid lines are from Eqs. 6 and 

7 using measured or fitted values for 𝑇1
o, kDNP, and 𝑃̅CE. 

 

3.6. Hyperpolarization of solid-particle targets 

An advantage of DNP-NMR is that hyperpolarization emanates from paramagnetic 

centers, enabling surface-enhanced NMR spectroscopy of porous or nonporous solids. As 

shown schematically in Fig. 3.1, hyperpolarization is transferred across the spin-diffusion 

barrier and is relayed by 1H spin diffusion into the solid-particle interior up to µm length 

scales. With ρH, ρpc, T1, kDNP, and 𝑃̅CE  known, polarization transfer kinetics can be predicted, 

including across interfaces in heterogeneous systems. For polarization transfer to a solid 

particle (S) in dipole-dipole contact with a DNP matrix (M), the process is analogous to energy 

conduction through a series of thermal resistances and can be treated similarly for each region 

i, such that: 
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𝜌H,𝑖𝐶z

𝜕𝑃̃𝑖

𝜕𝑡
− ∇ ∙ (𝜌H,𝑖𝐶z𝒟H,𝑖∇𝑃̃𝑖) = 𝜌H,𝑖𝐶z

(Π𝑖 − 𝑃̃𝑖)

𝑇DNP,𝑖
o  , 

(3.9) 

where Π𝑖 is equal to either 𝜀θ,i
o  or 𝜃depo,𝑖

o  in the presence or absence of microwave 

irradiation as determined from Eqs. 3.6 and 3.7. Similarly, the characteristic time, 𝑇DNP,𝑖
o , is 

determined from Eq. 3.5a by using known or measured values of 𝑇1,𝑖
o , kDNP,i, and Li, as 

described above. For example, 2 mM AMUPol in glycerol-water (ρH,M=12 M) yields values 

of 𝜀θ,𝑀
o =120, 𝜃depo,𝑀

o =0.53, and 𝑇DNP,𝑀
o =16 s for the conditions in Figs. 3.3 and 3.5. In 

contrast, the interiors of solid polystyrene particles without paramagnetic centers (LS →∞) are 

hyperpolarized solely by 1H spin diffusion, though recover polarization thermally, for which 

Eqs. 3.5, 3.6, 3.7 yield 𝜀θ,𝑆
o =𝜃depo,𝑆

o =1 and 𝑇DNP,𝑆
o =𝑇1,𝑆

o =1.3 s, the latter being the 1H spin-

lattice relaxation time of polystyrene at 100 K, 9.4 T, and 12.5 kHz MAS. The interfacial 

boundary conditions65 are analogous to those in heat conduction processes, such that the 

polarization and Zeeman energy flux are continuous across each interface, where 𝑃̃𝑖 = 𝑃̃𝑗 and 

𝑞H|𝑖 = 𝑞H|𝑗, respectively. The relative propensity of each region to conduct spin polarization 

is scaled by the quantity ρHCz𝒟H, which is the Zeeman conductivity. For polarization transfer 

between materials with different 1H spin densities, the effects associated with their different 

Zeeman heat capacities must be taken into account. Deuteration of the solvent increases T1 

relaxation times which allows for greater accumulation of hyperpolarization, however it also 

reduces the capacity of the solvent to relay Zeeman energy (by means of ρHCz𝒟H). In general, 

partially deuterated frozen glycerol-water matrices propagate Zeeman energy less effectively 

than 1H-abundant polymeric solids, but, retain hyperpolarization to a greater extent. 

In the presence of a solid-particle target, hyperpolarization generated in a DNP matrix 

must be distributed over relatively large distances (typically 1–100 nm) to reach the particle 
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surface. The extent to which the hyperpolarization is transferred to and propagates into the 

solid particle depends on the rates of spin diffusion and spin-lattice relaxation in the solid. 

Assuming hyperpolarization is transferred to the solid particle solely by matrix-mediated spin-

diffusion, the polarizability of a spherical sink of radius R is characterized by the Thiele 

modulus in the solid-particle, 𝜙S  R/(𝒟H,S𝑇1,𝑆
o )0.5 and effectiveness factor η=3𝜙S

–

2(𝜙S·coth[𝜙S] − 1), as derived in Appendix 3A4. Quantitatively, η represents the ratio of the 

average rate of Zeeman energy dissipation in the particle interior, compared to the maximum 

rate that would occur if the particle interior were uniformly polarized to the level at the particle 

surface yielding an extent of hyperpolarization throughout the object. Larger 𝜙S values 

correspond to stronger polarization sinks, such that the effectiveness factor is η→ 100 % and 

η→ 0 % in the limits of 𝜙S → 0 and 𝜙S → ∞, respectively. Importantly, the surface polarization 

must be maintained by Zeeman energy generation and propagation within the DNP matrix. 

This requires that the rate of Zeeman energy dissipation within the solid-particle interior be 

equal to the rate of Zeeman energy flowing into the surface at steady-state satisfying the 

condition, 

 

(𝑞𝐻 ∙ 𝐴)|𝑅 = ∭ 𝜌H,S𝐶z

(𝑃̃𝑆(𝑟) − 1)

𝑇1,𝑆
o d𝑉    , 

 

(3.10) 

 

𝜕𝑃̃

𝜕𝑟̃
|𝑟̃ = 1 =

1

3
DaP𝜂(𝑃̃|𝑟̃ = 1 − 1)    , 

 

 

(3.11) 

where Eq. 3.11 is obtained by nondimensionalizing Eq. 3.10 with respect to 𝑟 ̃=r/R and 

𝑡 ̃=t/𝑇1,𝑆
o , as detailed in the steady-state analytical solution to Eq. 3.9 in Appendix 3A5. Here, 
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a polarization analogue of the dimensionless Damköhler number (DaP) is expressed in terms 

of measurable or known quantities, 

DaP =
𝑅2𝑇1,𝑆

o −1

𝒟H,𝑀
∙

𝜌H,𝑆𝐶z

𝜌H,𝑀𝐶z
 , 

(3.12) 

for a given 1H spin density of the DNP matrix (𝜌H,𝑀), the spin-diffusion coefficient of the 

DNP matrix (𝒟H,𝑀), the 1H spin density of the solid-particle interior (𝜌H,𝑆), and the 1H spin-

lattice relaxation time (𝑇1,𝑆
o ) in the solid-particle interior. Here, DaP may be regarded as a 

relative measure of the polarization inertia and relates the rate of energy dissipation in the 

interior versus the rate of DNP matrix-mediated spin-diffusion to the surface, weighted by the 

specific Zeeman heat capacity of each media. This is similar to the thermal inertia, however 

since temperature is not consumed by relaxation processes, a temperature analogue of the 

Damköhler number does not exist. In a composite heterogeneous spin system, high levels of 

hyperpolarization at particle surfaces can only be maintained if the polarization inertia of the 

DNP matrix is sufficient to overcome energy dissipation within the particle interior. Thus, in 

addition to the kinetic limitations presented by the spin-diffusion barrier, which are 

encompassed within the DNP source term, 𝑄̇, 1H spin thermodynamic properties associated 

with the DNP matrix (an energy ‘source’) and the solid-particle target (an energy ‘sink’) 

govern polarization transfer in composite systems. 

 Although previous numerical simulations24 of matrix-particle suspensions yield 

similar insights as to those developed here, an advantage of dimensionless parameterization 

is that rate limiting polarization transfer phenomena can be assessed without computational 

methods. In Figure 3.6a-c., the normalized steady-state spatial polarization gain under 

microwave irradiation, 𝜀θ,𝑖(𝑟̃)/𝜀θ,𝑀
o , is plotted versus 𝑟̃ for different values of the Thiele 
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modulus (𝜙S) and Damköhler number (DaP). Both Fig. 6a and 6b are generated using DaP = 

0.2, however with 𝜙S values of 2.0 and 20, respectively. As a general rule, for small 

Damköhler numbers (DaP<<1), the DNP solvent matrix will resist changes in its polarization 

level maintaining a high enhancement at particle surfaces. Meanwhile, the extent to which 

hyperpolarization is relayed into the particle interior depends on the Thiele modulus. 

Specifically, for 𝜙S = 2.0 and 20 the effectiveness factor (η) is calculated to be 81 % and 14 

% which corresponds to the average dissipation rate of hyperpolarization in the interior 

relative to the surface. More usefully, the enhancement in the solid is related to the surface 

polarization by, 𝜀θ,S = 𝜂(𝑃̃|𝑟̃ = 1 − 1) + 1, where 𝑃̃|𝑟̃ = 1 is denoted by the black dot in Fig. 

3.6a-c. By comparison, in Fig. 3.6c, a similar profile is generated for values of DaP = 500 and 

𝜙S = 2.0. Under large DaP conditions (DaP→ ∞), the hyperpolarization reservoir within the 

DNP solvent matrix is partially exhausted near particle surfaces resulting in the formation of 

a depletion layer. Regardless, for 𝜙S = 2.0, the average dissipation rate of hyperpolarization 

within the interior relative to the, now diminished, surface polarization still corresponds to η 

= 81 % as depicted in the schematic inset in Fig. 3.6c. For large DaP conditions, DNP matrix 

mediated spin-diffusion is an ineffective mechanism for polarizing solid-particle targets. 

Although the solution to Eq. 3.9 and the effectiveness factor will have a different functional 

form depending on geometry, both DaP and 𝜙S depend solely on the material properties of the 

system and can be used to parametrize the efficacy of polarization transfer between two or 

more media coupled by spin-diffusion.    
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FIGURE 3.6. Normalized steady-state spatial polarization gain for conditions of (a) DaP = 

0.02 and 𝜙S = 2.0; (b) DaP = 0.02 and 𝜙S = 20, and (c) DaP = 500 and 𝜙S = 2.0. Plots generated 

using analytical solution provided in methods section. 

 

 

3.7. Direct versus spin-diffusion mediated polarization transfer at 

surfaces 

Although thermal-like boundary conditions65 are generally justified for homogenous 

diamagnetic systems, heterogeneous systems require accounting for the different rates of 

hyperpolarization propagation and dissipation within the dissimilar media, as well as transfer 

across their mutual interfaces. Importantly, higher local concentrations of biradicals at the 

solvent-solid interface can significantly influence local polarization transfer processes. In 

general, the effects of such interfacial phenomena have been challenging to elucidate for 
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composite spin systems, such as those exploited in hyperpolarized magnetic resonance7,66 and 

for quantum interface control11,67. As schematically depicted in Fig. 3.1b, in DNP-NMR 

experiments, adsorbed or near-surface biradicals can directly polarize 1H nuclei within the 

solid-particle interior up to the range of the hyperfine interaction. It is assumed that the solid 

is free of paramagnetic impurities, which could otherwise diminish the efficacy of DNP cross-

effect transfer7. Due to the different local environment experienced by near-surface 

paramagnetic centers, their associated DNP source term (𝑄̇) differs from those in the bulk 

DNP matrix, according to the Zeeman conductivity and spin-relaxation properties of the 

surface with which they are in contact. This interfacial region, I, may be approximated as an 

additional film resistance separating the two bulk media over the annulus R>r>(R– λws,I), as 

depicted in Fig. 3.7a.  Specifically, it is assumed that the Zeeman energy flux (W/m2) into 

Region I due to direct DNP is represented by, ρH,SCzkDNP(ρH,S) ∆𝑃̃, such that the polarization 

build-up rate and signal gain over R>r>(R– λws,I) can be calculated by the lumped-element 

approximation given previously in Eq. 3.5a, 3.6, and 3.7. The build-up rates and polarization 

gain are calculated to be 𝜀θ,𝐼
o =8.3, 𝜃depo,𝐼

o =0.97, and 𝑇DNP,𝐼
o =1.2 s for kDNPL-1 = 0.04 s-1 

corresponding to 2 mM AMUPol (λws,I= 5.8 nm) and polystyrene (ρH= 70 M). Due to the 

relatively short 𝑇1,𝑆
o  = 1.3 s of amorphous polystyrene, these interfacial 1H nuclei retain 

polarization poorly compared to the DNP matrix. For this spin system, it can be determined 

from Eq. 3.9, that the near-surface radicals will exhibit a “spin Hatta effect” which yields an 

accelerated rate of polarization transfer relative to bulk radical species. Due to this accelerated 

rate of polarization transfer, at very early times (t << 𝑇DNP,𝑀
o ) there will be an initial diffusive 

flux from Region ‘I’ into Region ‘M’ which will revert as the polarization gradient is 

established.  Direct hyperpolarization of the solid-particle surface enhances fast relaxing 1H 
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spins near the interface, resulting in faster build-up times both in the DNP matrix and in the 

bulk solid particle due to 1H-1H dipolar interactions. At steady-state, the measured DNP signal 

enhancement (𝜀∞,𝑖) corresponds to the average polarization with, 𝑃̃𝑖|on, and without, 𝑃̃𝑖|off, 

microwave irradiation, 𝜀∞,𝑖 = 1/𝑉𝑖 ∙ ∭(𝑃̃𝑖|on/𝑃̃𝑖|off)𝑑𝑉𝑖, which can be independently 

measured for each region for which distinct NMR signals are resolved. 

Assuming that the DNP matrix is uniformly distributed around each solid particle, Eq. 3.9, 

can be solved numerically to obtain spatial polarization profiles. For the conditions above, 

Fig. 3.7a shows a calculated plot of the steady-state 1H signal enhancement (𝜀∞,𝑖)  profile 

within a 100-nm polystyrene particle, across the interfacial region, and within a thin 12-nm 

DNP-matrix layer. For the thin DNP-matrix layer, 1H spin-lattice relaxation in the solid-

particle sink significantly reduces polarization levels in the DNP matrix from the maximum 

value attainable for the homogeneous case, 𝜀∞,𝑀
o =230, to that calculated for this heterogeneous 

suspension, 𝜀∞,𝑀=7. As discussed above, polarization dissipation rates in the interior are 

characterized by the Thiele modulus in the solid-particle, 𝜙S  R/(𝒟H,S𝑇1,𝑆
o )0.5, where larger 𝜙S 

values correspond to stronger polarization sinks and diminished enhancements. In Fig. 3.7b, 

measured 𝜀∞,𝑀
o , 𝜀∞,𝑀, and 𝜀∞,𝑆 values are plotted versus matrix ρH,M

1/3 for polystyrene-DNP-

matrix suspensions, which elucidate both the contribution of direct DNP transfer to solid-

particle surfaces and the utility of 𝜙S for predicting the extent to which a solid may be 

hyperpolarized. For longer 1H spin-lattice relaxation times, 𝜙S → 0, and the DNP signal 

enhancement in the solid particle 𝜀∞,𝑆 approaches the maximum value attainable, namely that 

of the homogeneous DNP matrix 𝜀∞,𝑀
o  (Fig. 3.7b, ). For the 100-nm polystyrene particles 

and conditions used here, 𝜙S=2.0, which establishes that the internal rate of dissipation of 1H 

polarization by spin-lattice relaxation is twice the rate of 1H spin diffusion, leading to 
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significantly lower enhancements of both the polystyrene 𝜀∞,𝑆 ( ) and the DNP matrix 𝜀∞,𝑀 (

). For low ρH,M, the Zeeman conductivity (ρHCz𝒟H) of the DNP matrix is too low to efficiently 

polarize the solid-particle surface by matrix-mediated 1H spin diffusion alone. This 

corresponds to a large Damköhler number conditions and is analogous to thermal energy 

conduction between a low heat-capacity fluid and a high heat-capacity solid, the latter of 

which exhibits smaller changes in temperature. Deviation among 𝜀∞,𝑆 values from the 

analytical plot for 𝜙S=2.0 in Fig. 3.7b provides strong evidence that hyperfine-mediated 

polarization transfer to the solid-particle surface contributes significantly to hyperpolarization 

of composite spin systems. As reflected in the analytical plots for 𝜙S >0.1, the magnitude and 

rate of hyperpolarization transfer by DNP matrix-mediated spin-diffusion is often not 

sufficient to overcome thermally driven spin-lattice relaxation in the solid particle target. 

Instead, polarization transfer at low ρH,M may be dominated by direct DNP transfer from near-

surface radical species36. Despite the complex nature of the interface, satisfactory agreement 

is obtained between experiment and numerical solutions (solid-yellow line) that incorporate 

radical-surface interactions, without adjustable parameters, under the conditions discussed 

above. Further evidence for such direct polarization transfer is provided by the nearly constant 

signal enhancement 𝜀∞,𝑀 ( ) of the DNP matrix as a function of ρH,M
1/3 over the range of 

conditions examined. While energy transfer from the DNP matrix to the solid target is 

relatively poor when matrix 1H densities ρH,M are low, the ensemble of spins in the DNP matrix 

is nevertheless rapidly polarized to 𝜀∞,𝑀≈ 𝜀θ,𝐼
o  by dipolar contact with the solid target surface 

which often has a larger Zeeman spin conductivity (due to partial deuteration of the DNP 

matrix, ρH,S𝒟H,SCZ>>ρH,M𝒟H,MCZ). Consequently, the steady-state hyperpolarization levels 

that are established in the dipole-dipole-coupled spin ensembles of the DNP matrix and solid 
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particles mutually depend on the relative rates of polarization generation, propagation, and 

dissipation in the respective media, in accordance with classical spin thermodynamics and the 

underlying quantum processes. The constitutive model thus yields quantitative understanding 

of the physical processes that account for the hyperpolarization levels that are measured 

experimentally, including the roles of interfacial interactions and non-equilibrium effects that 

are important in mesoscopic spin transport processes generally. 

 

FIGURE 3.7. (a) Calculated steady-state 1H polarization profile as a function of position r 

from the center of a 100-nm polystyrene sphere, surrounded by a 12-nm (ΔReff, solvent-solid 

ratio 1.3 µL/mg) frozen glycerol-water matrix (ρH,M=12 M) containing 2 mM AMUPol. (b) 

Measured enhancements 𝜀∞,𝑆 ( ) and 𝜀∞,𝑀 ( ) for the polystyrene particle suspension, 

compared to the DNP matrix 𝜀∞,𝑀
o  ( , Fig. 3.4). Dashed grey lines correspond to analytical 

solutions for 𝜀∞,𝑆(𝜙𝑆) for 0<𝜙𝑆<2 (neglecting biradical-surface interactions); solid yellow 

line accounts for biradical-surface interactions with 𝜙𝑆=2. 
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3.8. Conclusions 

The dimensional scaling analyses presented here generalize aspects of spin polarization 

transfer phenomena across multiple length scales and across strong local magnetic field 

gradients. In particular, the utility of such scaling analyses are shown to quantitatively 

describe hyperpolarization transfer to surrounding nuclear spin ensembles, mediated by slow 

exchange across a quantum interface, specifically the spin-diffusion barrier. The resulting 

bulk constitutive model is directly analogous to the heat equation and provides a continuum 

description of hyperpolarization transfer in non-conducting solids containing dilute 

paramagnetic centers. The rate of excess Zeeman energy transfer (i.e., DNP injection rate) 

from paramagnetic centers is proportional to the product 𝜌H𝐶zkDNP, which is analogous to a 

heat transfer coefficient. Measurement of the DNP polarization transfer coefficient, kDNP, 

enables distinct kinetic regimes associated with different rate-limiting polarization transfer 

processes to be distinguished. Quantitative experimental evidence supports the existence of 

an energy barrier that impedes polarization transfer near paramagnetic centers and which is 

crucially influenced by the local 1H spin density. Although higher 1H spin densities are 

desirable to maximize the flux of Zeeman energy into the bulk matrix, a kinetic limit is 

encountered at intermediate values of the 1H spin density, after which the apparent rate of 

hyperpolarization transfer into the bulk matrix declines. This kinetically-limited regime is 

attributed to dissipative and transport limitations that occur among hyperfine-coupled 1H 

nuclei, but may also be associated with an intrinsic limitation of the cross-effect mechanism 

itself. The film-transfer model in the “thermally thin” limit yields simple quantitative criteria 

(see Eq. 3.5a, 3.6, and 3.7) for optimizing cross-effect DNP conditions or other 

hyperpolarization transfer protocols. A more general conclusion is that the utility of 
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hyperpolarization techniques could be significantly improved if kinetic limitations, such as 

the spin-diffusion barrier, were diminished. This motivates further development of new 

paramagnetic sources or electron/nuclear spin excitation methodologies to mitigate these 

kinetic factors, guided both by the dimensional property relationships presented here and by 

first-principles quantum mechanical calculations. 

Far from paramagnetic centers, hyperpolarization transfer is shown to adhere to spin 

thermodynamic formalisms similar to thermal energy conduction processes. However, near 

the paramagnetic centers (r < λsdb) or in related phenomena involving polarization transfer 

between frequency-shifted nuclei (e.g., nuclear spin waves68,69), such thermal-like conduction 

may not strictly apply and require modification, as presented here for the propagation of net 

nuclear magnetization, to obtain meaningful quantitative results. Lastly, interfacial 

phenomena, including adsorption of biradical polarizing agents, are shown to significantly 

influence polarization transfer kinetics between bulk reservoirs of nuclear spins. Despite these 

complexities, it is demonstrated that continuum analyses can provide important insights near 

quantum interfaces (e.g., spin-diffusion barrier), as the Nernst-Planck equation does for dilute 

electrolyte systems. The DNP polarization transfer coefficient, as demonstrated here, is a 

useful concept to measure and compare polarization transfer rates in heterogeneous spin 

systems. Film coefficients are widely applied in heat and mass transfer, and, for the spin-

diffusion barrier, further analogies may be extended to concepts in electrochemistry such as 

the Debeye length or the charge-transfer coefficient in the Butler-Volmer model70. In a 

broader context, these results provide a system-level description of complex composite spin 

systems. Such approaches may be used to guide the selection of material properties to optimize 

polarization transfer between dissimilar spin reservoirs which remains crucial to 
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hyperpolarized magnetic resonance and quantum information applications. Similar scaling 

analyses are expected to yield system-level insights into spin-transfer phenomena in other 

condensed matter systems where transitions from quantum mechanical to classical properties 

feature prominently. 

 

3.9. Materials, Methods, and Derivations 

Sample preparation 

DNP-NMR measurements were performed on a frozen biradical solution and on 

frozen polystyrene microparticle suspensions. Stock solutions containing 2 mM or 12 mM 

stable nitroxide biradical AMUPol (Cortecnet) were prepared by using glycerol/H2O (60/40 

vol%) and d8-glycerol/D2O (60/40 vol%). The partially deuterated solvents used in the MAS-

DNP experiments were prepared by sequential dilution of the AMUPol glycerol/H2O (60/40 

vol%) solutions with aliquots of AMUPol d8-glycerol/D2O (60/40 vol%) solutions. Low-

dispersity 0.1 ±0.01 µm polystyrene microbeads were acquired from Sigma-Aldrich, 

suspended in 99.99 atom% D2O, and freeze-dried prior to use. For frozen biradical solutions, 

approximately 20 µL of each solution were injected into a 3.2 mm sapphire rotor, packed with 

a polytetrafluorethylene (PTFE) insert and capped with a zirconia MAS drive cap, and inserted 

into the pre-cooled spectrometer. For solid containing samples, approximately 13 mg of dry 

polystyrene particles were combined with 10 µL of DNP solution under incipient wetness 

conditions and were mixed by hand with a glass stir rod. 
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DNP-NMR measurements 

Solid-state MAS-DNP measurements were conducted on a wide-bore 400 MHz (B0 = 

9.4 T) Bruker Avance IIIHD spectrometer equipped with 263 GHz gyrotron, a low-

temperature cooling cabinet, and a triple-resonance (H-X-Y) 3.2 mm low-temperature MAS 

probe. The protocols for measuring T1, TDNP, 𝜀∞, 𝜀θ, and 𝜃depo values were similar to those 

described previously27,53. The 1H spin-echo saturation recovery experiments were conducted 

at 12.5 kHz MAS and 100 K with a fixed echo delay of τr =80 µs, proton 90° and 180° pulses 

calibrated to a pulse power of 83.3 kHz, and with a saturation train of twenty 90°-pulses 

separated by a 20 ms delay. Each data point in Fig. 3.3a and Fig. 3.5 corresponds to a 

saturation recovery plot containing 10 to 20 time increments measured with microwave 

irradiation and with the signal intensity, Son,i(t), normalized with respect to the steady-state 

microwave off signal intensity, 

𝑆on,𝑖(𝑡) = 𝜀∞,𝑖 ∙ [1 − exp (− 𝑡
𝑇DNP,𝑖

⁄ )] . (3.13) 

corresponding to mono-exponential polarization build up kinetics. The characteristic 

time TDNP,i is similar both with, TDNP(on),i, and without, TDNP(off),i, microwave irradiation (see 

experimental values in Table 3A1 in Appendix 3A1). To determine depolarization factors 

(𝜃depo) for frozen 2 mM AMUPol solutions shown in Fig. 3.5, quantitative single-pulse 1H 

MAS NMR experiments were conducted at 12.5 kHz MAS and 100 K with background 

subtraction. The depolarization factor in the limit of dilute paramagnetic centers is given by, 

𝜃depo,𝑖
o =

𝑆off,𝑖(with AMUPol)

𝑆off,𝑖(without AMUPol)
   , 

(3.14) 

where Soff,i, the signal intensity in the absence of microwave irradiation, is compared 

with external frozen glycerol-water standards that do not contain biradical species. 
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Meanwhile, at high concentrations of paramagnetic centers, it is necessary to perform static 

experiments to assess the influence of depolarization effects from paramagnetic quenching 

effects. 

By a similar procedure, solid suspensions were measured by using 13C-detected 1D 

13C{1H} CP-MAS saturation recovery experiments with a CP contact time of 2 ms at 9.4 T, 

11.5 kHz MAS, and 100 K. The 13C-detected experiment is used to independently determine 

𝜀∞,𝑀 and 𝜀∞,𝑆 values for glycerol and polystyrene, respectively, for the analyses in Fig. 7b. 

For dry polystyrene particles, a value of 𝑇1,𝑆
o  = 1.3 ±0.1 s was measured by 1D 13C{1H} CP-

MAS saturation recovery experiments in the absence of a DNP matrix. Similarly, 

characteristic 1H DNP build-up times for polystyrene, TDNP,S, and glycerol, TDNP,M, are 

measured by 13C{1H} CP-MAS saturation recovery (see experimental values in Table 3A2 in 

Appendix 3A1). 

 

 Analytical solutions 

 The analytical solutions to Eq. 3.7 used to generate the dashed lines in Fig. 3.5b assume 

that the lumped-element approximation for the DNP source term, 𝑄̇, is valid and that direct 

hyperpolarization of the solid-particle by hyperfine interactions does not occur. Within the 

solid-target particle over 0 < r < R, the spatial polarization profile is: 

𝑃̃𝑆(𝑟̃) = 1 +
(𝑃̃𝑆|𝑟̃=1 − 1)

𝑟̃

sinh[∅𝑆𝑟̃]

sinh[∅𝑆]
 

(3.13) 

and within the DNP matrix over R < r < R+ΔReff is: 

𝑃̃𝑀(𝑟̃) = Ξ𝑀 − 𝛤𝐼

1
3
DaP 𝜂(𝑃̃𝑆|𝑟̃=1 − 1)

sinh[∅𝑀
∗ ] − 𝛤𝐼𝐼 cosh[∅𝑀

∗ ]
∙ (

sinh[∅𝑀
∗ 𝑟̃]

𝑟̃
− 𝛤𝐼𝐼

cosh[∅𝑀
∗ 𝑟̃]

𝑟̃
) 

(3.14) 

 



 

78 

 

where 𝑟 ̃= r/R, ∅𝑆 is the Thiele modulus of the solid particle, and Ξ𝑀 is 𝜀∞,𝑀
o  or 𝜃depo,𝑀

o  in the 

presence or absence of microwave irradiation determined from Eq. 3.5 or Eq. 3.6, 

respectively. Here, 𝑃̃𝑆|𝑟̃=1 corresponds to the surface polarization at the interface between the 

DNP matrix and solid-particle target, 

𝑃̃𝑆|𝑟̃=1 =
Ξ𝑀 +

DaP𝜂
3𝛤𝐼

1 +
DaP𝜂

3𝛤𝐼

   , 

(3.15) 

which demonstrates the utility of the Damköhler number, DaP, and effectiveness factor, η, in 

evaluating the efficacy of DNP matrix-mediated hyperpolarization transfer to an arbitrary 

solid-target. For evaluation of Eqs. 3.13, 3.14, and 3.15, the effective Thiele modulus for the 

DNP matrix (∅𝑀
∗ ) is: 

∅𝑀
∗ = ∅𝑆√

𝒟H,𝑆𝑇1,𝑆
o

𝒟H,𝑀𝑇DNP,𝑀
o  

(3.16) 

and geometry specific integration constants 𝛤𝐼 and 𝛤𝐼𝐼 corresponding to spherical 1D radial 

symmetry and thermal-like boundary conditions are: 

𝛤𝐼 = −
tanh[∅𝑀

∗ ] − 𝛤𝐼𝐼

∅𝑀
∗ + 𝛤𝐼𝐼 − tanh[∅𝑀

∗ ] (1 + ∅𝑀
∗ 𝛤𝐼𝐼)

    , 
(3.17) 

       𝛤𝐼𝐼 =
(1 +

Δ𝑅eff

𝑅 )∅𝑀
∗ − tanh [(1 +

Δ𝑅eff

𝑅 )∅𝑀
∗ ]

(1 +
Δ𝑅eff

𝑅 )∅𝑀
∗ tanh [(1 +

Δ𝑅eff

𝑅 )∅𝑀
∗ ] − 1

   , 

(3.18) 

where, in Eq. 3.16, 𝑇1,𝑆
o  and 𝑇DNP,𝑀

o  correspond to the spin-lattice relaxation time of the solid 

and characteristic build-up time of the DNP matrix respectively; these ‘o’ properties 

correspond to the individual components, not those of a matrix-particle suspension. The 

volumetric mean of the spatial polarization levels within the solid-particle target is, 
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< 𝑃̃𝑆 >= 𝜂(𝑃̃𝑆|𝑟̃=1 − 1) + 1   , (3.19) 

which corresponds to the solid-enhancement, 𝜀θ,𝑆 ≡< 𝑃̃𝑆(on) >, or depolarization factor, 

θdepo,𝑆 ≡ < 𝑃̃𝑆(off) >, in the presence or absence of microwave irradiation respectively. 

Importantly, the commonly reported signal enhancement is given, 𝜀∞,𝑆 ≈ 𝜀θ,𝑆/θdepo,𝑆, for 

dilute 𝜌pc where paramagnetic quenching is negligible. The dashed-lines in Fig. 3.5b 

correspond to these 𝜀∞,𝑆 values evaluated as a function of solvent and for ∅𝑆 values ranging 

from 0 to 2 to illustrate the influence of an increasingly strong solid-particle polarization sink. 

These expressions are useful in conceptualizing hyperpolarization transfer in composite 

systems but have limited utility considering the importance of radical-surface interactions in 

most systems. Similar analytical solutions to Eq. 3.7 accounting for radical-surface 

interactions may be developed, however numerical solutions are preferable. Importantly, 

without invoking the polarization-transfer coefficient, kDNP, and effective polarization-level 

generated by cross-effect DNP, 𝑃̅CE, description of polarization transfer processes in 

composite systems would likely be analytically intractable.  

 

Numerical simulations 

Numerical solutions to Eq. 3.7 corresponding to the solid-line plotted in Fig. 3.5b in the main 

text were obtained using the MatlabTM pdepe solver function assuming 1D spherical symmetry 

for the specified conditions similar to that described previously24. All hyperpolarization 

generation, propagation, and relaxation rates were estimated analytically by the lumped-

element approximation. Assuming negligible agglomeration and that the frozen homogeneous 

DNP solvent is uniformly distributed among the 100-nm particles, a solvent-solid ratio of ~1.3 
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mg/µL corresponds to an effective solvent shell thickness of ΔReff ~12 nm for spherically 

smooth polystyrene particles. 

Appendix 3A1. Experimental data and calibration 

Schematic pulse sequences and representative spectra used for the determination of 

characteristic times (T1/TDNP), the NMR signal enhancement (𝜀∞), and the depolarization 

factor (𝜃depo) are given in Figure 3A1. Characteristic times are measured by incrementing τ1 

delays and measuring the recovery of NMR signal intensity following a train of saturation 

pulses. The NMR signal enhancement (𝜀∞) is the ratio of signal intensity between the 

microwave on and microwave off spectra. During the echo delay (2τ2
 = 160 µs), broad 1H 

signal intensity from the probe background and strongly hyperfine-coupled nuclei are 

significantly broadened and partially dephased due to their relatively short T2 relaxation times. 

Consequently 1H spin-echo experiments preferentially detect diamagnetic 1H species in the 

frozen solvent matrix. It is assumed for all calculations that TDNP ≡ TDNP(on) ≈ TDNP(off), since 

these values are generally within 10% of each other as reported in Table 3A1; noting that 

TDNP(on) values are used for all analyses presented in the main text. Only at 2 mM AMUPol 

concentrations and high glycerol-water 1H spin densities, ρH > 50 M, are the TDNP(off) values 

appreciably longer. This may be attributed to microwave heating, a greater weighting of 

faster-relaxing hyperpolarized 1H species near paramagnetic centers, or due to a slightly 

differences in the apparent rate constant, kDNP, in the presence or absence of microwave 

irradiation. Regardless, these quantities are of the same order of magnitude suggesting that 

polarization transfer across the spin-diffusion barrier is similarly impeded both in the presence 

and absence of microwave irradiation.  
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FIGURE 3A1. (a) Pulse sequence for spin-echo 1H saturation recovery experiment with n = 

20 saturation pulses, a fixed echo delay of 2τ2 = 160 µs and a variable τ1 delay. (b) Pulse 

sequence for quantitative 1H single-pulse measurements with n = 16 and a variable τ1 delay. 

(c) Spin-echo 1H spectra comparing µwave-on versus µwave-off signal intensity for 2 mM 

AMUPol in glycerol-water (ρH = 3.5 M) at 9.4 T, 100 K, 12.5 kHz MAS. (d) Quantitative 1H 

signal intensity with and without 2 mM AMUPol in glycerol-water (ρH = 3.5 M) at 9.4 T, 100 

K, 12.5 kHz MAS. 

 

Table 3A1. Experimental characteristic build-up times of frozen 2 mM and 12 mM AMUPol 

glycerol-water matrices as a function of 1H spin density with and without microwave irradiation. 

2 mM AMUPol 12 mM AMUPol 

ρH [M] TDNP,on
 [s] TDNP,off

 [s] ρH [M] TDNP,on[s] TDNP,off [s] 

3.5 28.1 26.0 1.3 9.1 8.2 

7.8 20.6 19.5 3.5 4.7 4.4 

13 15.4 15.6 7.9 3.3 3.1 

23 13.5 14.5 14 2.6 2.6 

32 13.5 14.6 28 2.4 2.5 

52 13.7 15.0 56 2.5 2.8 

92 13.1 15.0 108 2.9 3.1 
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In the presence of paramagnetic centers, 1H signal intensity is partially “bleached” by 

paramagnetic quenching or MAS-induced depolarization, where the DNP contribution factor 

(𝜃DNP) is represented by the total fraction of remaining signal intensity, 𝜃DNP = 𝜃depo𝜃q, as 

determined from the experimental depolarization factor (𝜃depo) and quenching factor (𝜃q)
53. 

For dilute biradical concentrations (e.g., 2 mM AMUPol) it may be assumed that paramagnetic 

quenching is negligible, 𝜃q = 1, as quenching arises due to strong paramagnetic interactions 

near paramagnetic centers31. In contrast, depolarization effects are relayed through the 

diamagnetic bulk by spin diffusion similarly to a DNP enhancement. In Figure 3A3, 

depolarization factors are measured as a function of 1H spin density by single-pulse 1H NMR 

FIGURE 3A2. Characteristic DNP build-up times (TDNP) 

for 2 mM AMUPol in glycerol/water with 1H spin density 

of (a) 3.5 M, (b) 7.8 M, (c) 13 M, (d) 23 M, (e) 32 M, (f) 

52 M, and (g) 92 M, measured by 1H DNP spin-echo 

saturation recovery at 100 K, 12.5 kHz MAS, and 9.4 T. 
Legend includes squared norm of the residual 
demonstrating close agreement with monoexponential 
fit.  
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experiments. Although a linear calibration curve would be expected, the experimental curves 

are non-linear, Figure 3A3a, possibly due to dephasing by strong dipole interactions, r.f. 

inefficiencies, or a non-linear amplifier response. In Figure 3A3b, the depolarization factor as 

a function of ρH is determined from Eq. 3.12 in Section 3.9 using the data in Figure 3A3a. The 

observed ρH dependence of the depolarization factor is consistent with quantum chemical 

simulations which have shown that nuclear depolarization decreases as solvent T1 values 

decrease 23. 

For polystyrene in AMUPol glycerol-water suspensions, overlapping 1H intensity 

prohibits the use of 1H spin-echo saturation recovery measurements to measure signal 

enhancements and build-up times. Instead, 13C-detected 1D 13C{1H} CP-MAS saturation 

recovery experiments are used to measure enhancements 𝜀∞,𝑀 and 𝜀∞,𝑆 values, shown in Fig. 

3.5b in Section 3.5. Similar to the enhancement values, characteristic build-up times are 

influenced by spin thermodynamic exchange between the dissimilar reservoirs. In Table 3A2, 

 

FIGURE 3A3. Quantitative single-pulse 1H MAS NMR measurements of glycerol-water 

solutions at 9.4 T, 100 K, 12.5 kHz MAS, including (a) 1H signal intensity with and without 2 

mM AMUPol, and (b) DNP contribution factors (𝜃depo
o ), larger error bars include different 

masses of glycerol-water in the MAS rotor. 
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experimental polarization build-up times for polystyrene, TDNP,S, and the DNP matrix, TDNP,M, 

are compared with the, typically, much longer 𝑇DNP,𝑀
o  values corresponding to the 

homogeneous DNP matrix. Thus, at lower matrix ρH,M, polarization build-up times within the 

polystyrene particle interior are only weakly influenced by solvent-mediated 1H spin 

diffusion. For such conditions, measured TDNP,S values are less than the 1H spin-lattice 

relaxation time, 𝑇1,𝑆
o  = 1.3 s, indicating that particle surfaces are directly polarized by hyperfine 

transfer from adsorbed biradicals as discussed in the main text. Meanwhile at higher matrix 

ρH,M, measured TDNP,S values increase as the Zeeman spin conductivity of the matrix, 

ρH,M𝒟H,MCz, increases. In general, DNP matrices with higher Zeeman spin conductivities 

(larger ρH,M) can more effectively relay hyperpolarization to a solid-particle sink. However, 

because DNP generation rates are limited by the spin-diffusion barrier, higher ρH,M𝒟H,MCz 

may lead to diminished polarization levels as discussed for the homogeneous DNP matrix in 

the main text. 

† values extracted from the solid-line in Fig. 3.5 in Section 3.5 

Appendix 3A2. Applying the lumped-element approximation 

For Eqs. 3.5, 3.6, and 3.7 in Section 3.3 it is assumed that a lumped-element approximation 

developed is valid. When spatial polarization gradients are negligible (∇2𝑃̃ = 0), the bulk 

solvent matrix builds up uniformly to a single-polarization value for the hollow-sphere 

spanning from λsdb<r< λws. Similar to lumped-parameter analyses in heat transfer processes, 

Table 3A2: Experimental characteristic build-up times TDNP,M and TDNP,S for a suspension of 

polystyrene in 2 mM AMUPol glycerol-water with different 1H densities. 

ρH,M 1.3 M 4.0 M 12.5 M 25 M 108 M 
†𝑇DNP,𝑀

o  [s] 45.2 27.0 15.9 13.5 12.9 

TDNP,M [s] 6.0 5.6 5.9 5.0 5.3 

TDNP,S [s] 1.1 1.1 1.2 1.7 2.2 
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the following equation satisfies the First Law of Thermodynamics under a lumped-parameter 

assumption: 

 
𝜌H𝐶z

𝜕𝑃̃

𝜕𝑡
= 𝑄̇ + 𝜌H𝐶z

(1 − 𝑃̃)

𝑇1
 

 

(3A1) 

where the DNP source term per unit volume (𝑄̇) is calculated by performing a surface integral 

of the polarization flux at the spin-diffusion barrier interface divided by the volume of bulk 

solvent: 

 𝑄̇ =
1

𝑉
∙ ∬(𝑞H ∙ 𝑛)𝑑𝑆   , (3A2) 

where n is the unit normal vector, and the surface integral is performed at r = λsdb, which leads 

to: 

 𝑄̇ = 𝜌H𝐶z𝑘DNP𝐿−1∆𝑃̃   . (3A3) 

By substitution of Eq. 3A3 into Eq. 3A1, the following expressions are obtained describing 

polarization build-up with and without microwave irradiation: 

 

𝜕𝑃̃

𝜕𝑡
=

(
1 + 𝑘DNP𝐿−1𝑃̅CE(on)𝑇1

1 + 𝑘DNP𝐿−1𝑇1
− 𝑃̃)

𝑇1
(1 + 𝑘DNP𝐿−1𝑇1)⁄

≡
(< 𝑃̃s.s.,on > −𝑃̃)

𝑇DNP,on
 

 

(3A4) 

 

 

𝜕𝑃̃

𝜕𝑡
=

(
1 + 𝑘DNP𝐿−1𝑃̅CE(off)𝑇1

1 + 𝑘DNP𝐿−1𝑇1
− 𝑃̃)

𝑇1
(1 + 𝑘DNP𝐿−1𝑇1)⁄

≡
(< 𝑃̃s.s.,off > −𝑃̃)

𝑇DNP,off
      , 

 

(3A5) 

where < 𝑃̃s.s.,on > and < 𝑃̃s.s.,off > are the volume averaged steady-state polarization levels 

with and without microwave irradiation respectively in the bulk matrix (λsdb<r< λws). These 

quantities, hereafter the absolute enhancement (𝜀θ) and depolarization factor (𝜃depo), are 

directly proportional to the net magnetization and, in principle, the NMR signal intensity. 
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Appendix 3A3. Error analysis for the lumped-element approximation 

For high Biot number conditions, nuclear spin diffusion resistances in the bulk frozen 

glycerol-water matrix are expected to influence spatial polarization gradients, steady-state 

enhancements, and characteristic DNP build-up times. The lumped-parameter solution is no 

longer applicable as polarization-levels are diminished at distances progressively farther from 

the paramagnetic centers (∇2𝑃̃ ≠ 0). The steady-state spatial polarization-level, 𝑃̃s.s.(𝑟), as a 

function of position, r, from the paramagnetic center may be solved for analytically. For an 

annular sphere spanning from λsdb<r< λws, the steady-state general solution to Eq. 3.1 in 

Section 3.3 is given, 

 
𝑃̃s.s.(𝑟) = 1 +

𝐶𝐼

𝑟
∙ cosh[𝛼−1 ∙ 𝑟] +

𝐶𝐼𝐼

𝑟
∙ sinh[𝛼−1 ∙ 𝑟] 

(3A6) 

where   𝛼 = √𝒟H𝑇1 and the boundary conditions are: 

Boundary Condition #1:       𝑃̃s.s.|𝜆sdb
 at 𝑟 = 𝜆sdb 

Boundary Condition #2:       
𝜕𝑃̃

𝜕𝑟
|𝜆ws

= 0 

assuming a homogeneous distribution of paramagnetic centers with a mean separation 

distance represented by twice the Wigner-Seitz radius, 2λws. Here α represents the 

characteristic diffusion length which is >100 nm for frozen glycerol-water solutions at 9.4 T, 

100 K, and 12.5 kHz MAS. The integration constants CI and CII may be solved by application 

of the B.C.s to obtain: 

 
𝐶𝐼 =  

λsdb(𝑃̃s.s.|λsdb
− 1)

cosh(𝛼−1λsdb) − 𝐵𝐼sinh (𝛼−1λsdb)
 

 

(3A8) 

 𝐶𝐼𝐼 = −𝐶𝐼𝐵𝐼 (3A9) 
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𝐵𝐼 =

λws𝛼−1 ∙ sinh(λws𝛼−1) − cosh (λws𝛼−1)

λws𝛼−1 ∙ cosh(λws𝛼−1) − sinh (λws𝛼−1)
 

 

(3A10) 

where 𝑃̃s.s.|λsdb
 is the steady-state nuclear polarization-level at the effective interface between 

hyperfine coupled 1H nuclei and the bulk. This quantity may be determined by recognizing 

that for conservation of energy the energy flux flowing into the frozen solvent matrix at r = 

λsdb, must equal the amount of energy being dissipated by spin-lattice relaxation over 

λsdb<r< λws, 

 
(𝑞𝐻 ∙ 𝐴)|𝜆sdb

= ∭ 𝜌H𝐶z

(𝑃̃s.s.(𝑟) − 1)

𝑇1
dV 

 

(3A11) 

with respect to the Zeeman energy flux (𝑞𝐻) and interfacial area (A) which yields, 

 
𝑃̃𝑠.𝑠.|𝜆sdb

=
𝑃̅𝐶𝐸 + 𝛽𝐵𝐼𝐼 𝐵𝐼𝐼𝐼⁄

1 + 𝛽𝐵𝐼𝐼 𝐵𝐼𝐼𝐼⁄
 

 

(3A12) 

𝐵𝐼𝐼 = −(𝛼−1λsdb + 𝐵𝐼) sinh(𝛼−1λsdb) + (𝛼−1λsdb𝐵𝐼 + 1) cosh(𝛼−1λsdb)

+ (λws𝛼−1

+ 𝐵𝐼) sinh(λws𝛼−1) − (λws𝛼−1𝐵𝐼 + 1)cosh (λws𝛼−1) 

 

(3A13) 

 𝐵𝐼𝐼𝐼 = cosh(𝛼−1λsdb) − 𝐵𝐼 sinh(𝛼−1λsdb) 

 

(3A14) 

where BI, BII, and BIII are geometry specific numerical constants. Importantly, β naturally 

arises as the dimensionless scaling parameter, 
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𝛽 =

𝛼2𝑇1
−1

𝑘DNPλsdb
 

 

(3A15) 

that characterizes the ratio between the rate of energy dissipation in the bulk and the rate of 

energy transfer across a strong local magnetic field gradient (e.g., the spin-diffusion barrier). 

This is analogous to the second Damköhler number (DaII), which is commonly used in 

interphase mass transfer to describe the dissolution of particles. Here, it compares the rate of 

polarization transfer to the bulk relative to the rate of polarization dissipation in the bulk. By 

comparing the low and high Biot number solutions, it is demonstrated that the condition of 

Bi<0.65 is sufficient to justify the use of a lumped-element approximation for 1D spherically 

symmetric geometry; the same condition used in heat transfer analyses. Future work will 

address fast-relaxing reservoirs which can also influence the validity of lumped-element 

approximations. The error in the lumped-element calculation is determined as follows: 

 
%error =

|𝑃̃∞,analytical(𝜆sdb) − 𝑃̃∞,lumped(𝜆sdb)|

𝑃̃∞,analytical(𝜆sdb)
× 100% 

 

(3A16) 

where 𝑃̃∞,lumped(𝜆sdb) is the solution developed in Appendix 3A2 above and 

𝑃̃∞,analytical(𝜆sdb) is the solution developed by Eqs. 3A6 – 3A15, the calculated error is 

presented in Figure 3A4 for a 2 mM AMUPol in glycerol-water matrix. 
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 Appendix 3A4. Derivation of the effectiveness factor (η) 

For hyperpolarization transfer to a solid particle sink of radius R facilitated solely by DNP 

matrix mediated spin-diffusion, from Eq. 3.7 in Section 3.6, the internal dissipation of 

hyperpolarization over 0 < r < R is given, 

 𝜕𝑃̃𝑆

𝜕𝑡̃
= ∅𝑆

−2 ∙ ∇̃2𝑃̃𝑆 −  (𝑃̃𝑆 − 1) 

Boundary Condition #1:       lim
𝑟̃→0

𝜕𝑃̃𝑆

𝜕𝑟̃
= 0 

Boundary Condition #2:       𝑃̃𝑆|𝑟̃=1 𝑎𝑡 𝑟̃ = 1 

 

(3A17) 

where the Thiele modulus of the solid-particle, ∅𝑆 = 𝑅/√𝒟H,𝑆𝑇1,𝑆
o  , is obtained using 𝑟̃ =

𝑟/𝑅 and 𝑡̃ = 𝑡/𝑇1,𝑆
o  respectively. By application of the boundary conditions, the following 

 

Figure 3A4. Calculated %error of the lumped-element approximation for a 2 mM AMUPol 

in glycerol-water matrix under the conditions described in the main text. 
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steady-state solution is obtained for 𝑃̃𝑆(𝑟), the spatial polarization profile within the particle 

interior,  

 
𝑃̃𝑆(𝑟̃) = 1 +

(𝑃̃𝑆|𝑟̃=1 − 1)

𝑟̃
∙

sinh[∅𝑆 ∙ 𝑟̃]

sinh[∅𝑆]
 

(3A18) 

where the polarization at the particle surface, 𝑃̃𝑆|𝑟̃=1, is maintained by the rates of 

hyperpolarization generation and propagation in the DNP matrix. The effectiveness factor (η) 

is defined as the ratio between the energy dissipation rate throughout the solid-particle 

(𝑄̅actual) and the theoretical maximum energy dissipation rate (𝑄̅max) which would occur if 

the entire particle was polarized uniformly to the polarization-level at the particle surface, 

 
𝜂 =

𝑄̅actual

𝑄̅max
⁄  

(3A19) 

 with Zeeman energy dissipation rates of,  

 
𝑄̅max =

4𝜋𝑅3𝜌H,𝑆𝐶z

3𝑇1,𝑆
o ∙ (1 − 𝑃̃𝑆|𝑟̃=1) 

 

(3A20) 

 
𝑄̅actual =

4𝜋𝑅3𝜌H,𝑆Cz

3𝑇1,𝑆
o ∙ (1−< 𝑃̃𝑆 >) 

(3A21) 

with < 𝑃̃𝑆,∞ > corresponding to the average steady-state polarization of the solid-particle 

interior. This is obtained by integration of the steady-state solution as follows, 

 

< 𝑃̃𝑆 >= 3 ∫ 𝑃̃𝑆(𝑟̃) ∙ 𝑟̃2

1

0

𝑑𝑟̃ 

(3A22) 

Evaluating this integral, and computing the effectiveness factor to obtain, 

 𝜂 = 3∅𝑆
−2 ∙ (∅𝑆 ∙ coth[∅𝑆] − 1) (3A23) 

Importantly η provides a simple index to relate the polarization-level at the surface with the 

average polarization accrued through the particle interior. For DNP-NMR experiments, the 
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absolute polarization enhancement, 𝜀θ,𝑆, and depolarization factor, θdepo,𝑆, are related to the 

surface polarization by, 

 𝜀θ,𝑆 = 𝜂(𝑃̃𝑆(on)|𝑟̃=1 − 1) + 1 (3A24) 

 θdepo,𝑆 = 𝜂(𝑃̃𝑆(off)|𝑟̃=1 − 1) + 1 (3A25) 

in the presence and absence of microwave irradiation respectively. To explicitly determine 

𝑃̃𝑆(on)|𝑟̃=1 and 𝑃̃𝑆(off)|𝑟̃=1 additional information is needed regarding the efficacy of 

hyperpolarization transfer to the particle surface. 

Appendix 3A5. Efficacy of hyperpolarization transfer to a particle 

surface and the Damköhler number 

For hyperpolarization transfer to a spherical particle sink (S) of radius R coated with a 

DNP matrix (M) of thickness ΔReff, Eq. 3.9 in Section 3.7 corresponds to: 

 
𝜌H,𝑀𝐶z

𝜕𝑃̃𝑀

𝜕𝑡
= ∇(𝜌H,𝑀𝐶z𝒟H,𝑀∇𝑃̃𝑀) − 𝜌H,𝑀𝐶z

(𝑃̃𝑀 − Ξ𝑀)

𝑇𝐷𝑁𝑃,𝑀
𝑜  

 

(3A26) 

 
𝜌H,𝑆𝐶z

𝜕𝑃̃𝑆

𝜕𝑡
= ∇(𝜌H,𝑆𝐶z𝒟H,𝑆∇𝑃̃𝑆) −  𝜌H,𝑆𝐶z

(𝑃̃𝑆 − 1)

𝑇1,𝑆
𝑜  

 

(3A27) 

I.C.        

𝑃̃𝑀(𝑟, 0) =  𝑃̃𝑆(𝑟, 0) = 0 

 

Ξ𝑀 = [
𝜀θ,𝑀

𝑜  ; microwave on

𝜃depo,𝑀
𝑜 ; microwave off

] 

B.C. #1        

𝑃̃𝑀(𝑅, 𝑡) =  𝑃̃𝑆(𝑅, 𝑡) 

B.C. #2        

𝜌H,𝑀𝒟H,𝑀

𝜕𝑃̃𝑀

𝜕𝑟
|𝑅 =  𝜌H,𝑆𝒟H,𝑆

𝜕𝑃̃𝑆

𝜕𝑟
|𝑅 
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B.C. #3     

lim
𝑟→0

𝜕𝑃̃𝑆

𝜕𝑟
= 0 

 

B.C. #4  

lim
𝑟→(𝑅+∆𝑅eff)

𝜕𝑃̃𝑀

𝜕𝑟
= 0 

 

assuming that hyperpolarization is solely delivered to the particle surface by DNP matrix-

mediated spin diffusion. By nondimensionalizing of Eq. 3A26 using 𝑟̃ = 𝑟/𝑅 and 𝑡̃ = 𝑡/𝑇1,𝑆
𝑜 , 

respectively, 

 𝑇DNP,𝑀
o

𝑇1,𝑆
o ∙

𝜕𝑃̃𝑀

𝜕𝑡̃
= ∅𝑀

∗ −2∇̃2𝑃̃𝑀 −  (𝑃̃𝑀 − Ξ𝑀) 

 

(3A28) 

where a composite Thiele modulus for the DNP matrix (∅𝑀
∗ ) in a heterogeneous solvent-solid 

suspension may be represented as, 

 

∅𝑀
∗ = ∅𝑆√

𝒟H,𝑆𝑇1,𝑆
o

𝒟H,𝑀𝑇DNP,𝑀
o  

 

(3A29) 

which yields the following steady-state solution, 

 
𝑃̃𝑀,∞(𝑟̃) = Ξ𝑀 +

𝐶𝐼𝐼𝐼

𝑟̃
∙ cosh[∅𝑀

∗ ∙ 𝑟̃] +
𝐶𝐼𝑉

𝑟̃
∙ sinh[∅𝑀

∗ ∙ 𝑟̃] 

 

(3A30) 

where the integration constants CIII and CIV are most conveniently obtained by application of 

B.C.s #1 and #4. However, as was the case for Eq. 3A18, this yields the steady-state spatial 

polarization profile within the DNP matrix 𝑃̃𝑀,∞(𝑟̃) in terms of, 𝑃̃𝑆|𝑟̃=1, the unknown surface 

polarization. For conservation of energy, the rate of energy dissipation within the solid-
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particle interior must be equal to the rate of energy flowing into the particle surface at steady-

state imposing the condition,  

 
4𝜋𝑅2𝜌H,𝑀𝐶z𝒟H,𝑀

𝜕𝑃̃𝑀

𝜕𝑟
= 𝑄̅actual 

 

(3A31) 

 
𝑄̅actual ≡ 𝜂𝑄̅max = −

4𝜋𝑅3𝜌H,𝑆𝐶z

3𝑇1,𝑆
o ∙ 𝜂(1 − 𝑃̃𝑆|𝑟̃=1) 

 

(3A32) 

where η is the solid-particle effectiveness factor. By nondimensionalization Eq. 3A31 is then, 

 𝜕𝑃̃𝑀

𝜕𝑟̃
|𝑟̃ = 1 =

1

3
DaP ∙ 𝜂(𝑃̃𝑆|𝑟̃=1 − 1) 

 

(3A33) 

where the polarization analogue of the Damköhler number (DaP) for the frozen DNP solvent 

matrix is given, 

 
DaP =

𝑅2𝑇1,𝑆
o −1

𝒟H,𝑀
∙

𝜌H,𝑆

𝜌H,𝑀
 

 

(3A34) 

which is the ratio between the rate of energy dissipation at the surface versus the rate of energy 

transfer to the surface by DNP matrix mediated spin-diffusion weighted with respect to the 

specific Zeeman heat capacity of each medium. From which it may be demonstrated that, 

 
𝑃̃𝑀(𝑟̃) = Ξ𝑀 − 𝛤𝐼

1
3
Da 𝜂(𝑃̃𝑆|𝑟̃=1 − 1)

sinh[∅𝑀
∗ ] − 𝛤𝐼𝐼 cosh[∅𝑀

∗ ]

∙ (
sinh[∅𝑀

∗ ∙ 𝑟̃]

𝑟̃
− 𝛤𝐼𝐼

cosh[∅𝑀
∗ ∙ 𝑟̃]

𝑟̃
) 

 

  (3A35) 
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𝑃̃𝑆|𝑟̃=1 =
Ξ𝑀 +

DaP𝜂
3𝛤𝐼

1 +
DaP𝜂

3𝛤𝐼

 

   (3A36) 

where 𝛤𝐼 and 𝛤𝐼𝐼 are geometry specific numerical constants, 

 
𝛤𝐼 = −

tanh[∅𝑀
∗ ] − 𝛤𝐼𝐼

∅𝑀
∗ + 𝛤𝐼𝐼 − tanh[∅𝑀

∗ ] ∙ (1 + ∅𝑀
∗ 𝛤𝐼𝐼)

 
           

(3A37) 

 
𝛤𝐼𝐼 =

𝜁∅𝑀
∗ − tanh[𝜁∅𝑀

∗ ]

𝜁∅𝑀
∗ ∙ tanh[𝜁∅𝑀

∗ ] − 1
 

          

(3A38) 

where ζ = 1+ΔReff/R corresponds to the 𝑟̃ boundary position of the DNP solvent matrix. From 

Eq. 3A36, the steady-state solid enhancement, 𝜀θ,𝑆 ≡< 𝑃̃𝑆(on) >, or depolarization factor, 

θdepo,𝑆 ≡ < 𝑃̃𝑆(off) >, is calculated, 

 

< 𝑃̃𝑆 >= 3 ∫ 𝑃̃𝑆(𝑟̃) ∙ 𝑟̃2𝑑𝑟̃

1

0

 

(3A39) 

 

< 𝑃̃𝑆 >= 𝜂 (
Ξ𝑀 +

DaP 𝜂
3𝛤𝐼

1 +
DaP 𝜂

3𝛤𝐼

− 1) + 1 

(3A40) 

importantly the measured NMR signal enhancement, 𝜀∞,𝑆 ≡< 𝑃̃𝑆(on) >/< 𝑃̃𝑆(off) >, may be 

obtained directly from Eq. 3A40. This analytical solution is used to generate the dotted lines 

in Fig. 3.7b in Section 3.7.
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Appendix 3A6. Comparison of lumped-element solution with previous 

ab initio predictions  

     As discussed in the main text, by invoking a DNP transfer coefficient the polarization 

build-up rates and gain may be quantitatively predicted from reported values of kDNP and 𝑃̅CE 

as a function of sample composition or relaxation properties. In particular, previous quantum 

mechanical simulations have calculated the dependences of T1 vs. TDNP and T1 vs. 𝜀θ
o which 

may be directly compared to the predictions of Equation 3.5a and 3.6 in Section 3.3. The 

crosses correspond to simulated values extracted from reference23 corresponding to a 

simulation of a “TOTAPol-like” isolated biradical. Although the description of the system 

does not specify a biradical concentration, the extracted kDNPL-1  value of 0.137 s-1 is bounded 

between those measured in the present study, see Figure 3A5a. From the data in the main text 

kDNPL-1  values range from 0.03 – 0.06 s-1 and 0.10 – 0.40 s-1 measured for 2 mM or 12 mM 

AMUPol glycerol-water solutions at varying deuteration levels, respectively. This indicates 

that the simulation predicts polarization build-up rates that agree with values expected for 

commonly used DNP matrix formulations. Also from the simulation, by fixing kDNPL-1 

constant, the effective polarization-level of core nuclei under microwave irradiation, 𝑃̅CE(on), 

may be obtained as demonstrated in Figure 3A5b. Again, the simulated value is in agreement 

with the value of 𝑃̅CE(on) = 148 ±14 measured for 2 mM AMUPol solutions. Although the 

depolarization factor was not measured for 12 mM AMUPol solutions in this work, using the 

data provided in Fig. 2b of reference54 and the enhancement factors reported in Table 3A3 

below, a value of 𝑃̅CE(on) = 75 ±5 is estimated for 12 mM AMUPol. Therefore it may be 

concluded that the 𝑃̅CE(on) value associated with the simulated data is a realistic estimate 
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bounded by the conditions used in the present study. The ab initio simulation accurately 

describes cross-effect events, which might be expected to generate a nuclear polarization as 

high as 658. Within the context of the film-transfer model, this is not the maximum predicted 

enhancement that can be physically delivered to bulk nuclei. It appears that the simulation 

predicts a similar limit to the maximum polarization level which can be delivered to the bulk. 

Specifically, 𝑃̅CE(on) corresponds to the limit of the curve in Figure 3A5b. as the bulk T1 value 

approaches infinity. From the present work it is unclear why this value is less than 658, 

however this may be explained by electron relaxation effects as discussed in the main text.            

 

 

FIGURE 3A5. Comparison of lumped-element solution with previous ab initio predictions 

with data for (a) T1 vs. TDNP and (b) T1 vs. 𝜀θ
o extracted from Fig. 9 in reference23.  
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*Value of 𝑃̅CE(off) = 0.28 is calculated using 𝜃depo
o = 0.305 (10 kHz MAS) from Fig. 2b in 

reference54 and from Eq. 3.7 in Section 3.3 with 𝑇1
o = 79 s and kDNPL-1 = 0.38 s-1 corresponding 

to 12 mM AMUPol in glycerol-water (ρH = 14 M). 

†Values of 𝑃̅CE(on)=75 ±5 calculated from Eq. 3.7 in Section 3.3 and averaged for values in 

Table 3A3. 

 

Appendix 3A7. Calculation of DNP injections rates in units of Watts 

For 2 mM AMUPol in glycerol/water the DNP injection rate in units of W/biradical 

may be straightforwardly calculated from the reported kDNP and 𝑃̅CE values. At steady-state, 

the energy being dissipated by T1 relaxation processes must exactly match that being delivered 

into the bulk across the spin-diffusion barrier. The rate of energy dissipation by T1 relaxation 

processes is, 

 
𝑄con =  − ∫ 𝜌H𝐶z ∙

𝑃̃(𝑟) − 1

𝑇1
4𝜋𝑟2𝑑𝑟

𝜆ws

𝜆sdb

 
(3A41) 

which for low Biot conditions is simply, 

 
𝑄con =  −

4𝜋

3
(𝜆ws

3 − 𝜆sdb
3)𝜌H𝐶z ∙

𝜀θ − 1

𝑇1
 

(3A42) 

under conditions of microwave irradiation. By comparison the rate of hyperpolarization 

transfer to bulk nuclei is represented by, 

 𝑄gen =  4𝜋𝜆sdb
2 ∙ 𝜌H𝐶z𝑘DNP(𝑃̅CE(on) − 𝜀θ) (3A43) 

Table 3A3: Experimental ε∞ values and calculated 𝑃̅CE(on) values of frozen 12 mM AMUPol 

glycerol-water matrices as a function of 1H spin density  

ρH,M 1.3 M 3.5 M 7.9 M 14 M 28 M 56 M 108 M 

ε∞ 247 265 254 243 213 184 176 

†𝑃̅CE(on) 80 81 78 76 71 67 75 
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and these expressions may be evaluated using reported 𝑃̅CE(on), 𝑘DNP, and 𝑇1 values Section 

3.4 and 3.5. Equation 3A42 and 3A43 are evaluated and compiled for 2 mM AMUPol in 

glycerol/water in Table 3A4 below. The measured hyperpolarization rates are only tabulated 

for 1H nuclei in the bulk spanning λsdb < r < λws. The present analyses do not allow for the 

accounting of energy dissipation occurring among core 1H nuclei, spectator nuclei (e.g., 2H, 

13C), or energy which is transferred to reservoirs other than that of the Zeeman Hamiltonian. 

The DNP injection rate (W) in plotted in Figure 3A6a,b normalized with respect to the number 

of biradical molecules and the number of bulk 1H nuclei respectively.  

 

Table 3A4. Calculation of DNP injection and dissipation rates by Equation S42 and S43 

for 2 mM AMUPol in glycerol-water at 100 K, 12.5 kHz MAS, and 9.4 T. 

ρH [M] T1
 [s] kDNP [nm/s] 𝜀𝜃 Qcon 

[W/biradical 

Qgen 

[W/biradical] 

3.5 180 0.59 125 -4.93·10-23 +4.93·10-23 

7.8 123 0.80 123 -1.59·10-22 +1.59·10-22 

13 83 1.05 121 -3.86·10-22 +3.86·10-22 

23 53 1.09 111 -9.60·10-22 +9.60·10-22 

32 42 1.00 101 -1.50·10-21 +1.50·10-21 

52 34 0.86 89 -2.74·10-21 +2.74·10-21 

92 25 0.71 70 -5.25·10-21 +5.25·10-21 
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Figure 3A6. DNP injection rates (W) normalized with respect to (a) the number of biradical 

molecules, or (b) the number of bulk 1H nuclei, respectively. Measured for 2 mM AMUPol in 

glycerol-water at 9.4 T, 100 K, and 12.5 kHz MAS by 1H spin-echo DNP saturation recovery 

and calculated from data in Table 3A3. 
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Chapter IV.  

Measurement of Proton Spin Diffusivity in Hydrated 

Cementitious Solids 

B.J. Walder; N.A. Prisco; F.M. Paruzzo; J.R. Yarava; B.F. Chmelka; L. Emsley; To be 

submitted to J. Phys. Chem. Lett, 2019, 10 (17), pp 5064 - 5069.  

Adapted with permission from Walder, et al., J. Phys. Chem. Lett., 2019, 10(17), pp 

5064.   

4.1. Abstract 

The study of hydration and crystallization processes involving inorganic oxides is often 

complicated by poor long-range order and the formation of heterogeneous domains or surface 

layers. In solid-state NMR, 1H-1H spin diffusion analyses can provide information on spatial 

composition distributions, domain sizes, or miscibility in both ordered and disordered solids. 

Such analyses have been implemented in organic solids, but crucially rely on separate 

measurements of the 1H spin diffusion coefficients in closely related systems. In this Chapter, 

an experimental NMR method is presented, in which “holes” of well-defined dimensions are 

created in proton magnetization. Model solutions can be applied to determine spin diffusion 

coefficients in cementitious solids hydrated with 17O enriched water.  We determine proton 

spin diffusion coefficients of 240 ± 40 nm2/s for hydrated tricalcium aluminate and 140 ± 20 

nm2/s for hydrated tricalcium silicate under quasi-static conditions. 
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4.2. Introduction 

Solid-state NMR can often resolve different components of a mixture and is a method of 

choice for characterizing complex domains on the nanoscale.1-2 Conventional examples 

include characterization of domain sizes in heterogeneous and semi-crystalline polymers and 

spatial composition distributions in lipid membranes.3-5 Recent advances involving the relay 

of nuclear hyperpolarization through interfaces,6-7 as generated by dynamic nuclear 

polarization8-10 are proving particularly effective in this regard. In such experiments, proton 

hyperpolarization in one phase sets up large magnetization gradients at interfaces with a 

second phase of interest. As hyperpolarization builds up outside the second phase, efficient 

proton spin diffusion spontaneously and simultaneously transports magnetization into it. 

Magnetization gradients large enough to permit domain size analysis can also be established 

by domain selective enhancement of relaxation by doping with paramagnetic species11 or by 

selective saturation.3, 12-14 

 

FIGURE 4.1) Schematic structures of hydrated tricalcium aluminate (A) and hydrated 

tricalcium silicate (B). By using water isotopically enriched in 17O (golden atoms), spin labels 

are introduced that permit controllable burning of holes in the 1H magnetization density. 
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Such domain size analyses rely on knowledge of proton spin diffusion coefficients, DH, 

which are usually estimated based upon proton density or chemical similarity in the rigid limit.  

In more complex systems (e.g., calcium silicate or aluminate hydrates), structural disorder, 

chemical heterogeneity, or molecular mobility of intralayer water may influence DH values. 

An experimental determination of proton spin diffusion coefficients usually depends on prior 

knowledge of the length scale of initial magnetization gradients, L, as the NMR observables 

are functions not of DH alone, but rather the characteristic diffusion time L2/DH. In many cases, 

L is governed by the sizes of the domains being studied and is thereby connected to the 

unknown parameters of prior interest. In most systems, domain sizes cannot be reliably 

controlled, which prevents direct measurement of spin diffusion coefficients. 

Here we show this paradox can be overcome for silicates with an NMR experiment that 

burns “holes” of well-defined size in proton magnetization,15, 19 thus establishing L regardless 

of any particular chemical character of the hydrated phase. The experiment we develop here 

is based upon the method introduced by Chen and Schmidt-Rohr,15 which utilizes spin-pair 

dephasing in order to burn approximately spherical holes in the proton magnetization.  The 

holes can exceed 1 nm in diameter, and subsequent hole filling by spin diffusion could be 

monitored through the same nucleus (in their case, 13C) used to burn the hole, provided a 

proton was bonded to it. In adapting their approach to cementitious solids, specifically 

tricalcium aluminate (Ca3Al2O6) and tricalcium silicate (Ca3SiO5) after hydration, we chose 

to use 17O nuclei (as shown in Figure 4.1) for hole burning, due to ease of incorporation using 

17O-enriched water and because hydrogen bonds to oxygen.  These structural characteristics 

are illustrated in Figure 4.1. 
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FIGURE 4.2) Hole-burning pulse sequence used for measuring proton spin diffusion 

coefficients in cementitious solids, based on the pulse sequence introduced by Chen and 

Schmidt-Rohr.15 During the hole-burning interval, REDOR16 pulses that are selective for the 
17O central transition (πCT) are used to dephase the polarization of nearby protons (1H).  This 

is represented by a “hole”, the radius of which grows in proportion to τb
1/3. This is depicted in 

the tile labeled “Burning”, where the proton magnetization is depicted as a gray continuum. 

During this step, homonuclear 1H decoupling is applied to suppress proton spin diffusion to 

validate the use of spin-pair dephasing principles for calculating the spatial profile of the hole.  

During the hole-filling interval, magnetization returns to the 17O nucleus by spontaneous 

proton spin diffusion, as illustrated in the tile labeled “Filling”. Following this, the 1H 

magnetization near the center of the hole is monitored by magnetization transfer to 17O using 

a short (10 µs) CP contact pulse with LG irradiation17 of 1H rf to again suppress proton spin 

diffusion during the transfer.  Multiple-echo acquisition with CPMG18 is used to enhance 

sensitivity. The signal intensity is analyzed as a function of τf for different τb to determine the 

proton spin diffusion coefficient DH using an analytic diffusion model. In all our experiments 

the sample rotation period for magic-angle spinning, τR, was 0.33 ms. Additional experimental 

details are given in the supplementary information. 

 

Our implementation of the hole-burning pulse sequence under slow magic-angle spinning 

(MAS) is shown in Figure 4.2.  Following saturation of 17O magnetization, the magnetic 

dipoles of 17O nuclei are used to destroy nearby 1H magnetization. The application of a 

homonuclear proton decoupling method during dephasing, such as the BR-24 technique used 

here,22 is essential in two ways.  First, it arrests proton spin diffusion.  Second, it allows the 

dephasing dynamics to be approximated by spin-pair processes.  Under these two conditions, 
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a hole is burned in the proton magnetization. Chen and Schmidt-Rohr defined the radius of 

the hole to be the distance from the heteronucleus at which the 1H magnetization rises to half 

the value it reaches well outside of the hole,15 

𝑟0.5 = √
5

4
𝑄𝜏𝑏

3
, 

(4.1) 

where 𝜏𝑏 is the hole-burning interval and 𝑄 is a dephasing constant, 

𝑄 = 𝜆𝑐𝑠ℎ
𝜇0

4𝜋

|𝛾𝐼𝛾𝑆|

4𝜋2
,  (4.2) 

which depends on the scaling factor 𝜆𝑐𝑠 accounting for the attenuation of the 1H-17O 

heteronuclear dipolar interaction by BR-24, the gyromagnetic ratios of the I and S spins, and 

the fundamental constants 𝜇0 and ℎ.  The S spin here, 17O, is quadrupolar (S = 5/2), but because 

central transition selective π pulses were used (labeled πCT in Figure 4.2), Eq. (4.2) remains 

valid.23 Taking 𝜆𝑐𝑠 = 0.38 for BR-24,24 we calculate 𝑄 = 6.2 Å3/ms for our implementation 

of pairwise 1H-17O dipolar dephasing. 

Following the hole-burning interval, the proton magnetization refills the hole by 

spontaneous proton spin diffusion. Under the experimental conditions used, transport of 

proton magnetization is, to a good approximation, governed by the isotropic diffusion 

equation 

𝜕𝑀

𝜕𝑡
= 𝐷𝐻∇2𝑀,   (4.3) 

 

where M is a scalar field representing the longitudinal proton magnetization density and DH 

is the isotropic proton spin diffusion coefficient. If the 17O spin labeling is sparse, we can 

solve Eq. (4.3) assuming the holes are far enough apart to be treated as an ensemble of isolated, 

spherically symmetric wells, which yields 𝑀(𝑟, 𝑡) as a function of the radial coordinate and 
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time. The solution for the recovery of magnetization at the center of a spherical well, defined 

by the boundary conditions, 

𝑀(𝑟, 0) = {
𝑀1 if 𝑟 < 𝑅,
𝑀2 if 𝑟 > 𝑅,

 

𝜕𝑀

𝜕𝑟
|

𝑟=0
= 0, ∀𝑡, 

lim
𝑟→∞

𝑀(𝑟, 𝑡) = 𝑀2, ∀𝑡, 

is given by 

𝑀(0, 𝑡) = 𝑀2 + (𝑀1 − 𝑀2) [erf (
𝑅

√4𝐷𝐻𝑡
) −

𝑅

√𝜋𝐷𝐻𝑡
exp (−

𝑅2

4𝐷𝐻𝑡
)].      

(4.4) 

The spherical well profile is defined by an abrupt change of magnetization from M1 within 

the burned hole to the bulk polarization value M2 at the edge of the hole at 𝑟 = 𝑅.  While such 

an initial profile of magnetization is unrealistic, the solution can be adapted for an initial 

profile that features a smoother transition across the edge by introducing the advancement 

parameter, ∆𝑡, and making the substitution 𝑡 → 𝑡 + ∆𝑡 in Eq. (4.4). In this way, the initial 

profile is modeled as the solution of diffusion into a spherical well at a nonzero time 𝑡 = ∆𝑡, 

and Eq. (4.3) does not need to be solved for a more complicated set of boundary conditions.15 

As discussed, Eq. (4.3) does not possess a term corresponding to a magnetization sink. In 

reality, our data is affected by longitudinal 1H spin relaxation, characterized by the time 

constant, T1, which is on the order of milliseconds. The effects of relaxation, however, become 

significant only after most of the magnetization has returned to the hole by diffusion (vide 

infra), such that the behavior of magnetization exists approximately in two separate regimes, 

one diffusion dominated and one relaxation dominated.  For the latter case, the magnetization 
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behaves like 𝑀(𝑡) = 𝑀0 exp(−𝑡/𝑇1) for some initial value of magnetization M0. Given this 

approximate separability, we take M0 to be equal to Eq. (4.4), in spite of its time dependence.   

Putting all of this together, we obtain the following analytic expression to model the 

magnetization recovery data,  

𝑀𝑐(𝜏𝑓) = [𝑀2 + (𝑀1 − 𝑀2) [erf (
𝑅

√4𝐷𝐻(𝜏𝑓+∆𝑡)
) −

𝑅

√𝜋𝐷𝐻(𝜏𝑓+∆𝑡)
exp (−

𝑅2

4𝐷𝐻(𝜏𝑓+∆𝑡)
)]] exp (−

𝜏𝑓

𝑇1
),  

(4.5) 

where the signal dependence on the parameter 𝜏𝑓 has now been made explicit.  We see 

from this expression that hole filling data can be analyzed for M1, M2, Δt, T1, and the 

characteristic diffusion time R2/DH.  For our calculations, we take 𝑅 = 𝑟0.5 according to Eq. 

(4.1) to derive DH. This expresses a τb
1/3 dependence on the duration of hole burning, providing 

a straightforward means of controlling the size of the hole. 

We note that this model of diffusion into a spherical well does not explicitly incorporate 

spin exchange or motional dynamics.  Since these are modulated by settings such as the MAS 

rate and sample temperature, the set of model parameters we determine, including DH, pertain 

to a specific set of experimental conditions.  Our experiments have been carried out at a 

temperature around 95 K, where significant molecular motion is frozen, and a magic-angle 

spinning rate of 3030 Hz, much lower than the strongest 1H-1H dipolar coupling frequencies.  

This prevents the suppression of spin diffusion by molecular motion and places us in a quasi-

static regime where 1H spin diffusion is not significantly affected (and may even be slightly 

enhanced) by sample rotation.20-21 
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4.3. Measurement of the spin-diffusion coefficient 

To selectively monitor the magnetization near the center of the hole and validate the use 

of Eq. (4.5), we used a very short (10 µs) cross-polarization (CP) contact time, with off-

resonance 1H irradiation in the manner of Lee and Goldburg17 for additional suppression of 

proton spin diffusion during the CP transfer. Such a short contact time transfers polarization 

between only the most strongly dipole-coupled nuclei, which are those 1H nuclei within a few 

bond lengths of the 17O nucleus at the center of each spherical well. 

The magnetization recovery data and the best fit to 𝑀𝑐(𝜏𝑓) given by Eq. (4.5) for Ca3Al2O6 

hydrated with 20% 17O-enriched water for 24 h are plotted in Figure 4.3A. The parameters 

M2, Δt, T, and DH in Eq. (4.5) were determined as a part of the numerical fit. More details 

regarding the samples (including 17O enrichment levels after hydration) and fitting procedure 

are given in the appendices.  The appendices also show analogs of Figure 4.3A for the 

Ca3Al2O6 sample hydrated with 3% 17O-enriched water for 24 h and a Ca3SiO5 sample 

hydrated with 5% 17O-enriched water for 50 d. Our analysis of Ca3SiO5 is complicated by the 

fact that it is known to form mixtures of poorly-ordered calcium silicate hydrate (C-S-H) as 

well as crystalline Ca(OH)2 upon hydration.  In the appendices, we show high-resolution 17O 

spectra of our hydrated Ca3SiO5 sample (as well as the Ca3Al2O6 samples) and carry out a 

quantitative analysis which reveals that less than 20% of the 17O is present as Ca(OH)2.  Given 

the poor signal-to-noise ratios of our Ca3SiO5 datasets, our analysis should not be led into 

serious error by assuming our results pertain solely to the major hydration product, C-S-H. 
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We see that Eq. (4.5) leads to excellent fits of three datasets acquired for hole-burning 

intervals of 0.66 ms, 1.32 ms, and 2.64 ms, corresponding to r0.5 values of 0.17 nm, 0.22 nm, 

and 0.27 nm from Eq. (4.1). Signal intensities near zero were recorded for filling intervals less  

 

FIGURE 4.3)  Profiles of 1H magnetization for the hole-burning experiments for 20% 17O-

enriched tricalcium aluminate.  A) Recovery of the 17O-detected 1H signal intensities plotted 

as functions of the square root of the hole-filling interval τf for three values of τb: 0.66 ms (2τR; 

2 rotor periods at the 3030 Hz MAS rate), 1.32 ms (4τR), and 2.64 ms (8τR). The curves are 

best fits to the experimental data (points), according to the hole-filling model, Eq. (4.5).  The 

intensities are relative to a reference experiment without 17O REDOR pulses, in which case 

homonuclear 1H decoupling is still applied but no hole is burned. The black line corresponds 

to the recovery limit based upon a component of spin relaxation with time constant 𝑇1 =
11.7 ms.  B) Simulated radial magnetization profiles immediately after hole burning (𝜏𝑓 = 0), 

corresponding to 𝑀(𝑟, 0), using parameters from the best-fit analysis.  The sample 

temperature was near 95 K. 

 

than 10 µs, validating the constraint 𝑀1 = 0. For 𝜏𝑓 > 10 µs, there is onset of rapid recovery 

of the magnetization toward M2, which represents the volume average proton polarization 

after hole burning. Measured with respect to a reference experiment in which the 17O 

dephasing pulses are deactivated and no holes are burned in the proton polarization, we should 

expect 𝑀2 < 1, with the value of unity obtained only in the limit of infinite 17O dilution. This 

recovery limit is indicated by the black line in Figure 4.3A, and indeed we see that in the case 
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of hydrated Ca3Al2O6 the intensities do not reach this limit. Rather, we find decreasing M2 

values of 0.88, 0.81, and 0.73 for increasing durations of hole burning. For otherwise 

identically hydrated Ca3Al2O6 (3%), we find much lower respective M2 values of 1.00, 0.94, 

and 0.91.  This trend versus 𝜏𝑏 corresponds to (-7.5 ± 1.1) %/ms for Ca3Al2O6 (20%) and (-

4.5 ± 1.6) %/ms for Ca3Al2O6 (3%). The ratio of these values (20% over 3%) is only 1.7, yet 

the ratio of 17O concentrations is 6.7.  This is consistent with incipient hole overlap for the 

Ca3Al2O6 (20%) sample, even at the shortest hole-burning intervals used here. Further 

discussion pertaining to hole overlap leading to less than expected destruction of average 

proton polarization is given in the appendices. For the Ca3SiO5 sample, which has a lower 17O 

concentration than Ca3Al2O6, is it difficult to assess whether M2 departs from unity because 

of low signal-to-noise ratios and so here we fit with the constraint 𝑀2 = 1, as described in the 

appendices. 

From the full solution of Eq. (4.3), we can also calculate initial magnetization profiles 

𝑀(𝑟, 0) in the context of the analytic model for each value of τb, which is shown in Figure 

4.3B using parameters determined from the best fit analysis. The appearance of nonzero 

magnetization at 𝑟 = 0 may appear in contradiction to the constraint 𝑀1 = 0, but in fact this 

is a consequence of the advancement parameter increasing from 2 µs to 13 µs to 22 µs with 

increasing τb. This accounts for the decreasing slope of the hole edge and reflects the fact that 

we are not truly sampling the 1H magnetization at the single point 𝑟 = 0, but rather over a 

small neighborhood near 𝑟 = 0, over which the integrated signal intensity tends to a small but 

nonzero value for sufficiently large (but finite) holes, even for ideal dipolar dephasing. 

Residual spin diffusion during hole burning may also contribute. 
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The behaviors of the M2 and Δt parameters are consistent with expectations, increasing 

our confidence that DH should behave similarly. The proton spin diffusion coefficients we 

determine by our analysis for each of the samples are given in Table 4.1.  The proton 

concentrations, c, of hydrated Ca3SiO5 and hydrated Ca3Al2O6 are around 20 M and 90 M, 

respectively.  Assuming that 𝐷𝐻 ∝ 𝑐1/3,25-26 we would expect DH for hydrated Ca3SiO5 to be 

about 60% of that for hydrated Ca3Al2O6, which is consistent with the values shown in Table 

1. 

Table 4.1) Proton spin diffusion coefficients, 𝐷𝐻 / nm2s−1, for hydrated Ca3Al2O6 and 

hydrated Ca3SiO5 with different extents of 17O enrichments, determined for different hole 

burning intervals. 

Sample 
Hole burning interval 

2𝜏𝑅 4𝜏𝑅 8𝜏𝑅 ∞ 

Ca3Al2O6 (20%) 156 ± 11 204 ± 15 222 ± 12 245 ± 4 

Ca3Al2O6 (3%) 165 ± 11 200 ± 13 214 ± 11 232 ± 2 

Ca3SiO5 (5%) 71 ± 7 105 ± 12 120 ± 12 137 ± 2 

 

Rather than exhibiting behaviors that are independent of τb, we observe in Table 4.1 that 

the spin diffusion coefficients DH increase with the duration of hole burning τb. This effect is 

consistent across the different samples. This phenomenon was also observed by Chen and 

Schmidt-Rohr in their 13C hole-burning experiments on polymer samples,15 systems for which 

the results of the hole-burning method could be compared with techniques that were suitable 

over somewhat larger length scales (roughly 10 nm). They attributed such dependence on τb 

to anisotropic spin diffusion on nanometer length scales, and to a lesser extent on nondiffusive 

spin dynamics on microsecond time scales.  The hole-burning method was found to 

underestimate DH compared to methods probing diffusion on larger length scales by a factor 



 

114 

 

of about two or three, depending on the size of the hole. Given the tendencies for hydrated 

calcium aluminates and silicate to form clustered and layered structures, similar anisotropic 

effects may also be factors here. 

Ultimately, transport of a continuous proton magnetization by spin diffusion is a simple 

way to parameterize the very complicated spin exchange dynamics of protons in solids. By 

the parameterization of Eq. (4.3), the exchange dynamics during hole filling are such that 

diffusion genuinely appears to slow down as the sub-nanometer length scale is reached.  

Conversely, the difference between the diffusion coefficients we determine and the 

“macroscopic” proton spin diffusion coefficient, which we refer to as 𝐷𝐻
∞, should diminish as 

the size of the hole increases. By plotting our DH values against 𝜏𝑏
−1, a linear relationship 

emerges for all of our samples, as shown in Figure 4.4.  The intercept of the trendline 

corresponds to the bulk spin diffusivity 𝐷𝐻
∞, which is given the rightmost column of Table 4.1 

for the hydrated Ca3Al2O6 and Ca3SiO5 materials with different 17O enrichments. 
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FIGURE 4.4) Plots of macroscopic proton spin diffusion coefficients DH versus hole-burning 

intervals τb for hydrated Ca3Al2O6 and hydrated Ca3SiO5 with different extents of 17O 

enrichments obtained by extrapolation from finite hole burning intervals. 

 

We find that 𝐷𝐻
∞ is about twice the value of DH analyzed at the shortest hole-burning 

interval of 0.66 ms (2τR) for hydrated Ca3SiO5, and about 50% larger for the hydrated 

Ca3Al2O6 materials. The values and trendlines for both the 3% and 20% 17O-enriched 

Ca3Al2O6 samples cluster together; despite clear indications of hole merging at the 20% 

enrichment level (vide supra), they have not yet reached levels where the diffusion 

coefficients we analyze are significantly affected. It would seem that our model, Eq. (4.5), 

compensates for the effect of hole merging primarily through the M2 and Δt parameters. 
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Further research would indicate the concentration of hole-burning nuclei required to incur a 

significant error in apparent DH.  

The most significant source of uncertainty is a systematic one arising from the selection 

of R, which was defined by reasonable though somewhat arbitrary criteria. Instead of Eq. 

(4.1), the radius of natural dimensionality, 

𝑟nat = √𝑄𝜏𝑏
3

,   (4.6) 

could have been used. If we take 𝑅 = 𝑟nat instead of r0.5, then the diffusion coefficients we 

determine will be (𝑟nat/𝑟0.5)2 = 86.2% of those reported in Table 4.1.  On this basis, we are 

confident in our values of DH to a level of ±15%.  A better procedure may be to select fixed 

values of 𝑅 and ∆𝑡 by regression to the theoretical dephasing profile. We anticipate that this 

uncertainty could be reduced by investigating the performance of the pulse sequence under 

different homonuclear decoupling schemes (to change the scaling factor 𝜆𝑐𝑠) and faster sample 

rotation (to modulate spin diffusion).27-28 

 

4.4. Conclusions 

In summary, under quasi-static conditions such as the 3030 Hz magic-angle spinning used 

here, we determine the macroscopic proton spin diffusion coefficient should fall within 240 ± 

40 nm2/s for hydrated tricalcium aluminate and 140 ± 20 nm2/s for hydrated tricalcium silicate.  

Physically, this means that proton magnetization is transported across space faster in hydrated 

tricalcium aluminate than in hydrated tricalcium silicate. We determined these values by 

hydrating with 17O-enriched water, which introduces spin labels that can be used to burn holes 

in the 1H magnetization. The shape of the hole is well-described by dipolar dephasing 
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principles and establishes boundary conditions for the return of magnetization into the hole 

by 1H spin diffusion. The isotropic radial diffusion equation yields an approximate analytical 

solution to these boundary conditions, the validity of which is verified by our experimental 

measurements. The solution to the radial equation leads to an analytic expression for the 

recovery of magnetization in the hole which fits excellently to the experimental data. The 

model parameters determined by our analyses can be physically rationalized, including the 

positive correlation of the diffusion coefficient with the duration of hole burning. 

These are the first measurements of spin diffusivity in silicates.  Independent measurement 

of spin diffusivities allows the size of nanoscale domains to be determined with phase 

selectivity by, for example, magnetization relayed NMR methods.6, 11 For silicates, this would 

permit tracking the appearance, size, and depth of the various hydrated phases that gradually 

form, crystallize, or react across the induction, acceleration, and deceleration stages of 

tricalcium silicate hydration.29 Our results thus provide crucial parameters and methodology 

for future work investigating such hydration processes which are discussed in Chapter five of 

this manuscript. 

4.5. Materials, Methods, & Derivations 

Sample Information 

Anhydrous tricalcium aluminate (Ca3Al2O6, Mineral Research Processing, France) was 

hydrated with either 20.9% 17O-enriched water or 3.14% 17O-enriched water for 24 h at 90 

°C, with a water-to-solids ratio of 1.00 ± 0.05. Anhydrous monoclinic tricalcium silicate 

(Ca3SiO5, Mineral Research Processing, France) was hydrated with 5.23% 17O-enriched water 

for 50 d at 25 °C, with a water-to-solids ratio of 0.50 ± 0.05. The batches of 3.14% and 5.23% 
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17O-enriched water were made by dilution of the 20.9% 17O-enriched water with ordinary 

distilled water in a polyethylene vial; actual 17O concentration was determined by mass 

measurements. Hydration was initiated by vortex mixing ~200 mg of the dry solid the vial 

containing partially 17O-enriched water for 2 min and sealing the mixture under ambient 

atmosphere. After hydration, the samples were submerged in liquid N2 and lyophilized for 24 

h at 0.10 Torr and -40 °C to quench the hydration process and remove unreacted bulk or 

weakly adsorbed water. This workup method is not expected to influence the structure of the 

hydrated solids in any significant way.30 Upon hydration, Ca3SiO5, is known to form mixtures 

of poorly-ordered calcium silicate hydrates and Ca(OH)2.
31 Hydration of Ca3Al2O6 in the 

absence of sulfates results in the formation of crystalline katoite, Ca3Al2(OH)12, which is 

comprised of Al(VI) species as indicated by its 27Al shift shown in Fig. 4.5. The density of 1H 

nuclei estimated from bulk densities and stoichiometry is generally between 15 M and 30 M 

for fully hydrated silicates and 88 M for katoite.32 
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FIGURE 4.5) (A) Powder X-ray diffraction patterns with reflections indexed to Ca3Al2O6 

(orange) and Ca3Al2(OH)12 respectively. (B) Quantitative 27Al solid-state NMR (18.8 T, 16 

kHz MAS, 25 °C) of hydrated tricalcium aluminate indicating ~94% conversion to 

Ca3Al2(OH)12. 

 

NMR Parameters 

Hole burning experiments were performed on a Bruker 900 US2 wide-bore Avance Neo 

NMR spectrometer operating at 21.14 T, equipped with an HXY 3.2 mm DNP probe operating 

in 1H/17O double-resonance mode. Samples were restricted to the central third of a rotor with 

inner diameter of 2.2 mm in order to maximize rf homogeneity.  

To measure spin diffusion coefficients the sequence shown in Figure 4.2 was used. All 

experiments were run at a rotational frequency of 3030 Hz. BR24 was coded into a decoupling 

program (CPD) to ensure synchronization with the REDOR block, such that the cycle time of 
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the decoupling was calculated to fit an integer number of full cycles inside the window 

permitted by the REDOR cycles. During BR24, the 1H rf amplitude was 156.25 kHz (90° 

pulse length of 1.6 µs, transmitter power near 300 W) and the length of the decoupling cycle 

(τc) was near 82 µs. The spin diffusion coefficients were measured using REDOR dephasing 

periods of 2, 4, 8 and 16 τR (corresponding to 0.66, 1.32, 2.64 and 5.28 ms), and hole filling 

interval τf up to 1.44 ms. For each REDOR dephasing time, sixteen reference spectra with τf 

of 1.44 ms (repeated to increase certainty of the recovery limit intensity) and without REDOR 

dephasing were acquired and used to normalize the intensities to a scale of relative 

magnetization. The transfer of the magnetization from 1H to 17O was done using LG-CP with 

a contact time of 10 µs in order to minimize spin diffusion and ensure the transfer is local, 

permitting the approximation that the signal observed corresponds to the center of the hole. 

Immediately prior to this, the 1H magnetization was placed along the effective field with a 35° 

pulse (skinny black bar labelled τc in Figure 4.2). The sensitivity of the 17O acquisition was 

improved by echo train acquisition using CPMG implementing central transition selective 

refocusing pulses. Twenty echoes, truncated to maximize sensitivity at the expense of 

resolution33 were acquired with an echo shift of one rotor period. For experiments at hole 

burning periods of 2, 4, 8 and 16 τR, the following respective number of scans were collected:  

20%-enriched hydrated Ca3Al2O6 = 4, 8, 16, 40 scans 

3%-enriched hydrated Ca3Al2O6 = 16, 32, 64, 512 scans 

5%-enriched hydrated Ca3SiO5 = 256, 512, 768, 1536 scans 

Reconstruction of CPMG data involved a matching procedure which exploited the sampling 

synchronicity of the windowed acquisition. The echo train was cut and appended as a function 

of echo count k. The amplitude of each data point comprising the kth echo by the filter 

function, 

𝐿(𝜏𝑘) = exp (−(𝜏𝑘/T)𝛽),   (4.7) 

where τk is the time after excitation for the kth echo top and the parameters T = 5 ms and β = 

0.77 match the decay of the CPMG envelope. The L(τk) apodized echo dimension is summed 

out leaving the signal of an echo with a significant sensitivity enhancement. Processing of the 

reconstructed signal continued with partial integration of the 17O line shape over the most 



 

121 

 

intense points. No zero filling was used in this process. The resulting intensities were left as a 

function of normalized to noise. All spectral processing was carried out using the macOS 

application RMN, versions 1.8.4 or 1.8.6.5.34 

Analysis of high-resolution 17O spectra 

The high-resolution 17O spectra of the hydrated tricalcium aluminate samples are 

shown in Figure 4.6. These spectra are typical of the MAS NMR powder pattern of a single 

17O site broadened by the second-order quadrupolar interaction. The spectra exhibit well-

defined shoulders and sharp singularities, confirming the hydrated tricalcium aluminate phase 

corresponds to crystalline katoite, Ca3Al2(OH)12. 

 

FIGURE 4.6) Direct excitation 17O spectra at 21.14 T, 95 K, and 12.5 kHz MAS of (A) 

Ca3Al2O6 (20%) with 128 scans, 5 s recycle delay, (B) Ca3Al2O6 (3%) with 1024 scans, 2 s 

recycle delay. Proton decoupling with SPINAL64 and an rf amplitude of 125 kHz was applied 

during acquisition. Approximate frequency referencing is given with respect to the 1H 

spectrum of the Ca3Al2O6 (20%) sample assuming its maximum is at 4 ppm (split between 

water and hydroxyl type signals). Asterisks indicate spinning sidebands. 

 



 

122 

 

The hydration of tricalcium silicate is more complicated than tricalcium aluminate 

since calcium hydroxide is formed as a coexisting phase using our method of hydration. The 

high-resolution 17O spectra of the hydrated tricalcium silicate sample is shown in Figure 4.7. 

This spectrum is dominated by broad features which were assigned to different C-S-H oxygen 

environments by Cong and Kirkpatrick,35 between 100 and 130 ppm (silicate nonbridging 

oxygens), 30 ppm and 80 ppm (Ca-OH moieties and silicate bridging oxygens), and a low 

intensity tail going down to about -40 ppm (silanols and bound water). In addition to these 

broad features, the appearance of modest singularities at 44 ppm and 62 ppm correspond to 

17O in the secondary phase, crystalline Ca(OH)2. We quantify the fraction of 17O in each phase 

by modeling the shift distribution of the environments of 17O in C-S-H as three separate 

normal distributions, roughly corresponding to the regions described above. Fitting to a 

normal distribution is expected to be an adequate approximation for the C-S-H environments 

because the high magnetic field at which the measurements were performed reduces the 

skewedness of the line shape induced by the second- order quadrupolar interaction while at 

the same time amplifies the Gaussian broadening due to chemical shift disorder. The shift 

distribution of 17O in Ca(OH)2 is modeled as MAS NMR powder pattern of a single 17O site 

broadened by the second-order quadrupolar interaction. This powder pattern was calculated 

using Cq = 7.0 MHz, ηq = 0, and an isotropic chemical shift of δiso= 74 ppm, in line with 

previously reported values.35 This fixes the shape and frequency distribution of the Ca(OH)2 

signal, with only the amplitude allowed to vary. The shift, width, and amplitude of the normal 

distributions were allowed to vary freely. The result of the fit is shown as the decomposition 

shown in Figure 4.7. We see that Ca(OH)2 is a minor constituent, with 18% of the total 17O 
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present in this phase, leaving 82% present in the C-S-H. The residuals shown in Figure 4.7 

appear as noise, improving the confidence in our parameterization. 

 

 

FIGURE 4.7) Quantitative decomposition of the high-resolution 17O direct excitation MAS 

NMR spectrum of Ca3SiO5 (5%) (top, black) into three Gaussian components (center, black) 

and a second-order quadrupole powder pattern (center, green). The former represents the 17O 

environments in the poorly ordered calcium silicate hydrate phase whereas the latter 

corresponds to the spectrum of a coexisting crystalline Ca(OH)2 phase. The residuals (bottom) 

are the difference between the experimental spectrum and the sum of the calculated 

components (top, gray). The contribution of each component to the total area of the calculated 

spectrum is given in percent next to the corresponding oxygen species (NBO – silicate non-

bridging oxygen; BO – silicate bridging oxygen). Spectrum was acquired with 512 scans, 10 

s recycle delay at 21.14 T, 95 K, and 12.5 kHz MAS. Proton decoupling with SPINAL64 and 

an rf amplitude of 125 kHz was applied during acquisition. Approximate frequency 

referencing is given with respect to the 1H spectrum of the Ca3Al2O6 (20%) sample by 

assuming its maximum is at 5 ppm. 
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Data Reproducibility 

Owing to the high rf duty cycle of the hole burning pulse sequence (see Figure 4.2), 

we occasionally observed bizarre behavior from circuit detuning in which the signal response 

of a repeating hole burning experiment would become erratic and/or diminish when the hole 

burning period exceeded 8τR. This is illustrated in Figure 4.8 for repeated experiments at the 

shortest BR24 cycle time we could achieve that was commensurate with the 330 µs rotor 

period: τc ≈ 66 µs (giving τc/τR ≈ 5). 

 

Figure 4.8) Reconstruction of (truncated) 17O CPMG intensities for repeated hole burning 

experiments to test reproducibility. Horizontal axis is frequency and the span of each spectrum 

is constant. The first iteration of the experiment begins with the spectrum on the left. 

Sequentially to the right, each spectrum is the result of an identical hole burning experiment 

executed immediately following the preceding iteration. (A) Intensity profile of hole burning 

experiments at τb = 8τR (2.64 ms) and τc ≈ 66 µs. The intensities of subsequent iterations are 

constant to within noise and the experiment is reproducible. (B) Intensity profile of hole 

burning experiments at a slightly longer τb = 12τR (3.96 ms) and the same τc ≈ 66 µs. The 

intensities of subsequent iterations diminish and reproducibility is lost. 
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For τb > 8τR and τc ≈ 66 μs it would often take minutes for the circuit to recover. 

Reproducibility was greatly improved by using a longer BR24 cycle time τc ≈ 82 μs (τc/τR ≈ 

4) in which the decoupling pulse lengths and powers were unchanged but longer delays were 

incorporated into each decoupling period, thus reducing the duty cycle. The experiment we 

analyze for diffusion coefficients use the longer τc ≈ 82 μs. No drop in decoupling efficiency 

relative to 𝜏c ≈ 66 μs was apparent. 

 

Data Analysis 

 

Data fitting was carried out using scripts written for gnuplot. The fit to Eq. (4.5) in 

Section 4.3 was carried out in a multibranch fashion, fitting branches for each sample and at 

hole burning periods of 2, 4, 8 and 16 τR simultaneously. Specific constraints were as follows: 

 

Constraints across entire fit: 

T1 = 11.713127 ms (determined from Eq. (4.5)  fit to the Ca3Al2O6 (20%) branch) 

M1 = 0 

M2 = 1 (for 5% Ca3SiO5 only, due to poorer SNR resulting from greater 17O dilution) 

R (2τR) = 0.1722 nm (constant used to return DH from the characteristic diffusion time) 

R (4τR) = 0.2170 nm 

R (8τR) = 0.2734 nm 

R (16τR) = 0.3444 nm 
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Fit but constrained to be equal across sample branches: 

Advancement parameters Δt (property of hole burning; should be sample independent) 

Free parameters for each sample and 𝜏b: 

M2 (except for Ca3SiO5 (5%) as noted above) 

DH 

The results are given in the following table. We suggest that the fit errors reported in the table, 

insofar as they reflect upon uncertainty in the extrapolated “macroscopic” values of DH, are 

unimportant in comparison to the uncertainty in the selection of R. 

 

Fitted data: 

Table 4.2) Complete table of parameters determined by fitting the hole burning data to Eq. 

(4.5) of the main text, subject to the constraints described in this section. Error ranges 

corresponds to asymptotic standard errors reported by the goodness of fit routine. 

 

Plots in the manner of the main text Figure 4.3 for all samples, and which includes the data 

for the hole burning interval τb = 5.28 ms (16τR), are plotted below as Figure 4.9. 
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FIGURE 4.9) Temporal profiles of experiment hole filling recovery intensities, normalized 

to an experiment without REDOR pulses, for (A) Ca3Al2O6 (20%), (B) Ca3Al2O6 (3%), (C) 

Ca3SiO5 (5%). Initial radial magnetization profiles in the model context are given in panels 

B, D, and F, respectively for each sample. 
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For reasons discussed above, we excluded the 16τR data from our primary discussion. 

This data (at the lower duty cycle τc/τR ≈ 4) does not seem internally inconsistent, however, 

and should perhaps be included. We find that our results are not significantly affected if we 

include the 16τR data in the extrapolation to infinite hole burning period, as shown in Figure 

4.10 and Table 4.3. The consistently and anomalously high DH we analyze in the 16τR data, if 

legitimate, could indicate a transition to a regime where diffusion adopts a different character, 

perhaps due to the diminishing importance of nondiffusive spin dynamics or diffusion 

anisotropy at the larger hole sizes. 

 

FIGURE 4.10) Determination of the macroscopic proton spin diffusion coefficients 𝐷𝐻
∞ by 

extrapolation from finite hole burning intervals, including the parameters determined by 

analysis of the 16τR data. The data points and error bars correspond to the parameters given 

in Table 4.2. 
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Table 4.3) Comparison of the macroscopic proton spin diffusion coefficients, 𝐷𝐻
∞ between 

analyses which include and exclude the 16τR data. 

 

 
 

Hole Overlap 

In our model the M2 coefficient can be physically interpreted in terms of hole overlap 

and the concentration of 17O nuclei in the samples, according to 

𝑀2 = (1 − C𝑆Vℎ𝑜𝑙𝑒) + 𝑀∆,   (4.8) 

Here, CS is the number concentration of 17O spins in the sample, 𝑉hole is the effective volume 

of a polarization hole due to dephasing, and 𝑀∆ is defined as the excess fraction of unburned 

polarization. The quantity (1 − CS𝑉hole) is the residual magnetization assuming all holes burn 

to the maximum extent of their capability, which is the case when holes do not overlap. We 

therefore expect 𝑀∆ > 0 as shared hole volume permits an excess of unburned magnetization. 

In the limit of infinite 17O dilution, and as hole volume shrinks, we expect 𝑀∆ → 0.  

 

The parameter CS can be calculated assuming the bulk density of katoite, 2.76 g/cm3, the 

hydrated stoichiometry Ca3Al2O6(H2O)6, and completeness of oxygen exchange between 

water and tricalcium aluminate. These assumptions lead to an estimated 17O enrichment of 

14.9% and 2.2% along with CS values of 7.87 nuclei/nm3 and 1.18 nuclei/nm3 for the 
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nominally Ca3Al2O6 (20%) and Ca3Al2O6 (3%) samples, respectively. 𝑉hole is calculated 

assuming the effective radius of the spherical hole is determined by 𝑟0.5. 

 

In Fig 4.11, experimentally derived values of the M2 coefficient are plotted against r0.5. The 

difference between the solid lines and the experimental data points is 𝑀∆. For the Ca3Al2O6 

(3%) sample, we see that M2 coefficients cluster around the solid line, suggesting that hole 

overlap is not significant at this 17O concentration. For the Ca3Al2O6 (20%) sample, however, 

we observe substantially nonzero values of 𝑀∆, especially at τb = 8τR, when the hole volume 

is 0.086 nm3. This is consistent with our expectation that higher 17O concentrations and larger 

hole volumes lead to more significant hole overlap. 

 

FIGURE 4.11) (A) Values of the M2 coefficient versus hole size (r0.5) for the 3%-enriched 

(purple) and 20%-enriched (green) hydrated Ca3Al2O6. The solid lines are graphs of (1 − 

CS𝑉hole), presenting a lower bound on M2. Dashed vertical lines correspond to 𝑀∆. (B) Excess 

fraction of unburned polarization, 𝑀∆, for the two samples, plotted against the duration of hole 

burning. Filled and unfilled diamonds correspond to using r0.5 and rnat, respectively, to 

approximate the size of the hole. The solid (r0.5) and dashed (rnat) lines serve only to guide the 

eye. 
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The excess fraction of unburned polarization we calculate also depends on the 

accuracy of the effective hole volume, 𝑉hole. In Fig. 4.11B, we plot 𝑀∆  for two sets of 

estimates for 𝑉hole, one based upon 𝑟0.5 and the other 𝑟nat. The smaller hole size, 𝑟nat, leads to 

smaller predicted values of 𝑀∆. These results are summarized in Table 4.4 below. 

Table 4.4) Numerical values of 𝑀∆ for the hydrated tricalcium aluminate samples, calculated 

for two sets of effective hole radii and three different hole burning intervals. Estimated 2𝜎 

uncertainties for the 𝑀∆ are ±3%. 

 

 

General solution of the radial diffusion equation for the spherical well 

We are solving the three-dimensional isotropic diffusion equation, Eq. (4.3) in Section 4.2, 

 

with 𝑀 ≡ 𝑀(𝑟, 𝜃,𝜙, 𝑡), and the diffusion coefficient 𝐷, for the initial value problem, 

 

and 𝑀 is independent of 𝜃 and 𝜙. Eq. (4.3) can be transformed into the homogenous Helmholtz 

equation, 
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where 𝑔 ≡ 𝑔(𝑟, 𝜃,𝜙), is stripped of its time-dependence by its relation to the “normal modes” 

 

indexed by the eigenvalue 𝑘, which has units of inverse length. The solutions to the 

homogeneous Helmholtz equation for cases of spherical symmetry are given by the spherical 

wave solutions 𝑔k(r) = 𝑒-ikr/𝑟. From this we have the general solution, 

 

The combination of modes which solves the initial value problem is given by the function 

𝐴(𝑘). There is no need to solve for 𝐴(𝑘) in terms of 𝑘, as the above equation can be transformed 

into, 

 

by use of the convolution theorem of Fourier transforms and application of the boundary 

conditions. The integral in this expression can be evaluated to yield the analytic solution, 

 

from which, upon taking the limit as 𝑟 → 0, we obtain Eq. (4.4) in Section 4.2.  
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Chapter V.  

Compositions and thicknesses of surface hydration 

layers on tricalcium silicate particles 

N. Prisco; R. Sangodkar; T. Farmer; B. Walder; L. Emsley; M. Doherty; T. Ley; G. 

Scherer; B. Chmelka. To be submitted to Langmuir. 

5.1. Abstract 

The dimensions of particles, domains, and surface layers strongly influence overall 

material properties, for example, during the hydration and solidification of cementitious 

silicate-water mixtures, which enable their widespread applications. Hydration of 

cementitious silicate particles is initiated at surfaces in contact with water and proceeds over 

different timescales which are commonly described as distinct kinetic stages (e.g., induction, 

acceleration, deceleration). Despite several decades of detailed investigation, the 

transformations occurring at the liquid-solid interface during early times (ca. hours) have 

remained elusive. Characterization of these hydrated near-surface silicates is challenging due 

to the poor long-range order of cement hydrates and the exceedingly dilute quantities of 

hydration products formed at early times. Here, dynamic nuclear polarization (DNP) surface-

enhanced NMR analyses enable the simultaneous measurement of the molecular-level 

compositions and meso-scale dimensions of hydrated surface domains and offer new insights 

into the origins of the induction period. Such transformations occurring at the silicate particle 

surface are important to understand as they are thought to influence silicate dissolution, 
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hydration, and subsequent strength development. The results demonstrate the use of non-

equilibrium NMR spin polarization transfer to assess the compositions of complicated 

multicomponent materials over challenging ca. <1 nm to 100 nm length scales which may be 

inaccessible by other means. These analyses suggest that silicate particle surfaces initially 

form a thin layer of disordered hydrates (<10 nm) upon contact with water that continue to 

evolve over the course of the induction period until relatively ordered calcium silicate hydrates 

are observed. 

5.2. Introduction 

Dimensions of particles and surface layers are often central to the development of diverse 

physicochemical properties in a variety of systems, including solid catalysts, semiconductors, 

structural materials, and batteries. For example, large differences in the optical and electronic 

properties of semiconducting nanoparticles result for small differences in the shapes and sizes 

of individual nanoparticles, and also their assemblies into one-, two- or three-dimensional 

domains.1 Similarly, the initial formation and subsequent growth of dendrite layers on the 

surfaces of electrodes in lithium ion batteries severely limits the performance and safety of 

such devices.2 The particle sizes and formation of surface passivation layers (e.g., coke, 

oxides) on solid catalysts strongly influence the accessibility of chemical species to active 

sites, which consequently affects catalyst activities and selectivities.3,4 The mechanical 

properties of alloys and composites are also directly correlated to the sizes of individual 

particles and intra-particle domains of the component species.5 Similar influences of particle 

size and thickness of surface layers are important in cement hydration, which is initiated at 

particle surfaces in contact with water.6 However, the thicknesses of layers in these systems, 
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especially hydrating cementitious materials, are exceedingly challenging to establish due to 

the difficulties associated with measuring length scales of ca. 10’s nm in heterogeneous 

particulate systems. 

Upon contact with water, tricalcium silicate (Ca3SiO5), the primary constituent of Portland 

cement ~50 – 70 wt%, undergoes rapid dissolution over the first <5-10 minutes releasing Ca 

and Si into solution at concentrations up to ~20 mmol/L and ~20 to 100 µmol/L respectively.7–

9 This is typically followed by a latent period of 2 – 4 hours where little further hydration, 

dissolution, or precipitation is observed.6,10–12 The origins of this induction period remain of 

high technological and fundamental interest since it represents the initial period over which 

cement can be transported and poured. Importantly, the increased use of supplementary 

cementitious materials (SCM’s) and additives (i.e., superplasticizers) are desirable to mitigate 

the environmental impact of concrete and improve its mechanical properties, however their 

presence in hydrating cementitious mixtures can have a complex influence on silicate 

hydration chemistry and kinetics.13 The two main theories which have been proposed to 

explain the induction period are the passivation layer hypothesis14,15 and dissolution 

control16,17. Both models can phenomenologically reproduce early hydration kinetics, 

however, have important mechanistic distinctions that may influence admixture design 

criteria12. Dissolution control models suggest that at high undersaturation (i.e., in deionized 

water) rapid dissolution of Ca3SiO5 forms etch pits which, after reaching a point of low 

undersaturation, gradually release ions into solution to form calcium silicate hydrate 

nucleation seeds17. However, a key distinction between the dissolution of Ca3SiO5 and other 

minerals (i.e., dolomite) which appear to conform to similar models18, is the high chemical 

reactivity of anhydrous Ca3SiO5 with water as quantitatively discussed by Gartner15. Thus, 
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application of dissolution control theories for cementitious systems typically require that the 

solubility of Ca3SiO5 in water is modified by surface hydroxylation13,19,20 or adsorption of 

ionic species12. Consensus has been reached that initial Si concentrations drop off rapidly after 

the initial dissolution, consistent with either the formation of calcium silicate hydrate seeds or 

the precipitation of an intermediate calcium silicate hydrate surface layer.12 Previous solid-

state nuclear magnetic resonance (NMR)21,22 and X-ray photoelectric spectroscopy (XPS)23 

analyses have indicated that these early hydrates have different compositions than the semi-

crystalline calcium silicate hydrates that form post-induction period, but conventional NMR 

and XPS techniques are challenged by poor sensitivity or poor resolution, respectively. In 

hydrating cementitious mixtures, the presence of additive species including calcium silicate 

hydrate seeds24, inorganic salts (i.e., CaCl2)
11, or organic molecules (i.e., sucrose)25 can have 

profound influences on the length of the induction period and on silicate hydration chemistry 

which remains challenging to elucidate.26 Improved understanding of the molecular-level 

transformations occurring at hydrating Ca3SiO5 particle surfaces is needed to inform 

admixture design and to predict hydration rates in modern low CO2 footprint cement 

formulations.   

Although particle sizes or film thicknesses are conventionally measured by using 

scattering analyses or electron microscopy,27,28 these methods are typically incapable of 

measuring length scales ca. <1 to 10’s nm in heterogeneous particulate systems. These 

challenges are additionally exacerbated for cementitious solids due to their lack long-range 

order, low-particle surface areas, and poor contrast between hydrated and non-hydrated 

silicates. Recently, combined X-ray computed tomography and XRF elemental analysis has 

been used to monitor changes occurring among Ca3SiO5 particles upon hydration.29 These 
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techniques can resolve physical features including changes in particle boundaries or density, 

but, with a pixel size exceeding 50 nm, they provide limited insights into atomic-level 

transformations occurring at surfaces in contact with water. By comparison, a reaction front 

comprised of hydration products with dimensions of ca. 10 nm has been observed by STEM 

imaging of Ca3SiO5 particles hydrated for 4 h, shortly after the end of the induction period.30 

However, any chemical transformations or morphological changes that may occur at Ca3SiO5 

particle surfaces at the earliest hydration times ≤ 2.5 h remain challenging to elucidate. 

Compared to conventional methods for measuring film thicknesses, solid-state NMR 

spectroscopy allows chemically distinct species to be identified and distinguished based on 

relative differences in the respective local (<1 nm) environments and relaxation behaviors of 

constituent NMR-active nuclear spins (e.g., 1H, 13C, 29Si). Particle and domain sizes have 

previously been measured by using NMR experiments that rely on the transfer of polarization 

by the process of 1H-1H nuclear spin diffusion between 1H moieties interacting via through-

space dipole-dipole couplings.31–33 Such measurements initially generate a non-equilibrium 

1H spin polarization and subsequently monitor the re-equilibration of the spin polarization, 

which can be modeled to estimate the dimensions of domains, for example, in complicated 

multicomponent polymer systems that lack long-range structural order.34 However, 

preparation and detection of a 1H spin polarization gradient within thin hydrated silicate 

surface layers formed on Ca3SiO5 particles is infeasible by conventional NMR techniques. 

Recently developed dynamic nuclear polarization (DNP)-enhanced solid-state NMR 

techniques afford significantly enhanced signal sensitivity,35,36 enabling the detection of dilute 

species at particle surfaces. Although conventional NMR is a bulk characterization technique 

that does not provide direct insights regarding the spatial distributions of components, DNP-
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NMR experiments can be used to measure characteristic domain sizes ranging from <1 nm to 

µm’s in ordered or disordered solids. In such measurements, solid particles are suspended in 

a frozen glassy solvent matrix (i.e., glycerol/water) containing dilute amounts of a stable 

biradical polarizing agent as depicted in Figure 5.1. A high non-equilibrium 1H spin 

polarization (hereafter referred to as hyperpolarization) is locally generated by microwave 

excitation of unpaired electrons contained within the biradical polarizing agent. DNP induced 

polarization transfer increases the net 1H nuclear magnetization, the origin of NMR signal 

intensity, by a factor up to γe/γH = 658 over thermal equilibrium. Once generated, 1H 

hyperpolarization then propagates by 1H-1H spin diffusion into hydrated particle surfaces to 

distances ranging from <1 nm to 100’s nm where it is attenuated over time by thermally driven 

spin-lattice relaxation. This generates a large NMR signal enhancement and transient response 

within the hydrated surface layer but not the anhydrous Ca3SiO5 core which is largely 1H 

deficient and, thus, does not receive 1H hyperpolarization. Specifically, the transfer, 

accumulation, and attenuation of 1H hyperpolarization can be monitored by NMR experiment 

and subsequently modeled by classical spin thermodynamic analyses to measure a mean film 

thickness. This kinetic process is closely analogous to thermal energy transfer and may be 

regarded as a ‘spin calorimetry’ experiment where Zeeman energy (spin polarization) is 

generated with the frozen solvent matrix (the source) and is transferred to the hydrated surface 

layer (the sink). Such combined DNP NMR measurements and modeling analyses have been 

previously used to estimate sub-micron particle or domain sizes in peptide nanocrystals,37 

microcrystalline solids,38 and pharmaceutical formulations.39 Overall, the solid-state DNP 

NMR measurements can be used to generate an initial non-equilibrium 1H polarization and 
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subsequently monitor the dynamics of polarization transfer and depletion in the sample, which 

provides insights on the dimensions of particles, layers, or domains. 

 

FIGURE 5.1) Schematic diagram of hydrated tricalcium silicate particles suspended in a 

partially deuterated frozen glycerol/water matrix at 100 K. Inset depicts microwave irradiation 

of the DNP polarizing agent, AMUPol, which has two unpaired electrons, e1 and e2. Cross-

effect DNP transfers hyperpolarization to nearby 1H nuclei (magenta), which is subsequently 

relayed into the hydration layer by 1H-1H spin diffusion (dashed blue arrow). The solid blue 

arrow depicts the direction of, MH, the net nuclear magnetization vector.  
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Such analyses are especially important to establish the thicknesses and compositions of 

the hydrated layers at surfaces of tricalcium silicate particles, which have important effects on 

the progress of silicate dissolution and hydration. For tricalcium silicate, the principal 

component of commercial cements, anhydrous Q0 silicate species at surfaces of particles with 

low (≤1-2 m2/g) mean surface areas react with water to form monomeric silanol Q0(h) that 

subsequently yield partially cross-linked Q1 and Q2 species, the latter of which are associated 

with calcium silicate hydrates. (Qn refers to silicon atoms that are covalently connected via 

bridging oxygen atoms to n ≤ 4 other silicon atoms.40) The calcium silicate hydrates have poor 

long-range structural order41,42 that typically presents challenges for their characterization43, 

but which are nevertheless crucial to understand as they are central to the development of 

mechanical strength in cements. In contrast to the anhydrous Q0 species present in the core of 

the low-surface-area (<1 m2/g) particles, the silanol Q0(h) and hydrated (Q1, Q2) species are 

formed at silicate particle surfaces in contact with water. For early hydration times (i.e., before 

onset of the acceleration stage of cement hydration),44 previous experimental and modeling 

studies of tricalcium silicate and related minerals have proposed the formation of a layer of 

hydration products at particle surfaces.10,18,23,45 It has been suggested that this early hydration 

layer acts as a reactive substrate for the nucleation of calcium silicate hydrates during the 

acceleration period.30 Alternatively, even for thin layers, the presence of surface hydroxylation 

or an intermediate hydration layer may stabilize interfacial energy and impede further 

tricalcium silicate dissolution after initial wetting.13 The importance of interfacial interactions 

on early hydration rates is evidenced by the marked influence that additive species can have 

on the length of the induction period. For example, at exceedingly dilute concentrations 

sucrose acts as a hydration accelerator, but, at roughly monolayer coverage, it is a strong 
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hydration retardant.46,47 The mechanism of action of other commonly used hydration 

accelerators, such as CaCl2, remains largely unknown. It is hypothesized that changes in 

atomic-level surface compositions, dimensions, and morphology of such layers in response to 

additive species strongly influence subsequent dissolution and hydration processes, which 

consequently affect the temporal evolution of mechanical properties in cements.  

Despite the importance of these hydration layers, it has been generally difficult to 

directly measure their mean thickness and molecular compositions, due to their poor long-

range structural order, dilute quantities on low-surface-area particles, and associated 

dimensions that are challenging to characterize. Nevertheless, here, monoclinic tricalcium 

silicate hydrated under industrially relevant conditions and formulations is examined using 

DNP-NMR experiments and spin thermodynamic modeling analyses to monitor and evaluate 

the transfer of DNP-enhanced 1H spin polarization in the hydrated surface layers. The large 

DNP sensitivity improvements enable the detection of dilute silicate hydrates formed on the 

surface of industrially relevant Ca3SiO5 particles during the induction period. Although 

hydration rates are initially slow, the surface of the particles undergo hydration forming a 

disordered layer consisting of Q0(h), Q1, and Q2 silicates with a characteristic domain size less 

than 10 nm determined by 1H-1H spin diffusion analyses. The surface compositions of 

Ca3SiO5 particles hydrated without additive species are compared with those formed under 

similar conditions in the presence of dilute additive species (i.e., CaCl2, sucrose) or treatments 

(i.e., thermal annealing) known to influence the duration of the induction period. These results 

provide new insights into the molecular compositions of surface hydrate layers which 

importantly influence hydration rates and mechanical strength development in the 

solidification of cementitious mixtures.        
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5.3. Materials and Methods 

Anhydrous monoclinic tricalcium silicate (Ca3SiO5, Mineral Research Processing, 

France), 1,1,2,2,-tetrachloroethane (C2H2Cl4, Sigma Aldrich), glycerol (Sigma Aldrich), 98 

%D d8-glycerol (Sigma Aldrich), and 99.9 %D D2O (Sigma Aldrich) were used as received. 

Hydrated samples were prepared by mixing approximately 400 mg of the anhydrous 

monoclinic tricalcium silicate and Milli-Q water (water-to-solids ratio = 0.45) in polyethylene 

containers by using a vortex mixer operating at 3000 rpm for 2 min. The samples were 

subsequently maintained at 25 °C and 100 % relative humidity for times ranging from 30 min 

to 8 h, which correspond to hydration conditions and compositions that are similar to those in 

industrially relevant cement formulations. Following hydration, the pastes were solvent 

exchanged twice using 50 mL isopropyl alcohol (IPA) and were vacuum-dried at 0.1 bar and 

40 ºC to remove the organic solvent. Solvent exchange by IPA has been previously shown to 

minimally influence cement microstructure and compositions.48 The vacuum-dried hydrated 

samples were ground to a powder, sealed in polyethylene containers, and stored at 0.1 bar and 

ambient temperature in a desiccator prior to subsequent analyses. 

Powder X-ray diffraction measurements were conducted on a Panalytical Empyrean 

powder X-ray diffractometer using Cu Kα radiation with a wavelength of 1.54 Å. Samples of 

anhydrous and hydrated tricalcium silicate were scanned at 0.04°/min between 2θ angles of 5 

- 70°. X-ray photoelectron spectroscopy (XPS) measurements were used to identify the 

elemental surface compositions of anhydrous and hydrated tricalcium silicate and were 

conducted on a Kratos Axis Ultra X-ray photoelectron spectroscopy system. High-resolution 

calcium (Ca 2p) and silicon (Si 2p) XPS spectra for anhydrous and hydrated tricalcium silicate 

were recorded between 377-358 and 92-113 eV, respectively, with a step size of 0.05 eV and 
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pass energy of 20 eV. BET surface area measurements (six point isotherm) were performed 

using a Micromeritics 3Flex Porosimeter nitrogen physisorption device with approximately 

200 mg solids. Prior to collecting nitrogen adsorption isotherms, the partially hydrated 

Ca3SiO5 specimen were degassed under dry flowing N2 at 80 °C for five hours. Solid-state 

29Si MAS NMR measurements were used to characterize the atomic structures and 

compositions of silicate species in tricalcium silicate. The experiments were conducted on an 

11.7 T Bruker AVANCE-II spectrometer operating at frequencies of 499.84 and 99.31 MHz 

for 1H and 29Si, respectively, and using a 4 mm H-X-Y triple resonance MAS probehead and 

zirconia rotors. One dimensional (1D) quantitative single-pulse 29Si MAS spectra were 

recorded with a 4 µs 29Si π/2 pulse, SPINAL-64 1H decoupling49 (2.5 µs 1H π/2 pulses), and a 

recycle delay of 500 s (~5 x 29Si spin-lattice relaxation time).47,50 The long recycle delays were 

crucial to ensure quantitativeness of the relative integrated 29Si intensities observed in the 29Si 

MAS spectrum and reflect the high degree of crystallinity of anhydrous tricalcium silicate. 

The 29Si isotropic chemical shifts were referenced to tetramethylsilane, using 

tetrakis(trimethylsilyl)silane as a secondary standard.51 

Solid-state dynamic-nuclear-polarization (DNP)-enhanced NMR measurements provide 

significantly enhanced signal sensitivity and enable the selective detection and analysis of 

hydrated species at silicate particle surfaces.35,36 For quantitative measurement of hydration 

layer thicknesses by DNP-NMR 1H-1H spin-diffusion analyses, samples were prepared with 

an aqueous solution containing 2 mM AMUPol (stable biradical species) in partially 

deuterated glycerol-water (97%D, 1H spin density of 3.5 M). For qualitative measurement of 

surface silicate compositions, samples were prepared using an organic solution containing 8 

mM TEKPol (stable biradical species)52 in 1,1,2,2-tetrachloroethane53. Each sample was 
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prepared  using 40 mg of the dried powder with ca. 10 µl of the DNP matrix as described 

previously47, and shuttled into the 100 K precooled DNP NMR probehead within 10 minutes 

after particle wetting. Solid-state DNP NMR measurements were conducted on a 9.4 T Bruker 

ASCEND NMR spectrometer operating at frequencies of 399.95 and 79.46 MHz for 1H and 

29Si, respectively, using a Bruker 3.2 mm H-X-Y variable temperature MAS probehead, and 

under conditions of 8 kHz MAS and 100 K. The spectrometer was equipped with a cooling 

cabinet and 263 GHz gyrotron microwave source and waveguide system.54 1D 13C- or 29Si-

detected 1H saturation recovery DNP NMR spectra were acquired without and with 

continuous microwave irradiation at 263 GHz, under otherwise identical conditions with 

SPINAL-64 1H decoupling and delay times (τD) in the range of 0.05-120 s, see pulse sequence 

in Figure 5.2. 

 

FIGURE 5.2) Schematic diagram of 13C- or 29Si-detected DNP CP-MAS saturation recovery 

experiment. 

 

Compared to the spectra acquired with microwaves, the spectra acquired without 

microwave irradiation were typically recorded with greater signal averaging due to the 

associated lower NMR signal sensitivity in the absence of DNP. The 13C{1H} or 29Si{1H} 

DNP signal enhancements ε(t) were estimated as the ratios of the 13C or 29Si signal intensity 
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in spectra acquired with microwaves to that without microwaves. The relaxation behaviors of 

the NMR-active 1H nuclei were measured by incrementing the time delay (τD) for seven values 

ranging from 10 µs to 50 s to ensure that the transient polarization build-up kinetics were 

adequately sampled and reached steady-state. The uncertainties associated with the steady-

state ε values were estimated by the propagation-of-error method by using the signal-to-noise 

ratios of the corresponding spectra acquired without and with continuous microwave 

irradiation. Steady-state analytical solutions to the spin thermodynamic models necessary for 

quantitative DNP NMR analyses are provided in the appendices. Alternatively, numerical 

finite-element analysis facilitated by Matlab pdepe solver was used to simulate the time-

dependent transfer, attenuation, and accumulation of hyperpolarization in the hydrated surface 

layers. 

5.4.  Long-range and local structures of hydrating silicate particles 

The reaction of tricalcium silicate with water at early hydration times results in the 

formation of dilute quantities of hydration products at particle surfaces. Monoclinic tricalcium 

silicate is the primary (50-70 wt%)55 component of commercial cement mixtures and is 

therefore a representative example to measure and elucidate the compositions and mean 

thickness of layers of hydration products formed at particle surfaces. Complementary X-ray 

diffraction, X-ray photoelectron spectroscopy, BET nitrogen sorption, in-situ calorimetry, and 

solid-state NMR spectroscopy measurements were used to probe the bulk and surface of 

tricalcium silicate particles hydrated for short times (30 min to 8 h). For example, the 

hydration of Ca3SiO5 is exothermic and can be monitored by in-situ calorimetry as shown in 

Figure 5.3a.  In the calorimetry curve, there is an initial heat release attributed to particle 
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wetting and rapid dissolution, followed by an induction period lasting approximately 2.5 h 

characterized by a period of low heat evolution. Additionally, the BET surface area of partially 

hydrated Ca3SiO5 particles shown in Figure 5.3b. remains relatively constant at ~1.2 m2/g 

over the course of the induction period.  

 

FIGURE 5.3) Bulk analysis of early hydration (<10 h) including (a) in situ calorimetry of 

monoclinic Ca3SiO5 at w/s = 0.40 and 25 °C, (b) BET surface area of vacuum-dried 

monoclinic Ca3SiO5 hydrated at w/s = 0.45 and 25 °C as described in the methods section. 

Calorimetry is used to identify the (I) induction and (II) acceleration period, respectively. 

 

This is consistent with previous studies of the early hydration of Ca3SiO5 by electron 

microscopy which indicate that the surface remains relatively ‘smooth’ or morphologically 

unaltered during the induction period.30 Regardless of the mechanistic origin of the induction 

period, the onset of the acceleration period corresponds to an increase in particle surface areas 
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leading to greater nucleation rates and renewed dissolution12. This is observed in Figure 5.3a-

b., after 2.5 h, there is an increase both in heat evolution and the BET surface area that may 

be attributed to the roughening of particle surfaces and nucleation of calcium silicate hydrates 

as schematically depicted in the inset. Based on previous studies of early cement pastes, it is 

expected that the surface area will reach a maximum and decline as the calcium silicate 

hydrate gel network densifies. These later hydration processes are comparatively well 

understood and are discussed in more detail elsewhere.6 However, as discussed above, insights 

into the origins of the induction period are lacking due to the inability of conventional 

characterization techniques to resolve dilute silicate hydrates formed on low-surface area 

Ca3SiO5 particles. 

For example, the powder X-ray diffraction patterns of anhydrous and hydrated (4 h, 

25 °C) tricalcium silicate shown in Figure 5.4a,d exhibit multiple strong reflections, which 

are indexable to the monoclinic polymorph of anhydrous tricalcium silicate, as shown by the 

red markers.56 In addition, the patterns display no detectable reflections from calcium silicate 

hydrates and calcium hydroxide, which are the primary products of silicate hydration. This 

indicates that such hydrated species exhibit poor long-range structural order and/or are 

associated with crystalline domain (particle) sizes that are below the detection limits of the 

diffraction measurements. Specifically, the former is consistent with the typically broad and 

weak reflections from calcium silicate hydrates that have previously been observed in 

scattering measurements, even for high-energy synchrotron X-rays.41,57 The diffraction 

analyses indicate that there are no detectable quantities of hydration products associated with 

long-range structural order. 
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In contrast to X-ray diffraction that is sensitive to repeating periodic order, X-ray 

photoelectron spectroscopy (XPS) measurements provide insights on the elemental 

compositions at particle surfaces. Specifically, such measurements can measure the binding 

energies of different atoms located up to a depth of 10 nm from the particle surface, including 

for hydrating tricalcium silicate. For example, the Calcium 2p high-resolution XPS spectra 

are shown in Figure 5.4b,e for anhydrous and hydrated tricalcium silicate, respectively. Each 

of the spectra exhibit peaks corresponding to identical (within ±0.1 eV) binding energies at 

347.0 and 350.6 eV from Calcium 2p3/2 and 2p1/2, respectively, which are assigned based on 

previous XPS analyses of similar hydrating silicates.21 Similarly, the Silicon 2p high-

resolution XPS spectra for the same anhydrous and hydrated (4 h, 25 °C) tricalcium silicate 

samples are shown in Figure 5.4c,f, each of which exhibit a single resolved peak at 101.7 eV.  

 

FIGURE 5.4) (a,d) Powder X-ray diffraction patterns, (b,e) Calcium (Ca) 2p and (c,f) Silicon 

(Si) 2p high-resolution XPS spectra of (a,b,c) anhydrous and (d,e,f) hydrated (4 h, 25 °C) 

tricalcium silicate. The reflections in (a,d) are indexable to the monoclinic polymorph of 

tricalcium silicate, as indicated by red markers. 
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In combination, the Calcium 2p and Silicon 2p XPS analyses indicate that there are no 

detectable differences between the surface calcium and silicon elemental compositions of the 

initial tricalcium silicate particles and those hydrated for 4 h at ambient temperature 

conditions. 

Compared to X-ray diffraction and XPS analyses, the silicate structures and 

compositions of the hydrated tricalcium silicate can be interrogated at the atomic-level by 

using solid-state NMR spectroscopy, which is sensitive to the local bonding environments 

around the NMR-active 29Si isotope. Specifically, solid-state 1D single-pulse 29Si MAS NMR 

measurements allow the different types of anhydrous and hydrated 29Si silicate species to be 

identified and quantified based on their resolved 29Si signal intensities. For example, the 

quantitative single-pulse 29Si MAS spectrum of anhydrous tricalcium silicate shown in Figure 

5.5a exhibits several broad overlapping 29Si signals in the range of -66 to -76 ppm that are 

associated with different anhydrous Q0 species,50,58 consistent with the eighteen chemically 

inequivalent crystallographic silicon sites in monoclinic tricalcium silicate.59 The broad 

linewidths of the 29Si signals reflect a distribution of local 29Si environments that arise from 

the eighteen different 29Si sites and also result from the presence of impurity ions (e.g., Mg2+, 

Sr3+), which are often used during high-temperature (>980 °C) synthesis of monoclinic 

tricalcium silicate to ensure its stability at ambient temperature and pressure conditions.55 

Similar 29Si NMR measurements of hydrated tricalcium silicate are used to identify the types 

of 29Si species formed as a result of hydration and establish their respective relative 

populations. Specifically, Figure 5.5b shows the quantitative single-pulse 29Si MAS spectrum 

of hydrated (4 h, 25 °C) tricalcium silicate that exhibits strong 29Si signals from anhydrous Q0 

silicate species, similar to those observed for anhydrous tricalcium silicate (Figure 5.5a). By 
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comparison, the spectrum reveals weak 29Si signals centered at -79 and -84 ppm from hydrated 

Q1 and Q2 species, respectively, in calcium silicate hydrates, which are the primary products 

of silicate hydration.60 The calcium silicate hydrates are composed of poorly ordered and 

partially cross-linked four-coordinate silicon moieties, as shown schematically in the inset of 

Figure 5.5a. Importantly, the relative populations of different 29Si species can be estimated by 

comparing the relative integrated intensities of their respective signals in the single-pulse 29Si 

MAS spectrum in Figure 5.5b.  

 

FIGURE 5.5) Solid-state quantitative 1D single-pulse 29Si MAS NMR spectra of (a) 

anhydrous and (b) hydrated (4 h, 25 °C) tricalcium silicate. The inset shows a schematic 

diagram of calcium-silicate-hydrates, along with the associated different partially cross-linked 

Q1 and Q2 four-coordinate 29Si moieties. The spectra were acquired at 11.7 T, 25 °C, 8 kHz 

MAS, and using a long (500 s) recycle delay between successive scans to ensure 

quantitativeness of the integrated signal intensities. 
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Such an analysis yields estimates of  95% (±2%), 3% (±2%), and 2% (±1%) for the anhydrous 

Q0, hydrated Q1, and hydrated Q2 species, which indicates that 5% (±3%) of the initially 

anhydrous Q0 species have transformed to form calcium silicate hydrates after hydration at 25 

°C for 4 h. The quantitative 29Si NMR analyses enable the detection and quantification of 

dilute relative fractions of hydration products that are formed upon hydration of silicate 

particles, even after short times, which are otherwise undetectable in the X-ray diffraction 

measurements due to their poor long-range order. 

5.5.  Dimensions of hydrated layers on silicate particles 

While the preceding 29Si NMR measurements provide insights on the atomic structures 

and bulk compositions of silicate particles at early hydration times, they require prohibitively 

long (~2 days) measurement times and provide limited insights regarding the compositions or 

spatial distributions of silicate species at particle surfaces. Nevertheless, solid-state dynamic-

nuclear-polarization (DNP)-enhanced MAS NMR techniques provide significantly enhanced 

signal sensitivity that enables the selective detection of dilute species, including those present 

at low-surface-area (<1-2 m2/g) silicate particles. For such experiments, powdered samples of 

hydrated tricalcium silicate were combined with minimal volumes of a solution of AMUPol 

(stable nitroxide biradical) in partially deuterated glycerol-water (the DNP-solvent matrix),53 

as discussed in the methods section. During the experiment, the dilute biradical polarizing 

agent is excited by high frequency (263 GHz) continuous microwave irradiation which 

generates large amounts of 1H spin hyperpolarization. This 1H hyperpolarization is then 

propagated by spontaneous 1H-1H spin diffusion to other 1H nuclei in proximate solvent 

molecules (i.e., 1H-containing glycerol or water), which serves as a reservoir for the 
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accumulation of DNP-enhanced 1H spin polarization. Partial deuteration of the glycerol-water 

matrix is desirable to minimize the attenuation of 1H hyperpolarization due to thermally driven 

spin-lattice relaxation processes. From this 1H-containing reservoir (the glycerol-water 

matrix), hyperpolarization is relayed to 1H nuclei present at the surface of the hydrated layer, 

including structural water and hydroxyl groups, and subsequently transferred deeper into the 

surface hydration products via 1H-1H spin diffusion, as shown by the dashed blue arrows in 

Figure 5.1. Importantly, 1H-1H spin diffusion only relays hyperpolarization into the hydration 

product layer that is abundant in 1H spins and not to the dense anhydrous interiors of the 

Ca3SiO5 particles, the latter of which is 1H deficient. The build-up of 1H hyperpolarization 

within the hydration layer is monitored by a 29Si-detected cross-polarization61 experiment that 

results in the dipolar mediated transfer of DNP-enhanced 1H polarization to nearby 29Si nuclei. 

Overall, DNP NMR techniques provide significantly enhanced signal sensitivity that enables 

the selective detection of dilute silicate hydrates formed on particle surfaces. From which, the 

transient accumulation of 1H hyperpolarization can be monitored and related, by quantitative 

1H-1H spin diffusion analyses, to estimate the thickness of the hydrated surface layers.  

Detailed information regarding the nanoscale thickness of the hydration layers can be 

extracted from DNP-NMR measurements using classical spin thermodynamic models that 

describe the generation, propagation, and dissipation of 1H hyperpolarization. This approach 

can be regarded as a ‘1H spin calorimetry’ experiment where the equilibration of 1H 

hyperpolarization between the DNP solvent matrix and hydration layer depend on spin 

thermodynamic properties that can be experimentally modulated to optimize both signal and 

temporal contrast. For a given DNP matrix formulation, the amount of energy generated by 

microwave excitation is a function of the 1H spin density and biradical concentration as 



 

155 

 

discussed in Chapter three. When the DNP matrix is in contact with a polarization sink (the 

hydration layer), the reservoir of 1H hyperpolarization in the source is depleted and this energy 

difference is taken up by the sink. Importantly, the effective penetration depth of 1H 

hyperpolarization into the hydration layer is represented by a characteristic diffusion length 

scale, L = (𝒟HT1)
1/2, with respect to the 1H-1H spin diffusion coefficient (𝒟H) and the spin-

lattice relaxation time (T1) of the hydrated layer. Recently, a value of 𝒟H = 1.2·10-16 m2s-1 has 

been directly measured for hydrated tricalcium silicate by means of a 17O hole-burning 

experiment.62 Under the low-temperature (100 K) conditions of this experiment, the hydration 

layer has a spin-lattice relaxation time,  T1 = 1.5 s, as independently measured by 1H saturation 

recovery measurements of the hydrated tricalcium silicate particles at 9.4 T and 8 kHz MAS. 

Together, these quantities yield a characteristic diffusion length scale, L = 13 nm, which is the 

distance into the hydration layer over which 1H hyperpolarization is significantly attenuated, 

beyond which NMR signal enhancements (ε) are diminished. In addition to the measured 

signal enhancements, there is a kinetic response in the relaxation behavior of 1H spins in the 

hydrated layer due to 1H hyperpolarization conduction from the DNP matrix. For the 

experiment, temporal contrast is enhanced, at the expense of signal sensitivity, by using low 

2 mM AMUPol concentrations such that the characteristic times of, TDNP = 27 s, for the DNP 

matrix and, T1 = 1.5 s, for the hydrated layer are substantially different. Importantly, the extent 

to which these media are influenced by coupled 1H-1H spin diffusion processes depends on 

their mutual propensities to conduct and receive spin polarization.  

For quantitative analyses of DNP-NMR experiments, classical spin thermodynamic 

models give a relationship between the Zeeman energy and polarization in a manner 

analogous to the relationship between thermal energy and temperature. The Zeeman energy 
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refers to the potential energy experienced by a spin ensemble in the presence of a static 

magnetic field, which maintains a Boltzmann distribution of spin states yielding net nuclear 

magnetization, the origin of NMR signal intensity. Microwave excitation of the biradical 

polarizing agent results in the transfer of Zeeman energy to nearby 1H nuclei generating large 

amounts of 1H hyperpolarization that propagates by 1H-1H spin diffusion which is 

subsequently attenuated back to thermal equilibrium by T1 relaxation processes. For 

hyperpolarization transfer between the DNP matrix (region ‘M’) and the hydration layer 

(region ‘S’), the process is analogous to energy conduction through a series of thermal 

resistances and can be treated similarly such that: 

 
𝜌H,𝑀𝐶z

𝜕𝑃̃𝑀

𝜕𝑡
= ∇ ∙ (𝜌H,𝑀𝐶z𝒟H,𝑀∇𝑃̃𝑀) −  𝜌H,𝑀𝐶z

(𝑃̃𝑀 − Π𝑀)

𝑇𝐷𝑁𝑃,𝑀
𝑜  

(5.1) 

 
𝜌H,𝑆𝐶z

𝜕𝑃̃𝑆

𝜕𝑡
= ∇ ∙ (𝜌H,𝑆𝐶z𝒟H,𝑆∇𝑃̃𝑆) −  𝜌H,𝑆𝐶z

(𝑃̃𝑆 − 1)

𝑇1,𝑆
𝑜  

(5.2) 

Equation (5.1) and (5.2) are coupled differential equations representing spin polarization 

analogues to the heat equation. While these expressions contain spin thermodynamic and 

transport properties unfamiliar to most disciplines, such properties are either known explicitly 

or can be independently determined by NMR experiment63. For instance, the normalized spin 

polarization in the DNP matrix, 𝑃̃𝑀(𝑧, 𝑡), and hydrated surface alteration layer, 𝑃̃𝑆(𝑧, 𝑡), are 

the object functions and correspond to unity when the spin system is at thermal equilibrium. 

The 1H spin density of the DNP matrix, here 𝜌H,𝑀 = 3.5 M, is controlled by partial deuteration 

and is, 𝜌H,𝑆 ≈ 16 M, for calcium silicate hydrates prepared in H2O having a typical H/Si ratio 

of 1.3.64 It is assumed for subsequent analyses that there is negligible H/D exchange during 

the brief DNP sample preparation period detailed in the methods section. The Zeeman heat 
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capacity is Cz = 2.54x10–2 J/mol per 1H polarization-level at a constant magnetic field strength 

of 9.4 T. Reference values for the 1H-1H spin-diffusion coefficient (m2s-1) in rigid organic 

solids, 𝒟H,𝑀(𝜌H,𝑀) = 5·10-16(𝜌H,𝑀/70 M)1/3, and calcium silicate hydrates, 𝒟H,𝑆 = 1.2·10-16, 

have been measured previously and may be expected to scale with respect to the cube root of 

the 1H spin density.63 The 1H spin-lattice relaxation time, 𝑇1,𝑆
𝑜  = 1.5 s, of the hydrated 

tricalcium silicate samples gives the rate at which hyperpolarization is dissipated. Conversely, 

the characteristic DNP build-up time, 𝑇𝐷𝑁𝑃,𝑀
𝑜 = 27 s, of the glycerol-water matrix gives the 

effective rate at which hyperpolarization is generated. For the DNP matrix formulation used 

here, as previously reported {cite PCCP}, the polarization-level generated in the matrix, Π𝑀, 

corresponds to either Π𝑀(on) = 125 or Π𝑀(off) = 0.51 in the presence or absence of microwave 

irradiation, respectively. Importantly, application of Equation (5.1) and (5.2) to obtain 

characteristic domain sizes (i.e., the thickness of the hydration layer) requires a physically 

justified model geometry describing the material system. 

For a suspension of hydrated tricalcium silicate particles in a glycerol-water matrix, it 

is anticipated that the particles will be distributed similarly to that of a saturated cement paste. 

As shown in the schematic diagram in Figure 5.1, the particles are depicted to be fully wetted 

with some extent of particle aggregation. Selecting solvent systems that minimize particle 

aggregation or capillary bridging is important, because the volume of DNP solvent around 

each particle serves as a 1H hyperpolarization reservoir. Thus, each particle is assumed to be 

uniformly coated by the aqueous DNP matrix with an effective solvent thickness, ΔL ≈ V/A, 

where V is the total solvent volume and A is the total particle surface area.  For a solvent/solid 

ratio of 0.25 µL/mg, the effective solvent thickness, ΔL, is expected to be ~200 nm for the 

measured BET surface areas (~1.1 m2/g in Figure 5.3b). Due to the low-particle surface areas 
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and the limited amount of hydration products formed at early times (<2.5 h), the hydration 

layer is approximated by 1D slab geometry, see Figure 5.6a-b. The unknown hydration layer 

thickness, 𝛿, corresponds to the mean thickness of silanol Q0(h) and hydrated Q1 and Q2 

silicates formed on the particle surface. For solution of the coupled differential equations 

Equation (5.1) and (5.2), the boundary and initial conditions are given: 

𝑃̃𝑆(𝑧, 0) = 𝑃̃𝑀(𝑧, 0) = 0, (5.3) 

𝑃̃𝑆(𝛿, 𝑡) = 𝑃̃𝑀(𝛿, 𝑡), (5.4) 

𝜌H,𝑆𝐶z𝒟H,𝑆

𝜕𝑃̃𝑆(𝛿, 𝑡)

𝜕𝑧
= 𝜌H,𝑀𝐶z𝒟H,𝑀

𝜕𝑃̃𝑀(𝛿, 𝑡)

𝜕𝑧
 , 

(5.5) 

𝜕𝑃̃𝑆(0, 𝑡)

𝜕𝑧
= 0, 

(5.6) 

𝜕𝑃̃𝑀(𝛿 + Δ𝐿eff, 𝑡)

𝜕𝑧
= 0, 

(5.7) 

where the initial condition, Equation (5.3), corresponds to the pulse sequence in Figure 5.2. A 

representative steady-state solution to the spatial polarization profile, 𝑃̃𝑆(𝑧, 𝑡→ ∞), within the 

hydration layer and, 𝑃̃𝑀(𝑧, 𝑡→ ∞), within the DNP solvent matrix is shown in Figure 5.6b. 

The interfacial boundary conditions31 are analogous to those in heat conduction processes, 

such that the polarization and energy flux are continuous across the solvent-solid interface, as 

in Equation (5.4) and (5.5), respectively. At the internal boundary of the hydration layer, z = 

0, there is a zero-flux condition, Equation (5.6), since the unhydrated Ca3SiO5 core does not 

conduct spin polarization. Between neighbouring particles in the DNP solvent matrix, z = 

𝛿+ΔL, there is a local maximum, Equation (5.7), in the spatial polarization profile. Although 

the microstructure of hydrating cement pastes is complex, especially after the induction period 
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(>2.5 h), this model allows for quantitative interpretation of the DNP-NMR results which puts 

constraints on the mean thicknesses of surface hydration layers formed in contact with water. 

 

FIGURE 5.6) Schematic diagram of (a) the 1D slab approximation where the red film 

corresponds to a thin layer of silanol Q0, hydrated Q1, and hydrated Q2 silicates on the surface 

of a tricalcium silicate grain; and (b) a representative spatial 1H polarization profile within, 

𝑃̃𝑀(𝑧), the DNP solvent matrix and, 𝑃̃𝑆(𝑧), within the hydration layer. 

 

 By measuring and comparing 13C intensity arising from the DNP solvent matrix and 

29Si intensity arising from the hydration layer in the presence and absence of microwave 

irradiation the transient accumulation of 1H hyperpolarization may be monitored in each 

region. It is not typically possible to measure spatial polarization profiles 𝑃̃𝑆(𝑧, 𝑡) or 𝑃̃𝑀(𝑧, 𝑡), 

instead the measured NMR signal enhancements εS(t) and εM(t) are related to the net nuclear 

magnetization (MH) which is proportional to, MH,i ∝ 𝜌H,𝑖𝑃̃𝑖, the product of the 1H spin density 
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and polarization level. Specifically, εS(t) or εM(t) values are measured by comparing the 

intensity of 29Si{1H} or 13C{1H} DNP CP-MAS spectra, respectively, acquired in the presence 

and absence of microwave irradiation. For the DNP solvent matrix, the εM(t) enhancement is 

obtained by integrating 𝑃̃𝑀(𝑧, 𝑡) over 𝛿 < z < 𝛿 + ΔL by the relation, 

𝜀𝑀(𝑡) =
∫ 𝜌H,𝑀𝑃̃𝑀,on(𝑧, 𝑡)𝐴𝑑𝑧

δ+∆𝐿

δ

∫ 𝜌H,𝑀𝑃̃𝑀,off(𝑧, 𝑡)𝐴𝑑𝑧
δ+∆𝐿

δ

, 
(5.8) 

noting that the only difference between the microwave on and microwave off case determined 

by Equation (5.1) and (5.2) is the effective polarization levels generated in the DNP solvent 

matrix, Π𝑀(on) = 125 or Π𝑀(off) = 0.51 for each condition, respectively. In Equation (5.8), 

the integral for 1D slab geometry also includes, A, the particle surface area and, 𝜌H,𝑀, the 1H 

spin density of the glycerol-water matrix. For the hydration layer, the εS(t) enhancement is 

obtained by integrating 𝑃̃𝑆(𝑧, 𝑡) over 0 < z < 𝛿  by the relation,   

𝜀𝑆(𝑡) =
𝜌H,0𝑉0 + ∫ 𝜌H,S𝑃̃𝑆,on(𝑧, 𝑡)𝐴𝑑𝑧

δ

0

𝜌H,0𝑉0 + ∫ 𝜌H,S𝑃̃𝑆,off(𝑧, 𝑡)𝐴𝑑𝑧
δ

0

, 
(5.9) 

which is calculated similarly to Equation (5.8). The additional term, ρH,0V0, reflects that, 

although the unhydrated Ca3SiO5 core is largely 1H deficient, there is some amount of 1H 

moieties present that contribute to the measured signal intensity, but which do not receive 1H 

hyperpolarization from the DNP matrix. Quantitative 1H spin counting experiments of 

unhydrated tricalcium particles (see appendices) indicate that the particles have a 1H spin 

density of  𝜌H,0 = 0.14 ±0.07 M (roughly 1 H per 100 Ca3SiO5) that may be associated with 

hydrated lime, silanol impurities, or bound water within internal grain boundaries or defect 

sites; this 𝜌H,0 value corresponds to ~40 ppm by mass which is similar to H contents of 
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nominally anhydrous minerals in the Earth’s mantle. Considering that the internal particle 

volume is much larger than the volume of the hydration layer at early times, V0 >> A𝛿, these 

contributions to the NMR spectra must be accounted for as in Equation (5.9). The weight-

averaged particle size of the unhydrated tricalcium calcium used here, determined by laser 

scattering, is Dp = 8.6 µm which is used to estimate V0 assuming that the particles are spherical. 

Nondimensionalized steady-state analytical solutions to Equation (5.8) and (5.9) are provided 

in appendices and can be directly fit to experimental NMR signal enhancements.  

 To determine values for the mean hydration layer thickness, 1D 13C{1H} and 29Si{1H} 

DNP CP-MAS saturation recovery experiments were acquired for tricalcium silicate particles 

hydrated from 30 min to 8 h. Comparison of the spectra acquired without and with microwave 

irradiation indicates that the latter exhibits significantly greater 13C or 29Si signal intensity, 

which reflects the sensitivity improved afforded by DNP NMR. Specifically, the enhanced 

sensitivity can be quantified by comparing the ratio of intensity between spectra acquired with 

and without microwave irradiation, which corresponds to εS,∞ = 25 (±3) and εM,∞ = 116 (±6) 

for Figure 5.7a (Top) and 5.7a (Bottom), respectively. In Figure 5.7b and 5.7c, the steady-

state εS,∞ and εM,∞ enhancements were fit to the corresponding analytical solutions (see 

appendices) by varying the fitting parameters, 𝛿,  the hydration layer thickness and, ΔL, the 

effective solvent layer thickness. The effective solvent layer thickness, ΔL, is varied to 

account for increases in particle surface area and minor solvent losses that occur during 

preparation (here, typically ~10 to 20 w% solvent). The obtained values for the hydration layer 

thickness are within, 𝛿 = 3.5 ± 1.1 nm, for tricalcium silicate particles hydrated at 0.5 h, 1 h, 

2 h, 3 h, and 4 h. Notably, for a 40 mg sample size, in order to overcome thermally driven 

relaxation and maintain an enhancement factor of, εS,∞ = 20, approximately 1 - 2 µW of 
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Zeeman energy over time must be supplied to 1H spins within the hydration layer.  This power 

requirement, Q, is equal to the dissipation term in Equation (5.2) integrated over 0 < z < 𝛿 

such that:  

𝑄 = ∫ 𝜌H,𝑆𝐶z

(𝑃̃𝑆(𝑧, ∞) − 1)

𝑇1,𝑆
𝑜 𝐴𝑑𝑧

δ

0

 . 
(5.10) 

Although the absolute power consumption is minuscule, it is drawn from the surrounding 

DNP matrix resulting in the partial depletion of the 1H hyperpolarization reservoir as observed 

experimentally in Fig. 5.7c and depicted schematically in Fig. 5.6b. In the absence of a 

relaxation sink, the DNP solvent matrix has a measured enhancement, εM,∞ ≡ Π𝑀(on)/ Π𝑀(on) 

= 250, compared to εM,∞ ≈ 80 to 120 observed in these particle suspensions. By Equation 

(5.10), if H/D exchange occurs (i.e., lower 𝜌H,𝑆 values), this reduces the power requirement 

to maintain the hyperpolarization profile, 𝑃̃𝑆(𝑧, ∞), such that, in this circumstance, the 

extracted 𝛿 values above underestimate the hydration layer thickness. Nevertheless, the fitted 

𝛿 and ΔL values were subsequently used to numerically simulate the transient 1H build-up 

kinetics associated with the hydration layer to improve confidence in the fitted values, see 

Figure 5.8. The measured intensity build-up profile is less sensitive to changes in 𝛿 over the 

range of 0.4 nm to 40 nm in comparison to the enhancement factor but exhibits satisfactory 

agreement with the estimated value of 𝛿 ~ 4 nm. Some deviation from model predictions is 

expected since a slab approximation does not accurately represent the distribution of DNP 

solvent matrix around solid particles. These results provide strong evidence that there is a thin 

film of hydrated silicates formed on tricalcium silicate particles, even at the earliest hydration 

times (<2.5 h), which consume 1H hyperpolarization from the surrounding DNP solvent 

matrix. Physically, values of 𝛿  4 nm suggest that, during early hydration times, the reaction 
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front at particle surfaces in contact with water does not advance appreciably within the 

sensitive detection limits of the measurement.       

 

 

FIGURE 5.7) (a) Solid-state 1D 29Si{1H} DNP CP-MAS NMR of hydrated (4 h, 25 °C) 

Ca3SiO5 (Top), and 1D 13C{1H} DNP CP-MAS NMR of the glycerol/water matrix (Bottom). 

Model fit (solid blue line) to measured (b) DNP signal enhancement in hydrated Ca3SiO5, (c) 

DNP signal enhancement in frozen glycerol/water matrix. Extracted values for the (d) 

hydrated layer thickness, 𝛿, and (e) the matrix thickness, L, coating each particle. In (d,e) 

diamonds correspond to values calculated from the data in (b,c), while the dashed blue lines 

are used to generate the model fit in (b,c).  

 

After approximately 2.5 h of hydration, coinciding with the end of the induction 

period, there is an increase in particle surface areas. The dependence of the εS,∞ enhancement 

value on hydration time is strongly correlated to, A, the particle surface area as shown in 

Equation (5.9). Interestingly, although the surface area continues to increase, the measured 

εS,∞ enhancement values decrease beyond 4 h suggesting that denser hydration products are 

formed beyond the solvent-particle interface. Specifically, decreasing εS,∞ values establish that 
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the ratio between the amount of exposed hydration products formed on the external surface 

and those formed within the particle interior is also decreasing.  Commonly, hydration 

products formed at later times are distinguished as ‘outer’ or ‘inner’ products whether they 

exist outside or within the original particle grain boundaries, respectively.   At later hydration 

times (i.e., 8 h), the slab approximation is a poorer representation of the particle surfaces, 

nevertheless the model results suggest that the mean hydration layer thickness increases to 𝛿 

~10 nm. Monitoring the compositions of the advancing hydration beyond >8 h hydration by 

the present technique is challenging because the DNP-enhanced 29Si spectra is 

overwhelmingly dominated by signal contributions from products on the external surface. 

Moreover, the notion of a hydration layer, as it applies to the compositions and thicknesses of 

a film of hydration products formed at the surface, is likely less pertinent during the period of 

accelerated hydration. Recently, other techniques and methods of analysis have been 

developed to characterize the evolving cement microstructure during this time which has been 

aptly described as a fractal colloidal gel.65 The advantage of DNP-NMR is that it affords 

improved sensitivity and high chemical resolution capable of monitoring atomic-level 

transformations occurring at or near the solvent-particle interface at early (< 2.5 h) hydration 

times that challenge the sensitivity or resolution of other techniques. 
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FIGURE 5.8) Solid-state 1D 29Si{1H} DNP CP-MAS NMR saturation recovery experiment 

of hydrated (2 h, 25 °C) Ca3SiO5 overlaid with simulated intensity build-up profiles for L = 

160 nm and different values of, 𝛿,  the hydration layer thickness. In the limit of 𝛿 → ∞ and 𝛿 

→ 0, characteristic build-up times approach values of T1 = 1.5 s and TDNP,M = 27 s, 

respectively.    

 

5.6.  Compositions of hydrated layers on silicate particles 

The For low-surface-area tricalcium silicate particles hydrated for short times (<2.5 h), the 

enhanced sensitivity of DNP NMR techniques enables the detection of dilute silanol Q0(h) 

and hydrated Q1 and Q2 surface species, which are otherwise challenging to identify and 

resolve. Previous 1D 29Si single-pulse or 29Si{1H} cross-polarization NMR analyses 

monitoring Ca3SiO5 hydration have relied on particle size reduction or costly 29Si isotopic 

enrichment.19 These analyses have detected trace amounts of hydrated Q1 or Q2 silicates 

formed at early times, however, due to their low relative abundance, such signal contributions 

are typically obscured by Q0 intensity arising from the unhydrated tricalcium silicate core. By 

comparison, Figure 5.9 shows a representative 29Si{1H} DNP CP-MAS NMR spectrum of 
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monoclinic tricalcium silicate hydrated for 2 h at 25 °C which exhibits at least three broad and 

partially resolved 29Si signals centered at -73, -79, and -82 to -85 ppm from silanol Q0, 

hydrated Q1, and hydrated Q2 species, respectively, which are associated with silicate 

hydration products.47,60. Although the thicknesses, 𝛿, may not appreciably increase during the 

induction period, the overlaid 29Si spectra in Figure 5.9 indicate that the silicate distributions 

on the particle surfaces continue to evolve even for early (<2.5 h) hydration times. The 29Si 

spectra are normalized with respect to the mass of the sample and the number of acquisitions 

and provide a semi-quantitative comparison of the surface compositions at different hydration 

times. Initially, there is a greater relative abundance of silanol Q0 which is partially 

transformed into more crosslinked hydrated Q1 and Q2 silicates over the course of the 

induction period. Notably, for hydration times <2.5 h, the 29Si spectra exhibit broad, 

overlapping contributions of Q1 and Q2 intensity. These relatively broad signals likely arise 

from a broad distribution of local atomic environments consistent with the formation of a 

disordered surface hydrate layer. Meanwhile, post-induction period (ca. 4 h), relatively 

narrow Q1 intensity arises in the same spectral region, consistent with calcium silicate hydrates 

with improved local order. Previously, it has been suggested that the formation of calcium 

silicate hydrates is autocatalytic, such that the hydration of the particle surface is accelerated 

after the initial formation of ordered calcium silicate hydrate nucleation seeds. The proposed 

structural diagram in the schematic inset of Figure 5.9 depicts the formation of relatively 

ordered (phyllosilicate-like) calcium silicate hydrates coexisting with a disordered 

intermediate hydration layer in a manner consistent with the 29Si DNP NMR results. These 

results provide new insights into structural transformations occurring at particle surfaces 

during, and, shortly after the induction period.  
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FIGURE 5.9) DNP surface-enhanced 29Si{1H} CP-MAS spectra of Ca3SiO5 hydrated for 0 

h, 0.5 h, 2 h, and 4 h, vacuum-dried, and suspended in a glycerol/water matrix. Schematic 

inset depicts the formation of calcium silicate hydrate, a disordered surface hydrate alteration 

layer, and unhydrated Ca3SiO5 consistent with the measured signal intensity.    

5.7.  Influence of additive species on surface silicate compositions 

While the preceding analyses have exclusively focused on the hydration of tricalcium 

silicate in unadulterated water, modern cementitious mixtures often incorporate dilute additive 

species to tune hydration kinetics or rheological properties. For example, in the presence of 

~2 % by-weight-of-solids (bwos) CaCl2 accelerator the induction period may be shortened to 

<30 min, while the induction period may last several weeks in the presence of ~0.5 %bwos 

sucrose retardant. In the case of sucrose, it has recently been demonstrated by advanced two-

dimensional 13C{1H} and 29Si{1H} DNP heteronuclear correlation measurements that sucrose 

strongly adsorbs at hydrating particle surfaces, likely by a combination of H-bonding 
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interactions and Ca-binding, to competitively displace water.66 However, in general, the 

influence of dilute additive species on surface silicate compositions remains poorly 

understood. In Fig 5.10, a series of 1D 29Si{1H} DNP CP-MAS spectra were obtained for 

tricalcium silicate specimen hydrated (blue) for 2.5 h in the presence of either (a) 2 %bwos 

CaCl2, (b) unadulterated water, or (c) 0.5 %bwos sucrose and are overlaid with the 29Si spectra 

of unhydrated tricalcium silicate (red) acquired under otherwise identical conditions. Here, 

for these semi-quantitative analyses, a hydrophobic DNP solvent matrix consisting of 8 mM 

TEKPol in 1,1,2,2-tetrachloroethane is used to minimally influence hydration chemistry. 

Generally, for hydrated tricalcium silicate particulate systems, hydrophobic DNP solvent 

matrices lead to diminished enhancement values and short polarization build-up times that 

may be attributed to partial dewetting or capillary bridging phenomena (i.e., the sand-castle 

effect67) that yield poorer suspensions. Nevertheless, this formulation enables the direct 

comparison of unhydrated and hydrated tricalcium silicate particles with spectral acquisition 

times shorter than 30 minutes (compared to 2 days in Fig. 5.5). Such analyses enable the 

sensitive and preferential detection of dilute silicate hydrates formed on low-surface area 

tricalcium silicate particles with unprecedently short acquisition times providing new insights 

into interfacial transformations that are believed to influence early hydration kinetics and 

mechanical strength development.  

Initially, the 29Si spectra of unhydrated tricalcium silicate (red, a-d) indicates the presence 

of some Q1 and Q2 silicate hydrates due to its hygroscopic nature and reaction with 

atmospheric water. When hydrated in unadulterated water, there is a greater relative 

abundance of pairing Q2 (ca. -85 ppm) silicates consistent with the formation of more 

crosslinked hydration products as hydration proceeds. Similarly to the series in Fig 5.9., it is 
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hypothesized that the formation of a crosslinked and disordered calcium silicate hydrate layer 

may constitute a barrier to the further dissolution and reaction of the particle interior, the 

possible atomistic origin of the induction period. By comparison, in the presence of 2%bwos 

CaCl2, significantly more hydrates are formed overall, albeit the 29Si intensity predominantly 

arises from Q1 (ca. -79 ppm) and bridging Q2 (ca. -82 ppm) silicates that are associated with 

shorter silicate chain lengths. Thus, it is concluded that competitive adsorption of Ca2+ at the 

interface may prevent condensation or reprecipitation of dissolved Si yielding a reactive 

precursor gel that may pose less of an obstacle to further reaction or dissolution of the surface. 

Consistent with the discussion above, in the presence of 0.5%bwos sucrose, there are few 

detectable changes in the quantities and compositions of silicate hydrates after 2.5 h of 

hydration, as shown in Fig. 5.10c. It is speculated that both CaCl2 and sucrose act by 

adsorption at the hydrating particle interface, however that sucrose binds more strongly and 

desorbs less readily. This may explain the complex influence of sucrose on tricalcium silicate 

hydration kinetics, where sucrose acts as an accelerant below monolayer coverage, but is a 

strong retardant at concentrations near or above monolayer coverage. Similar phenomena are 

known to influence the apparent reaction rate over heterogeneous catalysts (i.e., the Sabatier 

principle), where strong adsorption of a reactant species leads to diminished apparent reaction 

rates. 
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FIGURE 5.10) Surface silicate compositions of hydrated and unhydrated Ca3SiO5 measured 

by 1D 29Si{1H} DNP CP-MAS. Red spectrum is unhydrated Ca3SiO5 overlayed with blue 

spectra: (a) 2.5 h hydrated Ca3SiO5 without additives, (b) 2.5 h hydrated Ca3SiO5 with 2 

bwos% CaCl2, (c) 2.5 h hydrated Ca3SiO5 with 0.5 bwos% sucrose, and (d) unhydrated 

Ca3SiO5 annealed at 650 °C for 14 h. Spectra in (a, c-d) multiplied by a factor of three, in (d) 

the dotted-blue line is qualitatively scaled for comparison.  
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These results indicate that, perhaps more important than its physical dimensions, the 

compositions of the surface hydration layer influence the progression of hydration and 

dissolution processes responsible for the duration of the induction period. Furthermore, it is 

demonstrated in Figure 5.10 that thermal annealing (650 °C) of unhydrated tricalcium silicate 

particles reduces the abundance of silanol Q0, hydrated Q1, and hydrated Q2 initially present 

on the surface. Similar treatments are known to lengthen the induction period and have been 

previously attributed to the removal of crystallographic defects that may render tricalcium 

silicate particles more reactive. Overall, the DNP NMR results highlight the role of interfacial 

chemistry in the early hydration of tricalcium silicate that, in addition to other factors (i.e., 

defect density, particle size distribution), influence the apparent dissolution rates of 

industrially relevant cementitious mixtures.    

5.8.  Conclusions 

The molecular compositions and mean thickness of hydrated layers at heterogeneous 

silicate particle surfaces are established by using DNP NMR methods and modelling analyses. 

Due to the challenging length scales associated with the thickness of such layers, these have 

typically been difficult and often infeasible to measure by conventional microscopy and 

diffraction analyses. These challenges are further exacerbated by the poor long-range 

structural order and dilute quantities of the component species in the hydrated layers, 

especially at early hydration times. Nevertheless, DNP-enhanced NMR measurements 

crucially provide the signal sensitivity that is necessary to detect such dilute quantities of 

hydrates and allow the transfer and/or distribution of DNP-enhanced spin polarization through 

the associated surface layers to be experimentally measured and monitored. The rate and 
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extents of such polarization transfer processes are directly related to the mean thickness of the 

surface layer, the latter of which is subsequently estimated by using diffusion-reaction 

equations to model the spatiotemporal evolution of the spin polarization measured in the DNP 

NMR experiments. The analyses establish that there are small quantities of silanol Q0 and 

calcium silicate hydrate species present at surfaces at the early hydration times, which yield a 

layer with a mean approximate thickness of ca. 4 nm on the silicate particles. These 

dimensions are consistent with previous estimates by XPS analyses and synchrotron X-ray 

pair distribution analyses. The results suggest that hydration largely occurs within <10 nm of 

the surface and proceeds by an increase in particle surface areas that may be attributed to the 

nucleation of calcium silicate hydrates. Perhaps more important than the physical dimensions 

of this layer, is the compositions and extent of local order of the silicate hydrates formed at 

early times. It is shown that treatments and conditions known to influence the duration of the 

induction period have a marked influence on the types and quantities of silicate hydrates that 

are present. In summary, upon contact with water a disordered surface layer is formed at 

hydrating particle surfaces and continues to evolve over the course of the induction period 

forming crosslinked Q2 silicates that may impede further dissolution. The 29Si DNP enhanced 

spectra suggest that CaCl2, a hydration accelerator, may prevent this crosslinking yielding a 

greater relative abundance of dimeric Q1 silicates. The analyses and results presented here are 

broadly relevant to measuring particle or domain sizes in a variety of multicomponent 

systems, including alloys, semiconductors, catalysts, where such attributes strongly influence 

overall material properties, but where the particle or domain dimensions are not amenable to 

conventional measurements. 
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Appendix 5A1. Matlab script (steady-state analytical solution) 

clear 
T1S = 1.5; %T1 of calcium silicate hydrate [s] 1.5s 4 h dry C3S 
Tdnp = 27; %DNP build-up time of matrix [s] 
rhoM = 3.5*10^3; %1H spin density glycerol-water [mol m^-3] 
rhoS = 16*10^3; %1H spin density calcium silicate hydrate [mol m^-3] 
DHm = 5*10^-16*(rhoM/(70*10^3))^(1/3); %diffusion coefficient glycerol-

water [m^2s^1] 
DHs = 1.2*10^-16*(rhoS/(16*10^3))^(1/3); %diffusion coefficient of CSH 

[m^2s^-1] 
MuON = 127; %absolute enhancement in matrix 
MuOFF = 0.50; %depolarization factor in matrix 

  

  
Lcap = 150*10^-9; %one-half capillary porosity [500 nm] 
LcapM = [170,170,170,170,156,129,113].*10^-9; 
LcapM = [182,176,164,153,144,128,118].*10^-9; 
rhoO = 0.01*10^3; %1H spin density Ca3SiO5 interior [mol m^-3] 
rhoO = 0.14*10^3; 
Vtot =4/3*pi*(8.6/2*10^-6)^3; %volume of 10 micron particle [m^3] 
t = [0.5, 1, 2, 3, 4, 6, 8]; 
enh = [17.6, 12.9, 16.8, 21.2, 25.5, 18.6, 11.58]; 
A = [1.11, 1.038, 1.34, 2.01, 2.75, 4.51, 6.61]; 
enhM = [155,124,117,129,116,89,84]; 
mass = Vtot*3.15*10^6; %grams per particle (density C3S = 3.15 g/cm^3) 

  
global T1S_ rhoM_ rhoS_ DHm_ DHs_ Lcap_ Tdnp_ MuON_ MuOFF_ rhoO_ mass_; 
T1S_=T1S; rhoM_=rhoM; rhoS_=rhoS; DHm_=DHm ; DHs_=DHs; Lcap_ = Lcap; 

Tdnp_=Tdnp; MuON_ =MuON;MuOFF_=MuOFF; 
rhoO_ =rhoO; mass_= mass; 

  
%hydL = [0.01 0.1 1 10 100 1000]; 
%hydL = hydL.*10^-9; 
%out = enhON(hydL,Leff)./enhOFF(hydL,Leff); 

  

  
for i = 1:length(A) 
Leff = LcapM(i); 
myfun = @(x,k,j) 

(rhoS.*k.*mass.*enhON(x,Leff).*x+rhoO.*Vtot)./((rhoS.*k.*mass.*enhOFF(x,Le

ff).*x+rhoO.*Vtot))-j;  % parameterized function 
k = A(i);   %parameter 
j = enh(i);   
fun = @(x) myfun(x,k,j);    % function of x alone 
guessL = 10*10^-9; 
x(i) = fzero(fun,guessL); 
SimON(i) = enhON(x(i),Leff); 
SimOFF(i) = enhOFF(x(i),Leff); 
SimSA(i) = 

(rhoS.*k.*mass.*enhON(x(i),Leff).*x(i)+rhoO.*Vtot)./((rhoS.*k.*mass.*enhOF

F(x(i),Leff).*x(i)+rhoO.*Vtot)); 
end 
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hydL = x; 
LayerThickness = x*10^9 
SimENH = SimON./SimOFF 
SimSA = SimSA 
enh = enh; 
fit = mean(LayerThickness); 
function [conc] = enhON(y,Leff) %y is HydL 
         conc = Eta(y).*(PsurfON(y,Leff)-1)+1; 
end 

  
function [conc] = enhOFF(y,Leff) %y is HydL 
         conc = Eta(y).*(PsurfOFF(y,Leff)-1)+1; 
end 

  
function [conc] = PsurfON(y,Leff) %y is HydL 
    global MuON_  
         conc = (MuON_-Damkohler(y).*Eta(y)./Tau(y,Leff))./(1-

Damkohler(y).*Eta(y)./Tau(y,Leff)); 
end 

  
function [conc] = PsurfOFF(y,Leff) %y is HydL 
    global MuOFF_  
         conc = (MuOFF_-Damkohler(y).*Eta(y)./Tau(y,Leff))./(1-

Damkohler(y).*Eta(y)./Tau(y,Leff)); 
end 

  
function [conc] = Damkohler(y) %y is hydL 
    global T1S_ rhoM_ rhoS_ DHm_  
         conc = y.^2.*T1S_.^-1.*(rhoS_./rhoM_)./DHm_; 
end 

  
function [conc] = Thiele(y) %y is hydL 
    global T1S_ DHs_  
         conc = y./sqrt(DHs_.*T1S_); 
end 

  
function [eta] = Eta(y) %y is hydL 
         global T1S_ DHs_  
         eta = tanh(y./sqrt(DHs_.*T1S_))./(y./sqrt(DHs_.*T1S_)); 
end 

  
function [conc] = Tau(y,Leff) %y is hydL 
    global T1S_ DHs_ DHm_ Tdnp_ 
         phiM= (y./sqrt(DHs_.*T1S_)).*sqrt((DHs_.*T1S_)./(DHm_.*Tdnp_)); 
         NUM = sinh(phiM)-tanh(phiM.*(1+Leff./y)).*cosh(phiM); 
         DENOM = cosh(phiM)-tanh(phiM.*(1+Leff./y)).*sinh(phiM); 
         conc = phiM.*NUM./DENOM; 
end 
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Appendix 5A2. Matlab script (transient numerical solution) 

m = 0; %0 = SLAB, 1 = CYLINDER, and 2 = SPHERE 
%Dout = 400; %nm^2/s diffusivity {KHUTISVILI APPROXIMATION} 
%Din = 90; %nm^2/s from relative dipole interactions (1.6 kHz @4.5A) 

  
rSolv = 30; %nm of solvent 
rPart = 150; %radius of particle bundle 
filename = 'Polprof_delete.xlsx'; 
hydL = rPart+rSolv; %total system 
Seff = 1.5; % effective T1 of dry C3S 2.3 s 
depo = 1; 
%Hsol = 13; %H atom/nm^3 in solution 
%Htar = 26; %H atom/nm^3 in target 
%Dout = 500*(Hsol/42)^(4/3); 
%Din = 500*(Htar/42)^(4/3); 
Hsol = 4; %M in solution 
Htar = 16; % M in target 
rhoAMU = 2; %mM biradical in starting solution 
Din = 140; 
Dout = 500*(Hsol/70)^(1/3); 
%Dout = 160; 

  

  
%For 2 mM AMUPol glycerol/water solution 
T1 = 6.86+205.74*exp(-0.13*Hsol)+44.27*exp(-0.00981*Hsol); %solvent build-

up 
if (Hsol <20.2) 
   kdnp = -0.2254*Hsol^(1/3)+1.7199; 
else 
   kdnp = 0.4014*Hsol^(1/3)+0.0116; 
end 
%For variable AMUPol concentration 
Udnp = (3*1.8^2/(5.83^3-1.8^3))*kdnp; 
T1Mwon = T1/(1+Udnp*T1); 
e0 = (1+Udnp*148*T1)/(1+Udnp*0.42*T1); 

  
ta = [0.000003 2.107 4.463 7.133 10.217]; 
xa = [0 0.8504 0.9697 0.9921 1]; 
global rPart_ rSolv_ Dout_ Din_ Seff_ T1Mwon_ e0_ depo_ hydL_ Hsol_ Htar_; 
rPart_ = rPart; rSolv_ = rSolv; Dout_ = Dout; Din_ = Din; 
Seff_ = Seff; T1Mwon_ = T1Mwon; e0_ = e0; depo_ = depo; hydL_=hydL; 
Hsol_ = Hsol; Htar_ = Htar; 

  
%Initiliaze time-points for solution 
low = linspace(0,0.1,4); 
med = linspace(0.2,1.8,8); 
high = linspace(2,15,16); 
veryhigh = linspace(20,100,16); 
t = [low med high veryhigh]; 

  
%Initiliaze spatial-points for solution 
rstep=2000;% number of points in the length dimension in PDE solution. 
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r = linspace(0,hydL_,rstep); 

  
%PDE for microwave on and off conditions 
solution_on = pdepe(m,@pde_diffusionON,@pde_ic,@pde_bc_MW_on,r,t); 

%microwave on 
p_on = solution_on(:,:,1);% 

  
solution_off= pdepe(m,@pde_diffusionOFF,@pde_ic,@pde_bc_MW_OFF,r,t); 

%microwave off 
p_off=solution_off(:,:,1);% 

  
[epsilon,SignalPol,SignalRef]=CalcEpsilon(p_on,p_off,r,t,m);%this function  
%calculates the expected observed enhancements given p_on, p_off, and  

  
%Plot Everything Usefull 
pSS = zeros(2,size(r,2)); 
for j=1:size(r,2) 
pSS(1,j) = p_on(size(t,2),j); 
pSS(2,j) = (hydL_/rstep)*j; 
end 
figure(1) 
plot(pSS(2,:),pSS(1,:)); 
xL=[rPart,rPart]; 
yL=[0,1.1*e0_]; 
hold on 
plot(xL,yL) %plot line where solid boundary is 
hold off 
%Approximate derivative of polarization at interface 
frac = round(rstep*(rPart/hydL_)); 
mLHS = (pSS(1,frac-1)-pSS(1,frac-2))/(pSS(2,frac-1)-pSS(2,frac-2));  
mRHS = (pSS(1,frac+2)-pSS(1,frac+1))/(pSS(2,frac+2)-pSS(2,frac+1));  
A = [pSS(2,:) pSS(1,:)]; 
xlswrite(filename,A) 
%Extract different domains buildup 
intL = round(rstep*rPart/hydL_); %interface integer value 
%Solid "Target" DATA 
wTarMagON = zeros(size(t,2),intL); %Spatial Polarization in target  
TarMagON = zeros(size(t,2),intL); %Spatial Polarization in target 
TarSigON = zeros(size(t,2),1); %Signal in target 
TarSigOFF = zeros(size(t,2),1); %Signal in target 
wTarMagOFF = zeros(size(t,2),intL); %Spatial Polarization in target  
TarMagOFF = zeros(size(t,2),intL); %Spatial Polarization in target 
Pos = zeros(size(r,2),1); 
%Solvent DATA 
wSolMag = zeros(size(t,2),size(r,2)-intL); %Spatial Polarization in 

solvent 
TSolMag = zeros(size(t,2),size(r,2)-intL); %Spatial Polarization in 

solvent 
SolMag = zeros(size(t,2),size(r,2)-intL);  
SolMagOFF = zeros(size(t,2),size(r,2)-intL); 
wSolMagOFF = zeros(size(t,2),size(r,2)-intL);  
SolSigON = zeros(size(t,2),1); %Signal in solvent 
SolSigOFF = zeros(size(t,2),1); %Signal in solvent 
%Weight functions for integrating spherical geometry (m=2) 
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weightSph = zeros(size(r,2),1); 
weightCyl = zeros(size(r,2),1);  
Dd = hydL_; 
DdR = Dd/size(r,2); 
for k = 1:size(r,2) 
weightSph(k)=(4/3)*pi*((Dd-(k-1)*DdR)^3-(Dd-k*DdR)^3); 
weightCyl(k)=pi*((Dd-(k-1)*DdR)^2-(Dd-k*DdR)^2); 
Pos(k)=(hydL_/rstep)*k; 
end 
%Separate data for Target and Solvent domains 
for o = 1:size(t,2) 
    for k = 1:intL 
        TarMagON(o,k) = p_on(o,k); 
        TarMagOFF(o,k) = p_off(o,k);  
    end 
    if m == 1 
        for k = 1:intL 
        wTarMagON(o,k) = p_on(o,k)*weightCyl(k,1); 
        wTarMagOFF(o,k) = p_off(o,k)*weightCyl(k,1);  
        end 
    end   
    if m == 2 
        for k = 1:intL 
        wTarMagON(o,k) = p_on(o,k)*weightSph(k,1); 
        wTarMagOFF(o,k) = p_off(o,k)*weightSph(k,1);  
        end 
    end     
    for h = 1:(size(r,2)-intL) 
        SolMag(o,h) = p_on(o,intL+h); 
        SolMagOFF(o,h) = p_off(o,intL+h); 
        if m==2 
        wSolMag(o,h) = p_on(o,intL+h)*weightSph(intL+h,1); 
        wSolMagOFF(o,h) = p_off(o,intL+h)*weightSph(intL+h,1); 
        else 
           wSolMag(o,h) = p_on(o,intL+h)*weightCyl(intL+h,1); 
           wSolMagOFF(o,h) = p_off(o,intL+h)*weightCyl(intL+h,1); 
        end 
    end     
    if m==0 
    TarSigON(o)=sum(TarMagON(o,:)); 
    TarSigOFF(o)=sum(TarMagOFF(o,:)); 
    SolSigON(o)=sum(SolMag(o,:)); 
    SolSigOFF(o)=sum(SolMagOFF(o,:)); 
    end 
    if m>0 %Use weighted functions for 1H profile 
    TarSigON(o)=sum(wTarMagON(o,:)); 
    TarSigOFF(o)=sum(wTarMagOFF(o,:)); 
    SolSigON(o)=sum(wSolMag(o,:)); 
    SolSigOFF(o)=sum(wSolMagOFF(o,:)); 
    end 
end 
%Scale signals by repesctive 1H concentrations (ABSOLUTE signal intensity) 
absTarSigON = TarSigON.*Htar_; 
absTarSigOFF = TarSigOFF.*Htar_; 
absSolSigON = SolSigON.*Hsol_; 
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absSolSigOFF = SolSigOFF.*Hsol_; 
%Calculate enhancements (NORMALIZE) 
enhancement = TarSigON(end)/TarSigOFF(end); 
enhSOL = SolSigON(end)/SolSigOFF(end); 
TarSigON = TarSigON./TarSigON(end); 
SolSigON = SolSigON./SolSigON(end); 
SolSigOFF = SolSigOFF./SolSigOFF(end); 
%Steady-state polarization SAVE 
%filename = 'SteadyStatePolC3S_200nm.xlsx'; 
%A = TarMagON(size(t,2),:); 
%xlswrite(filename,A) 
size(TarSigON') 
%Find SIMULATED BUILD-UP TIMES 
F = @(x,xdata) 1-exp(-x(1)*xdata); %exponential fit 
Fstretch = @(x,xdata) 1-exp(-(x(1).*xdata).^x(2)); %exponential fit 
Fbi = @(x,xdata) 1-(1-x(3)).*exp(-x(1).*xdata.^x(2))-x(3).*exp(-

x(4).*xdata) 
%F = @(x,xdata) 1-exp(-x(1).*xdata.^x(2)); %biexponential fit 
%FIT for TARGET MWON 
x0 = [1/Seff]; %initial guess expon 
x01 = [1/Seff 1]; %initial guess stretch 
x02 = [1/Seff 1 0 1/T1Mwon]; %initial guess bi exponential fit 
%[x,resnorm,~,exitflag,output] = lsqcurvefit(F,x0,t,TarSigON'); 
[x,resnorm,~,exitflag,output] = lsqcurvefit(Fstretch,x01,t,TarSigON'); 
%[x,resnorm,~,exitflag,output] = lsqcurvefit(Fbi,x02,t,TarSigON'); 
figure(2) 
scatter(t,TarSigON'); 
hold on 
plot(t,Fstretch(x,t)) 
scatter(ta,xa); 
hold off 
%Fit for stretched exponential 
TtarFIT = x(1); 
tarBeta = x(2); 

  
%FIT for SOLVENT MWON 
x0 = [1/T1Mwon]; %initial guess 
[x,resnorm,~,exitflag,output] = lsqcurvefit(Fstretch,x01,t,SolSigON'); 
figure(3) 
scatter(t,SolSigON'); 
hold on 
plot(t,Fstretch(x,t)) 
hold off 
TsolFIT = x(1); 
solBeta = x(2) 

  

 
SOLoutput = [enhSOL 1/TsolFIT solBeta] 
TARoutput = [enhancement 1/TtarFIT tarBeta] 
surfEnh = pSS(1,frac) 
A = [t TarSigON' SolSigON']; 
B = SOLoutput; 
C = TARoutput; 
xlswrite(filename,[A])  
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function [epsilon,SignalPol,SignalRef]=CalcEpsilon(p,pref,r,t,m) 
global hydL_ 

  
        SignalPol=zeros([1,size(t,2)]); 
        SignalRef=zeros([1,size(t,2)]); 
        epsilon=zeros([1,size(t,2)]); 
    %Slab Integration 
    if m==0 
        for i=2:size(t,2) 
        SignalPol(i)=trapz(r,p(i,:)); 
        SignalRef(i)=trapz(r,pref(i,:)); 
        end 
    end 
     %Cylinder Integration 
    if m == 1 
    Dd = hydL_; 
    DdR = Dd/size(r,2); 
    wON = zeros([size(t,2),size(r,2)]); 
    wOFF = zeros([size(t,2),size(r,2)]); 
        for i = 1:size(r,2) 
            weight = pi*((Dd-(i-1)*DdR)^2-(Dd-i*DdR)^2); 
            wON(:,size(r,2)-i+1)= p(:,size(r,2)-i+1,1)*weight; 
            wOFF(:,size(r,2)-i+1)= pref(:,size(r,2)-i+1,1)*weight; 
        end 
        for i=2:size(t,2) 
           SignalPol(i) = sum(wON(i,:)); 
           SignalRef(i) = sum(wOFF(i,:)); 
        end 
    end 
    %Sphere Integration 
    if m == 2 
    Dd = hydL_; 
    DdR = Dd/size(r,2); 
    wON = zeros([size(t,2),size(r,2)]); 
    wOFF = zeros([size(t,2),size(r,2)]); 
        for i = 1:size(r,2) 
            weight = (4/3)*pi*((Dd-(i-1)*DdR)^3-(Dd-i*DdR)^3); 
            wON(:,size(r,2)-i+1)= p(:,size(r,2)-i+1,1)*weight; 
            wOFF(:,size(r,2)-i+1)= pref(:,size(r,2)-i+1,1)*weight; 
        end 
        for i=2:size(t,2) 
           SignalPol(i) = sum(wON(i,:)); 
           SignalRef(i) = sum(wOFF(i,:)); 
        end 
    end 

     
    %Calculate enhancements 
    epsilon(1)=0; 
    for i=2:size(t,2) 
    epsilon(i)=SignalPol(i)./SignalRef(i); % ON & OFF BUILD UP TIMES 
    %epsilon(i)=SignalPol(i); %only include for S(t) data 
    end 
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    %epsilon = epsilon.*SignalPol(size(t,2))./SignalRef(size(t,2));%only 

include for S(t) data 
end 

   
function [c,f,s] = pde_diffusionON(x,~,u,DuDx) %define components of the 

PDE 
c = 1*fconc(x); 
f = (fD(x)*DuDx)*fconc(x); 
s=-((u-fPeqON(x))/fS(x))*fconc(x);  
end 

  
function [c,f,s] = pde_diffusionOFF(x,~,u,DuDx) %define components of the 

PDE 
c = 1*fconc(x); 
f = fD(x)*DuDx*fconc(x); 
s=-((u-fPeqOFF(x))/fS(x))*fconc(x);  
end 

  
function u0 = pde_ic(~) %define initial condition 
    u0=0; 
end 

   
function [pl,ql,pr,qr] = pde_bc_MW_on(~,~,~,~,~) %define two boundary 

conditions; hard wall & no diffusion out of the slab 
pl = 0; 
ql = 1;  
pr = 0;  
qr = 1; 
end 

  
function [pl,ql,pr,qr] = pde_bc_MW_OFF(~,~,~,~,~) 
pl = 0; 
ql = 1;  
pr = 0;  
qr = 1;  
end 

  
function [D] = fD(y) %spatial diffusivity 
    global rPart_ Dout_ Din_ 
         D = Din_+(Dout_-Din_)*heaviside(y-rPart_); 
end 

  
function [S] = fS(y) %relaxation parameter 
    global Seff_ T1Mwon_ rPart_ 
         S = Seff_+(T1Mwon_-Seff_)*heaviside(y-rPart_); 
end 

  
function [Peq] = fPeqON(y) %steady-state polarization value (ON) 
global e0_ rPart_ 
        Peq = 1+(e0_-1)*heaviside(y-rPart_);  
end 

  
function [Peq] = fPeqOFF(y) %steady-state polarization value (OFF) 
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global depo_ rPart_ 
        Peq = 1+(depo_-1)*heaviside(y-rPart_);  
end 

  
function [conc] = fconc(y) %1H concentration 
    global Htar_ Hsol_ rPart_ 
         conc = Htar_+(Hsol_-Htar_)*heaviside(y-rPart_); 
end 

      

References 

1 A. P. Alivisatos, Science., 1996, 271, 933–937. 

2 K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell and N. P. Balsara, 

Nat. Mater., 2013, 13, 69–73. 

3 P. G. Menon, Chem. Rev., 1994, 94, 1021–1046. 

4 L. V Mattos, G. Jacobs, B. H. Davis and F. B. Noronha, Chem. Rev., 2012, 112, 

4094–4123. 

5 Y.-S. Yu, C. Kim, D. A. Shapiro, M. Farmand, D. Qian, T. Tyliszczak, A. L. D. 

Kilcoyne, R. Celestre, S. Marchesini, J. Joseph, P. Denes, T. Warwick, F. C. 

Strobridge, C. P. Grey, H. Padmore, Y. S. Meng, R. Kostecki and J. Cabana, Nano 

Lett., 2015, 15, 4282–4288. 

6 J. W. Bullard, G. W. Scherer and J. J. Thomas, Cem. Concr. Res., 2015, 74, 26–34. 

7 J. F. YOUNG, H. S. TONG and R. L. Berger, J. Am. Ceram. Soc., 1977, 60, 321–323. 

8 F. Bellmann, T. Sowoidnich, H. M. Ludwig and D. Damidot, Cem. Concr. Res., 2015, 

72, 108–116. 

9 F. Bellmann and G. W. Scherer, Cem. Concr. Res., 2018, 103, 236–244. 

10 S. Garrault and A. Nonat, Langmuir, 2001, 17, 8131–8138. 

11 L. Nicoleau, E. Schreiner and A. Nonat, Cem. Concr. Res., 2014, 59, 118–138. 

12 J. W. Bullard and R. J. Flatt, J. Am. Ceram. Soc., 2010, 93, 1894–1903. 

13 K. L. Scrivener and A. Nonat, Cem. Concr. Res., 2011, 41, 651–665. 

14 E. M. GARTNER and H. M. JENNINGS, J. Am. Ceram. Soc., 1987, 70, 743–749. 

15 E. Gartner, Cem. Concr. Res., 2011, 41, 560–562. 

16 P. Juilland, E. Gallucci, R. Flatt and K. Scrivener, Cem. Concr. Res., 2010, 40, 831–

844. 

17 P. Juilland and E. Gallucci, Cem. Concr. Res., 2015, 76, 180–191. 

18 A. C. Lasaga and A. Luttge, Science (80-. )., 2001, 291, 2400–2404. 

19 E. Pustovgar, R. P. Sangodkar, A. S. Andreev, M. Palacios, B. F. Chmelka, R. J. Flatt 

and J. E. De Lacaillerie, Nat. Commun., 2016, 7, 10952. 

20 L. Nicoleau, A. Nonat and D. Perrey, Cem. Concr. Res., 2013, 47, 14–30. 

21 F. Bellmann, D. Damidot, B. Möser and J. Skibsted, Cem. Concr. Res., 2010, 40, 

875–884. 

22 S. A. Rodger, G. W. Groves, N. J. Clayden and C. M. Dobson, J. Am. Ceram. Soc., 

1988, 71, 91–96. 

23 F. Bellmann, T. Sowoidnich, H. Ludwig and D. Damidot, Cem. Concr. Res., 2012, 

42, 1189–1198. 



 

182 

 

24 J. J. Thomas, H. M. Jennings and J. J. Chen, J. Phys. Chem. C, 2009, 113, 4327–

4334. 

25 R. P. Sangodkar, B. J. Smith, D. Gajan, A. J. Rossini, L. R. Roberts, G. P. 

Funkhouser, A. Lesage, L. Emsley and B. F. Chmelka, J. Am. Chem. Soc., 2015, 137, 

8096–8112. 

26 A. Zingg, F. Winnefeld, L. Holzer, J. Pakusch, S. Becker and L. Gauckler, J. Colloid 

Interface Sci., 2008, 323, 301–312. 

27 L. Alexander and H. P. Klug, J. Appl. Phys. 

28 Challenges in Characterizing Small Particles: Exploring Particles from the Nano- to 

Microscale: A Workshop Summary, National Academies Press, Washington D. C., 

2012. 

29 Q. Hu, M. Aboustait, T. Kim, M. T. Ley, J. W. Bullard, G. Scherer, J. C. Hanan, V. 

Rose, R. Winarski and J. Gelb, Cem. Concr. Res., 2016, 89, 14–26. 

30 E. Gallucci, P. Mathur and K. Scrivener, Cem. Concr. Res., 2010, 40, 4–13. 

31 J. Clauss, K. Schmidt-Rohr and H. W. Spiess, Acta Polym., 1993, 44, 1–17. 

32 K. Schmidt-Rohr and H. W. Spiess, Multidimensional Solid-State NMR and 

Polymers, Academic Press, 1994. 

33 J. Schlagnitweit, M. Tang, M. Baias, S. Richardson, S. Schantz and L. Emsley, J. Am. 

Chem. Soc., 2015, 137, 12482–12485. 

34 J. Clauss, K. Schmidt-Rohr and H. W. Spiess, Acta Polym., 1993, 44, 1–17. 

35 A. Lesage, M. Lelli, D. Gajan, M. A. Caporini, V. Vitzthum, P. Miéville, J. Alauzun, 

A. Roussey, C. Thieuleux, A. Mehdi, G. Bodenhausen, C. Copéret and L. Emsley, J. 

Am. Chem. Soc., 2010, 132, 15459–15461. 

36 A. J. Rossini, A. Zagdoun, M. Lelli, A. Lesage and C. Cop, Acc. Chem. Res., 2013, 

46, 1942–1951. 

37 P. C. A. van der Wel, K.-N. Hu, J. Lewandowski and R. G. Griffin, J. Am. Chem. 

Soc., 2006, 128, 10840–10846. 

38 A. J. Rossini, A. Zagdoun, F. Hegner, M. Schwarzwälder, D. Gajan, C. Copéret, A. 

Lesage and L. Emsley, J. Am. Chem. Soc., 2012, 134, 16899–16908. 

39 A. J. Rossini, C. M. Widdifield, A. Zagdoun, M. Lelli, M. Schwarzwälder, C. 

Copéret, A. Lesage and L. Emsley, J. Am. Chem. Soc., 2014, 136, 2324–2334. 

40 G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and 

Zeolites, John Wiley & Sons: Chichester, 1987. 

41 L. B. Skinner, S. R. Chae, C. J. Benmore, H. R. Wenk and P. J. M. Monteiro, Phys. 

Rev. Lett., 2010, 104, 195502. 

42 R. J.-M. Pellenq, A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip 

and F.-J. Ulm, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 16102–16107. 

43 A. Kumar, B. J. Walder, A. Kunhi Mohamed, A. Hofstetter, B. Srinivasan, A. J. 

Rossini, K. Scrivener, L. Emsley and P. Bowen, J. Phys. Chem. C, 2017, accepted. 

44 J. W. Bullard, H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. 

Schweitzer, K. L. Scrivener and J. J. Thomas, Cem. Concr. Res., 2011, 41, 1208–

1223. 

45 R. S. Arvidson, I. E. Ertan, J. E. Amonette and A. Luttge, Geochim. Cosmochim. 

Acta, 2003, 67, 1623–1634. 

46 V. K. Peterson and M. C. Garci Juenger, Chem. Mater., 2006, 18, 5798–5804. 



 

183 

 

47 R. P. Sangodkar, B. J. Smith, D. Gajan, A. J. Rossini, L. R. Roberts, G. P. 

Funkhouser, A. Lesage, L. Emsley and B. F. Chmelka, J. Am. Chem. Soc., 2015, 137, 

8096–8112. 

48 J. Zhang and G. W. Scherer, Cem. Concr. Res., 2011, 41, 1024–1036. 

49 B. M. Fung, A. K. Khitrin and K. Ermolaev, J. Magn. Reson., 2000, 142, 97–101. 

50 J. Skibsted, in A Practical Guide to Microstructural Analysis of Cementitious 

Materials, CRC Press, 2015, pp. 213–286. 

51 S. Hayashi and K. Hayamizu, Bull. Chem. Soc. Jpn., 1991, 64, 685–687. 

52 A. Zagdoun, G. Casano, O. Ouari, M. Schwarzwälder, A. J. Rossini, F. Aussenac, M. 

Yulikov, G. Jeschke, C. Copéret, A. Lesage, P. Tordo and L. Emsley, J. Am. Chem. 

Soc., 2013, 135, 12790–12797. 

53 A. Zagdoun, A. J. Rossini, D. Gajan, A. Bourdolle, O. Ouari, M. Rosay, W. E. Maas, 

P. Tordo, M. Lelli, L. Emsley, A. Lesage and C. Copéret, Chem. Commun., 2012, 48, 

654–656. 

54 M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P. M. 

Borchard, S. R. Cauffman, K. L. Felch, R. T. Weber, R. J. Temkin, R. G. Griffin and 

W. E. Maas, Phys. Chem. Chem. Phys., 2010, 12, 5850–5860. 

55 H. F. W. Taylor, Cement Chemistry, Academic Press: London, 1990. 

56 W. G. Mumme, Neues Jahrb. Miner. Monatsh.., 1995, 145–160. 

57 A. J. Allen, J. J. Thomas and H. M. Jennings, Nat. Mater., 2007, 6, 311–316. 

58 I. L. Moudrakovski, R. Alizadeh and J. J. Beaudoin, Phys. Chem. Chem. Phys., 2010, 

12, 6961–6969. 

59 F. Nishi, Y. Takeuchi and I. Maki, Zeitschrift fur Krist., 1985, 172, 297–314. 

60 B. J. Smith, A. Rawal, G. P. Funkhouser, L. R. Roberts, V. Gupta, J. N. Israelachvili 

and B. F. Chmelka, Proc. Natl. Acad. Sci. U.S.A., 2011, 108, 8949–54. 

61 A. Pines, M. G. Gibby and J. S. Waugh, J. Chem. Phys., 1972, 56, 1776–1777. 

62 B. J. Walder, N. A. Prisco, F. M. Paruzzo, J. R. Yarava, B. F. Chmelka and L. 

Emsley, J. Phys. Chem. Lett., 2019, 10, 5064–5069. 

63 A. Pinon, J. Schlagnitweit, P. Berruyer, A. Rossini, M. Lelli, E. Socie, M. Tang, T. 

Pham, A. Lesage and L. Emsley, J. Phys. Chem. C, 2017, 121, 15993–16005. 

64 G. Geng, R. J. Myers, M. J. A. Qomi and P. J. M. Monteiro, Sci. Rep., 2017, 7, 1–8. 

65 K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero and S. Yip, 

Proc. Natl. Acad. Sci., 2016, 113, 2029–2034. 

66 R. P. Sangodkar, B. J. Smith, D. Gajan, A. J. Rossini, L. R. Roberts, G. P. 

Funkhouser, A. Lesage, L. Emsley, B. F. Chmelka, H. Champs, I. De Sciences, A. 

Cnrs, E. N. S. Lyon, U. C. B. Lyon and U. De Lyon, J. Am. Chem. Soc., 2015, 137, 

8096–8112. 

67 D. J. Hornbaker, R. Albert, I. Albert, A. L. Barabasi and P. Schiffer, Nature, 1997, 

387, 765. 

 

 

 

 

 

 



 

184 

 

Chapter VI.  

Atomic- and Meso-scale Compositions of Hydrated 

Volcanic Glasses in Roman-Inspired Structural Solids 

N. Prisco; W. Pearl; S. Lewis; P. Corona; Z. Berkson; K. Weigandt; M. Helgeson; B. 

Chmelka. To be submitted to J. Am. Chem. Soc. 

6.1. Abstract 

Hydrothermal conversion of multicomponent aluminosilicate glasses into value-added 

products, including zeolites or cementitious materials, depends on complex hydration, 

dissolution, crystallization, and transport processes that are difficult to monitor by 

conventional characterization methods. Despite similarities in bulk compositions, local 

structural differences between vitreous precursors may result in significant variations in the 

quantities, distributions, and types of hydrothermal products that are formed. This has 

important consequences for Roman-inspired pozzolanic structural solids, which are of high 

current interest, due to their improved durability and reduced carbon footprint. Importantly, 

in such cementitious mixtures, similar volcanic glasses (i.e., rhyolite) procured from different 

geographic formations may, nevertheless, exhibit dramatically different propensities for 

mechanical strength development. Advanced solid-state nuclear magnetic resonance (NMR) 

spectroscopy, small-angle neutron scattering (SANS), and macroscopic property analyses 

enable atomic-scale differences to be probed in volcanic glasses that lack long-range structural 
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order.  In particular, two-dimensional (2D) solid-state 27Al{29Si} heteronuclear correlation 

NMR analyses reveal distinct distributions of Al-O-Si moieties in unhydrated volcanic glasses 

and the subsequent atomic-level changes that occur during hydration and conversion into 

cementitious binder phases. The NMR and SANS results show that the volcanic glasses are 

compositionally heterogeneous over nanoscale dimensions (1−25 nm) and comprised of 

locally ordered subunits that are similar to crystalline tectosilicate minerals, zeolites, or SiO2 

polymorphs. These analyses indicate that hydration activity is strongly correlated with the 

extent of Al incorporation into siliceous precursor domains, with Al-rich tectosilicate domains 

exhibiting high propensities for conversion into cementitious hydrates. Furthermore, the 

formation of binder phases, such as calcium aluminosilicate hydrate, a complicated layered 

mineral with varying extents of condensation, distributions of several distinct AlIV sites, and 

local structural order, are shown to be correlated with the development of mechanical strength. 

New composition-structure-property relationships are obtained that provide atomic-scale 

criteria for the design and optimization of cementious material compositions, reveal 

fundamental insights into the geological formation of vitreous pyroclastic minerals, and 

provide new understanding of structural mortars similar to those used in the construction of 

important cultural heritage sites. 

6.2. Introduction 

Depending on their physical origin, natural or synthetic aluminosilicate glasses can 

manifest vast differences in their physicochemical properties that may be attributed to 

variations in local compositions and structural ordering.1,2 Hydrothermal reactions of 
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disordered precursors, which occur commonly in zeolite syntheses or during formation of 

pozzolanic concretes, often involve complicated and poorly-understood processes that result 

in heterogenous solid products, the properties of which are difficult to analyze, predict, or 

control. Ancient Greco-Roman societies first discovered that pozzolana, a class of vitreous 

pyroclastic minerals, reacts with hydrated lime, CaOH2 (aq), to form a cementitious binder 

that is an important substituent in aggregate concretes.3,4 In modern cement formulations, 

pozzolans are increasingly incorporated to improve mechanical strength, extend longevity, 

and to partially offset the 5-8% of global anthropomorphic CO2 emissions associated with 

Portland cement.5 Portland cement consists of complex blends of crystalline silicates and 

aluminates that react with water to form semi-crystalline calcium silicate hydrates.6,7 These 

mixtures involve a delicate balance of coupled hydration, dissolution, and crystallization 

processes that enable short-term workability and long-term strength development, which are 

crucial to their applications.8 By comparison, insights into the transformations undergone by 

vitreous pozzolans, their dependence on local compositions, and how they influence 

macroscopic hydration behaviors are even more challenging to establish, especially at the 

atomic-level. Under alkaline conditions, these heterogeneous non-equilibrium solid-oxide 

mixtures may partially react to form geopolymeric or other cementitious binder phases, which 

are of high current interest.9 Although they often have similar bulk compositions, however, 

pozzolans can exhibit vastly different propensities for strength development in cementitious 

mixtures. Elucidating the composition-structure-property relationships associated with the 

hydration of vitreous aluminosilicate networks and their resulting solid products (e.g., 

mortars) is important for numerous technological, archaeological, and cultural heritage 

applications.  
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The use of finely ground volcanic ash in structural mortars dates back to at least 300 B.C., 

with Greek and Roman civilizations initially sourcing material from deposits near Santorini 

and Mt. Vesuvius, respectively10. Roman aggregate concretes are believed to be comprised of 

volcanic ash, aggregate rock, as little as 10 wt% quicklime (CaO), and have been intentionally 

hydrated using seawater or other chemical admixtures to improve mechanical performance. 

The latent heat of CaO hydration has been identified as an important contributor to early 

strength development in these systems.11 Recent investigations of a Roman marine concrete 

by synchrotron X-ray diffraction analyses have found that the mechanical strength and 

superior durability of these 2,000 year-old materials can be attributed to the formation of Al-

rich binder phases, including calcium aluminosilicate hydrates and zeolitic minerals.4 

In cementitious mixtures, natural pozzolans may be partially consumed to form 

cementitious binder phases or otherwise function as an aggregate allowing for the nucleation 

of hydration products. Both calcium silicate hydrates formed from Portland cement and 

calcium aluminosilicate hydrates formed from Al-rich pozzolans are believed to be structural 

analogues of the rare mineral tobermorite. However, poorly crystalline cement hydrates can 

accommodate significant amounts of structural disorder, point defects, and non-stoichiometric 

and heterogeneous heteroatom contents, which may influence their mechanical properties.7,12 

Al-substitution into cementitious hydrates can occur in different components, sites, or local 

coordination environments, resulting in distributions of AlIV, AlV, and AlVI species.6 Whereas 

AlVI is most abundant among hydration products formed from Portland cement, the hydration 

of Al-rich pozzolans can yield significant amounts of AlIV species that are attributed to 

substitution of Si tetrahedra in the phyllosilicate layers of calcium silicate hydrate. It has been 

proposed that incorporation of AlIV species induces crosslinks that increase the modulus of 
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nanoscale calcium aluminosilicate hydrates.13,14 However, it remains unclear how Al 

substitution may influence -Si-O-Si- connectivity and whether these nanoscale structural 

variations may lead to either improved strength or durability. An alternate hypothesis for the 

mechanical resilience of Roman marine concrete is that Al-rich binder phases may promote a 

more favorable cement-aggregate interaction, as evidenced by observation of low-temperature 

zeolitization in ancient mortars.4 This motivates further structural elucidation to identify 

unambiguously the compositions and distributions of Al heteroatoms within ordered or 

disordered cementitious binder phases. 

Although the ancient Romans standardized sources of reactive volcanic ash for specific 

applications,11 the performance of other natural or synthetic pozzolans is highly variable and 

challenging to predict. More commonly, modern pozzolans include vitreous or semi-

crystalline industrial byproducts, such as fly-ash, blast furnace slag, or silica fume, which are 

nearing complete utilization.5 For many industrial processes, including ferrosilicon 

production, byproduct siliceous pozzolans are a high-value product and contribute importantly 

to the overall economics. Importantly, pozzolans consume excess Ca(OH)2, a byproduct of 

Ca3SiO5 hydration that can result in volume-expansion and subsequent stress-cracking (e.g., 

via alkali silica reactions15), which contributes to material failure. Despite their desirable 

characteristics, natural pozzolans from different geographic sources exhibit vastly different 

hydration activities that may be attributed to their unique petrological origins. For rhyolitic 

volcanic glasses, similar bulk compositions might be expected regardless of geographic 

origin, as magma flowability1 is strongly dependent on the ratios of Si, Al, and charge-

modifying cations, such as Na+ or K+). However, depending on the quenching rate, viscosity, 

and composition of the aluminosilicate melt, significantly different distributions of local 
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structures may be preserved, influencing physicochemical properties, including chemical 

stability and hydrothermal reactivity. Elucidation of local structural features in quenched 

aluminosilicate melts remains of high fundamental interest to the Earth sciences and for many 

material science applications, including optical materials, ceramics, and cementitious solids. 

Though the volcanic glasses lack long-range order, local structural ordering may 

nevertheless be prevalent in glass compositions over short length scales (0.2 to 2 nm).16,17 For 

example, short-range solute-based clusters are believed to occur in window glass16 and 

amorphous metals18 and contribute to their novel material properties. This is especially 

pertinent to dissolution, hydration, and crystallization processes involved in cement 

hydration12 or zeolite synthesis,19,20 since the structure of vitreous precursors may influence 

dissolution and subsequent crystallization pathways or kinetics. For multicomponent Si-rich 

aluminosilicate melts, given the many stable Na+/K+- or Na+/Ca2+-type feldspar or 

feldspathoid phases and their associated low-temperature polymorphs, partial crystallization 

processes during quenching may result in the formation of locally ordered subunits without 

long-range periodicity.21–23 Although feldspar minerals comprise 50% of the Earth’s crust and 

are widely studied, even relatively well-ordered specimens may include variations in Al or Si 

distributions and zoning of different cation species, which are not well-described by reciprocal 

space methods.23 Similarly, for highly siliceous glasses, it has been proposed that clusters of 

metal cations may coalesce into structures (i.e., percolation clusters or channels) that can 

influence ion transport (e.g., by the mixed alkali effect) and chemical stability. This appears 

to be similarly the case for Na+,K+-rich aluminosilicate systems with similar compositions to 

rhyolitic volcanic glasses, based on measurements of melt viscosity,24 ionic conductivity,25 

local structure by NMR, Raman, and X-ray absorption spectroscopy,24,26–28 synchrotron X-
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ray scattering,29 and molecular dynamics simulations.25 Here, Roman-inspired mortars were 

prepared from different volcanic glasses (i.e., rhyolite) with similar bulk compositions, similar 

lack of long-range structural order, and similar particle sizes, distributions, and morphologies, 

but which exhibited dramatically different hydration properties and macroscopic mechanical 

behaviors. By using a combination of advanced 1D and 2D solid-state nuclear magnetic 

resonance (NMR) spectroscopy techniques and complementary small-angle neutron 

scattering (SANS) analyses, differences in the atomic-level and mesoscale compositions and 

structures of the glasses are established and correlated to their hydration properties. 

Importantly, certain types and distributions of volcanic glass structural features, specifically 

AlIV species dispersed in silica-rich networks, are determined to be particularly influential in 

hydrothermal reaction processes and account for the differences in the types and quantities of 

cementitious hydration products and their resulting mechanical properties. 

6.3. Materials and Methods 

Roman-inspired pozzolanic concrete mortars were prepared using volcanic glass sourced 

from the Rocky Mountain region, U.S.A. and other rhyolitic volcanic glasses procured from 

different geographic sources for comparison. Roman-inspired pozzolanic concretes were 

prepared using 3:1 volcanic glass:Ca3SiO5 mixtures hydrated for 8 days at 90 °C. In 

comparable ancient Roman formulations using quicklime (CaO), the enthalpies of hydration 

reactions in meter-tick mortars could maintain temperatures of ca. 90 °C for several months 

during prolonged solidification processes.11 High purity triclinic tricalcium silicate (Ca3SiO5, 

Mineral Research Processing, France) was used in place of ordinary Portland cement. The 

Ca3SiO5 used here contained <0.1 %w Al impurities enabling 27Al isotropic tracking of 



 

191 

 

transformations involving Al-containing volcanic glasses. Several ground rhyolitic volcanic 

glasses of different geographic origins were examined in order of decreasing compressive 

strength development: Rocky Mountain #1, East Asian #2, and Rocky Mountain #3 were 

supplied from the collection of Halliburton. In Table 6.1., the seven-day compressive strength 

of hydrated 3:1 volcanic glass:class A gray oilwell cement blends are compared.     

Table 6.1) Compressive strength, surface area, and particle sizes of different volcanic glasses. 

 BET [m2/g] Particle Size-D50 [µm] Compressive Strength (psi) 

#1 4.2 17 1024 

#2 3.9 95 70 

#3 3.6 16 324 

 

 Unless otherwise specified, all volcanic glass-cement mixtures were hydrated using a water-

to-solids ratio of 0.58 mL/mg, consisting of a brine solution of 4% by-weight-of-solids (bwos) 

Na2SO4 and 4% NaCl. Generally, it has been observed that NaCl/Na2SO4 (aq.) have an 

acceleratory effect on the hydration of volcanic glass-cement blends at elevated temperatures, 

as shown in Figure 6.1, but this effect remains poorly understood. One possible explanation, 

is that alkali cations (Na+/K+) may depolymerize -Si-O-Si- bonds in calcium silicate hydrates, 

thereby promoting the formation of reactive sodium silicate precursors or gels.30 The presence 

of NaCl is also known to accelerate the dissolution of amorphous silica, which may account 

for the improved hydration activity of volcanic glass blends.31 Additionally, in the 

hydrothermal synthesis of tobermorite, excess Na+ promotes the formation of non-tobermorite 

phases, including feldspathoids, zeolites, or poorly ordered sodium aluminosilicate hydrates 
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all of which may function as cementitious binders.32–34 Similar types of products have been 

identified in the binder phase of ancient Roman seawater concrete as discussed above. 

 

FIGURE 6.1) Early compressive strength versus temperature of 3:1 Rocky Mountain #1 

volcanic glass:class A oilwell cement hydrated without additives (green), with 2% bwos 

NaCl+K2SO4 (blue,) or with 2% bwos NaCl+Na2SO4 (red) The gray trace corresponds to the 

time axis (hours). Compressive strength (psi) of hydrating pastes is estimated using an 

ultrasonic pulse velocity test. 

 

Bulk elemental analysis was acquired using a Rigaku ZSX Primus IV Wavelength 

Dispersive X-Ray Fluorescence (XRF) analyzer. Prior to analysis, the samples were pelletized 

into 10 mm wafers. Table 6.2, shows XRF elemental analyses (wt% oxide basis) for the three 

rhyolitic volcanic glasses indicating that they have similar bulk compositions. As opposed to 

network charge-modifying cations (Na+, K+, Ca2+) which may depolymerize Si-O-Si bonds in 

melts to form bridging or non-bridging oxide bonds, AlIII species predominantly exist as AlO4
- 

tetrahedra and must be charge compensated. In tectosilicates, these AlO4
- tetrahedra are fully 

charge balanced and the network has a high degree of connectivity. Assuming that all Na+, 

K+, and Ca2+ network modifiers are in tectosilicate environments corresponding to mixtures 
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of either the alkali feldspar series NaxK1-xAlSi3O8 or the plagioclase feldspar series NaxCa1-

xAl2-xSi2+xO8, then a range for the SiO2 molar excess, fsilica, can be estimated to be bounded 

between, 

𝑛Si − 3(𝑛Na + 𝑛K) − 2𝑛Ca

𝑛Si
   <  𝑓silica  <    

𝑛Si − 3𝑛K − 𝑛Na (2 +
𝑛Na

𝑛Na + 𝑛Ca
)

𝑛Si
     , 

(1) 

where nSi, nNa, nK, and nCa are the total moles of Si, Na+, K+, and Ca2+. Here, fsilica 

corresponds to the molar fraction of Si in excess of a feldspar composition. All three volcanic 

glasses are SiO2 oversaturated, suggesting that a significant fraction of -Si-O-Si- environments 

are siliceous and not charge compensated by metal cations, as indicated by fsilica values in the 

range 0.39-0.49 shown in Table 6.2. Stoichiometrically, the entire volcanic glass series is 

metaluminous, Al2O3<(Na2O+K2O+CaO) and Al2O3 >(Na2O+K2O). Although such bulk 

analyses provide insights regarding expected network connectivity, the small variations in 

bulk compositions alone cannot account for the large differences in the hydration rates and 

products of the volcanic glasses. 

Wide-angle X-ray scattering (WAXS) patterns were acquired on a Panalytical Empyrean 

powder diffractometer using Cu Kα radiation with a wavelength of 1.54 Å. The volcanic 

glasses were scanned at 2°/min between 2θ angles of 15−65° and exhibited patterns that were 

dominated by broad scattering intensity from predominant glass-like components and were 

overlain with narrow reflections that were indexable to quartz (Q), plagioclase feldspar 

minerals (P), and possibly small amounts of magnetite (M) and cristobalite (C). Rietveld 

refinement was used to determine the amorphous fraction, which is >95% for the series, see 

Figure 6.1. Many of these XRD-detectable crystalline components can form by devitrification 

processes of unstable vitreous material near volcanic glass grain surfaces or within vesicles.35 
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Low-temperature components, such as quartz and feldspar, may crystallize directly from the 

primary magma phase under slow quenching conditions. Alternatively, dilute Fe can act as a 

nucleation agent, promoting the formation of Fe-containing crystallites including magnetite, 

pyroxenes, or nepheline during quenching.28 While the presence of these minerals provides 

evidence regarding the petrology of the volcanic glasses, their small relative amounts and 

relatively high stabilities means that they are expected to contribute negligibly to overall 

hydration activity. 

Table 6.2) Representative compositions (wt% on oxide basis) of volcanic glasses from X-ray 

Fluorescence (XRF) analyses. 

 SiO2 Al2O3 K2O Na2O CaO Fe2O3 other fsilica
a 

#1 75.3 12.8 6.2 2.6 1.1 1.3 0.7 0.46 – 

0.49 

#2 73.6 13.5 6.5 2.8 1.6 1.5 0.5 0.41 – 

0.46 

#3 74.3 13.9 6.3 3.4 0.9 0.8 0.5 0.39 – 

0.42 

a fsilica is the estimated molar excess of SiO2 based on feldspar stoichiometry 

considerations 
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FIGURE 6.2) WAXS patterns and optical images of (a) Rocky Mountain volcanic glass #1 

(white), (b) Rocky Mountain volcanic glass #3 (beige), and (c) Rocky Mountain volcanic glass 

#2 (light gray). Reflections indexable to quartz (Q), plagioclase minerals (P) magnetite (M), 

and cristobalite (C) are shown. 

 

Solid-state NMR techniques are sensitive to ordered and disordered environments and 

have been used extensively to measure bulk compositions, local coordination environments, 

and network connectivity in aluminosilicate glasses, zeolites,36 and cement hydrates.14 Solid-

state 1D single-pulse 29Si NMR and 1D spin-echo 29Si saturation recovery NMR were 

conducted at 295 K on a Bruker 500 MHz AVANCE-II NMR spectrometer operating at 99.31 

MHz for 29Si with an 11.7 T widebore superconducting magnet, using an H-X magic-angle-

spinning (MAS) probehead at 10 kHz MAS. Solid-state 1D single-pulse 27Al NMR and 2D 

27Al 3Q-MAS NMR were conducted at 295 K on a Bruker 800 MHz AVANCE-III NMR 

spectrometer operating at 208.49 MHz for 27Al with an 18.8 T superconducting magnet and 

using an H-X MAS probehead at 22.5 kHz MAS. NMR lineshape analyses were conducted 

using the software DMFit, with Gaussian or Lorentzian line shapes fit according to signal 
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position, width, and amplitude. The 29Si NMR isotropic chemical shifts were externally 

referenced to tetramethylsilane, using tetrakis(trimethylsilyl)silane [((CH3)3Si)4Si] as a 

secondary standard. The 27Al NMR shifts were externally referenced to 1M Al(NO3)3 

solutions. Conventional 1D 29Si (I = 1/2, 4.7% abundance) and 27Al (I = 5/2, 100% abundance) 

NMR analyses typically only indicate the presence of broad overlapping distributions of local 

tetrahedral environments characteristic of a disordered solid; however the latter, supported by 

2D 27Al 3Q-MAS measurements, can be used to estimate the amounts of “NMR visible” AlIV, 

AlV, and AlVI species. Such techniques provide important insights regarding bulk 

compositions but generally have insufficient resolution to identify local structural variations 

in complex solid-oxide mixtures. 

Multi-dimensional 2D NMR techniques provide improved spectral resolution and may be 

used to measure local Si and Al environments in heterogeneous solids.37,38 Low-temperature 

2D 27Al{29Si} dipolar-mediated HMQC NMR spectra were conducted at 95 K on a Bruker 

400 MHz ASCEND DNP-NMR spectrometer operating at 400.13 MHz for 1H, 79.50 for 29Si,  

and 104.26 for 27Al with an 9.4 T widebore superconducting magnet and using a variable-

temperature H-X MAS probehead at 8 kHz MAS. Each HMQC experiment was acquired with 

10000 – 15000 scans, 10t1 increments, a recycle delay of 0.5 s, a R42 dipolar recoupling block 

of 4.5 ms, and 27Al double-frequency sweep. Central-transition selective 27Al pulses in the 

HMQC experiment used a 90° pulse length of 10 µs and low r.f. powers. The HMQC 

experiments selectively detect through-space dipole-dipole-coupled 27Al–29Si spin pairs and 

correlate their respective signals to yield improved spectral resolution. The time domain data 

were processed using a 2D Fourier transform to obtain a two-dimensional (2D) contour map 

of correlated signal intensity with the 27Al shift (ppm) and the 29Si chemical shift (ppm) on 
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the x-axis and y-axis referred to as the direct and indirect dimensions, respectively. Signal 

intensity in the 2D correlation map is dependent both on the abundance of the 27Al–29Si spin 

pairs and the strength of their mutual dipole-dipole interactions, which scale with distance as 

~1/r3 and atomic mobility. This provides a means to probe short-range structural order by 

direct measurement of Al-O-Si environments in the unhydrated volcanic glasses and enables 

tracking of 27Al and 29Si species in the volcanic glasses as they transform into cementitious 

binders upon hydration. In addition, the HMQC analyses are used to elucidate preferential 

AlIV siting and to semi-quantitatively estimate the degree of condensation of resulting calcium 

aluminosilicate hydrates, which vary among the different volcanic glasses. 

SANS measurements were performed on unhydrated Rocky Mountain #1 volcanic glasses 

to identify mesoscale compositional and structural heterogeneities. Contrast-matching 

experiments were conducted on suspensions of Rocky Mountain #1 volcanic glasses in 

D2O/H2O solvent using the NGB 10 m SANS instrument at the National Institute of Standards 

and Technology Center for Neutron Research (Gaithersburg, MD). Scattering from each 

sample was collected in the q-range from 0.004-0.9 Å-1 with the wavelengths   = 5 and 12 Å 

and a wavelength spread of  = 0.14. The scattering vector q is defined as q = 4 sin(/2)/  

where   is the angle at which the neutron is scattered and  is the neutron wavelength. The 

scattering intensities were corrected for empty cell, plexiglass standard, and detector 

efficiency. Scattering patterns were reduced using standard NCNR protocols with Igor PRO 

software. 
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6.4. Measuring local Al-O-Si distribution of unhydrated volcanic glasses 

As indicated by the WAXS analyses in Figure 6.2, the volcanic glasses are predominantly 

disordered and glass-like, comprised of a large majority fraction that lacks long-range 

structural order. Such disorder is also manifested at the atomic-level by quantitative solid-

state 1D 29Si and 27Al MAS NMR spectra in Appendix 6A1, Fig. 6A1, which show broad 

overlapping signals that correspond principally to tetrahedrally coordinated Si and Al atoms, 

which are in distributions of local environments that are characteristic of multicomponent 

aluminosilicate glasses. The 29Si NMR signal intensity of Rocky Mountain #1 volcanic glass 

measured at a field strength of 11.7 T and 10 kHz MAS may be represented by Gaussian 

distributions centered at -95 ppm (I = 24%, fwhm = 16.7 ppm) and -105 ppm (I = 76%, fwhm 

= 15.9 ppm) consistent with a high degree of network connectivity. The 27Al NMR signal 

intensity of Rocky Mountain #1 volcanic glass measured at a field strength of 18.8 T and 22 

kHz MAS may be represented by Gaussian distributions centered at 55 ppm (I = 97%, fwhm 

= 12.4 ppm) and 5 ppm (3%, fwhm = 12.2 ppm) associated with AlIV and AlVI species 

respectively with broad distributions of isotropic chemical shift and residual second-order 

quadrupolar interactions. As opposed to AlIV, which most commonly participates as a 

‘network former’, both AlV and AlVI typically act as charge-balancing ‘network modifiers’. 

The presence of AlV or AlVI can significantly increase aluminosilicate melt viscosity and glass 

stability which may negatively impact hydration activity. However, in general, conventional 

scattering and spectroscopy techniques cannot resolve local structural differences or -Si-O-

Al- spatial distributions within heterogeneous non-equilibrium solid-oxide mixtures. 

In contrast to quantitative solid-state 1D 27Al or 29Si NMR which cannot resolve overlapping 

distributions of tetrahedral environments, dipolar-mediated 2D 27Al{29Si} HMQC analyses 
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can measure and partially-resolve local Al-O-Si distributions arising from distinct 

composition domains. Of the two NMR-active nuclei, the 29Si chemical shift affords greater 

resolution with respect to changes in local bonding environments and network connectivity. 

By convention, tetrahedral 29Si species are described using the notation Qn(m·Al), where n = 

0, 1, 2, 3, or 4 refers to increasing extents of cross-linking corresponding to the number of 

covalent Si-O-Al or Si-O-Si bonds, and m is the number of Al atoms (m ≤ n) that are covalently 

bonded to Si atoms through bridging oxygen atoms. The 29Si chemical shift typically ranges 

from -65 ppm for Q0(0·Al) species to -115 ppm for Q4(0·Al) species. Additionally, each 

covalently bonded Al (m = 1, 2, 3…) displaces the 29Si isotropic chemical shift by ~ 3 to 7 

ppm to higher frequency. For materials with long-range order, tetrahedral bond angles 

generally exhibit a narrow discrete distribution that is commensurate with the crystal structure 

and accompanied also by relatively narrow 29Si NMR linewidths. In materials such as volcanic 

glasses or other glasses with poorly ordered aluminosilicate networks, bond lengths may be 

regarded as similar, though the bond angles are distorted from that associated with tetrahedral 

symmetry to accommodate distributions of local environments and charge-modifying cations. 

In principle, for AlIV in aluminosilicates, the 27Al isotropic chemical shift is approximately 

linearly related to the mean T-O-T bond angle (α) between tetrahedrally coordinated Si or Al 

atoms in the network and may be approximated by the relation, α = (137- 𝛿27Al,iso)/0.532, as 

discussed elsewhere.39 However, spectral resolution is limited by the relatively narrow 27Al 

isotropic chemical shift range ~50 to 80 ppm for AlIV, broadening due to second-order 

quadrupolar interactions, large distributions of T-O-T angles, and the effects of coordination 

to different modifying cations. Nevertheless, 2D 27Al{29Si} HMQC spectra yield a correlated 

map of 27Al and 29Si frequencies between dipole-dipole-coupled nuclei, which allow distinct 
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Si-O-Al distributions or local other environments to be discerned in complex non-equilibrium 

solid oxide mixtures. 

For a highly cross-linked aluminosilicate network, the extent of incorporation of four-

coordinate Al heteroatoms within otherwise predominantly siliceous networks is associated 

with Q4(0·Al) 29Si species. As indicated by the bulk elemental analyses in Table 6.2, rhyolitic 

volcanic glasses are oversaturated with SiO2, such that significant amounts of Q4(0Al) species 

are expected. For a phase-separated system with highly siliceous and Al-rich tectosilicate 

regions, relatively large domains would be expected to have small fractions of 27Al- Q4(0·Al) 

29Si species, mostly at their mutual interfaces, and correspondingly manifest reduced 

correlated intensity in the 27Al dimension at ca. 55 ppm with signals in the 29Si dimension in 

the range -106 ppm to -115 ppm, as depicted schematically by the red arrows and dashed red 

boxes in Figure 6.3. For example in Figure 6.3a, the 2D 27Al{29Si} HMQC spectrum of 

unhydrated volcanic glass #1 shows much weaker correlated signal intensity in the 27Al- 

Q4(0·Al) 29Si region (small dashed red box), compared to the spectra for volcanic glass #3 

(Fig. 6.3b) and volcanic glass #2 (Fig. 6.3c). Interestingly, in the 2D 27Al{29Si} HMQC spectra 

in Figure 6.3, the volcanic glasses exhibit markedly different -Si-O-Al distributions 

suggesting both varying degrees of local order and extents of Al-SiO2 intermixing. In Fig. 

6.3b, 27Al-Q4(0·Al) 29Si species yield correlated intensity in the high 29Si chemical shift region 

spanning from -104 to -115 ppm (dashed red box).  

For these volcanic glasses, the mechanical strength of hydrated volcanic glass-cement 

blends is found to be inversely correlated to the amount of 27Al-Q4(0·Al) 29Si intensity; in 

other words, Al-SiO2 intermixing is detrimental to pozzolanic activity. It is known that the 

interaction of dilute Al heteroatoms with highly siliceous networks can impede dissolution, a 



 

201 

 

phenomenon that accounts for the long-term stability of ocean diatoms31. Alternatively, 

although volcanic glass granules are vesicular, they lack nanoporosity such that the formation 

of reactive Al-rich tectosilicate domains could enable preferential transformation of volcanic 

glasses granules within hydrating cementitious mixtures. 

 

FIGURE 6.3) Correlated atomic-scale Al and Si environments in unhydrated (a) volcanic 

glass #1, (b) volcanic glass #3, and (c) volcanic glass #2 from left-to-right as determined by 

2D 27Al{29Si} dipolar-mediated HMQC NMR spectra acquired at 100 K, 9.4 T, and 8 kHz 

MAS. Schematic diagrams of Al-O-Si distributions in unhydrated volcanic glass with Si (blue 

tetrahedra), Al (orange tetrahedra), K+ (purple spheres), and Na+ (orange spheres). Red arrows 

correspond to dipolar-coupled 27AlIV-O-29Si Q4(0Al) moieties, as established by correlated 2D  

intensity in the dashed red boxes of the 2D NMR spectra, and which manifest different extents 

of AlIV incorporation into densely cross-linked siliceous networks. Purple band in (a) 

corresponds to evidence of feldspathoid-type moieties. 

 

The 2D 27Al{29Si} dipolar-mediated HMQC spectra unambiguously demonstrates that, 

despite the broad distributions observed by conventional 1D 27Al or 29Si NMR, volcanic glass 

#1 is comprised of numerous overlapping distinct local environments with varying degrees of 

local order. For example, a relatively narrow ridge spanning 62 to 65 ppm in the 27Al 

dimension and spanning -86 to -96 ppm in the 29Si dimensions is consistent with the Al-rich 
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feldspathoid mineral series40 or zeolitic environment which has a Si/Al ratio approaching 

unity. The relatively narrow linewidth in the 27Al dimension over this region suggests a 

relatively narrow distribution of tetrahedral bond angles consistent with increased short-range 

order. Importantly, crystallization of Al-rich phases represent a deleterious phenomenon in 

the vitrification of high-level nuclear wastes, but in concentrating AlO4
- from the surrounding 

matrix22, may be desirable in promoting hydration activity in cementitious mixtures. Volcanic 

glass #1 also contains broad distributions spanning 50 to 60 ppm in the 27Al dimension and -

85 to -104 ppm in the 29Si dimension consistent with a Si-rich feldspar glassy matrix23 that 

dominates the 2D 27Al{29Si} intensity map. There is a low intensity shoulder spanning 35 to 

45 ppm in the 27Al dimension (blue dashed box) which may be attributed to either extra 

framework AlIV species as observed in zeolites and mullite-like minerals,39 or otherwise 

attributed to a local environment approaching that of penta-coordinated AlV. These extra 

framework Al species might be expected to act as strong ‘network modifiers’ similarly to 

metal cations rather than as ‘network formers’. Similarly to Al-Q4(0·Al) intensity, 2D 

27Al{29Si} intensity over 35 to 45 ppm in the 27Al dimensions is inversely correlated with 

mechanical strength development for the series volcanic glass #1 > volcanic glass #3 > 

volcanic glass #2. Comparatively, volcanic glass #2 exhibits similar types of Al-O-Si 

environments, but with significantly broader distributions of correlated intensity associated 

with either a more random network or smaller clusters of ordered domains. For a similar 

number of scans, greater overall 2D 27Al{29Si} intensity is obtained for volcanic glass #2 

consistent with an increased prevalence of Al-SiO2 intermixing. Large amounts of 27Al-

Q4(0·Al) 29Si intensity for volcanic glass #2 suggest a high extent of Al-SiO2 intermixing 

consistent with a more homogeneous glass composition expected for a rapidly quenched melt. 
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Weaker overall 2D 27Al{29Si} intensity and specifically correlated intensity associated with 

27Al-Q4(0·Al) 29Si species for volcanic glass #1 suggest that Al-rich tectosilicate domains are 

large enough, at least several bond distances, that through-space correlations with surrounding 

silica rich regions are negligible. It is hypothesized that volcanic glass #1 was formed under 

conditions which allowed for a greater extent of devitrification or partial crystallization 

processes to occur (i.e., reduced melt viscosity, slower quenching). This is represented in the 

schematic structures for volcanic glass #1, volcanic glass #3, and volcanic glass #2 proposed 

in Fig. 6.3., which correspond to Al-rich tectosilicate domains of varying dimensions. By 

Lowenstein’s rule, it is generally expected that aluminosilicate glasses with highly intermixed 

Al-SiO2 are more thermodynamically stable and will resist alkaline hydrolysis.41 By this 

hypothesis, we anticipate that volcanic glasses with higher extents of Al/SiO2 avoidance will 

exhibit higher propensities to form calcium aluminosilicate hydrates which is correlated with 

improved mechanical performance. 

6.5. Compositions of Fe-containing phases in Rocky Mountain volcanic 

glass #1 

Commonly, in magnetic resonance, dilute amounts of paramagnetic dopants are 

incorporated as a contrast agent to enhance relaxation rates and shorten overall experiment 

times. From the XRF analysis, volcanic glass #1 contains ~1.3 wt% of Fe2O3 (oxide basis), 

which results in relatively short 29Si T1 relaxation times. Specifically, 29Si saturation recovery 

curves of volcanic glass #1 exhibit a stretched-exponential dependence consistent with an 

inhomogeneous distribution of paramagnetic centers.42 As discussed previously, in many 

magma compositions, Fe3+ is preferentially excluded from feldspar-like environments and 
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concentrated in Fe-containing mineral phases upon quenching. Recently, it has been 

demonstrated that dilute Fe3+ concentrations in sodium aluminosilicate melts can promote the 

formation of nephelines which depletes Al from the surrounding glassy matrix43. Here, spin-

echo T1-filtered 29Si NMR measurements allow for the preferential detection of the fastest 

relaxing 29Si NMR visible species which are those closest to paramagnetic centers. In Figure 

6.4, the T1-filtered 1D 29Si spin-echo spectra of volcanic glass #1  acquired at short filter delays 

(τ = 2 ms) indicates that the Fe-containing regions have improved local order in comparison 

to the bulk. 

 
FIGURE 6.4) Solid-state 1D 29Si spin-echo MAS NMR spectra of unhydrated Rocky 

Mountain volcanic glass #1 acquired at 295 K, 10 kHz MAS, 11.75 T, using an echo delay 

(τecho) of 90 µs. The spectra were each acquired using 24,500 scans but with different 

nuclear spin-lattice relaxation-time filter delays of τT1 = 2 ms, 7 ms, or 100 ms. 
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Notably, for τ = 2 ms, the contributions of feldspar-like Q4(1Al) 29Si environments ca. -

95 to -100 ppm are diminished in comparison to feldspathoid-like Q4(4Al) and Q4(3Al) 29Si 

environments ca. -80 to -95 ppm. Notably there are fast-relaxing distributions of Q4(0Al) 29Si 

species with signals at ca. -107 to -109 ppm, which may be attributed to quartz-like 

environments, cristobalite-like environments, or amorphous silica. Additionally, there is a 

resolved intensity shoulder ca. -111 to -114 ppm which may be attributed to tridymite-like 

SiO2. The T1-filtered 29Si NMR measurements establish that paramagnetic impurities (e.g., 

Fe2+ or Fe3+) are preferentially concentrated into Al-rich and highly siliceous environments 

but are excluded from feldspar-like environments ca. -95 to -104 ppm which otherwise make 

up a significant fraction of volcanic glass #1. Although, due to their short 29Si T1 relaxation 

times, such Fe-containing phases may not appear in the 2D NMR correlation spectra in Fig. 

6.3 which is obtained using a dipolar recoupling time of 4.5 ms. Nevertheless, in combination 

the 2D 27Al{29Si} HMQC and the T1-filtered spectra strongly indicate that volcanic glass #1 

is comprised of heterogeneous distributions of local environments that are consistent with 

melt immiscibility or partial crystallization processes. The local 29Si or 27Al environments are 

similar to crystalline tectosilicate and siliceous minerals, though are not appreciably detected 

in WAXS, suggesting they are nanocrystalline or otherwise lack long-range structural order. 

6.6. Characteristic scattering dimension of composition domains in 

unhydrated Rocky Mountain volcanic glass #1 by small-angle neutron 

scattering (SANS) 

While NMR-based techniques can be used to probe local bonding environments near 

specific NMR-active  (e.g., 27Al, 29Si), complementary scattering techniques such as small-
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angle neutron scattering (SANS) are sensitive to bulk nanostructural features of the material 

and can be used to estimate domain sizes. In SANS measurements, one probes the scattering 

of neutrons from a sample as a function of the wavevector, 𝑞 =
4𝜋 sin(𝜃)

𝜆
 where θ is the angle 

the neutrons are scattered and λ is the neutron wavelength. The intensity of scattered neutrons 

is proportional to the Fourier transform of the scattering length density distribution in the 

material of interest, where q is the transformed spatial coordinate. The scattering length 

density is dependent on the atomic composition of the sample, and isotopes of the same atom 

(e.g., H2O and D2O) can have drastically different scattering length densities. This 

phenomenon enables techniques known as contrast variation, whereby one can change the 

contrast between components in the sample. In contrast variation with water, the solvent 

composition is varied between H2O and D2O. Since mixtures of H2O and D2O span nearly the 

entire range of scattering length densities, at some point in a mixing series the contrast of the 

solvent will reach a “match point” where the scattering length density of the solvent is equal 

to some feature in the system. 

To probe nanostructural features within the volcanic glass grains, we employed a contrast 

variation series to reduce scattering contributions from the volcanic glass grains and the 

solvent. The solvent composition was varied from 100% D2O to 100% H2O and SANS 

patterns were measured. These experiments are conducted for the q-range from 0.01-0.05 Å-

1, which is sensitive to features on length scales ranging from ~10-50 nm. The results of the 

contrast variation study are included in Figure 6.5. In the contrast variation study, we find that 

the lowest measured scattering intensity is in the 60% D2O/40% H2O sample, which indicates 

that this solvent composition is closest to the match point between the solvent and volcanic 

glass grains. For the samples other than the 60% D2O/40% H2O sample, we find that the 
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scattering intensity smoothly decreases with increasing q with a power law slope of 

approximately q-3, which is indicative of a surface fractal structure. The measured scattering 

for these concentrations is indicative of scattering that is dominated by contrast between rough 

particles and solvent, as would be expected for the suspended volcanic glass samples far from 

the contrast match point. For the 60% D2O/40% H2O sample we observe a significantly less 

smooth variation in scattering intensity. In particular, we observe shallow peaks at q ≈ 0.018, 

0.023 and 0.027 Å-1. These shallow peaks are indicative of nanostructural features with length 

scales of approximately 
2𝜋

𝑞
, i.e., approximately 25 nm. Since these peaks only appear when 

the contrast between solvent and grain is lowered, these features are attributable to the internal 

structure of the volcanic glass grains and not surface features on the grains.  

 

FIGURE 6.5) SANS contrast variation of unhydrated Rocky Mountain volcanic glass #1 

dispersed in hydrating mixtures with different ratios of D2O to H2O, colored symbols). The 

measured scattering intensity is included as a function of q. The error bars indicate the 

standard deviation of scattering intensity. 
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The physical origins of these scattering feature may arise from contrast between 

tectosilicate-rich and SiO2-rich domains consistent with the proposed structure of volcanic 

glass #1 in Fig. 6.3a and with nanoscale phase separation. The SANS observations are 

consistent with 2D 27Al{29Si} HMQC and T1-filtered 1D 29Si spin-echo measurements which 

partially resolve overlapping contributions from several distinct local composition domains. 

Thus, the combined SANS and solid-state NMR analyses demonstrated here provide new 

insights regarding structure-property relationships in complex multicomponent 

aluminosilicate glasses with an emphasis on pozzolanic activity. However, although scattering 

features are resolved, the scattering intensity for the 60% D2O/40% H2O sample decreases 

with increasing q with a power law slope of less than q-3, suggesting that scattering 

contributions from the solvent-grain correlations are still relevant and this solvent composition 

does not represent a perfect match point. Future work seeking to more precisely refine the 

internal structure of rhyolitic volcanic glass grains or synthetic aluminosilicate glasses against 

a candidate structure (e.g., a fractal percolation network) by SANS would measure more 

solvent compositions near 60% D2O/40% H2O to find a more precise contrast match point. 

6.7. Transformations of volcanic glass Al-O-Si and structural 

elucidation of binder phases in hydrated volcanic glass cements 

Upon hydration, the Al-O-Si distributions in hydrated volcanic glass-cement blends 

containing Rocky Mountain volcanic glass #1 are significantly altered indicating a high 

conversion of volcanic glass Al into calcium aluminosilicate hydrates (dashed blue box, 

Figure 6.3). Specifically, correlated signal intensity ca. -82 ppm in the 29Si dimension arises 
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from 𝑄𝑃
2(1𝐴𝑙) species and provide unambiguous evidence that volcanic glass Al is 

incorporated into a cementitious binder with a layered clay-like structure similar to that of 

conventional calcium silicate hydrates. The subscript ‘p’ denotes the pairing position of the 

phyllosilicate layer which represents tetrahedra strongly coordinated with the calcium oxide 

intralayer. This is consistent with molecular dynamics simulations13 which indicate that Al 

preferentially substitutes at the bridging ‘b’ positions which are typically coordinated with 

zeolitic Ca2+ in calcium silicate hydrates at high Ca/Si ratios as schematically represented in 

Fig. 6.6. Of the three volcanic glass-cement blends, only Rocky Mountain volcanic glass #1 

exhibits a significant amount of correlated 29Si signal intensity extending up to -85 ppm in the 

29Si dimension which is associated with 𝑄𝑃
2(0Al) species within a few bond distances of 27Al; 

this intensity has a similar linewidth to 𝑄𝑃
2(1Al) 29Si intensity ca. -82 ppm consistent with 

disordered layered hydrates rather than a network aluminosilicate which has both narrower 

distributions of T-O-T bond angles and 27Al shifts. Importantly, the presence of 27Al-𝑄𝑃
2(0Al) 

29Si intensity (solid blue box, Fig. 6.6a.) establishes that volcanic glass Al is incorporated into 

calcium silicate hydrate structures with longer chain lengths (pentamers, octamers, etc.), 

schematically depicted in Figure 6.6d, which are associated with improved mechanical 

strength.12 Previous conventional solid-state 1D 29Si MAS NMR analyses have attributed 

signal intensity ca. -91 ppm and -96 ppm to interlayer Q3(1Al) and Q3(0Al) crosslinks 

respectively as present in the six-member ring channel of a normal 11 Å tobermorite 

structure.44 It has been proposed that Al substitution strengthens cementitious binders by 

promoting Q3(1Al) and Q3(0Al) 29Si crosslinks which are not typically formed during the 

hydration of Portland cement. However, in hydrated volcanic glass-cement, most of the 

correlated 2D 27Al{29Si} is broadly distributed ca. -82 ppm consistent with preferential AlIV 
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incorporation into poorly ordered non-crosslinked layered silicates comparable to 

conventional cementitious hydrates. Importantly, on the basis of conventional 1D 29Si or 27Al 

NMR analyses alone, it is not possible to identify the influence of Al incorporation on local 

Si-O-Si or Si-O-Al connectivities in disordered cementitious hydrates. Specifically, the 

prevalence of Q2(1Al) 29Si sites in calcium aluminosilicate hydrates has not been reliably 

established due to overlapping 29Si intensity with dimeric Q1(0Al) species which are the most 

abundant early hydration product in conventional cementitious hydrates. The 2D 27Al{29Si} 

HMQC analyses presented here, for Rocky Mountain volcanic glass #1-cement blends, 

indicate that volcanic glass Al has been substantially transformed into non-crosslinked 

calcium aluminosilicate hydrates after only 8 days at 90 ºC which encompasses the initial 

period of peak pozzolanic activity measured by calorimetry in similar systems.45  

 

FIGURE 6.6) Solid-state 2D 27Al{29Si} dipolar-mediated HMQC NMR spectra of 3:1 

volcanic glass:Ca3SiO5 mixtures hydrated for 8 days at 90 °C with, water/solids = 0.58, 4% 

bwos NaCl, and 4% bwos Na2SO4 containing (a) volcanic glass #1, (b) volcanic glass #3, and 

(c) volcanic glass #2. The spectra were acquired at 100 K, 9.4 T, and 8 kHz MAS. 
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This provides important insights regarding the structural evolution of similarly formulated 

Roman mortars which continue to undergo low-temperature mineral conversion processes in 

marine environments strengthening over time. 

Microstructural and spectroscopic analyses of Roman mortars and modern pozzolanic 

concretes have suggested the coexistence of calcium aluminosilicate hydrates with Al-

containing geopolymeric binder phases (e.g., zeolites). In ancient Roman marine concretes, 

zeolitic mineral growth has been observed both on calcium aluminosilicate hydrates and at 

the altered surface of dissolving feldspar granules.4 These zeolitic minerals may act as a 

cementitious binder similar to hydrous sodium aluminosilicate gels which are the dominant 

hydration product in alkali-activated geopolymeric cements; however, alkali-activated 

concretes use high concentrations of NaOH (pH >14) at which layered calcium silicate 

hydrates do not appreciably form. Thus, Roman marine concretes and the volcanic glass-

cement blends used here are more comparable to Portland cement formulations containing 

blast-furnace slag, for which improved mechanical properties have been linked to the 

interaction of two or more structurally dissimilar binder phases.33,46 In these systems, the pore 

solution pH~10 to 12.5 is usually sufficiently low that calcium silicate hydrates and network 

aluminosilicates may coexist. The formation of network aluminosilicates in hydrated volcanic 

glass-cements, see Fig. 6.6a,b (dashed orange boxes), is supported by correlated 2D 27Al{29Si} 

intensity at ca. -85 ppm, -91 ppm, -96 ppm, -101 ppm, and -108 ppm in the 29Si dimension 

with signals in the range of 50–65 ppm in the 27Al dimension, corresponding to distributions 

of Q4(4Al), Q4(3Al), Q4(2Al), Q4(1Al), and Q4(0Al) 29Si species, respectively. Compared to 

the initial Al-O-Si distributions of unhydrated volcanic glass #1, correlated 2D 27Al{29Si} 

intensity over this region in hydrated volcanic glass-cements exhibit relatively narrow 
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linewidths consistent with a higher degree of local structural order, albeit, still corresponding 

to overlapping signals that manifest a distribution of tetrahedrally-coordinated environments. 

The 27Al shift range of 50–65 ppm encompasses most framework zeolites, for which one 27Al 

resonance and multiple 29Si resonances are typically observed. In Fig. 6.6a,b there are multiple 

distinct 27Al shifts resolved for hydrated volcanic glass-cements which may arise from two or 

more environments in complex aluminosilicate hydrates or zeolitic minerals. Weaker 2D 

27Al{29Si} intensity shoulders in this region arise from interactions between different hydrate 

phases or unconsumed volcanic glass aggregate surfaces. The partially resolved correlated 2D 

27Al{29Si} signals in Fig. 6.6a (solid orange box) manifest relative 29Si intensity distributions 

of Q4(2Al)> Q4(1Al)> Q4(3Al) >>> Q4(4Al) ≈ Q4(0Al). The most abundant corresponds to 

alkali aluminosilicate hydrate, which is consistent with the local environments present in the 

naturally occurring zeolitized mineral analcime.47 In Fig. 6.7, complementary WAXS patterns 

of Rocky Mountain volcanic glass #1-cement blends produced with and without NaCl and 

Na2SO4 activators indicate that Na+ may promote improved structural ordering among cement 

hydrates.  
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FIGURE 6.7) WAXS patterns of volcanic glass #1:Ca3SiO5 (3:1) mixtures hydrated for 8 

days at water/solids = 0.58, 90 ºC (a) with 0.5 mM Na2SO4 and 1.2 mM NaCl and (b) without 

additives. Reflections are indexed to 11 Å tobermorite with a monoclinic polytype MD02 

structure. Presence of Na2SO4 and NaCl results in narrower reflections associated with 

tobermorite. 

 

Thus, the cementitious binders produced by hydration of volcanic glass-cements form a 

complex composite consisting both of non-crosslinked calcium aluminosilicate hydrates 

(dashed blue boxes) and network alkali aluminosilicate hydrates (dashed orange boxes). 

Under otherwise identical conditions, the different Al-O-Si distributions in the volcanic 

glasses yield cementitious binder phases with significantly different compositions and relative 

quantities, which account for the large differences in their rates of hydration and resultant 

mechanical properties. 

Similar distributions of correlated 2D 27Al{29Si} intensity are observed for hydrated 

volcanic glass-cement blends containing both volcanic glass #1 and volcanic glass #3, 

however with notable structural differences. The most important of which is the lack of 
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correlated intensity associated with 27Al-O-𝑄𝑃
2(0Al) 29Si moieties at ca. -85 ppm in the 29Si 

dimension of volcanic glass #3 associated with Al incorporation into calcium silicate hydrates 

with longer silicate chain lengths (Fig. 6.6b). Additionally, the calcium aluminosilicate 

hydrates formed in volcanic glass #3 blends exhibit broad distributions of local 27Al 

environments without clearly resolved intensity maxima, consistent with relatively disordered 

hydrates. By comparison, for the volcanic glass #1 blend, there are resolved 27Al intensity 

maxima ca. 56 ppm, 64 ppm, and 75 ppm exhibiting narrower distributions of local AlIV 

environments, which manifest relatively ordered hydrates. Complementary 2D 27Al 3Q-MAS 

measurements on volcanic glass #1-cement conducted at 18.8 T confirm that these signals 

arise from at least three distinct AlIV sites, each with broad distributions of isotropic chemical 

shifts and second-order quadrupolar interactions (Appendix 6A1, Fig. 6A5). Based on 27Al 

chemical shift correlations, the signals at ca. 56 ppm, 64 ppm, and 75 ppm correspond to 

approximate mean T-O-T bond angles of 150°, 135°, and 120°, respectively. Two of these 

27Al environments, ca. 56 ppm and 64 ppm, have previously been resolved in hydrothermally 

synthesized Al-tobermorite, with the relative fractions of each site depending on the 

compositions of the precursor material. For the 27Al species ca. 64 ppm, a mean T-O-T angle 

of 135 to 140° is consistent with Al substitution into the bridging position of the phyllosilicate 

layer. Meanwhile, the 27Al species ca. 56 ppm is consistent with a highly symmetric 

tetrahedral environment (similar to AlIV shifts in zeolites) and may also be expected to occur 

at the bridging position. Considering that both AlIV environments are present in synthetic Al-

tobermorite, it is hypothesized that these AlIV sites correspond to differences in local 

coordination environments for bridging Al tetrahedra interacting with different charge 

modifiers (e.g., H+, Na+, K+, or Ca2+). Specifically, due to the lack of 27Al-𝑄𝑃
2(0Al) 29Si 
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intensity associated with the 27Al species ca. 56 ppm, this environment is attributed to Al-rich 

calcium aluminosilicate hydrates where bridging sites have a higher Al occupancy rather than 

typical 𝑄𝑃
2(0Al) silicates. In contrast, the 27Al species ca. 64 ppm, might be expected for Si-

rich calcium aluminosilicate hydrates where Al bridging sites are relatively sparse and are 

within a few bond distances of 𝑄𝑃
2(0Al) silicates giving rise to 27Al-𝑄𝑃

2(0Al) 29Si intensity in 

Fig. 6.6a. These assignments are consistent with molecular dynamics simulations which 

indicate that Al substitution: (i) is energetically favorable at the bridging position, (ii) is likely 

to occur when Al3+  interacts with dimeric Q1(0Al) silicates present in disordered calcium 

silicate hydrates, and (iii) requires additional charge compensation which influences local 

tetrahedral environments at high Al loadings. Nonetheless, Al substitution at pairing positions 

in the phyllosilicate layer is possible and may explain the 27Al species ca. -75, approximate 

∠T-O-T = 120°, where mean bond angles are frustrated by strong coordination with the rigid 

calcium oxide sheet. Similar 27Al shifts are commonly observed in alkaline-activated slag 

cements48, and based on the correlated 2D 27Al{29Si} intensity measured here, likely 

correspond to highly aluminous hydrates with shorter mean chain lengths. Thus, it is 

demonstrated here that the quantities, compositions, and extent of order in calcium 

aluminosilicate hydrates is highly variable between different volcanic glasses. These 

differences may be attributed to complex competing solid-state and solution-phase processes 

in heterogeneous cementitious mixtures which lead to the formation, first, of calcium silicate 

hydrates by hydration of Ca3SiO5 and, subsequently, of calcium aluminosilicate hydrates by 

partial consumption of the volcanic glass granules. 

Despite having a similar bulk composition, under otherwise identical hydration conditions, 

mixtures containing volcanic glass #2 form negligible amounts of calcium aluminosilicate 
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hydrate. As discussed above, for the three volcanic glasses, volcanic glass #2 has the highest 

fraction of Q4(0Al) 29Si species, which may promote a higher glass stability but also 

diminished hydration reactivity in alkaline mixtures. To a large extent, the Al-O-Si 

distributions in volcanic glass #2 remain unaltered upon hydration, especially with respect to 

the Q4(1Al) 29Si moieties, suggesting that these species act primarily as non-reactive aggregate 

domains with limited pozzolanic activity. Nevertheless, as indicated by the red boxes in Fig. 

6.6c, certain 2D 27Al{29Si} intensity correlations associated with Al-rich regions are partially 

diminished suggesting that these species are reactive and are either accessible to the pore 

solution or capable of solid-state Ca2+ exchange. In contrast, for blends containing volcanic 

glass #1, the Al-containing fractions are substantially incorporated into cementitious binder 

phases which is correlated with macroscopic strength development. Nonetheless, to a large 

extent, highly siliceous regions within volcanic glass #1 remain unconsumed by pozzolanic 

reaction. As shown in Figure 6.8, 1D quantitative 29Si NMR analyses indicate that ~65% of 

all 29Si species in hydrated volcanic glass #1 cement occur broadly distributed in an 

amorphous SiO2-rich component. For comparison, the spectra of unhydrated and hydrated 

volcanic glass #1 are overlayed with 29Si projections obtained from the indirect dimension of 

the 2D 27Al{29Si} HMQC correlation maps in Fig. 6.3 and Fig. 6.6, respectively. Although 

not strictly quantitative, the HMQC projections correspond to intensity arising from 

tetrahedrally coordinated 29Si atoms that are dipole-dipole coupled to nearby 27Al species. As 

expected for unhydrated volcanic glass #1, the projected 29Si intensity in the HMQC spectrum 

largely corresponds to broad distributions of Q4(1Al), Q4(2Al), Q4(3Al), and Q4(4Al) 

aluminosilicate moieties, which exhibit progressively lower, by 5–8 ppm, isotropic 29Si 

chemical shift values with each Al next-nearest neighbor. In Fig. 6.8a, the scaled HMQC 29Si 
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projection (red) qualitatively compares the resolved distributions of Al-O-Si environments 

with the broader distributions of 29Si intensity arising from both Al-O-Si and Si-O-Si 

environments detected by quantitative 1D single-pulse 29Si MAS NMR. Upon hydration, the 

HMQC 29Si projection indicate that Al-O-Si environments are transformed into both layered 

silicates and Q4(1Al), Q4(2Al), Q4(3Al)-containing aluminosilicate networks with narrower 

29Si linewidths relative to the parent glass. However, despite the significant alteration of Al-

O-Si environments, the 1D 29Si MAS NMR spectra indicates a large amount Al-depleted 

amorphous SiO2 persists. After the initial pozzolanic reaction (ca. 8 days), this siliceous 

component may continue to consume Ca(OH)2, thereby offering protection against 

undesirable volume expansion. These observations are consistent with characterization of 

ancient Roman marine concretes, which have reported that calcium aluminosilicate hydrates 

may be found deep within the grain boundaries of reactive aggregates. Thus, the propensity 

of volcanic glasses to form calcium aluminosilicate hydrates depends upon complicated 

incongruent dissolution or solid-state ion-exchange processes leading to preferential alteration 

of Al-rich silica domains. 
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FIGURE 6.8) Quantitative 1D single-pulse 29Si MAS NMR spectra of (a) volcanic glass 

#1:Ca3SiO5 (3:1) hydrated (water/solids = 0.58) at 90 ºC for 8 days with 0.5 mM Na2SO4 and 

1.2 mM NaCl and (b) unhydrated volcanic glass #1. Deconvolution signals correspond to 

calcium silicate hydrates (purple), intermediate hydration species or aluminosilicates 

(orange), and a broad distribution of fully cross-linked siliceous species (grey). Red spectra 

correspond to projections 1D 29Si intensity from the respective 2D 27Al{29Si} HMQC spectra 

and are scaled for comparison. Spectral regions typical for tobermorite and other fully 

aluminosilicates are shown above the spectrum in (b). 

6.8. Conclusions 

Hydrothermal transformations involving multicomponent aluminosilicate glasses (e.g.., 

rhyolites) are shown to be influenced by local compositional and structural differences arising 

from their unique formation conditions. Despite similarities in their bulk compositions, 

advanced solid-state NMR and complementary SANS measurements reveal volcanic glasses  

to be compositionally and structurally heterogeneous over sub-and nanometer length scales 
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from <1 nm to 25 nm. These results suggest that, during its geological formation, rhyolitic 

volcanic glasses are arrested at varying stages of crystallization, which influences the extent 

of local order and distributions of Al-O-Si moieties. The large differences in hydration activity 

observed between volcanic glasses sourced from different geographic regions is strongly 

correlated with the extent of AlIV incorporation into silica or silicate networks. Those volcanic 

glasses with higher fractions of Q4(0Al) or Q4(1Al)-containing aluminosilica networks are 

poor sources of reactive Al2O3, serve predominantly as non-reactive aggregates, and exhibit 

correspondingly lower mechanical strengths in pozzolanic concrete blends. More generally, it 

is demonstrated that 2D 27Al{29Si} HMQC analyses provide detailed insights on the types of 

Al-O-Si moieties and their atomic-scale distributions in multicomponent aluminosilicate 

volcanic glasses, which can account for differences in the hydration and mechanical properties 

of cementitious solids. 

Several Roman-inspired pozzolanic concretes were prepared from mixtures of different 

volcanic glass and tricalcium silicate, Ca3SiO5, and hydrated for 8 days at 90 °C to evaluate 

initial pozzolanic reactions in the presence of NaCl and Na2SO4 activators. This allowed for 

monitoring of transformation involving volcanic glass-Al into cementitious binder phases, 

including calcium aluminosilicate hydrates and network aluminosilicates with improved 

relative order compared to the parent glass. The analyses provide unambiguous evidence that 

Al-containing silica moieties in reactive aggregates (e.g., volcanic glass #1) are transformed 

into predominantly uncrosslinked calcium aluminosilicate hydrates with a phyllosilicate 

structure(s) similar to conventional calcium silicate hydrates. After the initial pozzolan 

reaction (ca. 8 days), there is limited evidence for crosslinked tobermorite-like Q3(1Al) 

environments, which have been suggested to occur in these and similar cementitious systems. 
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Additionally, Al-rich aluminosilicate networks with appreciable fractions of Q4(2Al) and 

Q4(1Al) 29Si species, similar to zeolitic minerals such as analcime, are resolved after 

hydration. These species are believed to result from early zeolitization processes that occur 

during the initial pozzolanic reaction. The identified hydrate product distributions are similar 

to those observed in ancient Roman mortars, which show evidence of low-temperature 

zeolitization and which form complex mixtures of disordered and semi-crystalline calcium 

aluminosilicate hydrates. Comparison of HMQC 29Si projections and conventional 1D single-

pulse 29Si MAS NMR spectra indicate that, for volcanic glass #1, Al-rich aluminosilica 

domains with larger relative fractions of Q4(2Al), Q4(3Al) and Q4(4Al) 29Si moieties are 

preferentially consumed during hydration, leaving behind Al-depleted siliceous regions that 

may continue to react with Ca(OH)2 over longer timescales. Interestingly, 2D 27Al{29Si} 

HMQC and 27Al 3Q-MAS experiments confidently resolve at least three distinct types of AlIV 

sites associated with Al substitution into the phyllosilicate layers of calcium silicate hydrate. 

Comparison of several hydrated volcanic glass-cement blends indicate that the types and 

distributions of these calcium aluminosilicate hydrates vary widely and are correlated with the 

mechanical properties of the resulting mortars. These analyses provide new atomic-scale 

insights regarding the complex hydration, dissolution, and crystallization processes undergone 

by multicomponent aluminosilica glasses and the properties of their hydration products. The 

resulting composition-structure-property relationships provide new design criteria for the 

selection of materials and conditions that influence the mechanical strengths and stabilities of 

cementious materials. These are expected to contribute to the development of low-CO2-

footprint structural solids, improved syntheses of zeolite catalysts, as well as increased 

understanding of the remarkable properties of Roman cements.  
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Appendix 6A1. Multi-nuclear 23Na, 27Al, and 29Si characterization of 

raw materials and Rocky Mountain Volcanic Glass #1 cement blends 

    

 

FIGURE 6A1) Solid-state 27Al single-pulse NMR spectra of (top) unhydrated volcanic glass 

#1, and (bottom) hydrated (w/s = 0.58, 8 day, 90 °C) 3:1 volcanic glass #1:tricalcium silicate 

with 4%bwos NaCl/4%bwos Na2SO4 acquired at 18.8 T, 22 kHz MAS, and 298 K.  
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FIGURE 6A2) Solid-state 23Na single-pulse NMR spectra of crystalline NaCl, crystalline 

Na2SO4, and unhydrated volcanic glass #1 acquired at 18.8 T, 22 kHz MAS, and 298 K.  
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FIGURE 6A3) Solid-state 23Na single-pulse NMR spectra of hydrated (top =1 days, bottom 

= 8 days) volcanic glass-cement blends containing 4%bwos NaCl/4%bwos Na2SO4 activators 

including (a) 3:1 volcanic glass #1:Class A gray oilwell cement hydrated at 38 °C, (b) 3:1 

volcanic glass #1:Class A gray oilwell cement hydrated at 90 °C, and (c) 3:1 volcanic glass 

#1:Tricalcium silicate hydrated at 90 °C acquired at 18.8 T, 22 kHz MAS, and 298 K. Spectra 

indicate that Na2SO4 is preferentially consumed in comparison to NaCl. Lower particle size 

of tricalcium silicate versus class A gray oilwell cement may explain increased NaCl 

conversion in (c). Water-to-solids ratio is 0.58 for all conditions. 
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FIGURE 6A4) Spatial proximities of 29Si and 23Na species in hydrated (w/s = 0.58, 8d, 90°C) 

3:1 volcanic glass #1:Tricalcium silicate containing 4%bwos NaCl/4%bwos Na2SO4 

measured by 29Si{23Na} DNP CP-REDOR acquired at 9.4 T, 8 kHz MAS, and 95 K using a 

DNP solvent matrix comprised of 4 mM TEKPol in 1,1,2,2-tetrachloroethane. Partial 

dephasing of Q2(1Al) species indicates that Na+ is preferentially located near Al species in 

calcium aluminosilicate hydrates.    

 

 

 

 



 

225 

 

 

 

FIGURE 6A5) 27Al 3Q-MAS spectrum of hydrated (w/s = 0.58, 8d, 90 °C) 3:1 volcanic glass 

#1:Tricalcium silicate with 4%bwos NaCl/4%bwos Na2SO4 acquired at 18.8 T, 22 kHz MAS, 

at 298K. At least three distinct 27Al environments are resolved with broad distributions of 

isotropic chemical shifts and second-order quadrupolar interactions. 
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FIGURE 6A6) 2D 27Al{1H} DNP-HETCOR spectra of hydrated (w/s = 0.58, 8 d, 90 °C) 3:1 

volcanic glass #1:Tricalcium silicate with 4 %bwos NaCl/4 %bwos Na2SO4 acquired at 9.4 T, 

8 kHz MAS, and 95 K using a DNP solvent matrix comprised of 4 mM TEKPol in 1,1,2,2-

tetrachloroethane. Surface-enhanced spectrum with 27Al signal DNP enhancement factor of 

~4, majority of correlated 27Al{1H} intensity likely arises from bulk.   
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