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HIGHLIGHTED ARTICLE
| INVESTIGATION

The Linked Selection Signature of Rapid Adaptation in
Temporal Genomic Data

Vince Buffalo*,†,1 and Graham Coop†

*Population Biology Graduate Group and †Center for Population Biology, Department of Evolution and Ecology, University of
California, Davis, California 95616

ORCID IDs: 0000-0003-4510-1609 (V.B.); 0000-0001-8431-0302 (G.C.)

ABSTRACT The majority of empirical population genetic studies have tried to understand the evolutionary processes that have shaped
genetic variation in a single sample taken from a present-day population. However, genomic data collected over tens of generations in
both natural and laboratory populations are increasingly used to find selected loci underpinning adaptation over these short timescales.
Although these studies have been quite successful in detecting selection on large-effect loci, the fitness differences between individuals
are often polygenic, such that selection leads to allele frequency changes that are difficult to distinguish from genetic drift. However,
one promising signal comes from polygenic selection’s effect on neutral sites that become stochastically associated with the genetic
backgrounds that lead to fitness differences between individuals. Previous theoretical work has established that the random associ-
ations between a neutral allele and heritable fitness backgrounds act to reduce the effective population size experienced by this neutral
allele. These associations perturb neutral allele frequency trajectories, creating autocovariance in the allele frequency changes across
generations. Here, we show how temporal genomic data allow us to measure the temporal autocovariance in allele frequency changes
and characterize the genome-wide impact of polygenic selection. We develop expressions for these temporal autocovariances,
showing that their magnitude is determined by the level of additive genetic variation, recombination, and linkage disequilibria in a
region. Furthermore, by using analytic expressions for the temporal variances and autocovariances in allele frequency, we demonstrate
that one can estimate the additive genetic variation for fitness and the drift-effective population size from temporal genomic data. We
also show how the proportion of total variation in allele frequency change due to linked selection can be estimated from temporal
data. Overall, we demonstrate that temporal genomic data offer opportunities to identify the role of linked selection on genome-wide
diversity over short timescales, and can help bridge population genetic and quantitative genetic studies of adaptation.

KEYWORDS linked selection; polygenic selection; rapid adaptation; temporal genomic data; MPP

ADAPTATION can occur over remarkably short ecological
timescales, with dramatic changes in phenotypes occur-

ring over just a few generations in natural populations. This
rapid pace of adaptive change has been known to bemirrored
at the genetic level since the early work of Fisher and Ford
(1947) testing whether the rapid decline in a coloration poly-
morphism was consistent with natural selection or genetic
drift. Since then, researchers have continued to use temporal
data to detect selection on polymorphisms over short time-

scales in natural populations (Dobzhansky 1943, 1971;
Fisher and Ford 1947; Kettlewell 1958, 1961; Mueller et al.
1985b), as well as quantify the rate of genetic drift (Prout
1954; Wallace 1956; Nei and Tajima 1981; Pollak 1983;
Mueller et al. 1985a; Waples 1989; Wang and Whitlock
2003). However, this line of work in sexual populations has
been partially eclipsed by a vast body of work examining
large-scale population genetic and genomic data sets from
a single contemporary timepoint. More recently, studies have
applied similar temporal approaches to whole-genome
data to discover selected loci in contemporaneous natu-
ral populations (Bergland et al. 2014; Rajpurohit et al.
2018), evolve and resequence studies (Teotónio et al. 2009;
Burke et al. 2010; Johansson et al. 2010; Turner et al. 2011;
Orozco-terWengel et al. 2012; Turner and Miller 2012;
Franssen et al. 2017; Barghi et al. 2019), and ancient DNA
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(Mathieson et al. 2015; Fu et al. 2016). Furthermore, numer-
ous methods have been developed to estimate effective pop-
ulation size (Nei and Tajima 1981; Pollak 1983; Waples
1989) and detect selected loci (Malaspinas et al. 2012;
Mathieson and McVean 2013; Feder et al. 2014; Terhorst
et al. 2015) from time-series data.

Overall, these approaches have identified compelling ex-
amples where selection has driven extreme allele frequency
change at particular loci that is inconsistent with drift alone.
However, most adaptation on ecological timescales likely
involves selection on phenotypes with polygenic architecture
and abundant standing variation (Endler 1986; Hendry and
Kinnison 1999; Kinnison and Hendry 2001; Kopp and
Hermisson 2009b). We know from theory that adaptation
on such traits can result from very subtle allele frequency
changes across the many loci that underlie the trait
(Bulmer 1980), at least for the short-term evolutionary re-
sponse (Hermisson and Pennings 2005; Chevin and Hospital
2008; Jain and Stephan 2015, 2017; Thornton 2018;
Höllinger et al. 2019). These changes may be individually
indistinguishable from genetic drift in temporal data. This
poses a challenge for population genetic approaches to quan-
tify selection: rapid phenotypic adaptations occurring on eco-
logical timescales may leave a signal on genome-wide
patterns of diversity that is undetectable by methods focused
on individual loci.

Here, we explore an alternative: rather than aiming to
find selected loci, we can use temporal data to quantify the
genome-wide effects of linked selection during polygenic
adaptation. Linked selection introduces a new source of
stochasticity into evolution, as a neutral allele’s frequency
change depends on the fitness of the set of random genetic
backgrounds it finds itself on (Gillespie 2000). The impact
linked selection has on neutral loci is mediated by associa-
tions [linkage disequilibria/disequilibrium (LD)] with se-
lected loci and hence their recombination environment;
neutral loci tightly linked to selected sites experience greater
average reductions in diversity than more loosely coupled
sites. Studies using a single timepoint have long exploited
this idea, with some of the first evidence of pervasive natural
selection being the correlation between diversity and recom-
bination in Drosophila (Aguade et al. 1989; Begun and
Aquadro 1992). Various forms of linked selection give rise
to such patterns with much attention focusing on the hitch-
hiking (positive selection; Smith and Haigh 1974) or back-
ground selection models (negative or purifying selection;
Charlesworth et al. 1993; Hudson and Kaplan 1995). Recent
genomic studies have modeled patterns of genome-wide di-
versity considering substitutions, functional constraints, and
recombination environments to estimate parameters of hitch-
hiking and background selection models, and have begun to
differentiate between these models (McVicker et al. 2009;
Hernandez et al. 2011; Elyashiv et al. 2016). Across-taxa
comparisons have shown that signals of linked selection are
present in many sexual organisms, and that in some species a
proportion of the stochastic change in allele frequencies is

due to the randomness of linked selection instead of genetic
drift (Cutter and Payseur 2013; Corbett-Detig et al. 2015;
Coop 2016). Likewise, in asexual and facultatively sexual
organisms, both theory and empirical work show that linked
selection and interference are primary determinants of the
levels of genetic diversity (Neher and Shraiman 2011; Neher
2013; Good et al. 2014, 2017).

In this paper, we extend this well-established approach of
quantifying genome-wide selection through its indirect im-
pact on linked neutral sites to temporal genomic data. We
show that during rapid polygenic selection, linked selection
leaves a signal in temporal genomic data that can readily be
differentiated from neutral processes. Specifically, selected
alleles perturb the allele frequency trajectories of neighboring
neutral loci, increasing thevarianceofneutral allele frequency
change and creating covariance between the neutral allele
frequency changes across generations. Earlier work has mod-
eled this effect on neutral alleles as a long-term reduction in
the effective population size (Wray and Thompson 1990;
Santiago and Caballero 1995, 1998; Woolliams et al. 1993;
Robertson 1961), but the increasing availability of genome-
wide frequency data across multiple timepoints allows us to
directly quantify the extent of linked selection over short
ecological timescales (tens of generations). We develop the-
ory for the variances and covariances of neutral allele fre-
quency change under selection, and show that analogous to
diversity in a single timepoint study, their magnitudes depend
on the local fitness variation, recombination, and LD. Fur-
thermore, we show that our theory can (1) directly partition
the variation in genome-wide frequency change into the com-
ponents caused by drift and selection, (2) estimate the addi-
tive genetic variance for fitness and how it changes over time,
and (3) detect patterns of fluctuating selection from temporal
data. Overall, we believe that our approach to modeling tem-
poral genomic data will provide a more complete picture of
how selection shapes allele frequency changes over ecologi-
cal timescales in natural populations, potentially allowing us
to understand short-term effects of linked selection that
would otherwise not be perceptible from studies using a sin-
gle timepoint.

Outline of Temporal Autocovariance Theory

Our goal is to understand how linked selection affects the
frequency trajectories of neutral sites by modeling the vari-
ances and covariances of neutral allele frequency changes
(Dpt ¼ ptþ1 2 pt, where pt is the population frequency at time
t; see Table 1 for a list of all notation used). We assume a
closed populationwith discrete, nonoverlapping generations.
When there are no heritable fitness differences between in-
dividuals, genetic drift is the only source of stochasticity of
allele frequency change due to two sources of variation: ran-
dom nonheritable or environmental differences in offspring
number, and Mendelian segregation of heterozygotes. Both
are directionless such that when averaged over evolutionary
replicates, the expected change in allele frequency due to
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drift alone is EðDptÞ ¼ 0 and quantified by the variance in
allele frequency change VarðDptÞ (as quantified by the vari-
ance effective population size; Wright 1938; Crow and
Kimura 1970; Charlesworth 2009).

When there are heritable fitness differences between indi-
viduals in the population, a third source of stochasticity affects
a neutral allele’s frequency change: neutral alleles can be-
come randomly associated with the genetic backgrounds
that determine the fitness differences between individuals
(Santiago and Caballero 1995, 1998; Robertson 1961). Even
though the neutral alleles do not impact fitness, their fre-
quency trajectories are perturbed by their fitness background,
as those on advantageous backgrounds leave more descen-
dants, while those on disadvantageous backgrounds leave
fewer. We can partition a neutral allele frequency’s change
into these three uncorrelated stochastic components [follow-
ing Santiago and Caballero (1995), see Appendix section
Decomposition of Allele Frequency Change for proof],

Dpt ¼ DNpt þ DMpt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
drift

þ DHpt|fflffl{zfflffl}
selection

(1)

where, DNpt;DMpt, andDHpt are the neutral allele’s frequency
changes due to nonheritable variation in fitness between dip-
loid individuals, Mendelian segregation of heterozygotes into
offspring, and heritable variation in fitness (we refer to this as
the heritable change in neutral allele frequency), respectively.
Note that while throughout the paper we consider the allele
frequency change between adjacent generations, the same
approach can be extended to situations where the study sys-
tem cannot be observed every generation. Like the stochastic
components of drift, the allele frequency change due to her-
itable fitness differences is directionless ðEðDHptÞ ¼ 0Þ. Ad-
ditionally, since each component is uncorrelated with the
others, the variance in allele frequency change is

VarðDptÞ ¼ VarðDNptÞ þ VarðDMptÞ þ VarðDHptÞ: (2)

The terms VarðDNptÞ and VarðDMptÞ capture the variance due
to the random reproduction process, and the former can ac-
commodate extra nonheritable variance in offspring num-
ber [as long as individuals are exchangeable with respect to
their genotype (Cannings 1974)], while the term VarðDHptÞ

captures heritable fitness variation due to systematic differ-
ences in the fitnesses of individuals caused by their genotypes.

In addition to inflating the within-generation variance in
allele frequency change, heritable fitness variation has an-
other profound effect on neutral alleles: while the stochastic
components of drift have independent effects on frequency
change each generation, heritable variation in fitness creates
temporal autocovariance in neutral allele frequency changes
across generations. The contribution of temporal autocovar-
iance is evident by writing the total cumulative allele fre-
quency change as the sum of allele frequency changes each
generation,

These covariance terms are expected to be nonzero only
when there is heritable variation in fitness [assuming there
is neither non-Mendelian segregation, nor covariance be-
tween the parental and offspring environment, e.g., as in
Heyer et al. (2005)].

Temporal autocovariance is caused by the persistence over
generations of the statistical associations (LD) between a
neutral allele and the fitnesses of the random genetic back-
grounds it finds itself on; as long as some fraction of associ-
ation persists, the heritable variation for fitness in one
generation predicts the change in later generations, as illus-
trated by the fact that CovðDp2;Dp0Þ. 0 (see Figure 1A).
Ultimately, segregation and recombination break down hap-
lotypes and shuffle alleles among chromosomes, leading to
the decay of autocovariance with time.

The effect that heritable variation has onneutral alleles has
traditionally been modeled in a quantitative genetics frame-
work where a large number of loosely linked polymorphisms
contribute to heritable fitness differences between individu-
als, and the impact of heritable fitness variation on a neutral
allele is quantified as a reduction in its long-run effec-
tive population size (Santiago and Caballero 1995, 1998;
Robertson 1961). This form of linked selection can be con-
trasted with classic population genetic hitchhiking theory
(Smith andHaigh 1974), which considers how neutral alleles
closely linked to a new beneficial mutation are affected as it
sweeps to fixation. While classic population genetic linked
selection models consider how neutral variation is affected
by strong associations caused by tight linkage to an advanta-
geous site, quantitative genetic models of linked selection

Varðpt 2 p0Þ ¼ VarðDpt21 þ Dpt22 þ . . .þ Dp0Þ
¼
Xt21

i¼0

VarðDpiÞ þ
X
i 6¼j

CovðDpi;DpjÞ

Varðpt 2 p0Þ ¼
Xt21

i¼0

ðVarðDNpiÞ þ VarðDMpiÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
drift

þ
Xt21

i¼0

VarðDHpiÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
genetic variance in offspring number

þ
X
i6¼j

CovðDHpi;DHpjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
temporal  autocovariance

:
(3)
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consider the weakest forms of associations: those between
unlinked loci within an individual (Morley 1954; Santiago
and Caballero 1995; Robertson 1961) [see Barton (2000)
for more on the two models of linked selection]. These quan-
titative genetic models of linked selection match the expres-
sions for the loss of diversity found in classic hitchhiking
models under a steady flux of loosely linked advantageous
alleles entering the population [see page 2110 in Santiago
and Caballero (1998)] and genome-wide background selec-
tion [see equation 12 of Santiago and Caballero (1998) and

Nordborg et al. (1996)]. The distant associations considered
by these models are quickly established but are rapidly bro-
ken down by segregation and independent assortment, yet
still can have a marked effect on diversity (Santiago and
Caballero 1995; Robertson 1961). However, since the impact
of heritable fitness variation has traditionally been modeled
as causing a reduction in the effective population size, there
has been no direct way to separately estimate its effects from
those of drift. We show that with temporal genomic data, one
can directly measure the levels of temporal variances and

Table 1 Notation

Symbol Usage and relevant equations

pt Allele frequency in generation/timepoint t
Dpt Allele frequency change between generations t þ 1 and t, Dpt ¼ ptþ1 2 pt
DNpt Frequency change due to nonheritable variation in fitness, (1), (2)
DMpt Frequency change due to Mendelian segregation, (1), (2)
DHpt Frequency change due to heritable differences, (1), (2)
N Census population size of breeding individuals
Ne Effect population size
fi Fitness (expected number of offspring) of individual i, (28)
at;l Effect size in generation t and locus l, (5), (36)
L Total number of loci impacting fitness, (5)
gi;l 2 f0;1;2g Individual i’s gene count at locus l, (37)
xi 2 f0;1; 2g Individual i’s neutral gene count at the tracked neutral site, (5), (37), (38)
Dt;l or D9t;l Gametic linkage disequilibrium between the tracked neutral site and selected locus l at time t, Supplementary Figure SA.2, (5), (37), (38)
D0t;l Nongametic disequilibrium between the tracked neutral site and selected locus l at time t, Supplementary Figure SA.2, (5), (37), (38)
EðR2

t;lÞ The squared correlation coefficient of linkage disequilibrium between the tracked neutral site and selected site l at time t, (7), (44)
rl The recombination fraction between the tracked neutral site and selected site l
VaðsÞ The additive genic variance, (8)
VAðsÞ The additive genetic variance, (17)
R The total level of recombination in the region, in morgans, (9) and Figure 1
rðgÞ A mapping function (i.e., Haldane’s), which maps a position g to a recombination fraction.
r The population recombination rate, r ¼ 4Nr, Temporal autocovariance for an average neutral polymorphism
AðR; t; sÞ The average linkage disequilibrium in a region of R M, that persisted from generation t to generation s, (10)
VN The nonheritable variance in offspring number, (11)
SSHðtÞ The sum of site heterozygosity at selected sites time t, (13)
SSHnðtÞ The sum of site heterozygosity at neutral sites at time t, (13)
sshnðtÞ The proportion of sum of site heterozygosity at neutral sites at time t relative to SSHð1Þ, SSHnðtÞ=SSHnð1Þ (15)
zi The breeding value of the trait that determines fitness, zi ¼

PL
i¼1agi;l , see Temporal Variance and Autocovariance Under Multilocus

Selection in Appendix
wðziÞ The fitness of individual i with fitness function wð�Þ, see Temporal Variance and Autocovariance Under Multilocus Selection in Appendix
Q The sample standardized variance–covariance matrix, (16)
Qt;s The elements of the observed sample matrix Q, (16)
S The standardized variance–covariance matrix, based on our theoretical expressions
St;s The elements of the standardized variance–covariance matrix, (10), (11)
Dpn;t The allele frequency change at site n between times time t þ 1 and t, (16)
t The number of allele frequency changes observed, e.g., after sampling for t þ 1 timepoints
Va;sshnðtÞ The additive genic variation at time s as approximated by the observed decay in the sum of site heterozygosity at neutral sites, (15)
VariðziÞ The variance in trait values taken over individuals, (17)
VAð1Þb The method-of-moments estimate of the additive genetic variance in the first generation, (19), (18)
F̂ The method-of-moments estimate of Wright’s standardized variance, F ¼ 1=2N, (19), (18)
N̂ The method-of-moments estimate of drift-effective population size, N ¼ 1=2F
s2 The sampling noise around each element of the sample variance–covariance matrix.
B The total number of windows after partitioning the genome, (22)
wtextBP Width of windows (in base pairs), (22)
vAð1Þ The average additive genetic variance per base pair
wCBP Number of coding base pairs in a window, (22)
WCBP Total number of coding base pairs in the genome, (23)
G A conservative measure of the total variance in allele frequency change due to linked selection, (24)
G9 An alternate, less conservative measure of the total variance in allele frequency change due to linked selection, (25)
Gabs A variant of G using the absolute value of covariances, (27)
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autocovariances of allele frequency change in the population.
Additionally, we that show temporal autocovariance is cre-
ated under both tight and loosely linked selection, and below,
develop expressions for its magnitude that are applicable to
both, bridging the two regimes of linked selection.

A Model for Multilocus Temporal Autocovariance

Here, we develop theory for the temporal autocovariance in a
neutral allele’s frequency changes through time, generated
by the presence of heritable fitness in the population. We
measure the temporal autocovariance CovðDpt;DpsÞ at a sin-
gle diallelic neutral locus. Since only allele frequency changes
due to heritable variation in fitness contribute to temporal
autocovariance, we can focus exclusively on the behavior of
DHpt in deriving our expressions for the autocovariance
across timepoints. We imagine that an individual i has fitness
fi, i.e., that their expected number of children is fi. We assume
a constant population size, and so the population average

fitness EiðfiÞ ¼ 1. Additionally, we assume that all fitness var-
iation has an additive, polygenic architecture. Then, with L
loci contributing to fitness, we can write individual i’s fitness
as fi ¼ 1þPL

l¼1at;lgi;l, where at;l is the effect size in genera-
tion t and gi;l 2 f0; 1; 2g is individual i’s gene content at locus
l. Here, each at;l is analogous to a selection coefficient acting
at locus l, since the fitnesses for genotypes A1A1, A1A2, and
A2A2 are 1; 1þ at;l and 1þ 2at;l, respectively. This formula-
tion is approximately equivalent to exponential directional
selection on some additively determined trait, implying that
selection does not create LD between unlinked loci; see
Temporal Variance and Autocovariance Under Multilocus Se-
lection in the Appendix for more detail.

When fitness variation exists in the population [(that is,
Varið fiÞ.0], the frequency of the neutral allele changes sto-
chastically, as fitter individuals leave more descendants that
inherit the neutral allele they carry and less-fit individuals
leave fewer. Across the population, stochastic associations
can form between the genetic components of an individual’s
fitness and the neutral allele they carry, leading the neutral
allele frequency to change due to fitness differences across
individuals. The total heritable change in neutral allele fre-
quency DHpt can then be partitioned into each individual’s
contribution to this change based on their fitness fi and the
number of the tracked neutral alleles they carry, xi 2 f0; 1; 2g,
giving us

DHp ¼ 1
2N

XN
i¼1

xið fi 2 1Þ (4)

(Santiago and Caballero 1995). Substituting each fitness fi
with its genetic basis and simplifying [see Temporal Variance
and Autocovariance Under Multilocus Selection in the Appen-
dix for derivation and equation 10 of Kirkpatrick et al.
(2002)] gives

DHpt ¼
XL
l¼1

at;lD9t;l þ
XL
l¼1

at;lD0t;l (5)

where D9t;l is the gametic LD between the neutral allele and
the allele at the selected site l on the same gamete, whereas
D0t;l is the nongametic LD, or the covariance across the neutral
and selected allele on the two different gametes forming an
individual [see p. 121 of Weir (1996) for details and Appen-
dix Figure A2A for an illustration]. Intuitively, this ex-
pression tells us that the heritable change in neutral
allele frequency is determined by the gametic and non-
gametic LD between the neutral site and all sites that
affect an individual’s fitness, scaled by the magnitude of
each selected locus’s effect. Alternatively, we can see this
as the multivariate breeder’s equation, where the neutral
allele is a correlated trait responding to selection on other
traits/loci (Lande 1979). This expression is the multilo-
cus analog of the change in a neutral site’s frequency due
to hitchhiking at a single linked site [e.g., see equations
2 and 3 in Stephan et al. (2006)].

Figure 1 (A) On an advantageous background (light blue), a neutral
allele increases in frequency leading to a positive change in allele fre-
quency early on, Dp0 ¼ p1 2p0. As long as some fraction of neutral
alleles remain associated with this advantageous background, the neutral
allele is expected to increase in frequency in later generations, here
Dp2 ¼ p3 2p2. This creates temporal autocovariance, CovðDp2; Dp0Þ.0.
Similarly, had the neutral allele found itself on a low-fitness background
(orange), this would also create temporal autocovariance. (B) This depicts
the setup for our multilocus model. Multiple alleles (yellow) determine the
fitness in a region R M in length, and these perturb the allele frequency
trajectory of a focal neutral site (light blue).

A Temporal Signal of Linked Selection 1011



Because the effects of the nongametic LD are relatively
weak compared to the gametic LD for tightly linked loci (see
The Strength of Unlinked and Nongametic Associations in the
Appendix for an expression of their strength), we ignore
these, and hereafter omit the primes in our notation so that
Dt;l refers to D9t;l. Since EðDHptÞ ¼ 0, we can write the covari-
ance CovðDHpt;DHpsÞ as EðDHptDHpsÞ. Hereafter, we also
omit the subscript H since CovðDpt;DpsÞ ¼ CovðDHpt;DHpsÞ.
Expanding these terms, the covariance between the allele
frequency changes at generations t and s can be written as
This statement for temporal autocovariance is fairly general,
as it can handle fluctuating selection (e.g., when at;l varies
with time t) and any additive multilocus evolution (as long as
the LD dynamics can be specified). Looking at the first term in
this sum, we see that the temporal autocovariance is deter-
mined in part by the terms EðDt;lDs;lÞ. These expected LD
products reflect the degree to which the association between
the neutral locus and a selected site persists from generation t
to s (here, t, s). Intuitively, the higher the initial association
between the neutral and selected loci, and the slower the rate
of decay of LD between sites, the greater temporal autocovar-
iance will be.

The multilocus temporal autocovariance model with
directional selection

Thus far, in reaching Equation 6we assume only that fitness is
additive across loci. In this section,wedevelop amodel of how
temporal autocovariance behaves specifically under direc-
tional selection beginning at a specific time. We make three
assumptions to simplify our expressions. First,we assume that
the effect size remains constant through time, such that
al :¼ at;l for all t (we relax this assumption in Fluctuating
selection). Second, we ignore the contribution of the second
term of Equation 6, EðDt;kDs;lÞ (for k 6¼ l), to temporal auto-
covariance. Under the case where the population is initially at
mutation–drift–recombination equilibrium, we expect this
product to be zero as there is no directional association be-
tween the two selected sites and the neutral site. However,
we note that interaction between selected sites [Hill–Robertson
interference (HRi)] will cause this term to become negative
(Barton and Otto 2005), a point we return to later. Third,
we assume that the selected sites increase in frequency

independently, such that the dynamics of the LD between
the neutral and selected site pairs can be modeled using
two-locus dynamics. Using a deterministic continuous-time
model for the dynamics of the LD between the selected and
neutral site (Smith and Haigh 1974; Barton 2000), we re-
write the EðDt;lDs;lÞ terms in the expression for temporal
autocovariance as

CovðDpt;DpsÞ ¼
XL
l¼1

a2
l E
�
Dt;lDs;l

�
¼
XL
l¼1

a2
l E
�
R2

t;l

�
ptð12 ptÞps;l

3
�
12 ps;l

�
ð12rlÞs2t (7a)

CovðDpt;DpsÞ
ptð12 ptÞ ¼

XL
l¼1

a2
l ps;l

�
12 ps;l

�
E

�
R2

t;l

�
ð12rlÞs2t; (7b)

where EðR2
t;lÞ is the square of the correlation between the

neutral site and selected site l at time t (a commonmeasure of
LD; Hill and Robertson 1968), and rl is the recombination
fraction between the neutral site and selected site l.

We can further simplify this expression by assuming that
there is no covariation between the additive genic variation
at a selected site, and the LD between that selected site and
the neutral site (see Temporal Variance and Autocovariance
Under Multilocus Selection in the Appendix for more de-
tail). This allows us to factor out the average additive
genic variation for fitness at time s and write the covari-
ance as

CovðDpt;DpsÞ
ptð12 ptÞ ¼ VaðsÞ

2L

XL
l¼1

E

�
R2

t;l

�
ð12rlÞs2t (8)

where VaðsÞ is the additive genic variance for fitness, which is
the additive genetic variance for fitness ðVAÞwithout the con-
tribution of LD between selected sites, VaðsÞ ¼ 2

P
la

2
l plðsÞ

ð12 plðsÞÞ. In part, our expression not relying on the LD be-
tween selected sites is a result of ignoring the second term in
Equation 6; we revisit the consequences of this assumption
further on in Comparing theory to simulation results.

CovðDpt;DpsÞ ¼ E

" XL
l¼1

at;lDt;l

! XL
l¼1

at;lDs;l

!#

¼
XL
l¼1

at;las;lE
�
Dt;lDs;l

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

persistence  of   associations with  selected  site  l

þ
X
l 6¼k

at;kas;lE
�
Dt;kDs;l

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cross2associations  between  two  selected  sites

: (6)
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This expression allows us to calculate the temporal auto-
covariance in cases where we know the vector of recombina-
tion fractions between the neutral and each of the selected
sites, r1; r2; . . . ; rL. Often we do not know the exact posi-
tions of these sites, but we can treat these positions as ran-
domly placed on a chromosome and further simplify our
model to understand the factors that determine temporal
autocovariance.

Temporal autocovariance for an average neutral
polymorphism

In the second part of our derivation, we develop a simple
intuitive model of how temporal autocovariance is deter-
mined by a few key parameters whenwemake two additional
assumptions. First,weassume that selected sites are randomly
and uniformly distributed along the chromosome, such that a
site’s position on the genetic map is a random variable
g � Uð2R=2;R=2Þ (where R is the region’s length in mor-
gans), and the focal neutral site with which we calculate
temporal autocovariance lies in the middle of this idealized
chromosome at the origin (as depicted in Figure 1B). Then,
the recombination fraction between the focal neutral site and
a selected site at random position g is given by the mapping
function rðgÞ, which maps the position g to a recombination
fraction. A simple choice for rðgÞ is Haldane’s mapping func-
tion, rðgÞ ¼ 1

2 ð12 e22jgjÞ (Haldane 1919) (note we take the
absolute value of g to translate the position g to a distance to
the focal neutral site), and we use that here. Second, we
assume that the LD between each selected site and the focal
neutral site depends only on the recombination fraction rðgÞ
between the two loci, and not their absolute positions
or effect sizes; then, we rewrite EðR2

t;lÞ as the function
EðR2

t ðrðgÞÞÞ. For example, if the population was initially
at drift–recombination balance, this would be EðR2Þ ¼
ð10þ rÞ=ð22þ 13r þ r2Þ where r ¼ 4NrðgÞ (Hill and
Robertson 1968; Ohta and Kimura 1969). These assumptions
allow us to conceptually understand the factors that deter-
mine temporal autocovariance; in practice, in temporal stud-
ies with LD data and recombination maps, one can directly
calculate the sum in Equation 8 (see Empirically Calculating
the Average LD Persisting Across Generations in the Appendix).
We then write the temporal autocovariance experienced by a
neutral allele in a region R-M long containing VaðsÞ fitness
variation at time s as

CovðDpt;DpsÞ
ptð12 ptÞ � VaðsÞ

2R

Z R=2

2R=2
E
�R2

t ðrðgÞÞ
�ð12rðgÞÞðs2tÞdg

(9)

(see Temporal Variance and Autocovariance Under Multilocus
Selection in the Appendix for details).

This integral is the sum of the initial LD between a typical
neutral locus and a selected site, weighted by the decay of LD
due to recombination over s2 t generations. Selection enters
here through the total additive genic variance for fitness for
the region divided by the genetic map length of the region

ðVaðsÞ=RÞ. Thus, a key compound parameter in describing the
temporal covariance is the additive genic variance per mor-
gan, a quantity somewhat similar to the ratio of new adap-
tive mutations per base pair to recombination per base pair,
nBP=rBP, that occurs in models of recurrent sweeps (Stephan
et al. 1992) and models of the limits of selection with linked
loci (Robertson 1970, 1976). Note that this does not include
the effects of genome-wide fitness variation, e.g., the impacts
that unlinked selected sites have on the neutral site due to the
associations created when the sites sort within the same in-
dividuals. We quantify the magnitude of these in The Contri-
bution of the Rest of the Genome to Temporal Autocovariance at
a Locus in the Appendix.

To validate our theory, we simulate a fixed region of R M
and calculate the covariance in allele frequency changes
by averaging over many uniformly distributed neutral sites
within this region. Then, the random distance between a
neutral site’s position n and a selected site’s position g is
c ¼ jn2 gj, where n; g � Uð0;RÞ; this random variable c has
a triangle distribution, fðcÞ ¼ 2ðR2 cÞ=R2. Averaging over
the positions of both randomly placed neutral and selected
sites, the temporal autocovariance is

X
t;s
:¼ EnðCovðDpt;DpsÞÞ

Enðptð12 ptÞÞ

¼ VaðsÞ
2

Z R

0
E
�R2

t ðrðcÞÞ
�ð12rðcÞÞðs2tÞ2ðR2 cÞ

R2
dc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AðR;t;sÞ

(10)

where Enð�Þ indicates an expectation taken over the position
of the randomly placed neutral sites, and we define AðR; t; sÞ
as the average LD between selected and neutral sites that
persists from generations t to s ðt# sÞ. As is common with
estimating the expected values of other ratios like FST (Bhatia
et al. 2013), we use a ratio of expectations rather than the
expectation of the ratio.

We can also use this expression to calculate the vari-
ance of allele frequency change. The standardized variance
VarðDptÞ=ptð12 ptÞ has two components: the drift term and
the heritable variance in offspring number. Adding these in-
dependent contributions, the standardized variance is

EnðVarðDptÞÞ
Enðptð12 ptÞÞ ¼

VN þ 2
8N

þ Va
2
AðR; t; sÞ (11)

where VN is the nonheritable variance in offspring number.
Under a Wright–Fisher model of reproduction, VN � 2, this
simplifies to

X
t;t

:¼ EnðVarðDptÞÞ
Enðptð12 ptÞÞ ¼

1
2N

þ Va
2
AðR; t; sÞ: (12)

When combined, this expression for the variance in allele
frequency change and our expression for temporal autocovar-
iance are in agreement with Robertson (2009) and Santiago
and Caballero (1995; 1998) when predicting the total
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variance in allele frequency change (see Connecting our
Model with the Models of Robertson and Santiago and Cabal-
lero in the Appendix). With the above expressions for the
variances and covariances, we have a complete set of theo-
retical expressions for the variance–covariance matrix of al-
lele frequency change, which we call S, with the diagonal
variance elements St;t given by Equation 12, and the upper-
and lower-triangle covariance elements

P
t;sðt 6¼ sÞ given by

Equation 10.

Modeling the dynamics of additive genic and
genetic variation

Our expressions for temporal autocovariance (Equation 10)
require an expression for VaðtÞ, the additive genic variation
through time. However, we lack general expressions for the
dynamics of the additive genic variation during selection, as
these dynamics are quite complex for a few reasons. First,
since our theory considers polygenic selection at a finite num-
ber of loci in a region, additive genic variation is not as con-
stant as it would be under an infinitesimal model (Bulmer
1980). Second, we allow for arbitrary levels of recombina-
tion from very tight linkage to loose linkage. Previous work
has shown that predicting the dynamics of additive genic
variation in a system with an arbitrary level of recombina-
tion is difficult, as both the additive genic and genetic var-
iances depend on the higher-order moments of LD [see
Barton and Turelli (1987), p. 607 of Turelli and Barton
(1990), and Barton (1991)].

A primary determinant of the additive genic variation is the
heterozygosity of the selected sites. Assuming effect sizes are
constant through time and across loci, we can rewrite the
additive genic variation, VaðtÞ ¼ 2a2P

lplðtÞð12 plðtÞÞ, as

VaðtÞ ¼ a2SSHðtÞ (13)

VaðtÞ ¼ Vað1Þ SSHðtÞSSHð1Þ (14)

where SSHðtÞ ¼ 2
P

lplðtÞð12 plðtÞÞ is the sum of site hetero-
zygosity at time t. Ideally, we would directly use SSHðtÞ in a
region; however, this would require knowing a priori which
sites are being selected. Instead, we assume that the trait is
sufficiently polygenic that frequency changes due to selection
are weak, and that the change in heterozygosity at neighbor-
ing neutral polymorphic sites approximately mirrors that at
selected polymorphisms (this is the case under the infinites-
imal model, where the change in frequencies due to selection
is no different from the change due to drift) (Robertson 1960;
Bulmer 1980, Kimura 1984). Then, using the sum of site
heterozygosity at neutral sites, SSHnðtÞ, as a proxy for the
sum of site heterozygosity at selected sites,

Va;sshn
ðtÞ :¼ Vað1ÞsshnðsÞ (15)

where we define sshnðsÞ ¼ SSHnðsÞ=SSHnð1Þ as the factor by
which Vað1Þ decreases at time s, approximated by neutral
sites’ allele frequency changes. Under this approximation,

the dynamics of genic variation are determined by one free
parameter, Vað1Þ, and the directly measurable sum of site
heterozygosity at neutral sites through time.

Our focus here is on the short-term response of a popula-
tion, and so we look at the decay of genetic backgrounds
present at the onset of directional selection. In reality, new
mutations consistently create additive genetic variation for
fitness; thus, an equilibrium level of additive genetic variance
in the population can be maintained. The long-run effect of
linked selection under this equilibrium model is handled by
Santiago and Caballero (1995, 1998); see Connecting our
Model with the Models of Robertson and Santiago and Cabal-
lero in the Appendix.

Multilocus simulation details

To test our theoretical expressions, we have conducted ex-
tensive forward simulations of directional selection on a
polygenic trait. We vary four critical parameters in these
simulations: (1) the level of additive genetic variance at the
onset of selection ðVAÞ, (2) the level of recombination (R in
morgans), (3) the number of selected sites in the region (L),
and (4) the population size (N). We choose our grid of the
selection and recombination parameters based on the levels
we would expect across a wide variety of organisms; see the
Multilocus Simulation Details section in the Appendix for
details. We used three different population sizes ðN 2
f100; 500; 1000gÞ, but note that we use N ¼ 1000 and a sub-
set of the other parameters in our figures.

Before the onset of selection, we create the initial diploid
population from a pool of gametes created by msprime
(Kelleher et al. 2016), such that the initial allele fre-
quency distribution and LD between sites is at mutation–
drift–recombination balance. Details of how msprime was
called are available this paper’s code repository (https://
github.com/vsbuffalo/tempautocov) in R/simpop.r. Then,
we pass this pool of gametes into a forward Wright–Fisher-
with-recombination simulation routine and let it evolve for
four generations neutrally before initiating selection on the
fifth generation. These first four generations of neutral evo-
lution (without mutation) serve as a control to validate that
the variance in neutral allele frequency change is as expected
under a Wright–Fisher model, and that temporal autocovar-
iance between a generation before selection and during se-
lection is zero.

We generate genetic variation for fitness by choosing L
random loci from the neutrally evolved sites, and randomly
assign an effect size of2a orþa, such that the expected total
amount of additive genic variation is VA (note that the initial
additive genic and genetic variance are equal, VA ¼ Va, as the
LD contribution is zero for randomly chosen sites). The de-
tails of this are given in the Multilocus Simulation Details
section in the Appendix. This approach creates some addi-
tional variance around the target level of additive genic
variation, as the sum of site heterozygosities will vary
stochastically across simulation replicates. At the onset
of selection, an individual i’s trait value is calculated as
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zi ¼
PL

i¼1agi;l where gi;l is their number of alleles with effect
size a at locus l. Then, their absolute fitness is calculated
using an exponential fitness function wðziÞ ¼ ezi [see p.
17 in Turelli and Barton (1990)]. Under our Wright–Fisher
model, we sample the parents of the next generation accord-
ing to a multinomial distribution, where the probability of
individual i being a parent is wðziÞ=�w.

We record 50 generations of simulated evolution, after
which we compute the standardized sample temporal vari-
ance–covariance matrix Q (this is the sample analog of our
theoretical variance–covariance matrix S), for each replicate
as follows. First, we mark frequencies reaching fixation or
loss as missing values. This allows the frequency changes
before fixation/loss to contribute to the measured covari-
ance, rather than removing the entire locus’s trajectory,
which would act to condition the covariance on more inter-
mediate frequencies. Note that one cannot ignore fixations
or losses, as these have Dpt ¼ 0 and thus an autocovariance
of zero, which would act to underestimate the true level
of autocovariance at segregating sites. Having marked
fixations/losses as missing, we take the frequency matrix
and calculate a vector of allele frequency changes D p!n ¼
½Dpn;1;Dpn;2; . . . ;Dpn;t� using each neutral locus n’s t þ 1 ob-
served generations. Finally, we calculate the t3 t sample
standardized variance–covariance matrix Q, averaging over
M neutral loci such that element Qt;s is calculated as

Qt;s

¼
1

M21
PM

n¼1

�
Dpn;tDpn;s2

�
1
M
PM

n¼1Dpn;t
��

1
M
PM

n¼1Dpn;s
��

1
M
PM

n¼1pminðt;sÞ
�
12 pminðt;sÞ

� ;

(16)

though see Accounting for Allele Frequency Sampling Noise
in the Appendix for a bias-corrected version when samples
rather than population allele frequencies are used. Sums over
missing values only use pairwise-complete observations,
implemented by R’s cov() function’s use = ’pairwise.complete’
argument.

We have extensively validated our simulation procedure in
a neutrally evolving population, ensuring that the decay of LD
and the allele frequency change match expectations (see
Supplemental Material, Figures S1.1, S1.2, and S1.3).

Comparing theory to simulation results

To validate our expressions for temporal autocovariance, we
compare the levels of autocovariance and variance predicted
byEquation10andEquation12 to theaverage levels observed
across simulation replicates. To calculate the theoretical val-
ues of temporal autocovariance and variance, our expression
requires the additive genic variation at s, VaðsÞ; however, as
described in Modeling the dynamics of additive genic and ge-
netic variation, we lack an analytic expression for the dynam-
ics of genic variation to plug into VaðsÞ. Following the
approach of others in evolutionary quantitative genetics
[see p. 930 in Turelli and Barton (1994)], we substitute the

numerical values calculated directly from the simulation data
for VaðsÞ. Additionally we consider two other numerical val-
ues related to the additive genic variance: the observed ad-
ditive genetic variance from our simulations [VAðsÞ ¼ VariðziÞ
at time s, which includes the contribution of LD between
selected sites], and the additive genic variation at time s
as approximated by the observed decay in the sum of site
heterozygosity at neutral sites [Va;sshnð1Þ, as described in
Modeling the dynamics of additive genic and genetic variation].

Figure 2 compares the fit of our theory with differing ad-
ditive genetic variances with the empirical covariances from
our multilocus simulations. In each panel, we plot the level
of temporal autocovariance between the allele frequency
change across the first two generations of selection ðDp5Þ
and some later allele frequency change Dps where s varies
along the x-axis. Each point represents the temporal autoco-
variance (calculated across all sites in a region according to
Equation 16) averaged across 100 replicate simulations, with
the color of the point indicating the number of selected sites
in the region. Within each panel, the temporal autocovar-
iance predicted by Equation 10 is plotted as a set of three
lines, one for each of the three different types of variance we
have substituted in for VaðsÞ. Overall, the fit is close but varies
depending on the type of variance used for VaðsÞ; we discuss
each in turn below.

Using empirical additive genic variation (solid lines), our
theory provides a good fit to the simulation results for a short
period after selection is initiated (around five generations) in
regions with tighter linkage ðR ¼ 0:01 MorgansÞ across a range
of additive genetic variation parameters (0:01#VA # 0:05; see
Figure S3.2 for VA varying over orders of magnitude). With
looser linkage (R$ 0:1 M), our theory using the empirical ad-
ditive genic variation fits much more closely over a longer
duration (�10–15 generations). Note that some variability is
caused by the noise of each simulation replicate around the
target initial additive genetic variation Va (Multilocus simu-
lation details), as each replicate samples sites from a neutral
coalescent. Our theory also accurately predicts the temporal
autocovariance for different choices of reference generation,
i.e., varying t (see Figure S3.1).

Whenwe use the sum of site heterozygosity at neutral sites
(Va;sshn, shown as a short-dashed line) as a proxy for additive
genic variation, the theory fits simulations over the same time
span as using the empirical additive genic variation. This is
because: (1) the sum of site heterozygosity at neutral sites
closely matches the sum of site heterozygosity at selected
sites and (2) both closely follow the dynamics of additive
genic variation through time (see Figure S2.1). Using Va;sshn
has the advantage that we can directly measure the neutral
sum of site heterozygosity, which proves useful later in
Estimating Linked-Selection Parameters from Temporal Auto-
covariance, as we use this approach to help infer the initial
additive genic variation at the onset of selection.

Finally, we find that using the additive genetic variance
VAðsÞ ¼ VariðziÞ accurately predicts the dynamics of temporal
autocovariance over tens of generations (see the long-dashed
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lines in Figure 2). Furthermore, calculating the temporal
autocovariance using the empirical additive genetic variation
better fits simulation data in regimes with tight recombina-
tion, where using genic variation performs poorly after the
first few generations (e.g., the column of panels where
R ¼ 0:01). Thus, using the additive genetic variance in our
framework provides a good fit to the temporal dynamics over
relatively long time spans.

What differentiates VAðsÞ from VaðsÞ that could explain
this better fit? The additive genic variation VaðsÞ ignores
the contribution of LD between selected sites. We can write
the additive genetic variance as

VAðsÞ ¼ Variðzi; sÞ

¼ 2a2
XL
l¼1

plðsÞð12 plðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genic  variation;  VaðsÞ

þ a2
X
i6¼j

Di;j ðsÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
LD  contribution

(17)

where Di;jðsÞ is the LD between selected sites i and j at time s.
At the onset of selection, there is no expected LD between
selected sites since the sites and effect sizes were randomly
sampled; in other words, EðDi;jðsÞÞ ¼ 0. We see this in Figure
2, as the temporal autocovariances predicted with VaðsÞ
match those of VAðsÞwhen s ¼ 6 (see also Figure S2.1, which
plots the empirical additive genic and genetic variances over
time). Over time, these two quantities diverge as negative LD
build up. While negative LD between selected sites build up
due to epistasis under some forms of selection (known as the

Bulmer effect) (Bulmer 1971, 1980), this is knownnot to happen
under multiplicative selection [see p. 50 and p. 177 in Bürger
(2000)] that is equivalent to the exponential directional selection
fitness surface we have used in our simulations. Instead, the
buildup of negative LD between selected sites is likely due to
HRi between selected sites (Hill and Robertson 1966), which
affects the total additive genetic variation that selection is acting
on. HRi refers to the creation of negative LD among beneficial
alleles in a finite population resulting from the fact that benefi-
cial alleles that are on the same haplotype move more quickly
through the population than beneficial alleles on deleterious
backgrounds, resulting in negative LD. This negative LD among
beneficial alleles lowers VA compared to the genic Va (Hill and
Robertson 1966; Barton and Otto 2005; Good et al. 2014; Crouch
2017). In the derivation of our expression for temporal autoco-
variance, we greatly simplified the multilocus dynamics by ignor-
ing the second term in Equation 6. This term includes the
expected product of two LD terms; each is the LD between the
neutral site and a selected site. Using full multilocus theory, one
may find that, by including these LD products, VA rather than Va

factors out the expression in Equation 7, but we leave this for
future work. Importantly, our simulation results suggest that the
negative LD created by selective interference only affects the
temporal autocovariances through the variance term VaðsÞ, and
that the actual variance determining temporal autocovariance is
the additive genetic variance, VAðsÞ.

In addition to modeling autocovariance through time, our
theory can predict the total temporal variance in allele

Figure 2 In each panel, the temporal autocovariance CovðDp5; DpsÞ is shown on the y-axis while generation s varies along the x-axis. Selection is
initiated on the 5th generation, so Dp5 is the neutral allele’s frequency change across the first generation of selection. Each point is the temporal
autocovariance between Dp5 and the Dps in a region, averaged over 100 simulation replicates, with the colors indicating the number of selected loci.
The gray curves indicate the theoretical predictions (for L ¼ 500 loci only) using Equation 10, with the equation’s variance provided by the empirically
observed additive genic (solid), additive genetic (long dashes), and neutral sum of site heterozygosity approximations (short dashes). A thin horizontal
dashed line indicates y ¼ 0. Across the columns, the level of recombination (in morgans) is varied; across rows, the initial level of additive genetic
variation is varied. Note that while our results here are between the frequency change at the onset of selection Dp5 and some later change Dps, our
covariance theory matches simulation results between any two arbitrary frequency changes Dpt and Dps; see Supplementary Figure S3.1.
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frequency, Varðpt 2 p0Þ, when there is heritable variation for
fitness. Furthermore, from Equation 3 recall that we can de-
compose Varðpt 2 p0Þ into variance and covariance compo-
nents. The variance components are determined by both the
magnitude of drift ð1=2NÞ and selection according to Equa-
tion 11, and the covariance components are determined
solely by selection according to Equation 10 (assuming no
inheritance of environmental factors). Using our theory, we
have predictions for each of these components given the
amount of additive genic/genetic variation for fitness, the
population size (N), and the amount of recombination (R).
In Figure 3, we compare themagnitudes of these components
(averaged over the replicates of our simulations) to our the-
oretical predictions. We depict the predictions for the vari-
ance and covariance components using both the empirical
additive genetic variance ðVAÞ and the neutral sum of site
heterozygosity proxy ðVa;sshnÞ as adjacent bars, each around
a point range with the point representing the average value
over simulation replicates, and the bars indicating the lower
and upper quartiles over simulations.

Finally, we have found that across a wide range of re-
combination and additive genetic variation parameters, the
temporal autocovariance CovðDpt;DpsÞ is largely determined
by the compound parameter VA=R, and the number of gener-
ations between t and s, which is a factor in Equation 9.
We show in Figure 4 that the temporal autocovariance
CovðDp5;DpsÞ from simulations across a wide range of VA

and R parameters fall roughly on the same curve for each
number of elapsed s2 t generations.

Data availability

All code to reproduce these results is available on GitHub at
https://github.com/vsbuffalo/tempautocov. Larger simula-
tion data sets used to create figures are in the Supplemental
material available at FigShare: https://doi.org/10.6084/
m9.figshare.7709930.

Estimating Linked-Selection Parameters from Temporal
Autocovariance

Our multilocus theory provides analytic expressions for the
expected variances and covariances of a neutral allele’s fre-
quency; thus, a natural approach to parameter estimation
is to equate these expectations to averages from the data
and apply the method of moments. We describe a method-
of-moments procedure below to estimate the initial additive
genetic variance at the onset of selection ðVAð1ÞÞ in the first
generation and the drift-effective population size (N) from
temporal datawithin a single region R-M long, and then show
a simple extension that allows this to be applied to genome-
wide data. Our basic approach is to first calculate the sample
variances and covariances of the t observed generation-to-
generation allele frequency changes, averaging over all of the
putatively neutral sites in a region. We then equate these
sample variances and covariances to our analytic expres-
sions for the variances and covariances, leaving us with an

overdetermined system of equations, which we solve using
least squares. We demonstrate that this simple estimation
procedure provides accurate estimates of initial additive ge-
netic variance and the drift-effective population size. We fo-
cus on this procedure, as it is simple and handles incomplete
trajectories due to missing data or fixation/loss well. Calcu-
lating pairwise-complete covariances can leave sample covari-
ance matrices nonpositive definite, which makes maximum
likelihood estimation perhaps much more difficult. Through-
out, we use population allele frequencies (i.e., there is no sam-
pling noise). which simplifies the description of the method;
in Appendix section Accounting for Allele Frequency Sampling
Noise we describe how the method is changed by finite sam-
pling of chromosomes from a population.

Fromourmultilocus theory,wehaveanalytic expressions for
each element of the t3 t covariancematrix of allele frequency
changes in a region. To model the additive genic variance
through time, we use the empirical neutral sum of site hetero-
zygosity approximation as described inModeling the dynamics
of additive genic and genetic variation. This approximates the
rate that the additive genic variation decreases through time
from some initial level, VAð1Þ, which we wish to estimate. In
total, we have t þ tðt2 1Þ=2 unique moment equations,
which for the variance and covariance are defined as

VarðDptÞ
Eðptð12 ptÞÞ ¼

VAð1Þb
2

SSHnðtÞ
SSHnð1ÞAðR; t; tÞ þ F̂ :¼ St;t (18)

CovðDpt;DpsÞ
Eðptð12 ptÞÞ ¼ VAð1Þb

2
SSHnðsÞ
SSHnð1ÞAðR; t; sÞ :¼ St;s ðfor  s. tÞ:

(19)

Here, the first line gives the form of t equations for the var-
iance of allele frequency changes between subsequent gen-
erations, which includes the effect of genetic drift, F̂ ¼ 1=2N.
The second line gives the form of the covariances of allele
frequency changes among different generations. The term
AðR; t; sÞ is the average level of LD after the s2 t generations
that have elapsed, given there are R M of recombination. In
our multilocus theory section and simulations, this is equal to
the integral in Equation 10. However, we can also directly
calculate a sampleAðR; t; sÞ from observed LD in a region (for
details, see Equation 55 in the Appendix).

Following themethodofmoments,weequate eachof these
independent t þ tðt2 1Þ=2 equations for St;s to the observed
sampling moments, the elements Qt;s of the upper triangle of
the observed heterozygosity-normalized covariance matrix Q̂
described in Equation 16. This yields t þ tðt2 1Þ=2 equations
with two unknown parameters: VAð1Þb and N̂. We solve this
overdetermined system of equations using least squares, an
approach similar to the generalized method of moments in
econometrics (Hansen 1982). This approach finds parameter
estimates that minimize the squared error between the mo-
ment-based parameter estimate and the true parameter value,
with respect to the true parameter value.Wewrite the elements
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Qt;s of the upper triangle of the observed covariance matrix in
the vector q!, and write the method-of-moments equations as,

q!¼ VAð1Þb a!þ F̂ b
!þ e! (20)

where the elements of a! and b
!
, in the same order as q!, are

given by

at;s ¼ 1
2
SSHnðsÞ
SSHnðtÞ AðR; t; sÞ;   bt;s ¼ dt;s (21)

where dt;s is an indicator variable that is one when s ¼ t and
zero otherwise.

Then, we can readily estimate the parameters VAð1Þb and F̂
using least squares.We then obtain an estimate of N̂ by taking
1=2F̂. Since these equations are not statistically independent,
we cannot assume Covð e!Þ ¼ s2I. However, this does not
affect our estimates VAð1Þb and F̂, as the least squares proce-
dure is unbiased regardless of the covariance structure be-
tween the error terms [see p. 26 in Christensen (2011)].

Using this method-of-moments approach, we sought to
infer the parameters of 20 of the replicates across the 254 pa-
rameter combinations (the same as used in Figure 2). We use
the first five generations after the onset of selection to infer
VAð1Þb and N̂, as for this short time span the additive genetic
variance is well approximated using the sum of neutral site
heterozygosity approach (see Comparing theory to simulation
results). Each simulation replicate includes �500 neutral
sites (the exact number is random, seeMultilocus Simulation
Details in the Appendix for details).

Applying our approach to these simulations, we find that
we can infer both the initial level of additive genetic variation
VAð1Þ and the effective population size N from multilocus

temporal data. In Figure 5A, we show that our method of mo-
ments gives reasonable estimates for the initial level of additive
genetic variance over orders of magnitude of additive genetic
variation, and different recombination regimes. As additive ge-
netic variation for fitness becomes weaker (the left side of the
figure), our estimates become more noisy. In Figure 5B we
show the simultaneously estimated population size N against
the true population size value. We also plot the estimated Ne

(not accounting for selection) from a simple temporal estimator,
Ne ¼ 2 t=ð2logð12 FÞÞ (Krimbas and Tsakas 1971; Waples
1989), where F is Wright’s standardized variance (Wright
1931). While with high VA and low R the method-of-moments
approach still underestimates N, it performs far better than a
standard temporal Ne estimator that does not account for selec-
tion. In Appendix Figure A3, we include a version of this figure
calculated using the method of moments on sample allele fre-
quencies for a sample of size n ¼ 100 chromosomes.

We can extend this approach to whole-genome data by imag-
ining partitioning the genome into B nonoverlappingwindows of
length wBP in base pairs (e.g., megabase windows). We first as-
sume that windows contribute uniformly to the genome-wide
level of additive genetic variance for fitness, and show how our
method-of-moments approach can be used to estimate a global
VAð1Þ. Assumingauniformdistribution of genetic variance across
base pairs, the total additive variance is VAð1Þ ¼ vAð1ÞBwBP,
across our B windows, where vAð1Þ is the additive genetic vari-
ance per base pair. As each window i contributes to vAð1ÞwBP,
our least squares approach given by Equation 20 becomes

St;s;i ¼ VAð1Þb
2

1
B

SSHnðsÞ
SSHnð1ÞAðRi; t; sÞ þ F̂dt;s þ e; for  s$ t:

(22)

Figure 3 Summing over genera-
tions, Equation 6 and Equation
12 accurately predict the total
variation in allele frequency
change due to variance (var) and
covariance (cov) components.
The predicted cumulative vari-
ance in allele frequency change
across the 10 generations af-
ter selection ðVarðp15 2 p5ÞÞ is
shown as bars, using both the
empirical additive genetic varia-
tion VA (bars to the left of the
point range) and the empirical
neutral sum of site heterozygosity
(bars to the right of the point
range). The variance and covari-
ance components are represented
by blue/green and orange/yellow
tones, respectively. Finally, we
show the averaged results of
our simulations as point ranges,
with the points depicting the av-
erage, and the bars representing
the lower and upper quartiles.
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However, we expect a priori that windows containing more
coding bases might disproportionately contribute to the total
additive genetic variance. This suggests an alternative model
to fit where partitions of the additive genetic variance across
windows are proportional to the number of coding bases,
similar to background selection and other linked selection
models (McVicker et al. 2009; Rockman et al. 2010;
Corbett-Detig et al. 2015). Thus, we could write total
VAð1Þ ¼ vAð1Þ

PB
i¼1wCBP;i where wCBP;i is the number of cod-

ing or exonic base pairs in window i (this could be any
quantifiable annotation feature in the window), and
WCBP ¼PB

i¼1wBP; i is the total number of coding bases in
the genome. With window i contributing vAð1ÞwCBP;i to the
additive genetic variance and having map length Ri, we now
define q!; a!, and b

!
as having elements given by the equations

X
t;s;i

¼ VAð1Þb
2

wCBP;iSSHnðsÞ
WCBPSSHnð1Þ AðRi; t; sÞ þ F̂dt;s þ e; for  s$ t:

(23)

Again, the parameters of this model, VAð1Þb and N̂, can be
estimated with least squares. When analyzing genome-wide
data, these various models could potentially be compared to
an out-of-sample procedure, using inferred parameters to
estimate the mean-squared predictive error between the
two models for the remaining windows (Elyashiv et al.
2016). The C.I.s for our method-of-moments estimates could
be obtained through bootstrapping genomic windows since
the errors are not identically and independently distributed.

Estimating the proportion of variance in frequency
change due to linked selection

We can also estimate what fraction of allele frequency change
over t generations ðVarðpt 2 p0Þ=tÞ is due to linked selection
acting to perturb the frequency trajectories of neutral alleles.
We have developed two approaches: first, a more conserva-
tive approach that considers only the contribution of selec-
tion to the temporal autocovariance, and second, a more
exact approach that uses the estimated effective population
size to include the contribution of selection to both variances
and covariances of allele frequency change.

First, a simple estimate of the total fraction of the variance
in allele frequency change (G) caused by linked selection is

G ¼
P

t 6¼sCovðDpt;DpsÞ
Varðpt 2 p0Þ : (24)

However, this estimator is conservative because it ignores the
contribution that linked selection has on the variance in allele
frequency change across a single generation [the VarðDHptÞ
term in Equation 2]. If we include these variance terms, we
have a less-conservative estimator that we call G9:

G9 ¼
P

t 6¼sCovðDpt;DpsÞ þ
Pt

i¼1VarðDHpiÞ
Varðpt 2 p0Þ

¼ 12
Pt

i¼1VarðDMpiÞ þ
Pt

i¼1VarðDNpiÞ
Varðpt 2 p0Þ :

(25)

We can think of the numerator of the second term in Equation
25 as the variance in allele frequency change in a Wright–
Fisher population without selection. Recall that under a
Wright–Fisher model, the standardized variance across t gen-
erations is approximately ð12 expð2t=2NÞÞ � p0ð12 p0Þ3
t=2N, where this second approximation works for short time
spans ðt=2N � 1Þ. This suggests that we can use our method-
of-moments estimate of the effective population size without
the effects of selection, N̂, and compare the fraction of stan-
dardized variance we expect under this rate of drift to the
empirical standardized variance,

G9 ¼ 12
tEðp0ð12 p0ÞÞ
2N̂Varðpt 2 p0Þ

: (26)

Figure 6 shows the estimated G9 from themethod-of-moment
N̂ estimates using 20 replicates of simulated data. We learn
three important points about our G9 estimator. First, for low
VA or VA ¼ 0, the estimator is quite noisy. Second, although
the signal can be noisy for low VA, the relationship betweenG9
and the level of recombination is consistent with selection
affecting the total variance in allele frequency changes across
the genome. Finally, this suggests that a negative relationship
between G9 and recombination rate, calculated in windows
across the genome, is a robust signal of linked selection
impacting the total variance in allele frequency change. Fur-
thermore, we would expect a positive relationship between

Figure 4 The compound parameter VA=R and the number of generations
between the temporal autocovariance s2 t largely determines the mag-
nitude of the temporal autocovariance across a wide spectrum of VA and
R parameters. Each point is a simulation replicate with its x-axis position
given by VA=R, the y-axis position equal to the temporal autocovariance,
and the number of elapsed generations given by ðs2 tÞ. Each line is a
Loess curve fit through each set of points for a particular generation (with
smoothing parameter a ¼ 0:9).
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the number of coding base pairs per window (when such
information is available) and G9, which could serve as an-
other robust signal of linked selection impacting the total
variance in allele frequency change.

Fluctuating selection

Thus far,wehave assumed thatfitness effect sizes are constant
through time, that is at;l ¼ as;l, for all t; s. In natural popula-
tions, changes in the environment or composition of the pop-
ulation may cause these effect sizes to change through time,
due to changing selection pressures and changes in the epistatic
environment experienced by alleles. If these changes occur
within the timeframe of recorded allele frequency changes,
the levels of temporal autocovariance will differ from the levels
predicted from our directional selection theory. However, from
Equation 6 we can see that the magnitude of temporal autoco-
variance is determined in large part by EðatasÞ.

Here, we discuss how temporal autocovariance behaves
under an example of strong fluctuating selection: when se-
lection on a trait changes direction at some point. Specifically,
we change the fitness functionwðziÞ ¼ ezi towðziÞ ¼ e2zi after
some timepoint t*; this is equivalent to changing as;l ¼ 2at;l

if s$ t*, and as;l ¼ at;l otherwise for all other s, t*.
When such a strong change in the direction of selection

occurs, the temporal autocovariance between timepoints be-
fore and after the change becomes negative, since temporal
autocovariance is determined by the product atas for t 6¼ s
(here we are holding effects constant across loci). We have
validated this using the same simulation procedure as de-
scribed inMultilocus simulation details, except that on gener-
ation 15 we reverse the direction of selection on the trait
by changing the fitness function wðzÞ ¼ ez to wðzÞ ¼ e2z.

In Figure 7A, we show the temporal autocovariance
CovðDp5;DpsÞ for varying s along the x-axis (in this case,
Va ¼ 0:05;R ¼ 0:1, and L ¼ 500). During the first five gen-
erations, the temporal autocovariance behaves as it does un-
der directional selection, decaying due to the decrease in
additive genetic variance and the breakdown of LD. Then,
on the 15th generation, the direction of selection on the trait
with breeding value zi reverses, and temporal autocovariance
becomes negative since as;lat;l , 0 for all s$ t* and t, t*.
Under this simple flip in the direction of selection pressure,
the genic variance, VaðsÞ ¼ 2a2P

lps;lð12 ps;lÞ, in the expres-
sions for the temporal autocovariance can be replaced
with VaðsÞ ¼ 2asat

P
lps;lð12 ps;lÞ, akin to a genetic/genic co-

variance. In Figure 7A, the gray line is our predicted level of
temporal autocovariance proportional to VAAðR; t; sÞ given by
Equation 8 before generation 15, and after that generation it
is proportional to 2VAAðR; t; sÞ (using the empirical addi-
tive genetic variance). However, note that the dynamics of
additive genetic variance under fluctuating selection are
more complex than under directional selection. Whereas un-
der directional selection the genetic variance decays as selec-
tion proceeds, under fluctuating selection there can be a
transient increase in the additive genetic variance (seen
in Figure 7A between generations 15–24). This transient
inflation of the additive genetic variance is caused by the
increase in the heterozygosity of haplotypes that experi-
ence reduced heterozygosity due to directional selection.
With the direction of selection reversed, previously selected
haplotypes move to more intermediate frequencies, which
increases the additive genetic variance until selection
proceeds and this variance decays (generations 25 and on-
wards).Overall, the dynamics of additive genetic variance under

Figure 5 True parameter values and estimates using the method-of-moments approach on multilocus simulation data. (A) The true VAð1Þ (x-axis) and
VAð1Þb estimated from the variance–covariance matrix (y-axis) for each simulation replicate across different levels of recombination (indicated by each
point’s color). The dashed gray line shows the y ¼ x line where an estimate is exactly true to its real value. Note that the plot is on a log–log scale, as VA

varies across orders of magnitude in our simulations. (B) Estimated drift-effective population size ðN̂Þ across a range of simulations with different levels of
additive genetic variance and recombination. Each point denotes the median, with lines denoting the interquartile range. A simple temporal estimate of
the effective population size, estimated to account for the effects of selection, is averaged for each replicate and plotted as a dash. The true value
ðN ¼ 1000Þ is shown with the dashed gray line. Population frequencies (without sampling noise) are used in this figure; see Appendix Figure A3 for an
analogous figure calculated with sample frequencies.
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fluctuating selection are more complicated than under direc-
tional selection, which makes inference using our sum of site
heterozygosity approximation infeasible.

Since fluctuating selection can create negative temporal
autocovariance, the total amount of autocovariance over
time [e.g.,

P
t 6¼sCovðDpt;DpsÞ] can misrepresent the actual

amount that linked selection is affecting allele frequencies
on shorter timescales. In turn, this leads our estimator G, for
the fraction of variance in allele frequency due to linked selec-
tion, to underestimate the total contribution of linked selection
to variation in allele frequencies over the time period. We show
an example of this in Figure 7B, which depicts the total vari-
ance in allele frequency change Varðpt 2 p0Þ=t through time,
partitioned into variance and covariance components, and
colored according to whether the generation was before or
after the reverse in directional selection. The covariancesP

t 6¼sCovðDpt;DpsÞ increase as they would under directional
selection, but after generation 15, the contribution of covari-
ance begins to decrease as negative autocovariances accumu-
late. By generation 20, the total covariance terms have a net
negative effect, and actually act to decrease the total variance
Varðpt 2 p0Þ=t for a few generations below the constant level
expected under drift and heritable variation.

To more fully capture the contribution of selection allele
frequency change, we modify G, using the absolute value of
the covariances

Gabs ¼
P

t 6¼sjCovðDpt;DpsÞj
Varðpt 2 p0Þ ; (27)

which prevents negative temporal autocovariances from can-
celing out the effects of positive temporal autocovariances,
since both are a reflection of linked selection acting on neutral
allele frequency changes. We show Gabs in Figure 7C, where
even after the change in the directional selection we see a
steady accumulation of covariance contributing to total var-
iance Varðpt 2 p0Þ=t. This also suggests that one plausible
way to check for genomically widespread fluctuating selec-
tion would be to test if Gabs .G. However, we note that in
contrast to our simulations, it is likely that in natural popu-
lations only a subset of alleles change their relationship to
fitness. This may act to dampen the magnitude of, but not
completely reverse, the direction of genome-wide temporal
autocovariance, and so different approaches may be needed
to identify fluctuations.

Discussion

Currently, the prevailing empirical approach to studying
linked selection relies on using samples from a single time-
point, and modeling the patterns of diversity subject to dif-
ferent functional constraints and in different recombination
environments. The early theoretical work underpinning

Figure 6 The proportion of total
variance in allele frequency
changes caused by linked selec-
tion, G9, across a variety of differ-
ent levels of additive genetic
variance (each group of boxplots),
and different levels of recombina-
tion (each colored boxplot within
a group). Each boxplot shows the
spread of values across 20 repli-
cates, with N̂ being calculated
across each replicate.

A Temporal Signal of Linked Selection 1021



empirical analyses of linked selection’s effects on diver-
sity were primarily full sweep, recurrent hitchhiking mod-
els, where beneficial mutations arise in the population
and then sweep to fixation (Smith and Haigh 1974;
Kaplan et al. 1989; Stephan et al. 1992). Furthermore,
by looking at the patterns of diversity around amino acid
substitutions or the site frequency spectrum in low-
recombination regions, researchers have teased apart
the effects of background selection and hitchhiking in
Drosophila (Begun et al. 2007; Elyashiv et al. 2016), hu-
mans (McVicker et al. 2009; Hernandez et al. 2011), and
some plant species (Nordborg et al. 2005; Schmid et al.
2005; Williamson et al. 2014; Beissinger et al. 2016). Yet,
as other theoretical models of hitchhiking incorporating
changes in the environment (Kopp and Hermisson 2007,
2009a,b), sweeps originating from standing variation
(Hermisson and Pennings 2005), and multiple competing
beneficial haplotypes (Pennings and Hermisson 2006)
have been developed, it has become rather more difficult
to detect the signals of these hitchhiking phenomena in
empirical data. We have proposed here that temporal
autocovariance offers a unique and measurable signal
of linked selection over shorter timescales that pro-
vides a fuller picture of the ways in which genome-wide

diversity has been affected by these other hitchhiking
phenomena.

Empirical applications and future directions

Here, we have developed expressions for temporal variances
and autocovariances, and applied these to model temporal
variances and covariances during directional selection on a
trait. We have demonstrated how one can: (1) estimate the
additive genetic variance for fitness and the drift-effective
population size, (2) estimate the fraction of variance in allele
frequency change due to linked selection, and (3) evaluate
whether fluctuating selection is operating from these tempo-
ral variances and autocovariances. However, we recognize a
series of limitations and difficulties when applying these
methods to empirical data and natural populations.

First, one difficulty with temporal sampling of natural
populations is the risk that the genetic composition may
change drastically due tomigration or biased sampling across
timepoints. Since our theory assumes a constant-sized and
isolated population, migration into the sampled population
presents a serious potential confounder. For example, sea-
sonalmigration could createan influxofnewalleles that could
at best dampen signals of directional selection across seasons,
or at worst create a signal of artificial covariance between like

Figure 7 (A) The covariance (cov) CovðDp5;DpsÞ, where s is varied on the x-axis, for Va ¼ 0:05, R ¼ 0:1, and L ¼ 500 averaged over 100 replicates.
Selection begins in generation 5 [with the fitness function wðziÞ ¼ ezi ] and on generation 15 the direction of selection flips [and the fitness function
becomes wðziÞ ¼ e2zi ]. The gray line shows our directional selection temporal autocovariance prediction modified so that after the flip in the direction
the trait is selected, we plot the negative theoretical level of temporal autocovariance. (B) The average cumulative variances (var) and covariances
through the generations for the same simulation parameters, with the heights of the bars representing the total cumulative variation Varðpt 2p0Þ=t.
Since the direction of selection flips, the covariance terms after generation 15 become negative, leading the total variance to decrease (the negative
covariances are plotted below the x-axis line). After generation 21, the total covariance is negative, leading the total variance to dip below the level of
variance alone (determined by drift and heritable fitness variation). The dark gray dashed line shows the level of variance expected by drift alone
ðVarðpt 2p0Þ=t ¼ 1=2NÞ. (C) The effect of using the absolute value of covariance, which prevents the negative autocovariances from canceling out the
effects of other covariances before the direction of selection changes.
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seasons. Similar biases could occur if a sampling method
incidentally preferred certain subgroups in a stratified pop-
ulation. This could occur, for example, if individuals differed
in some behavior affecting their likelihood of being sampled
across different temporal environments, which could cause
spurious covariances. While such sampling issues and migra-
tion might be able to be detected post hoc from exploratory
data analysis approaches like PCA, studying isolated natural
populations and carefully designing sampling schemeswould
lead to the best inference. Importantly, the effects of gene
flow and other temporal inhomogeneities could differ across
recombination environments, as among-population differen-
tiation will be more pronounced in regions of low recombi-
nation and high functional density (Keinan and Reich 2010;
Nachman and Payseur 2012; Burri 2017). In situations where
migration is a factor, one way forward might be to study the
contribution of linked selection after partitioning out the ef-
fects of gene flow across recombinational and functional en-
vironments, by extending admixture inference approaches
that estimate the genome-wide effect of drift and admixture.

Second, our method-of-moments approach relies on as-
suming that we can approximate the dynamics of the decay of
the additive genetic variance that was present at a reference
timepoint by using the observed changes in the sum of site
heterozygosity in a region as a proxy for its decay. While we
have shown that this model works under directional selection
in a relatively idealized setting, inference in natural popula-
tions may be complicated by changes in the environment that
induce the effect sizes across loci to vary across timepoints.
While our fluctuating selection results show that our direc-
tional selection theory extends to changes in the direction of
selection with minor adjustments (e.g., Figure 7), having the
effect sizes vary across each generation would complicate the
dynamics of additive genetic variance through time andmake
inference of VA difficult. Similarly, we assume that effect sizes
are constant across sites. Variance in effect sizes across a region
will not bias our results unless there is covariance between effect
size and local recombination rate. Further work is required to
develop statistical methods to test for violations of our assump-
tions about effect sizes remaining constant across time, and to
potentially incorporate these complications into inference.

Along similar lines, we have focused on directional selec-
tion under a multiplicative model. However, selection exper-
iments, a natural place to apply our method, often use
truncation selection, which generates systematic epistasis
for fitness and thus LD among loci (Bürger 2000; Walsh
and Lynch 2018). Similarly, in natural populations stabilizing
selection will act on many traits, which can also generate LD
among loci. These selective processes will act to rapidly re-
duce the additive genetic variance for fitness across time,
especially in low-recombination regions, and reduce the ini-
tial additive genetic variance in low-recombination regions.
Simulating the effect of truncation selection and stabilizing
selection on temporal covariances in allele frequencies seems
a useful direction. Our model may prove to be a useful null
model of selection that the complications of epistasis and

different dynamics of the additive genetic variance could be
tested against.

Finally, while we have demonstrated that our method-of-
moments estimation approach is simple and leads to unbiased
estimators, we see opportunities for simple extensions and
other inference procedures. Differences in recombination
rates and coding density are relatively easily accommodated
(Equation 23). In fitting our model, we assumed a parametric
form to the initial LD between neutral and selected loci;
however, in practice the initial LD between neutral polymor-
phisms and putatively functional sites could be estimated
empirically. Using the empirical LDs in Equation 23 could
make the inference somewhat analogous to LD score regres-
sion (Bulik-Sullivan et al. 2015). The LD score of a SNP is
simply the sum of the R2s of the focal SNP to all SNPs within
some large physical genomic window, which could be used in
place of the integral in Equation 10. Using this equation, VA

could be estimated by regressing the temporal covariance of a
SNP on its LD score. An alternate approach would be to use
likelihood methods to model each neutral site’s frequency
changes using the set of pairwise LD and recombination dis-
tances between the neutral site and all neighboring polymor-
phic sites. Then, genome- or region-wide estimates could be
found via composite likelihood methods, in a similar manner
to McVicker et al. (2009) and Elyashiv et al. (2016). Fur-
thermore, one could include different VA parameters for
neighboring polymorphic sites with specific functional an-
notations—such as those in genic regions, introns, and
exons—to see how different classes of sites contribute to
the additive genetic variance for fitness. Our hope is that
statistical methods to quantify the effects of linked selec-
tion over short timescales will improve and be combined
with measures of phenotypic change, leading to a more
synthetic view of how selection on ecological timescales
occurs at the genetic and phenotypic levels.

As the number of empirical temporal genomic studies
continues to increase, it is worth mentioning how our study
of temporal autocovariance suggests a few ways to optimize
experimental design to increase the power to differentiate the
effects of selection from drift. First, one should ideally sample
frequencies from consecutive generations for at least some
timepoints during the duration of the experiment. This is
because the variance in allele frequency change VarðDptÞ be-
tween adjacent generations is only impacted by the heritable
variance in offspring number, VarðDHptÞ (see Equation 2),
and not by the accumulation of temporal autocovariance
terms (e.g., Equation 3); this allows for more accurate esti-
mates of G. In cases where a long study duration is needed
but sequencing is limited to only a subset of generations, a
mixed-duration sampling design, such as sampling genera-
tions 1 through 4, then 10 through 14, and so forth could
serve as a compromise. Second, as described in Accounting
for Allele Frequency Sampling Noise in the Appendix, the
shared sampling noise between adjacent timepoints creates
a negative bias in autocovariance that must be corrected
for. As described in Equation 98 and Equation 99, we can
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estimate this bias from data, but this introduces additional
uncertainty into our parameter estimates. In cases where the
experimenter suspects a priori that fluctuating selection is
occurring, e.g., between two seasons, we recommend at least
two temporal samples per season. This allows one to differ-
entiate negative covariance occurring from the bias cor-
rection procedure underestimating bias from negative
covariance caused by fluctuating selection through compar-
ing nonadjacent timepoints that differ in season. Finally, one
can directly remove the effects of the technical sampling
noise created by variation in sequencing by dividing up tem-
poral samples and barcoding them into two groups (e.g., A
and B). Then, the sample covariance estimate CovðDpt;A; ps;BÞ
does not share the technical sampling noise, reducing the bias
(but note some bias remains due to the sampling process
where individuals are sampled from the population.)

Connecting temporal linked selection with
single-timepoint studies

Our goal in this paper is to suggest that quantifying variance
and autocovariance using temporal data sets can help us
understand the impact that linked selection has across the
genome on short timescales, which supplements our current
view informed mainly by single-timepoint studies. A range of
approaches to estimate the parameters and impacts ofmodels
of linked selection from a single contemporary timepoint
have been developed (Begun and Aquadro 1992; Wiehe and
Stephan 1993; Hudson 1994; McVicker et al. 2009; Sella et al.
2009; Elyashiv et al. 2016). These estimates necessarily reflect
linked selection over tens to hundreds of thousands of gener-
ations. One question is whether these estimates of the propor-
tion of allele frequency change due to linked selection should
line up with those over shorter time periods? Some forms of
linked selectionmay be fairly uniform over time, whereas rare,
strong sweeps will have a huge impact on long-term patterns
of variation, but may be hard to catch in temporal data. Con-
versely, as we discuss below, fluctuating selection may lead to
stronger signals of linked selection on short timescales than
seen in long-term snapshots.

Studies of contemporary data have revealed multiple lines
of evidence for the effect of linked selection ina variety of taxa.
If linked selection is pervasive across the genome, diversity
could be severely dampened as most sites would be in the
vicinity of selected sites, thus reducing the genome-wide level
of diversity without leaving strong local signals differentiated
from the background. This is one proposed resolution of
Lewontin’s paradox, the observation that diversity levels oc-
cupy a narrow range across taxa with population sizes that
vary by orders of magnitude (Lewontin 1974; Smith and
Haigh 1974; Gillespie 2001; Leffler et al. 2012). Elyashiv
et al. (2016) estimated a 77–89% reduction in neutral diver-
sity due to selection on linked sites in Drosophila mela-
nogaster, and concluded that no genomic window was
entirely free of the effect of selection. Similarly, Corbett-
Detig et al. (2015) found evidence of a stronger relative re-
duction in polymorphisms due to linked selection in taxawith

larger population sizes. However, these reductions fall short
of the many orders of magnitude required for linked selection
to explain Lewontin’s paradox (Coop 2016).

One limitation of these approaches is that they require
estimating p0, the level of diversity in the absence of linked
selection, usually from the diversity in high-recombination
regions with low gene content. The average genome-wide
reduction of diversity can then be judged relative to p0. Ide-
ally, p0 would be a measure of the average diversity due
entirely to drift and demographic history, i.e., unaffected by
heritable fitness variation. However, there are two complica-
tions with this. First, as Robertson (2009) first showed, even
a site completely unlinked from sites creating heritable fit-
ness variation experiences a reduced effective population size
due to the total additive genetic variance for fitness at these
unlinked sites, and thus lower diversity [see also Santiago
and Caballero (1995)]. The second complication is that
if linked selection is sufficiently strong, the bases used to
measure p0 may not be sufficiently unlinked from fitness-
determining sites to plateau to the Robertson (2009) level
of diversity, a known potential limitation (Coop 2016;
Elyashiv et al. 2016). Overall, the empirical studies relying
on present-day samples from a single timepoint could be
underestimating the effects that pervasive linked selec-
tion has on diversity. If linked selection can be observed over
suitable timescales in temporal data, we might be able to
disentangle some of these effects. For example, if high-
recombination regions still show temporal autocovariance
in allele frequency change, we would have evidence that
even these regions are not free of the effect of linked selection
and we might be able to estimate its long-term impact on
levels of diversity.

Temporally or spatially fluctuating selection has long been
discussed as an explanation for abundant, rapid phenotypic
adaptation over short timescales, yet over longer timescales
both phenotypic changes and molecular evolution between
taxa are slow (Gingerich 1983; Hendry and Kinnison 1999;
Messer et al. 2016). However, most of our approaches to
population genomic data are built on simple models with
constant selection pressures, as typically we have not had
the data to move beyond these models (Messer et al.
2016). Currently, many approaches to quantify the impact
of linked selection due to hitchhiking assume classic sweeps,
where a consistent selection pressure ends in the fixation of a
beneficial allele (Wiehe and Stephan 1993; Sella et al. 2009;
Hernandez et al. 2011). However, fluctuating selection can
have a larger effect on reducing diversity than classic sweeps
(Barton 2000) depending on the timescales over which such
fluctuations occur. In fact, as Barton (2000) points out, the
total effect of classic Maynard–Smith and Haigh-type sweeps
on diversity is limited by the relatively slow rate of substitu-
tions. We show that when the direction of selection on a trait
abruptly reverses, this creates negative autocovariance be-
tween the allele frequency changes before and after the re-
verse in direction. We can observe the shift by plotting
autocovariances over time and noting when they become
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negative, indicating a negative additive genetic covariance
between fitness at two timepoints. Here, we assume a simple
form of fluctuating selection, where selection pressures on all
of our sites flip at some timepoint. In reality, selection pres-
sures will change on only some traits, and some of the genetic
response will be constrained by pleiotropy, thus only some
proportion of the additive genetic variance will change. Still,
we expect some level of negative covariance after a reversal
in the direction of selection, and there is an additional signal
of fluctuating selection by comparing how the strength of
temporal autocovariance varies with recombination and the
initial level of LD in the genome.

Connecting estimates of VA from temporal genomic
data and quantitative genetic studies

The temporal covariance of allele frequencies potentially
offers a way to estimate the additive genetic variance for
fitness, as illustrated by our method-of-moments approach
across genomic windows. The additive genetic variance for
fitness can, like any other trait, be estimated through quan-
titative genetics methods, which exploit the phenotypic re-
semblance between relatives and their known kinship
coefficients (Kruuk 2004; Shaw and Shaw 2013) [see
Hendry et al. (2018) for a review], and these methods have
been applied to estimate the additive genetic variance for
fitness from natural populations (Mousseau and Roff 1987;
Burt 1995). Ideally, one could reconcile quantitative genetic
measures of fitness variance with estimates from allele fre-
quency covariance. For example, Charlesworth (2015) un-
dertook a similar analysis in D. melanogaster, comparing
population genetic estimates of fitness variance to quantita-
tive genetics estimates, highlighting a discordance poten-
tially consistent with undetected large-effect alleles that are
likely maintained by some form of balancing selection. By
allowing us to directly measure fitness variation from popu-
lation genetic data over very short timescales, temporal data
could help untangle the causes of this discordance. A natural
extension of this would be to see which regions contain the
greatest inferred levels of additive genetic variance for fitness
and test for functional covariates such as the number of cod-
ing bases, etc. Whereas previous temporal studies have fo-
cused on finding loci under selection, inferring the level of
additive genetic variance could provide a more complete
view of how much selection operates over short timescales.

Conclusions

With temporal data, we can directly partition the total
variance in allele frequency change across generations,
Varðpt 2 p0Þ, into components according to the underlying
process governing their dynamics: drift and linked selection.
Since the trajectory of a neutrally drifting polymorphism does
not autocovary, evidence of temporal autocovariance across
neutral sites in a closed population is consistent with linked
selection perturbing these sites’ trajectories. If we consider
drift to be the process by which nonheritable variation in
reproductive success and Mendelian segregation cause allele

frequencies to change, then this is estimable from and sepa-
rable from the effects of linked selection using temporal data.
This helps frame the long-running debate about the roles that
neutral drift and linked selection have in allele frequency
dynamics into a problem that can potentially be directly
quantified by the contribution of each distinct process with
temporal data.
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Appendix

Decomposition of Allele Frequency Change

This decomposition of neutral allele frequency change between two consecutive generations is based on that of Santiago and
Caballero (1995). We imagine a closed Wright–Fisher population of N diploids, where each diploid i contributes
ki � Multinomðfi=N; 2NÞ gametes to the next generation.We assume that the population size is constant, such that one diploid
begets one diploid and thus EiðfiÞ ¼ 1. The neutral allele frequency in the next generation can be thought of as each of the N
parents passing their average genotype xi=2 (where xi 2 f0; 1; 2g is the number of tracked neutral alleles individual i carries) to
their ki gametes, plus a randomMendelian deviation bij 2 f0; 2 1=2; 1=2g to each offspring j. Then, the frequency in the next
generation can be written as

p1 ¼ 1
N

XN
i¼1

 
ki
xi
2
þ
Xki
j¼1

bij

!
(28)

where bij ¼ dxi;1ð1=22BjÞ;Bj � Bernoullið1=2Þ, and dxi;1 is an indicator function that is one when the individual i is a hetero-
zygote (i.e., xi ¼ 1), and zero otherwise.

If we further decompose the number of offspring of individual i into the genetic and nongenetic contributions, ki ¼ fi þ di,
then

p1 ¼ 1
N

XN
i¼1

 
ð fi þ diÞ xi2 þ

Xki
j¼1

bij

!

¼ 1
2N

XN
i¼1

fixi þ 1
2N

XN
i¼1

dixi þ 1
N

XN
i¼1

Xki
j¼1

bij

(29)

and the change of the neutral allele’s frequency is the difference Dp ¼ p1 2 p0 where p0 ¼ 1=2N
PN

i¼1xi. Then,

Dp ¼ p1 2 p0 ¼ 1
2N

XN
i¼1

fixi þ 1
2N

XN
i¼1

dixi þ 1
N

XN
i¼1

Xki
j¼1

bij2
1
2N

XN
i¼1

xi

¼ 1
2N

XN
i¼1

xið fi 2 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DHp1

þ 1
2N

XN
i¼1

dixi|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
DNp1

þ 1
N

XN
i¼1

Xki
j¼1

bij|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
DMp1

:
(30)

These d’s broadly capture nonheritable variation in an individual’s offspring number, with E½di� ¼ 0. In a quantitative genetics
framework, VariðdiÞ can include nongenetic variation in the lifetime reproductive success of individuals ðVEÞ, while in pop-
ulation genetic models VariðdiÞ can accommodate the sampling of parents to form the next generation, e.g., multinomial
sampling of individuals from fitnesses (Santiago and Caballero 1995). From now forwards, we assume that variation in these
d’s is nonheritable. We note that in nonpanmictic populations, chance covariances could be created between a neutral poly-
morphism and environmental component of their phenotype, especially as a population expands its range into new environ-
ments that affect the phenotype and variants “surf” to higher frequencies (Edmonds et al. 2004; Excoffier and Ray 2008;
Hallatschek and Nelson 2008).

Note that by construction, the allele frequency change components DNptDMpt and DHpt are orthogonal within each indi-
vidual, given the neutral allele frequency x. Partitioning the allele frequency change for an individual i into its components,

Dpt;i ¼ 1
2
xið fi 2 1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

DHpt;i

þ 1
2
xidi|fflffl{zfflffl}
DNpt;i

þ dxi;1ðki=22MðkiÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DMpt;i

(31)

¼ 1
2
xið fi 2 1Þ þ 1

2
xidi þ dxi;1ð fi=22Mð fiÞÞ þ dxi;1ðdi=22MðdiÞÞ (32)

where MðnÞ ¼Pn
j¼1Bj � Binomðn; 1=2Þ.
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Two random variables X; Y are uncorrelated if CovðX; YÞ ¼ EðXYÞ2EðXÞEðYÞ ¼ 0, and are orthogonal if either has an
expected value of zero such that EðXYÞ ¼ 0. We show briefly that taking expectations over conceptual evolutionary replicates,
the terms are orthogonal. First, the terms xð f 2 1Þ and xd are orthogonal (dropping i subscripts),

1
4
Covðxð f 2 1Þ; xdÞ ¼ 1

4

�
E
�
x2dð f 2 1Þ�2Eðxð f 2 1ÞÞEðxdÞ�

  ¼ 1
4

�
E
�
x2
�
EðdÞEð f 2 1Þ2EðxÞEð f 2 1ÞEðxdÞ�

  ¼ 0

(33)

since Eð f Þ ¼ 1 across evolutionary replicates due to the assumption that population size is constant, and xbottom; f , as across
all evolutionary replicates there is no dependence between a particular neutral allele an individual carries and their fitness
(though in particular replicates, such associations occur). Similarly, for the case x ¼ 1 (other cases are all zero and can be
ignored), it can be shown using the law of total expectation that Covðxd; d=22MðdÞÞ ¼ 0 [and likewise with xðf 2 1Þ and
f=22Mðf Þ]. Note that across individuals within a population, there are weak covariances in their number of offspring as the
total number of offspring must sum to N; under a multinomial offspring distribution, these are of order 1=N.

Temporal Variance and Autocovariance Under Multilocus Selection

We assume the phenotype of an individual i has an additive polygenic basis, such that their breeding value is zi ¼
PL

l¼1at;lgi;l,
which deviates around amean of zero, and at;l is the additive effect size at locus l in generation t and gi;l 2 f0; 1; 2g is individual
i’s allele count at this locus (note that the effect of nonheritable environmental noise affecting the trait is accounted for in the di
terms above). We impose directional selection on this trait using an exponential fitness function, such that individual i’s fitness
is fi ¼ wðziÞ=�w � ezi (assuming �w � 1). If we assume individuals’ phenotypic values do not deviate too far from their mean
value of zero, we can approximate fi as: fi � 1þPL

l¼1at;lgi;l. Then, we can write the change in neutral allele frequency due to
only heritable variation in fitness ðDHptÞ as a covariance between fitness and the neutral allele frequency across individuals in
generation t,

DHpt ¼ 1
2N

X
i¼1

N
xiðfi2 1Þ (34)

¼ 1
2
Coviðxi; fiÞ (35)

¼ 1
2
Covi

�
xi;
XL
l¼1

at;lgi;l
�
; (36)

which is the is the Robertson–Price covariance (Robertson 1966; Price 1970; Lynch et al. 1998; Walsh and Lynch 2018).
Now, we break up the genotypic value xi into the contributions of each of the two gametes that formed individual i,

xi ¼ x9i þ x0i, and likewise with the trait locus gi;l ¼ g9i;l þ g0i;l, where x9i; x0i; g9i; and g0i are all indicator variables. Expanding
out the covariances, we have

DHpt ¼ 1
2
Cov

 
x9i þ x0i;

XL
l¼1

at;l

�
g9i;l þ g0i;l

�!

¼ 1
2

�
Cov

�
x9i;
X
l¼1

L

at;l

�
g9i;l þ g0i;l

��
þ Cov

�
x0i;
X
l¼1

L

at;l

�
g9i;l þ g0i;l

���

¼ 1
2

�
Cov

�
x9i;
X
l¼1

L

at;lg9i;l
�
þ Cov

�
x9i;
X
l¼1

L

at;lg0i;l
�
þ Cov

�
x0i;
X
l¼1

L

at;lg9i;l
�
þ Cov

�
x0i;
X
l¼1

L

at;lg0i;l
��

:

(37)

Each of these covariances is between the neutral allele and a selected allele, either on the same gamete (either maternal or
paternal) or across gametes. These covariances can be written as LD terms,
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!

¼
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(38)

where D9L is the LD between alleles on the same gamete (the gametic LD), and the D0l is the across-gamete LD (nongametic LD)
[see p. 121 in Weir (1996)]. This equation also appears in Kirkpatrick et al. (2002) (equation 10).

We ignore nongametic LD D0l as these are weak under random mating, and write the multilocus temporal covariance
between the allele frequency changes Dpt and Dps as

CovðDpt;DpsÞ ¼ EðDptDpsÞ2EðDptÞEðDpsÞ
¼ E

 XL
l¼1

at;lD9t;l
XL
l¼1

as;lD9s;l

!

¼
X
l¼1

L

at;las;lE
�
D9t;lD9s;l

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

persistence  of   association  to  selected  site  l

þ
X
l 6¼k

at;kas;lE
�
D9t;kD9s;l

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cross2associations  between  two  selected  sites  k  and  l

(39)

since EðDptÞ ¼ 0.

Modeling the dynamics of LD between selected and neutral sites
Here, we outline a model of the changes in LD between the focal neutral site and selected sites, which allows us to derive an
expression for thefirst term inEquation39. Typically,models ofmultilocus selection track the genetic changes in apopulation by
transforming between a representation of haplotype frequencies to a representation of allele frequencies, LD, and higher-order
LD (Barton and Turelli 1987, 1991; Turelli 1988; Turelli and Barton 1990). We for the moment avoid the difficulty of a full
multilocus treatment by assuming that the linkage between selected sites is loose enough that one selected site’s frequency
change is independent of the change at other selected sites, e.g., there is no selective interference; this was an assumption in
past treatments [Santiago and Caballero (1995, 1998); see Barton (2000) for discussion of this]. Specifically, we model the
dynamics of the LD between the neutral site and each selected site as they would behave under a single-sweep model.

We adapt Barton’s (2000) model for LD dynamics during a sweep. We imagine a polymorphic neutral locus has alleles B1

and B2 with frequencies p and 12 p. We partition the allele frequency of B1 by conditioning on which allele at the selected site
(either A1 or A2) is carried on the same background, e.g., PðB1jA1Þ and PðB1jA2Þ, such that PðB1Þ ¼ PðB1jA1ÞPðA1Þþ
PðB1jA2ÞPðA2Þ. Then, the LD between neutral and selected sites can be expressed as D ¼ PðA1ÞPðA2ÞðPðB1jA1Þ2 PðB1jA2ÞÞÞ.
To simplify notation, we denote the frequency of the neutral allele on the different fitness backgrounds at time t by
PðB1jA1Þ ¼ pð1Þt and PðB1jA2Þ ¼ pð2Þt , and the selected allele at locus l frequency as pt;l, then the LD between the focal neutral
site and selected site l at time t is

Dt;l ¼ pt;l
�
12 pt;l

��
pð1Þt 2 pð2Þt

�
: (40)

Selection changes the frequency pt;l through time and recombination acts to disassociate the neutral allele with its back-
grounds. The expected difference pð1Þt 2 pð2Þt is maintained with probability ð12 rlÞ each generation (Barton 2000). If the initial
generation is t and the future generation is s ðs. tÞ, and rl is the recombination rate between the focal neutral locus and
selected site l, this leads to �

pð1Þs 2 pð2Þs

�
¼
�
pð1Þt 2 pð2Þt

�
ð12rlÞs2t: (41)

1032 V. Buffalo and G. Coop



Then, we can use this to describe the dynamics of Ds;l to generation t,

ps;l
�
12 ps;l

�
ps;l
�
12 ps;l

��pð1Þs 2 pð2Þs

�
¼

pt;l
�
12 pt;l

�
pt;l
�
12 pt;l

��pð1Þt 2 pð2Þt

�
ð12rÞs2t

Ds;l

ps;l
�
12 ps;l

� ¼ Dt;l

pt;l
�
12 pt;l

�ð12rÞs2t

            Ds;l ¼ Dt;l

ps;l
�
12 ps;l

�
pt;l
�
12 pt;l

�ð12rlÞs2t

(42)

[compare with equations 30 and 31 in Stephan et al. (2006)]. Now, we can find the expected product EðDt;lDs;lÞ by multiplying
both sides by Dt;l and taking expectations. We treat the allele frequency trajectory as deterministic, giving us,

Dt;lDs;l ¼ D2
t;l

ps;l
�
12 ps;l

�
pt;l
�
12 pt;l

�ð12rlÞs2t

E
�
Dt;lDs;l

� ¼ E

�
D2
t;l

� ps;l�12 ps;l
�

pt;l
�
12 pt;l

�ð12rlÞs2t:

(43)

Then, we simplify this by replacing EðD2
t;lÞ with EðR2

t;lÞpt;lð12 pt;lÞptð12 ptÞ [where EðRt;lÞ is the square of the correlation
between the neutral site and selected site l at time t Hill and Robertson (1968)],

E
�
Dt;lDs;l

� ¼ E

�
D2
t;l

� ps;l�12 ps;l
�

pt;l
�
12 pt;l

�ð12rlÞs2t

¼ E

�
R2

t;l

�
ptð12 ptÞpt;l

�
12 pt;l

� ps;l�12 ps;l
�

pt;l
�
12 pt;l

�ð12rlÞs2t

¼ E

�
R2

t;l

�
ptð12 ptÞps;l

�
12 ps;l

�
ð12rlÞs2t:

(44)

Returning to Equation 39 and replacing the EðDt;lDs;lÞ terms with our expression above,

CovðDpt;DpsÞ ¼
XL
l¼1

at;las;lE
�
R2

t;l

�
ptð12 ptÞps;l

�
12 ps;l

�
ð12rlÞs2t (45)

again ignoring the cross-associations between selected sites. Dividingour temporal covarianceby theneutral site’sptð12 ptÞ,we
can write the multilocus temporal covariance in a standardized form (analogous to Wright’s F),

CovðDpt;DpsÞ
ptð12 ptÞ ¼

XL
l¼1

at;las;lps;l
�
12 ps;l

�
E

�
R2

t;l

�
ð12rlÞs2t: (46)

Using average additive genetic variation
We can approximate Equation 46 by noticing that the terms at;las;lps;lð12 ps;lÞ are similar to an additive genic variation if effect
sizes remain constant through time. We make that assumption here, writing al :¼ at;l ¼ as;l, leading to

CovðDpt;DpsÞ
ptð12 ptÞ ¼

XL
l¼1

a2
l ps;l

�
12 ps;l

�
E

�
R2

t;l

�
ð12rlÞs2t: (47)
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Wecan further simplify thisbyassuming that there isnocovariancebetween theadditivegenicvariationata selectedsite, and the
LD between that selected site and the neutral site. We write the additive genic variation at site l at time s as
va;lðsÞ ¼ 2a2

l ps;lð12 ps;lÞ, and the average additive genic variation across loci as vaðsÞ :¼ VaðsÞ=L ¼ 1
L

P
l2a

2
l ps;lð12 ps;lÞ. Then,

each locus’s additive genic variation can be expressed as: va;lðsÞ ¼ vaðsÞ þ el. Substituting this, the autocovariance is

CovðDpt;DpsÞ
ptð12 ptÞ ¼ 1

2

XL
l¼1

va;lðsÞE
�
R2

t;l

�
ð12rlÞs2t ¼ 1

2

XL
l¼1

ðvaðsÞ þ elÞE
�
R2

t;l

�
ð12rlÞs2t

¼ 1
2

vaðsÞ|ffl{zffl}
average  genic
variation  per  locus

3

 XL
l¼1

E

�
R2

t;l

�
ð12rlÞs2t

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sum  of   persistence  associations

þ 1
2

 XL
l¼1

elE
�
R2

t;l

�
ð12rlÞs2t

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

effect2association  covariation

: (48)

Weassume that this last term,which is nonzero in expectationonly if there is covariancebetween theadditivegenic variationat a
selected site, and the expected LD between the selected and the neutral sites is zero. Rewriting the total genic variation as VaðsÞ,

CovðDpt;DpsÞ
ptð12 ptÞ ¼ VaðsÞ

2L

XL
l¼1

E

�
R2

t;l

�
ð12rlÞs2t: (49)

Continuous approximation to chromosomes
Currently, we have treated the positions of the selected sites as fixed, conditional on knowing that a selected site l has a
recombination fraction rl away from the focal neutral site. Here, we make a few further assumptions. First, we assume the L
selected loci are each independently and identically uniformly distributed along a continuous region of R M in length
ðg � Uð2R=2;R=2ÞÞ, and we now calculate the covariance at a focal neutral site at the origin by taking expectations over
the random positions of these sites. Second, we assume that the LD between the neutral and selected site l only depends on the
recombination fraction between the sites. Since g is the genetic distance, the recombination fraction is now provided by a
mapping function rðgÞ that maps genetic distances to recombination fractions. Throughout the paper and in the simulations,
we use Haldane’s mapping function, rðgÞ ¼ 1

2 ð12 e22jgjÞ (note the absolute value translates positions on ½2R=2;R=2� to
distances to the focal neutral site). Next, we assume that the LD between two sites can be completely determined by the
distance between the focal neutral site and a random selected site, allowing us to rewrite EðR2

t;lÞ as the function EðR2
t ðrðgÞÞÞ.

Now, letting Erlð�Þ represent the expectation taken over the random positions of selected sites on the genetic map,

CovðDpt;DpsÞ
ptð12 ptÞ ¼ VaðsÞ

2L

XL
l¼1

Erl
�
E
�R2

t ðrlÞ
�ð12rlÞs2t� (50a)

¼ VaðsÞ
2L

XL
l¼1

Z R=2

2R=2
E
�R2

t ðrðgÞÞ
�ð12rðgÞÞs2t1

R
dg (50b)

¼ VaðsÞ
2R

Z R=2

2R=2
E
�R2

t ðrðgÞÞ
�ð12rðgÞÞs2tdg (50c)

since the 1=L cancels with the L from the sum of expectations.
As our trait is neutrally evolving before directional selection starts, we use the expected neutral LD, EðR2Þ ¼

ð10þ rÞ=ð22þ 13r þ r2Þ, where r ¼ 4NrðgÞ (Hill and Robertson 1968; Ohta and Kimura 1969) when t is the first generation
when selection begins.

The Contribution of the Rest of the Genome to Temporal Autocovariance at a Locus

Additionally, we can consider the impact that other unlinked selected sites have on the neutral allele’s frequency trajectory. In
Equation (50c), we aremodeling the temporal autocovariance at a focal neutral site in a chromosomewith total length R. Here,
we assume thewhole genome can bemodeled in a similar fashion, as a single very large chromosomewith genetic length C, the
entire map length of the genome, and the focal neutral falls in the center of this. Then, we can take a piecewise integral over all
linked sites (those less than a recombination fraction of one-half away) and all unlinked sites with respect to the genetic
distance (those at a recombination fraction of one-half away). Our piecewise integral gives us
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CovðDpt;DpsÞ
ptð12 ptÞ ¼ VaðsÞ

2C

Z C=2

2C=2
E
�R2

t ðrðgÞÞ
�ð12rðgÞÞs2tdg (51)

¼ VaðsÞ
2C

"
2
Z g*

0
E
�R2

t ðrðgÞÞ
�ð12rðgÞÞs2tdgþ 2

E
�R2

t ð1=2Þ
�

2s2t ðC2 gð1=2ÞÞ
#

(52)

where g* is the map distance at which a selected site becomes approximately unlinked to the neutral site, e.g., the recombi-
nation fraction is 1=2. As we move away from the neutral site, the first term in the brackets accounts for the accumulation of
linked selected sites. Eventually, the genetic distance away from the neutral site becomes unlinked and the second term
accounts for the contribution of these unlinked sites on both the same chromosome, as well as sites on other chromosomes.
Note that here we assume that the density of additive genetic variance per morgan is constant. As in the main text, this ignores
the contribution of nongametic LD, formed as two gametes unite in an individual, and can be converted into gametic LD via
recombination [see Figure A2; this process is elaborated in The Strength of Unlinked and Nongametic Associations in the
Appendix, and see also p. 521 in Tenesa et al. (2007)]. Selected sites that are unlinked or loosely linked to the neutral site
(e.g., r � 1=2) quickly become associated with the neutral site, but also quickly decay; their contribution acts to further
decrease the population size by a factor of two [see the discussion on p. 2115 in Santiago and Caballero (1998)].

As a simple thought experiment, we might ask for what value ofM does the contribution from unlinked sites dominate the
contribution from linked sites? For N ¼ 1000 and assuming that the level of LD is that under mutation–drift–recombination
balance (e.g., using the equation of Tomoko Ohta), we plot the relative contributions of linked selected sites (on the focal
chromosome) and unlinked selected sites (on other chromosomes) for various spans of the covariance (e.g., js2 tj), and the
size of the remaining portion of the genome in morgans (M) in Figure A1.

Averaging Covariance Across Multiple Loci

Thus far, our covariance assumes that a single neutral site is positioned in the center of a region R-M long, with selected sites
uniformly distributed along this region. However, in our simulations we simulate a region that contains many neutral sites,
which we average over in calculating the temporal autocovariance. In this case, we average over the random distance between
a neutral site’s position n and a selected site’s position g, which is c ¼ jn2 gj, where n; g � Uð0;RÞ. This random variable c is
distributed according to the triangle distribution, f ðcÞ ¼ 2ðR2 cÞ=R2; we replace the uniform probability density function
(PDF) in Equation (50b) with the triangle density PDF and average over the distance between sites,

EnðCovðDpt;DpsÞÞ
Enðptð12 ptÞÞ ¼ VaðsÞ

2

Z R

0
E
�R2

t ðrðcÞÞ
�
  ð12rðcÞÞðs2tÞ2ðR2 cÞ

R2
  dc (53)

¼ VaðsÞ
2

AðR; t; sÞ (54)

where Enð�Þ indicates we take the expectation also over neutral sites, and we use AðR; t; sÞ to denote the average LD between
selected and neutral sites that persists from generations t to s ðt# sÞ. Note that in calculating the standardized covariance
above, we use a ratio of expectations rather than the expectation of the ratio (Bhatia et al. 2013).

Empirically Calculating the Average LD Persisting Across Generations

In the previous expressions for temporal autocovariance, we stepped through a conceptual model for the average levels of LD
between neutral and selected sites that persists across js2 tj generations ðAðR; t; sÞÞ, where the positions of selected and neutral
sites are randomly distributed along a chromosomal region. In systems with a known recombinationmap and studies where LD
can be calculated, we have the recombination fraction ri;j, and the pairwise LD R2

i;j between two loci i and j (where R2 is the
M3M matrix of pairwise LD calculated at time t). Since we do not a priori knowwhether a site is selected or not, we sum over
all polymorphic M loci, thus characterizing the average LD in a region as

Aðt; sÞ ¼ 2
MðM2 1Þ

XM
i¼1

X
j. i

R2
i;j
�
12ri;j

�jt2sj
: (55)

This sum is the empirical analog to the integral in Equation 10.
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The Strength of Unlinked and Nongametic Associations

Here, we characterize the contribution of completely genetically unlinked loci segregating for fitness variation to the change in
frequency of our neutral allele. Across evolutionary replicates, there is no expected covariance between the neutral allele an
individual carries and their fitness ðEðDHptÞ ¼ EðCovðxi; fiÞÞ ¼ 0Þ; rather, for unlinked loci, chance associations are created
from the variance around this sampling process of neutral alleles into individuals with varying fitness
ðVarðDHptÞ ¼ VarðCovðxi; fiÞÞÞ. As the neutral allele and fitness variation independently assort themselves into individuals,
the chance associations that form have a variance given by VarðCoviðxi; fiÞÞ. This has the form of the sampling variance of a
covariance, which for random variables X and Y is given on p. 472 Kendall et al. (1994)),

VarðCovðX; YÞÞ ¼ ðn21Þ2
n3

�
m22 2m2

11
�þ n21

n3
�
m20m022m2

11
�

(56)

where  mrs ¼ EðX2mXÞrðY2mY ÞsÞ (57)

where mX and mY are the means of X and Y, respectively, the variance is taken over conceptual replicate populations, and the
covariance is calculated over the individuals in a population. Then, applying this to our covariance DHp1 ¼ Coviðxi; fiÞ,

VarðDHp1Þ ¼ 1=4VarðCoviðxi; fiÞÞ

¼ ðN21Þ2
4N3

�
E

h
ðxi2p0Þ2ð fi21Þ2

i
2E½ðxi2p0Þð fi21Þ�2

�
þ N2 1

4N3

�
E

h
ðxi2p0Þ2

i
E

h
ð fi21Þ2

i
2E½ðxi2p0Þð fi21Þ�2

�
¼ ðN2 1Þ

4N3 VarðxiÞVarð fiÞ

� p0ð12 p0Þ
2N

Varð fiÞ:

(58)

Thus thechancecovariances that formbetween theneutral alleles individuals carryand theirfitnesshaveavarianceproportional
to Varð fiÞ=2N.
Nongametic LD’s Contribution to Temporal Autocovariance

Throughout the paper, we ignore the effects of nongametic LD, D0t;l, the disequilibria that occurs between the two gametes
(maternal and paternal) at two loci (see Figure A2A for an illustration of gametic LD D9 and nongametic LD D$). Following the
equation for the sampling variance of nongametic LD DA=B in Weir (1996) (see p. 124), the chance nongametic disequilibrium
that builds up sampling 2N gametes into N individuals is,

E

��
D0t;l
�2� ¼ Var

�
DA=B

�
¼ 1

2N
pAð12 pAÞpBð12 pBÞ: (59)

Figure A1 Here, we show the
relative contributions of the linked
and unlinked portions of the ge-
nome to the temporal autocovar-
iance experienced by a neutral
allele, for different generations
elapsed (on the x-axis) and differ-
ent map lengths of the unlinked
genome (y-axis) for two different
population sizes (N ¼ 103 and
N ¼ 106). The color gradient is
determined by the log10 value of
the ratio of unlinked to linked
contributions, the terms inside
the braces in Equation 52. The
dashed line indicates where the

log ratio is zero, e.g., the relative contributions are equal; this was determined numerically. These assume LD is determined by mutation–drift–
recombination balance (Ohta and Kimura 1971).
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Note the similar form to Equation 58 as both the unlinked and nongametic LD arise from the random sampling of alleles at
different loci into individuals.

There is no expected covariance between our gametic and nongametic LD within a generation EðD0t;l;D9t;lÞ ¼ 0, assuming
randommating. However, EðD0t;l;D9s;lÞ. 0 for s. t, as a fraction of the nongametic LD may be converted into gametic LD in the
next generation. Specifically, following Santiago and Caballero (1995), we can write the product of the nongametic LD in
generation t with the gametic LD in generation s as

E

�
D0t;l;D9s;l

�
¼ rð12rÞðs2t21Þ

E

��
D0t;l
�2�

(60)

where a proportion r the nongametic LD in generation t is converted into gametic LD, and a proportion ð12rÞðs2t21Þ of this is
carried forward unbroken by recombination over the remaining s2 t2 1 generations (see Figure A2B for an illustration of this
process).

In our analysis in the main text, we ignore these terms as D0t;l is expected to be small due to its inverse dependence on N.
However, these terms are necessary for the analysis of looser linkage (Santiago and Caballero 1995, 1998).

Connecting our model with the models of Robertson and Santiago and Caballero

Here, we describe themodels of Santiago and Caballero (1995, 1998), relating their work on the long-run effective population
size experienced by a neutral allele where there is (1) unlinked heritable fitness variation (Santiago and Caballero 1995) or (2)
linkage, where fitness-determining sites are randomly scattered along a chromosome (Santiago and Caballero 1998). Overall,
their models are formulated in a quantitative genetics tradition, where the population genetic dynamics at the selected loci are
not explicitly modeled (although these links are made more explicitly in their 1998 paper). In contrast, in deriving our
expressions for temporal autocovariance and variance, we use a population genetic approach, modeling the dynamics at
selected sites (though we simplify from the full multilocus treatment, e.g., we assume selected loci experience independent
sweeps and we ignore the LD between selected sites). We show that we can reconcile the two approaches, and demonstrate
that the temporal autocovariance expressions we develop in ourmodels are implicit in their model. We also work through their
expressions forNe with heritable variance, because it represents a quite useful result but their original presentation was spread
across two papers (and a change in notation).

Santiago and Caballero’s 1995 and 1998 models for Ne

While our goal in themain text of our paperwas to develop expressions for the temporal variances and autocovariances in allele
frequency change when there is heritable fitness variation in the population, the goal of both the 1995 and 1998 Santiago and
Caballero papers was to derive an expression for the long-run Ne when there is heritable variation for fitness in the population.
In their 1995 paper, they found the effective population size for large t (see p. 1018, equation 16) to be

Figure A2 (A) An illustration of gametic ðD9Þ and nongametic ðD$Þ LD between two loci in a diploid. (B) An illustration of how nongametic LD in
generation t is converted to gametic LD through recombination (which happens with probability r, the recombination fraction between the two loci),
and is then maintained until generation s with probability ð12rÞs2t21. The gray loci on the gray gamete indicate the homologous, but not tracked, focal
association. Overall, the covariance created by the conversion of nongametic LD to gametic LD is EðD9

sD
$
t Þ ¼ rð12rÞs2t21

EððD$
t Þ2Þ.
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Ne ¼ lim
t/N

p0ð12 p0Þ2Varðpt21Þ
2ðVarðptÞ2Varðpt21ÞÞ (61)

Ne ¼ 4N
2þ Vn þ Q2C2 (62)

where C2 is the heritable variation for fitness (VA in our notation), and Vn is the nonheritable variation in offspring number (i.e.,
under a Wright–Fisher model, Vn � 2). For a neutral locus completely unlinked from fitness variation [the situation first
considered by Robertson (1961)], Q ¼ 1þ G=2þ ðG=2Þ2 þ ðG=2Þ3 þ . . . ¼PN

i¼0ðG=2Þi ¼ 2=ð22GÞ [see equation 17 in
Santiago and Caballero (1995)]. Here, G represents the decay rate of the additive genetic variance associated with a particular
haplotype.Note thatwehave simplified their expressions by assumingno assortativemating, and thatwe try to follow their notation as
closely as possible (consequently, the Q here is unrelated to the Qt;s of the main text). Santiago and Caballero (1995) assume that
continual artificial selection maintains a constant level C2 of fitness variation in the population each generation, yet the particular
fitness backgrounds the neutral allele is stochastically associated with only contribute a fraction of G in the next generation, G2 in the
generation after, and so on, as selection reduces genetic variation for fitness (note: in their 1998 paper, they use Z instead of G).
Similarly, the associations between the neutral and fitness backgrounds decay at a rate 1=2 due to independent assortment. Note that
Robertson (1961) assumed that thefitness backgrounds that become stochastically associatedwith the neutral allele do not experience
any decay in their fitness variation ðG ¼ 1Þ; in this case, Q ¼ 2 as Robertson’s work found. With an arbitrary amount of linkage
between the focal neutral and fitness backgrounds, Santiago and Caballero (1998) show that only Q is affected, and derive an
expression forQ that only depends on G and the size of the genome inmorgans, L [see equation 6 in Santiago and Caballero (1998)].

In our main text, we model the temporal autocovariance created by heritable fitness variation, which also impacts the
cumulative variance in allele frequency change Varðpt 2 p0Þ. To illustrate how our model connects with theirs, below is the
cumulative variance in allele frequency change for three generations in their 1995 notation, with the corresponding changes in
allele frequency below:

Varðp3 2 p0Þ ¼ E

 �
S1 þ D1 þ H1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Dp1

þð12 rÞGS1 þ S2 þ D2 þ H2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dp2

þð12rÞ2G2S1 þ ð12rÞGS2 þ S3 þ D3 þ H3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�!

Dp3

2

: (63)

Grouping terms by the generation that the initial associationwas formed, we see howSantiago and Caballero (1995) define the
Qi terms in their notation,

Varðp3 2 p0Þ ¼ E

0B@� S1
�
1þ ð12 rÞGþ ð12rÞ2G2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

creation  and  persistence  of   generation  1  associations  :¼  S1Q3

þ D1 þ H1

þ S2ð1þ ð12 rÞGÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
creation  and  persistence  of   generation 2  associations  :¼  S2Q2

þ D2 þ H2

þ S3|{z}
creation  of   generation 3  associations  :¼  S3Q1

þ D3 þ H3

�2

1CA (64)
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since the associations created in generation i ð0, i# tÞ persist with probability ð12rÞt2i, with proportion Gt2i of its original
fitness variation in generation t. In general, the cumulative impact of the associations formed i generations ago has coefficient
Qi ¼

Pi21
j¼0ð12rÞjGj. Using these Qi terms simplifies this equation to

Varðp4 2 p0Þ ¼ E

�
ðS1Q4 þ D1 þ H1 þ S2Q3 þ D2 þ H2 þ S3Q2 þ D3 þ H3 þ S4Q1 þ D4 þ H4Þ2

�
(65)

or, in general,

Varðpt 2 p0Þ ¼
Xt
i¼1

E
�
D2
i
�þ E

�
H2
i
�þ Q2

t2iþ1E
�
S2i
�
: (66)

Then, Santiago and Caballero (1995) note that assuming Vn, C2, and population size N are constant across generations, the
magnitudes of all of the effects EðD2

i Þ;EðH2
i Þ, and EðS2i Þ are constant across all generations (for all i, so we omit the i subscript

for these terms), except for a geometric decay due to drift at a rate ð12 1=2NeÞ per generation that effects all terms. Such that,
when we include the decay in the variance due to drift,

Varðpt 2 p0Þ ¼
Xt
i¼1

�
E
�
D2�þ E

�
H2�þ Q2

i E
�
S2
���

12
1

2Ne

�t2i

(67)

[compare with p. 1018 of Santiago and Caballero (1995)]. In the long run, the variance in the neutral allele’s frequency change
hits a balance. Many copies of the neutral allele segregating in the population are on fitness backgrounds that it has recently
become stochastically associated with, as segregation and recombination have not broken these associations apart. A few
copies of the neutral allele are on fitness backgrounds they became associated with many generations ago, that have by chance
survived to remain associated. In all cases, the effect that these associations have on present-day allele frequency change is
weakened by the fact that natural selection has reduced the genetic variance of these fitness backgrounds. Since the long-run
variance in allele frequency under drift in a Wright–Fisher population is

VarðptÞ ¼ p0ð12 p0Þ
"
12

�
12

1
2N

�t
#
; (68)

one can estimate the effective population sizeNe using the observed difference in variances VarðptÞ andVarðpt21Þ. Note that this
is a different long-run effective population size to that used by others, Ne ¼ p0ð12 p0Þt=ð2Varðpt 2 p0ÞÞ (Crow and Kimura
1970). Santiago and Caballero use Equation 68, taking the difference VarðptÞ2Varðpt21Þ and rearranging to end up with the
large t estimator of Ne,

Ne ¼ p0ð12 p0Þ2Varðpt21Þ
2ðVarðptÞ2Varðpt21ÞÞ (69)

[compare with p. 1018 in Santiago and Caballero (1995)]. Rearranging,

2NeðVarðptÞ2Varðpt21ÞÞ ¼ p0ð12 p0Þ2Varðpt21Þ
2NeVarðptÞ2 2NeVarðpt21Þ þ Varðpt21Þ ¼ p0ð12 p0Þ

2Ne

�
VarðptÞ2Varðpt21Þ

�
12

1
2Ne

��
¼ p0ð12 p0Þ:

(70)
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This very conveniently simplifies the sum in Equation 67, as we can show with the case of t ¼ 3,

Varðp3Þ ¼
�
E
�
D2�þ E

�
H2�þ Q2

1E
�
S2
���

12
1

2Ne

�2

þ

ðE�D2�þ E
�
H2�þ Q2

2E
�
S2
���

12
1

2Ne

�
þ

E
�
D2�þ E

�
H2�þ Q2

3E
�
S2
�

Varðp2Þ
�
12

1
2Ne

�
¼ �E�D2�þ E

�
H2�þ Q2

1E
�
S2
���

12
1

2Ne

�2

þ

ðE�D2�þ E
�
H2�þ Q2

2E
�
S2
���

12
1

2Ne

�

Varðp3Þ2Varðp2Þ
�
12

1
2Ne

�
¼ E

�
D2�þ E

�
H2�þ Q2

3E
�
S2
�

or, generally,

VarðptÞ2Varðpt21Þ
�
12

1
2Ne

�
¼ E

�
D2�þ E

�
H2�þ Q2

t E
�
S2
�
: (71)

Inserting this into Equation 70, the long-run effective population size can be written as

Ne ¼ p0ð12 p0Þ
2
�
VarðptÞ2Varðpt21Þ

�
12

1
2Ne

��
¼ p0ð12 p0Þ

2
�
EðD2Þ þ EðH2Þ þ Q2

NEðS2Þ�
(72)

where QN ¼ 1þ 1=2þ 1=4þ . . . ¼ 2 in Robertson’s (1961) model, and QN ¼ 1=ð12Gð12 rÞÞ in Santiago and Caballero’s
(1995) model. Note that r here represents the recombination fraction between fitness variation and neutral sites, which differs
from equation 17 in Santiago and Caballero (1995), where r represents the correlation between parental fitness).

Then, Santiago and Caballero (1995) show,

E
�
S2
� ¼ p0ð12 p0Þ

2N
C2 (73)

E
�
D2� ¼ p0ð12 p0Þ

2N
Vn
4

(74)

E
�
H2� ¼ p0ð12 p0Þ

2N
1
2

(75)

[compare with equation 11 in Santiago and Caballero (1995)]. Inserting these into Equation 72, we have

Ne ¼ 4N
2þ Vn þ 4Q2

NC2; (76)

which is a simplified version of equation 16 in Santiago and Caballero (1995), and which further simplifies to Ne ¼ N when
Vn ¼ 2 and C2 ¼ 0, the effective population size of a Wright–Fisher population of N hermaphroditic individuals.
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The covariances caused by fitness associations
With an understanding of the basics of Santiago and Caballero’s (1995, 1998) models, how they connect to our notation, and
how they reach their expression for the long-run effective population size, we turn now to finding the temporal autocovar-
iances implicit in their model. We start by looking at the variance in allele frequency between generations 0 and 4 (Equation
63), including an additional generation so the pattern is clearer later,

Varðp42 p0Þ ¼ E

 �
S1 þ D1 þ H1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Dp1

þ ð12 rÞGS1 þ S2 þ D2 þ H2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dp2

þ ð12rÞ2G2S1 þ ð12 rÞGS2 þ S3 þ D3 þ H3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dp3

þ ð12rÞ3G3S1 þ ð12rÞ2G2S2 þ ð12rÞGS3 þ S4 þ D4 þ H4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�2

Dp4

!
:

The cross terms like EðD1D2Þ;EðH1D1Þ, and EðS1S2Þ are all expected products of independent random variables, where the
expectation of each random variable is zero, and consequently are all zero. The only nonzero cross terms are products of EðS2i Þ.
When we look at the covariances with the allele frequency change in the initial generation and a later generation s,
CovðDHp1;DHpsÞ,

CovðDHp1;DHp1Þ ¼ VarðDHp1Þ ¼ EðS21Þ (77)

CovðDHp1;DHp2Þ ¼
E
�
S21
�
G

2
ð12 rÞ (78)

CovðDHp1;DHp3Þ ¼
E
�
S21
�
G2

2
ð12rÞ2 (79)

CovðDHp1;DHp4Þ ¼
E
�
S21
�
G3

2
ð12rÞ3 (80)

where the 1=2 coefficient comes from the fact that, in Santiago and Caballero’s work, the EðS21Þ products represent both the
CovðDHpt;DHpsÞ and CovðDHps;DHptÞ terms, so a single temporal autocovariance in our notation is one-half their joint co-
variance term.

However, if our reference generation is different, say two, the associations fromearlier generations that have persisted to that
generation can also lead to covariances to later generations. Looking at the covariances

CovðDHp2;DHp2Þ ¼
E
�
S22
�þ E

�
S21
�ð12 rÞG

2
(81)

CovðDHp2;DHp3Þ ¼
E
�
S22
�
Gþ E

�
S21
�ð12 rÞG2

2
ð12 rÞ (82)

CovðDHp2;DHp4Þ ¼
E
�
S22
�ð12 rÞG2 þ E

�
S21
�ð12rÞ2G3

2
ð12 rÞ2: (83)

Likewise, the covariances CovðDHp3;DHpsÞ include the associations that persist from earlier generations. In general,

CovðDHpt;DHpsÞ ¼
1
2

Xt
i¼1

E
�
S2i
�ðGð12rÞÞtþs22i;   for  t# s: (84)

This expression ismore complex thanour expression for temporal autocovariance because it ismodeling the LD in generation t
as it builds up from generations 1 to t. In contrast, our expressions for covariance incorporate all of this buildup of LD as the
initial LD term EðRtÞ (for a single-locus case). This expression for autocovariance implied by Santiago and Caballero’s
(1995) work matches our expression for autocovariance (for a single locus) when the arbitrary first generation is t rather
than one
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CovðDHpt;DHpsÞ ¼
E
�
S2t
�
Gs2t

2
ð12rÞs2t;   for  t# s: (85)

Using the expression for EðS2t Þ [equivalent to VarðDHptÞ in our notation] derived in The Strength of Unlinked and Nongametic
Association in the Appendix,

CovðDHpt;DHpsÞ
ptð12 ptÞ ¼ C2Gs2t

4N
ð12rÞs2t;   for  t# s: (86)

This is analogous to Equation 8 for a single locus, whereC2Gs2t is the additive variation in generation s [equivalent to ourVaðsÞ],
and the factor 1=2N represents the chance buildup of LD between the neutral site and an unlinked fitness background. In our
expression, we condition on existing LD EðR2

t Þ between the neutral site and its fitness background, whereas they assume a
buildup of LD to a drift–recombination equilibrium. We can see this by returning to the DHp4 term of Equation 63,

VarðDHp4Þ ¼ E

�
ð12rÞ3G3S1 þ ð12rÞ2G2S2 þ ð12rÞGS3 þ S4 þ D4 þ H4

�2
(87)

¼ ð12rÞ5G5
E
�
S21
�þ ð12rÞ4G4

E
�
S22
�þ ð12rÞ2G2

EðS3Þ2 þ E
�
S24
�

(88)

where following Santiago and Caballero’s (1995) approach (see p.1018), we can replace each EðSiÞ with EðS2i Þ ¼
EðS2Þð121=2NÞi21 and let G ¼ 1 as we focus on the buildup of LD. This gives us the general equation,

VarðDHptÞ ¼ E
�
S2
�Xt
i¼1

ð12rÞ2i
�
12

1
2N

�i21

(89)

and taking this geometric series to infinity converges [since ð12rÞ2ð12 1=2NÞ, 1) and replacing EðS2Þ] with the chance
associations that build up gametes sampled into individuals (Equation 58),

E

�
ðDHpNÞ2

�
¼ E

�
S2
�XN
i¼1

ð12rÞ2i
�
12

1
2N

�i21

¼ E
�
S2
�

12
1
2N

XN
i¼1

�
ð12rÞ2

�
12

1
2N

��i

¼ C2p0ð12 p0Þ
12

1
2N

1

12 ð12rÞ2
�
12

1
2N

�:
(90)

When we assume r/0, 1=N/0, and Nr is a constant, this gives us

E
�R2� ¼ E

�
ðDHpNÞ2

�
C2p0ð12 p0Þ �

1
1þ 4Nr

; (91)

which is analogous to the EðR2Þmeasure of LD, standardized to rescale the fitness variation. The right-hand side is identical to
the identity-by-descent equilibrium EðR2Þ under drift–recombination balance Sved (1971). Note that our expression can be
recovered from Equation 84 when the reference generation t/N such that the LD hits its equilibrium level,

CovðDHpt;DHpsÞ
p0ð12 p0Þ ¼ 1

2
C2Gs2t|fflfflfflffl{zfflfflfflffl}
VAðsÞ

1
1þ 4Nr|fflfflfflfflffl{zfflfflfflfflffl}
EðR2

t Þ

ð12rÞs2t; (92)
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which is identical to our expression for temporal autocovariancewhen initial LD is due to a neutral drift–recombination balance,
and the change in VA during selection is modeled as a geometric decay at rateG. Note that the terms in underbraces indicate the
corresponding terms in Equation 8 for a single locus.

Multilocus Simulation Details

Targeting an initial level of additive genetic variation
We choose u for the coalescent simulations to target a total number of segregating sites LþM, where L is the number of
selected sites (a parameter we vary in our multilocus simulations) and M ¼ 200or more randomly placed neutral sites over
which we can calculate the temporal autocovariance. Then, the total number of target sitesM þ L is then inflated by a factor of
1.5 to ensure a sufficient number of sites given the randommutation process. The L selected sites are randomly chosen from the
segregating sites, and all remaining mutations are neutral. Thus, using Watterson’s expression for the expected number of
segregating sites under the coalescent (Watterson 1975), we have u ¼ 1:5ðM þ LÞ=ðg þ logð2NÞÞwhere g � 0:577 is Euler’s g.
Each of the L selected sites is given a random effect size of6a with equal probability, where we choose by targeting a specific
level additive genic variation Va ¼ 2a2PL

l plð12 plÞ ¼ a2SSHL where SSHL ¼ 2
PL

l plð12 plÞ is the sum of site heterozygosity of
the L neutrally evolving sites that will be selected once selection begins. Under neutrality, EðSSHLÞ ¼ uL ¼ L=ðg þ logð2NÞÞ.
Then, we set a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

Va=uL
p

. We empirically validate that our target genic variation is close to the empirically observed level.

Choosing the simulation parameter range
Wesimulate over a grid of parameter ranges, varying the number of loci L, the target additive genic variationVa in the region (by
varying a) and the recombination map length of the region R in morgans. We have varied these parameters over ranges that
encompass a wide range likely to be encountered in natural populations. To do this, we found that additive genetic variation
for lifetime reproductive success varied over orders of magnitude, from 0 [e.g., in male red deer (Kruuk et al. 2000)] to 1.1 [in
the male red-billed gull (Teplitsky et al. 2009)]. These values of additive genetic variation are for the entire genome (we write
these as VA;GW , where GW indicates genome-wide); our simulations model a region of varying map length. We expect most
recombination map lengths to be roughly over the scale of 52 50 M in length, and we chose to investigate how temporal
autocovariance behaves across a spectrum of recombination, from a completed linked region ðR ¼ 0Þ, the scale over which a
strong classic hard sweep could affect diversity (0.5 cM), to a region where the ends are approximately unlinked (4.5 M),
overall giving us a parameter range of R 2 f0; 0:005; 0:01; 0:05; 0:1; 0:5; 1:5; 4:5g. Over this grid of our region recombination
map lengths, and the total organism recombination map lengths, we get a rough estimate of the number of regions we would
expect with this level of recombination in the organism’s total genome, imagining a homogeneous recombination rate, by
taking G=R. Using this estimate of the number of regions in the genome, we calculate the genetic variation per region over our
grid of parameters as VA;GWR=G and target a level of additive genic variation per region Va equal to this regional additive
genetic variation VA. From preliminary simulations, we found that we cannot detect much temporal autocovariance below
Va , 0:001 with the initial level of LD from mutation-drift balance, so we ignore parameters less than this value (other than
Va ¼ 0 as a control). Additionally, to reduce the number of simulations, we exclude Va . 0:1 as this only excludes a small region
of the parameter grid and preliminary simulations demonstrated that the behavior of temporal autocovariance with high Va is
evident with the included values. Overall, this gives us a spectrum of target additive genic variation per region of

Figure A3 True parameter values
and estimates using the method-
of-moments approach on sample
(n ¼ 100 chromosomes) multilo-
cus simulation data; these figures
are analogous to Figure 5 in the
main text, except the estimators
have been calculated on sample,
rather than population, frequency
data. (A) The true VAð1Þ (x-axis)
and dVAð1Þ estimated from the
sample variance–covariance ma-
trix (y-axis) for each simulation
replicate across different levels of
recombination (indicated by each
point’s color). (B) Estimated drift-

effective population sizes ðN̂Þ across a range of simulations with different levels of additive genetic variance and recombination. Each point denotes the
median, with lines denoting the interquartile range. A simple temporal estimate of the effective population size, estimated with accounting for the
effects of selection, is averaged for each replicate and plotted as a dash. The true value ðN ¼ 1000Þ is shown with the dashed gray line.
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Va 2 f0:001; 0:002; 0:005; 0:01; 0:02; 0:05; 0:08; 0:1g. Note that to prevent our plots from being too dense, we include only a
representative subset of this parameter grid in our figures.

Accounting for Allele Frequency Sampling Noise

In practice, onewill calculate the temporal variance–covariancematrix on allele frequency trajectories calculated from sampled
chromosomes from the population. We assume a binomial sampling process, where n chromosomes are sampled from the
population such that ~p ¼ X=n and X � Binomðp; nÞ. We can then write ~pt ¼ pt þ et, and our covariances can be written as

CovðD~pt;D~psÞ ¼ Cov
�
~ptþ1 2 ~pt; ~psþ1 2 ~ps

�
¼ Cov

�
ptþ1 þ etþ1 2 pt 2 et; psþ1 þ esþ12 ps 2 es

�
:

(93)

Note this simplifies to

CovðD~pt;D~psÞ ¼ Cov
�
ptþ12 pt; psþ12 ps

�
  if   jt2 sj. 1; (94)

since in these cases, the sampling noise at a timepoint is not shared between the estimated allele frequency changes. However, if
jt2 sj ¼ 1 the sampling noise from timepoint t þ 1 is shared, biasing the sample estimate of covariance:

Cov
�
D~pt;D~ptþ1

� ¼ Cov
�
ptþ1 þ etþ12 pt 2 et; ptþ2 þ etþ22 ptþ1 2 etþ1

�
¼ Cov

�
Dpt þ etþ1 2 et;Dptþ1 þ etþ22 etþ1

�
¼ Cov

�
Dpt;Dptþ1

�
2Varðetþ1Þ:

(95)

Similarly, the variance ðt ¼ sÞ is biased, as it is impacted by the binomial sampling noise too,

VarðD~ptÞ ¼ CovðDpt þ etþ12 et;Dpt þ etþ1 2 etÞ ¼ VarðDptÞ þ Varðetþ1Þ þ VarðetÞ: (96)

In practice, these covariances are calculated over loci in a region or across the entire genome.We assume that the tracked allele
has been randomly swapped (e.g., the tracked allele frequency is not systematically the minor, major, or reference allele), such
that EðDpt;lÞ ¼ 0 for all t and l. Then, the unbiased covariance estimate as calculated over loci is

1
L

XL
l¼1

�
Dpt;lDptþ1;l

�
¼ 1

L

XL
l¼1

D~pt;lD~ptþ1;l þ
1
L

XL
l¼1

e2tþ1;l: (97)

Then, we can use an unbiased plugin estimate of the frequency sampling variance Eðe2tþ1;lÞ ¼ Vðetþ1;lÞ ¼ ptþ1;lð12 ptþ1;lÞ=
ðnt;l 2 1Þ [see p.191 in Nei (1987)] to estimate these bias terms, and add or subtract them from the estimator accordingly.
Accounting for finite sampling, the unbiased sample variance–covariance matrix now has elements:

Figure A4 The median relative
estimation error, over 30 replicate
simulations, of the method-of-
moments estimator for drift-effec-
tive population size ðN̂Þ and the
initial additive genetic variance
ðVAð1Þb Þ.
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Qt;tþ1 ¼ 1
L

XL
l¼1

D~pt;lD~ptþ1;l þ
1
L

XL
l¼1

ptþ1;l

�
12 ptþ1;l

�
ntþ1;l 21

; (98)

and variance

Qt;t ¼ 1
L

XL
l¼1

�
D~pt;l

�2
2

1
L

XL
l¼1

pt;l
�
12 pt;l

�
nt;l 2 1

2
1
L

XL
l¼1

ptþ1;l

�
12 ptþ1;l

�
ntþ1;l2 1

: (99)

In Comparing theory to simulation results, we used population frequencies in introducing the method of moments estimators of
VAð1Þb and N̂. Here, we discuss the performance of these estimators with sample allele frequencies. Our simulations are identical
to those described inMultilocus simulation details, except we have increased the target number of neutral sites in each region so
it is around 10; 000. We mimic sampling of n ¼ f50; 100; 200; 500g chromosomes from the population, and use the bias-
corrected sample variance–covariance matrix in the method-of-moments approach described in Estimating Linked-Selection
Parameters from Temporal Autocovariance to estimate VAð1Þb and N̂.

In Figure A3, we show the performance of our estimators in the case where n ¼ 100 chromosomes have been sampled from
the population. Overall, there are two important differences comparedwith Figure 5 of themain text. First, while the estimator
VAð1Þb performs well for high levels around VA � 0:1, the variance around the estimator increases significantly as VA grows
weaker. As the covariances are proportional to VA=R, sampling noise grows larger than the theoretical temporal autocovariance
as VA becomes weaker. Then, one cannot discriminate against the chance covariances formed by the sampling process from the
temporal autocovariance created by linked selection without either a large sample size or more timepoints. Second, the
approach underestimates VAð1Þ for very loose linkage ðR. 1=2Þ. This is another consequence of the first problem; as sampling
noise grows equal to or larger than the magnitude of temporal autocovariance, the estimation procedure performs poorly. As
the linkage becomes looser, the magnitude of temporal autocovariance grows weak relative to the sampling noise, and this
noise can be partially absorbed by N̂. This effect can be somewhat ameliorated by calculating the sample variance–covariance
matrix over a shorter region of the genome such that R is smaller (as long as SNP density is sufficient) or by increasing the
sample size. Finally, the estimation of effective population size shown in Figure A3 is also affected by VA, as discussed in
Estimating Linked-Selection Parameters from Temporal Autocovariance (though the effect is obscured by the sampling noise):
high levels of VA in regions with low recombination generally lead to underestimates of N̂.

To understand how sample size affects the method-of-moments estimators, Figure A4 depicts median relative error of VAð1Þb
and N̂ for various sample sizes.
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