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Abstract: Let X,, , X, be a sequence of independent and identically distributed random variables with an unknown underlying 

continuous cumulative distribution function F. Relative to this unknown distribution function suppose one would like to test a null 

hypothesis concerning the goodness of fit of F to some distribution function using symmetric functions of sample spacings. In some 

applications the null hypothesis is simple while in others it may be composite. In this article we present the large sample theory of 

tests based on symmetric functions of sample spacings under composite null hypotheses and contiguous alternatives. It is shown 

that these test statistics have the same asymptotic distribution in the case when parameters must be estimated from the sample as 

in the case when parameters are specified. Optimal goodness of fit tests are also constructed for these hypotheses. 

Keywords: Spacings tests, goodness of fit tests, nuisance parameters, optimal tests, Pitman efficiency. 

1. Introduction 

Suppose we have a sample of independent observations X,, . . . , X,, _ , on R’ from the family of absolutely 

continuous distributions given by PQ30, 0) = {F(x; PO, 0): 0 E 0) where ,BO is a p-dimensional column 
vector of known or specified parameters and /3 is a q-dimensional column vector of unknown parameters, 
belonging to a given subset 0 of Rq. One is often interested in testing whether the true distribution 
function F of the i.i.d. sequence (X,1 belongs to the family F(pO, 01, that is, we wish to test the 
following composite null hypothesis: H 0: F E 9(&, 0). Tests of H, based on the empirical distribution 
function type statistics have been discussed, for example, by Durbin (1973), for the X*-type statistics, for 
instance, by Moore and Spurill (1975). See D’Agostino and Stephens (1986) for a good review on the 
theory of goodness of fit test in the presence of nuisance parameters. Our aim here is to discuss the 
asymptotic distribution theory of test statistics based on symmetric functions of spacings, under H, as 
well as under a sequence of contiguous alternatives {A”}. Spacings tests of H, have been considered 
recently by Cheng and Stephens (1989) using Moran’s statistics. It was shown that the test statistics have 
the same asymptotic distribution when parameters must be estimated from the sample as they do when 
the parameters are known. In this note we will show this phenomena is true for a large class of statistics. 
Furthermore, we will derive the test which is locally most powerful in this class. 
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When 0 = 8, is a specified value, we can define the one-step uniform spacings as D, = F(X,,,; PO, 0,) 
- F(Xo_,,; PO, 0,) (k = 1,. . . , n) where Xckj is the kth order statistic from a sample of size n - 1. Let 
h( .) be real valued functions satisfying some regularity condition. Consider the symmetric spacings 

statistic 

(1.1) 

Note that if h(x) = log x, T, is Moran’s statistic. See D’Agostino and Stephens (1986) for a good review 
on spacings statistics. In the case where the function in (1.1) is also a function of the index of summation, 

say(h,(.), k=l,..., n), then the statistic at hand is called a ‘nonsymmetric’ spacings statistic. 
Rao and Sethuraman (1975) study T, through the weak convergence of the empirical spacings 

process. They show that the class of symmetric tests discriminate alternatives converging to H, at a rate 

faster than n . -l/4 Hence T has poor asymptotic performance as compared to, say, the Kolmogorov- 
Smirnov, Cramer-von Mise”s and x2 tests for goodness of fit. It is also shown that h(x) =x2 is 
asymptotically most powerful in this class. Holst and Rao (1981) investigated nonsymmetric spacings 
statistic and have found that the class of nonsymmetric tests can discriminate alternatives converging to 

H, at a rate of nm1j2, as in the Kolmogorov-Smirnov, Cramer-von Mises and x2 tests. 
One can also define higher-order uniform spacings or m-step uniform spacings, namely Dim) = 

F(Xuc+m- 1); &,, 0,) - F(X(,_,,; PO, 0,)) and discuss the associated asymptotic distribution theory (see 
e.g. Cressie, 1976; Kuo and Rao, 1981; Hall, 1986). For the sake of simplicity, we restrict our discussion 
to one step spacings. The results of this paper could directly be generalized to statistics based on higher 

order spacings. It will not be done here. 
In the next section, we will discuss the limit theory for the estimated version of T,. We will also derive 

the uniformly most powerful test. The proofs of the results are deferred to the appendix. 

2. Limit theory for symmetric functions of spacings 

Consider the parametric family of distribution functions given by &PO, 0). It is desired to test the null 
hypothesis H,: f~ F(&, 0) against the sequence of alternatives, A,,: F E Sr(p,, 0). Thes: alternatives 
will be discussed further in Assumption A3. We will discuss the distribution theory of T, under the 
sequence of alternatives (e,}. Since 13 is uqknown the usual probability integral transform cannot be 

applied. Instead, define U*, = F(X(,,; p,, e,>, where X+, denotes the kth order s;atistiF fro? the 

sample of the X’s and en is an estimate of 8 (see Assumption A4). Define D, = Uck, - Uck_,) 
(k= l,..., n) as the one-step spacing with the estimated parameters. Define the symmetric spacings 

statistic with estimated parameters as 

(2.1) 

We will need the following assumptions to prove the desired results. See Kuo and Rao (1981) for 
further details on this class of functions {h(.)). Assumptions A3-A5 are the usual type of assumptions 
needed to study goodness of fit problems in the presence of nuissance parameters. See for instance, _ - 
Durbin (1973) and Moore and Spurill (1975) for more discussion on these regularity conditions. 

Assumption Al. Assume the function h(e) is 

Assumption A2. (without loss of generality) 
with mean equal to one. 
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Assumption A3. Let n1j4 (p, - PO) + y as II + m for some p-dimensional vector y. 

A typical example of the setup we are using is, when one is testing the null hypothesis that a sample is 
normally distributed with unknown mean 0, but with a variance specified to equal PO. An alternative 
which one may be interested in is the shift on the variance parameter, /3, + PO + y/n1j4. Having the 
asymptotic distribution theory under (A,} will allows us to discuss asymptotic power and efficiency of the 

testing procedure. 
Let A denote the closure of a given neighborhood of BO, the true unknown value of 8, and of PO, the 

value of p specified under H,. Concerning the sequence of estimators of f3 assume: 

Assumption A4. Under the sequence of alternatives {A,) the estimator of the nuissance parameter is 
such that &<in - 0,) = O,(l). Denote 5, = fi<e^, - 0,). Assume E 15, I 3 < ~0 for all ~1. 

Assumption A5. (i) Let the vector valued functions gp(u; /3, 0) = (a/ap)F(x; p, 01 and g&u; /3, 0) = 
(a/ae)F(x; p, e) be uniformly continuous in u E (0, 1) for all (p, 0) E A, here the right hand side of each 
of these functions are expressed as a function of u by mean of the transformation u = F(x; p, 0). 

(ii) The functions gp and g, are uniformly bounded in u for @, 0) E A. Also (a/aLy)g,, a = p, 0 are 

uniformly bounded in u for (p, 0) E A. 
(iii) The functions g,(u; p, 0) = (d/du)g,(u; p, 01, for (Y = p, 8, are uniformly continuous in u for 

(P, 0) EA. 

Assumption A6. Assume that first and second partial differentiation of /f(x; p, 0) dx, with respect to 
the components of Band 0, may be passed under the integral sign. 

Define the function 4 : [w X aBp X 0 y + R implicitly by F(x; /?, f3) = F(&x, p, 01). In the case of 

location and scale parameters, 4(x, p, 01 = (X - P>/f3. From Assumption A.5, we know that 

(X+j/,p’ aej)t;( . X, P, 0) =f(d+, p, q)(ai+j/w a@)+, p, fq 

(i= 1,2, j= 1,2, i+j<2) 

exists and are finite. We will use the notation L(X) 1% = L(b) -L(a). 
Recall T, is the symmetric spacings statistic where the distribution function F(.; /3, f3) is completely 

specified, in our case, say F(.; PO, 0,). Let D, = F(X,,,; PO, 0,) - F(Xc,_,,; PO, 0,) and T, be as in 
(1.1). The asymptotic behavior of the spacings statistic for the simple hypothesis is given by the following 
result of Kuo and Rao (1981). 

Theorem 2.1. Let h( . ) satisfy Assumptions Al and A2. Then T, 2 T where T - N(0, a’), a2 = 
Var(h(W)) - Cov*(h(W), W>> and W is an exponential random variable with mean equal to one. q 
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(2.5) 

Using the notation yn = n ‘14(p - PO) and 5, = &<& - 0,), (2.2) may be written as n 

fj, = T, + [A$, + r~“~y;!P~,, + Y;!P~~,,~~ + oP( 1). (2.7) 

To simplify (2.7) we need the identities stated in Lemma A.1 of the appendix. The next lemma 

examines the second, third and fourth terms on the right hand side of (2.7). 

Lemma 2.2. Under Assumptions Al-A6 and the sequence of alternatives {A,}: 

(9 n’/4y~W2, -3 0 as n + m; 

(ii) [A1yin 30 asn -co; 

(iii) yiq22ny,, 3 E(W2h”( W))IO’( yfgs( u))’ du as n + m. 

Now we have our main result by applying Lemma 2.2 and Theorem 2.1 to (2.7). The theorem states 
that the test statistics with and without estimated nuisance parameters have the same asymptotic 
behavior. Therefore, the estimation of the nuisance parameters has no effect on the asymptotic 
distribution theory. 

TheoreAm 2.3. Under Assumptions Al-A6 and under the sequence of alternatives (A,}, it follows that 
T, 2 T - N(p, a21 as n + ~0, 
Cov2(hW’>, WI. 

where p = E(W2h”(W))ld(y’gp(u>)2 du and a2 = Var(h(W)) - 

Proof. By theA representation in (2.7) and an application of Lemma 2.2 it can be seen that ?n = T, + ,U + 
o,(l). Thus T,, is a translation of T, in Theorem 2.1, hence the result follows. •I 

Although it seems unlikely that the test statistics with and without estimated nuisance parameters 
have the same asymptotic behavior, there is a simple intuitive explanation for this phenomenon. Recall 
that the type of alternatives under consideration are at a distance of nP1i4 away from the null 

hypothesis. Also recall that the estimates used are &-consistent estimates, hence at a distance 
proportional to n - ‘I2 away from the true value. Therefore, the test statistic can not distinguish between 
the estimate and the true value of the nuisance parameter. If the test statistics under consideration could 
discriminate alternatives at a distance of nP112, which the test statistics discussed here can not, then one 
would find that the parameter estimation truly matters. For instance, the Kolmogorov-Smirnov, 
Cramer-von Mises and x2 tests can discriminate alternatives that are at a distance proportional to n-‘/2 
away. For these statistics it is well known that the asymptotic distribution theory for the composite 
hypothesis and the simple hypothesis are quite different. See for instance, Durbin (1973), Moore and 
Spurill (1975) and D’Agostino and Stephens (1986) for more discussion. 

Similar results may be found for statistics that are functions of the multinomial cell frequencies. If one 
uses a statistic based on ‘symmetric’ functions of cell frequencies, the test procedure can only distinguish 
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alternatives at a distance of n-1’4 away from the null hypothesis. However, if one uses ‘nonsymmetric’ 
functions of cell frequencies, then the test procedure can distinguish alternatives at a distance of np112 
away from the null hypothesis, see Hoist (1972). 

In summary, to test H, versus A, one has to estimate the unknown parameter by a &-consistent 
estimate and use it in a probability integral transform to transform the data to values in [O,ll. Then 
proceed as if one is testing a simple hypothesis. One may tabulate asymptotic critical values using 
Theorem 2.3. Once again, as in the case of the simple null hypothesis, the proposed tests will not be as 
powerful as the ones based on the empirical distribution function. 

We now turn our attention to the question of finding the asymptotically locally most powerful test, i.e., 
the test with the maximum Pitman efficacy, against a specific sequence of alternatives. For the definition 
of Pitman efficacy see Serfling (1981). For the symmetric statistic based on the estimated spacings we 
have from Theorem 2.3 the efficacy equals 

e(h) =E(w’h”(W))ljl’(~t~~(~)~2 du/(Var(h(W)) -Cov2(h(W), W)). (2.8) 

Our goal is to find a function h such that (2.8) is maximized. That is, we wish to find the test with the 
maximum efficacy. The following result solves this problem. 

Theorem 2.4. The value sf e(h) is maximized by taking h(x) =x2. 

It is important to note that the optimal h(. ) does not depend on a specific sequence of alternatives as 
in the non-symmetric case. It is shown in Hoist and Rao (1981) that the asymptotically locally most 
powerful tests of the simple goodness of fit hypothesis also uses h(x) =x2, leading to the so-called 
Greenwood statistic. This is no surprise in view of Theorem 3.2. Note that the Moran statistic is not as 
powerful as the Greenwood statistic in both the simple and composite hypothesis testing problem. 

Appendix: Auxiliary results and proofs 

The following result may be established by a careful use of the differentiability under the integral sign of 
f(x; p, 0) and is stated without proof. 

Lemma Al. Suppose Assumption A6 holds, then: 

(i) 

(ii) f(x; P, B)$Q(x. P, ~>I~I~~=O; 

(iii) f(x; P, 0) $6(.x, P, 0) ‘+/(-vi P, 0)$4(x. P, e)I~IX=O. 
i 1 0 

Proof of Lemma 2.2. (i> Since ‘y, ---) y < tx) we need only examine n’/4V2n. From the existence of the 
limiting distribution of the Kolmogrov-Smirnov statistic 

SUP v’+&, - k/n1 = O,(l). 
l<k<n 
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Since gP assumed to be continuous, for all 6 > 0, we have 

sup n”2--lgp(ljk)-~p(k/n)I=o,(l). 
I <k<n 

By the Lebesgue dominated convergence theorem and the fundamental theorem of calculus 

; ~+#V~) + I’& du =ga(u) I;::, as n-w. 

Since 

gp(u> = $F(x, P, 0) =f(x, P, 8)$b(Xi P, 0) 

where u = F(x, p, 0>, we have by Lemma A.l(ii), 

ga(U)I:-I:=f(X, P, 6)$rn(G P, ql:z+mm=o. 

Hence, by applying Lebesgue dominated convergence theorem and the fundamental theorem of calculus 

we have 

(A.1) 

Also since S, is a function of order statistics it can be shown that 

&S,-+N(O, T’) as n-tm, (A.2) 

where 

7’ = /t/t(min(s, t) -st) dip(s) dip(t) 
0 0 

(see Shorack, 1972). We have by (A.l) and (A.2), 

; k$(u,) = op(n-1’2). 

Hence by the Lebesgue dominated convergence theorem it follows 

Kl’+PYznn-3’4 i (nD,)h(rzD&@~) 4 0 as n-+00. 
k=l 

(ii) Recall from Assumption A4 that 5, = O,(l). The weak law of large numbers and the Lebesgue 
dominated convergence theorem imply 

qln 3 Fr =E(fGr(W))/-$(u) du =E(R+@f’))g,(u) 1::;. 

Since 
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where u = F(x, /3, 0>, we have by Lemma A.l(i), 

Kn(u)l,~~=f(n,p,s)~~(x,P,8)l:~t::=0. 

Therefore [AT,, 3 0. 
(iii) By applying Lemma A.1 and a similar proof to the one above one shows 

r;w,,,y,, ~E(w2h”(~))jo1j~‘oj,o)z du +E(~(W)jolr’g,,(u)r du. 

The second term on the right hand side of (A.3) equals EW%(W))y’gpp(u)-y 1::;. Since 

gpp(4 = (a?@)+, p, 0) 

(A.31 

Proof of Theorem 2.4. It is easily established, by integration by parts, that EW2h”(W) = Cov(h(W), 
(W - 2)2). This identity will simplify our task. Consider the nondegenerate statistic fJh1 = 
(l/fi)Ci=,h(nd,) with Var(fn(h)) = a:. Note that the efficacy is uneffected by a linear transformation 
of the statistic. Therefore to find h(.) which maximizes e(h) among all functions satisfying Assumptions 
Al-A6, one may consider without loss of generality, the class of {h) with ai = 1. Thus by the 
Cauchy-Schwartz inequality, 

e(h) =~i(r’b;8(u))2 du Cov(h(W), (W-2)2)/2 

=G /01(y’~8(u))2 du [Var(W)]“‘[Var(W- 2)2]1’2/2 

with equality if and only if h(x) = a(x - 2J2 + b for some a # 0 and b. But since Cov(W, (W - 2>*) = 0, 
the maximum of e(h) is attained by taking h(x) =x2. q 
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