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Abstract

Perturbation Theory Models for Precision Cosmology with Large-Scale Structure Surveys

by

Shi-Fan Stephen Chen

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Martin White, Chair

The next generation of cosmological surveys will measure the large-scale structure (LSS)
of the universe with unprecedented statistical power, covering large cosmological volumes
and yielding constraints on cosmological parameters competitive with the cosmic microwave
background (CMB), letting us test the standard model of cosmology at percent levels or below
across cosmic history, from the recombination era to the present. Unlike CMB experiments,
which probe the early universe in the linear regime, these new surveys will map the distribution
of matter and galaxies at late times where the effects of nonlinearities are significant. To
reliably extract fundamental physics information from this data will require theoretical models
that can make accurate predictions on large, cosmological scales while being robust against
the effects of nonlinear physics of small scales, due not just to gravitational collapse but also
the astrophysics of galaxy formation whose precision modeling currently eludes us.

In this dissertation we develop perturbation theory (PT) models for two key observables in
upcoming surveys: the redshift-space clustering of galaxies in spectroscopic surveys and the
cross correlation of galaxy clustering with weak gravitational lensing. Perturbation theory
at the linear level has an indispensable role in CMB analyses, and the past decade has seen
rapid developments in nonlinear perturbation theories of large-scale structure, in part due
to a reinterpretation of PT through the lens of effective field theories that has allowed for a
robust and theoretically consistent treatment of the effects of non-perturbative small-scale
physics on large-scale clustering. We review these developments in Chapter 1 before diving
into the study of galaxy velocities and redshift-space distortions in Eulerian and Lagrangian
perturbation theory (LPT) in Chapter 2. We use this knowledge to construct a model of the
redshift-space galaxy 2-point function at 1-loop in perturbation theory featuring a full infrared
(IR) resummation of large-scale displacements and velocities in Chapter 3. In Chapter 4,
we use the same mathematical techniques to model density-field reconstruction, a technique
used to sharpen the baryon acoustic oscillations (BAO) signal in spectroscopic surveys.

The PT techniques described above are quite versatile and, in Chapter 5 and 6, we use
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them “out-of-the-box” to study non-standard features in galaxy clustering due to relative
perturbations between dark matter and baryons after recombination as well as exotic early-
universe scenarios such as non-standard inflation and early dark energy, with a particular focus
on IR resummation in LPT. In Chapter 7 we exploit this same resummation of displacements
for a different purpose: by combining the perturbative Lagrangian bias expansion with exact
displacements solved-for in N-body simulations we construct a model for galaxy-matter cross
correlations in weak lensing surveys that significantly extend the reach of PT models without
requiring any additional assumptions about the galaxy-halo connection.

To complete this dissertation, we apply the LPT models constructed in the preceding chapters
to existing data in Chapters 8 and 9. In the former, we use the predictions of LPT to
jointly model the “full shape” of pre- and post-reconstruction galaxy 2-point functions in the
Baryon Oscillation Spectroscopic Survey (BOSS), showing that this combined analysis can
be performed directly at the data level as opposed to the ex post facto approach of earlier
analyses. In the latter, we further add in cross correlations with the weak lensing of the
CMB from the Planck satellite, and, by modeling the cross correlation with the same LPT
formalism as the galaxy power spectrum, do so within a consistent dynamical framework and
with minimal additional parameters. Together, these pilot analyses demonstrate that the
LPT formalism developed in this dissertation, and more generally perturbation theory, can
offer a robust and pragmatic choice for future analyses of cosmological data, modeling the
large-scale structure of the universe on cosmologically interesting scales to well within the
statistical requirements set by future surveys.
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(points) to the predictions from our PT models (lines; Eq. 2.36). The upper panel
shows the measurements while the lower panel shows the fractional differences. 67
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3.1 (a) Geometry of the vector and tensor quantities in the integral Eq. 3.5. In
the absence of redshift-space distortions (n̂ dependence) the integral over q is
azimuthally symmetric; with RSD, a ϕ dependence occurs since k̂ and n̂ lie on a
preferred plane. (b) In Method II, vectors are boosted into the “Zeldovich” frame
where projections along the line of sight are amplified by the linear growth rate f
and the zenith is redefined to be the thus-boosted Ki = Rijkj. In both frames, n̂,

k̂ and K̂ are coplanar as shown in blue. . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Fits to the redshift-space power spectrum wedges (top) and multipoles (bottom)

of the fiducial halo sample with 1012.5M⊙ < M < 1013.0M⊙ at z = 0.8. Both
statistics were fit assuming Gaussian covariances using a consistent set of bias
parameters and with linear displacements resummed up to kIR = 0.2hMpc−1.
The fiducial LPT model gives an excellent fit to the anisotropic power spectrum
inside the range of fit (k < 0.2hMpc−1) well within the few-percent systematics
expected from the N-body data. Shaded regions indicate wavenumbers beyond
the range of fit, with higher multipoles diverging faster from the data past this
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Redshift-space power spectrum multipoles of the fiducial halo sample fit using
three effective theory models: the fiducial LPT model, the Lagrangian moment
expansion and resummed Eulerian perturbation theory. All three models are fit
as in Figure 3.2 and are in excellent quantitative agreement with the N-body
data. The three models differ slightly in their prediction for the hexadecapole
broadband; we have explicitly tuned our LPT IR resummation scheme to provide a
good match to the data, though we note the relatively large statistical uncertainty
in the hexadecapole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 Configuration space correlation function multipoles predicted by our LPT model,
the Lagrangian moment expansion, Eulerian perturbation theory and the Gaussian
streaming model compared to N-body data. Each of the models are in good
agreement with the data within the few-percent systematic uncertainties expected
of the simulations, though we note that they all slightly overshoot the dip around
80 h−1 Mpc by around two percent. Note that due to the high degree of similarity
between the theory predictions many of the lines lie on top of each other even in
the fractional residuals in the bottom panel, particularly when comparing LPT
(solid) and MOME (dashed). Black dashed lines in the lower panels indicate 2
and 5 percent errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Multipoles of the blind challenge power spectrum along with the best fit one-loop
LPT, MOME and REPT models. The top panels shows the (unbinned) theory
curves along with the data. Both the error bars and theory differences are too
small to see except in a few places. The lower panels show the fractional residuals
of each (binned) theory curve, with each k and ℓ bin separated by 0.0008hMpc−1

for clarity of presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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3.6 Histograms and two-dimensional contours for the three cosmological parameters
in the blind challenge. (Left): Comparison of the LPT model in this chapter to
our previous submissions using the moment expansion (MOME) and resummed
Eulerian perturbation theory (REPT), all at kmax = 0.12hMpc−1. The LPT
model performs competitively to existing models and indeed slightly improves
upon the LPT-based MOME model’s constraints on h. (Right): The LPT model
constraints using three different scale cuts. All three scale cuts recover the truth
on these parameters to within 2 σ. . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Parameter constraints using the LPT model for the blind challenge as a function
of scale cut kmax. The shaded blue region show errors scaled to a survey of 10×
less volume, i.e. BOSS or a ∆z = 0.1 slice of DESI at z = 1.2. All constraints
shown are within 2σ of the truth, and within 1 σ when kmax ≤ 0.14hMpc−1,
well within error bars expected for future surveys as well as the realm of possible
statistical fluctuations for this simulated sample. . . . . . . . . . . . . . . . . . . 94

4.1 Schematic for reconstruction from ref. [267]. The top two panels show how
displacments on scales smaller than rBAO smear out the BAO feature (black ring).
In the bottom two panels, the galaxy density field is used to reconstruct the
large-scale Zeldovich displacement (blue arrows) which is then removed from the
observed galaxy positions by shifting them in the negative direction. Insets show
the width of the particle distribution at each step. . . . . . . . . . . . . . . . . . 98

4.2 Lagrangian space two point functions used to compute reconstructed power spectra.
Dashed quantities have been multiplied by an overall negative sign, and reflect
that the shifted field is defined to be negatively correlated with the underlying
matter field. Roughly speaking, the shifted and displaced correlators reproduce
the general trend for the total matter correlators, shown in black, on large and
small scales, respectively. An exception is Xds, whose non-vanishing value on small
scales reflect that the point values of Ψd and Ψs differ exactly by the Zeldovich
displacement. Note also the small but visible features around q = 100h−1Mpc,
i.e. the BAO scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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4.3 (Top) Real-space power spectra contributions, displaced-displaced, displaced-
shifted and shifted-shifted, for the lowest order bias terms 1, b1, b

2
1, and their sum,

compared to linear theory at z = 0. The pure matter piece is the only term that
receives contributions from all three combinations of d and s, and the b21 term
consists only of the dd contribution. All three bias terms tend to linear theory
on large scales but exhibit somewhat different broadband behavior at high k.
(Bottom) The ratio of the above bias terms with the linear theory power spectrum,
compared with the pre-reconstruction Zeldovich power spectrum. While both the
pre- and post-reconstruction Zeldovich spectra differ with the linear spectrum
in the broadband at small scales, the Zeldovich approximation predicts that the
oscillatory features in the reconstructed spectrum are almost identical to those in
the linear spectrum, such that the wiggles are almost completely normalized out
for the reconstructed spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Contributions to the pre- and post-reconstruction (dashed and solid) power spectra
and correlations functions (left and right columns) in real space from linear through
quadratic bias terms at z = 0. Note that the matter (blue) and b21 (green) curves
in the top right panel are essentially degenerate, especially at the large scales
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Bias contributions to the pre- and post-reconstruction (dashed and solid) z = 0
redshift space power spectra monopole and quadrupoles in the Rec-Sym scheme.
The color scheme and line styles follow those in Figure 4.4. The lowest-order
contributions to the reconstructed monopole and quadrupole due to the linear
bias b1 tend to the Kaiser approximation at large scales. Note the different y-axis
ranges on different panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Same as Figure 4.5, but for Rec-Iso at z = 0. Unlike in Rec-Sym, the linear
bias contributions to the monopole and quadrupole do not tend to the Kaiser
limit on large scales but to the real space linear power spectrum, as evidenced
by reduced power in the monopole compared to the pre-reconstruction Zeldovich
power spectrum, and contributions to the quadrupole vanishing on large scales.
However, many of the higher bias contributions are identical to those in Rec-Sym
(Fig. 4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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4.7 Fits to the pre- and post-reconstruction real-space halo power spectra in DarkSky

for halos of mass between 12.5 < log10(M/h−1M⊙) < 13.0 at three smoothing
scales (R = 10, 15, 20hMpc−1), assuming Zeldovich power spectra with biases
(b1, b2) and one counterterm per spectrum (three total for the reconstructed case).
The upper plot of each vertical pair of panels shows the product of the wavevector
magnitude and power spectrum k P (k) while the lower plot shows the fit residuals
as a fraction of measure power ∆P/P = (Pfit−Pnbody)/Pnbody. In the top-left pair
of panels we show the incremental contributions from b2 and the counterterm α
(which contributes close to 10% of the power at k = 0.1hMpc−1) to the fit, which
agrees with the simulation at the percent level (dotted line in the lower plots) at
all scales shown. In the remaining panels we use the same bias parameters to fit
the reconstructed power spectrum, allowing only counterterms to vary. Our model
with three counterterms can fit the data at the percent level out to k = 0.2hMpc−1,
though a bump-like feature at k = 0.1hMpc−1 becomes more prominent at smaller
smoothing scales, where nonlinear corrections beyond the Zeldovich approximation
presumably become more important (see text). Also shown in orange are fits
using one counterterm – or equivanlently one derivative bias – which fit less well
past k = 0.1hMpc−1. We fined that setting the counterterm αss to zero does
not materially affect our fits. Note that there is excess power in the data at the
largest scales shown, as discussed in the text. . . . . . . . . . . . . . . . . . . . 118

4.8 Halos in DarkSky exhibit significant excess power compared to theory at large
scales in Fourier space which should be well-described by linear theory. (Left)
Fits to the real-space power spectrum with and without our ad hoc correction
Plw = A (k/k0)

n, shown in blue and orange respectively. At the largest scales
shown, the excess power is significantly larger than the scatter. The fits prefer
slighly different, though qualitatively similar, bias values. (Right) The same fits in
configuration space. The uncorrected data systematically trends below the data
at separataions above the BAO peak and in the BAO “dip,” while the fit with
Plw added goes through all the data points. . . . . . . . . . . . . . . . . . . . . 120

4.9 A sub-percent level feature in the power spectrum near k = 0.1hMpc−1 can lead
to visible distortions in the BAO feature in ξ(r). (Left) Residuals for the fit as a
fraction of total measured power in the simulations, as defined in the caption of
Figure 4.7. The orange curve shows the residuals when our theory is corrected
using a Gaussian profile localized at k = 0.1hMpc−1 compared to the fiducial fit
(blue), whose residuals exhibit a dip centered at k = 0.1hMpc−1. (Right) The
fiducial and corrected correlation functions. The bump in the left panel, whose
Fourier transform is shown magnified in the green curve, induces distortions in
the BAO feature across a range of separations r ∼ 60− 120h−1Mpc. . . . . . . 121
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4.10 Fits for the pre- and post-reconstruction redshift-space power spectrum monopole
(left) and quadrupole (right) for halos in the mass range 12.5 < log10(M/h−1M⊙) <
13.0. The fractional residuals ∆P/P are defined in Figure 4.7. All spectra were fit
using a consistent set of bias parameters (b1, b2) = (0.02,−0.8), whose independent
contributions are shown in the top row, determined by fitting the pre-reconstruction
data, such that only the counterterms were fitted in constructing the curves in the
bottom two rows. Our model with the full set of six counterterms—three each for
the monopole and quadrupole respectively—fits both the reconstructed monopole
and quadrupole in both schemes out to k = 0.2hMpc−1 to a few percent and
reproduce the phase and amplitude of the oscillatory BAO wiggles. . . . . . . . 122

4.11 Like Figure 4.10, but for halos in the mass bin 13.0 < log(M/h−1M⊙) < 13.5.
Here, our model prefers the bias parameters (b1, b2) = (0.23,−1.0) and accurately
fits the data over a similar range of scales. . . . . . . . . . . . . . . . . . . . . . 123

4.12 The linear wiggle power spectrum for three choices of Pnw. The conventional
choice (EH98 [120]) does not accurately capture the large scale power, and we
have investigated two possible methods to mitigate this discrepancy: one based
on B-splines, described in ref. [402] and another based on a Savitsky-Golay filter
in ln(k). The wiggle power spectra isolated using these three methods exhibit
visibly different oscillatory behavior. . . . . . . . . . . . . . . . . . . . . . . . . 125

4.13 Comparison of Zeldovich with IR-resummed linear theory (RWiggle) for recon-
structed and unreconstructed spectra at z = 0 and µ = 0 and 0.5 with b1 = 0.5
using Rec-Sym with higher biases set to zero. RWiggle slightly under-predicts
damping at high k (but see footnote 4), especially for the unreconstructed power
spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.14 The z = 0 Zeldovich power spectrum at µ = 0.5, before and after reconstruction
using Rec-Sym, shown with and without contributions from the quadratic bias and
shear biases when (b1, b2, bs) = (5, 20, 10). For comparison, the RWiggle prediction
is shown in the diamond points, and the isolated b2 contributions are shown as
a black dot-dashed line multiplied by a factor of five. For the unreconstructed
spectrum, the b2 contributions (with shear bias set to zero) can be seen to be
essentially out-of-phase with the linear theory wiggles and induce a phase shift in
the power spectrum. These contributions are greatly reduced in the reconstructed
spectrum. The shear contributions, on the other hand, are more-or-less in phase
with linear theory and unchanged by reconstruction. For completeness, we have
also plotted contributions from a possible derivative bias b∇2 , which modulate the
amplitude of the wiggles in a manner growing with wave number. . . . . . . . . 128
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4.15 Shifts in the recovered isotropic BAO scale, αBAO, in redshift space fit using a
model with only b1 nonzero and polynomial broadband contributions in both the
monopole and quadrpole, when truth is given by the Zeldovich approximation
with nonzero quadratic bias. Values of b1 and b2 were chosen according to the
peak-background split, while values for bs were taken from ref. [4]. (Left) Shifts
in the BAO scale at z = 0. Fitting with the empirical model results in only
sub-percent shifts across a wide range of halo masses, which are further more than
halved after reconstruction. The solid and dashed lines show the shift with and
without the quadratic shear bias bs, whose effect is subdominant to b2. (Right)
The same shifts calculated at z = 1.2. Even prior to reconstruction, fitting with
the empirical model results in less than a tenth of a percent shift in the BAO
scale over a wide range of biases; after reconstruction the shift due to nonlinear
bias becomes essentially zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Transfer functions for the relative component from Equation 5.13 at z = 1 (left
column) and z = 7 (right column). These transfer functions solve Equation 5.8.
The top row shows the transfer functions for ∇ · Ψr, i.e. the relative density.
The bottom row shows the transfer functions for ∇ · Ψ̇r, i.e. the relative velocity
divergence. The free-falling (Fb = 0) and Compton drag contributions are shown
separately, the effect of Compton drag on the relative velocity is immediately
apparent even right after reionization (zre = 7.90) at z = 7, whereas the relative
displacement is dominated by the Fb = 0 contribution at all but the largest
scales shown. Unlike the Compton contribution, which is flat at large scales, the
primordial (Fb = 0) contributions fall off as k2 towards low wavenumbers, reflecting
the origin of relative perturbations in pre-recombination baryonic pressure forces.
At low redshifts, the solutions to the Lagrangian equations of motion, with initial
conditions set at zi = 20, are in excellent quantitative agreement with the results
from CAMB (black dashed lines, barely visible on the plot as they lie below the
purple lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Relative to total-matter-component transfer function ratios. (Left) Transfer
function ratios between the initial fields m+ and r± defined at z = 20. The
so-normalized constant r+, which roughly corresponds to the relative overdensity
mode, is a percent level contribution relative to the total-matter growing mode
m+. The decaying mode r−, which corresponds roughly to the relative velocity,
enters at significantly below the percent level. Note however that our definition
somewhat exaggerates its smallness by “redshifting” it to z = 0. The equivalent
ratio for one percent of the growing mode at z = 3 is plotted for comparison in
black. (Right) Transfer function ratios between the evolved relative and total
matter displacements at redshifts z = 2− 6. While the relative displacement is a
percent level effect at low redshifts (z = 2), it enters at close to the ten percent
level at higher redshifts (z = 16). . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xvi

5.3 Correlation functions entering the galaxy power spectrum in Eq. (5.27) at z =
1.2. Left panel: the displacement auto- and cross-correlation functions between
the different components. Right panel: bias-weighted, displacement correlation
functions. Correlation functions involving the relative component exhibit abrupt
features around q ∼ 102 h−1 Mpc, reflecting the baryon acoustic oscillation scale. 144

5.4 Different contributions to the galaxy power spectrum in the Zeldovich approxi-
mation, Eq. (5.27), at z = 1.2. Terms proportional to b+b−, fgb−, and b

2
− have

been omitted as they are two orders of magnitude smaller than the smallest con-
tributions shown. Many terms, such as those involving fg and b+, are essentially
degenerate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5 Comparison of two point functions with (red) and without (black) contributions
from Compton drag. While the differences are small (c.f. Fig. 5.3), they are
non-neglible at large scales. The contributions from r+ have been subtracted off
for ease of comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6 Comparison of terms involving b+ (blue dashed) and fg with and without Compton
drag (red and black). The two are largely degenerate in the latter case, but with
Compton drag the fg terms are dominated by a contribution proportional to
the total-matter power spectrum at large scales, which can alternatively be
renormalized into the matter bias b1, shown separately as a dashed magenta curve.
The left panel shows contributions due to contracting the relative components
(fgΨr or b+∇ ·m+) with the total matter displacement Ψm, while the right panel
shows contractions with the total matter bias b1δm. . . . . . . . . . . . . . . . . 148

5.7 Contributions to the Zeldovich galaxy power spectrum from relative velocity bias
at second order. All biases are set to unity except for c−, which is set such
that bvσ

2
vr = 0.01—in this case, the contributions from bv2 are seen to be quite

comparable to those from b+, and moreover exhibit BAO “wiggles” far more
prominently than does the regular ZA contribution. . . . . . . . . . . . . . . . . 152

5.8 (Left) Contributions to the z = 1.2 correlation frunction from the various relative
component biases, multiplied by constant factors for ease of comparison. All
contributions have prominent features at the BAO scale, reflecting their origin in
early-universe acoustic oscillations. (Right) Derivatives of the power spectrum
with respect to these parameters and the BAO scale parameter α at z = 1.2, with
bm = 0.5, b2 = 0.2, b+ = 1, b− = 7 and c−σ

2
r− = 0.01. Despite the fact that all

these templates feature prominent oscillations, they nonetheless possess distinct
scale dependence. Note that some of the derivatives have been multiplied by
powers of ten for ease of comparison. . . . . . . . . . . . . . . . . . . . . . . . 152
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5.9 (Top) Best fit power spectra using the total-matter-component-only model, M0,
for a universe where b+ = 5 with varying maximum fitted wave numbers kmax.
(Bottom) Residuals of the above fits, compared to expected errors (∆ ln k = 0.06),
shaded in gray. Fitting over too narrow a range (kmax = 0.1hMpc−1) results in
a highly biased phase, while fits using larger wave number ranges covering more
than one BAO wiggle are essentially in phase. The remaining oscillating residuals
significantly exceed the expected error and are due to lack-of-fit for the oscillations
in the relative component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.10 (Top Left) Shift in measured α when neglecting relative component biases as a
function b± in the absence of c−. While b− contributes negligibly, b+ = 5 produces
a shift up to a 0.4%. (Top Right) Ratio of error bars in α when marginalizing over
b± vs. when they are kept fixed at zero, such that the best-fit value of α is biased
in the latter case. In the latter case the forecast takes into account the shift away
from the true value due to incorrect model assumptions. (Bottom Row) Same
as the above, but with c− added as a nonzero parameter in M1. We have set
the true b− = 0 for convenience but marginalize over it to calculate uncertainties.
While even c−σ

2
r− = 0.01 contributes only a tenth of a percent to the shift in α,

the error bars are inflated relative to the top row by up to twenty percent. We
assume kmax = 0.25hMpc−1 throughout. . . . . . . . . . . . . . . . . . . . . . . 156

5.11 Constraints on b+ and c− in our fiducial setup if only each respective parameter can
be varied (black), and if all relative parameters are simultaneously marginalized
over (red). Notably, when the full model is taken into account detecting the
relative velocity effect (c−) will require up to ten times more signal to noise. . . 157

6.1 The linear theory power spectra (left) and correlation functions (right) for our
fiducial ΛCDM model and models with primordial features superposed. The
“Lin.” model has sinusoidal oscillations linear in k (Eq. 6.1), the “Lin.×2” model
has sinusoidal oscillations linear in k with two frequencies (ω1 = 50h−1Mpc
and ω2 = 150h−1Mpc) and the “Log.” model has sinusoidal oscillations in ln k
(Eq. 6.2). See text for further details. . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 The linear theory power spectra (left) and their ratio (right) for our fiducial
ΛCDM model and models with features induced by a period of early dark energy
(EDE) at z ≃ 104. See text for further details. . . . . . . . . . . . . . . . . . . . 164

6.3 Comparison of the oscillatory components of the real-space power spectrum for
our fiducial halo sample at z = 1 as predicted by 1-loop EPT and LPT for a range
of IR-resummation choices in the ΛCDM cosmology. All choices are in excellent
numerical agreement – the EPT schemes are all within 10−4 of the total broadband
power of each other and differ at the 10−3 level with the LPT prediction. The
latter number lets us place a minimum theoretical error on predictions for feature
amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
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6.4 The real-space, halo power spectra from our simulations at z = 1 and model fits.
We show results for the n̄ = 10−3 h3Mpc−3 sample, since it has lower shot noise,
but results for the sparser sample are qualitatively similar. The open, black circles
show the average of P (k) over the 4 boxes. The orange and green lines (which are
almost on top of each other) show the best-fit LPT and EPT models while the
blue line shows linear theory with the same large-scale bias as the EPT models. 170

6.5 Broadband-subtracted pairwise-velocity moments in real space for our fiducial
halo sample with the “Lin.×2” linear power spectrum compared to predictions
from LPT and EPT. As in basic ΛCDM models, there is excellent quantitative
agreement between LPT and EPT in the zeroth and first moments, while in
the second moment EPT slightly underpredicts the damping of 1-loop wiggles
prominent at higher k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.6 The redshift-space, halo power spectrum wedges from our simulations at z = 1
and model fits. We show results for the n̄ = 10−3 h3Mpc−3 sample, since it has
lower shot noise, but results for the sparser sample are qualitatively similar. The
open circles show the average of P (k, µ) for µ = 0.1, 0.3, ..., 0.9 (colors, bottom
to top), the solid lines show the best-fit LPT model. . . . . . . . . . . . . . . . . 173

6.7 Predictions using the LPT moment expansion, Gaussian streaming model and IR-
resummed EPT (REPT) for the oscillatory components of the redshift-space power
spectrum monopole and quadrupole at z = 1 for the n̄ = 10−3 h3Mpc−3 sample.
The LPT and REPT models are in excellent agreement, especially compared to
the scatter of the N-body data to which they were independently fit. . . . . . . 174

6.8 As for Figs. 6.4 and 6.6 but for the model with an “induced feature” (see text
and Fig. 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.1 The 15 ‘basis’ cross-spectra, Pij , at z = 0 (upper panels) and z = 1 (lower panels).
The halo and galaxy power spectra are formed from linear combinations of these
spectra, as in Eq. (7.3). The matter and linear bias contributions (P11, P1,δ and
Pδ,δ) dominate and are essentially degenerate on large scales, while differing at
large k where the other components also contribute. The field ∇2δ has been
multiplied by 10 h−2 Mpc2 for ease of presentation. . . . . . . . . . . . . . . . . 181

7.2 Comparison of halo autospectrum spectra predicted by our model and one-loop
perturbation theory (LPT) for the same bias parameters. The latter matches
our model on large scales but deviates towards large k as perturbative dynamics
breaks down, particularly at towards lower redshift. . . . . . . . . . . . . . . . 184

7.3 Halo auto-spectra (dashed) and halo-matter cross-spectra (dotted) for our three
halo samples (Left: 12.0 < log10M < 12.5, Middle: 12.5 < log10M < 13.0
and Right: 13.0 < log10M < 13.5) at z = 0 (top) and z = 1 (bottom). Black
lines show the N-body spectra while the colored line shows the best-fit model of
Eq. (7.3). For each combination we show both the full spectra and the fractional
error as a function of k. The gray lighter and darker shaded regions show 3 and 1
percent errors, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
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7.4 The scale-dependent matter-halo cross correlation coefficient, rcc(k), at z = 0 for
mass bins log10M ∈ (12.0, 12.5) (blue) and (12.5, 13.0) (orange). The dashed lines
show the “true” rcc while the solid lines show rcc computed without shot noise
in the halo autospectrum, which gives a qualitative measure of the halo-matter
decorrelation due to nonlinear dynamics and bias. In all cases the cross-correlation
drops below one as the field goes non-linear and is less than 90 percent for most
of the scales fit by our model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5 Comparison of the auto- and cross-spectra for samples of mock galaxies, generated
from the simulations using a halo occupation distribution at z = 0 (top) and
z = 1(bottom). The blue and orange curves show the fits from our model for
the galaxy autospectrum (dashed) and galaxy-matter cross spectrum (dotted),
respectively. The model performance is qualitatively similar for our mock galaxies
and halo samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.6 A comparison of our Lagrangian bias model with the model of Eqs. (7.7, 7.8)
and the benchmark linear bias model. Solid lines show the fits of each model to
the halo-halo autospectrum, while dashed lines show fits to the halo-matter cross
spectrum. The linear bias model only fits the data on the largest scales. While
the scale-dependent bias model can be made to fit the autospectrum, only our
model fits both auto- and cross-spectra with a consistent set of parameters. . . 191

7.7 The cosmology dependence of the component spectra. Here we show three
representative components: P11, P1,δ2 , Pδ2,δ2 at z = 0 for values of Ωm within ten
percent of our fidicucial cosmology, with all other parameters kept fixed. For
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Conventions

In this dissertation we will follow the convention for Fourier transforms

f̃(k) =

∫
d3x e−ik·x f(x), f(x) =

∫
d3k

(2π)3
eik·xf̃(k). (1)

Except in places where it is ambiguous we will typically forego the tilde’s on Fourier trans-
formed quantities, so that f̃(k) ↔ f(k). Throughtout this work we will use the letters k,p
to refer to wavenumbers in Fourier space and the x,q, s to refer to (Eulerian, Lagrangian
and redshift-space) configuration space coordinates; their magnitudes will be uniformly
denoted with un-bolded letter (e.g. k, r) and their components by subscripts (e.g. ki). We
will sometimes use the shorthand ∫

k

=

∫
d3k

(2π)3
(2)

for the Fourier-space integral. In order to avoid confusion with overdensities δ we will write
Dirac delta functions as δD(x).

We will deal extensively with N-point correlation functions in this dissertation. Due to
translation invariance they will typically take the Fourier-space form

⟨f1(k1)f2(k2)...fn(kn)⟩ = C(k1,k2, ...,kn) (2π)
3δD

( n∑

i=1

ki

)
.

In order to avoid writing extraneous delta functions we will sometimes use the notation

⟨f1(k1)f2(k2)...fn(kn)⟩′ = C(k1,k2, ...,kn). (3)
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Chapter 1

Introduction

We are entering a golden age of cosmological data. As this dissertation was being written
the Dark Energy Spectroscopic Instrument (DESI) [108] observed its 12.8 millionth galaxy
spectrum, dwarfing previous spectroscopic galaxy surveys like the Baryon Oscillation Spec-
troscopic Survey (BOSS, 1.5 million, z < 0.7) [101] and mapping the three-dimensional
distribution of galaxies deeper into cosmic history past z = 1.0 just one year into its planned
five-year run.1 The coming years will further see complementary advances in space-based
galaxy surveys in Euclid, SPHEREx and Roman [12, 116, 117], imaging surveys in the Rubin
Observatory [224] and ground-based cosmic microwave background (CMB) experiments
like Simons Observatory and CMB-S4 [141, 1], each of which will significantly advance our
observational reach of the large-scale structure (LSS) of the universe. The wealth of expected
data in the coming years presents the burgeoning field of precision cosmology with both a
unique opportunity to learn about fundamental physics and a theoretical challenge to model
the formation of cosmic structure robustly at the (sub-)percent level.

An important feature of the coming era of precision cosmology is that the new data will
primarily involve structure formation in the nonlinear regime. Precision cosmology had its
birth in CMB experiments like the WMAP and Planck satellites [175, 285] which mapped
fluctuations in the primordial universe (z ≈ 1100) at the 10−5 level. The smallness of these
CMB fluctuations meant that they could be modeled highly accurately—minus small changes
due to intervening matter between us and the CMB such as lensing—using linear theory, with
a clean separation of scales and robust features in the angular two-point function that could be
used to cleanly extract cosmological and fundamental physics parameters (see e.g. ref. [114]).
In contrast, in the universe today matter density fluctuations on typical (≈ 8h−1 Mpc) scales
are of order σ8 ≈ 0.8 and the main objects of interest, galaxies, are formed via gravitational
collapse in dark-matter halos that are even-denser still. In this regime nonlinearities due to
gravity and astrophysical processes couple modes on large and small scales, complicating the
required modeling and de-correlating observables from the early-universe initial conditions we
wish to probe. On the other hand, properly leveraging these effects can yield new information

1One Year and 12.8 Million Galaxy Redshifts, David Schlegel, May 14 (2022). https://www.desi.lbl.
gov/2022/05/14/one-year-and-12-8-million-galaxy-redshifts/.

https://www.desi.lbl.gov/2022/05/14/one-year-and-12-8-million-galaxy-redshifts/
https://www.desi.lbl.gov/2022/05/14/one-year-and-12-8-million-galaxy-redshifts/
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about the early universe and general relativity beyond what can be derived in the primary
CMB. Upcoming surveys like DESI promise to rise up to the gold-standard set by the CMB
and even existing ones like BOSS (see e.g. ref. [186]) and the Dark Energy Survey (DES) [2]
place constraints on some cosmological parameters that are competitive, and often in mild
statistical tension, with Planck.

It is against this backdrop that this dissertation has been written. While many innovative
and predominantly simulations-based methods to analyze LSS data have been proposed, we
will take a more conservative approach and approach structure formation analytically within
the formalism of perturbation theory (PT) using techniques from effective field theory (EFT).
In what follows, our focus will be to show that models of matter and galaxy clustering can
be rigorously and robustly built from fundamental principles using this approach and meet
the stringent requirements set by future experiments without making undue assumptions
about the small-scale astrophysics of galaxy formation, using current surveys like BOSS
and weak lensing from Planck as demonstrative examples. As we will see, these models will
also tell us about where the information lives in cosmological data and the limits of LSS
analyses. In the rest of this Introduction I will provide a concise overview of large-scale
structure phenomenology and perturbation theory, before moving on to develop models of
galaxy clustering in the rest of this dissertation.

1.1 The Standard Model of Cosmology

Culminating with measurement of fluctuations in the CMB and of cosmic acceleration from
Type IA supernovae [305, 281], accumulating evidence in the last several decades (see e.g.
ref. [263]) has painted a remarkable picture wherein the universe as we see it—ranging from
the observed abundance of light elements and the age of the oldest stars to the CMB to
the observed counts and clustering of galaxies—can be parsimoniously explained within
one cosmological model with only a few ingredients. This “Standard Model” of cosmology
is also known as the ΛCDM model and posits that we live in an approximately isotropic,
uniform and flat spacetime with an energy density dominated by two invisible components: a
cosmological constant or dark energy component (Λ) with an unevolving density making up
about 70% and cold, nonrelativistic dark matter (CDM) making up most of the rest, with
small contributions from baryonic matter, neutrinos and photons, in that order. Within
General Relativity this system is described by a flat Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric2

ds2 = −dt2 + a2(t) dx2. (1.1)

The scale factor a(t) describes the expansion of the universe and it is conventional to set its
present value to one. Photons emitted at earlier times a < 1 will receive a redshift z related
to the scale factor by a = (1 + z)−1. It is also conventional to define the conformal time

2Much of the material in this section is derived from the excellent textbook by Dodelson [114], to which
we direct readers of this dissertation looking for more than just definitions to.
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τ = dt/a such that the metric is instead given by ds2 = a2(−dτ 2 + dx2), with its associated
conformal Hubble parameter H = Ha. Throughout this dissertation we will use t, τ, a and z
interchangeably as the time coordinate.

As the universe expands different species evolve according to their equations of state,
e.g. matter dilutes trivially so that ρm ∝ a−3, radiations both dilutes and Doppler shifts
such that ρr ∝ a−4 and ρΛ ∝ const. The evolution of the scale factor is entirely determined
by these relations together with the first Friedmann equation H(a)2 = 8πGρ/3, where the
Hubble parameter at each time is given by H(a) = ȧ/a. It is conventional to define fractional
densities in terms of the present-day critical densities ρcrit = 3H2

0/8πG, such that the Hubble
parameter in a flat universe dominated by CDM and Λ is governed by

H(a)

H0

=
√

Ωma−3 + (1− Ωm), Ωm =
ρm,0
ρcrit

. (1.2)

Beyond the cosmic energy census another key ingredient of the Standard Model is a
rapid period of exponential expansion a(t) ∼ eHt in the early universe known as inflation.3

Proposed in the 1980’s, inflation provides a simple mechanism to explain (at least) three
apparent puzzles of the standard Big Bang model: the uniformity of the CMB at the 10−5

level at separations that should be causally disconnected (horizon problem), the apparent
flatness of the universe in a setup where flatness is unstable (flatness problem) and the lack
of magnetic monopoles and other topological defects that should generically appear in Grand
Unified Theories (monopole problem).4 These problems are generically resolved by a rapid
expansion in a(t) and drop in the comoving Hubble radius (aH)−1.

Perhaps most significant for our purposes here, though, is that inflation provides a
simple and testable mechanism through which the initial fluctuations that grow into CMB
anisotropies and large-scale structure are seeded. In the most straightforward models of
inflation, the rapid expansion is driven by a single scalar field ϕ with action

Sϕ =

∫
d4x

√
−R

(1
2
∂2ϕ− V (ϕ)

)
(1.3)

where R is the Ricci scalar coupling ϕ to the metric. When ϕ dominates its equation of
motion the Friedman equations are given by

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0, H2 =

8πG

3

(1
2
ϕ̇2 + V (ϕ)

)
. (1.4)

The conditions for inflation are met if the potential energy V (ϕ) dominates over the kinetic
ϕ̇2 term, and for a sufficiently long period implying that ϕ̈ is subdominant in the equation of

3The following paragraphs represent a lightning summary of the key aspects of cosmological inflation
for our purposes in this dissertation—for further details the reader is encouraged to consult e.g. Daniel
Baumann’s excellent TASI lectures on the topic [26].

4The flatness problem is arguably a prediction of inflation, since constraints of spatial curvature using e.g.
the CMB and galaxy clustering in e.g. [175, 285] post-date the development of inflationary theory.
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motion; these conditions for slow roll inflation can be summarized in terms of the parameters5

ϵ, |η| ≪ 1; ϵ =
1

16πG

(V ′

V

)2
, η =

1

8πG

(V ′′

V

)
. (1.5)

The preceding discussion focused on the classical dynamics of the ϕ background. However,
the inflaton is a quantum field, and it is its quantum fluctuations that form the seeds of
structure formation we will study in the rest of this thesis. Inflation generically predicts
adiabatic scalar fluctuations generated by a single degree of freedom ϕ. Indeed, slow roll
inflation tends to enhance the scalar curvature perturbations ζ: roughly speaking, sub-horizon
quantum fluctuations in ϕ are stretched by inflation and exit the comoving Hubble radius
(k = aH) where they become frozen in as commuting classical fluctuations in ζ with power
spectrum given by

Pζ(k) =

[(
H

ϕ̇

)2(
H

2π

)2]

k=aH

= 2π2k−3As

( k
k0

)ns−1+ 1
2
(dns/d ln k) ln(k/k0)

. (1.6)

In the second equality we have adopted the parametrization used in CMB analyses (e.g.
ref. [285]) where As is the amplitude of the dimensionless power spectrum at some chosen
pivot scale k0 and ns is the spectral tilt; a characteristic prediction of inflation is a nearly-scale
invariant power spectrum with neglible running at second order in the slow-roll parameters

ns − 1 = 2η − 6ϵ,
dns
d ln k

= O(ϵ2). (1.7)

The resulting fluctuations would be mostly Gaussian, with any detections of non-Gaussianities
shedding light on inflaton interactions and deviations from single-field inflation. Inflation also
predicts tensor (gravitational-wave) fluctuations Pt = 64πG(H/2π)2k=aH without the slow-roll
enhancement and with a slight redward tilt nt = −2ϵ and tensor-to-scalar ratio r = 16ϵ.
While these tensor perturbations will not concern us in the following their detection would
yield a direct measurement of the energy scale of inflation and test of the slow-roll predictions
for nt and r, and indeed are one of the main drivers of next-generation CMB experiments.

With ingredients assembled from subfields of physics ranging from galactic rotation curves
(dark matter) to supernovae (dark energy) to magnetic monopoles (inflation), the standard
model of cosmology as laid out above makes very particular predictions for large scale
structure which have been remarkably confirmed over the past two decades. After the end of
inflation, the growth of the comoving Hubble radius resumes and the large-scale fluctuations
generated become unfrozen as they enter the horizon in the radiation-dominated era. These
unfrozen fluctuations then cause acoustic oscillations in the tightly-coupled photon-baryon
fluid which, due to their starting from rest “in-phase”, yield a coherent series of troughs
and peaks in the power spectrum (e.g. [183, 329, 113]). Under the Friedmann equations the
universe continues to expand and cool until the first hydrogen atoms form (recombination)

5We follow the conventions of the 2020 Particle Data Group Review [271].
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Figure 1.1: Evidence for acoustic oscillations in the primordial plasma. (Left) Angular power spectra
of temperature and temperature-polarization cross correlations in the CMB as observed by the
Planck satellite. The data are well-described by the standard cosmological model and broadly
support the inflationary paradigm. Adapted from ref. [288]. (Right) Baryon acoustic oscillations
imprinted in galaxy clustering, seen as an isolated peak at rBAO ≈ 100h−1Mpc in the correlation
function monopole (top), or as wiggles with wavelengh ≈ 0.06hMpc−1 in the power spectrum
(bottom), both measured from the BOSS survey. Together with the CMB these data are very
suggestive of a flat ΛCDM cosmology. Figure adapted from refs. [307, 45].
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and photons sufficiently decouple from baryons to free-stream. These free-streaming photons
became the CMB we see today, with the observation of acoustic features in the CMB serving
as dramatic confirmation of the predictions of the standard model and inflation. Indeed,
high-precision measurements of the CMB temperature and polarization spectra (Fig. 1.1)
reveal a universe at decoupling well-described by a flat universe and just six parameters—the
physical baryon and cold dark matter densities Ωb,ch

2, the angular scale of the observed
acoustic oscillations, the amplitude As and spectral tilt ns of the scalar fluctuations, and the
astrophysical optical depth to reionization τ—on which tight, (sub)percent level constraints
can be obtained. The present-day Hubble parameter H0 = 100h km/s/Mpc and other
commonly-defined parameters such as the amplitude of linear matter fluctuations on 8 h−1

Mpc scales σ8 are deriveable from this set. Perhaps most remarkably, the CMB measures
superhorizon fluctuations at multipoles ℓ ≲ 200, the spectral tilt to be close to but not equal
to one (ns = 0.9649± 0.0043 from ref. [285]), the universe is flat to within errors, and the
initial fluctuations to be essentially adiabatic and Gaussian, in dramatic confirmation of the
inflationary paradigm.

The predictions of standard model do not end at the CMB. Post decoupling the acoustic
oscillations seen in the CMB are frozen in, and their imprints in the observed clustering of
galaxies, known as baryon acoustic oscillations (BAO) have been observed in galaxy surveys
like BOSS [7]. Given that their physical scales rBAO ≈ 100h−1 Mpc are well-understood
from CMB physics, BAO serve also as a standard ruler test of ΛCDM cosmology (Fig. 1.1).
Beyond acoustic oscillations the growth of structure connecting the primordial curvature
amplitude to the size of cosmic velocities and weak lensing observed in galaxy redshift and
imaging surveys also paint a picture that is overall consistent with the standard model.

Despite its successes, however, in the past decade a growing number of cosmological
surveys and analyses have begun to reveal potential cracks in the ΛCDM model. Probably
the most well-known of these is the so-called Hubble tension, wherein the Hubble constant
determined from supernovae measurements disagree with those from the CMB by 5σ [304].
Perhaps even more relevant for the purposes of this dissertation is the S8-tension, wherein the
measured clustering from weak lensing and redshift surveys seems to be weaker by around
2 − 3σ than implied from the CMB (see e.g. Section V in ref. [3] as well as Fig. 9.11 in
Chapter 9). This tension is currently at less statistical significance than the Hubble tension
but is notable for its encompassing of multiple LSS probes, all with different systematics,
and its resolution or clarification on the theory side will have to rely squarely on the types of
analytical methods we will develop in the following chapters. In parallel to homing in on
tensions between different cosmological data sets it is also possible to investigate deviations
from ΛCDM by constraining extensions to the base model such as deviations from dark
energy away from a cosmological constant (e.g. [94]), early dark energy (e.g. [291]), features
in the primordial spectrum due to inflation beyond slow roll [44], etc. While no conclusive
detections of these extensions, or solutions to the above tensions, have been found to date,
in order to robustly investigate these topics in light of the sharpened constraints upcoming
surveys will offer it will be important to systematically build and test our models of structure
formation in the most general way possible–this will be our task for the remainder of this
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work.

1.2 Theory of Structure Formation

We begin by discussing the equations governing structure formation, treating dark matter
and baryons as one dark matter fluid for now.6 Throughout the rest of this dissertation we
will limit our discussion to non-relativistic structure formation in the weak-field limit well
within the horizon in the matter era, which is the regime where the late-time LSS observables
we will consider reside; the linear theory of structure formation at earlier times as relevant
for e.g. the CMB is a rich, well-studied subject and we will not quantitatively address it in
any detail.7 We will work in the conformal Newtonian gauge with only scalar perturbations
on top of the FLRW background given by

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)dx2, Φ = Ψ, (1.8)

where the equality between the two potentials follows from the fact that we operate strictly
in the non-relativistic regime, though we keep them separate in anticipation of applications
to weak gravitational lensing.

1.2.1 From Vlasov to Fluid Equations

In the regime of interest the dynamics of collisionless dark matter are governed by the Vlasov
equation

df(x,p)

dτ
=
∂f

∂τ
+
∂f

∂xi

dxi
dτ

+
∂f

∂pi

dpi
dτ

= 0 (1.9)

where f(x,p) denotes the phase-space distribution function of dark matter particles, such
that e.g. the matter distribution is given by

ρ(x, τ) = ma−3

∫
d3p f(x,p) ≡ ρ̄(t) (1 + δm(x, τ)). (1.10)

and the gravitational potential Φ is given by Poisson’s equation ∇2
xΦ = 4πGa2ρ̄δm. Here

pi = mav is the canonical momentum and v = a dx/dt = dx/dτ is the physical peculiar
velocity, such that the particle equations of motion in phase space are given by

dx

dτ
=

p

ma
,

dp

dτ
= −ma∇xΦ. (1.11)

We can set the initial conditions at early times when the dynamics are still linear, in which
case the single-stream limit is valid

f(x,p) =
ρ(x)

ma−3
δD
(
p−mav(x)

)
(1.12)

6The notation and much of the standard development in this section follows the excellent review in
ref. [40].

7That dissertation has already been written by another Berkeley graduate.

http://background.uchicago.edu/~whu/thesis/thesispage.html
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where δD is the Dirac-delta function. In this regime particle velocities at a single point x are
coherent, though as we will see this limit is broken by the onset of nonlinearities.

The Vlasov and Poisson equations fully describe structure formation in a dark-matter
universe but are in general very hard to solve analytically. In order to make some traction it
is customary to work instead in terms of the velocity moments of the distribution function,
including the mean (comoving) number density n, the mean velocity v and the velocity
dispersion σij

n(x) =

∫
d3p f(x,p) ≡ ma−3ρ(x),

n(x)v(x) =

∫
d3p

p

ma
f(x,p),

n(x)
(
vivj + σij(x)

)
=

∫
d3p

pipj
m2a2

f(x,p), (1.13)

and so on. The moments of Equation 1.9 give the continuity and Euler equations of fluid
mechanics

∂n

∂τ
+∇x ·

(
nv
)
= 0

dvi
dτ

+Hvi + vj∇x,jvi = −∇x,iΦ− 1

n
∇x,j

(
nσij

)
. (1.14)

At this point it seems impossible to continue without knowledge of the evolution of the stress
tensor nσij, which would involve taking the third moment of the Vlasov equation, which
would involve the fourth moment... and so on. Alternatively, it is possible to “close” the
hierarchy by assuming an ansatz for nσij = c0δδij + c1(∂ivj + ∂jvi) + c2δij∂ivi + ... where the
coefficients cn correspond to pressure and viscosity [40]. We will return to the physical origin
of these coefficients shortly, but for now we note that in the single-stream limit (Eqn. 1.12)
the velocity dispersion vanishes and we have, swapping in δ for n,

∂δ

∂τ
+∇x ·

(
(1 + δ)v

)
= 0

dvi
dτ

+Hvi + vj∇x,jvi = −∇x,iΦ. (1.15)

These are the fundamental equations governing Eulerian perturbation theory (EPT), also
commonly known as “standard” perturbation theory (SPT).

Alternatively to the Eulerian picture presented above it is possible to solve the Vlasov
equation within the Lagrangian formalism of fluid mechanics, where the dynamics are
described in terms of the displacements of infinitesimal fluid elements. When the initial
conditions are single-stream (Eqn. 1.12) they can be characterized entirely by fluid elements
at initially uniform Lagrangian positions q with displacements Ψ such that their positions at
conformal time τ are given by

x(q, τ) = q+Ψ(q, τ). (1.16)
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In this case the equation of motion equivalent to Equations 1.11 are simply given by

d2Ψ

dτ 2
+HdΨ

dτ
= −∇xΦ. (1.17)

The overdensity sourcing the potential is given by number conservation to be [231]

1 + δ(x, τ) =

∫
d3q δD

(
x− q−Ψ(q, τ)

)
=

1

|det
[
δij +Ψi,j

]
|
. (1.18)

These are the governing equations of Lagrangian perturbation theory (LPT). It is important
to note that, unlike those for EPT, the equations above are valid beyond the single-stream
regime, save for the last equality in Equation 1.18 which would have to be summed over any
solutions of the delta function. Stream crossing in the Lagrangian picture simply corresponds
to instances where the map q → x is many-to-one, so that the dynamics at at a given point
x no longer corresponds to a single q and it is no longer possible to do perturbation theory
about a single point. Nonetheless, even beyond stream crossing the Vlasov equation and
Equation 1.17 are completely equivalent and analytic solutions for Ψ beyond shell crossing
show excellent agreement with numerical solutions to the Vlasov Equations [365, 297].

The equations of motion above admit a simple symmetry due to the diffeomorphism
invariance of general relativity called generalized Galilean invariance [198, 277, 91]. This
symmetry is especially simple in Lagrangian coordinates [179]: given a time-dependent but
spatially constant vector field n(τ), the transformation

Ψ(τ) → Ψ(τ) + n(τ), Φ → Φ−
(d2n
dτ 2

+Hdn

dτ

)
· x. (1.19)

This symmetry naturally includes the normal Galilean transformations of translations and
boosts. As we will see, a nice feature of LPT is that it will be easy to compute N-point
functions in a way that explicitly satisfies this symmetry. It is worth noting that if the vector
n satisfies the linearized equation of motion (see subsection below)

d2n

dτ 2
+Hdn

dτ
= 4πGa2ρ̄mn (1.20)

then the generalized Galilean transformation it generates is equivalent to the dynamical effect
of an evolving long-wavelength mode in the background [180]; this fact can be used to derive
consistency relations for LSS in inflationary universes with adiabatic initial conditions [91].

1.2.2 Linear Theory

Let us first consider the dynamics at linear order, that is to say at first order in the
perturbations from uniformity (δ,v,Φ,Ψ). Dropping the nonlinear quantities including the
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stress tensor in Equation 1.15 we obtain

∂δ

∂τ
+ θ = 0,

dvi
dτ

+Hvi = −∇x,iΦ, ∇2
xΦ =

3

2
H2Ωm(τ)δ

where we have defined the matter density fraction at τ by Ωm(τ) = ρm(τ)/ρcrit(τ). It is
convenient to work in terms of the divergence θ = ∇x · v and curl w = ∇x × v. It is
straightforward to show that the latter decays as a function of time, and more generally
from Equation 1.15 that irrotational initial conditions as in our case do not generate w when
σij = 0.

To isolate the dynamics of longtitudinal part we take the divergence of the Euler equation
and use the continuity equations to give

d2δ

dτ 2
+Hdδ

dτ
=

3

2
H2Ωm(τ)δ. (1.21)

This second-order differential equation admits a growing and a decaying mode δlin(τ) =
D(τ)δ+ +D−(τ)δ−, where in a flat ΛCDM cosmology the growing and decay modes are given
respectively by

D(τ) = H(a)

∫ a

0

da′

a′3H(a′)
, D−(τ) = H(a). (1.22)

It is conventional to normalize the growth factor such that it is equal to unity at the present.
In what follows we will drop the decaying mode, which is negligible at the times we will work
in. In this case the velocity divergence is given by

θlin(τ) = −f(a)H δlin(τ) (1.23)

where the linear growth rate is defined to be f(a) = d lnD/d ln a. Within matter domination
the growth factor and rate admit the simple forms D(a) = a and f(a) = 1.

We can also perform the same analysis in Lagrangian space. To leading order we have
∇q = ∇x, so Equation 1.18 implies that δ = −∇ ·Ψ, from which it is straightforward to see
that the divergence and curl of Ψ in q-space satisfies the same linear equation as δ and w.8

Discarding the curl and decaying mode we get Ψ = −∇−1δ, or in Fourier space

Ψ(k, τ) =
ik

k2
D(τ)δ0(k) (1.24)

where δ0 is the linear overdensity evaluated at D = 1. This first-order solution is known
as the Zeldovich approximation. It is exact in one dimension until shell crossing, as can be
seen in Figure 1.2. Unlike linear theory in EPT, which simply scales the linear density field

8Note, however, that displacements Ψ will generically develop vorticity in q space [230] even if the flow in
Eulerian x space remains irrotational.
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Figure 1.2: Results of an N-body simulation of the Vlasov equation in one dimension compared to
linear-theory predictions using Lagrangian (orange) and Eulerian (green) perturbation theory. The
top row shows the mapping from initial q to final x positions in the N-body simulation and LPT,
while the bottom row shows the phase space distribution. In the single-stream regime (left), the
Zeldovich approximation (1LPT) is exact, but once stream crossing occurs (right) the Zeldovich
particles simply stream past each other, unlike in the N-body simulation where they turn around
and gravitationally collapse.
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Zel'dovich density Nonlinear density Difference

Figure 1.3: Comparison of the Zeldovich approximation vs. the full solution of the Vlasov equations
by N-body simulations. The Zeldovich approximation makes qualitatively excellent predictions
of the structure of the cosmic web but, as expected, fails to capture the formation of halos and
nonlinear collapse. Figure based on data from the Quijote simulations [394] taken from ref. [205].

over time by a scale-independent factor D, the Zeldovich approximation predicts nontrivial
distortions Jij = dxi/dqj = δij +Ψi,j that qualitatively explain the filamentary structure of
LSS known as the “cosmic web” seen in more exact solutions to the Vlasov problem (Fig 1.3),
though it tends to generate puffier structures due to particles moving in a straight line even
after shell crossing instead of turning around and collapsing, as can be seen in Figure 1.2.

1.2.3 Beyond Linear Theory: Perturbation Theory Kernels

We are now in a position to formulate the perturbation theory of structure formation.
Within PT the formation of structure is computed order-by-order in the initial conditions,
e.g. δ(x, τ) = δ(1) + δ(2) + δ(3) + ... where the superscripts denote the perturbative order.
Separating the linear and nonlinear parts of Equation 1.15 we get in Fourier space

∂δ(k, τ)

∂τ
+ θ(k, τ) = −

∫
d3p

(2π)3
α(p,k− p) θ(p)δ(k− p)

∂θ(k, τ)

∂τ
+Hθ(k, τ) + 3

2
H2Ωm(τ)δ(k, τ) = −

∫
d3p

(2π)3
β(p,k− p) θ(p)θ(k− p)

where the kernels are defined as

α(k1,k2) =
k12 · k1

k21
, β(k1,k2) =

k212(k1 · k2)

2k21k
2
2

, k12 = k1 + k2. (1.25)

From the above we can see that the nth order solutions δ(n), θ(n) are simply governed by
non-homogeneous differential equations whose homogeneous counterpart is given by the linear
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equations of motion we already derived, with products of lower-order solutions acting as
sources. In this way solving the linear equations of motion gives you the ones at quadratic
order, which gives you the cubic ones, etc. Indeed, we can pull the same trick as we did in
the linear case and substitute θ for the time derivative of δ to get

∂2δ(n)(k, τ)

∂τ 2
+H∂δ(n)(k, τ)

∂τ
− 3

2
H2Ωm(τ)δ

(n)(k, τ) = F
[
δ(m<n), θ(m<n)

]

where F is a time-dependent source term due to lower-order solutions. This equation can be
straightforwardly solved by a retarded Green’s function given in terms of the linear solutions
found earlier [60, 230, 128] (see Appendix A.2 for an example calculation).

We can similarly derive the equations of motion for LPT. Again, we can take the (Eulerian)
divergence and curl of the displacement field to get

∇x ·
(∂2Ψ(q, τ)

∂τ 2
+H∂Ψ(q, τ)

∂τ

)
= −3

2
H2Ωm(τ)δ(x)

∇x ×
(∂2Ψ(q, τ)

∂τ 2
+H∂Ψ(q, τ)

∂τ

)
= 0.

To make further progress we need to write these equations solely in terms of the Lagrangian
coordinate q using ∇xi

= (∂xi/∂qj)
−1∇qj

= (δij +Ψi,j)
−1∇qj

. This gives equations of the
form [230]

∂2Ψi,i

∂τ 2
+H∂Ψi,i

∂τ
− 3

2
H2Ωm(τ)Ψi,i = F

[
∇Ψ⊗∇Ψ,∇Ψ⊗∇Ψ⊗∇Ψ

]

∂2(∇×Ψ)

∂τ 2
+H∂(∇×Ψ)

∂τ
=
(
∇Ψi

)
×∇

(∂2Ψi

∂τ 2
+H∂Ψi

∂τ

)
(1.26)

where all partial derivatives are with respect to q. From this we can immediately draw
two lessons: (a) the equation for the divergence Ψi,i can be solved for order-by-order using
the same Green’s function as in the Eulerian case and (b) the vorticity can be dynamically
generated at higher order even for irrotational initial conditions, unlike in Euclidean space,
though no vorticity is generated at second order.9 The second order solution is derived as an
example in Appendix A.2.

In the above we have laid out the construction of perturbative solutions of structure
formation in fairly general terms. However, for the case of a matter dominated, i.e. Einstein-
de Sitter (EdS) universe the equations of motion admit a particularly simple solution. In
particular, in such a universe we have D ∝ a and, writing the equations of motion of LPT
or EPT in terms of ln(D) we find that the coefficients of the differential equation become
time-independent and admit solutions which are series expansions in the growth factor, i.e.

9Note that this does not mean that the fluid flow itself is not irrotational once we convert to x coordinates,
and in fact the dominant growing mode we will discuss next is given by a potential flow as shown in ref. [230].
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for EPT

δ(n)(k, τ) =

∫
d3p1

(2π)2
...
d3p1

(2π)2
Fn(p1, ...,pn) δlin(p1)...δlin(pn) δD(k−

∑

i

pi)

θ(n)(k, τ) = −fH
∫

d3p1

(2π)2
...
d3p1

(2π)2
Gn(p1, ...,pn) δlin(p1)...δlin(pn) δD(k−

∑

i

pi) (1.27)

and similarly for LPT

Ψ
(n)
i =

i

n!

∫
d3p1

(2π)2
...
d3p1

(2π)2
L
(n)
i (p1, ...,pn) δlin(p1)...δlin(pn) δD(k−

∑

i

pi), (1.28)

as long as the initial conditions are decaying-mode free. Here we have used the abbreviation for
the linear overdensity at time τ : δlin(p) = D(τ)δ0(p) where δ0 is the initial linear overdensity
normalized so that the present-day growth factor is equal to unity. Remarkably, within an
EdS universe perturbative solutions to the growth factor can be found using the linearly
evolved overdensity at the same time δlin(p) alone. The EdS approximation turns out to be
an excellent one even in our (at least approximately) ΛCDM universe—our universe has spent
a large portion of its lifetime in matter domination, so that deviations from EdS in the late
universe only produce small deviations from the EdS ansatz, well within the precision required
by current or future cosmlogical surveys [128, 115]. In fact, the EdS approximation can be
thought of as an expansion in Ωm(τ)/f

2(τ)− 1, which is well-justified since f ≈ Ω0.55
m in our

universe [40, 230, 114]. We list the EPT and LPT kernels up to third order in Appendix A.1
and show how to relate the EdS and Green’s functions approaches in Appendix A.2.

1.2.4 Beyond Linear Theory: N-Body Simulations

The focus of this section has been to develop the perturbative solution of structure formation
within the Eulerian and Lagrangian frameworks. However, it is important to emphasize that
these are approximate solutions that are only valid in the single-stream limit where σij = 0
and the mapping x(q) is one-to-one. In §1.3 we will discuss ways in which this incompleteness
can be analytically addressed, but before we move on it is worth briefly discussing how how
the Vlasov system can be solved to arbitrary precision numerically using N-body simulations.

The Vlasov equation (Eqn. 1.9) is essentially an expression of number conservation in
phase space. The strategy of N-body simulations is thus to sample the phase space (x,p)
with N particles or phase-space elements according to the initial conditions and evolve them
under the Hamiltonian equations of motion (Eqn. 1.11). In fact, since the initial conditions
are single-stream it is sufficient to initialize the system at a grid of initial positions q with
small initial displacements Ψ(q) and velocities Ψ̇(q), i.e. the initial distribution occupies a
3-dimensional surface in phase-space (see ref. [295] for further discussion). Since the initial
conditions are set up on a grid they can possess anomalous structure at the resolution
scale—in general it is thus desirable to set up initial conditions when sufficient structure
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has formed to make this anomalous contribution subdominant, though sufficiently early that
the initial conditions, typically set up using LPT, are still valid. On this front there has
been much fruitful cross-pollination between the PT and numerical communities, not just in
setting up higher-order PT initial conditions [92, 157] but also extending them to multiple
fluids [298] (see also Chapter 5) and neutrinos [124].

N-body simulations thus solve the same dynamical system as the equations of LPT; the
difference between the two approaches lies in the fact that perturbative approaches typically
assume a 1-to-1 mapping between initial and final positions. As discussed earlier, it is not
impossible to construct solutions to LPT beyond stream crossing by summing over multiples
solutions to x = x(q), but as we go deeper into the multi-streaming regime this becomes
increasingly cumbersome. On the other hand, within N-body simulations the solution is
quite straightforward: at each particle position x = q+Ψ(q) one can simply compute the
gravitational force by summing over the inverse square law contributions from each particle in
the simulation. This operation naively scales as N2 and is quite expensive for large numbers
of particles, but various numerical techniques, such as Tree or Particle-Mesh codes, have
been developed which significantly speed up the force evaluations. Since the purpose of
this dissertation is mainly to explore analytical models of structure formation, with N-body
simulations used mostly for theory validation, we will not try to describe the details of N-body
simulations in any further detail. For a recent comparison of various N-body techniques and
demonstration of the impressive accuracy they can achieve, the reader is directed to ref. [152].

1.3 From Fields to Statistics

The standard model of cosmology as laid out in § 1.1 describes the initial conditions of
the early universe statistically as a Gaussian random field seeded by inflationary quantum
fluctuations. For this reason, by necessity most cosmological analyses study not the particular
configuration of LSS we observe but rather its statistics.

In this dissertation we are primarily interested in analyzing structure formation on large,
quasilinear scales. In this regime deviations from Gaussianity are relatively small and most
of the cosmological signal is encoded in the 2-point, or correlation, function

ξ(r) = ⟨δ(r1)δ(r2)⟩r=r1−r2 . (1.29)

The fact that ξ is only a function of the separation r is a consequence of translation invariance.
In the absence of observational effects cosmological correlations are also rotationally invariant,
so that ξ(r) = ξ(r); in Chapter 2 we will discuss the 2-pt function observed in spectroscopic
surveys wherein line-of-sight velocities break isotropy along the line-of-sight. The 2-pt function
in Fourier space is called the power spectrum, defined as

⟨δ(k1)δ(k2)⟩ = P (k1) (2π)
3δD(k1 + k2). (1.30)

Here translational invariance is enforced by the delta function and rotational invariance
implies P (k) = P (k). The power spectrum and correlation function are Fourier transforms of
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each other, ξ(r) =
∫
d3x P (k) eik·r. Beyond the 2-pt functions many higher-order statistics

have been investigated as potential sources of additional information. A chief example is the
3-point function, or bispectrum, defined as

⟨δ(k1)δ(k2)δ(k3)⟩ = B(k1,k2) (2π)
3δD(k1 + k2 + k3). (1.31)

The galaxy bispectrum was recently shown to yield modest improvements when combined
with the power spectrum in ref. [282].

In the rest of this section our goal will be to sketch out the basic technology required
to compute the matter two-point function within perturbation theory. This will lead the
way to more detailed calculations for galaxies in the following chapters, in particular the
computation of real-space density and velocity spectra in Chapter 2.

1.3.1 The 1-loop Matter Power Spectrum

Let us first consider the linear-theory prediction for the matter power spectrum as a warm-up.
Within linear theory each Fourier mode δ(k) evolves independently and can be connected
to the primordial curvature perturbation due to inflation ζ by a multiplicative factor called
the transfer function Tm(k, τ). This transfer function characterizes the growth of structure
both during and before the period of matter domination we have focused on so far; for our
purposes we can think of the transfer function as setting the initial conditions for structure
formation after radiation domination and decoupling at some time τi when linear growth
becomes scale-independent such that

δ(1)(k, τ) = Tm(k, τ)ζ(k) =
D(τ)

D(τi)
δ(1)m (k, τi) = D(τ)δ

(1)
m,0(k) (1.32)

where δ
(1)
m,0 is the present-day linear matter overdensity. The above equalities assume that any

decaying modes can be neglected. Of course, structure formation is not truly scale independent
even at the present epoch due to the presence of free-streaming massive neutrinos— in order
to match our linear theory prediction to solutions of the linearized Boltzmann equation we
use the full transfer function obtained from Boltzmann codes such as CAMB [220] or CLASS
[48] to compute δlin(p) in the perturbative expansions in Equations 1.27 and 1.28. In any
case, since linear evolution amounts to a simple, if scale-dependent, rescaling of a Gaussian
field (Eqn.1.6), the linear-theory prediction for the matter power spectrum is simply

⟨δ(1)(k)δ(1)(k′)⟩ = Tm(k, τ)
2Pζ(k)(2π)

3δD(k+ k′) ≡ Plin(k, τ)(2π)
3δD(k+ k′). (1.33)

In what follows we will drop the conformal time argument since we will always be operating
at equal times.

In order to make further progress we need to make use of Wick’s theorem for Gaussian
random fields, which states that the expectation value of the product of n Gaussian fields
with zero mean fi is equal to the sum of the products of all possible pairs, i.e.

⟨fi1fi2 ...fin⟩ =
∑

pα∈P

∏

(ia,ib)∈pα

Ciaib , Cij = ⟨fifj⟩, (1.34)
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Figure 1.4: Feynman diagram representations of perturbation theory solutions. (a) The nth order
solution to the matter overdensity represented as a vertex where the incoming mode k is sourced by
n (in this case five) outgoing linear modes qi denoted with open circles. (b) The (22) contribution
to the 1-loop power spectrum. Each linear mode can be contracted with another to yield a factor of
the linear power spectrum, here denoted P0. Figure adapted from ref. [59].

where P is the set of all partitions of i1, ..., in into pairs and pα is a particular partition. The
expectation value is zero for odd numbers of fields.10

From the above statement of Wick’s theorem we can see that the next-to-leading contri-
bution to the power spectrum after linear theory has to come from two pairs of linear fields
δlin(p). There are exactly two such contributions

⟨δ(k)δ(k′)⟩ ∋ 2⟨δ(1)δ(3)⟩, ⟨δ(2)δ(2)⟩. (1.36)

These can be diagrammatically represented as Feynman diagrams, as shown in Figure 1.4.
The important feature is that fields linked by Wick contraction have their momenta forced to
sum to zero by the delta function in Equation 1.33.

The matter power spectrum up to 1-loop order in EPT, then, is given by P (k) =
Plin(k) + 2P (13)(k) + P (22)(k) where we have defined

P (13)(k) = 3P (k)

∫
d3p

(2π)3
F3(p,−p,k)Plin(p)

P (22)(k) = 2

∫
d3p

(2π)3
F2(p,k− p)2Plin(p)Plin(k− p) (1.37)

10Wick’s theorem is straightforward to prove by considering the generating function for an N-dimensional
Gaussian variable

F (J) =
1

N

∫
dN f e−

1
2 fifjC

−1
ij +fiJi = eJiJjCij/2. (1.35)

The expectation value of n fields can be obtained by taking partial derivatives ∂/∂Ji. Taylor expanding
F (J) =

∑∞
m=0(JiJjCij)

m/2mm! we see that the combinatorial factors exactly account for the number of
degeneracies with unordered sets of m unordered pairs. As a byproduct we also get the cumulant theorem for
Gaussian fields, i.e. ⟨efi⟩ = eCii/2.
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where the numbers in brackets indicate the orders of solutions that each contribution is
combined from. The mulitplicative factors of 2 and 3 come from the numbers of distinct
Wick contractions. We will return to the physical interpretation of these expressions in the
following two subsections.

The equivalent expression in Lagrangian perturbation theory only requires a little more
work. Fourier transforming Equation 1.18 we have that

δ(k) =

∫
d3q eik·q

(
eik·Ψ(q) − 1

)
, (1.38)

implying that the power spectrum is given by

P (k) =

∫
d3q eik·q

(
⟨eik·∆⟩q=q1−q2

− 1
)
, ∆ = Ψ(q1)−Ψ(q2). (1.39)

A nice feature of this equation is that, phrased in this way, the power spectrum is manifestly
invariant under generalized Galilean transformations (Eqn. 1.19). This feature is much more
subtle in EPT, as we will see.

Let us begin once again with the prediction of linear theory, i.e. the Zeldovich approxima-
tion (ZA). Within ZA the pairwise displacement ∆ is Gaussian, and we can use the cumulant
theorem (see footnote 10) to evaluate the power spectrum exactly

PZel(k) =

∫
d3q eik·q

(
e−

1
2
kikjA

lin
ij (q) − 1

)
, Alin

ij (q) = ⟨∆(1)
i ∆

(1)
j ⟩. (1.40)

While this expression reduces to Plin(k) for sufficiently small k, as can be straightforwardly
shown by expanding the exponential to first order, unlike in the case of EPT at first order it
is not linear in initial conditions and carries significant information about nonlinear processes
in structure formation, a point we will return to soon.

Going beyond linear theory, we have that

⟨eik·∆⟩ = exp
[
− 1

2
kikjAij(q)−

i

6
kikjkkWijk(q) + ...

]
(1.41)

where we have generally defined [58] A = ⟨∆∆⟩ and W = ⟨∆∆∆⟩. At one-loop order these
moments of the pairwise displacement ∆ receive contributions

Aij(q) = Alin
ij (q) + A1-loop

ij (q), A1-loop
ij (q) = 2A

(13)
ij (q) + A

(22)
ij (q)

Wijk(q) = W
(112)
ijk +W

(121)
ijk +W

(211)
ijk . (1.42)

Explicit expressions for these quantities are given in Appendix A.3. From the above we have
that the power spectrum is given up to this order by

P (k) =

∫
d3q eik·q−

1
2
kikjA

lin
ij (q)

(
1− 1

2
kikjA

1-loop
ij (q)− i

6
kikjkkWijk(q)

)
. (1.43)
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In the above we have kept the linear displacements Alin
ij exponentiated while Taylor-expanding

the higher order terms. The former choice keeps the effects of these displacements to all orders
in perturbation theory and is known as “convolutional” LPT, or CLPT [58]; this prescription
is not obvious and we will discuss various possible choices in some detail in Chapters 2 and 3.
For example, expanding the exponent to second order and Fourier transforming recovers the
1-loop matter power spectrum in EPT derived above [231, 397].

1.3.2 Interlude: Construction of Effective Theories

Equations 1.37 and 1.43 are about as far as we can go within the traditional assumptions of
perturbation theory, but they are not complete. This is because the fluid approximations we
have worked with thus far (single-stream, vanishing velocity dispersion) is not a consistent
description of structure formation at all scales even for the CDM Vlasov system we have
been developing. The 1-loop integrals in these equations run to arbitarily small scales, i.e.
high k, where these assumptions break down; alternatively, one may assume a regularization
scheme to control the small-scale dependence of these integrals, i.e. by instituting a hard
cutoff k < Λ, but it is unlikely that this scheme corresponds to actual small-scale physics,
so any dependence on the regularization scheme is undesirable. Practically, while it may be
possible to model structure formation in a purely CDM universe on all scales using N-body
simulations11, in practice on small scales we have to contend with additional effects on small
scales due to baryons, galaxy formation, or more exotic scenarios such as interacting dark
matter.

The effective-theory solution to these issues is to split the system into a smoothed
“long-wavelength” and a small-scale “short-wavelength” part, i.e. for the density

δ(x) =

∫
d3x WΛ(x− x′) δ(x′) + δs(x) ≡ δl(x) + δs(x) (1.44)

where WΛ is a filter smoothing out scales above Λ. Performing this split renders the remaining
smoothed modes δl to be sufficiently close to linearity that they can be perturbatively modeled.
In the below we will drop the label l and refer to only the long contributions to various fields
unless otherwise specified. The Gaussianity of initial conditions implies that the long and
short modes are uncorrelated absent dynamics coupling them.

Of course, the effect of the short modes cannot simply be ignored. Within the EPT
language it can be shown [28, 60] that their presence induces a nonzero stress tensor τij = nσij
in the Euler equation. At each spacetime point the short modes will evolve even in the
absence of long modes, i.e. τij = τ0,ij(x, τ), but in general we also need to account for the

11It is important to note, however, that the finite resolution of N-body simulations corresponds to a
particular regularization scheme of the Vlasov system, with numerical results which may be strongly sensitive
to given some classes of initial conditions.
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presence of long-wavelength backgrounds, i.e. schematically12

τij(x, τ) = τ0,ij(x, τ) +

∫
dτ ′ K0(τ, τ

′) ∂i∂jϕ
(
x(τ ′)

)
+K1(τ, τ

′) δ
(
x(τ ′)

)
δij

+K2(τ, τ
′) ∂kvk

(
x(τ ′)

)
δij +K3(τ, τ

′)
(
∂ivj + ∂jvi

)(
x(τ ′)

)
+ ... (1.45)

where the Kn are (unknown) kernels characterizing the response of the stress tensor to
long-wavelength perturbations in the tidal tensor ∂2ϕ, density δ and velocity gradient ∂v
(potentials and their gradients ϕ, ∂ϕ and velocities v cannot appear due to the symmetries
of general relativity). These kernels are in principle actually dependent on the small-scale
structure at x and therefore random variables themselves; however, since our interest will be
in correlations at long distances where the short modes will be uncorrelated we can write
⟨Kn(x)Km(0)⟩ = ⟨Kn⟩⟨Km⟩ and, since the expectation values at different points must be the
same due to translation invariance, we can regard them as regular numbers.

The above expression is the equivalent of closing the Boltzmann hierarchy via pressure and
viscosity discussed below Equation 1.14. The difference is that the long-wavelenght response
here is nonlocal in time—since all structures evolve on times ∼ H−1—but local in space,
since v/H ≪ c/H. This integral is carried out along the trajectory x(τ) of a fluid element
since the short modes can only depend on their local environment at each time. The purely
short contribution τ0 is uncorrelated with long modes by construction. Finally, if working
to only linear order in the long modes we can use that all of the fields in Equation 1.45
are related to the linear overdensity such that the stress-tensor gradient can be written as
∂iτij = A(τ) ∂iδ.

13 Integrating the equations of motions gives a counterterm contribution to
the density

δc.t.(k, τ) =
1

2
αk2δ(1)(k, τ). (1.46)

where α is again a free-parameter depending on the smoothing scheme (Λ) and not determined
by the theory. It can be shown that additional contributions due to e.g. baryonic physics
also take this form to lowest order [217]. Similarly the purely short-mode, i.e. stochastic,
contribution from τ0 contributions a term to the density ϵ ∼ ∂2τ0.

A similar strategy can be pursued within LPT. Here it is helpful to think of the effective
theory as one where the structureless, infinitesimal fluid elements of LPT are replaced by
extended objects with sufficient size to smooth out scales where stream crossing occurs [290].
Both the dynamics and gravitational fields of these objects then depend not only on their
centers of mass but the multipole moments of their density distributions.14 As with EPT we

12For brevity of presentation we will write ∇x = ∂ in this section, leaving ∇ = ∂q.
13Note that we can essentially neglect the time dependence of ∂2ϕ, δ, ∂v since, while they do grow like

D(τ), since Kn cannot be known a priori neither can An =
∫
dτ ′Kn(τ, τ

′)D(τ ′), i.e. we are left with simply
defining new free parameters αn.

14This is the same treatment as multipoles in classical electromagnetism, essentially a long-distance
effective theory where objects of size R interacting on large distances r ≫ R can be characterized purely in
terms of the multipoles without requiring further knowledge of their charge distributions.
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again need to write out the possible contributions of short modes and their responses to long
modes; at 1-loop order we need to enumerate up to the quadrupole, i.e. the second moment
of the displacements [399, 290]

Ψc.t.
i (q) = Si +

1

2
α0∇iδ

(1)(q)
(
Ψi(q)Ψj(q)

)c.t.
=

1

3
α0δij + α2δij∇ ·Ψ(1) + α3

(
∇iΨ

(1)
j +∇jΨ

(1)
i

)
. (1.47)

where S represents small-scale forces not correlated with large scales like τ0 in EPT. The
second equation contains a novel feature of the Lagrangian EFT: the presence of composite
operators composed of products of displacements evaluated at a single point which require
their own counterterms. This is because the density itself is a (infinite-order) composite
operator, such that e.g. the presence of terms like Ψ(q1)Ψ(q1)Ψ(q2) in Wijk (Eqn 1.43)
requires these additions. We will see more examples of composite operators when computing
the moments of pairwise velocities in Chapter 2. It is straightforward to show, however, that
as in the case of EPT when these terms all contribute identically to each other in the 1-loop
power spectrum, and indeed to the EPT counterterm derived above, and for this reason we
will not put much work into distinguishing them in the rest of the text.

1.3.3 Interpretation of 1-loop Results and Expansion Parameters

The effective-theory considerations in the previous subsection complete the development of
the perturbative formulation of structure formation as a cosmological fluid. Let us consider
what the contributions to matter 2-point clustering at k are from modes at scales p smaller,
larger and about equal to k within this formalism. Since the perturbative structure of EPT
and LPT are extremely similar, except for the modes larger than k as we will see, we will
stick with the former below for the sake of brevity.

Let us first consider modes for which p ≫ k in Equation 1.37. For this we need to use
the short-wavelength, or ultraviolet (UV), limit of the PT kernels Fn: in the limit that
the sum (i.e. k) of the arguments of Fn remains fixed, but two of the momenta p become
large, Fn ∝ k2/p2 [148, 40]. This suppression of the dependence on small-scale densities
reflects that gravity on large scales doesn’t depend on small-scale structure [114] except for
derivative-suppressed contributions from multipoles as discussed in the construction of the
Lagrangian EFT. From this we get that the leading UV contributions to the power spectrum
go as

P
(13)
UV ∼ k2P (k)

[∫

Λ>p≫k

d3p

(2π)3
Plin(p)

p2

]
∼ k2Σ2

>P (k)

P
(22)
UV ∼ k4

[∫

Λ>p≫k

d3p

(2π)3
Plin(p)

2

p4

]
(1.48)
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where Σ> is the Zeldovich displacement due to small-scale modes. While these contributions
are suppressed by inverse powers of p they are still unphysically dependent on the cutoff Λ.
Indeed, for power spectra that scale with wavenumber as kn, the (13) and (22) components
will diverge if n > −1 and n > 1

2
. It is worth noting two consequences of this discussion: (1)

the UV sensitivity of P (22) is subdominant and (2) within ΛCDM we have Plin ∝ k−1.5 on
scales of interest, so no divergences occur, but Λ-dependent convergence is not an indicator
of correctness.

Thankfully, we have not exhausted the list of contributions at 1-loop order. In particular,
we still need to account for the stochastic contributions due to τ0,ij and counterterms, which
we can think of as second and third-order contributions to the matter density that lead to
1-loop contributions

PEFT(k) = αk2Plin(k) + ⟨ϵϵ⟩′. (1.49)

Since we have ϵ ∼ ∂2τ we have to lowest order Pϵ ∝ k4. Equation 1.49 is exactly the form of
the UV contributions in Equation 1.48 and, in order for the final result to be physical, the
Λ-dependence between the two must cancel. Focusing on the (13) contribution for example
we have that the sum is

k2(Σ2
> + α)Plin(k) ≡

( k

knl

)2
Plin(k). (1.50)

The parameter knl controls the size of nonlocality caused by nonlinearities , such that the
system ceases to be perturbative on scales k ∼ knl. Note that what matters is the sum
contribution, which can only be measured from data or fully nonlinear simulations, and not
the linear small-scale displacement Σ2

>, though their size may be similar in ΛCDM universes.
Let us turn to modes p ≈ k. In this regime the Fn are roughly of order unity with very

mild scale dependence. We then have very approximately [114, 268]

k3P p≈k
1-loop(k)

2π2
∼

(
k3Plin(k)

2π2

)2

(1.51)

where we have written our results in terms of the dimensionless power spectrum ∆(k) =
k3P (k)/2π2 characterizing the typical amplitude of density fluctuations at scale k. In order
for the dynamics to be perturbative we must have ∆ < 1; this is irrespective of any additional
EFT contributions since the expansion in ∆ is based on the smallness of density fluctuations
in the smoothed density field in the regime of interest near k.

1.3.4 IR Resummation and the BAO Peak

Finally, let us comment on the role of long, i.e. infrared (IR), modes with p ≪ k. If
an argument p of Fn goes to zero, an infrared divergence ∝ pi/p

2 appears. This leads to
contributions to the (13) and (22) terms proportional to long displacements

P
(13)
IR , P

(22)
IR ∼ k2Σ2

<P (k), Σ2
< =

∫

p<k

d3p

(2π)3
Plin(p)

p2
. (1.52)
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Figure 1.5: (Left) The mean square pairwise displacement at z = 0.61 for points separated by q.
The damping of the BAO is determined by the parameter k2Σ2(q = rBAO) (black dashed), which
is of order unity on scales k ≲ 0.2hMpc−1 where the BAO has support. (Right) Predictions for
the galaxy correlation function monopole using LPT, 1-loop unresummed EPT and linear theory.
Within LPT the BAO peak is properly damped compared to linear theory, but in unresummed EPT
spurious features appear since k2Σ2

BAO is no longer small. Fits to the power spectrum based on the
analysis in Chapter 8.

Remarkably, however, an exact calculation shows that these contributions cancel exactly [40],

i.e. 2P
(13)
IR + P

(22)
IR = 0. In fact, the cancellation of contributions due to Σ< occurs to all

orders and is a consequence of generalized Galilean invariance [326]—displacements that are
coherent on scales larger than k will simply translate pairs of points contributing to P (k)
by the same amount, leading to no change in the 2-point function. Indeed, within LPT all
contributions to the power spectrum are written in terms of the pairwise displacement ∆,
so the parameter Σ< explicitly cancels by construction. In the appendices to Chapter 2 we
derive expressions for EPT power spectrum that are IR-safe, i.e. do not rely on numerical
cancellations of contributions from long modes, using this observation.

The above considerations have a loophole, however. If the power spectrum and correlation
function are smooth, Fourier modes k roughly translate to configuration space separation
r ∼ 2π/k; if, on the other hand, there is a sharp feature in the correlation function, its Fourier
transform will not be well-localized in the power spectrum due to the uncertainty principle.
A particularly relevant example is the BAO feature, which manifests either as a series of
oscillatory peaks and troughs in Fourier space or a well-isolated peak in configuration space
(Fig 1.1). The presence of a feature like the BAO peak introduces a new, potentially large
parameter Σ2

BAO whose effect needs to be resummed [335, 402, 50].
This effect can be most easily seen in the Lagrangian picture.15 A sharp feature in the

15The following discussion follows that in Ref. [402]
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correlation function is equivalent to oscillatory wiggles in the power spectrum, which we can
therefore smooth into a wiggly and a smooth part

Plin(k) = Pnw(k) + Pw(k). (1.53)

Within the Zeldovich approximation we can compute the 2-point function of pairwise dis-
placements due to each part

Alin
ij (q) = Anwij (q) + Awij(q), Anw,wij (q) = 2

∫
d3p

(2π)3
eik·q

(
1− kikj

k2

)
Pw,nw(k) (1.54)

where the nw piece will contain most of the power but the small w piece will contain the
BAO feature at q = rBAO. Then, plugging in Equation 1.40 we get

∫
d3q eik·q−

1
2
kikjA

nw
ij (q)

(
1− 1

2
kikjA

w
ij(q) + ...

)
≈ P nw

Zel (k) + e−
1
2
k2Σ2

BAOPw(k), (1.55)

where we have defined the angular-averaged pairwise displacement amplitude

Σ2
BAO = ⟨Anwij (q)⟩q=rBAO

=
1

3

∫
dk

2π2

(
1− j0(krBAO)

)
P nw(k). (1.56)

Equation 1.55 relies on the saddle-point approximation—since Awij has a sharp feature at
rBAO it will pick out the value of the exponentiated Anwij at that scale.

The above is the well-known result that the BAO peak in large-scale structure is damped
by long-wavelength (IR) displacements. Since the spherical Bessel function j0(x) approaches
unity for small x, we see that Σ2

BAO picks up Zeldovich displacements on scales larger than
rBAO. This makes sense, since displacements larger than this will move the BAO feature
coherently without distorting it, but, more importantly, the BAO wiggles at k can be
influenced by displacements from modes p < k as long as p ≳ π/rBAO. Within EPT it is
possible to show that when the oscillatory BAO signal exists in addition to an otherwise
smooth linear power spectrum, the cancellation in Equation 1.52 only occurs for wavelengths
larger than the BAO scale.

The above significant because, while Equation 1.55 is exact in the limit that the BAO
peak is infinitely narrow, 1-loop perturbation theory only predicts the contribution Pw

1-loop =

−1
2
k2Σ2

BAOP (k), which is unsatisfactory given that k2Σ2
BAO can be greater than unity on

scales where the BAO wiggles have support in Fourier space, leading to spurious features in
the correlation function (Fig. 1.5). In order to amend this problem in EPT it is necessary to
resum damping effects due to long displacements exponentially, i.e.

Presummed = P nw
lin + P 1-loop [P nw

lin ] + e−
1
2
k2Σ2

BAO

((
1 +

1

2
k2Σ2

BAO

)
Pw +∆P 1-loop

w

)
(1.57)

where we have defined ∆P 1-loop
w = P 1-loop [Plin] − P 1-loop [P nw

lin ] to be the difference in the
1-loop power spectrum evaluated with and without the wiggly component.16 On the other

16The extra factor of 1
2k

2Σ2
BAO multiplying Pw nulls the contribution from Pw

1-loop.
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hand, as is clear from our derivation, this nonlinear damping effect is naturally captured
by the exponentiated Zeldovich displacements within LPT. We discuss IR resummation in
perturbation greater detail and generality in Chapter 6.

1.4 The Bias Expansion

In this introduction our focus has been on developing the effective theory of matter clustering
in EPT and LPT to demonstrate the general philosophy and techniques of perturbation
theory. In order to progress to modeling data from upcoming galaxy surveys however, we
will need to take one additional step and address the clustering of galaxies. Within the
perturbation theory language galaxies are treated as biased tracers, objects which do not
exactly trace the underlying matter field but whose large-scale distribution depends on
structure formation in nontrivial ways. While we will leave the actual calculation of galaxy
density and velocity statistics for Chapter 2, in this final section we will set up the tools and
lay out the perturbation theory of biased tracers. But first, let us take a qualitative look at
the kinds of physical effects we wish to capture by looking at the halo model.

1.4.1 Dark Matter Halos and Gravitational Collapse

One of the most striking predictions of N-body simulations of structure formation is the
existence of dark matter halos: dense, discrete objects formed by gravitational collapse.
Halos are highly nonlinear, completely decoupled from the background expansion and deep
into the multi-streaming regime, i.e. well beyond the reach of perturbation theory. Even
smaller are galaxies, many of which can inhabit a single halo in the modern understanding of
galaxy formation. There are now a plethora of ways to make this galaxy-halo connection
and, within these formalisms, the clustering of dark matter halos from N-body simulations
can be directly translated into predictions of galaxy clustering. A comprehensive summary of
the state-of-the-art can be found in ref. [408]. While there is no fundamental guarantee that
the empirical relations of galaxy properties (e.g. masses, luminosities, colors) are good to
the sub-percent levels that will be required by upcoming experiments17, these models are
undoubtedly each possible galaxy-halo connections. Our goal in the following subsections is
to analytically study the simplest halo models to develop intuition for what a perturbative
model of galaxy clustering requires.

17I respectfully note that this is not a universally held opinion, and many analyses of cosmological
data using these techniques exist. The reader is referred to e.g. refs. [255, 210, 434] for examples of the
state-of-the-art18at the time this dissertation was written.

18Though, in some sense, the ever-improving galaxy-halo connection models illustrate a fundamental
problem: unlike in PT models, where free parameters are dictated by fundamental symmetries and measured
deviations from linearity provide a self-contained measure for their validity, it is far less clear what set of
parameters and prescriptions “complete” such a model and how to establish the regime of validity for such
models.
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The physics of halos concerns scales close to the Lagrangian halo radius Rh, the size of a
sphere in comoving coordinates whose volume encloses enough matter to form a halo of mass
M , i.e.

Rh =

(
3M

4πΩmρcrit

)1/3

= 1.42×

(
M

1012h−1M⊙

)1/3(
Ωm

0.3

)−1/3

h−1Mpc (1.58)

where M⊙ denotes a solar mass, with 1012M⊙ being a ballpark reference for the halos and
galaxies we will consider in this dissertation. The gravitational collapse of halos draws in
matter from distance scales ∼ Rh, which therefore controls the size of nonlocalities having to
do with halo clustering.

A particularly simple model of halo formation is the spherical tophat model (see e.g. [89]).
In this model, an initially slightly overdense sphere of mass M in an otherwise homogeneous
FLRW universe slowly pulls away from the background expansion before eventually turning
around and collapsing into a halo in virial equilibrium. Within an EdS universe this system
can be straightforwardly solved to show that gravitational collapse completes by the time that
the linear overdensity δ

(1)
Rh
(τ) > δcrit = 1.686 and that the halo is virialized when it reaches

roughly 200 times the background density. These results are rather insensitive to deviations
from EdS and are the basis to e.g. the common definitions of the halo mass and radius (M200,
R200) to be where this condition is satisfied [412]. The implicit relation between the the halo
mass and radius in this definition also allows us to estimate typical virial velocities within
halos v ∼

√
GM200/R200, corresponding to velocities of about 150 km/s for a present-day

1012h−1M⊙ halo, with weak cosmology and redshift dependence. While obviously an extreme
simplification, the spherical tophat model provides useful intuition for the physical scales
associated with halos and galaxies due to nonlinear gravitational collapse.

In fact we can take this simple toy model even further into the realm of large-scale
structure. In studies of LSS we are primarily interested not in the precise dynamics of halos
but rather their statistical properties. The simplest such statistic is the mass function dn/dM
describing the mean number density of halos per mass. The mass function depends on physics
in the nonlinear regime and must be measured from simulations, with well-known fitting
functions on the market (see e.g. ref. [375]) though analytically motivated versions [292, 341]
exist. In the simplest version, known as the Press-Schechter formalism [292], one uses the
spherical-collapse ansatz that halos are formed when δ(1) = δcrit to associate regions halos
with mass greater than M with regions where the overdensity smoothed by a tophat filter of
radius Rh is greater than this threshold. Since the linear-theory overdensity is Gaussian the
probability that this threshold is crossed is simply given by19

PPS(M, z) = 2× 1√
2πσRh

(z)

∫ ∞

δcrit

exp
(
− δ2

2σ2
Rh
(z)

)
, σ2

Rh
(z) =

∫
d3p

(2π)3
Plin(k, z)W̃

2
Rh
(k).

(1.59)
19The factor of two was introduced by Press and Schechter to ensure that all dark matter is “collapsed”

when small enough scales are considered. It was eventually justified by ref. [52] within the excursion-set
formalism.
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Figure 1.6: (Left) The peak background split: for a given density peak threshold δcr required to
form a halo, adding a background long-wavelength background mode (pink) is equivalent to locally
decreasing the threshold by δl(q), making it easier to form a halo and thereby leading to halo bias.
Figure taken from ref. [109] (Right) In general halo and galaxy formation is sensitive not just to the
initial density field but to all symmetry-allowed operators O sampled in a neighborhood of order
the halo radius Rh along its trajectory. However, this time evoltuion can be perturbatively factored
and expressed in terms of bias operators evaluated either at initial Lagrangian positions q or at the
evolved Eulerian position x.

where we have defined σ2
Rh

to be the variance of the density field smoothed by a spherical-top
hat filter with radius Rh. The mass function is related to this probability by dn/dM =
(ρm,0/M)|dP/dM |. While simple, the Press-Schechter formalism gives good qualitative
predictions for mass function. The halo mass function thus probes the growth of structure
on scales associated with the halo radius—this is the basis, for example, of cosmological
constraints based on the observed abundances of galaxy clusters [10], which are thought
to reside in extremely massive halos, though these abundances are subject to numerous
theoretical and observational systematics that we will not further address in this introduction.

1.4.2 The Large-Scale Clustering of Halos and the Bias Expansion

We can also investigate the large-scale distribution of halos within the Press-Schechter
formalism. Within the vicinity of a collapsing halo, a long-wavelength mode δl with k ≪ 1/Rh

will appear as a scale-independent increase in the mean density, equivalent to lowering the
threshold of collapse for short modes δcrit → δcrit − δl (Fig. 1.6). This separation of the long
and short modes is known as the Peak-Background split (PBS). Note that this is a local
modulation in halo formation; the value of δl far away doesn’t enter. Assuming that halos are
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otherwise uniformly distributed on large scales we can Taylor-expand in the long mode to get

δh(q) = b1δl(q) +O(δ2), b1(M, z) = − 1

dn/dM

(
d

dδcrit

dn

dM

)
. (1.60)

Intuitively, a positive local modulation in the background density makes it easier to form
halos, with a proportionality constant equal to the linear Lagrangian bias b1. Equation 1.60
was written in terms of the Lagrangian coordinate q where the linear overdensities are
modified; in order to translate them to observed Eulerian positions we need to advect them
as in Equation 1.18, i.e.

1 + δh(x) =
(
1 + δh(q)

)(
1 + δm(x)

)
≈ 1 + bE1 δlin(x) (1.61)

where the Eulerian bias bE1 = 1 + b1, reflecting additional clustering due to motion induced
by the long mode. It is straightforward to extend this analysis to higher-order biases such
that δh(q) =

∑
n bnδ

n
lin(q) in order to capture clustering beyond linear theory.

The above treatment of halo clustering using the PBS illustrates a general principle—that
the large-scale clustering of objects like halos and galaxies formed through highly nonlinear
gravitational collapse can be captured by their response to large-scale modes—but is not
complete. Let us note some of the missing pieces before we move on to the more general
theory. Since we were operating within the parameters set by the spherical tophat model, the
bias expansion derived above was only sensitive to spherically symmetric perturbations in the
initial density field; in general, collapse need not be spherical and taking this into account in
PBS-type arguments [67] leads to a bias quadratic in the shear field s2 = sijsij where the
shear tensor is defined as

sij(x) =

(
∂i∂j
∂2

− 1

3
δij

)
δ(x). (1.62)

While the trace of the tidal tensor ∂i∂jΦ is given by the density, the shear denotes its traceless
component, and at the linear level is also related to traceless components of the gradient of
the velocity ∂ivj and Lagrangian displacement ∇iΨj.

We also need to account for the fact that, in general, we will need to study galaxy and
halo clustering on scales where the Lagrangian radius Rh is perturbatively but not vanishingly
small. In the PBS argument we implicitly assumed that the valude of the long mode at a
point δl(q) could be substituted for its spherical average. This is true in the limit where its
wavelength is infinite, but we can also compute its leading correction in the spherical tophat
model ⟨δl(q)⟩Rh

= δl(q) +
1
10
R2
h∇2δl(q) + ... . The bias expansion is thus only quasilocal,

with derivative bias corrections
δh(q) ∋ b∇∇2δlin(q) (1.63)

scaling with the finite size of the halo. We also need to account for statistics of modes with
wavelength similar or smaller than Rh much like we dealt with them in the case of matter
clustering in Equation 1.49. This generates a residual stochastic term

δh(q) ∋ ϵ(q), ⟨ϵ(q)ϵ(q′)⟩ ∼ R3
hδD(q− q′) (1.64)
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which only correlates with itself in a neighborhood defined by Rh by construction and can
therefore be approximated by a delta function on large scales. This form Fourier transforms
into a flat contribution in Fourier space and is a catch-all that includes any small-scale
correlations not captured by the large scale expansion; for example, a Poisson-sampled set of
point particles will have a flat power spectrum 1/n̄ due to shot noise, halos excluding others
from forming within their Lagrangian region induce a negative contribution −Vexcl equal to
the exclusion volume [23], etc. If the stochastic contribution is significant it may in addition
be necessary to include higher derivatives of the delta function, e.g. ∼ R5

h∇2δD(q− q′).
Finally let us briefly comment on the clustering of galaxies within halos. In the simplest

realization of the halo model, galaxies are Poisson sampled in halos of mass M with some
mean N(M) and distributed according to some (normalized) profile u(x|M). We can write
the galaxy power spectrum as a sum Pgg = P 1h + P 2h of a “1-halo” component due to
correlations of galaxies occupying the same halo and a “2-halo” component due to correlations
of position between halos, which are then [89]

P 1h(k) =
1

n̄2
g

∫
dM

dn

dM
N(M)2 |ũ(k|M)|2

P 2h(k) =
1

n̄2
g

∫
dM1dM2

dn

dM1

dn

dM2

N(M1)N(M2) ũ(k|M1)ũ
∗(k|M2) PM1,M2(k) (1.65)

where PM1,M2(k) is the (cross) power spectrum of halos of mass M1 and M2, dn/dM is the
average halo density per mass and n̄g is the mean galaxy density. From Equation 1.65 we
see that qualitatively the galaxy-halo connection introduces (1) an additional flat stochastic
contribution due to the 1-halo term from the Poisson sampling of galaxies within each halo
and (2) additional nonlocality due to the smearing out of the galaxy field by the profile
u(x|M). Both of these properties are already included in the derivative bias and stochastic
terms discussed above and indeed, if as may be expected the typical scale of the (collapsed)
galaxy profile u is smaller than that of the (comoving) Lagrangian radius Rh, these additions
should also be subleading to the halo ones. While it doesn’t feature the full generality of the
bias expansions we will discuss next, the halo model qualitatively ties clustering at large and
small scales, and for this reason has been seen uses beyond galaxies such as intensity mapping
[313] and used to constrain cosmological parameters with galaxy clusters using the thermal
Sunyaev-Zeldovich effect [181]—essentially the pressure content—and cross correlations of
cluster abundances and densities with weak lensing [376].

1.4.3 Bias Expansion: Formal Developments

Let us complete our discussion of the bias expansion by discussing the general case.20 The
density of a biased tracer (e.g. galaxy or halo) at a point x and conformal time τ can depend
on any physical fluid observable O sampled in a neighborhood of size ∼ Rh along its past
trajectory x(τ) (Fig. 1.6) as long as its effect on the tracer density is allowed by rotational

20The reader is referred to ref. [109] for a more comprehensive treatment.
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symmetry, Galilean invariance, the equivalence principle etc. Schematically, we can write the
equivalent of Equation 1.45 for halos bias [332]

δh(x) ∋
∫ τ

dτ ′Kh,O(τ, τ
′) O(x(τ ′), τ ′) = bO(1)O(1) + bO(2)O(2) + bO(2)O(3) + ... (1.66)

where O(x(τ), τ) =
∑

nO
(n) is the sum of its components at each order. The time dependence

of the kernel Kh,O cannot be known a priori, so as with Equation 1.45 we in general have
to write its integrals with the time-dependence of O(n) as free bias parameters bO(n) . In the
below we will focus on operators which can be related to tidal tensor ∂i∂jΦ and its trace, the
matter overdensity, without introducing additional physical scales, e.g. the velocity gradient
∂v ∼ Hδ which is O(δ) when integrated over ∼ H−1

0 —additional spatial derivatives ∇2O are
necessarily suppressed by the halo scale Rh, though they along with the stochastic term are
essential in properly accounting for the effects of short modes [233, 16] much like in the case
of the matter power spectrum calculation in the previous section (Eqn 1.49).

In fact, many of the operators generated by the above procedure turn out to be linearly
dependent, leading to simplified bias expansions that can be entirely constructed out of
operators at either final (Eulerian) or initial (Lagrangian) times [241, 140, 139]. This can
be shown to result from the structure of the perturbative solutions out of which we have
constructed them, though ref. [139] recently showed that these irreducible sets of bias operators
can be more generally derived from equivalence-principle considerations. In the case of the
Eulerian bias expansion [234] we have up to third order21

δh(x) = bE1 δ(x)+
1

2
bE2 δ

2(x)+ bEs s
2(x)+

1

6
bE3 δ

3(x)+ bEstsijtij(x)+ b
E
δsδs

2(x)+ bEs3s
3(x), (1.67)

where we have defined s3 = sijsjkski along with the second order operator

tij =
(∂i∂j
∂2

− 1

3
δij

)
(θ − δ), t

(2)
ij =

2

7

(∂i∂j
∂2

− 1

3
δij

)(
s
(1)
ij s

(1)
ij − 2

3

(
δ(1)
)2)

. (1.68)

It is conventional to “normal order” bias operators so that UV-sensitive contributions
proportional to lower order operators are removed, e.g. for the density biases:

: δ2lin := δ2lin − ⟨δ2lin⟩, : δ3lin := δ3lin − 3⟨δ2lin⟩δlin. (1.69)

Without normal ordering the cubic bias operator contains a contribution degenerate with
linear bias, but proportional to the highly UV-sensitive expectation value of δ2 at a point; by
removing this contribution we can ensure the bias coefficients accurately capture the physical
size of the response to each operator [233, 16], and we will adopt this convention throughout
this dissertation.22

21In the path-breaking work of ref. [234] there was an additional operator ψ at third order; this operator
turns out to be degenerate with the four other cubic operators listed here, so we have not included it.

22In the literature this operation is also often called bias renormalization, though aficionados of quantum
field theory will see that it is more akin to normal ordering, i.e. subtracting out all nonzero contractions of a
field.
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We can also write the same expansion in a Lagrangian basis. Here the object of interest
is the density of halos or galaxies in q coordinates, which are not clustered like x. In
particular, we can define F (q, τ) to be the number density of tracers at time τ that formed
in a Lagrangian region d3q, so that the number density in Eulerian space is [229]

1 + δh(x, τ) =

∫
d3q F (q) δD

(
x− q−Ψ(q, τ)

)
= F (q)

(
1 + δ(x, τ)

)
. (1.70)

Note that the first equality in Equation 1.70 is in principle valid even beyond the single-
stream limit; in the second equality we have assumed the q-to-x mapping is 1-to-1 and used
Equation 1.18 for the matter overdensity. A nice feature of the Lagrangian approach is that
clustering due to dynamics (1 + δ(x)) is explicitly separated out. Conceptually, we can think
of F (q) as the density of protohalos, i.e. regions which will eventually collapse into discrete
tracers, written as a function of the initial density field at unadvected positions q [229, 414,
58, 396, 4, 74]

F (q) = 1 + b1δlin(q) +
1

2
b2δ

2
lin(q) + bss

2
lin(q) +

1

6
b3δ

3
lin(q) + bst

[
sijtij

]
lin
(q)

+ bδsδlins
2
lin(q) + bs3s

3
lin(q), tlinij (q) =

2

7

(∇i∇j

∇2
− 1

3
δij

)(
s2lin(q)−

2

3
δ2lin(q)

)
. (1.71)

This expansion does not contain any references to nonlinearly evolved fields δ(n), though
perhaps at the expense of introducing unexpected terms like tlinij , which in the Eulerian basis
could be understood as a difference between the density and velocity divergence. Of course,
this is eliding the fact that both the Eulerian and Lagrangian bases capture the full time
dependence of the integral in Equation 1.66.

In fact, it is easy to see that the Eulerian and Lagrangian bases are equivalent by writing
the EPT kernels (Eqn. 1.27) in configuration space [241], which reveals

δ(x, τ) = δlin(q) +

(
17

21
δ2lin(q) +

2

7
s2lin(q)

)

+

(
341

567
δlin(q)

3 +
11

21
δlins

2
lin(q) +

2

9
s3lin(q)−

1

3

(
sijtij

)
lin
(q)

)
+ ... (1.72)

from which it is easy to read off the correspondence between Eulerian and Lagrangian bias
parameters by enforcing 1 + δh(x) = F (q)(1 + δ(x)). This expression also makes manifest
why we do not need to include separate biases for e.g. δ(2), δ(3), since they are combinations
of operators already in the bias expansion.

1.5 Outline

So far in this Introduction we have conducted a lightning review of how to rigorously construct
perturbation theories describing the large-scale clustering of matter and biased tracers in
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Figure 1.7: Redshift-space distortions lead to galaxies being observed at line-of-sight positions they
would be at if they continued to stream at their present velocities for a Hubble time. On large scales,
where densities and velocities are coherent, this leads to a increase (decrease) of structure along the
LOS for over (under) densities. On small scales where velocities are dominated by nonlinear virial
motions in halos RSD instead tend to smear out structure, leading to apparent elongated structures
along the LOS called “fingers-of-god.” Figure taken from ref. [279].

a FLRW universe with Gaussian initial conditions seeded by inflation. These perturbation
theories represent a fully-general treatment of large-scale structure: all possible clustering
contributions at a given order are systematically enumerated, and dependences on small-scale
astrophysics where the theory breaks down are parametrically included as free counterterms
and stochastic terms, with effects on large scales that are suppressed by the smallness of the
nonlinear k−1

nl and halo Rh scales. What remains to be done is to connect the predictions of
this formalism to cosmological observables.

In the remainder of this dissertation our goal will be to develop perturbation theory
models for galaxy surveys and their cross-correlations with weak lensing. Weak lensing
describes the deflection of light due to the gravitational potential of intervening matter; in
the Born approximation this angular deflection is given by ∆θi = ∇θΦL where the lensing
potential is given by

ΦL(n̂) = −2

∫
dχ

χ
ΦW (χn̂)

(χs − χ

χ

)
(1.73)

where ΦW = (Φ + Ψ)/2 is the Weyl potential, equal to the Newtonian potential in the
non-relativistic limit, n̂ is the unit vector towards the line of sight (LOS), and χ is the
comoving distance such that χs is the distance to the source. In this way we can think of
weak lensing essentially as a projection of the matter density along the LOS weighted by the
lensing kernel, and cross-correlating it with galaxies serves to isolate contributions localized
at particular redshifts.

A major theme in our study of galaxy clustering will be redshift-space distortions (RSD):
in spectroscopic surveys, distances to galaxies are typically inferred from their measured
redshifts, which in addition to the Hubble expansion also receive a contribution due to their
peculiar velocities, equivalent to boosting their positions by u = n̂(n̂ · v)/H. On large scales,
where galaxies stream towards overdensities, RSD result in an anisotropic boost in power along



CHAPTER 1. INTRODUCTION 34

the LOS coherent with large-scale densities while, on small scales, virial velocities of galaxies
in halos on the order of hundereds of kilometers per second (see discussion below Eqn. 1.58)
smear out the observed positions of galaxies in halos, a phenomenon often called “Fingers of
God” (Fig. 1.7). We study the statistics of these velocities in depth in Chapter 2 in both
Eulerian and Lagrangian perturbation theory and relate them to the observed redshift-space
clustering of galaxies. The large-scale velocities that contribute to RSD have a similar effect
to the large-scale displacements that must be resummed to properly account for the damping
of the BAO signal; in Chapter 3 we build upon this work and present a complete model
of RSD within LPT with a full IR resummation of displacements and velocities, showing
that it can accurately predict galaxy power spectra and correlation functions and be used to
constrain cosmological parameters with data with error bars an order of magnitude smaller
than an near term experiments.

The resummation of displacements in Lagrangian perturbation theory has applications
beyond the standard galaxy 2-point function. In Chapter 4 use this resummation to model a
standard technique to sharpen the BAO signal in galaxy surveys known as reconstruction
[122] which seeks to reconstruct the Zeldovich displacement from the observed galaxy density
field and thereby cancel some of the damping to the BAO peak. In the process, we show how
to improve upon common empirical models of the post-reconstruction 2-point function using a
saddle-point approximation. In Chapters 5 and 6, we investigate potential features in the 2-pt
function beyond BAO including oscillatory features (1) due to residual baryon-dark matter
differences post-recombination that can introduce additional terms to galaxy bias and (2)
imprinted in the primordial power spectrum by exotic inflationary scenarios. In the latter case
we compare the many IR resummation prescriptions on the market to investigate our ability
to constrain the amplitude of these primordial features in redshift surveys using perturbation
theory. Finally, as discussed earlier the Lagrangian advection in Equation 1.70 is in principle
general beyond stream crossing, and in Chapter 7 we propose a new model for modeling
galaxy-matter cross correlation in real space by using the fully nonlinear displacements
computed from N-body simulations, significantly extending the reach of the Lagrangian
perturbative bias expansion for use in galaxy-lensing cross correlations.

We put these models to use in the final two chapters of this dissertation. In Chapter 8, we
combine our models for the reshift-space power spectrum and post-reconstruction correlation
function to perform a ΛCDM fit. This analysis is followed-up in Chapter 9 where we further
combine these data with cross-correlations with CMB lensing from the Planck satellite.
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Chapter 2

Redshift-Space Galaxy Clustering I:
Perturbative Modeling of Density and
Velocity Statistics

This chapter was originally published as

Shi-Fan Chen, Zvonimir Vlah, and Martin White. “Consistent modeling of velocity
statistics and redshift-space distortions in one-loop perturbation theory”. In:
JCAP 2020.7, 062 (July 2020), p. 062. doi: 10.1088/1475-7516/2020/07/062.
arXiv: 2005.00523 [astro-ph.CO]

In the Introduction above we saw how to systematically construct perturbation theories of
large-scale structure including the clustering of discrete tracers like galaxies. The purpose of
this chapter is to connect this theory with observables from galaxy surveys. In particular, in
spectroscopic surveys of galaxies the line-of-sight distance is inferred from the measured galaxy
redshift, wherein the effect of the Hubble expansion and peculiar velocities are degenerate.
Modeling the results of spectroscopic surveys thus requires properly accounting for the
anisotropy generated by this real-to-redshift space mapping and the statistics of galaxy
velocities. In turn, the peculiar velocities of biased tracers of the cosmic density field contain
important information about the growth of large scale structure.

Using N-body data, we show that velocity expansions for halo redshift-space power
spectra are converged at the percent-level at perturbative scales for most line-of-sight angles
µ when the first three pairwise velocity moments are included, and that the third moment is
well-approximated by a counterterm-like contribution. We compute these pairwise-velocity
statistics in Fourier space using both Eulerian and Lagrangian one-loop perturbation theory
using the previously described cubic bias scheme and a complete set of counterterms and
stochastic contributions. We compare the models and show that our models fit both real-
space velocity statistics and redshift-space power spectra for both halos and a mock sample
of galaxies at sub-percent level on perturbative scales using consistent sets of parameters,

https://doi.org/10.1088/1475-7516/2020/07/062
https://arxiv.org/abs/2005.00523
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making them appealing choices for the upcoming era of spectroscopic, peculiar-velocity and
kSZ surveys.

2.1 Introduction

The large-scale structure (LSS) of the Universe contains a trove of information relevant to
astrophysics, cosmology and fundamental physics, including the initial conditions from the
early universe and constraints on cosmological parameters and gravity [410, 364, 12]. As
cosmological distances are typically inferred through redshifts, a common theme in LSS
observations is the necessity to operate in redshift space, where the peculiar velocities of
observed targets lead to structure beyond what exists in real space [196, 158]. These so-called
redshift-space distortions (RSD) present both a modeling challenge and additional information
by encoding information about cosmic velocities in observed densities, for example allowing
us to measure the derivative of the linear growth factor fD = dD/d ln a, where f(a) and
D(a) are the linear-theory growth rate and growth factor (see e.g. refs. [410, 364] for recent
reviews). Current and upcoming spectroscopic surveys such as DESI [108] and EUCLID
[12] will test these measurements at unprecedented precision. At the same time, the rise
of next-generation ground-based CMB experiments [141, 1] as well as renewed interest in
low-redshift peculiar velocity surveys [182, 200, 150] in recent years makes it likely that direct
measurements of the peculiar velocity statistics underlying redshift space distortions will
become available in the near future, offering complementary probes for theories of structure
formation. These developments make it timely to revisit our understanding of velocities in
large scale structure and their link to redshift space distortions.

The evolution of the LSS at high redshifts and large scales is well modeled by linear
perturbation theory [276, 275, 114], and the reach of the perturbation theory can be extended
to intermediate scales by including higher order terms in the equations of motion [39]. In
this chapter we shall consider 1-loop perturbation theory in both the Eulerian (EPT; [195,
395, 148, 225, 191, 39, 28, 60, 234, 280, 109, 239]) and Lagrangian (LPT; [54, 250, 177, 369,
231, 229, 58, 415, 440, 230, 397, 399]) formulations, and their extensions as an effective field
theories [290, 399, 235]. EPT has been extensively employed in the analysis of large-scale
structure surveys, with the most recent incarnation being refs. [96, 186, 88]. LPT provides a
natural means of modeling biased tracers in redshift space [231, 229], including resummation
of the advection terms which is important for modeling features in the clustering signal, and
deals directly with the displacement vectors of the cosmic fluid, making it an ideal framework
within which to understand their derivatives, i.e. cosmological velocities.

The goal of this chapter is to develop a consistent Fourier-space model of both peculiar-
velocity and redshift-space statistics. Our strategy is twofold: first, since the redshift-space
power spectrum of galaxies can be understood in terms of series expansions of their velocity
statistics, we explore the convergence of these expansions to understand their requirements
and limitations. Our analysis of these expansions for halo power spectra uses nonlinear
velocity spectra measured directly from simulations, which include nonlinear bias and fingers-
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of-god [190], and is a continuation of that in ref. [402], who explored these convergence
properties within the Zeldovich approximation, and refs. [261, 260], who explored them in the
context of matter and halo power spectra. Similar expansions using velocity statistics from
N-body data have also been studied in configuration space for the Gaussian and Edgeworth
streaming models [301, 405, 396, 381]. Second, we use one-loop perturbation theory with
effective corrections for small scale effects to model the requisite velocity statistics. Our work
builds naturally on previous work in configuration space combining velocity statistics and the
correlation function in LPT, particularly within the context of the Gaussian streaming model
[276, 137, 301, 303, 405, 396], though modeling these statistics in Fourier space enables us
to more effectively extend the reach of perturbation theory. We compare and contrast the
behavior of these velocity statistics in both EPT and LPT.

This work is organized as follows. We begin in Section 2.2 by describing the N-body
simulations that we use throughout the paper. In Section 2.3 we briefly review two methods
of expanding velocity statistics in the redshift-space power spectrum (the moment expansion
approach and the Fourier streaming model) and study their convergence at the level of velocity
statistics measured from N-body simulations. We describe the modeling of these velocity
statistics in perturbation theory in Section 2.4 providing a comparison of and translation
between the two approaches. Finally, in Section 2.5 the velocity expansions and PT modeling
of velocities are combined to yield a consistent model for the power spectrum within one-
loop perturbation theory. We conclude with a discussion of our results in Section 2.6. In
Appendices, we compare our work to existing models (B.2, B.3), discuss differences between
power spectrum wedges and multipoles (B.4) and provide details of our numerical calculations
(B.5,B.6,B.7,B.8).

2.2 N-Body Simulations

In this chapter we will use N-body data for two purposes: (1) to test the convergence of
various velocity-based expansions for redshift space distortions using exact velocity statistics
extracted from simulations and (2) to investigate the extent to which these velocity statistics
can be modeled within 1-loop perturbation theory and combined to model the redshift-space
power spectrum for biased tracers. To this end we make use of the halo catalogs1 from the
simulations described in ref. [359]. These were the same simulations used in ref. [396], to
which the reader is referred for further discussion. Briefly, there were 4 realizations of a
ΛCDM (Ωm = 0.2648, Ωbh

2 = 0.02258, h = 0.71, ns = 0.963, σ8 = 0.8) cosmology simulated
with 40963 particles in a 4h−1Gpc box. We measured the halo power spectrum in two mass
bins (12.5 < lgM < 13.0 and 13.0 < lgM < 13.5; all masses in h−1M⊙) at z = 0.8 and 0.55, in
both real and redshift space. We compute the power spectra in bins of width 0.0031hMpc−1,
which is small enough that effects due to binning are O(0.1%) for the theories we wish to
test. We additionally computed the Fourier-space pairwise velocity statistics up to fourth

1The data are available at http://www.hep.anl.gov/cosmology/mock.html. Of the 5 realizations, the data
for the first were corrupted so we used only the last 4.
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lgM Redshift n̄ b
12.5− 13.0 0.55 0.61 1.45
13.0− 13.5 0.55 0.19 1.93
12.5− 13.0 0.8 0.53 1.72
13.0− 13.5 0.8 0.15 2.32
‘Galaxies’ 0.8 0.80 1.97

Table 2.1: Number densities and bias values for the samples we use. Halo masses are log10 of the
mass in h−1M⊙, number densities are times 10−3 h3Mpc−3. The last row, labeled ‘Galaxies’, refers
to the mock galaxy sample drawn from the halo occupation distribution described in the text.

order in real space. The aforementioned quantities were all computed using the publically
available nbodykit software [163]. The number densities and rough estimates for the linear
biases of the halo samples we consider are given in Table 2.1.

The total volume simulated, 256h−3Gpc3, is equivalent to > 40 and > 25 full-sky surveys
for redshift slices 0.5 < z < 0.6 and 0.75 < z < 0.85, respectively. The statistical errors from
the simulations should thus be much smaller than those of any future survey confined to a
narrow redshift slice and are dominated by systematic errors in the algorithms or physics
missing from the simulations themselves. In fact, the simulations were run with “derated”
time steps and halo masses were adjusted to match the halo abundance of a simulation
with finer time steps [359]. As detailed in ref. [396], tests of halo catalogs produced with
and without derated time steps lead us to assign a systematic error of several percent to
the clustering statistics measured in these simulations. Of direct relevance to redshift-space
statistics, by comparing the mean-infall velocity and pairwise velocity dispersion on very large
scales with linear theory predictions we see evidence that the velocities are underpredicted
by about 1-2% by z = 0.55. In particular we note that agreement with theory can be
improved on all scales if we increase N-body velocities by such a constant factor. To keep
the measured redshift-space power spectrum and velocity statistics consistent, we do not
apply this correction. Rather, we choose to focus our analysis primarily on the redshift bin
z = 0.8, relevant in the near term for spectroscopic surveys such as DESI [108] and where
the accumulated effects of this systematic are less severe, noting that a few percent error is
well within the error budget for simulations of this form.

Finally we construct a mock galaxy sample at z ≃ 0.8 using a simple HOD applied to
the dark matter halo catalogs. Since it is not our goal to match any particular sample, but
rather to investigate how well our model performs on a sample covering a wide range of halo
masses and with satellite galaxies, we simply populate all halos above Mcut = 1012.5 h−1M⊙
with a “central” galaxy taken to be comoving with the halo and at the halo center. We also
draw a Poisson number of satellites with

⟨Nsat⟩ = Θ(M −Mcut)

(
M

M1

)
, M1 = 1014 h−1M⊙ (2.1)
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and arrange them following a spherically symmetric NFW profile [253] scaled by the halo
concentration and virial radius. In addition to the halo velocity, the satellites have a random,
line-of-sight velocity drawn from a Gaussian with width equal to the halo velocity dispersion.
This sample has complex, scale-dependent bias and finger-of-god velocity dispersion on small
scales providing a test of the ability of our model to fit observed galaxy samples which exhibit
both properties.

2.3 Redshift Space Distortions: Velocity Expansions

and Convergence

2.3.1 Formalism

In large-scale surveys, line-of-sight positions are typically inferred by measuring redshifts.
Since redshifts are affected by the peculiar motions of the observed objects, these inferred
redshift-space positions s will be shifted from the “true” positions x of these objects according
to s = x+ n̂(n̂ · v)/H, where n̂ is the unit vector along the line-of-sight and H = aH is the
conformal Hubble parameter [275, 114]. Overdensities in redshift space are thus related to
their real space counterparts via number conservation as

1 + δs(s, τ) =

∫
d3x

(
1 + δg(x, τ)

)
δD(s− x− u)

(2π)3δD(k) + δs(k) =

∫
d3x

(
1 + δg(x, τ)

)
eik·(x+u(x)), (2.2)

where we have defined the shorthand u = n̂(n̂ · v)/H. From the above, the redshift space
power spectrum can be written as a special case of the (Fourier transformed) velocity
moment-generating function [398]

M̃(J,k) =
k3

2π2

∫
d3r eik·r

〈
(1 + δg(x1))(1 + δg(x2))e

iJ·∆u
〉
x1−x2=r

, (2.3)

where we have defined the pairwise velocity ∆u = u1 − u2 and the k3/(2π2) in inserted for
convenience. Specifically, we have

k3

2π2
Ps(k) = M̃(J = k,k) =

k3

2π2

∫
d3r eik·r

〈
(1 + δg(x1))(1 + δg(x2))e

ik·∆u
〉
x1−x2=r

. (2.4)

Note that the moment generating function with J = 0 is directly proportional to the real
space power spectrum, i.e. M̃0 = k3P (k)/(2π2) = ∆2(k), where ∆2(k) is the power per log
interval in wavenumber in real space.

There exist many approaches to model the redshift space power spectrum (see e.g. refs.
[418, 142, 398] for recent reviews). Roughly speaking, these techniques can be understood as
different series expansions of the exponential in Equation 2.4 (see e.g. the discussion in ref. [398];
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a related discussion on the correlation function and velocity expansions in configuration
space can be found in ref. [93]). Our main objective here is to explore the effectiveness of
two Fourier-space based approaches: the moment expansion (ME), or “distribution function
approach” [328], and the recently proposed Fourier Streaming Model (FSM) [398].

In the moment expansion approach the redshift-space power spectrum is derived by
expanding the exponential in Equation 2.4 such that

k3

2π2
Ps(k) = M̃(J = k) =

k3

2π2

∞∑

n=0

in

n!
ki1 · · · kinΞ̃

(n)
i1···in(k) (2.5)

where the density-weighted pairwise velocity moments are defined to be the Fourier transforms
of Ξ

(n)
i1···in = ⟨(1 + δ1)(1 + δ2)∆ui1 · · ·∆uin⟩. For example, the first and second moments are

the mean pairwise velocity between halos separated by distance r, Ξ
(1)
i = v12,i(r), and the

pairwise velocity dispersion, Ξ
(2)
ij = σ12,ij(r)

2.
In the Fourier Streaming Model, the redshift-space power spectrum is evaluated by

applying the cumulant theorem to the logarithm

ln
[
1 + ∆(k)

]
= ln

[
1 + M̃(J = 0,k)

]
+ iJiC̃

(1)
i (k)− 1

2
JiJjC̃

(2)
ij + ... (2.7)

The first few cumulants are related to the Fourier pairwise velocity moments by

C̃
(1)
i (k) =

k3

2π2

Ξ̃i(k)

1 + ∆2

C̃
(2)
ij (k) =

k3

2π2

Ξ̃ij(k)

1 + ∆2
− C̃

(1)
i C̃

(1)
j

C̃
(3)
ijk(k) =

k3

2π2

Ξ̃ijk(k)

1 + ∆2
− C̃

(2)
{ij C̃

(1)
k} − C̃

(1)
i C̃

(1)
j C̃

(1)
k

C̃
(4)
ijkl(k) =

k3

2π2

Ξ̃ijkl(k)

1 + ∆2
− C̃

(3)
{ijkC̃

(1)
l} − C̃

(2)
{ij C̃

(2)
kl} − C̃

(1)
i C̃

(1)
j C̃

(1)
k C̃

(1)
l , (2.8)

The redshift-space power spectrum is then

1 +
k3

2π2
Ps(k) =

(
1 + ∆2(k)

)
exp

[
∞∑

n=1

in

n!
ki1 ...kinC̃

(n)
i1...in

(k)

]
. (2.9)

2Since redshift-space distortions depend only on line-of-sight velocities the only nonzero contributions in
Equation 2.5 are those due to kn̂ = kµ, where µ is the cosine of the angle between the line-of-sight (LOS) and
wave vector, which in turn multiplies only velocity statistics projected along the LOS n̂. However, models of
large-scale structure naturally predict not only the LOS component but the full tensorial quantity

Ξ
′(n)
i1...in

= H−n ⟨(1 + δ1)(1 + δ2)∆vi1 · · ·∆vin⟩ , (2.6)

where ∆v = v1 − v2, along with its Fourier transform Ξ̃′, such that the statistics of u are given by the e.g.

Ξ̃
(1)
i = Ξ̃

′(1)
n̂ n̂i. However, due to the symmetric structure of these velocity moments, the tensor components of

Ξ′ can be mapped 1-1 to the multipole moments of Ξ, and for this reason we will refer to them interchangeably
throughout the text.
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At any order the nonlinearity of the exponential in the FSM will produce a resummation
of select terms when compared to the moment expansion. Indeed, ref. [398] found distinct
differences in the rate of convergence for the case of Zeldovich matter dynamics. However,
the two expansions are necessarily equivalent order-by-order in the Taylor-series expanded
pairwise velocities, and on scales where ∆2 ≲ 1, they will tend to behave similarly. Evaluating
whether the differences between the two expansions are significant for halos and galaxies with
nonlinear bias and dynamics will be one of the goals of the following sections.

2.3.2 Comparison of methods using simulated data

The Fourier-space velocity expansions described in the previous subsection can be tested
by comparing the redshift-space power spectra measured in N-body simulations to velocity
power spectra measured from the same simulations. Our aim in this subsection is to use
this comparison to test the convergence of each expansion at nth order in both the moment
expansion and Fourier streaming approaches. Since the velocity expansions are effectively
expansions in both k and µ we will focus on their convergence in terms of power spectrum
wedges, sufficiently finely binned such that their values are equivalent to P (k, µi) where µi
is the central value of each angular bin, but comment on the extension to power spectrum
multipoles where appropriate.

Figure 2.1 shows the convergence of the moment expansion and Fourier streaming model
for halos of mass 12.5 < logM < 13.0 in units of h−1M⊙ at z = 0.8 at orders n = 2, 3, 4 in
each method using velocity spectra Ξ̃(n)(k) from simulations. The dots show power spectrum
wedges (arranged by color in µ) extracted from simulations, while the curves show predictions
for each model when keeping velocity statistics up to nth order. The top two rows show
the wedges expressed as kP (k, µ) and the ratio ln([1 + ∆2

s]/[1 + ∆2
r]), while the bottom row

shows the fractional difference between the data and models. The ME and FSM behave
very similarly, except at high k and µ where they diverge. This can be understood from the
fact that the redshift-to-real-space logarithm shown in the middle row is significantly below
unity for most of the angles and scales shown, except for the µ = 0.9 wedge where it reaches
30% and where the ME seems to have somewhat better convergence properties at high k.
In both models, going from n = 2 to n = 3 dramatically improves the broadband shape
predictions at k > 0.05hMpc−1, especially in the highest µ bins where the improvement
can be in the tens of percents. As a further test, we compute the multipoles predicted by
the moment expansion at n = 2 and 3 and compare them to the data in the right panel of
Figure 2.2. Once again, while staying at n = 2 grossly mis-estimates the power spectrum
quadrupole, going to n = 3 yields excellent agreement on these scales. A similar improvement
when incorporating third-order velocity statistics extracted from simulations was seen by
refs. [381, 93] in configuration space in the context of correlation function multipoles (see
Appendix B.3 for further discussion of configuration space). Interestingly, the fractional
error on the quadrupole in both cases grows slightly faster than the fractional error in the
highest µ bin in Figure 2.1 (rather than the fractional error of some intermediate wedge),
while the fractional error on the hexadecapole far exceeds that of any wedge. We comment
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Figure 2.1: Convergence for the moment expansion (left) and Fourier streaming model (right) at
each order in velocity statistics – using inputs extracted from simulation data – for halos of mass
12.5 < logM < 13.0 (in h−1M⊙) and z = 0.8. The top, middle, and bottom columns show five
wedges P (k, µ) represented as kP (k), the log ratio of 1 +∆ in real and redshift space, and the error
of each method (smoothed for presentation) and order compared to N-body data. While going
from n = 2 to n = 3 dramatically improves agreement at essentially all scales, especially for large
µ, going to n = 4 mostly only improves the asymptotic convergence at low k and µ at the mostly
subpercent level without significant improvement at higher k and µ.
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on these counter-intuitively large errors for multipoles and implications for data analyses in
Appendix B.4.

Going to n = 4 improves the behavior at low k and µ, but it does not improve – indeed
somewhat worsens – the recovery of the broadband shape over the scales smaller than
k ∼ 0.15hMpc−1. This suggests that the reach of both the ME and FSM are limited to
perturbative scales, k|∆u| ≲ 1, by the magnitude of the halo velocities and n = 3 almost
saturates this reach. Indeed, at the scale where the virial velocities of halos become important
one might expect that all velocity moments and cumulants contribute significantly to the
redshift-space power, slowing the convergence of the velocity expansions. The fact that the
inclusion of higher velocity moments does not obviously improve convergence suggests that
extending treatments of RSD beyond industry-standard 1-loop order for extended reach in k
might give meager returns beyond those generated from overfitting with more parameters.
We have chosen to focus on this mass bin and redshift for ease of presentation but note that
the other samples discussed in Section 2.2 exhibit qualitatively similar behavior; however,
we caution that halos at even higher redshifts — relevant to futuristic galaxy surveys [135,
314, 373, 125] or 21-cm surveys [352] for example — might behave differently due both to
the diminishing magnitude of large-scale velocities and differences in virial motions at high
redshifts.

The above results suggest that in order to reproduce the broadband shape of P (k, µ) at
the percent level on perturbative scales (k ∼ 0.25hMpc−1) it should be sufficient to model
velocity statistics up to third order. However, as we have already discussed we can expect
that the higher velocity statistics will be dominated by stochastic contributions, i.e. the small
scale virial motions of galaxies or halos. In this limit, neglecting the connected contributions
to the correlator (see refs. [400, 401] for similar decomposition), we have

Ξ
(3)
ijk(r) = ⟨(1 + δ1)(1 + δ2)∆ui∆uj∆uk⟩ ≈

〈
∆u{i∆uj

〉
Ξ
(1)
k} (r) ≈ σ2

vδ{ijΞ
(1)
k} (r)

where the curly brackets indicate a sum over symmetric combinations of i, j, k. At leading
order in the moment expansion this is equivalent to a counterterm-like contribution

Ps(k) ∋
1

2
k3∥σ

2
v Ξ̃

(1)
∥ (k) ≈ 1

2
σ2
vk

2µ4PL(k), (2.10)

where PL stands for the linear theory prediction with appropriate factors of bias. The
predictions for using the moment expansion at n = 2 combined with this contribution are
shown in dashed lines in Figure 2.2. In addition to providing excellent agreement in the
monopole and quadrupole, the counterterm also gives a good fit to the hexadecapole. This
supports the assumption we made above of keeping only the disconnected piece of the n = 3
velocity moment, indicating that due to the relativly large contribution of the small-scale
part of the velocity dispersion, σ2

v , this term dominates over the connected contributions
on the scales of interest. We anticipate that this conclusion would only be strengthened by
considering small-scale virial motions of satellite galaxies. This suggests that we focus our
modeling efforts on the first two velocity moments, and in the next two sections we shall
discuss the modeling of these moments in 1-loop perturbation theory.
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Figure 2.2: Convergence of the moment expansion at z = 0.8 for the first three multipoles of the
redshift space power spectrum. The top panel shows kPℓ while the bottom panel shows the fractional
error in each expansion, smoothed to highlight systematic trends. Similarly to the wedges, going
from n = 2 to n = 3 presents substantial improvements in all three multipoles, with the agreeement
in the quadrupole going from worse than 50 percent for n = 2 to a few percent at perturbative
scales (k < 0.25hMpc−1). In interpreting these differences it is important to bear in mind that for
any observation the error on the quadrupole and hexadecapole are dominated by the monopole
contribution and are therefore fractionally much larger than for the monopole.

Finally, it is instructive to consider the relative roles played by the multipole moments of
the velocity moments in the redshift-space power spectrum. By symmetry we can write each
line-of-sight velocity moment as

Ξ̃
(n)
LOS(k) =

n∑

ℓ=0

Ξ̃
(n)
ℓ (k)Lℓ(µ), (2.11)

where Lℓ(µ) are Legendre polynomials of the line-of-sight angle; since each moment Ξ̃(n)

gets multiplied by (kµ)n in the moment expansion, the components Ξ̃
(n)
ℓ contribute with

the angular structure µnLℓ(µ). As an example, in Figure 2.3 we have plotted the thus-
enumerated contributions to Ps(k, µ) at three representative wavenumbers as a fraction of
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Figure 2.3: Angular contributions (n,m) to the redshift-space power spectrum from the mth

multipole of the nth velocity moment at three wavenumbers k = 0.05, 0.15, 0.25hMpc−1 as a
fraction of the real-space power spectrum. The anisotropic signal is dominated by the first moment
at all scales. For higher multipole moments, for example the quadrupole of the second moment, the
absolute magnitude of the contribution to Ps(k, µ) is small at intermediate µ due to the occurence
of zeros in Lℓ.

the real-space power spectrum at that wavenumber. At all of these scales, which cover
the reach of perturbation theory at low redshifts, the anisotropic signal is dominated by
the first moment, which contributes proportionally to µL1, with the relative importance
of higher moments roughly increasing with LOS angle µ. Moreover, the root structure of
Legendre polynomials with ℓ > 0 plays an interesting role in the relative prominence of
each contribution–for example, while the quadrupole moment of Ξ(2) is typically larger in
absolute magnitude than the monopole, its relative importance at intermediate µ can be
comparatively suppressed due to proximity to the root of L2(µ) at µ = 1/

√
3, and similarly

for the octopole moment of Ξ(3). On the other hand, beyond these intermediate µ we expect
the contamination of the cosmological signal by small scale (FoG) effects, as well as the
importance higher velocity moments, to be increasingly large. Indeed, as we will see for
realistic (galaxy) samples the monopole of Ξ(2) will tend to contain a large, constant small-
scale contribution, further increasing its relative importance over the quadrupole. Roughly
speaking, then, the contributions to the redshift-space power spectrum rank in importane as
Ξ̃
(0)
0 , Ξ̃

(1)
1 , Ξ̃

(2)
0 , Ξ̃

(2)
2 , Ξ̃

(3)
1 , and so on.

2.4 Pairwise Velocity Spectra in Perturbation Theory

In this section we present formulae for the real-space pairwise velocity spectra required for
both the ME and FSM in Lagrangian and Eulerian perturbation theory. These quantities live
naturally in configuration space, where they can be directly interpreted as density-weighted
pairwise velocities, while in Fourier space they must be broken down into components to
be measured. While we shall primarily employ the velocity spectra for computation of the
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redshift-space power spectrum, we emphasize that pairwise velocity statistics are well-defined,
Galilean invariant quantities and have the potential to be measured (in redshift space) by
future kSZ and peculiar velocity surveys [358, 182, 200]. They are therefore interesting in
their own right. Our results for the zeroth, first and second moments of the pairwise velocity
in LPT are the Fourier-space analogues of the results presented in ref. [396], though we
differ slightly in the treatment of counterterms in the velocity dispersion, include stochastic
contributions to both densities and velocities and a superset of the density-bias expressions
given in ref. [398]. We organize the expressions so that they can be efficiently evaluated
numerically by converting the angular integrals into sums over spherical Bessel functions,
then treating the resulting tower of Hankel transforms via the FFTLog algorithm [159, 397,
396]. The explicit form of these Hankel transforms is given in Appendix B.6. Throughout
this section and the next we will compare our theoretical predictions to velocity statistics
of the same halos studied in Section 2.3 (i.e. 12.5 < logM < 13.0 at z = 0.8). Results for
the other mass bins and redshifts are qualitatively similar, though the potential for even
higher systematics in the N-body data at lower z are an important caveat. We shall consider
our mock galaxy catalogs when we combine the ingredients into the redshift-space power
spectrum.

2.4.1 Background

Lagrangian and Eulerian Perturbation Theory

The two conventional frameworks within which to perturbatively model cosmological struc-
ture formation are Eulerian and Lagrangian perturbation theory (see the references in the
introduction). Lagrangian perturbation theory models cosmological structure formation by
tracking the trajectories x(q, t) = q+Ψ(q, t) of infinitesimal fluid elements originating at
Lagrangian positions q. These fluid elements cluster under the influence of gravity and
their displacements obey the equation of motion Ψ̈+HΨ̇ = −∇Φ(x) — where the dotted
derivatives are with respect to conformal time τ , H = aH is the conformal Hubble parameter
and Φ is the gravitational potential — which we solve for order-by-order in terms of the
linear density contrast δlin as Ψ = Ψ(1) +Ψ(2) + · · · , where

Ψ
(n)
i (q) =

i

n!

∫

k, p1...pn

eik·q δDk−p L
(n)
i (p1, ...,pn) δlin(p1)...δlin(pn), (2.12)

were we use the shorthands p =
∑

i pi and δ
D
k−p = (2π)3δ(D)(k− p). Expressions for the nth

order kernels can be found in, for example, ref. [231]. By contrast, Eulerian perturbation
theory (EPT, often also called standard perturbation theory: SPT), solves perturbatively for
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the density and velocity at the observed, Eulerian position x (see e.g. ref. [39]), i.e.

δ(k) =
∑

n

∫

p1...pn

δDk−p1n
Fn(p1, . . . ,pn)δlin(p1)...δlin(pn), (2.13)

vi(k) = −ifH ki
k2

∑

n

∫

p1...pn

δDk−p1n
Gn(p1, . . . ,pn)δlin(p1)...δlin(pn).

However, despite the apparent differences LPT and EPT are formally equivalent (see e.g. the
discussion in ref. [235]). In particular, by solving for the observed matter overdensity

1 + δ(x) =

∫
d3q δD(x− q−Ψ), (2π)3δD(k) + δ(k) =

∫
d3q e−ik·(q+Ψ), (2.14)

order-by-order in the linear initial conditions, one recovers the expressions of EPT, and
similarly for velocity statistics by weighting the integral above by appropriate functions
of the velocity Ψ̇(q). Nonetheless, the exponentiated displacements in Equation 2.14 can
be used to motivate resummations of particular contributions to the nonlinear density due
to long-wavelength (IR) displacements [335, 399], which can lead to dramatic differences
with the predictions of (pure) EPT, as we will see later. A proper treatment of these IR
displacements is important for cosmological inference.

Modeling biased tracers

The fact that cosmological surveys generally do not observe the underlying matter distribution
but rather tracers of the nonlinear density field such as halos and galaxies presents an
additional complication in mapping theory to observations. In PT one approaches this
problem by perturbatively expanding the large-scale component of the galaxy and halo
field that responds to the short-wavelength (UV) galaxy and halo formation physics via the
so-called bias coefficients (see e.g. ref. [109] for a review, and recent ref. [139] for a direct
construction based on the equivalence principle). Once again the treatment of bias in LPT
and EPT, though ultimately equivalent, are subtly different; we will now describe them in
turn.

In the Lagrangian approach the positions of discrete tracers like galaxies and halos are
assumed to be drawn according to a distribution depending on local initial conditions such
that their overdensities in their initial (Lagrangian) coordinates are given by

F [δlin(q), slin,ij(q), ...,∇δlin(q)] = 1 + δg(q, τ0)

= 1 + b1δlin(q) +
1

2
b2
(
δ2lin(q)−

〈
δ2lin
〉 )

+ bs
(
s2lin(q)−

〈
s2lin
〉 )

+ b3 O3(q) + · · ·+ b∇∇2δlin(q) + ϵ(q), (2.15)

where s0 is the initial shear field3 and we have included a representative third-order operator
O3 to account for the various degenerate contributions to the power spectrum at one-loop

3The inclusion of the initial shear and Laplacian information, in addition to the initial density, improves
the ability to model assembly bias to the extent that this is encoded in the peak statistics (e.g. ref. [99]).
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order [234]. Definitions for these quantities are given in Appendix B.2. Given this bias
functional, these initial overdensities can then be mapped to the evolved overdensities of
biased tracers via number conservation much like the nonlinear matter density:

1 + δg(x, τ) =

∫
d3q F (q) δD(x− q−Ψ(q, τ))

(2π)3δD(k) + δg(k) =

∫
d3q eik·(q+Ψ(q))F (q). (2.16)

In this way, within LPT we have the apparent separation of clustering due to initial biasing
in F (q) and clustering due to nonlinear dynamics enforced by the equality x = q+Ψ.

In the Eulerian approach, on the other hand, the galaxy overdensity is expressed in terms
of a bias expansion based on present-day operators such as the nonlinear density δ(x). Here
we adopt the biasing scheme of ref. [234], where up to third order a biased tracer field is
expanded in terms of the nonlinear Eulerian fields as4

δh = c1δ +
c2
2
δ2 + css

2 +
c3
6
δ3 + c1sδs

2 + cstst+ cs3s
3 + cψψ, (2.17)

where s2 = sijsij, s
3 = sijsjlsli and st = sijtij, and the shear operators are defined as

ψ = η − 2

7
s2 +

4

21
δ2, sij =

(
∂i∂j
∂2

− 1

3
δij

)
δ, tij =

(
∂i∂j
∂2

− 1

3
δij

)
η, η = θ − δ. (2.18)

In the above bias expansion we also implicitly assume subtraction of mean field values like
⟨δ2⟩.

Despite formal differences, the bias schemes in LPT and EPT can in fact be mapped
to one another via the appropriate linear transformations of the bias parameters (see e.g.
refs. [69, 310]). Indeed, these two approaches are a subset of a more general scenario in
which the response of tracer formation to the large-scale structure is local in space but not in
time, requiring us to take into account the evolution of the density field in the neighborhood
around a tracer’s trajectory; fortunately, these time-dependent responses have been shown to
be perturbatively factorizable and equivalent to either LPT or EPT [332, 109, 4]. For our
purposes, at one loop we have that the rotation5 between the Lagrangian and Eulerian bases
can be accomplished by (see e.g. ref. [109])

c1 = 1 + b1

c2 = b2 +
8

21
b1, cs = bs −

2

7
b1

c3 = b3 + ab1 (2.19)

4Throughout this chapter we will adopt the notation cn for Eulerian bias coefficients bEn .
5In performing this rotation we have implicitly assumed that the contributions from c3 and b3 degenerate

with linear bias have been removed.
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where we have used b and c to distinguish between the Lagrangian and Eulerian bias
parameters, respectively, and a is a constant depending on which third-order bias parameter
one chooses. For instance, choosing the third order operator to be st = sijtij we obtain
cst = bst +

1
3
b1. Beyond being necessary to complete the correspondence between LPT and

EPT, these bias mappings can also be of practical use; for example there is some evidence that
higher order Lagrangian bias is small for halos in N-body simulations and the higher-order
Eulerian bias parameters are generated primarily by evolution [4, 322]. The Eulerian cn thus
tend towards those predicted by “local” Lagrangian bias, allowing us to set useful restrictions
on the Eulerian biases in EPT analyses.

Derivative Corrections and Stochastic Contributions

In addition to the bias operators discussed in the previous subsection, one also needs to
consider terms from the derivative expansion and contributions arising purely from the
coupling of short modes (stochastic contributions). In this chapter, we follow the standard
approach in the literature (see, e.g., ref. [109] for a review) and add the leading order derivative
contributions in the galaxy field of the form (∂/k⋆)δ (in the appropriate coordinates for
LPT and EPT). In the power spectrum, these terms generically result in contributions of
the form (k2/k2⋆)Plin (or (k2/k2⋆)PZel in case of LPT). In most of the velocity moment power
spectra, these terms are degenerate with the counterterm contributions at one-loop order.
We explicitly account for these in each of the moments discussed below and finally combine
them in the redshift space power spectrum.

Stochastic contributions, in the RSD power spectrum as well as velocity moments, can
come in two forms. First, we should add the pure noise field ϵ to our density expansion,
which captures the galaxy field component uncorrelated with the long density fields and
is characterized by scale-independent autocorrelations (shot noise). The second type of
stochastic contributions appear as small-scale counterterms of the contact velocity correlators
of the form ⟨vn(x)⟩ that feature prominently in the higher velocity moments. These terms
are traditionally labeled as “Finger of God” terms [190]. They reflect the non-linear structure
of the redshift space mapping, encapsulating the feedback of small-scale (non-perturbative)
velocity modes on the correlators on large scales.

It is important to note that ‘perturbative’ operators carry the bulk of the cosmologi-
cal dependence, while stochastic terms mostly parameterize the part of the signal that is
decorrelated with the linear density fluctuations and consequently with the initial conditions.
Thus, once stochastic parameters dominate, it can be taken as an indication that little
cosmological signal is left to be extracted from these scales. However, it is important to
distinguish between pure stochastic terms, such as shot noise, and FoG-like contributions
due to stochastic velocities; the latter behave like counterterms with shapes that depend
nontrivially on large-scale modes. Similarly, higher derivative terms can show a significant
correlation with long-wavelength fluctuations and thus, in principle, can also carry cosmo-
logical information. However, heavy reliance on these terms can, in practice, lead to many
approximate degeneracies and thus can quickly reduce the amount of information available
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from the scale dependence of the correlations of interest. In the rest of this section, we shall
see how velocity moments exhibit this behavior, with higher moments displaying stronger
reliance on stochastic and derivative contributions.

2.4.2 Velocity Correlators in LPT and EPT

Having reviewed the essential ingredients of LPT and EPT, our goal in this subsection is to
provide expressions for the pairwise velocity moments at one loop in both formalisms. In
LPT, these can be naturally computed as derivatives of the generating functional in Equation
2.3, which can be written as

M(J,k) =
k3

2π2

∫
d3q eik·q ⟨F (q1)F (q2) e

ik·∆+iJ·∆̇⟩q=q1−q2
, (2.20)

where ∆ = Ψ1 −Ψ2 and ∆̇ is its time derivative, and which has the additional benefit that
derivatives with respect to J are automatically Galilean invariant. In EPT, on the other
hand, the pairwise velocity moments are most straightforwardly computed by decomposing
them into density-velocity correlators

PLL′(k, µ) ≡
〈(

1 + δ
)
∗ uLn̂

∣∣∣
(
1 + δ

)
∗ uL′

n̂

〉′
, (2.21)

where, for brevity, we introduce the primed expectation values to denote expectation values
with Dirac delta function dropped and a bar notation to indicate the arguments, i.e. ⟨A|B⟩ ≡
⟨A(k)B(k′)⟩ = (2π)3δD(k+ k′) ⟨A(k)B(k′)⟩′. Working at one loop in perturbation theory
yields non-zero zeroth through fourth velocity moments, which we will now describe in detail.

Zeroth Moment: Power Spectrum

In LPT, the zeroth moment pairwise velocity spectrum, i.e. the real-space power spectrum
P (k), is given by

P (k) =

∫
d3q eik·q e−

1
2
kikjA

lin
ij

{
1− 1

2
kikjA

loop
ij +

i

6
kikjkkWijk

+ 2ib1kiUi − b1kikjA
10
ij + b21ξlin + ib21kiU

11
i − b21kikjU

lin
i U lin

j

+
1

2
b22ξ

2
lin + 2ib1b2ξlinkiU

lin
i − b2kikjU

lin
i U lin

j + ib2kiU
20
i

+ bs(−kikjΥij + 2ikiV
10
i ) + 2ikib1bsV

12
i + b2bsχ+ b2sζ

+ 2ib3kiUb3,i + 2b1b3θ + αPk
2 + ...

}
+R3

h. (2.22)

The “1” in the first line gives the (linear) Zeldovich prediction [431] for matter power spectrum
PZel. The first line gives the one-loop matter power spectrum in LPT, while the second to
fifth lines give contributions successively including the linear, quadratic, shear and third-
order biases. The final line also includes a counterterm, αPk

2 and stochastic term R3
h. The
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Figure 2.4: Fits to zeroth (P (k), top left), first (v(k), bottom left), and second (σ, right column) halo
pairwise velocity moment spectra measured from simulations (gray points) in one-loop Lagrangian
perturbation theory (blue) for the fiducial mass bin and redshift. The second moment is split into
its monopole and quadrupole for ease of presentation. The contributions from sequentially adding
linear bias (orange), nonlinear bias (green) and counterterms (red) are also shown as separate
curves. The full model (blue) differs from the red curves by stochastic contributions (though they
are identical for σ2, for which we do not include any stochastic corrections in the lower right panel).
We do not include the separate contributions to the power spectrum as the stochastic contribution
contributes significantly at all scales. Our model fits these velocity statistics at the percent level
out to k = 0.25hMpc−1, except for σ2 which is only fit to around k = 0.1hMpc−1 (see text for
discussion).
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Figure 2.5: Same as Figure 2.4 but for EPT. Note that, in the lower right panel, there is almost no
(numerical) difference between the green and blue lines, the former of which differs from the full
prediction of EPT by a counterterm; we have not included any stochastic contributions in σ2.

Lagrangian correlators due to third-order bias Ub3 and θ are defined in Appendix B.2.1; the
other various Lagrangian-field correlators (e.g. Ui, Aij,Wijk etc.) are defined6 in [231, 229, 58,

399, 396] and tabulated in Appendix A.3. Some quantities, such as Ui = U lin
i +U loop

i , contain
contributions at both linear and one-loop levels, which we will use the “lin” and “loop” sub-
or superscripts to denote when separated.

Lagrangian perturbation theory in principle includes a much larger set of effective contri-
butions [290, 399] — including derivative bias b∇ [396] — however, all of these contributions
to the real-space power spectrum are proportional to k2PZel(k) at one-loop order (counting αP
as itself first order), so we will summarize their effect by one counterterm only. Finally, the
autocorrelation of the stochastic modes gives a “shot-noise” contribution R3

h ∼ n̄−1, where n̄
is the number density of tracers [234, 280, 109].

6Note that there is an erroneous factor of two in the expression for V 10 in Eq. D.17 of ref. [396] . The
correct prefactor should be −q̂i/7 not −2q̂i/7.
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In EPT, on the other, hand we have

P (k) = c21Plin(k) +

∫

p

[
2c21
[
F2(p,k− p)

]2
+ 2c1c2F2(p,k− p)

+ 4c1cs F2(p,k− p)S2(p,k− p)

+
c22
2
+ 2c2csS2(p,k− p) + 2c2s

[
S2(p,k− p)

]2
]
Plin(p)Plin(|k− p|)

+ 6c1Plin(k)

∫

p

(
c1F3(p,−p,k) + c3Sψ(p,−p,k)

)
Plin(p) + c

(0)
0

k2

k2∗
Plin(k)

+ s0 . (2.23)

Many of the third order bias operators listed in Equation 2.17 do not contribute explicitly to
the one-loop power spectrum, and only one non-vanishing independent contribution remains.
The details of the EPT derivations for this and the velocity statistics below are given in
Appendix B.2.2. In addition, in EPT an explicit IR-resummation is required to tame the
effects of long-wavelength modes, which is described in Appendix B.2.4 for all velocity
moments and implicitly performed in all our EPT results.

In addition to the “deterministic” bias parameters there is one counter term (with

coefficient c
(0)
0 ) that is required to regularize the one-loop, P13-like terms and is degenerate

with the derivative bias contribution. In general, for counterterm we will use the c
(ℓ)
n thus

notation taking into account that different angular dependence can have different counterterm
contributions. In addition to these terms there is a constant shot noise contribution obtained
by correlating the purely stochastic component of the halo field with itself (labeled s0 in the
above).

Fits to the power spectrum extracted from N-body data, along with fits for other velocity
statistics using a single, consistent set of bias parameters, are shown in Figures 2.4 and 2.5.
As shown in the top-left panels of the two figures, both LPT and EPT provide good fits to
the data past k ∼ 0.25hMpc−1, beyond which the shot noise accounts for an increasingly
large share of the total power, reaching more than 35% of the total power by k = 0.2hMpc−1.
Setting the third-order Lagrangian parameter b3 = 0, as discussed in Section 2.4.1, does not
qualitatively change our results.
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First Moment: Pairwise Velocity Spectrum

The pairwise velocity spectrum, the Fourier transform of vi(r) ≡ Ξi(r), is given in LPT by7

vi(k) =

∫
d3q eik·q e−

1
2
kikjA

lin
ij

{
ikjȦji −

1

2
kjkkẆjki

+ 2b1U̇i + 2b21ikjU
lin
j U̇ lin

i +
(
2ib1kkU

lin
k + b21ξlin

)
ikjȦ

lin
ji + 2ib1kjȦ

10
ji + b21U̇

11

+ 2
(
ib2kjU

lin
j + b1b2ξlin

)
U̇ lin
i + b2U̇

20 + 2bs(V̇
10
i + ikjΥ̇ji) + 2b1bsV̇

12
i

+ 2b3U̇b3,i + αvki + ...
}
+R4

hσ̃vki. (2.24)

The dots indicate time derivatives in the displacements, which appear because we have moved
on from pure density statistics to velocities; this notation has been previously used in refs. [405,
396], and we give a comprehensive list of these time derivative terms in Appendix B.1 as
they will be ubiquitous in our discussion of velocity statistics in LPT. In Equation 2.24
again the first two lines give the matter and density bias contributions, while the third line
contains contributions due to shear bias and an effective correction ∼ αvkiPZel. The latter
regulates, for example, UV sensitivities in Ȧij = ȦLPT

ij + ᾱvδij + · · · and is contracted with
the wavevector ki in the velocity spectrum. By symmetry, vi(k) must be imaginary and point
in the k direction, so we can decompose it as vi(k) = iv(k)k̂i. Explicit expressions for v(k),
written as a sum of Hankel transforms, are provided in Appendix B.6.

As in the case of the power spectrum, while there are in principle several more counterterms
and derivative bias contributions in addition to the one indicated (e.g. ∼ ⟨∆̇i∇2δ⟩ or ⟨∇iδ1δ2⟩),
all such contributions Fourier transform to ∼ kiPlin(k) at lowest order and as such we account
for them using only one effective correction, αv. The final term, R4

hσ̃vki, is the leading order
stochastic contribution due to the correlation between the stochastic density and velocity,
⟨ϵ(q1)ϵi(q2⟩ ∼ R3

hσ̃v∇iδD(q) [280, 109], which can be approximated as a Dirac-δ derivative
on large scales.

Similarly to the density auto power spectrum, in EPT we have contributions from all the

7Note that our expression for term proportional to bs differs from that in ref. [396] by a factor of two.
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bias operators introduced previously. We have

vi(k) =− 2ic1
ki
k2
Plin(k)

− 2i

∫

p

[
ki
k2

(
2c1F2(p,k− p) + c2 + 2csS2(p,k− p)

)
G2(p,k− p)

+
pi
p2

(
2c21F2(p,k− p) + c1c2 + 2c1csS2(p,k− p)

)]
Plin(p)Plin(|k− p|)

− 2iPlin(k)

∫

q

[
3
ki
k2

(
c1F3(p,−p,k) + c1G3(p,−p,k) + c3Sψ(p,−p,k)

)

+ 2c21

( pi
p2
F2(p,−k) +

(k− p)i
(k− p)2

G2(p,−k)
)]
Plin(p)

]

− ic
(0)
1

k̂i
k2∗
Plin(k) + s1ki · · · (2.25)

where c
(0)
1 is the coefficient of the counterterm, and the s1 is the leading stochastic velocity

contribution.
A comparison to v(k) from N-body data is shown in the bottom-left panels of Figure 2.4

and 2.5. Both formalisms give a good fit to the data past k = 0.2hMpc−1, though as
noted in Section 2.2, comparing the theory to the N-body data at large scales suggests that
the simulations slightly under-predict velocities (by one or two percent). The stochastic
contribution accounts for a significant fraction of the power in both fits at high wavenumber
(k > 0.1hMpc−1) that cannot be accounted for by the other bias parameters or counterterms.
Not fiting for it leads to oscillatory residuals due to a mismatch between the BAO and overall
broadband amplitude.

Second Moment: Pairwise Velocity Dispersion Spectrum

The pairwise velocity dispersion spectrum, Ξij ≡ σ2
12,ij, is given in LPT by

σ2
12,ij(k) =

∫
d3q eik·qe−

1
2
kikjA

lin
ij

{
Äij + iknẄnij +

(
2ib1knU

lin
n + b21ξlin

)
Älin
ij

− knkmȦ
lin
ni Ȧ

lin
mj + 2(b21 + b2)U̇

lin
i U̇ lin

j + 2iknb1
(
Ȧlin
ni U̇

lin
j + Ȧlin

nj U̇
lin
i

)

+ 2b1Ä
10
ij + 2bsΫij + ασδij + βσξ

2
0,L

(
q̂iq̂j −

1

3
δij

)
+ · · ·

}
+R3

hs
2
vδij. (2.26)

The velocity dispersion spectrum can be decomposed into a number of possible bases such
as the parallel-perpendicular basis, σ2

ij = σ||(k)k̂ik̂j +
1
2
σ⊥(k)(δij − k̂ik̂j), or the Legendre

basis, σij = σ0(k)δij +
3
2
σ2(k)(k̂ik̂j − 1

3
δij). These scalar components, expressed as Hankel

transforms, are detailed in Appendix B.6.
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Unlike the zeroth and first moments, the second moment (σ2
ij) requires two counterterms:

ασ and βσ. The latter contribution is proportional to the j2 Hankel transform of the linear
power spectrum, ξ20,lin (Appendix B.5), and cancels UV sensitivities in the non-isotropic

component of A1-loop
ij . These contributions can alternatively be parametrized as counterterms

∼ α0Plin(k) and α2Plin(k) to the velocity-dispersion monopole (σ0) and quadrupole (σ2),
respectively. Finally, we include an isotropic stochastic contribution R3

hs
2
vδij. Such a term

can, for example, arise from the disconnected part of the second moment

σ2
12(k) ∋

∫
d3r eik·r σ2

vδij⟨(1 + δ1)(1 + δ2)⟩ = σ2
vPNL(k) δij ∋ σ2

vR
3
hδij (2.27)

where σ2
v is a contact term coming from evaluating the average velocity squared at a point

and PNL is the full nonlinear real-space power spectrum including a constant stochastic
contribution R3

h (selectively resumming only these terms yields the exponential damping
formula for FoG). Our treatment of this stochastic contribution differs from much of the
literature [280, 109]; this is of no consequence when fitting the redshift-space power spectrum,
since its contribution there is degenerate with that of the stochastic component to v(k), but
makes a signficant difference when studying pairwise velocities on their own.

It is useful to note the relations between the parameters for σ12 in Fourier and configuration
space, the latter as presented in ref. [396]. While the bias contributions are identical, up to
Fourier transforms, there are important differences in the counterterms and bias parameters.
Firstly, the corresponding expression for the pairwise velocity dispersion in configuration
space contains two isotropic counterterms in the curly brackets {· · · } in Equation 3.10 of
ref. [396], corresponding to our Equation 2.26. These are Aσδij +Bσξlinδij , which both result
at lowest order in contributions to σ2

12(r) proportional to the linear correlation function ξlin,
and thus in Fourier space to a counterterm ∝ Plin(k). For this reason, in Fourier space
we have chosen to summarize them using one counterterm ασ. However, we note that the
constant counterterm proportional to δij stems in part from the contribution of small-scale
velocities to the q → ∞ limit of σ12, which shows up as a point-contraction of the stochastic
velocities

⟨(1 + δ1)(1 + δ2)∆ui∆uj⟩ ∋ σ2
ϵ δij (1 + ξ(r)). (2.28)

Roughly speaking, this σ2
ϵ is the asymptotic value for the stochastic component of the

halo velocity σϵ,ij = ⟨∆ϵi∆ϵj⟩ at scales q > Rh above the halo scale. This contribution to
the configuration-space velocity dispersion is closely related to the Fourier-space stochastic
contribution R3

hs
2
v to σ2

12(k), which is just the large scale (k ≲ R−1
h ) limit of the Fourier-

transform of σ2
ϵ . There are therefore two free parameters in σ2

12 characterizing isotropic
effective and stochastic contributions in both real and Fourier space; if in addition the fit
is performed in both spaces, it is important to note that the counterterms in configuration
space sum to that in Fourier space, i.e. ασ = Aσ +Bσ, while s

2
v remains independent, leaving

us with three parameters total. This may be especially relevant in predicting statistics for
upcoming kSZ surveys.

Moving on to the EPT formulation of the velocity dispersion correlators, we find only up
to second order bias parameters contributing to the velocity dispersion (c.f. the density auto



CHAPTER 2. REDSHIFT-SPACE GALAXY CLUSTERING I 57

power spectrum and pairwise velocity spectrum). This is consistent with our LPT analysis.
In EPT we have

σ2
12,ij(k) = −2

kikj
k4

Plin(k) (2.29)

− 2
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∫
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+
pi
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G2(−p,k) +
kipj
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F2(−p,k)
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Plin(p)

+ 2c21Plin(k)δ
K
ij σ

2
lin − 2

(
c
(0)
2 δKij + c

(2)
2

kikj
k2

)
1

k2∗
Plin(k) + s2δij,

where c
(0)
2 and c

(2)
2 are two counterterm coefficients corresponding to different angular depen-

dency, σlin is the linear velocity dispersion, and we have one isotropic stochastic contribution,
s2.

Fits of LPT and EPT to σ0,2 are shown in the right column of Figures 2.4 and 2.5. While
both theories give an excellent fit to σ0 to similar scales as the real-space power spectrum,
the fit to σ2 is only good up to k ∼ 0.1hMpc−1 in LPT. As we will discuss in more depth
in Section 2.4.3, this is partly due to particularities of the resummation scheme in LPT,
which keeps all linear displacements exponentiated. In principle, this could be somewhat
mitigated by adopting an alternative IR-resummation scheme or considering higher order
corrections in the current scheme. However, such a strategy would require some changes in
the formalism above, and the overall effect on the redshift space power spectrum due to these
differences in σ2 is negligible. Thus we shall not pursue this strategy. We also note that the
fit to σ2 on large scales suggests that the velocities in the N-body simulations are somewhat
underpredicted compared to theory8, consistent with our expectations of their systematic
error.

8The fit to σ0 is less succeptible to this systematic due to a floating stochastic contribution to its
amplitude.
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Higher Moments

Finally, let us give expressions for the third and fourth moments despite them not figuring
prominently in our redshift-space model. In one-loop LPT these are given by

γijk =

∫
d3q eik·q−

1
2
kikjAij

{ ...
W ijk + iklȦ

lin
l{iÄ

lin
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{i Ä
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k{iδjk}
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kikjkk
k4

}

κijkl =

∫
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1
2
kikjAij

{
Älin

{ijÄ
lin
kl} + ακ

k{ikjδkl}
k4

}
+R3

hs
4
κδ{ijδkl}. (2.30)

We see that at this perturbative order only the b1 bias parameter contributes to the third
velocity moment, while the fourth moment has purely velocity contributions and does not
depend on deterministic bias parameters. The expressions above also require the necessary
counterterms and stochastic contributions, together with the pure FoG contributions.

In EPT, at one-loop, we equivalently have contributions to both third and fourth velocity
moments. For the third moment we have

Ξ̃
(3)
ijl = 12i

∫

p

(
k{ipj(k− p)l}
k2p2(k− p)2

G2(p,k− p) + c1
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while the fourth velocity moment is given by

Ξ̃
(4)
ijlm = 12

∫
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p{ipj(k− p)l(k− p)m}

p4(k− p)4
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We note that the structure of these velocity moments in LPT and EPT is quite similar, with
equivalent counterterm and stochastic contribution structure. Further details of the one-loop
EPT contributions to higher moments are discussed in Appendix B.2.2.

2.4.3 Comparing LPT and EPT

In the previous section, we described the predictions for the pairwise velocity moments within
two formalisms, LPT and EPT, at one-loop in perturbation theory. A comparison of Figs. 2.4
and 2.5 shows that LPT and EPT both perform comparably well for the power spectrum,
once IR resummation is taken into account. The pairwise velocity and velocity dispersion
monopole likewise show a similar level of agreement for both LPT and EPT. Note however,
that in the latter spectrum essentially all of the power at k > 0.1hMpc−1 comes from the
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counterterm and stochastic contributions in EPT, unlike in LPT where the contributions due
to large-scale modes and deterministic bias qualitatively match the spectral shape. In both
cases the power due to stochastic contributions (shot noise) becomes increasingly significant
towards the highest ks plotted, with the models correctly accounting for the mild non-linearity
at intermediate k. However, significant differences appear in the predictions of LPT and EPT
for the second moment, σ2

12, particularly in the broadband shape of the quadrupole, σ2. Our
goal in this section is to compare and contrast the LPT and EPT models described in the
previous sections with these differences in mind.

As we have already noted, the two formalisms are equivalent, term-by-term, when Taylor-
series expanded in powers of the linear power spectrum and differ only in the treatment of
IR displacements, which are canonically included order-by-order in (non-resummed) EPT
but manifestly resummed via the exponential exp(−kikjAlin

ij /2) in LPT. Within LPT, we can
therefore recover analagous EPT results by expanding this exponential— indeed, by splitting
the linear displacements into long and short modes separated by an infrared cutoff kIR we can
recover a spectrum of theories between LPT and EPT. Specifically, writing Alin

ij = A<ij + A>ij,
where the less-than indicates displacement two-point functions calculated by smoothing out
long modes via a Gaussian filter exp(−(k/kIR)

2/2) and the greater-than denotes all the
remaining power, we have generically for velocity moments

Ξ̃(n)(k) =

∫
d3q eik·q−

1
2
kikjA

<
ij(q)

(
1− 1

2
kikjA

>
ij +

1

8
kikjkkklA

>
ijA

>
kl +O(P 3

lin)
){

· · ·
}
. (2.33)

where the {· · · } indicate the terms in curly brackets in Eqs. 2.24 and 2.26. Taking kIR → 0
and keeping the product of the round and curly brackets to second order yields one-loop
EPT. This implies that the differences between the LPT and EPT predictions for the velocity
moments, and σ2

12 in particular, in both BAO wiggles and broadband shape must be due to
the selective resummation of Aij, i.e. to differences at ≥ 2-loop order.

Let us briefly mention a technical detail in the above mapping between EPT and LPT.
In addition to expanding the linear displacement two-point function Aij, in order to make
the low kIR limit of LPT agree with EPT, one needs to use the bias-parameter mapping
in Equation 2.19. A useful feature of this mapping is that, while LPT contains the same
number of bias parameters as EPT, the contributions of these biases to various statistics
are organized rather differently. For example, since c21 = 1 + 2b1 + b21, the ‘1’ term in LPT
is equal to the c21 term and the b1 term is twice the c21 term at leading order. We can take
advantage of these differences to, for example, compute the third-order bias contribution in
EPT using those from the biases in LPT up to second order alone. Specifically, we can write
for the third-order bias contribution to the power spectrum

aPc1c3 = 2Pb21 − Pb1 −
8

21
Pb1b2 +

2

7
Pb1bs +O(P 3

lin) (2.34)

and similarly for the third-order bias contribution to v(k):

avc3 = vb1 − v1 − vb21 −
8

21
(vb2 − vb1b2) +

2

7
(vbs − vb1bs) +O(P 3

lin). (2.35)



CHAPTER 2. REDSHIFT-SPACE GALAXY CLUSTERING I 60

0.00 0.05 0.10 0.15 0.20 0.25
k [h/Mpc]

500

400

300

200

100

0

= 2

kIR =  0.05
kIR =  0.10

LPT
EPT

0.00 0.05 0.10 0.15 0.20 0.25
k [h/Mpc]

150

100

50

0

50

100

150

k3
 [(

M
pc

/h
)3 ]

= 0

Figure 2.6: The monopole (ℓ = 0) and quadrupole (ℓ = 2) of σ212(k) predicted by 1-loop PT (Eq. 2.33)
for several cutoffs, kIR, using a “no-wiggle” version of our fiducial power spectrum. The amplitude
of σℓ at high k is strongly affected by the choice of IR resummation in Eq. 2.33, indicating that
2-loop contributions may be important for density-weighted velocity dispersion.

We have checked these identities numerically.
To look at the effects of IR resummation, let us begin with the broadband. Figure 2.6

shows the monopole and quadrupole of the second moment σ2
12 for a range of cutoffs, kIR,

computed using a no-wiggle version of our fiducial power spectrum, which we use in this
section only to isolate broadband effects. As expected, the EPT prediction is recovered in the
limit of vanishing kIR, while LPT represents the kIR → ∞ limit. It is notable that the two
limits predict dramatically different broadband shapes at even intermediate wavenumbers. For
example, EPT predicts the monopole to have close-to-vanishing power at k ∼ 0.2hMpc−1,
where LPT predicts k3σ0 to have significant power increasing with k; conversely, EPT
predicts a more significant (more negative) quadrupole compared to LPT. These differences
are particularly noteworthy because LPT shows excellent agreement with the σ0 measured
from simulations while under-predicting σ2 at small scales (Fig. 2.4), and conversely for EPT
(Fig. 2.5), where essentially all of the power at k ≃ 0.1hMpc−1 and beyond in σ0 is accounted
for by the stochastic and counterterms.

In addition to the above, EPT and LPT also make different predictions for the BAO
feature. In Figure 2.7 we have plotted P (k), v(k) and the monopole and quadruopole of
σ2
12 with smooth broadbands—estimated using a Savitsky-Golay filter9—subtracted off. The

blue and orange lines show the predictions of LPT and EPT modulo a quartic polynomial
in k which we fit to the data. Evidently, the IR resummation inherent in one-loop LPT

9We use a quintic filter linear in k with width of 0.25hMpc−1, but note that our results are relatively
robust to this choice as we are only concerned with the oscillatory components, modding out any residual
broadband with a smooth polynomial fit.
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Figure 2.7: Oscillatory component of the real-space power spectrum (top left), pairwise velocity
spectrum (top right) and the monopole and quadrupole (bottom left and right) of the velocity
dispersion spectrum σ212 in LPT and EPT compared to N-body data (dots). The smooth component
subtracted from the data is computed using a Savitsky-Golay filter, and the theory signals are
supplemented with a quartic polynomial in k to improve agreement with the broadband-subtracted
data. While the power spectrum and pairwise velocity show excellent agreement between LPT and
EPT even when the fitted independently, the oscillatory signals in the velocity dispersion spectra
differ significantly, with EPT underdamped compared to LPT. Notably, unlike in the lower velocity
moments the dominant oscillations in σ212 are due to one-loop effects, whose damping seem to be
more naturally captured by the IR-resummation in LPT when compared to data (black dots).
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provides and excellent description for the oscillatory component in the second moment, while
the resummation scheme we have employed for EPT underpredicts the requisite nonlinear
damping. On the other hand, the upper two panels show that the two formalisms produce
far better agreement for both the zeroth and first moments. This is likely in part due to the
dominance of the one-loop b1 contributions noted in the previous paragraph, which account
for most of the oscillatory signal shown in both panels; indeed, we note that the (significantly
smaller) damped linear BAO wiggles are more-or-less exactly out of phase with the nonlinear
wiggles shown [22, 50, 278, 185].

The size of the one-loop terms and the divergence between one-loop LPT and EPT at
even intermediate k for σ2

12 can heuristically be used to gauge the magnitude of higher-order
(≥ 2-loop) corrections, and suggests that density-weighted pairwise velocity statistics may be
significantly more nonlinear than the density-only real-space power spectrum. For example,
direct inspection of bias contributions to σ2 indicates that while the leading-order contribution
is due to matter velocities only, the largest numerical contribution comes from b1 at one loop.
Indeed, at k = 0.1hMpc−1 the one-loop σ2 predicted by our EPT model has 50% extra power
compared to linear theory and 100% by k = 0.15hMpc−1. In this case the level of agreement
between the 1-loop EPT and N-body results suggests that the two-loop contributions happen
to be small for ΛCDM power spectra of the amplitude we consider, so that the additional
contributions included in the IR resummation by LPT are worsening the agreement with
the N-body results. We have been unable to find a symmetry that would explain why the
2-loop contribution to σ2 should be small, so it could be that this is a numerical coincidence
where 1-loop EPT is ‘accidentally’ performing better than expected for this particular power
spectrum shape and normalization. Indeed, for σ0 the one-loop terms in EPT — which are
dominated by the stochastic and counterterms — account for a 100% difference compared
to linear theory by k = 0.1hMpc−1, suggesting that velocities at even these intermediate
scales are subject to large nonlinearities. As suggested by Fig. 2.3, and we discuss further
below, a detailed modeling of σ2 is not necessary in order to obtain an accurate measure of
the redshift-space power spectrum, P (k, µ), so we have not attempted to further improve the
performance of either LPT or EPT for this statistic.

Before leaving the velocity statistics and turning to the redshift-space power spectrum,
it is worth noting that our results have direct implications for the use of velocities (either
from peculiar velocity surveys or kSZ measurements) as cosmological probes. In particular,
the relative size of the perturbative contributions (green lines in Figs. 2.4 and 2.5) and the
stochastic or counter terms (blue lines) can be taken as a proxy for where cosmological
information dominates over small-scale information (e.g. about astrophysics). For σ2

ij, in
particular, it appears that the cosmological information is confined to reasonably small k,
which argues that high resolution observations of this statistic will not be necessary if the
goal is inference about cosmological parameters.
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Figure 2.8: A comparison of the halo power spectrum wedges (0.0 < µ < 0.2, · · · , 0.8 < µ < 1.0)
measured in the N-body simulations (points) to the predictions from PT models where the first
two velocity moments are calculated using LPT (left) and EPT (right) and the third moment is
approximated using a counterterm ansatz (lines; Eq. 2.36). The upper panel shows the measurements,
while the lower panel shows the fractional differences. We have chosen to show the 12.5 < lgM < 13.0
mass bin at z = 0.8 though the other masses and redshifts behave similarly. The dashed lines show
the PT contributions excluding the n = 3 counter term, while the solid lines show the results of the
full model. Note the addition of these terms significantly improves the model for high µ while the
improvement is much more modest for low µ.

2.5 All Together Now: the Redshift-Space Power

Spectrum in PT

Sections 2.3 and 2.4 examined the convergence of velocity expansions for the redshift-space
power spectrum and how the required velocities can be computed using perturbation theory;
in this section we combine these ingredients to produce a model of the redshift-space power
spectrum based on 1-loop perturbation theory.
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Figure 2.9: A comparison of the halo power spectrum multipoles measured in the N-body simulations
(points) to the predictions from our LPT (left) and EPT (right) models (lines; Eq. 2.36). The upper
panel shows the measurements, while the lower panel shows the fractional difference. The dashed
lines show the PT contributions excluding the n = 3 counterterm, while the solid lines show the
results of the full model. Note the addition of these terms significantly improves the model for ℓ > 0,
even more dramatically than in Fig. 2.8. In interpreting these differences it is important to bear in
mind that the N-body data contain systematics that can bias results at the few-percent level—indeed
it clearly under-predicts the quadrupole by around 2% around k = 0.05hMpc−1 compared to both
LPT and EPT— and that for any observation the error on the quadrupole and hexadecapole are
dominated by the monopole contribution and are therefore fractionally much larger than for the
monopole— hexadecapole errors are not plotted in the bottom panel for this reason.

2.5.1 Comparison for halos

Figures 2.8 and 2.9 show the PT predictions for the redshift-space power spectrum wedges and
multipoles using the bias parameters, counterterms and stochastic contributions determined
from the fits in Figs. 2.4 and 2.5, together with the moment expansion approach. Figure 2.8
demonstrates that these parameters give an excellent fit, agreeing with the data at the percent
level even for the highest µ wedges. It is worth noting that the redshift-space distortions
captured by the quasilinear velocities is highly nontrivial, and a naive multiplication of the
real-space power spectrum by the factor (b+ fµ2)2 yields P (k, µ) that is 5% away from the
data even at k = 0.1hMpc−1 and µ = 0.5.

Figure 2.9 tells a similar story to Fig. 2.8, though with some caveats. The monopole, P0,
remains well-fit by both the LPT and EPT models. The same is not true of the quadrupole,
which is both noisier and possibly biased. However, recall there is some evidence that the
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simulations with derated timesteps may not be converged. Indeed, the data quadrupole for
k < 0.1hMpc−1 suggests that the simulations under-predict the value of velocities by around
two percent compared to perturbation theory. For such k the best fitting LPT and EPT
models are in excellent agreement, being dominated by linear theory, but differ visibly with
the N-body quadrupole (the contribution of the monopole to each wedge reduces the visibility
of this effect substantially in Fig. 2.8). As mentioned earlier, we cannot rule out a systematic
error in the N-body simulations of several per cent and so we take this difference as a rough
estimate of the size of the systematic error in P2.

The only remaining free parameter in our model once the power spectrum and first two
velocity moments are fit is the coefficient of the counterterm ∝ k2µ4P (k), which we argued
at the end of Section 2.3 was a good stand-in for the higher-order velocity statistics not
explicitly included in our model. Indeed the input value, which we fit by eye, is comparable in
magnitude to the contribution from the dipole of the third moment divided by the linear power
spectrum. In the spirit of perturbation theory, our philosophy in adjusting this parameter
was to increase agreement at low k and µ rather than minimize errors across the board, even
at high µ where the convergence of the velocity expansions is poor. The model without this
counterterm is shown in the dashed lines. Absent this counterterm our model still describes
the power spectrum wedges with µ ≤ 0.5 at the percent level out to k = 0.25hMpc−1, with
errors rapidly growing towards higher µ such that µ = 0.7 is 5% off at a similar wavenumber;
however, the strong angular dependence of the errors means that the quadrupole is more than
10% away from the data at k = 0.25hMpc−1. This validates our approach of modeling the
redshift-space power spectrum using perturbative models of the first two velocity moments
together with the counterterm ansatz for the third moment.

It is important to note, however, that many of the velocity parameters are degenerate
for analyses of the redshift-space power spectrum only. In the moment expansion, all the
one-loop counterterms in the velocity statistics ultimately take the form k2µ2nPZel(k) [or
k2µ2nPlin(k)] at leading order when combined to form the power spectrum. For example,
both the counterterm for σ2 and the third moment take the form k2µ4P (k). Similarly, the
stochastic contributions will tend to contribute as (kµ)2n. Within the moment expansion we
can thus write

PME
s (k) =

(
P (k) + i(kµ)v12,n̂(k)−

(kµ)2

2
σ2
12,n̂n̂(k) + ...

)PT

+
(
α0 + α2µ

2 + α4µ
4 + · · ·

)
k2Plin,Zel(k) +R3

h

(
1 + σ2

v(kµ)
2 + · · ·

)
, (2.36)

where (...)PT refers to contributions due only to large scale gravitational dynamics and
nonlinear bias parameters computed in either EPT or LPT (with the k2Plin,Zel being the
linear or Zeldovich power spectra in each case, respectively). This leads to a redshift-space
power spectrum with 9 free parameters (4 bias, 3 counterterms, 2 stochastic) with a similar
structure of effective corrections as found in the EPT analyses of refs. [96, 186]10 . If the
corrections due to third-order bias (b3, c3) can be set by assuming the Lagrangian bias b3 = 0,

10Indeed, Equation 2.36 is equivalent, up to details of IR resummation and choices of marginal EFT
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as noted in Section 2.4.1, then this is reduced to 8 free parameters. On the other hand, if we
wish to include the full one-loop expressions for the third and fourth moments, which possess
their own effective and stochastic corrections, two additional non-degenerate parameters
are needed, bringing the total up to 11. The aforementioned degeneracy is less manifest
in the Fourier streaming model due to the nonlinear composition of the cumulants (and
similarly in the configuration-space Gaussian streaming model); however, due to the high
degree of quantitative agreement between the ME and FSM expansions at the data level,
the various counterterms and stochastic contributions will nontheless be highly degenerate,
and as such should not all be fit. Indeed, it should be sufficient to expand these effective
contributions as in Equation 2.36, though doing so will break the structure of the streaming
model, strictly speaking. Finally, while our model for P (k, µ) includes five free parameters
for counterterms and stochastic effects a condensed set of terms can be used if fitting to
more restricted summary statistics. For example, since the counterterms are of the form
k2µ2nPlin,Zel(k) they contribute to each multipole proportional to k2Plin,Zel. When fitting only
the monopole and quadrupole (as in refs. [186, 96, 88]) one should fit only for two summary
contributions Pℓ,ct = αℓk

2PZel, though doing so necessarily obscures some of the structure in
P (k, µ) which is poorly fit using only two counterterms. On the other hand, since we include
only two purely stochastic terms, nondegenerate in their contribution to the monopole and
quadrupole, they can be separately included even when fitting only for those two statistics.

In Section 2.4 we noted that the predictions of LPT and EPT for σij differed, and that
they appeared to depend upon higher order contributions. The fact that both the LPT and
EPT models do well at describing P (k, µ) in Fig. 2.8 is thus surprising at first sight. As shown
in Section 2.3 (Fig. 2.3), however, the errors in σ2 are highly suppressed in P (k, µ) except
near µ ≈ 1 and so this theoretical uncertainty is subdominant when predicting redshift-space
clustering. Furthermore, for realistic galaxy samples we expect the role of stochastic velocities,
i.e. fingers of god, to be even more significant than the halo sample studied in the figures
above; these velocities further increase the role of the monopole σ0 relative to σ2. This also
justifies our choice of modeling for σ2, where we do not spend further effort in improving the
LPT and EPT modeling, as was argued in Sec. 2.4.

2.5.2 Comparison for mock galaxies

As a further test of our power spectrum model, in Figure 2.10 we fit our RSD model in
Equation 2.36 on the mock sample of galaxies embedded into the N-body data using a halo
occupation distribution as described at the end of Section 2.2. Galaxy samples present a
more realistic and stringent test for our model as they are affected by the virial motions of
satellite galaxies and indeed, fits to the satellite velocity statistics require significantly larger

parameters, to the models in those works, with similar ranges of applicability. Specifically, compared to
ref. [96] we do not including the next-order real-space stochastic correction ∝ k2 but include a counterterm
k2µ6PL to account for UV dependence in the fourth moment, while compared to ref. [186] we include a
superset of 1-loop effective corrections but omit the 2-loop FoG correction in their Equation 3.10, which we
do not require for good fits at the velocity level.
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Figure 2.10: A comparison of the (top) power spectrum wedges (0.0 < µ < 0.2, · · · , 0.8 < µ < 1.0)
and (bottom) multipoles measured for our mock galaxy sample at z ≃ 0.8 (points) to the predictions
from our PT models (lines; Eq. 2.36). The upper panel shows the measurements while the lower
panel shows the fractional differences.
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counterterms (see the discussion around Eq. 2.28) and stochastic contributions, particularly
for the monopole σ0 of the second moment and a slightly reduced range-of-fit (k ∼ σ−1

v )
compared to the halo case. Nonetheless, at the power spectrum level our model fits the power
spectrum wedges P (k, µ) at the percent level at least up to k = 0.25hMpc−1 for all but the
highest µ-bin (µ = 0.9), where unlike in the halo case the suppression of power by random
velocities towards high k is evident and which begins to deviate from our model prediction at
k = 0.15hMpc−1, reaching 3 percent off by k = 0.2hMpc−1. Similarly, our model yields a
significantly sub-percent-level fit to the galaxy power spectrum monopole on perturbative
scales, while the quadrupole begins to deviate around where the highest-µ wedge does at
around k ∼ 0.15hMpc−1. We also checked that, assuming Gaussian covariances and letting
the growth f vary, our model (Equation 2.36) can fit the redshift-space power spectrum
directly to nearly identical, sub-percent precision over a wide range of scales and recover the
growth rate to 1%, consistent with the systematic error of the simulations themselves.

2.5.3 Fingers of God and stochastic terms

Despite the above, the size and structure of stochastic velocities and finger-of-god effects,
particularly for the specific galaxy samples that will be observed by upcoming spectroscopic
surveys, remains one of the biggest limitations of (perturbative) models of redshift-space
distortions. It is thus worth discussing the pros and cons of various approaches to tame
these effects, in particular the effective-theory parametrization of finger-of-god effects in EFT
models such as ours (and those used in refs. [186, 88, 96]) compared to more conventional
FoG models such as [272, 270, 274, 366, 418]. As discussed in ref. [138], the main difference
between these approaches is that traditional11 models assume strict forms for FoG effects
(e.g. exponential or Lorentzian damping) depending on a small set of parameters, while
EFT parametrizations such as ours are restricted only by symmetry arguments and thus
in principle span the entire allowed space of FoG models, such that the former could be
preferred if they well-describe observed FoGs. Assuming specific FoG models necessarily
implies setting strong restrictions on the structure of halo or galaxy velocities at small scales.
For example, in the language of the moment expansion approach, assuming Gaussian damping
∝ exp(−k2µ2σ2

FoG) , as in the TNS model [366], is equivalent to requiring that the effects
of higher-order moments of virial velocities be described by the same paramter, σFoG, as
the lower moments. A similar, but more EFT-minded, approach could be to input these
restrictions as priors (e.g. based on fits to simulations) while enabling fitting the full set of
allowed parameters to a given order. The priors would reduce the statistical impact of the
additional free parameters and a comparison of the posterior to the prior would allow us to
tell if the observed data were in tension with the assumptions. This is especially important
since the velocities of galaxies with complex selections can have significantly more structure
than usually assumed in mock catalogs.

11An intermediate case is represented by ref. [161], who assume a functional form with many free parameters.



CHAPTER 2. REDSHIFT-SPACE GALAXY CLUSTERING I 69

Finally we note that the impact of redshift errors, which also affect the line-of-sight
clustering signal, can be partly compensated by having a very flexible finger-of-god model
such as we have introduced above. If there is reason to suspect that redshifts are not being
accurately estimated in a survey, this could argue for broader priors on these terms than might
otherwise arise just from dynamical studies of galaxy orbits in observations or simulations.

2.5.4 IR resummation

Let us comment on the role of large-scale (IR) displacements in the velocity-expansion
approach to redshift-space distortions. While these large-scale modes have essentially linear
dynamics, their presence results in the nonlinear damping of spatially-localized features such
as baryon acoustic oscillations (BAO) that can be complicated to capture perturbatively in
Eulerian treaments [335]. On the other hand, a convenient feature of Lagrangian perturbation
theory is that it naturally includes a resummation of these bulk displacements, making it
a natural candidate with which to understand the nonlinear damping of the BAO feature
in both real and redshift space [231, 58, 402]. By extension, our LPT calculations of the
real-space velocity moments naturally resums these modes.

However, the combination of these velocity moments into the redshift-space power spectrum
breaks the resummation of IR velocities while keeping the isotropic displacements resummed.
Within the framework of LPT, bulk velocities can be naturally resummed by promoting
Lagrangian displacements to redshift space using matrix multiplication Ψ

(n)
i → R

(n)
ij Ψ

(n)
j =

(δij + fn̂in̂j)Ψ
(n)
j [231]. This transformation takes the exponentiated linear displacements

Aij → RinRimAnm, naturally endowing the resummed exponential with the angular structure
of redshift-space distortions [231, 58]. For example, the isotropic part of Aij = X(q)δij+Y q̂iq̂j ,
given by Σ2(q) = (X+Y/3), becomes multiplied by (1+f(2+f)µ2) under this transformation.
Expanding order-by-order in the velocities as we have done in this chapter, and thus in the
growth rate f , necessarily breaks this structure. The procedure to capture all the IR modes,
including the velocity contributions, in purely LPT framework has been outlined in [398].
We intend to return to that in future work.

In the EPT framework, an approximate but pragmatic way of handling these IR modes
has been developed, relying on the wiggle/no-wiggle split. The essential feature of this IR
resummation procedure is the decomposition and isolation of the wiggle part (caused by
the baryon acoustic oscillations) of linear power spectra, and the damping of oscillatory
components due to the wiggles by an appropriate factor dependent on the IR displacements
to be resummed [22, 402, 50, 112, 185] (details in Appendix B.2.4). This procedure, however,
relies on several approximation steps, from the details of the wiggle/no-wiggle splitting to
ensuring that subleading corrections can be neglected at the order of interest. As highlighted
earlier, and in contrast to EPT, LPT performs the resummation of long displacement modes
directly and does not rely on any of these approximation steps. LPT thus constitutes
a natural environment to understand the various approximation levels undertaken in the
wiggle/no-wiggle splitting procedure, and thus provides the bridge from the direct and exact
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treatment of IR modes to the comprehensive and intuitive picture provided by the simplicity
of the wiggle/no-wiggle splitting result.

These characteristics and differences of the LPT and EPT in the treatment of the IR
modes are highlighted even further once the possible additional, beyond BAO, oscillatory
features of the power spectrum are considered. Such oscillatory features can be produced by,
e.g., primordial physics, and are also affected by the long displacements in a similar manner
to the BAO, exhibiting damping and smoothing that can again be captured by performing
IR resummation [402, 44, 390]. The evident advantage of LPT in this scenario is that this
resummation is performed automatically without the need for further engagement or analysis,
finding saddle points etc.

Despite the incomplete resummation of IR velocities as described above, however, as
shown in Figure 2.8, in Fourier space the velocity expansions are nonetheless able to capture
the anisotropic BAO wiggles to high accuracy. We can attempt to estimate the effects of the
missing bulk contributions to the higher velocity moments as follows. Within the context
of LPT we can write, for example for the lowest-order b21 contribution to the redshift-space
power spectrum [402]

Pb21(k) =

∫
d3q eik·q−

1
2
kikjRinRjmAnm(q)ξlin(q) = e−

1
2
k2Σ2(rs,µ)Pw(k) + Psmooth. (2.37)

Equation 2.37 can be understood as follows: since the linear correlation function ξlin has
a prominent BAO “bump” at rs, it picks out the exponentiated damping factor at q = rs
such that the bump is smoothed by Σ2(rs, µ) = (1 + f(2 + f)µ2) Σ2(rs) in Fourier space,
while the correlation without the bump gets affected smoothly since it has no preferred scale.
The separation into a smooth component and the BAO feature is commonly used in the
literature and known as the wiggle/no-wiggle split [121, 424, 402], but LPT makes an exact
prediction for the damping through the resummation of linear modes at the BAO scale. In
particular, we can now understand how the BAO feature is affected if we neglect the effect of
bulk velocities at nth order in the moment expansion. Noting that the nth velocity moment
contributes to the power spectrum proportional to fn, we can expand the exponential in
Equation 2.37 as

Pw,NL(k) = e−
1
2
k2Σ2

0

[
1− (kµ)2Σ2

0f +
1

2
(−(kµ)2Σ2

0 + (kµ)4Σ4
0)f

2 + · · · )
]
Pw(k) (2.38)

where the coefficients of f and f 2 correspond to contributions from the first two velocity
moments in Equation 2.36. Using the moment expansion to n = 2 is equivalent to Taylor-
expanding in f and keeping only two terms. However, a corollary of the above is that the
damping beyond these terms necessarily scales strongly with µ (and k), making it negligible
for all but the highest µ wedges — and indeed any residual anistropic wiggles in our fits to
the redshift-space power spectrum from simulations must be well within the errors of these
measurements, which are themselves tighter than state-of-the-art spectroscopic surveys like
DESI.
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Nonetheless, while being almost undetectable in Fourier space these errors will accumulate
in configuration space to produce deviations from measurements noticeable by eye, particularly
in the quadrupole, so our current strategy will need to be modified for configuration space
analyses. The two most obvious options to this end are (1) to compute Ps(k) for the
broadband using Pnw only and add in the exponential damping factor for Pw by hand, as has
been done in recent analyses in the EFT framework [186] or (2) to use the Gaussian streaming
model (GSM; [396]) for configuration space analyses employing the same bias parameters and
counterterms for velocity statistics in configuration space. The latter is an attractive option
because the velocity expansions in Fourier space and in the GSM can be computed within
the same dynamical framework employing consistent bias parameters and counterterms12,
though the GSM captures the IR displacements almost perfectly (see Appendix B.3) while the
Fourier space methods can more easily capture the broadband effects of the IR displacements.
A more complete but laborious approach would be to compute the power spectrum with both
linear displacements and velocities resummed as in Convolution Lagrangian Perturbation
Theory [58]; we intend to return to this in the near future.

2.6 Conclusions

The upcoming generation of spectroscopic surveys and CMB experiments promise to deliver
unprecedented information about galaxy velocities on cosmological scales, either indirectly
through the anisotropic clustering of observed galaxies due to redshift-space distortions or
directly through the kinetic Sunyaev-Zeldovich effect or peculiar velocity surveys. Velocity
and density statistics provide us with complementary information about structure formation,
which can further be combined with probes such as weak lensing and allow us to test the
predictions of ΛCDM and general relativity on the largest scales.

Our goal in this chapter is to consistently model both real-space velocity spectra and the
redshift-space power spectrum of biased tracers (e.g. galaxies) within one-loop perturbation
theory. The redshift-space power spectrum, P (k, µ), can be understood as an expansion
in the line-of-sight wavenumber, k∥ = kµ, multiplying nth-order pairwise velocity spectra.
After describing the four (4h−1Gpc)3 N-body simulations we compare to in Section 2.2, we
begin in Section 2.3 by using the N-body halo velocity statistics to test the convergence of
two Fourier-space velocity expansions of the redshift-space power spectrum, the moment
expansion approach and the Fourier streaming model. The expansions show good quantitative
agreement with the P (k, µ) measured from the same set of simulations when the first three
pairwise velocity moments are included, reaching percent-or-below levels of agreement on
scales of interest to cosmology except when µ ≈ 1 (i.e. close to the line-of-sight) where the
agreement is slightly worse at small scales, though still at the percent level or below for
k < 0.2hMpc−1 for our fiducial halo sample. Including higher moments (n = 4) fails to
significantly improve the expansion, indicating slow convergence at scales where the nonlinear
velocities of halos become dominant. We find that the redshift-space power spectrum can

12And keeping in mind the relation between stochastic terms in Fourier and configuration space.
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be modeled at the percent level on perturbative scales by using a counterterm ansatz for
moments beyond n = 2 valid in precisely this scenario.

In Section 2.4 we model the real-space power spectrum and the first two velocity moments
within one-loop Lagrangian and Eulerian perturbation theory, comparing them to N-body
simulations and highlighting their salient features and differences in the final subsection. Our
model employs effective field theory (EFT) corrections to the nonlinear dynamics as well as a
bias scheme including shear and cubic contributions as well as derivative bias degenerate with
the counterterms. We find that, when the appropriate counterterms and stochastic corrections
are included, one-loop LPT and EPT can model the zeroth and first velocity moments (the
real-space power spectrum and pairwise velocity) to comparable scales for both broadband
shape and oscillatory features. For the second moment (velocity dispersion) LPT shows a
more limited range-of-fit while EPT relies on one-loop terms of the same order as linear
theory and slightly under-predicts the damping of oscillatory features in the one-loop terms,
suggesting that the velocity dispersion spectrum is subject to significant non-linearity even
at intermediate scales. In general we find the higher moments to be “more non-linear” and
to have larger contributions from stochastic and counter terms as we move up the hierarchy.

Finally, in Section 2.5 we combine the velocity expansions and velocity modelling to obtain
a model of the redshift-space power spectrum in one-loop perturbation theory. Using the
bias parameters and effective corrections derived from the data statistics in addition to the
aforementioned counterterm ansatz for contributions from velocity moments beyond n = 2
yields a percent-level fit to the halo power spectrum for all wedges out to k = 0.25hMpc−1 at
z = 0.8, with similar performance for the multipoles. As a further test, we analyzed a sample
of mock galaxies using the same procedure, and found qualitatively similar results despite
significantly more pronounced stochastic terms (expected due to virial motions of satellites)
and a slightly decreased range of fit at higher µ and in the quadruople as a result. In addition,
we conducted a fit directly to the power spectrum wedges for this sample, assuming Gaussian
covariances and letting both f and the bias parameters to float, and found that our model
recovers the growth rate to within the systematic error of the simulations themselves with no
loss of accuracy.

Our python code velocileptors to compute the aforementioned one-loop velocity statis-
tics and redshift-space power spectrum in both EPT and LPT is publically available. For
completeness, the code includes all terms up to the fourth pairwise velocity moment in
both formalisms as well as modules to combine them using the moment expansion in both
formalisms, full IR resummation as in Equation B.32 in EPT, and the Fourier and Gaussian
streaming models in LPT. The LPT code takes slightly more than a second to compute the
all relevant statistics to sub-percent precision on perturbative scales, while the EPT code
takes slightly less. We make abundant use of the FFTLog algorithm throughout and compute
one-loop EPT terms via manifestly Galilean invariant Hankel transforms inspired by the
Lagrangian bias expansion (Appendix B.6).

The structure of the moment expansion implies that the theoretical error should be a
strong function of µ, which can be taken as an argument in favor of modeling power spectrum
wedges, P (k, µ), over multipoles, Pℓ(k). The importance of both counterterms and stochastic
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terms in the velocity statistics suggests that the cosmological information in P (k, µ) at high
k and µ is less than one might naively think, since it is precisely in this regime that these
non-cosmological contributions become an appreciable fraction of the total power. It is also
at higher k and µ that non-trivial behavior of FoG models and observational redshift errors
would be expected to impact the measurements the most.

We close by noting some possible near-term applications. Firstly, our model naturally
includes precision modelling of cosmological velocities at quasilinear scales and will be directly
applicable to upcoming kSZ and peculiar velocity surveys [141, 1, 182, 150]. While we have
focused our predictions on velocity statistics in real-space, the conversion to redshift space
can be straightforwardly obtained by the appropriate f derivatives of the redshift-space
power spectrum [358], which are themselves predicted by the model as linear combinations
of density-weighted pairwise velocity statistics. In this regard the increasing importance of
counterterms and stochastic terms as we move higher in the moment hierarchy suggests that
much of the cosmological information in velocity surveys will be contained on large scales.

In terms of redshift-space distortions, our model includes a superset of effective corrections
at 1-loop level and is similar in many respects to those recently used to analyze BOSS data
in ref. [186, 96, 88, 85, 94] or the “blind challenge” of ref. [255]. An obvious next step from
the present analysis would be to analyze those data with the formalism described in this
work. Our model should likewise be competitive in analyses of future high-redshift galaxy
surveys like HETDEX [173], DESI [108], Euclid [12] and even futuristic LBG [135] or 21-cm
[352] surveys, though as discussed in Section 2.3 the applicable range of scales will likely be
limited more by the scale of stochastic velocities (kFoG ∼ σ−1

v ), or FoGs, than by the nonlinear
wavenumber kNL at higher redshifts. This was demonstrated already in EFT analyses of
BOSS, where kFoG ∼ 0.2hMpc−1, though specific FoG properties will depend on the galaxies
sampled by each survey, and will be particularly interesting in the context of high-redshift
21-cm surveys where stochastic velocities are relatively small [392] but observations are
naturally limited by foregrounds to higher µ. Finally, the aforementioned probes can be
combined with upcoming lensing surveys. By letting the gravitational slip [192, 194, 12]
float as a free parameter like the linear growth rate f , this will let us test the predictions of
General Relativity on cosmological scales. By providing a model which can simultaneously fit
all of the relevant statistics we enable a principled statistical analysis that can avoid taking
ratios of noisy data points.
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Chapter 3

Redshift-Space Galaxy Clustering II:
Power Spectrum in Lagrangian
Perturbation Theory

This chapter was originally published as

Shi-Fan Chen et al. “Redshift-space distortions in Lagrangian perturbation theory”.
In: JCAP 2021.3, 100 (Mar. 2021), p. 100. doi: 10.1088/1475-7516/2021/03/
100. arXiv: 2012.04636 [astro-ph.CO]

In Chapter 2 we conducted a detailed study of the contributions of galaxy peculiar velocities
to the redshift-space power spectrum to 1-loop order in perturbation theory, exhaustively
enumerating the required effective-theory terms required to properly account for the effects
of short modes and nonlinear velocities. In addition to these short-scale effects however, long-
wavelength velocities also have a significant role, since they anisotropically contribute to the
damping of the BAO feature in the same way that long-wavelength displacements do in real
space and, as discussed in Chapter 1, need to be resummed. Heuristically, the large-scale linear
displacements damping the BAO receive an additional contribution Ψ

(1)
i → Ψ

(1)
i + fn̂in̂jΨ

(1)
j ,

such that the damping becomes

exp
(
− 1

2
k2Σ2

BAO

)
→ exp

(
− 1

2
k2
(
1 + f(2 + f)µ2

)
Σ2

BAO

)
, µ = n̂ · k̂. (3.1)

Since f ≈ 1, along the line-of-sight it is clear that these anisotropic contributions will also
not be well-captured perturbatively and need to be resummed. By treating the velocity
contributions order-by-order, our calculations in the previous chapter were not particularly
well-suited for this resummation, though in the case of Eulerian perturbation theory we were
able to approximately include this effect by performing a “wiggle no-wiggle split.” Our goal
in the present chapter is to amend this omission in our previous treatment of RSD in LPT.

We present the one-loop 2-point function of biased tracers in redshift space computed
with Lagrangian perturbation theory, including a full resummation of both long-wavelength

https://doi.org/10.1088/1475-7516/2021/03/100
https://doi.org/10.1088/1475-7516/2021/03/100
https://arxiv.org/abs/2012.04636
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(infrared) displacements and associated velocities. The resulting model accurately predicts
the power spectrum and correlation function of halos and mock galaxies from two different
sets of N-body simulations at the percent level for quasi-linear scales, including the damping
of the baryon acoustic oscillation signal due to the bulk motions of galaxies. We compare
this full resummation with other, approximate, techniques including the moment expansion
and Gaussian streaming model. We discuss infrared resummation in detail and compare our
Lagrangian formulation with the Eulerian theory augmented by an infrared resummation
based on splitting the input power spectrum into “wiggle” and “no-wiggle” components.
We show that our model is able to recover unbiased cosmological parameters in mock data
encompassing a volume much larger than what will be available to future galaxy surveys. We
demonstrate how to efficiently compute the resulting expressions numerically, making available
a fast Python code capable of rapidly computing these statistics in both configuration and
Fourier space.

3.1 Introduction

The measured redshifts of galaxies receive a contribution proportional to the relative velocity
between the observer and the emitting source. This term breaks the isotropy of space, as
it singles out the observer location as special, and causes a distinct anisotropic pattern
in the clustering statistics of biased tracers known as Redshift Space Distortions (RSD)
[196, 158, 275, 114]. Being a probe of the velocity field, RSD contain extra cosmological
information compared to the density field only, and they have been shown to be a useful
probe of modified gravity models [153, 410, 194, 12, 8]. Current and upcoming spectroscopic
redshift surveys, like DESI [108] and Euclid [211], will provide measurements of the power
spectrum of galaxies with much better precision than currently available, making the modeling
of RSD of paramount importance to achieve their science goals. Within the framework of
Perturbation Theory (PT) several different approaches have been put forward to compute
clustering statistics in redshift space. We can divide them into two main categories: Eulerian
PT (EPT) methods, where density and velocity fields are the relevant degrees of freedom
(dof), and Lagrangian PT (LPT) methods, where the displacements of dark matter particles
and galaxies are the fundamental dof from which observables are computed1. This work
focuses on the latter, but more generally one of our main goals is to clarify the relation
between the two approaches to RSD.

LPT has a long history, especially in the context of RSD [231, 58, 405, 415, 396, 398,
74], and LPT models of the galaxy correlation function, i.e. in position space, have been
successfully applied to data (see e.g. refs. [303, 311, 312, 363, 439, 30] for a sampling of
the literature). In Fourier space, while RSD in EPT can be straightforwardly implemented
[36, 138, 110, 86, 96, 377], LPT has posed a number of technical difficulties that have only
recently been overcome [398]. Using an expansion in the moments of the density-weighted

1In both cases we will only consider the effective field theory (EFT) approach to PT, see [28, 60, 290,
399, 332, 14] and references therein.
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pairwise velocities, ref. [74] presented a derivation of the 1-loop redshift space galaxy power
spectrum in LPT, finding good agreement in comparison to simulated data.

The main goal of this chapter is to compute the 1-loop redshift space power spectrum
in LPT via direct evaluation of the integrals, without employing the moment expansion
(MOME) [328, 400, 401, 398]. This is not only a practical choice, but, for example, it will
allow us to clarify the effect on the power spectrum of various resummation schemes for the
long-wavelength (IR) displacement modes [335, 333, 399, 22, 402, 50, 112, 185].

In EPT, IR-resummation is performed a posteriori, after the 1-loop power spectrum is
computed, and different procedures have been discussed in the literature. In redshift space
in particular, a number of approximations have been employed to render the calculation
more tractable [218, 280, 112, 185]. In the current implementation of MOME in LPT [74],
only the long wavelength displacements are resummed, leaving the long wavelength velocity
effects un-resummed. If desired, these long wavelength velocity effects can also be resummed
in a posteriori way, as is done in EPT, and as we show in Appendix C.1. Alternatively,
by truncating the configuration-space velocity cumulants at second order, the Gaussian
streaming model can be used to approximately resum velocities from linear (Gaussian) modes
at the expense of neglecting some one-loop contributions2 [396].

The direct LPT approach allows us to efficiently resum the long displacement contributions
without relying on any of the above-mentioned approximations. Some of these different
choices for IR-resummation can lead to different behaviours of the power spectra at small
(UV) scales. However, as we shall discuss further below, these differences can be associated
to the different perturbative expansion parameters they employ. Moreover, even though
these differences arise from long wavelength displacements, which are under perturbative
control, these residual contributions are also approximately degenerate with, and can thus be
absorbed by, the free coefficients of the effective theory.

The results presented in this chapter complement the existing literature on the one-loop
LPT power spectrum in ΛCDM cosmologies referenced above. Additionally, our work provides
the analytical machinery to better understand the performance of forward model or density
field reconstruction algorithms in redshift space based on Lagrangian displacements [443, 248,
323].

This paper is structured as follows. Section 3.2 will introduce the notation, Section 3.3
the relevant equations for the computation of the one-loop RSD power spectrum of biased
tracers, whose evaluation is discussed in Section 3.4. Numerical fits to N-body simulations
and mock catalogs are presented in Section 3.5, as well as comparisons between the different
PT methods. This section also demonstrates that the model is able to recover unbiased
estimates of cosmological parameters in a “blind” challenge. Our conclusions are presented
in Section 3.6. A number of technical points are relegated to Appendices C.1, C.2 and C.3.

2See, e.g. Appendix B of ref. [74].
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3.2 Overview of Lagrangian Perturbation Theory

Our goal in this section is to give a quick overview of Lagrangian perturbation theory (LPT)
as pertains to this chapter, both as a review and to establish our notation and conventions.
The reader is referred to the references in the introduction for further details, and especially
to refs. [231, 229, 58, 415, 399, 396, 74] whose notations we adopt.

Within the Lagrangian picture the gravitational evolution of large-scale structure is
described via the of motion fluid elements starting at initial (Lagrangian) positions q with
trajectories given by x(q, t) = q + Ψ(q, t). The Lagrangian displacements, Ψ, obey the
equation of motion Ψ̈(q) +HΨ̇(q) = −∇xΦ(x), where dots indicate derivatives with respect
to the conformal time, and the gravitational potential Φ is in turn sourced by the matter
overdensity δm given by

1 + δm(x) =

∫
d3q δD(x− q−Ψ(q)) , (2π)3δD(k) + δ̃m(k) =

∫
d3q eik·(q+Ψ) (3.2)

via Poisson’s equation. In LPT these quantities are solved for order-by-order in the linear
initial conditions δ0(q), such that the displacements are given byΨ = Ψ(1)+Ψ(2)+Ψ(3)+... Of
particular interest is the linear solution Ψ(1) = −D(z)∇−1

q δ0(q), also known as the Zeldovich
approximation. The specific forms of the higher-order solutions are given for example in
refs. [230, 440, 296]. These solutions contain parametrizeable dependences on small-scale
physics which are captured by including additional effective-theory counterterms [290, 399].

In this chapter we will be primarily interested in the clustering of biased tracers of matter
like galaxies which are the target of galaxy redshift surveys. Within the Lagrangian framework
biased tracers are modeled as functionals of the linear initial conditions F [δlin](q) at their
Lagrangian positions q and advected along with the matter fluid, such that their observed
overdensities are given by number conservation to be

1 + δg(x) =

∫
d3q F (q) δD(x− q−Ψ). (3.3)

The bias functional F (q) is a local function of the initial conditions with effective corrections,
and at one-loop order in the power spectrum includes linear and quadratic density bias, shear
and third-order contributions as well as effective corrections like derivative bias (∝ ∇2δ2)
similar to the dynamical ones described at the end of the previous paragraph. We will
furthermore assume that cold dark matter and baryons can be treated as a single fluid and
therefore discard bias operators and dynamics proportional to relative density and velocity of
the different fluids [14, 43, 316, 70, 25, 199, 298]. These extra terms are thought to be small
and therefore need only be implemented at leading order in the (relative) displacements, as
discussed in ref. [70]. Our conventions follow Equation 5.1 in ref. [74].

Finally, galaxy surveys determine the line-of-sight (LOS) position of observed galaxies
via redshifts z whose cosmological and peculiar-velocity contributions are degenerate. These
redshift-space distortions (RSD) can be accounted for within LPT by boosting displacements
along the LOS direction n̂ by their corresponding velocities Ψs = Ψ+ (n̂ · v)n̂/H, where H
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is the conformal Hubble parameter. We will use the superscript s to refer to vectors boosted
into redshift space throughout this work. Within the Einstein-de Sitter approximation (EdS)
we have the further simplification that

Ψs,(n) = Ψ(n) + nf (n̂ ·Ψ(n)) n̂ ≡ R(n)Ψ(n), (3.4)

where the matrix R
(n)
ij = δij +nf n̂in̂j and f is the linear growth rate. We will operate within

the EdS approximation for the remainder of the paper, and further make the distant observer
approximation such that n̂ is the same for each galaxy. These approximations are known to
be quite good in the limit of high redshifts and on scales where higher order perturbation
theory is most applicable. A discussion of violations of these approximations within the LPT
context can be found in refs. [299, 128, 139, 63, 64, 367].

3.3 Redshift-Space Power Spectrum

We now proceed to write down the power spectrum at one loop in Lagrangian perturbation
theory [229, 58, 405, 415, 396, 398, 74]. From Equation 3.2 and its counterpart for biased
tracers we have that the galaxy autospectrum is given by

P (k) =

∫
d3q eik·q

〈
eik·∆F (q1)F (q2)

〉
q=q1−q2

where we have defined the pairwise Lagrangian displacement ∆i = Ψi(q1)−Ψi(q2). Setting
F = 1, for matter, the bracketed average can expressed using the cumulant theorem as [58]

ln
〈
eik·∆

〉
= −1

2
kikjAij −

i

6
kikjkkWijk + ...,

where we have defined the cumulants of the pairwise displacements as Aij = ⟨∆i∆j⟩c and
Wijk = ⟨∆i∆j∆k⟩c. For biased tracers one simply needs to compute cumulants with sources
like J(q)δ(q) added to the exponent and take functional derivatives; this produces terms like
Ui = ⟨δlin(q1)∆i⟩ . The above calculations can be promoted to redshift space by promoting
the displacements to redshift space (∆s) order-by-order as in Equation 3.4.

From the above, the one-loop galaxy autospectrum in redshift space is given in LPT by
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[229, 58, 405, 415, 396, 398, 74]

Ps(k) =

∫
d3q eik·q e−

1
2
kikjA

s,<
ij

{
1− 1

2
kikjA

s,>
ij +

1

8
kikjkkklA

s,>
ij A

s,>
kl

− 1

2
kikjA

s,loop
ij +

i

6
kikjkkW

s
ijk

+ 2ib1ki(1−
1

2
kikjA

s,>
ij )U s

i − b1kikjA
s,10
ij

+ b21(1−
1

2
kikjA

s,>
ij )ξlin + ib21kiU

s,11
i − b21kikjU

s,lin
i U s,lin

j

+
1

2
b22ξ

2
lin + 2ib1b2ξlinkiU

s,lin
i − b2kikjU

s,lin
i U s,lin

j + ib2kiU
s,20
i

+ bs(−kikjΥs
ij + 2ikiV

s,10
i ) + 2ikib1bsV

s,12
i + b2bsχ+ b2sζ + 2ib3kiU

s
b3,i

+ 2b1b3θ + ...
}

+ k2(α0 + α2µ
2 + α4µ

4 + α6µ
6)Ps,ZelZel(k) +R3

h(1 + σ2k
2µ2 + σ4k

4µ4). (3.5)

Here we have split the second cumulant Aij into long and short linear components and a loop
component, keeping only the long-wavelength piece As,<ij exponentiated; we will comment
on this further below. In addition to Aij, Wijk and Ui defined above, Equation 3.5 contains
additional correlators of pairwise Lagrangian displacements and higher-order bias operators
like shear that are defined explicitly in refs. [58, 415, 396, 74]. The last line of Equation 3.5
includes counterterms (αn) and stochastic contributions (σn) proportional to the typical scale
of halo/galaxy formation Rh. These include what are traditionally referred to as the “shot
noise” and “finger of god” (FoG) terms. The small-scale sensitivities that give rise to these
terms are described in detail3 in ref. [74].

While the correlators in Equation 3.5 have been extensively described elsewhere, it is
instructive to elucidate their general perturbative and angular structure with an example.
Let us consider the displacement two-point function up to one-loop

Aij ≡ ⟨∆i∆j⟩ = Alin
ij + Aloop

ij , Aloop
ij = A

(22)
ij + 2A

(13)
ij , (3.6)

which is given by a linear piece (lin) from contracting two first-order displacements and a
one-loop piece from contracting two second-order displacements (22) or one first and one
third-order displacement each (13). To go into redshift space, each of these pieces must be
transformed separately — this is because at each order in perturbation theory the translation
to redshift space depends on n, such that for example

A
s,(13)
ij = R

(1)
in R

(3)
imA

(13)
nm but A

s,(22)
ij = R

(2)
in R

(2)
imA

(22)
nm .

The n-dependence of these transformations encodes information about beyond-linear velocities
within the RSD spectrum and is the primary complication in extending the treatment of RSD

3In particular, the advantages of this form for treating fingers of god (and redshift errors) are discussed
in detail in §§4.1.3, 4.2.3, 5.3 and Appendix C of ref. [74].
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beyond the Zeldovich approximation, where all vectors transform via R = R(1) (see refs. [415,
398, 78]). A similar observation applies to all correlators with vector indices in Equation 3.5.

Finally, let us comment on our resummation of the linear piece of Aij. A salient feature
of cosmologies like ΛCDM is that large-scale displacements produce nonlinear damping
of spatially localized features in the power spectrum such as baryon acoustic oscillations
(BAO) that cannot be captured simply with an order-by-order expansion in the linear initial
conditions [46, 121, 231, 229, 92, 266, 257, 58, 368, 232, 415, 335, 321, 22, 402, 235, 50,
338]. This is because, while the dynamics on these large scales are essentially linear, the
size of these displacements on BAO scales can be large compared to wavenumbers where the
BAO wiggles have support. As such, the effects of these displacements must be manually
resummed in order-by-order expansions such as Eulerian perturbation theory (EPT). On the
other hand, within LPT the exponential in Equation 3.2 and the cumulant theorem for a
Gaussian variable 〈

eik·∆
(1)
〉
= e−

1
2
kikjA

(11)
ij (3.7)

suggests a natural resummation scheme wherein the linear displacements are kept exponenti-
ated. These exponentiated displacements should be resummed only up to an IR scale kIR;
we will follow the convention in ref. [74] and perform this split by an exponential cutoff
exp[−1

2
(k/kIR)

2] in the Aij integral for the “less than” displacements kept resummed, As,<ij
in Equation 3.5, and the “greater than” displacements (defined with 1− exp[−1

2
(k/kIR)

2] in
the integral), As,>ij , which are expanded to second order in the curly brackets in Equation
3.5. Within ΛCDM-like cosmologies, Aij is close to saturated on BAO scales and it might be
expected that an IR cutoff should make only small differences in the final theory prediction.
This is true for the density statistics [415, 235, 396, 22, 185]. However, ref. [74] showed that the
higher-order velocity statistics that enter into RSD are especially sensitive to IR resummation
in both broadband and BAO wiggles. This is discussed in further detail in Appendix C.1. We
conclude this section by noting that, contrary to EPT where the a posteriori IR-resummation
has been implemented only for equal time correlators, the direct evaluation of the LPT
integrals presented in this work automatically evaluates the power spectrum at unequal times.
In this case, the bulk displacement contributions do not cancel exactly in the exponent in
Eq.(3.7) leading to rapid suppression and decorrelation of unequal time correlators. This has
recently been considered [83] in the context of weak lensing analyses, that all involve unequal
time correlators. On the same topic, this should also clarify some recent concerns raised in
ref. [35] about the use of perturbation theory for unequal time correlators.

3.4 Numerical Implementations

The primary challenge in evaluating the integral in Equation 3.5 lies in the angular dependence
due to the three vectors, q, k and n̂, that enter the calculation (Fig. 3.1a). By symmetry,
each of the tensor-indexed Lagrangian-space correlators in Equation 3.5 can be decomposed
into components multiplying products of q̂ and the Kronecker delta symbol; for example, we
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can write Aij(q) = X(q)δij + Y (q)q̂iq̂j [58]. In real space, where the angular dependence is
due only to k and q, it is customary to proceed by defining a coordinate system wherein k
points towards the zenith such that the integrand has azimuthal symmetry. The resulting
dependence on µq = k̂ · q̂, where the subscript is meant to distinguish it from the familiar

LOS angle µ = k̂ · n̂, can then be recast into infinite sums of spherical Bessel functions using,
for example, the identity

1

2

∫
dµq e

iAµq− 1
2
Bµ2q = e−B/2

∑

n=0

(B
A

)n
jn(A) (3.8)

and its derivatives, with the resulting integrals in q efficiently computed using the FFTLog
algorithm [159, 397]. In the particular case of LPT, we have A = kq and B = k2Y <(q), such
that in the Zeldovich power spectrum (second line of Equation 3.5 in the kIR = ∞ limit) is

PZel(k) = 4π
∞∑

n=0

∫
dq q2 e−

1
2
k2(X+Y )

(kY
q

)n
jn(kq) (3.9)

in real space. This form of the integral, suitable for using fast Hankel transforms, generalizes
for higher loop terms, as well as when we go to redshift space, as we show in the rest of this
section. Note that the computation calls for one transform for each k value. The expansion
converges quickly for the k values of our interest and it is typically sufficient to keep only
the n < 10 terms in the sum above. Moreover, for higher n terms the Limber approximation
[221, 223] can be used

jℓ(kq) ≈
√

π

2ℓ+ 1
δD
(
kq − ℓ− 1

2

)
, when ℓ→ ∞, (3.10)

which provides an accurate approximation for the integral above when used for n > 3.
In redshift space, the azimuthal symmetry is broken by the line-of-sight dependence, as

shown in Figure 3.1a, which selects a preferred plane containing k̂ and n̂ (blue). Below, we
outline one method to efficiently perform the integral in redshift space. Following previous
work [398] we will call it Method II. Our development extends the Zeldovich calculations for
matter and biased tracers in refs. [369, 398, 78] to one-loop order. Method II relies on an
active transformation of the wavevector k into a frame more conducive to evaluating the
integral in Equation 3.5. Of course, it is also possible to directly evaluate the integral within
the original frame — this is the strategy of Method I. This alternative method is described
for the interested reader in Appendix C.2.

We now outline the rough strategy for Method II. In our expressions Ψ enters only in the
combination k ·Ψ. Thus instead of transforming all displacements into redshift space via
Ψ(n) → R(n)Ψ(n) we can instead passively transform the wave vectors, multiplying them by
RT = R. In particular we shall apply the linear theory transformation R(1) to k to yield the
vector Ki = R

(1)
ij kj. We will deal with the non-linear contributions to Ψ below. In this new

“Zeldovich” frame, shown in Figure 3.1b, the zenith direction is set to be K̂, and we redefine
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Figure 3.1: (a) Geometry of the vector and tensor quantities in the integral Eq. 3.5. In the absence
of redshift-space distortions (n̂ dependence) the integral over q is azimuthally symmetric; with RSD,
a ϕ dependence occurs since k̂ and n̂ lie on a preferred plane. (b) In Method II, vectors are boosted
into the “Zeldovich” frame where projections along the line of sight are amplified by the linear
growth rate f and the zenith is redefined to be the thus-boosted Ki = Rijkj . In both frames, n̂, k̂
and K̂ are coplanar as shown in blue.

µq = K̂ · q̂. Thus K · n̂ = kµ(1 + f) and K2 = k2[1 + f(2 + f)µ2]. Note that k̂, K̂ and n̂ are
coplanar.

Let us begin by reviewing the angular structure of this coordinate choice. We have

n̂ · q̂ = A(µ)µq +B(µ)
√

1− µ2
q cosϕ,

k · q = kq
(
c(µ)µq − s(µ)

√
1− µ2

q cosϕ
)
, (3.11)

with the definitions

A(µ) =
µ(1 + f)√

1 + f(2 + f)µ2
, B(µ) =

√
1− µ2

1 + f(2 + f)µ2

c(µ) =
1 + fµ2

√
1 + f(2 + f)µ2

, s(µ) =
fµ
√

1− µ2

√
1 + f(2 + f)µ2

. (3.12)
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Note the square root in the denominators is simply K/k. That the azimuthal dependence
always multiplies the sine,

√
1− µ2

q, will prove a particular convenience in this frame.
In terms of the above, the Zeldovich matter power spectrum can be succintly expressed as

Ps(k) =

∫
dq dµq q

2 eikqcµq−
1
2
K2(X+Y µ2q)

(∫
dϕ e−ikqs

√
1−µ2q cosϕ

)

In ref. [398] this integral was shown to be expressable in terms of Bessel functions via the
identity

I(A,B,C) =

∫
dµq dϕ e

−iC
√

1−µ2q cosϕ+iAµq+Bµ2q = 4πeB
∞∑

ℓ=0

(−2

ρ

)ℓ
G̃

(0)
0,ℓ(A,B, ρ)jℓ(ρ)

(3.13)

by substituting A = kqc, B = −1
2
K2Y and C = kqs. The exact form of the kernel G̃

(0)
0,ℓ is

given in Appendix C.3.4. Building on top of this, any bias contribution involving only the
linear (Zeldovich) displacement (e.g. the linear bias term ikiU

lin
i ), simply acquires powers of

µq and K (e.g. iKµq) that can be evaluated as derivatives of the above with respect to A,
since correlators in Lagrangian space are always decomposable into δij and tensor products
of q̂i [78].

The simple Zeldovich angular structure above is, however, broken by the inclusion of
higher-order displacements. This is because these displacements get boosted along the line of
sight by more than linear theory when going to redshift space. With R = R(1)

Ψ̇
(n)

= R(n)Ψ(n) = (R+ (n− 1)f n̂⊗ n̂)Ψ(n). (3.14)

In the spirit of the above calculations we can dot the matrix into the wavevectors and take

ki → Ki + f(n− 1)k∥,i , k∥ = (kµ)n̂. (3.15)

Dotting the transformed wavevector with Lagrangian correlators thus simply requires addi-
tional powers of n̂ · q̂, which conveniently translates into powers of µq and

√
1− µ2

q cosϕ, i.e.
the coefficients multiplying A and C in Equation 3.13. We thus see that any contribution to
the power spectrum can be evaluated via mixed (A,C) derivatives of Equation 3.13. We refer
the reader to Appendix C.3 for further details and an example application to the one-loop
matter power spectrum.

3.5 Results

Having laid out how the one-loop power spectrum can be efficiently computed within fully-
resummed one-loop LPT, our goal in this section is to validate our model against N-body
data. In addition, we compare the performance of our model with previous models such as
the Gaussian streaming model (GSM; [276, 137, 301, 303, 405, 396]) and moment expansion
(MOME; [398, 74]) in LPT and resummed Eulerian perturbation theory (REPT) in both
Fourier and configuration space.
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3.5.1 Comparison to N-body

For our main comparisons to N-body data we use halo catalogs from the simulations in
ref. [359] and employ NbodyKit [163] to compute redshift-space power spectrum wedges,
multipoles and correlation function multipoles at z = 0.8. These simulations assume a ΛCDM
cosmology with Ωm = 0.2648, Ωbh

2 = 0.02258, h = 0.71, ns = 0.963 and σ8 = 0.8. We adopt
the mass bin 12.5 < log(M/h−1M⊙) < 13.0 as our fiducial sample but have checked that
we get similar results for a higher mass bin as well as the mock galaxy sample described
in ref. [74]. Our fiducial sample has a number density of n̄ = 0.53 × 10−3 h3Mpc−3 and
linear (Eulerian) bias of b ≈ 1.7, making it slightly sparser but about 40% more biased than
the DESI ELG sample at z = 0.85 [108]. We have chosen these simulations due to their
relatively large total volume (4 boxes with volume [4h−1Gpc]3). With such a large volume
the statistical errors on the two-point functions will necessarily be significantly smaller than
galaxy surveys at comparable redshifts; however, we caution that the use of “derated” time
steps in the running of these simulations may cause systematic errors on the few percent
level, as discussed in further detail in refs. [396, 74]. We have attempted to mitigate this
effect by using only the high redshift catalog at z = 0.8.

Figure 3.2 compares our LPT model to the power spectrum wedges and multipoles
of our fiducial halo sample. We fit for the wedges, P (k, µ), up to kmax = 0.2hMpc−1

assuming Gaussian covariances. We use the same parameters for the multipoles. We find bias
parameters of order unity and the isotropic stochastic contribution R3

h comparable to the
shot noise, noting that extending to higher (unperturbative) kmax tends to recover apparently
good fits with anomalously large bias and effective parameters. Our model is in excellent
agreement with the power spectrum wedges at the scales shown, differing from the data at
levels comparable to their statistical uncertainty, with qualitatively similar behavior in the
multipoles, though the anisotropic contributions (ℓ > 0) diverge faster than the monopoles as
expected due to the enhanced nonlinearity of halo velocities.

In Figure 3.2, as well as throughout the main body of this work, we have adopted the
fiducial choice of infrared cutoff kIR = 0.2hMpc−1. As discussed in Section 3.3, compared to
density statistics the velocity statistics’ underlying redshift-space distortions have broadband
shapes that are especially sensitive to the choice of infared cutoff. For example, as shown
in ref. [74] the monopole and quadrupole of the second moment of the pairwise velocity,
responsible for contributions to the power spectrum proportional to the growth rate (f)
squared, respectively have broadband shapes better captured by large and small kIR. One
might thus hope to find an intermediate regime wherein both statistics are reasonably
captured, and indeed we find that the choice kIR = 0.2hMpc−1 reproduces the hexadecapole
better than either the fully-exponentiated limit (kIR = ∞) or kIR = 0. In principle, the spirit
of perturbation theory should demand that the expanded displacements k2Σ2

> be small4 while
the exponentiated ones kept manageable; for k < 0.2hMpc−1 this is satisfied by our choice,

4Here we define

Σ2
< =

2

3

∫
dk

2π2
Plin(k) e

−(k/kIR)2 , Σ2
> =

2

3

∫
dk

2π2
Plin(k) (1− e−(k/kIR)2), (3.16)
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Figure 3.2: Fits to the redshift-space power spectrum wedges (top) and multipoles (bottom) of the
fiducial halo sample with 1012.5M⊙ < M < 1013.0M⊙ at z = 0.8. Both statistics were fit assuming
Gaussian covariances using a consistent set of bias parameters and with linear displacements
resummed up to kIR = 0.2hMpc−1. The fiducial LPT model gives an excellent fit to the anisotropic
power spectrum inside the range of fit (k < 0.2hMpc−1) well within the few-percent systematics
expected from the N-body data. Shaded regions indicate wavenumbers beyond the range of fit, with
higher multipoles diverging faster from the data past this point.
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Figure 3.3: Redshift-space power spectrum multipoles of the fiducial halo sample fit using three
effective theory models: the fiducial LPT model, the Lagrangian moment expansion and resummed
Eulerian perturbation theory. All three models are fit as in Figure 3.2 and are in excellent
quantitative agreement with the N-body data. The three models differ slightly in their prediction
for the hexadecapole broadband; we have explicitly tuned our LPT IR resummation scheme to
provide a good match to the data, though we note the relatively large statistical uncertainty in the
hexadecapole.

though given that the total Zeldovich displacement for the fiducial cosmology at z = 0.8 is
Σ−1 ≈ 0.2hMpc−1 this is relatively insensitive to the choice of IR cutoff. Moreover, while
differences exist towards high k and µ, we find that in general the small-scale differences
between the theory’s predictions for reasonable values of kIR can largely be absorbed by the
effective parameters of the theory; further discussion of the interplay between kIR choice and
our model’s predictions can be found in Appendix C.1; we intend to return to this topic in
greater depth in future work.
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Figure 3.4: Configuration space correlation function multipoles predicted by our LPT model, the
Lagrangian moment expansion, Eulerian perturbation theory and the Gaussian streaming model
compared to N-body data. Each of the models are in good agreement with the data within the
few-percent systematic uncertainties expected of the simulations, though we note that they all
slightly overshoot the dip around 80 h−1 Mpc by around two percent. Note that due to the high
degree of similarity between the theory predictions many of the lines lie on top of each other even in
the fractional residuals in the bottom panel, particularly when comparing LPT (solid) and MOME
(dashed). Black dashed lines in the lower panels indicate 2 and 5 percent errors.

3.5.2 Comparison to Other Models in Fourier and Configuration
Space

The main difference between the model presented in this work and previous effective-theory
models of the redshift-space galaxy two-point function lies in the IR-resummation procedure.
Existing LPT formulations typically incorporate bulk velocities either via streaming model
resummations [396, 398, 74] or direct expansions of velocity statistics [398, 74]. While these
approaches have been shown to be sufficiently accurate to model redshift-space distortions
in a variety of contexts, they have nonetheless exhibited a number of shortcomings. The

such that the sum Σ2 = Σ2
< + Σ2

> is the mean square pairwise displacement of two distant points in the
Zeldovich approximation.
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Gaussian streaming model allows for a partial resummation. However, the resummation
procedure calls for nonlinear mapping of all the loop contributions, even those that require
counterterms in order to regularize the UV dependence. Even though such mapping could
in principle be restricted to only long wavelength contributions, the model also exhibits a
somewhat cumbersome structure in Fourier space. The moment-expansion approach, on
the other hand, relies on an explicit expansion in the velocity moments. However, in a
similar way to the long wavelength displacement contributions, long wavelength velocity
contributions also affect the BAO feature in a manner that then prompts the additional
resummation of these contributions. In the Eulerian approach this can be done a posteriori
using an ad hoc, wiggle-no-wiggle splitting of the power spectrum and resumming only the
contributions related to the BAO feature (REPT). Such a procedure could also be performed
for long wavelength velocity contributions in MOME, but this was not done in ref. [74] where
only long wavelength displacements were resummed in the LPT manner. We outline this
resummation of long wavelength velocities in Appendix C.1. While the MOME approach has
been shown to give excellent predictions for the Fourier-space power spectrum, configuration
space statistics (where the BAO focus is not merely few-per cent oscillations on top of the
broadband) are expected to be more sensitive to the details of IR resummation and BAO
damping.

More generally, IR resummation has also been extensively studied in the Eulerian context
[22, 402, 50, 185, 76]. Most often, these rely on the wiggle-no-wiggle splitting procedure,
separating the smooth and BAO components of the linear power spectrum (see, e.g. [121,
402, 76]). This procedure allows for a simplified treatment of the nonlinear effects of the
BAO where typically only leading effects are captured, neglecting the more intricate structure
captured by LPT. Nonetheless, the controlled approximations that enter into this form of
IR resummation are generally subdominant to higher-order (two-loop) corrections that have
been studied in e.g. refs. [402, 50, 86]. In addition to these EPT approaches, refs. [218, 280]
take an intermediate approach. These rely on an LPT-like resummation procedure that
tries to preserve the unresummed EPT broadband behaviour, thus effectively retaining an
EPT-like perturbative structure. In this approach, the anisotropic part of the exponent in
Eq. (3.7) is expanded while only the isotropic part is left resummed (see also Appendix B of
ref. [399] for a more detailed connection between the two approaches).

Our goal in this subsection is to investigate how one-loop LPT with long wavelength
velocity contributions fully resummed compares to the approaches mentioned above, focusing
on the anisotropic redshift-space broadband and the BAO feature in configuration space.
Figure 3.3 compares the Fourier-space multipoles predicted by our fiducial LPT framework
to the LPT moment expansion (MOME) and one-loop resummed EPT (REPT). All three
frameworks are fitted assuming Gaussian covariances up to kmax = 0.2hMpc−1 in P (k, µ)
as in the previous subsection. All three frameworks show excellent agreement with the
data, with any disagreements, including inter-framework disagreements, well within the few
percent systematic errors we expect from these simulations. The frameworks differ most in
the hexadecapole, with the pure LPT framework apparently a better fit to the broadband
shape over the scales shown; this should be taken with a grain of salt, however, as the
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statistical errors are large and we specifically checked our IR resummation procedure for the
LPT framework using these data. Similarly, in Figure 3.4 we fit the correlation function
multipoles of the fiducial halo sample using the three frameworks above as well as the Gaussian
streaming model (GSM). All four are in excellent agreement with regards to both the BAO
feature and broadband shape at quasi-linear scales. Since the correlation function multipoles
probe a slightly different combination of modes than their Fourier-space counterparts with
a hard k cut, we have adjusted the best-fit bias parameters “by eye” to yield a better fit
at r > 30 h−1Mpc, though we note that directly transforming the previous Fourier-space
results still yield theoretical predictions within the few-percent systematic errors expected
from these simulations. Together, Figures 3.3 and 3.4 suggest that, despite differences in IR
resummations schemes, existing effective-theory frameworks of the redshift-space two-point
function offer similar levels of performance on pertubative scales. Finally, we note that, while
in the above comparisons we have independently fit the bias parameters and EFT corrections
of each model to most favorably evaluate the performance of each, their bias bases can in
principle be mapped onto each other order-by-order; when the bias parameters are thus fixed,
these models will tend to make slightly different predictions due to differences in resummed
IR modes at higher order. We discuss these differences in Appendix C.1.

3.5.3 Cosmological Constraints using Blind Challenge Data

As a final test of our LPT model, we use it to model the “blind challenge” data described in
ref. [255]5. These are redshift-space power spectra for a BOSS-like HOD sample at z ≃ 0.6
constructed from ten N-body boxes each with sidelength L = 3.84h−1Gpc sampled with
30723 equal mass particles. Since the total volume amounts to about 100 times the volume of
the BOSS DR12 sample [7], the statistical error associated with these data are expected to be
far below any realizable galaxy survey at this redshift. These data were designed for a blind
challenge wherein three cosmological parameters (ΩM , h, ln[10

10As]) need to be fit assuming
these tiny statistical errors while the baryon fraction, fb, and spectral tilt, ns, are fixed to
the values used in the simulations. The challenge was designed to evaluate the performance
of different PT approaches. Any group wishing to enter the challenge submits their best
fit cosmological parameters, without knowing the true ones, to Takahiro Nishimichi and
collaborators. After submission one discovers if the model provides an unbiased estimate of
the parameters.

We had previously submitted best fit parameters for MOME and REPT models that
included scales up to kmax = 0.12 hMpc−1, and in both cases the models “passed”: our REPT
submission yielded means for the cosmological parameters well within 1 σ of the truth, while
MOME yielded 1.1σ and 1.8σ deviations for Ωm and h, both well within errors expected
for realistic galaxy surveys6 and possibly consistent with fluctuations in the challenge data

5The data and more information about the blind challenge can be found at https://www2.yukawa.

kyoto-u.ac.jp/~takahiro.nishimichi/data/PTchallenge/.
6Indeed, MOME also yields errors below 1σ for kmax = 0.14hMpc−1, though we did not know this prior

to submission and unblinding.

https://www2.yukawa.kyoto-u.ac.jp/~takahiro.nishimichi/data/PTchallenge/
https://www2.yukawa.kyoto-u.ac.jp/~takahiro.nishimichi/data/PTchallenge/
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Figure 3.5: Multipoles of the blind challenge power spectrum along with the best fit one-loop LPT,
MOME and REPT models. The top panels shows the (unbinned) theory curves along with the data.
Both the error bars and theory differences are too small to see except in a few places. The lower
panels show the fractional residuals of each (binned) theory curve, with each k and ℓ bin separated
by 0.0008hMpc−1 for clarity of presentation.

themselves. We have repeated the same exercise with the direct LPT model discussed in this
work, using the same set of parameters7. As we have already participated in the challenge, we
now know the true cosmological parameters. However this should not affect the evaluation of
our new LPT approach, since the analysis pipeline is the same one we adopted for MOME
and REPT and we did not change the model in any way from that described in previous
sections in order to participate in the challenge except to use the unblinded values as a seed
in the MCMC to more quickly reach the maximum likelihood region. As in our previous
submissions, uninformative priors were placed on all of the model parameters.

Figure 3.5 shows the measurements of the multipoles of the power spectrum along with
the best fit one-loop LPT, MOME and EPT models. It’s worth noticing that since we are also

7These are b1, b2, bs, α0, α2, R
3
h, σ2 in the Lagrangian basis and the equivalent set mapped onto the

Eulerian basis. We have dropped the Lagrangian third-order bias because it is expected to be small and
somewhat degenerate with other terms, α4,6 because we fit only up to the quadrupole and σ4 because it was
not necessary to fit the data at the scales we fit.
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Figure 3.6: Histograms and two-dimensional contours for the three cosmological parameters in the
blind challenge. (Left): Comparison of the LPT model in this chapter to our previous submissions
using the moment expansion (MOME) and resummed Eulerian perturbation theory (REPT), all
at kmax = 0.12hMpc−1. The LPT model performs competitively to existing models and indeed
slightly improves upon the LPT-based MOME model’s constraints on h. (Right): The LPT model
constraints using three different scale cuts. All three scale cuts recover the truth on these parameters
to within 2σ.

fitting for cosmological parameters, compared to the previous section where the linear power
spectrum was held fixed and we varied only the bias parameters, the model has to include the
Alcock-Paczynski (AP) effect8 [9, 45]. Since this plot is just for visual comparison, we only
show the best fit model with kmax = 0.12hMpc−1. These data, produced using a different
N-body code, halo finder and HOD prescription at a different redshift than the simulations in
§3.5.1, act as an additional test of the three PT models, and indeed the agreement between
the models and with the data is remarkable up to the smallest scales included in the fit. All
three models have χ2/dof ≈ 13/(24− 10), demonstrating good fits compared to their degrees
of freedom.

Turning to the cosmological parameters, the left panel of Figure 3.6 shows the 1 σ and
2σ constraints obtained by fitting the monopole and quadrupole of P (k) up to kmax =
0.12hMpc−1 using our LPT, MOME and REPT models. This was the scale cut we chose in
submitting results using MOME and REPT to the blind challenge, conservatively selected
given the unusually low statistical uncertainty of the sample, as well as the main case analyzed
in ref. [255]. The LPT model performs slightly better than the other two, providing unbiased

8Specifically, we use Equations 42-46 of ref. [45], though without the factors of rs.
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constraints on the three cosmological parameters. In particular the bias in the Hubble
constant, h, is reduced in LPT compared to both MOME and REPT. While the difference is
less than 2σ and therefore well within the realm of possible statistical fluctuations in the
N-body data, the improvement in our ΩM and h constraints, particularly relative to MOME
in which bulk velocities are not fully resummed, suggests that our IR resummation scheme is
correctly capturing the effects of large scale modes on both the BAO feature and broadband
shape.

The right panel in Figure 3.6 shows the two-dimensional confidence intervals for different
choices of kmax = 0.12, 0.16, 0.20hMpc−1 for LPT. The constraints are within 2σ of the truth
for each scale cut, but at kmax = 0.20hMpc−1 the Hubble parameter h has a mean very close
to 2σ away from the truth while all parameters are well within 1σ at 0.12hMpc−1, suggesting
growing systematic bias at higher scale cuts where higher-order corrections are expected to
play a more significant role. However, it should be noted that since these error bars are
derived from the covariance of the sample itself — within the Gaussian approximation no
less — the exhibited errors are well within the realm of statistical possibility and we cannot
conclusively determine that any model is biased. These results are summarized in Figure 3.7,
which shows the shift between the inferred and true bias parameters as a function of kmax.
The shaded regions indicate 10× the derived standard deviations, i.e. approximately the
expected errors for a survey like BOSS, or a redshift slice of ∆z = 0.25 at z = 0.6 for DESI.
The LPT model presented in this work correctly recovers the underlying cosmology for all
the scale cuts shown to well within the expected errors of surveys like BOSS and DESI. We
anticipate that the model would perform even better at higher redshift where the degree of
non-linearity is smaller. We therefore conclude that, at least for the cosmological parameters
probed in the challenge, our LPT model should provide an accurate tool for modeling RSD
in upcoming surveys.

3.6 Conclusions

The anisotropic galaxy clustering observed by spectroscopic surveys probes density and velocity
fields on large scales, enabling us to test the growth of structure in the quasilinear regime as
predicted by General Relativity. In addition, the baryon acoustic oscillations in the galaxy
clustering signal provide geometric information that constrain the cosmological expansion
history. Perturbation theory is an ab initio approach with clear physical assumptions, and
it is therefore the preferred tool for a precise and rigorous mapping between cosmological
parameters and the observed clustering signal, in the quest for a better understanding of the
cosmological model and in the search for new physics.

The main purpose of this work was to further develop the modeling of the redshift-space
two-point function within Lagrangian perturbation theory. Two critical aspects of any
perturbation-theory model of the power spectrum or correlation function are the treatment
of the nonlinear damping of the BAO signal due to large scale motions of galaxies and the
inclusion of redshift-space distortions due to a degeneracy between the observed line-of-
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Figure 3.7: Parameter constraints using the LPT model for the blind challenge as a function of scale
cut kmax. The shaded blue region show errors scaled to a survey of 10× less volume, i.e. BOSS or a
∆z = 0.1 slice of DESI at z = 1.2. All constraints shown are within 2σ of the truth, and within 1σ
when kmax ≤ 0.14hMpc−1, well within error bars expected for future surveys as well as the realm
of possible statistical fluctuations for this simulated sample.
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sight positions and peculiar velocities of galaxies. By expanding directly in displacements,
Lagrangian perturbation theory naturally treats both phenomena within the same framework
without relying on the wiggle-no-wiggle splitting procedure to damp the BAO oscillations. In
particular, LPT exponentiates linear, or Zeldovich, displacements via the cumulant theorem,
thereby resumming the long-wavelength (IR) modes primarily responsible for nonlinear BAO
damping.

In this work, we extend the numerical techniques developed in refs. [398, 74] for the
Zeldovich approximation to calculate the one-loop LPT power spectrum of biased tracers
with both bulk displacements and velocities resummed. This is in contrast to previous
efforts to model redshift-space distortions within effective LPT that focused on predicting
velocity statistics for which only the displacements were exponentiated9. In Sections 3.2
and 3.3, we outlined the effective formalism developed in those works and used them to
write down the redshift-space power spectrum including third-order biasing, counterterms
and stochastic contributions, of which the latter two in part play the role of “finger-of-
god” terms in traditional RSD models. Then, in Section 3.4, we developed the required
numerical framework for the implementation of the model. We have publically released our
implementation of Method II as part of the velocileptors code.10 Additional details of
these calculations can be found in Appendices C.2 and C.3.

Finally, we compare the LPT model developed in this work to N-body data and previous
models in Section 3.5. First, we fit the power spectrum of a halo sample drawn from a set of
N-body simulations at z = 0.8 with masses 12.5 < log(M/M⊙) < 13.0 assuming Gaussian
covariances using our model in Figure 3.2, finding excellent agreement in both the wedges
and first three multipoles for a consistent set of bias and effective parameters. Our model has
an extra degree of freedom in the IR cutoff kIR, which dictates the wavelength beyond which
displacement modes are resummed. In ref. [74] it was shown that the higher-order velocity
statistics that enter into redshift-space distortions have broadband shapes that are especially
sensitive to this choice, and indeed we find that a choice of kIR = 0.2hMpc−1, which lies
between the broadband predictions of full-expanded LPT and EPT, gives the best match
to the hexadecapole; this choice is explored further in Appendix C.1, where we also show
(Fig. C.3) that the configuration-space anisotropic BAO feature is remarkably robust to this
hyperparameter.

We then compare the performance of our LPT model with other existing effective-theory
models. In Figure 3.3, we compare the aforementioned power spectrum predictions to the
Lagrangian moment expansion (MOME) and resummed Eulerian perturbation theory, finding
that all three can fit the data to within the expected systematic error of the simulations.
Similar results for the configuration-space multipoles are shown in Figure 3.4, where we
also compare to the Lagrangian Gaussian streaming model. As a last numerical test we
checked whether the full one-loop LPT model presented in this work can recover unbiased

9Earlier work, e.g. ref. [58], performed a similar calculation as the one here for the correlation function
only, but exponentiated the modes coming from the one-loop contributions as well.

10https://github.com/sfschen/velocileptors
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cosmological parameters in a data analysis challenge using a different N-body code, halo
finder, halo occupation distribution and redshift. We find that LPT performs better than
MOME and REPT at the reference scale cut chosen in ref. [255], and is able to recover the
true cosmology with negligible biases up to kmax = 0.2hMpc−1 in a volume approximately
one hundred times that of DESI or Euclid at the same redshift. Results of this test are given
in Figure 3.6.

Let us conclude by noting some possible extensions of our model and numerical imple-
mentation. There has been considerable recent interest in extending the bias expansion of
galaxies to include anisotropic selection effects and, indeed, the redshift-space galaxy density
can be decomposed into a generalized expansion of operators with LOS symmetry [176, 110,
146, 259]. Since the angular dependencies of these operators will in general involve only tensor
products of k̂, n̂ and q̂ their 2-point functions (with IR displacements resummed) should follow
straightforwardly from our calculations. Our calculations should also be straightforwardly
extendable to modeling the reconstructed galaxy power spectrum at one-loop order, especially
the “Rec-Sym” scheme [78] which features an identical structure, with the only difference
being a larger set of terms involved. Concerning extensions of the ΛCDM model, perhaps the
simplest one to implement is massive neutrino cosmologies. It is well known that halos and
galaxies are biased tracers of the dark matter and baryon fluids only [391, 65, 66, 393, 222,
252, 136], which implies the bias expansion presented in Section 3.2 will still be valid with
the trivial replacement of the total matter field with the dark matter plus baryon one. Extra
care should be taken with RSD since the growth rate is now scale dependent and Equation
3.4 is no longer valid [18] (and similarly in modified gravity theories [19, 383]). However given
the smallness of neutrino masses, this complication is usually neglected when evaluating loop
integrals. We intend to return to these, admittedly more involved, calculations in future
work.
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Chapter 4

Reconstruction in the Zeldovich
Approximation

This chapter was originally published as

Shi-Fan Chen, Zvonimir Vlah, and Martin White. “The reconstructed power spec-
trum in the Zeldovich approximation”. In: JCAP 2019.9, 017 (Sept. 2019), p. 017.
doi: 10.1088/1475-7516/2019/09/017. arXiv: 1907.00043 [astro-ph.CO]

In the previous two chapters we developed perturbation theory models of redshift-space
distortions and showed that they were up to the task to analyze data at the precision required
by upcoming spectroscopic surveys. In this chapter we turn our attention to another major
goal of these surveys: the measurement of the baryon acoustic oscillations. In particular,
we will develop a model for the 2-point function in redshift space after reconstruction. As
we have already discussed, nonlinear structure formation dampens the BAO peak due to
long displacements; density reconstruction sharpens the baryon acoustic oscillations signal by
undoing some of the smoothing incurred by nonlinear structure formation (Fig. 4.1)).

We present an analytical model for reconstruction based on the Zeldovich approximation,
which for the first time includes a complete set of counterterms and bias terms up to quadratic
order and can fit real and redshift-space data pre- and post-reconstruction data in both
Fourier and configuration space over a wide range of scales. We compare our model to
n-body data at z = 0 from the DarkSky simulation [350], finding sub-percent agreement in
both real space and in the redshift-space power spectrum monopole out to k = 0.4hMpc−1,
and out to k = 0.2hMpc−1 in the quadrupole, with comparable agreement in configuration
space. We compare our model with several popular existing alternatives, updating existing
theoretical results for exponential damping in wiggle/no-wiggle splits of the BAO signal and
discuss the usually-ignored effect of higher bias contributions on the reconstructed signal. In
the appendices, we re-derive the former within our formalism, present exploratory results
on higher-order corrections due to nonlinearities inherent to reconstruction, and present
numerical techniques with which to calculate the redshift-space power spectrum of biased
tracers within the Zeldovich approximation.

https://doi.org/10.1088/1475-7516/2019/09/017
https://arxiv.org/abs/1907.00043
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Figure 4.1: Schematic for reconstruction from ref. [267]. The top two panels show how displacments
on scales smaller than rBAO smear out the BAO feature (black ring). In the bottom two panels,
the galaxy density field is used to reconstruct the large-scale Zeldovich displacement (blue arrows)
which is then removed from the observed galaxy positions by shifting them in the negative direction.
Insets show the width of the particle distribution at each step.

4.1 Introduction

Density field reconstruction [122] is a means of improving the determination of the distance-
redshift relation using baryon acoustic oscillations (BAO) [410]. The BAO method is a
“standard ruler” test which seeks to measure the scale of a feature in the 2-point function
whose physical size is known. Comparison with the observed size of this feature gives the
angular diameter distance and Hubble parameter as a function of redshift. While the large
size of the BAO feature (100Mpc) makes it relatively immune to systematic effects, nonlinear
evolution erases the oscillations on small scales, or broadens the peak in the correlation
function, and reduces the accuracy with which the scale can be measured [238, 336, 413,
337, 121]. However much of the peak broadening comes from motions sourced by very long
wavelength fluctuations [121] which are well measured by surveys aiming to measure BAO.
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This insight led ref. [122] to propose that density-field reconstruction could be applied to
regain much of the information lost to non-linearities. It has been used in all recent BAO
surveys to improve their constraints (e.g. see ref. [7] and references therein).

BAO reconstruction has been studied both numerically [424, 389, 388] and analytically
[122, 266, 257, 368, 414, 321, 338, 87, 318, 171, 429, 132, 245, 155, 112, 339]. Our work
builds upon these analytic calculations. Where earlier work made simplifications aimed
at highlighting important physical effects, neglected complications such as redshift-space
distortions, applied heuristics or otherwise simplified the calculations for explanatory effect,
we aim to produce a consistent dynamical theory which can be compared directly to upcoming
observational data. Hence we generalize these calculations to also consider the power spectrum
and extend the model to include the complete set of quadratic bias terms. To our knowledge
this is the first dynamical model with a full bias scheme that can produce consistent real
and redshift-space results in both Fourier and configuration space, allowing it to be used for
consistent fitting of upcoming data.

There has been significant theoretical work on reconstruction since the first algorithm [122]
was suggested. Most recently, a variety of iterative or alternative reconstruction approaches
have been developed [368, 429, 318, 132, 245, 155]. Though our calculations give some insights
into these methods, for near-future experiments and for BAO scales these iterative methods
do not lead to significant improvements and so we defer consideration of these more complex
algorithms to future work.

The outline of this chapter is as follows. Section 4.2 reviews the formalism of Lagrangian
perturbation theory within which we work. Section 4.3 describes the reconstruction algorithm
we seek to model, while Section 4.4 gives our results in Fourier space, comparing to the
configuration-space results where appropriate (Section 4.5). We discuss alternative statistics
in Section 4.6. To assess the range of validity of our models we compare to N-body simulations
in Section 4.7. A comparison with earlier work is given in Section 4.8 before we conclude in
Section 4.9. Some technical details are elaborated in the appendices.

4.2 Lagrangian Perturbation theory

The Lagrangian framework [431, 54, 250, 177, 39, 231, 229, 58] describes cosmological
structure formation by tracking the displacements Ψ(q) of infinitesimal parcels of the matter
fluid from their initial (Lagrangian) positions q. In this picture the present day matter over-
and underdensities are a result of the clustering of the displaced Eulerian positions x(q, τ) =
q+Ψ(q, τ). The displacements follow the equation of motion Ψ′′(q) +HΨ′(q) = −∇xΦ(x),
where Φ(x) is the gravitational potential which is in turn sourced by the clustered matter
fluid via Poisson’s equation ∇2Φ(x, τ) = 3

2
Ωm(τ)H2(τ)δ(x, τ) with τ the conformal time.

This set of equations can be solved perturbatively in terms of the linear overdensity, δ0, and
the first order solution is given by Ψ = −D(τ)∇∇−2δ0, where D(τ) is the linear growth
factor [431].
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The Lagrangian picture treats tracer bias and advection separately. Given a biased tracer,
a, with initial overdensity F a(q) = F a [∂2Φ(q), ...], the time-evolved tracer overdensity at
conformal time τ is given by number conservation as [229]

1 + δa(x, τ) =

∫
d3q F a(q) δD (x− q−Ψ(q, τ)) . (4.1)

The cross power spectrum between two biased tracer populations a and b is then

P ab(k) =

∫
d3q eik·q ⟨F a(q2)F

b(q1) e
ik·∆ab⟩q=|q2−q1| , ∆ab = Ψa(q2)−Ψb(q1), (4.2)

where we have used that the integrated expectation value can only depend on q = q2 − q1,
due to the translation invariance of the underlying theory. The bias functionals, F a,b, can be
Taylor expanded in terms of bias coefficients

F a(q) = 1+ ba1δlin(q)+
1

2
ba2
(
δlin(q)

2 − ⟨δ2lin⟩
)
+ bas

(
s2(q)− ⟨s2⟩

)
+ ba∇2∇2

qδlin(q)+ · · · , (4.3)

where s2 = slin,ijslin,ij is the square of the shear field, i.e. the traceless part of ∂∂Φ. Following
ref. [396], we also consider contributions from a “derivative bias” b∇2 , i.e. corrections to the
bias expansion at scales close to the halo radius Rh proportional to ∇2δ0; such contributions
will, however, be essentially degenerate with counterterms renormalizing nonlinearities in the
Zeldovich power spectrum and we will therefore not enumerate them separately in the rest of
this work unless otherwise stated.

In this work our focus will be on modelling reconstruction within the Zeldovich approxi-
mation [431, 415], which keeps only the linear order term in the dynamics of Ψ but re-sums
the effects of the displacement to all orders in a Galilean-invariant manner (this is true for
reconstruction also if we take it to mean that all displacements transform the same way). This
is specifically accomplished by evaluating the exponential in Equation 4.2 via the cumulant
expansion, and evaluating the bias expansion using functional derivatives (see e.g. refs. [229,
58, 396]). Following standard techniques, as outlined in the references above, the resulting
expression for the cross spectrum is

P ab(k) =

∫
d3q eik·q e−

1
2
kikjA

ab
ij

[
1 + α0k

2 + ibb1k · Ua + iba1k · Ua + ba1b
b
1ξL +

1

2
ba2b

b
2ξ

2
L

− 1

2
kikj (b

b
2U

a
i U

a
j + ba2U

b
i U

b
j + 2ba1b

b
1U

a
i U

b
j ) + iki(b

b
2b
a
1U

a
i + bb1b

a
2U

b
i ) ξL

− 1

2
kikj(b

a
sΥ

b
ij + basΥ

b
ij) + iki(b

a
1b
b
sV

ab
i + bb1b

a
sV

ba
i )

+
1

2
(ba2b

b
s + bb2b

a
s)χ

12 + basb
b
sζ + · · ·

]
(4.4)

where we have defined1 the quadratic two point functions

Aabij = ⟨∆ab
i ∆

ab
j ⟩, U b

i = ⟨∆ab
i δlin(q2)⟩, ξL = ⟨δlin(q2)δlin(q1)⟩ (4.5)

1These are generalizations of the similar auto-spectrum quantities defined in refs. [58, 415, 396].
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and shear correlators

ζ = ⟨s2(q2)s
2(q1)⟩, Υb

ij = ⟨∆ab
i ∆

ab
j s

2(q2)⟩, V ab
i = ⟨∆ab

i δ0(q2)s
2(q1)⟩, χ12 = ⟨δ20(q1)s

2(q2)⟩.
(4.6)

Unless otherwise specified we will drop the superscripts and subscripts lin in this paper
since we will deal only in the Zeldovich approximation. Note that in the above calculations
we have, without loss of generality, associated tracers a and b with Lagrangian positions
q2 and q1, respectively. The quantities in Equation 4.4 with a and b swapped can also be
calculated by swapping the positions q1 ↔ q2. As an example, U b = −⟨Ψb(q1)δ0(q2)⟩ is
the two-point function between the displacement of tracer b and the matter overdensity.
The vector and tensor two point functions defined above can be decomposed via rotational
symmetry into scalar components, e.g. Aij = X(q)δij + Y (q)q̂iq̂j and Ui = U(q)q̂i. Formulae
for these functions, expressed as Hankel transforms of power spectra, are given in Appendix
D.1. Finally, we include the contribution α0k

2 in the square brackets of Equation 4.4 as
the lowest-order counterterm renormalizing sensitivities to small-scale power in Aij — in
practice this simply modifies the matter contribution PZel(k) (∝ 1 in the square brackets) to
(1 + α0k

2)PZel(k) (see e.g. refs. [399, 290]). Each term in Equation 4.4 can be evaluated as
Hankel transforms (see e.g. ref. [396]) using the identities given at the end of [399], which we
carry out using the mcfit package2.

The Lagrangian formalism allows a straightforward translation between real and redshift
space via a mapping of the Lagrangian displacements. In particular, assuming the plane-
parallel approximation3 and working in the Zeldovich approximation, quantities in redshift
space are given simply by substituting Ψi → ΨR

i = RijΨj [229]. Here Rij = δij + fn̂in̂j,
where n̂ denotes the line-of-sight direction and f = d lnD/d ln a is the linear-theory growth
rate. To lowest order, transforming into redshift space requires the inclusion of a second
counterterm dependent on the line-of-sight angle µ = k̂ · n̂. We can see this explicitly, for
example, in the UV-sensitive zero-lag term in Aij, which gains an angular dependence

kikj⟨(Ψi + n̂in̂lΨ̇l)(Ψj + n̂jn̂mΨ̇m)⟩ ≡ k2(X(0) + (2Ẋ(0) + Ẍ(0))µ2), (4.7)

where Ψ̇ is the velocity in Hubble units equal to fΨ in the Zeldovich approximation4; roughly
speaking, we need one angle-independent counterterm α0k

2 to absorb the UV dependence of
X(0) and another α2k

2µ2 to absorb the UV dependence of the velocities. The complete set
of counterterms in redshift space thus makes a contribution of the form (α0 +α2µ

2)k2PZA(k);
since PZA(k) is equal to (1 + fµ2)2PL(k) to linear order, an equivalent viewpoint—which we
will adopt in this work— is to have constant counterterms ᾱ0k

2 and ᾱ2k
2 for the monopole

and quadrupole, respectively, where the barred counterterms are linear combinations of the
unbarred quantities.

2https://github.com/eelregit/mcfit
3This should be an excellent approximation on BAO scales [63], but if necessary the formalism can be

modified to include “wide-angle” effects [64].
4See refs. [405, 396] for a more detailed exposition of the “dot notation.”
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4.3 Reconstruction algorithm

In this section we describe two possible methods for reconstruction in redshift space, both
built around the Zeldovich approximation. The standard procedure for reconstruction was
developed in ref. [122] and involves displacing both observed galaxies and a spatially uniform
distribution by a calculated shift field, χ, then taking the relative density contrast between
the two sets of particles as the reconstructed density field. For a suitably chosen χ, this
can reduce the effect of large scale (IR) bulk flows that “blur” the BAO feature. However
there is no consensus in the community on the correct procedure for handling redshift-space
distortions: the implementation in ref. [267] chose to multiply χ by 1 + f in the line-of-sight
direction for δd but not for δs. This ‘undoes’ the supercluster infall effect [196] and reduces
the ℓ > 0 moments of the 2-point function on large scales. Ref. [414] suggested a symmetric
treatment of δd and δs, which recovers linear theory on large scales. This is more natural
from the point of view of perturbation theory and better behaved near the boundaries, but is
less often implemented on data. A number of other choices were explored in ref. [338] but in
this work we will restrict our attention to the two methods described above.

The reconstruction procedure consists of the following steps [122]:

1. Smooth the observed galaxy density field δg with a kernel S to filter out small scale
(high k) modes, which are difficult to model. We use a Gaussian smoothing of scale Rs,
specifically S(k) = exp[−(kRs)

2/2], though none of our analytic results will depend
specifically on this choice. For galaxy surveys Gaussian smoothing has been universally
adopted (though with different conventions for Rs) but in other contexts it may be
advantageous to implement a Wiener filter instead (e.g. ref. [87]).

2. Compute the shift, χ, by dividing the smoothed galaxy density field by a bias factor b
and linear RSD factor [196] and then take the inverse gradient. Assuming linear theory
with scale-independent bias and supercluster infall holds on large scales, the calculated
shift field should approximate the negative smoothed Zeldovich displacement. In a
simulation with a periodic box, these first two steps can be implemented using FFTs as

χk = − ik
k2

S(k)
( δg(k)

b+ fµ2

)
≈ −S(k)Ψ(1)(k) (4.8)

where the bias factor is related to the Lagrangian first-order bias by b = 1 + b1 and
we have defined the line-of-sight angle µ = n̂ · k̂. For non-periodic data the relevant
differential equation can be solved by multigrid5 or by linear algebra techniques [267]
or iteratively using FFTs [55].

3. Move the galaxies by χd = Rχ and compute the “displaced” density field, δd.

4. Shift an initially spatially uniform distribution of particles by

5https://github.com/martinjameswhite/recon code
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• Rec-Sym: χs = Rχ, i.e. the same amount as the observed galaxies, or,

• Rec-Iso: The un-redshifted χs = χ.

to form the “shifted” density field, δs. Note that we have borrowed the nomenclature of
ref. [338] for the latter, which “isotropizes” the reconstructed field on large scales. For
the former we use “Rec-Sym” to indicate the symmetry of the treatment of δd and δs.

5. The reconstructed density field is defined as δr ≡ δd − δs with power spectrum Pr(k) ∝
⟨|δ2r |⟩.

Throughout we shall assume that the fiducial cosmology and halo bias are properly known
during reconstruction (see e.g. refs. [339, 62] for relaxation of this assumption), and take the
approximation in Eq. 4.8 to be exact. For further discussion of this point see refs. [321, 171].
The procedure in real space can be straightforwardly obtained by setting f = 0, in which
case Rec-Sym and Rec-Iso become equivalent. Taking the limit S → 0 or χ→ 0 returns the
‘raw’ spectrum, before reconstruction.

4.4 Reconstructed power spectrum

There has been significant earlier work on modeling density-field reconstruction within
perturbation theory [122, 266, 257, 368, 414, 321, 338, 87, 318, 171, 429, 132, 245, 155, 112,
339]. In particular ref. [414] presented a calculation of the configuration-space two-point
function (the correlation function) under the assumption of Zeldovich dynamics and that
χ = −SΨ. In this chapter we generalize that calculation to a more complete bias model (see
§4.5), including all terms allowed by symmetries up to quadratic order as well as a proper
set of counterterms, and we show how to implement the model in Fourier space. We have
explicitly checked that the Hankel transform of our Fourier-space expressions matches the
direct configuration-space calculation to 1% in all terms, and we release code which makes
consistent predictions for both statistics with a common set of parameters. To our knowledge
this is the first calculation which provides self-consistent predictions in both spaces, uses a
dynamical rather than a heuristic model, works in redshift space and has a full set of bias
and counterterms.

Our focus in this section will be to model the reconstructed power spectrum using
Lagrangian perturbation theory in both real and redshift space (the expression for the
‘propagator’ is given in Appendix D.2 for completeness). Following the algorithm outlined
above, the reconstructed power spectrum in real space is given by Precon = P dd + P ss − 2P ds.
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Within the Lagrangian framework we can write the displaced density field as

1 + δd(r) =

∫
d3x (1 + δ(x)) δD [r− x− χd(x)]

=

∫
d3x

∫
d3q F (q) δD [x− q−Ψ(q)] δD [r− x− χd(x)]

=

∫
d3q F (q) δD [r− q−Ψ(q)− χd(q+Ψ(q))] , (4.9)

where we performed the x integral using the first δ-function to go from the second to third
lines. Importantly while the fluid displacement, Ψ, is evaluated at the Lagrangian position,
q, the shift field is evaluated at the shifted Eulerian position, q+Ψ. The above equalities
hold both when the pre-reconstruction coordinate, x, is in real or redshift space, with the
implicit substitution of Ψ → RΨ in the latter case, as long as the appropriate shift field χd
is chosen. The expression for the shifted density can be similarly derived or found by setting
Ψ(q) = 0 and χd → χs in the above expression. In Fourier space this translates to

(2π)3δD(k) + δd(k) =

∫
d3q e−ik·q F (q) e−ik·

[
Ψ(q)+χd(q+Ψ(q))

]

(2π)3δD(k) + δs(k) =

∫
d3q e−ik·q e−ik·χs(q). (4.10)

Below we will make the approximation χ(q + Ψ) ≈ χ(q). The nonlinearities from the
Lagrangian-to-Eulerian mapping can be understood as a perturbation series in Ψ/R, where R
is the smoothing scale, and we explore their consequences in Appendix D.5 (see also refs. [321,
171] and the discussion in ref. [414]). Within this approximation we can treat the displaced
and shifted field as tracers with displacements

Ψd = Ψ+ χd, Ψs = χs, (4.11)

where the Zeldovich displacements should be understood as being in redshift space for the
displaced field and in either redshift or real space for the shifted field depending on the
method used. In this picture the “displaced” tracer has the same bias functional as the
original galaxies (F d ≡ F g) while the “shifted” tracer is unbiased (F s ≡ 1). A straightforward
consequence of the reconstruction procedure is that, like that of any discrete tracer, the shift
field autospectrum will contain an independent shot noise term P ss

SN = 1/ns, where ns is the
number density of the uniform random particles. The full shot noise contribution to the
reconstructed spectrum is the sum of the galaxy and random particle shot noises.

4.4.1 Real space

In real space both the displaced and shifted fields are moved by the same, smoothed negative
Zeldovich displacement, χd = χs = −S ⋆Ψ, such that in Fourier space

Ψd(k) = [1− S(k)]Ψ(k), Ψs(k) = −S(k)Ψ(k). (4.12)



CHAPTER 4. RECONSTRUCTION IN THE ZELDOVICH APPROXIMATION 105

10 3 10 1 101 103 105

q  [h 1 Mpc]

0

20

40

60

Xmm

Xdd

Xds

Xss

10 3 10 1 101 103 105

q  [h 1 Mpc]

0

5

10

15

20
Ymm

Ydd

Yds

Yss

10 3 10 1 101 103 105

q  [h 1 Mpc]

0

10

20

30

40
q Udm

q Usm

Figure 4.2: Lagrangian space two point functions used to compute reconstructed power spectra.
Dashed quantities have been multiplied by an overall negative sign, and reflect that the shifted
field is defined to be negatively correlated with the underlying matter field. Roughly speaking, the
shifted and displaced correlators reproduce the general trend for the total matter correlators, shown
in black, on large and small scales, respectively. An exception is Xds, whose non-vanishing value on
small scales reflect that the point values of Ψd and Ψs differ exactly by the Zeldovich displacement.
Note also the small but visible features around q = 100h−1Mpc, i.e. the BAO scale.

and the auto- and cross-spectra can be calculated using Equation 4.4 and the correlators in
Appendix D.1, using linear theory spectra

P dd
L (k) = [1− S(k)]2 PL(k), P ds

L (k) = −S(k) [1− S(k)]PL(k), P ss
L (k) = S(k)2PL(k)

(4.13)
as well as tracer-matter power spectra

P dm
L (k) = [1− S(k)]PL(k) , P sm

L (k) = −S(k)PL(k). (4.14)

Note that the shifted field is negatively correlated with both the matter and displaced fields
by-construction, since the random particles are displaced in the opposite direction of the
(smoothed) Zeldovich displacement.

The Lagrangian space two-point correlation functions required to calculate the pre- and
post-reconstruction power spectra, normalized to their present-day values, are shown in
Figure 4.2. For simplicity we have excluded the shear correlators and refer readers to
Appendix D.1 for further details. The components X and Y describe correlation functions of
two displacements, while the U ’s involve those with only one displacement, such that the
former are Hankel transforms of the linear tracer-tracer spectra, while the latter involve the
linear tracer-matter spectra. As expected, the Y ’s and U ’s for the displaced and shifted fields
contain the behavior of the full matter contribution and small and large scales, respectively,
and cross correlations between the shifted field and the displaced or matter fields is negative.
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The X(q) components however, especially the cross-correlation Xds, display more subtle
behavior. In particular, we have

Adsij (q)
q→0
= ⟨Ψd

iΨ
d
j ⟩+ ⟨Ψs

iΨ
s
j⟩ − 2⟨Ψd

iΨ
s
j⟩ ≡ Σ2δij, (4.15)

such that Xds(q) → Σ2 as q → 0. This is because, when evaluated at the same point,
Ψd −Ψs = Ψ, i.e. the difference between the displaced the shifted displacements is none
other than the original Zeldovich displacement. This in turn implies that the cross spectrum
is damped at small scales ∝ exp[−k2Σ2/2] due to the nonzero displacement between the
displaced and shifted fields. Similar behavior is seen in the evaluation of unequal-time
correlation functions [83] and the baryon-cold dark matter cross-correlation [217, 70], though
the physical mechanisms are of course different. At large scales, we similarly have

Adsij (q)
q→∞
= ⟨Ψd

iΨ
d
j ⟩+ ⟨Ψs

iΨ
s
j⟩ ≡

(
Σ2
dd + Σ2

ss

)
δij, (4.16)

such thatXds asymptotes to the average ofXdd andXss at large separations. For completeness,
we give explicit expressions for the displaced and shifted Xab here:

Xdd(q) =
2

3

∫
dk

2π2

[
1−

(
j0(kq) + j2(kq)

)] (
1− S(k)

)2
PL(k)

Xds(q) =
2

3

∫
dk

2π2

[ 1

2

(
(1− S(k))2 + S(k)2

)
+ S(k)

(
1− S(k)

)(
j0(kq) + j2(kq)

)]
PL(k)

Xss(q) =
2

3

∫
dk

2π2

[
1−

(
j0(kq) + j2(kq)

)]
S2(k)PL(k). (4.17)

The corresponding expressions for Y ab can be directly obtained by calculating −3 times the
j2 components. As we shall discuss further in Section 4.8, the signs for the Bessel function
coefficients in our expression for Xds differ from those in ref. [112]. We note also, as has been
emphasized before [266], each of the three contributions to Precon has a different damping
factor which can only be roughly approximated by a single Gaussian term.

The lowest-order bias terms in the reconstructed real-space power spectrum at z = 0 are
shown Figure 4.3. The pure-matter piece (i.e. the “1” in Equation 4.4) is the only term that
includes contributions from all three combinations of d and s, while the b21 piece consists of
only the dd contribution. While each piece individually differs from the linear power spectrum,
compared to the pre-reconstruction power spectrum, the Zeldovich approximation predicts
that the post-reconstruction power spectrum largely recovers the oscillatory features in the
linear spectrum, as seen in the lower panels of Figure 4.3. We note that the structure of the
breakdown into P dd, P ds and P ss shown in Figure 4.3 proceeds similarly in the higher-order
bias contributions: bias terms like b21, that are products of two bias parameters (e.g. b1b2, b2bs,
...), do not involve any displacements (Ψ) and can thus only enter in the autospectrum of the
biased “d” tracer P dd, while those like b1 that involve only one bias parameter (e.g. b2, bs)
involve two-point functions with one displacement contracted and thus contribute to the cross
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Figure 4.3: (Top) Real-space power spectra contributions, displaced-displaced, displaced-shifted
and shifted-shifted, for the lowest order bias terms 1, b1, b

2
1, and their sum, compared to linear

theory at z = 0. The pure matter piece is the only term that receives contributions from all three
combinations of d and s, and the b21 term consists only of the dd contribution. All three bias terms
tend to linear theory on large scales but exhibit somewhat different broadband behavior at high
k. (Bottom) The ratio of the above bias terms with the linear theory power spectrum, compared
with the pre-reconstruction Zeldovich power spectrum. While both the pre- and post-reconstruction
Zeldovich spectra differ with the linear spectrum in the broadband at small scales, the Zeldovich
approximation predicts that the oscillatory features in the reconstructed spectrum are almost
identical to those in the linear spectrum, such that the wiggles are almost completely normalized
out for the reconstructed spectrum.
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at z = 0. Note that the matter (blue) and b21 (green) curves in the top right panel are essentially
degenerate, especially at the large scales shown.
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spectrum P ds as only one of the constituent tracers needs to be biased. The autospectrum
P ss does not contain any bias terms.

Figure 4.4 shows all the contributions to the reconstructed galaxy power spectrum and
correlation function, up to the quadratic bias and shear terms. As seen in the top panel, the
reduced damping in the lowest-order bias term “wiggles,” barely visible in log-log plots of the
reconstructed power spectrum, translate to significantly sharper and less shifted BAO features
(right column). In the quadratic bias contributions (middle panels), reconstruction can be
seen to dampen the amplitude of the BAO feature in the b2 and b1b2 contributions, which
“wiggle” in Fourier space, while leaving the spectrally smooth b22 contribution essentially intact.
Since the BAO feature in the quadratic bias contributions will tend to smear and shift the
observed BAO peak from its linear theory position, reconstruction serves to remove these
confounding nonlinearities as expected. The shear terms have less pronounced (i.e. smoother)
features at the BAO scale—which we will show in Section 4.8 as being essentially in-phase
with the linear theory oscillations— that are less affected by reconstruction.

Finally, as noted in the discussion below Equation 4.4, the exponentiated Aij in Zeldovich
power spectra are assumed to be long wavelength, IR modes which can be resummed while
contributions from the rest of the shorter modes are perturbatively expanded. These expanded
modes thus carry also a UV (small-scale) sensitivity that should be renormalized by adding
the appropriate counterterms, quadratic in wavenumber and proportional to the Zeldovich
power spectrum: αabk

2P ab
Zel. In principle, we expect such counterterms in all three pieces of

our reconstructed power spectrum, however given that the P ss consists of mostly IR modes we
expect its counterterm contribution to be suppressed relative to similar terms in P dd and P ds,
though it could still be non-vanishing due to contributions we neglected in approximating
Equation 4.8. While the counterterms αdd and αds are highly nondegenerate due to the
different supports of P dd and P ds (see Figure 4.3) in k-space, in this work we will also explore
modelling the reconstructed power spectrum using only one counterterm, ∝ k2PZel, for both
P dd and P ds contributions, since such a contribution would also be degenerate with any
potential derivative biases (see e.g. ref. [396]). We will return to the difference between these
options in Section 4.7.

4.4.2 Redshift space

In this section we develop analytic expressions for the redshift-space reconstructed power
spectrum in both Rec-Sym and Rec-Iso. Methods recently developed in ref. [398] allow us
to extend the LPT redshift-space power spectrum calculation to include bias and the specifics
of reconstruction, which we summarise here and present in detail in Appendix D.3. As we
will show shortly, Rec-Sym and Rec-Iso are not equivalent even to linear order. Specifically,
we have

Psym(k) = (b+ fµ2)2PL(k) +O(P 2
L) (4.18)

Piso(k) =
[
(b+ fµ2)(1− S) + b S

]2
PL(k) +O(P 2

L), (4.19)
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i.e. while Rec-Sym restores supercluster infall at linear order, Rec-Iso removes redshift-space
distortions at large scales while keeping them at small scales6. As we will see, this produces
a smooth modulation in the broadband power nondegenerate with the BAO wiggles.

Since both the smoothed and displaced fields are uniformly multiplied by Rij in Rec-Sym,
it is straightforward to calculate the reconstructed power spectrum using Equation 4.4 with

Ψd(k) = [1− S(k)]RΨ(k) , Ψs(k) = −S(k)RΨ(k) . (4.20)

In particular the angular structure of the q integral follows as in the calculation of the galaxy
power spectrum without further modifications, and the set of bias terms in the dd, ds and ss
spectra are identical to the real space case. The reconstructed power spectrum can then be
calculated as one would the unreconstructed redshift space power spectrum. We develop the
formalism to do the latter in Appendix D.3.2 and comment on the changes required to go to
the reconstructed case therein.

The cross spectrum in Rec-Iso is slightly different since only the displaced field is
multiplied by the redshift space transformation, Rij. The displaced and shift fields in this
case are thus instead

Ψd(k) = [1− S(k)]ΨR(k) = [1− S(k)]RΨ(k) , Ψs(k) = −S(k)Ψ(k). (4.21)

Since the displaced and shift moves thus lie in redshift and real space, respectively, their auto
spectra can also respectively be calculated as in Rec-Sym and real space reconstruction;
however, the cross spectrum is only “half transformed” into redshift space and thus requires
special attention. The exponentiated two-points displacements are given by

Ads,isoij = ⟨Ψd
iΨ

d
j ⟩+ ⟨Ψs

iΨ
s
j⟩ − 2⟨Ψd

i (q2)Ψ
s
j(q1)⟩

= RinRjm⟨Ψd
nΨ

d
m⟩Real Space + ⟨Ψs

iΨ
s
j⟩Real Space − 2Rin⟨Ψd

n(q2)Ψ
s
j(q1)⟩Real Space,

(4.22)

such that the zero-lag piece due to the displaced-displaced correlation is fully transformed into
redshift space, the zero-lag piece due to the shifted-shifted correlation is untransformed, and
the coordinate dependent displaced-shifted correlation is“half transformed.” In particular,
defining as usual q = q q̂ and k̂ · q̂ = µq, the last piece is

kikj⟨Ψd
i (q2)Ψ

s
j(q1)⟩ = kikj(δik + fn̂in̂k)(X̃

dsδkj + Ỹ dsq̂kq̂j)

= k2(1 + fµ2)X̃ds + k2(µ2
q + fµqµ(q̂ · n̂))Ỹ ds, (4.23)

where we have defined the tilded quantities without the usual zero lag piece7

⟨Ψd(q2)Ψ
s(q1)⟩Real Space = X̃ds(q) δij + Ỹ ds(q) q̂iq̂j.

6We have amended Equation 4.11 to correct for a typo pointed out in ref. [283], wherein the bS in
Equation 4.11 was missing a factor of b. No other results or conclusions are affected.

7For notational simplificity, the functions X and Y are always defined in real space.
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Note that 2Ỹ = −Y since Y does not posess a zero-lag piece. The azimuthal-angle dependence
in q̂ · n̂ will require us to do the integral (Appendix D.3.1)

∫
dϕ

2π
eAµq

√
1−µ2q cosϕ =

∞∑

ℓ=0

H
(0)
ℓ (A) (Aµ2

q)
ℓ,

where we have defined

H
(0)
ℓ (A) =

ℓ∑

m=0

(−1)ℓ−mA2m−ℓΓ(m+ 1
2
)

√
πΓ(2m+ 1)Γ(2m− ℓ+ 1)Γ(ℓ−m+ 1)

.

Note that the Γ functions in the denominator will kill any terms in the sum for which 2m− ℓ
is negative, such that the sum really only contains ℓ/2 terms and is always convergent in A.
The full cross spectrum is then given by

P (ds)(k) =e−
1
2
k2(α0Σ(dd)2+Σ(ss)2 )

∫
d3q eikqµq+k

2(1+fµ2)(X̃(ds)+µ2qỸ
(ds))

∞∑

ℓ=0

H
(0)
ℓ (A)Aℓµ2ℓ

q

(
1 + ib1kµqU

(d)(q)− 1

2
b2k

2µ2
qU

(d)(q)2 + ...

)
(4.24)

where A = k2fµ
√

1− µ2Ỹ (ds) and we have defined Σ2 = X̃(0) and α0 = 1+ f(f + 2)µ2. The
remaining integrals can then be performed using the usual tricks for powers of µq using the
series in Equation B.53, and are explicitly given at the end of Appendix D.3.1.

Figures 4.5 and 4.6 show the various bias contributions to the reconstructed redshift space
power spectrum monopoles and quadrupoles within Rec-Sym and Rec-Iso, respectively.
A significant difference between the two methods can be seen by comparing the matter (i.e.
“1”) pieces in the top panels of the two figures. While all three linear bias contributions to the
reconstructed power spectrum monopole (∝ 1, b1, b

2
1) approach the Zeldovich monopole in

the large scale limit in Rec-Sym, the matter contribution to the Rec-Iso monopole instead
approaches the b21 contribution, which does not receive redshift space distortions in the linear
theory limit. This is because the power spectrum at the largest scales is dominated by the
autospectrum of the un-redshifted shift field, P ss. While the matter and b1 contributions to
the reconstructed quadrupole approach linear theory in Rec-Sym, they vanish on large scales
in Rec-Iso. On the other hand, the majority of the higher bias contributions (excluding
b2 and bs) are sourced only by P dd and are thus identical between the two methods, as can
be seen by comparing the lower two rows of Figures 4.5 and 4.6. This corresponds to our
intuition that redshift-space distortions are less prominent for highly biased tracers, and that
the differences between Rec-Iso and Rec-Sym disappear if we remove RSD. In addition, the
contributions enumerated above are supplemented by counterterms (αℓdd, α

ℓ
ds, α

ℓ
ss), where we

need a separate counterterm for each pair and multipole as discussed below Equation 4.7,
though as in the real space case we also explore the possibility of only fitting one counterterm
each for the net reconstructed monopole and quadrupole.
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Figure 4.5: Bias contributions to the pre- and post-reconstruction (dashed and solid) z = 0 redshift
space power spectra monopole and quadrupoles in the Rec-Sym scheme. The color scheme and
line styles follow those in Figure 4.4. The lowest-order contributions to the reconstructed monopole
and quadrupole due to the linear bias b1 tend to the Kaiser approximation at large scales. Note the
different y-axis ranges on different panels.
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Figure 4.6: Same as Figure 4.5, but for Rec-Iso at z = 0. Unlike in Rec-Sym, the linear bias
contributions to the monopole and quadrupole do not tend to the Kaiser limit on large scales but to
the real space linear power spectrum, as evidenced by reduced power in the monopole compared to
the pre-reconstruction Zeldovich power spectrum, and contributions to the quadrupole vanishing on
large scales. However, many of the higher bias contributions are identical to those in Rec-Sym
(Fig. 4.5).
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4.5 Reconstructed correlation function

The configuration space two-point function (the correlation function) can be obtained from
our Fourier-space results by Hankel transform. It is also possible to rewrite the q-dependent
integrals to compute ξ(r, µr) directly, where µr = n̂ · r̂. Here we reprise the calculation of
ref. [414], extending it to include the additional bias terms and commenting explicitly on
several numerical issues which arise. We have checked that our Fourier and configuration
space results agree numerically to significantly sub-percent levels in both real and redshift
space for both Rec-Sym and Rec-Iso.

The general formula for the cross spectrum of two tracers a and b given in Equation 4.4
can be Fourier transformed to give [415, 396, 399, 405]

1 + ξab(r) =

∫
d3q

(2π)3/2|Aab|1/2
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}
, (4.25)

where we have defined

gi = (A−1
ab )ij(qj − rj), Gij = (A−1

ab )ij − gigj (4.26)

and placed the superscript ab in Aab into the subscript for notational convenience. In the
configuration space calculation above, the Lagrangian two-point functions (e.g. Aij, Ui, Υij)
can be computed using the formulae provided in Appendix D.1. The above formula can
be translated into redshift space by multiplying the Lagrangian two-point functions with
vector indices by the appropriate factors of Rij = δij + fn̂in̂j. Taking the line-of-sight to
be in the z direction without any loss of generality, this is equivalent to multiplying by the
matrix diag(1, 1, 1 + f). When calculating the un-reconstructed redshift space correlation
function, this multiplication is equivalent to multiplying each z component index of vector
and tensor quantities (e.g. Ua

z or Aabyz) by 1 + f , and dividing the corresponding components

in the matrix inverse, A−1
ab , by the same factor. The redshift-space counterterm α2k

2µ2 can
be included in the correlation function by adding α2n̂in̂jGij, which similarly is equivalent to
α2Gzz when picking z as the line-of-sight direction.

The reconstructed correlation function in real and redshift space can be calculated
using Equation 4.25 by defining “displaced” and “shifted” tracers as in the case of the
power spectrum (Sections 4.4.1 and 4.4.2) and calculating the combined quantity ξrecon =
ξdd + ξss − 2ξds. For reconstruction using Rec-Sym, the same shortcuts of multiplying by
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factors of 1 + f in lieu of matrix multiplication and inversion apply, since all vector and
tensor quantities undergo the same transformation by Rij. The calculation for Rec-Iso is
more complicated. As was the case in Fourier space, the displaced-displaced and shifted-
shifted auto-correlation functions are equal to their counterparts in Rec-Sym and real-space
reconstruction, while the displaced-shifted cross-correlation function contains a mix of real and
redshift space factors. In particular, from Equation 4.22 we see that the two zero-lag pieces
and one q-dependent piece of Adsij in Rec-Iso are independently transformed by different
numbers of Rij’s. For this reason, when calculating the correlation function in Rec-Iso, the
matrix inverse of Ads in redshift space cannot be simply obtained by dividing the real space
inverse by factors of 1 + f ; rather, the uninverted matrix must be redshifted piece by piece as
in Equation 4.22 and then inverted numerically (we use Cholesky decomposition).

4.6 Other statistics

While the correlation function and power spectrum are the most frequently considered 2-point
functions, there are other variants that have some advantages. Since these can all be written
in terms of the correlation function or power spectrum, our model provides a consistent
prediction for them as well. Of particular interest for BAO is the ωℓ statistic of ref. [423],
which combines the scale-localization of the Fourier-space methods with the compactness
and easy treatment of masks of the configuration-space methods.

In principle ωℓ can be calculated from either the configuration-space or Fourier-space
expressions given above, but we have found it more convenient to start from the Fourier
expressions. Since these are computed using FFTlog they naturally cover a very wide range
of k, making the transforms to ωℓ easy to implement. For example

ω0(rs) =

∫
k2 dk

2π2
P0(k)W̃0(k rs) (4.27)

with W̃0 given in ref. [423] (see their Fig. 1 and Appendix A). At large scales W̃0 ∝ k2 while

at small scales W̃0 ∝ k−4. Our formalism naturally provides predictions for ωℓ using the same
set of bias and nuisance parameters as for ξℓ and Pℓ.

4.7 Comparison to N-body

To look at the domain of validity of our analytic results we compare to the DarkSky N-body
simulation suite8, specifically simulation ds14 a [350]. This simulation used the 2HOT code
[406] to evolve 102403 particles in an (8h−1Gpc)3 volume to model the growth of structure in
a ΛCDM cosmology with ΩM = 1−ΩΛ = 0.295, h = 0.688, ns = 0.968 and σ8 = 0.835. Initial
conditions were generated from a glass using 2nd order Lagrangian perturbation theory at

8http://darksky.slac.stanford.edu



CHAPTER 4. RECONSTRUCTION IN THE ZELDOVICH APPROXIMATION 116

lgM Redshift n̄ b
12.0− 12.5 0.0 3.45 0.87
12.5− 13.0 0.0 1.18 1.05
13.0− 13.5 0.0 0.38 1.30

Table 4.1: Number densities and bias values for the halo samples we use. Halo masses are log10 of
the mass in h−1M⊙, number densities are times 10−3 h3Mpc−3.

z = 93. Halos were found using the Rockstar code [34]. We extracted the positions, velocities
and masses of halos more massive than M200b = 1012 h−1M⊙ from the publicly available data
at z = 0 (data at higher z, which would have been a more relevant comparison, were not
available). We computed the halo correlation functions and power spectra, in real and redshift
space. For the redshift-space quantities we assumed the plane-parallel approximation with
the line-of-sight being the z-axis. We also obtained the linear theory power spectrum used to
generate the initial conditions, which we take as the input to our model.

We implemented the algorithm described in §4.3 using the periodicity of the box and
FFTs to perform the smoothing and computation of the shifts. As for the power spectrum
and correlation function, the plane-parallel approximation with line-of-sight the z-axis was
assumed for the redshift-space quantities. The code takes as input an assumed large-scale
bias, b, and growth parameter, f , in addition to a Gaussian smoothing length, R. We used
the b obtained from the ratio of the linear theory and real-space halo power spectra at low k
(see Table 4.1), and f ≃ 0.508 appropriate to the simulation cosmology at z = 0, and note
in passing that the goodness-of-fit of our results did not seem to be greatly improved by
substituting the linear bias thus obtained with the value of 1 + b1 obtained by fitting the
pre-reconstruction data with our model up to quasi-nonlinear scales.

We computed the reconstructed field in both real and redshift space. In each case
the shifted and displaced positions were computed using a 20483 FFT, which resolves the
(Gaussian) smoothing length by 2.5− 5 grid cells for R ≃ 10− 20h−1Mpc. We used as many
“random” positions as halos in each case, for simplicity, and computed the power spectra
and correlation functions for dd, ds and ss assuming periodic boundary conditions. The
reconstructed power spectrum or correlation function can then be computed as dd− 2ds+ ss,
and we can look at each of the contributions separately. Note that our choice of equal numbers
of randoms and data points means the shot noise on the reconstructed power spectrum is
twice that of the pre-reconstructed field.

We compare the N-body results to our model with b1 and b2 and include the minimal
set of counterterms as described in the preceding sections (one and three pre- and post-
reconstruction, respectively, in real space) as well as a constant shot noise component fit
to the data. For brevity our discussion will focus on halos with masses between 12.5 <
log10(M/h−1M⊙) < 13.0., though we obtained qualitatively similar results in the lower and
higher mass bin as well, and show fits of the reconstructed redshift space power spectrum in
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the latter at the end of this section. We have checked that including nonzero shear bias bs
does not visibly improve the goodness-of-fit. The top-left pair of panels of Figure 4.7 compares
the unreconstructed real-space power spectrum in our model with (b1, b2) = (0.02,−0.8) with
that in DarkSky. The quadratic bias, b2, accounts for a non-negligible fraction of the total
power at essentially all scales and significantly reduces the constant shot noise term in the
fit. We find that with a counterterm α ≈ 11 h−2Mpc2 our model agrees with the data at the
percent level out to k ≃ 0.4hMpc−1. The counterterm accounts for roughly a 10% correction
at k = 0.1hMpc−1, and it is worth noting that even in its absence our model accurately
captures the BAO features in the power spectrum, as evidenced by the lack of oscillatory
features in the fit residuals.

The remaining panels of Figure 4.7 show the fit for the reconstructed power spectra at
three smoothing scales R = 10, 15, 20h−1Mpc. We have tested whether the data could
be reproduced using only one counterterm, α (shown in orange), or equivalently from one
derivative bias b∇2 , and find that such a choice dramatically reduces the range-of-validity
of the model compared to three counter terms. While we adopted a rather conservative
approach in fitting these data, prioritizing the accuracy of our predictions at low k rather
than producing reasonable-looking fits to smaller scales, our model with three counterterms
(αdd, αds, αss) nonetheless reproduces both the broadband power and oscillatory features of
the reconstructed power spectrum out to k = 0.2hMpc−1 at the percent level for R = 15
and 20h−1 Mpc. That each of the three constituent spectra in P recon = P dd + P ss − 2P ds has
distinct short-wavelength behavior and k-space supports underlies the success of our model
with three counterterms—each of which has highly nondegenerate scale dependence—versus
the one-counterterm alternative. We have found that setting αss = 0 does not qualitatively
alter the degree to which our model fits the data; we have made this choice in all of our
fits below, but note that as αssk

2 vanishes quadratically towards low k, the data are also
naturally rather insensitive to it. Indeed, since nonlinear corrections are typically of order
k2Σ2, and the smoothing scale is chosen such that (Σ/R)2 ≪ 1, the insensitivity of P ss

to these corrections follows almost by construction. However, a bump-like feature around
k = 0.1hMpc−1 is persistent across all the fits, peaking at less than half a percent when
R = 20h−1Mpc and growing to a full percent at R = 10h−1Mpc. The appearance of such a
feature, growing towards smaller smoothing scales, is consistent with our neglect of nonlinear
corrections to the smoothed displacements, which should increase towards smaller smoothing
scales roughly as Ψ/R; we discuss one such nonlinearity in Appendix D.5. For sufficiently
small smoothing scales, even the assumption that the smoothing of the BAO feature can be
essentially captured with resummed linear displacements Ψd,s will break down, and indeed
our fit residuals begin to show noticeable oscillatory behavior at the smallest smoothing scale
shown (R = 10h−1Mpc). At R = 15h−1Mpc and in the sample variance limit with Gaussian
errors, the feature at k = 0.1hMpc−1 should be detectable with χ2 = Vobs/(2h

−3 Gpc3),
where Vobs is the total observed volume. If we were to instead smooth using the larger
R = 20h−1Mpc, the χ2 is roughly halved. For such a smoothing this feature represents a
χ2-penalty of 0.2 for a sample variance limited survey of 14 000 deg2 covering 0 ≤ z ≤ 0.3,
and would be slightly smaller for finite number density.
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Figure 4.7: Fits to the pre- and post-reconstruction real-space halo power spectra in DarkSky

for halos of mass between 12.5 < log10(M/h−1M⊙) < 13.0 at three smoothing scales (R = 10,
15, 20hMpc−1), assuming Zeldovich power spectra with biases (b1, b2) and one counterterm per
spectrum (three total for the reconstructed case). The upper plot of each vertical pair of panels shows
the product of the wavevector magnitude and power spectrum k P (k) while the lower plot shows
the fit residuals as a fraction of measure power ∆P/P = (Pfit − Pnbody)/Pnbody. In the top-left pair
of panels we show the incremental contributions from b2 and the counterterm α (which contributes
close to 10% of the power at k = 0.1hMpc−1) to the fit, which agrees with the simulation at the
percent level (dotted line in the lower plots) at all scales shown. In the remaining panels we use the
same bias parameters to fit the reconstructed power spectrum, allowing only counterterms to vary.
Our model with three counterterms can fit the data at the percent level out to k = 0.2hMpc−1,
though a bump-like feature at k = 0.1hMpc−1 becomes more prominent at smaller smoothing
scales, where nonlinear corrections beyond the Zeldovich approximation presumably become more
important (see text). Also shown in orange are fits using one counterterm – or equivanlently one
derivative bias – which fit less well past k = 0.1hMpc−1. We fined that setting the counterterm
αss to zero does not materially affect our fits. Note that there is excess power in the data at the
largest scales shown, as discussed in the text.
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The pre- and post-reconstruction real-space correlation functions can be directly compared
by computing the Fourier transforms of the above fits. However, in comparing our theory
with DarkSky we found that the z = 0, pre-reconstruction halo power spectra all have
significant excess power at low k compared to the predictions of linear theory with scale-
independent bias. The origin of this excess is unclear, and is not addressed in ref. [350].
It appears to arise from a significant number of low k modes, and so is unlikely to be
simply a statistical fluctuation in the initial conditions. It shows up in all of our halo
samples, and is highly correlated among mass bins. This excess power is small for modes
to the right of the power spectrum peak and probably has only a small impact on the
dynamics on BAO scales. In Fourier space we simply confine our fitting and modeling to
k > 0.01hMpc−1. In configuration space, however, the additional long-wavelength power
slightly distorts the shape of the BAO peak, and to enable a fair comparison we have added
appropriate long-wavelength modes to our theoretical predictions assuming linear theory;
specifically, we find that the fitting form Plw(k) = A (k/k0)

n, where A = 3.5× 104h−3 Mpc3,
k0 = 10−3 hMpc−1 and n = −1.7, describes well both the long-wavelength excess seen in the
power spectrum below k < 0.01hMpc−1 and dramatically improves the agreement between
the unreconstructed correlation function in theory and DarkSky. The contribution to the
pre- and post-reconstruction power spectra and correlation function of these long wavelength
modes is shown in Figure 4.8. Without the long-wavelength correction, the DarkSky results
do not agree with theory on the large scales to the right of the BAO peak, which should be
well-described within linear theory, nor in the BAO “dip,” both pre- and post-reconstruction.
Due to the ad-hoc nature of our correction, in the remainder of this section we will focus
our comparisons on Fourier space, wherein long-wavelength modes must decouple. However,
we caution that small, localized features in Fourier space can cause extended distortions
in configuration space where data points are highly correlated. In Figure 4.9, we show the
effect of the k = 0.1hMpc−1 bump described in the previous section by additively “filling” it
with a small, localized Gaussian profile, as shown in the left panel. The effects of this bump,
Fourier-transformed, are shown in the right panel: while sub-percent in Fourier space, the
k ≃ 0.1hMpc−1 feature gives rise to visible distortions to the BAO feature in configuration
space.

Finally, fits for the pre- and post-reconstruction power spectra in redshift space are shown
in Figure 4.10. We have chosen to summarize the angular dependence of the redshift-space
power spectrum in terms of its monopole and quadrupole, though our model predicts the
full P (k, µq) and higher multipoles as well. As in real space, we have fitted for the bias
parameters (b1, b2) using the unreconstructed data and applied the same set of bias parameters
to predict the power spectra in both Rec-Sym and Rec-Iso. We adopt the full set of six
counterterms, three each αℓdd, α

ℓ
ds, α

ℓ
ss for the monopole (ℓ = 0) and quadrupole (ℓ = 2), but

also explore the possibility of utilizing only one counterterm αℓ per multipole (corresponding
to a derivative bias for both the halo density and velocity). In all cases, our base model with
six counterterms fits the data at the percent level or below past k = 0.2hMpc−1 in both
the monopole and quadrupole moments. Notably the Zeldovich approximation produces
oscillation-free residuals even in the absence of counterterms (green), with the counterterms
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Figure 4.8: Halos in DarkSky exhibit significant excess power compared to theory at large scales in
Fourier space which should be well-described by linear theory. (Left) Fits to the real-space power
spectrum with and without our ad hoc correction Plw = A (k/k0)

n, shown in blue and orange
respectively. At the largest scales shown, the excess power is significantly larger than the scatter.
The fits prefer slighly different, though qualitatively similar, bias values. (Right) The same fits in
configuration space. The uncorrected data systematically trends below the data at separataions
above the BAO peak and in the BAO “dip,” while the fit with Plw added goes through all the data
points.

providing a physics-based broadband model (∼ αℓabk
2Pℓ,ab) that reproduces the N-body results

at the percent level. Our fits do not explicitly include nonlinear redshift space distortions such
as fingers-of-god, though such effects are perturbatively accounted for by velocity counterterms
to lowest order. For completeness, in Figure 4.11 we show the same fits for the mass bin
13.0 < log(M/h−1M⊙) < 13.5, where our model fits the data at percent level over a similar
range of scales using the parameters (b1, b2) = (0.23,−1.0).

Lastly, let us comment on the comparison fits in pre- and post- reconstructed cases. Given
that our shift field, χ, is constructed only from long-wavelength modes explicitly isolated
from observed field, δ, by filtering out the nonlinear scales larger than k ≳ 1/R, we have no
reason to suppose that the perturbative structure of our results will significantly change. In
other words, by performing the mapping in Equation (4.9), we have reconstructed only the
long modes, thereby reducing nonlinear smoothing due to large scale (infrared) modes, while
the bulk of the small-scale nonlinear modes, as well as FoG effects, should remain unreduced.
In addition, Lagrangian perturbation theory (PT) conveniently separates nonlinearities due
to long and short modes, exponentially resumming the former while expanding the latter
order-by-order [290, 399]. Because of this, we do not expect dramatically different PT
behavior in the pre- and post-reconstructed results. These arguments are also supported by
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Figure 4.9: A sub-percent level feature in the power spectrum near k = 0.1hMpc−1 can lead to
visible distortions in the BAO feature in ξ(r). (Left) Residuals for the fit as a fraction of total
measured power in the simulations, as defined in the caption of Figure 4.7. The orange curve shows
the residuals when our theory is corrected using a Gaussian profile localized at k = 0.1hMpc−1

compared to the fiducial fit (blue), whose residuals exhibit a dip centered at k = 0.1hMpc−1.
(Right) The fiducial and corrected correlation functions. The bump in the left panel, whose Fourier
transform is shown magnified in the green curve, induces distortions in the BAO feature across a
range of separations r ∼ 60− 120h−1Mpc.

Figures 4.10 and 4.11, which show our model exhibits quantitatively similar degrees of fit
pre- and post reconstruction.

4.8 Comparison to earlier work

There has been significant theoretical activity in modeling post-reconstruction clustering
(see references in the introduction). Our framework encompasses most of these previous
perturbation theory expressions when appropriate approximations and phenomenological
choices are accounted for. To the best of our knowledge, the framework presented here
captures for the first time all of the relevant post-reconstruction effects and is unique in
accurately handling both Fourier and configuration space results, in real and redshift space
and includes all the bias operators to quadratic order.

Not all models are based on perturbation theory calculations however, and many phe-
nomenological models have been introduced in order to describe the post-reconstruction
statistics. Restricting ourselves just to models of the ‘standard’ reconstruction algorithm [122],
§3.1 of ref. [424] discusses early models (which were of the form P (k) = B(k)Plin(k) + A(k)
with B(k) and A(k) smooth functions). Starting with the first applications to data in ref. [424]
the form used to fit reconstructed power spectra is based upon a split between a “smooth”
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Figure 4.10: Fits for the pre- and post-reconstruction redshift-space power spectrum monopole
(left) and quadrupole (right) for halos in the mass range 12.5 < log10(M/h−1M⊙) < 13.0. The
fractional residuals ∆P/P are defined in Figure 4.7. All spectra were fit using a consistent set of
bias parameters (b1, b2) = (0.02,−0.8), whose independent contributions are shown in the top row,
determined by fitting the pre-reconstruction data, such that only the counterterms were fitted in
constructing the curves in the bottom two rows. Our model with the full set of six counterterms—
three each for the monopole and quadrupole respectively—fits both the reconstructed monopole
and quadrupole in both schemes out to k = 0.2hMpc−1 to a few percent and reproduce the phase
and amplitude of the oscillatory BAO wiggles.



CHAPTER 4. RECONSTRUCTION IN THE ZELDOVICH APPROXIMATION 123

500

1000

1500
kP

l(k
) [

h
2  M

pc
2 ]

l = 0

Pre-Recon

(b1, b2) (b1)
200

400

600

800

l = 2

data
(b1, b2, )

0.1
0.0
0.1

P/
P

0.1
0.0
0.1

500

1000

1500

2000

kP
l(k

) [
h

2  M
pc

2 ] Rec-Sym

( dd, ds, ss) 200

400

600

800

no ct

0.1
0.0
0.1

P/
P

0.1
0.0
0.1

500

1000

1500

2000

kP
l(k

) [
h

2  M
pc

2 ] Rec-Iso

13.0 < logM < 13.5 0

100

200

300

400

10 2 10 1

k [h Mpc 1]

0.1
0.0
0.1

P/
P

10 2 10 1

k [h Mpc 1]

0.1
0.0
0.1

Figure 4.11: Like Figure 4.10, but for halos in the mass bin 13.0 < log(M/h−1M⊙) < 13.5. Here,
our model prefers the bias parameters (b1, b2) = (0.23,−1.0) and accurately fits the data over a
similar range of scales.

and “wiggle” contribution to P (k) = Pnw(k) + ∆Pw(k), with a phenomenological damping of
the wiggle component motivated by perturbation theory [121]. In ref. [424] the parameters of
the model were fit to N-body simulations, and this has become common. This approach has
dominated the modeling of observations to date (e.g. refs. [7, 61, 31] for recent examples)
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though ref. [197] is an example of an analysis that did not take this approach. However, we
note that the choice of the wiggle/no-wiggle split exhibits a certain amount of freedom in the
separation of the wiggle and broadband part. This of course implies that, in order to extract
accurate information from the e.g. BAO, either both wiggle and broadband part have to be
modeled to the same level of accuracy, or the extracted wiggle part from the data needs to
exactly correspond to the model (see also refs. [256, 254] for related discussion). The latter
requirement, even though implicitly assumed in most of the current BAO treatments, is rarely
subject to performance checks and scrutiny. In this context, it is also worth noting that the
common choice of Pnw derived in ref. [120] does not fully capture the broadband linear power
spectrum at the precision attained by modern Boltzmann codes. Figure 4.12 shows three
possible linear wiggle power spectra, based on no-wiggle spectra computed using the fitting
formula from ref. [120], B-splines [402] or a Savitsky-Golay filter; even the latter two, which
agree asymptotically with the full linear theory power spectrum, exhibit noticeably different
oscillatory behavior. This indicates that extracting the corresponding wiggle spectra from
the data is a challenging and sensitive step which can, on the other hand, be avoided if the
broadband is included in the theoretical framework. Models phenomenologically relying on
a wide separation of scale, assuming scale-independent bias or sufficient smoothness that
could be accounted for by nuisance parameters such as A(k) above, might suffer from overall
systematic offsets. Finally, it is also often the case that the nuisance parameters and BAO
scaling parameters are not consistent between the configuration-space and Fourier-space
analyses (i.e. the two do not form a Fourier transform pair) which could prove problematic if
fits in both spaces are combined.

By contrast the Zeldovich calculation above gives a consistent framework for understanding
the nonlinear smoothing of the BAO feature, both pre- and post-reconstruction, in both
configuration and Fourier space. Roughly speaking, the Gaussian smoothing kernel in the
empirical model is replaced by a Lagrangian coordinate-dependent kernel exp[−kikjAij(q)/2].
One might thus hope to formally extract the model for wiggle-only part as an approximation
to the calculation presented in the main body of this chapter; indeed, such a calculation was
performed in ref. [402] and extended to terms involving linear bias, redshift space distortions
and reconstruction in ref. [112]9. Figure 4.13 compares the results of our full Zeldovich
calculation in the Rec-Sym scheme, with the broadband subtracted out by calculating the
corresponding Zeldovich power spectrum using the no-wiggle power spectrum, versus the
resummed linear wiggle power spectrum (RWiggle; using the proper exponential damping
dependencies given in Appendix D.4), for the same linear bias values and with all higher
bias terms set to zero. The two are in excellent agreement, especially in the case of the
reconstructed power spectrum, with RWiggle slighly underdamping the BAO wiggles towards
small scales compared with the full Zeldovich calculation for the unreconstructed power
spectrum.

9We note that redshift-space reconstruction model presented in ref. [112] contains phenomenological
damping factors that do not capture the exact behaviour of Xds term given by in Equation (4.17). We repeat
this calculation and derive the proper damping factors for the wiggle component in Appendix D.4.
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Figure 4.12: The linear wiggle power spectrum for three choices of Pnw. The conventional choice
(EH98 [120]) does not accurately capture the large scale power, and we have investigated two
possible methods to mitigate this discrepancy: one based on B-splines, described in ref. [402] and
another based on a Savitsky-Golay filter in ln(k). The wiggle power spectra isolated using these
three methods exhibit visibly different oscillatory behavior.

However, even though RWiggle and the full Zeldovich calculation exhibit a high level
of agreement on the shape of the wiggle component, the RWiggle method depends on the
separation procedure of the wiggle and broadband components while the full Zeldovich
calculation requires no such steps. Specifically, the Zeldovich calculation deals only with
the combination P Zel

w + P Zel
nw , which is obviously invariant under the split, while RWiggle

models only the split-dependent P Zel
w . This implies that in order to use RWiggle in practical

analyses either the broadband part needs to be modeled to equally high accuracy or a highly
accurate wiggle extraction procedure is needed in order to guarantee feasible comparison of
theoretical model and the data. The latter seems to be a challenging task, potentially subject
to systematic offsets and bias. On the other hand, the resulting differences in the wiggle
spectrum should still be broadband and could be fit away using nuisance parameters using
sufficiently general broadband models.

Finally, our model differs from most in the literature in taking into account higher bias
terms such as b2 and bs, allowing us to assess systematic effects introduced by assuming
scale-independent bias. These higher biases can contribute both significant broadband power
(e.g. the top-left panel of Figure 4.10) and modulate the phase and amplitude of BAO
oscillations through mode-coupling effects [266]. However, explicit calculation shows that the
latter effect is only noticeable at very high values of bias. Figure 4.14 shows the effects on the
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wiggle component of adding nonzero quadratic density and shear biases b2, bs, for bias values
(b1, b2) ≈ (5, 20) chosen according to the peak-background split (PBS) on a Press-Schechter
mass function [292], and assuming bs ≈ b2, as compared to RWiggle. The quadratic density
bias, b2, induces an apparent phase shift towards large k, and can be seen to be essentially
out-of-phase with the linear BAO wiggles; however, these out-of-phase contributions are
dramatically reduced by reconstruction. By contrast the shear bias, bs, produces oscillatory
features roughly in-phase with the linear theory contributions and is largely unaffected by
reconstruction. For completeness, we have also plotted the potential oscillatory contribution
of a derivative bias, b∇2 , which modulates the overall amplitude of the power spectrum and
is degenerate with the various counterterms, αab.

To investigate the extent to which the broadband and oscillatory contributions of higher
bias terms can be mitigated by a suitable broadband model, we conducted an exploratory
“fit” of the redshift-space monopole and quadrupole pre- and post-reconstruction in the case
where the truth is given by the Zeldovich approximation including nonzero b2 and bs but fit
by an empirical model with only b1, an isotropic BAO scale paramter αBAO and polynomial
broadband contributions of the form employed in ref. [45] before reconstruction. Specifically,
we assume an empirical model of the form

Pl,fit(k) = α−3
BAOPl,b1

( k

αBAO

)
+
a1,l
k3

+
a2,l
k2

+
a3,l
k

+ a4,l + a5,lk, (4.28)

both pre- and post-reconstruction, where Pl,b1 denotes redshift-space multipoles in the
Zeldovich approximation with all higher biases set to zero. For this exercise we assumed
a sample variance limited survey at z = 0 and z = 1.2 with Gaussian covariances between
the monopole and quadrupole, fit up to kmax = 0.25hMpc−1 and note that the results are
independent of survey volume. In Figure 4.15 we have plotted the resulting shifts in the
BAO scale assuming PBS values for b1 and b2, taking values for bs as a function of b1 from
ref. [4]. At z = 0, we find that neglecting higher biases in favor of the empirical model induces
shifts of less than half a percent in the BAO scale over a wide range of halo masses both
pre- and post-reconstruction, though reconstruction more than halves the forecasted shift
for essentially all values of bias surveyed (Figure 4.15). At z = 1.2 the shifts are further
reduced, amounting to less than a tenth of a percent across a wide range of bias values
prior to reconstruction and essentially vanishing post reconstruction. These shifts would be
well-within the margin of error of both current and next-generation surveys like DESI [108],
especially post-reconstruction, suggesting that nonlinearities (e.g. higher bias) in the power
spectrum should not hinder accurate recovery of the BAO signal. On the other hand, the
value of the linear bias, b1, was significantly affected by the choice of broadband model, with
fits from the empirical model deviating from the true value by more than five percent in
many cases.
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Figure 4.13: Comparison of Zeldovich with IR-resummed linear theory (RWiggle) for reconstructed
and unreconstructed spectra at z = 0 and µ = 0 and 0.5 with b1 = 0.5 using Rec-Sym with higher
biases set to zero. RWiggle slightly under-predicts damping at high k (but see footnote 4), especially
for the unreconstructed power spectra.
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Figure 4.14: The z = 0 Zeldovich power spectrum at µ = 0.5, before and after reconstruction using
Rec-Sym, shown with and without contributions from the quadratic bias and shear biases when
(b1, b2, bs) = (5, 20, 10). For comparison, the RWiggle prediction is shown in the diamond points,
and the isolated b2 contributions are shown as a black dot-dashed line multiplied by a factor of
five. For the unreconstructed spectrum, the b2 contributions (with shear bias set to zero) can be
seen to be essentially out-of-phase with the linear theory wiggles and induce a phase shift in the
power spectrum. These contributions are greatly reduced in the reconstructed spectrum. The shear
contributions, on the other hand, are more-or-less in phase with linear theory and unchanged by
reconstruction. For completeness, we have also plotted contributions from a possible derivative bias
b∇2 , which modulate the amplitude of the wiggles in a manner growing with wave number.
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Figure 4.15: Shifts in the recovered isotropic BAO scale, αBAO, in redshift space fit using a model
with only b1 nonzero and polynomial broadband contributions in both the monopole and quadrpole,
when truth is given by the Zeldovich approximation with nonzero quadratic bias. Values of b1 and
b2 were chosen according to the peak-background split, while values for bs were taken from ref. [4].
(Left) Shifts in the BAO scale at z = 0. Fitting with the empirical model results in only sub-percent
shifts across a wide range of halo masses, which are further more than halved after reconstruction.
The solid and dashed lines show the shift with and without the quadratic shear bias bs, whose effect
is subdominant to b2. (Right) The same shifts calculated at z = 1.2. Even prior to reconstruction,
fitting with the empirical model results in less than a tenth of a percent shift in the BAO scale over
a wide range of biases; after reconstruction the shift due to nonlinear bias becomes essentially zero.

4.9 Conclusions

Baryon acoustic oscillations (BAO) are an important probe of fundamental physics and a
prime focus of upcoming surveys such as DESI [108] and EUCLID [211]. The BAO features
act as a “standard ruler” whose cosmological evolution is largely immune to astrophysical
effects but whose signal-to-noise ratio is lowered by nonlinear structure formation. BAO
reconstruction attempts to sharpen the BAO signal by removing some of the nonlinear
smearing due to large scale displacements [122]. In this chapter we develop an analytical
model, within the Lagrangian perturbation theory framework, to study the algorithm for
density-field reconstruction proposed in ref. [122]. Linear Lagrangian perturbation theory (the
Zeldovich approximation) provides an excellent description of these nearly linear displacements
and BAO smoothing pre-reconstruction [431, 415], making LPT a promising arena within
which to model the effects of reconstruction.

We develop a self-consistent framework with which to calculate the two-point statistics of
galaxies, employing a consistent set of parameters to fit the power spectrum and correlation
functions, pre- and post-reconstruction in real and redshift space. The broad validity of
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such LPT models allows for joint fits to the pre- and post-reconstruction two-point statistics
enabling e.g. a fit for redshift-space distortions and the linear growth rate, fσ8, simultaneously
with Alcock-Paczynski distortions constrained by BAO analyses [414]. Based on ref. [398], we
derive explicit formulae, to calculate the redshift-space power spectrum within the Zeldovich
approximation, both pre- and post-reconstruction, as an infinite series of spherical Bessel
transforms. Our model updates the developments for the reconstructed correlation function
in ref. [414], and is – as far as we are aware – the first model of reconstruction to include
a consistent set of bias terms up to quadratic order, including shear and derivative biases.
We show that the oscillatory behavior induced by the quadratic density bias, b2, are out of
phase with the linear BAO feature and greatly reduced post-reconstruction, while those due
to the quadratic shear bias, bs, are in-phase and essentially unchanged. In addition, we show
that each multipole moment of the reconstructed power spectrum should be, to lowest order,
corrected for by a set of three counterterms each, which perturbatively correct both nonlinear
smoothing and broadband power.

We compare our analytic predictions with N-body data from the DarkSky simulation
[350] at z = 0, focusing on halos between 12.5 < log10(M/M⊙) < 13.0. Our base model,
involving only b1 and b2 and appropriate counterterms, jointly fits the pre-reconstruction
real-space power spectrum and redshift-space monopole out to k = 0.4hMpc−1, and the
quadrupole out to k = 0.2hMpc−1, reproducing the oscillatory BAO wiggles in the data with
high fidelity. Our model with the same bias parameters performs equally well in configuration
space around the BAO scale, though we found it necessary to correct for a large excess in
large-scale power encountered in the DarkSky data. Utilizing the same values for the bias
parameters but allowing counterterms to vary, we find that our model performs similarly
in real space post-reconstruction for smoothing scales R = 15 and 20h−1Mpc, reproducing
both the oscillatory features and broadband past k = 0.2hMpc−1, but fails to reproduce
the oscillatory features when R = 10h−1Mpc, likely due to the fact that we have worked
to lowest order and at z = 0 displacements on that scale are significantly nonlinear. We
point out a less severe feature in the residuals at k = 0.1hMpc−1 that diminishes with larger
smoothing scales which we believe arise from higher order terms and caution that neither
our calculation nor the standard reconstruction algorithm take these into account. A more
complete, iterative reconstruction scheme (e.g. ref. [318]) may reduce these features. The
modeling of these nonlinearities, and possible remedies, are beyond the scope of this chapter,
but as an exploratory example we calculate the effects of one possible nonlinearity due to the
mapping between Eulerian and Lagrangian coordinates in Appendix D.5.

Our model also predicts the multipole moments of the redshift-space power spectrum
and correlation functions in both of the redshift-space schemes (Rec-Sym and Rec-Iso) we
consider. This is critical in order for it to be applied to data, since the most constraining
BAO measurements are performed in redshift space. The model provides a good fit to the
monopole and quadruople moments of P (k) measured in DarkSky in both the Rec-Sym and
Rec-Iso schemes for smoothing scales of R = 15h−1Mpc or larger (at z = 0). Again, for
smaller smoothing scales the Zeldovich model differs from the N-body results (as expected).
These effects would be smaller at higher redshift, where the theory is more likely to be
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applied.
Finally, there exists an extensive literature studying the modeling of reconstruction and the

BAO signal, and we compare our model to several existing alternatives. One popular technique,
based on ref. [121], is to separate the power spectrum into a smooth “no wiggle” component
and an oscillatory “wiggle component,” and to damp the latter by an exponential factor fit
to simulations while supplementing the former with a polynomial in wavenumber to fit the
broadband power. This technique can be more rigorously derived as a particular resummation
of the nonlinear contribution of long-wavelength modes much like our Zeldovich calculation
itself [402, 112], in which case the damping parameters can be derived theoretically. When
the “wiggle” components are isolated we find that the latter is in excellent agreement with
our Zeldovich calculation, particularly after reconstruction. In Appendix D.4 we re-derive the
IR-resummed “wiggle” power spectrum (RWiggle) directly within our Zeldovich framework,
updating the exponential damping for the cross term P ds. We highlight that our Zeldovich
framework naturally encompasses broadband effects, while methods depending on wiggle/no-
wiggle splitting might be subject to additional systematic offsets and biases. These could
originate from the fact that the wiggle/no-wiggle splitting is not unique, and thus relies on
correctly predicting the broadband or extracting the corresponding wiggle part from the data
to high accuracy. On the other hand, the Zeldovich framework correctly captures broadband
power over a large range of scales in addition to reproducing the oscillatory features in the
reconstructed power spectrum. In fits to N-body data, we show how counterterms correct
the sharpness of the BAO feature and broadband power simultaneously and consistently.
Moreover, our model goes beyond linear bias to include quadratic density and shear bias,
which we show contribute oscillatory terms to P (k) that vary independently in amplitude
and phase.

We close by noting a few avenues for future work. An obvious extension of our model is to
include nonlinearities arising both from gravitational clustering and the reconstruction itself
(e.g. Appendix D.5). The former may be most easily included in the context streaming models
[396, 398], wherein the real-space modifications due to reconstruction and those proportional
to the growth rate f can be separately treated as modifications to the statistics of the galaxy
density and galaxy density-weighted velocities, respectively, and which in addition have the
advantage of resumming biased contributions to redshift-space distortions as well as nonlinear
redshift-space phenomena like fingers-of-god. It is, however, not a-priori obvious which type
of nonlinearity will present the most significant corrections. Other fruitful avenues would
be to investigate the impact of wrong parameters on reconstruction (e.g. refs. [339, 62])
or to update the present treatment to newer reconstruction techniques. Finally, one could
investigate the utility of our model for upcoming surveys like DESI [108] or Euclid [211].
These surveys will operate at higher redshifts where our calculations should perform even
better, and our model will be a natural arena in which to understand the effects of highly
biased tracers and the effects of cosmic evolution (e.g. evolving b and σ8) on the BAO feature
measured in broad redshift bins.
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We have publicly released our codes for configuration10 and Fourier11 space reconstruction,
with the hope that they will be useful to other researchers. We have checked that the Hankel
transform of the Fourier space code agrees, term by term, with the configuration space code
to better than 1%, except very close to zero crossings.
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Chapter 5

Applications of IR Resummation I:
Relative Baryon-Dark Matter Bias

The next two chapters were originally published as

Shi-Fan Chen, Emanuele Castorina, and Martin White. “Biased tracers of two
fluids in the Lagrangian picture”. In: JCAP 2019.6, 006 (June 2019), p. 006. doi:
10.1088/1475-7516/2019/06/006. arXiv: 1903.00437 [astro-ph.CO]

Shi-Fan Chen, Zvonimir Vlah, and Martin White. “Modeling features in the
redshift-space halo power spectrum with perturbation theory”. In: JCAP 2020.11,
035 (Nov. 2020), p. 035. doi: 10.1088/1475- 7516/2020/11/035. arXiv:
2007.00704 [astro-ph.CO]

A heavy focus of the preceding chapters has been the correct treatment of the BAO
feature within perturbation theory, particularly through the technique of IR resummation
in LPT. As described in the Chapter 1, however, the IR resummation natural to LPT is
not specific to the BAO, and unlike the wiggle-no wiggle IR resummation typically used in
EPT no specific length scales have to be input to yield to yield the correct behavior. In
the next two chapters, we put IR resummation to use in two non-standard cosmological
scenarios. In the first chapter, we look at additional terms in the galaxy bias expansion that
appear due to residual differences in baryon and dark matter clustering in the present epoch
which, due to their origin in recombination era physics, have the potential to bias standard
measurements of the BAO. We formulate these effects within LPT and forecast their impact
on future experiments when the correct nonlinear damping is taken into account. In the
second chapter, we investigate the ability to perturbation theory to model exotic features in
the power spectrum due to either non-standard inflationary scenarios or modifications to the
expansion history like early dark energy, showing that state-of-the-art EPT and LPT models
agree to sub-percent levels in redshift space. We also show that various resummations for
power spectrum features with multiple frequencies or nonlinear dispersions follow naturally
as saddle-point approximations of the Lagrangian IR resummation.
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5.1 Introduction

Observations of the large-scale structure (LSS) of the universe allow us to shed light on areas
of physics ranging from galaxy formation and evolution to fundamental physics. A prime
target of present and future LSS surveys is the measurement of baryon-acoustic oscillations
(BAO) – the imprints of sound waves in the baryon-photon fluid observed in the cosmic
microwave background (CMB) on the observed clustering of galaxies – which can be used
as a standard ruler to constrain the expansion of the universe [410]. Upcoming surveys
such as DESI [108], EUCLID [12] and WFIRST [117] will provide BAO measurements with
higher-than-ever precision, and even more futuristic BAO surveys such as a Stage II 21-cm
experiment [90] have been proposed. These next-generation observational campaigns will
require us to model the LSS with unprecedented accuracy, at the sub-% level.

One area of recent interest in the field of LSS has been in accounting for the effects
induced by the existence of multiple species (cold dark matter, baryons, neutrinos), with
similar but distinct clustering properties, using analytic methods. Studies of the perturbative
approach to structure formation have traditionally grouped all nonrelativistic species into
a “total matter” fluid, whose gravitational collapse is the dominant source of structure on
cosmological scales in the late-time universe, but many authors have recently extended these
techniques to include neutrinos [309, 343, 49, 66, 334] and baryons [98, 356, 380, 40, 217,
316, 317] in the Eulerian framework of Standard Perturbation Theory (SPT). In parallel,
the response of galaxy and halo formation to the existence of multiple fluid species has also
been subject of extensive investigation [98, 427, 65, 222, 252, 51, 316, 317]. Of particular
interest are the present-day imprint of relative perturbations between baryons and dark
matter on large scales which, being seeded in the same epoch and at the same scales as the
baryon acoustic oscillations, has the potential to confound future BAO measurements [98, 51,
43, 351]. While these relative perturbations do not grow significantly in time (and relative
velocities in fact decay) and are thus small compared to the total-matter growing mode at
late times, they amount to coherent supersonic flows post-recombination and could have
significant effects on the formation of the first halos and galaxies [380, 98], which are the
progenitors of the objects we observe today.

The goal of this work is to formulate perturbation theory and galaxy bias in the presence
of multiple fluids within the Lagrangian framework, with a particular focus on the two-fluid
baryon-dark matter scenario. Our work is a direct extension of the aforementioned SPT
calculations. While Lagrangian Peturbation Theory (LPT) is order-by-order equivalent
to SPT, it seamlessly allows a consistent treatment of large scales bulk flows, which are
responsible for the final shape and position of the BAO features in the correlation functions
or power spectrum [264, 340, 232, 415, 290, 402, 333]. The theory can also be extended to
handle density field ‘reconstruction’ [122, 266, 257, 414, 339]. These features make LPT a
natural language for investigating possible distortions to the BAO feature.

This paper is organized as follows. In Section 5.2, we introduce the linear Lagrangian
equations of motion and discuss the role of non-gravitational forces such as Compton drag
with the CMB. Modifications to Lagrangian galaxy bias and advection in the two-fluid limit
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are then introduced in Section 5.3. In Section 5.4, we employ the results of the preceding two
sections and calculate the lowest-order two-fluid corrections to the galaxy power spectrum
in the Zeldovich approximation. Cross spectra and subtleties in the IR resummation are
briefly discussed in Section 5.4.2. In Section 5.5 we take up whether the calculated two-fluid
corrections can significantly bias BAO measurements, arguing that any such biases can be
mitigated by simultaneously fitting for these easily-characterizeable effects. Our conclusions
are summarized in Section 5.6.

5.2 Linear Equations of Motion in Lagrangian Space

In the Lagrangian picture, fluid dynamics is encoded in the displacements Ψσ(q) of fluid
elements of each species, σ, originally situated at Lagrangian positions q, such that their
Eulerian positions at conformal time τ (dτ = a−1dt) are given by [431, 415, 39]

xσ(q, τ) = q+Ψσ(q, τ). (5.1)

The subscript σ = {c, b} denotes the species, either cold dark matter (CDM) or baryons,
respectively, whose motion we are tracking. Assuming that initial displacements are infinitesi-
mally small compared to those at the redshifts of interest, the overdensity, δσ, of each species
at Eulerian position x can be solved for via mass conservation

1 + δσ(x, τ) =

∫
d3q δD(x− q−Ψσ(q, τ)) =

∫
d3q

d3k

(2π)3
eik·(x−q−Ψσ(q,τ)), (5.2)

where δD is the Dirac delta function. Taylor expanding to first order in displacements yields
the familiar result that δσ(x) = −∇ · Ψσ(q), but, as seen in Equation 5.2, one feature of
working in the Lagrangian picture is that the translation into Eulerian quantities, such as
the density field, invariably involves nonlinear combinations of Ψ even when only the linear
equations of motion are considered.

5.2.1 General Formalism

While CDM particles by assumption experience only the gravitational force, baryons are
subject to non-gravitational effects, such as Compton drag and pressure gradients. These
effects can be summarized in the equations of motion of the fluid elements

Ψ̈c +HΨ̇c = −∇xΦ(q+Ψc)

Ψ̈b +HΨ̇b = −∇xΦ(q+Ψb) + Fb(q+Ψb), (5.3)

where overdots signify derivatives with respect to τ , H = d ln a/dτ is the conformal Hubble
parameter, Fb is the non-gravitational force per unit mass felt by baryons, and Φ is the
gravitational potential at Eulerian position x satisfying Poisson’s equation

∇2
xΦ(x, τ) =

3

2
Ωm(τ)H2(τ)δm(x, τ), (5.4)
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where Ωm is the total matter mass density and δm is the total matter overdensity (see below).
At the linear level, there is no difference between the Eulerian and Lagrangian positions in

the above equations of motion, and we will neglect this distinction in the rest of this section
unless otherwise stated. Indeed, taking the divergence of Equation 5.3 in the linear limit
(xσ ≈ q) directly yields the Euler equation when we map overdensities to displacements and
velocities to their derivatives:

δσ(xσ) ↔ −∇ ·Ψσ(q) , vσ(xσ) ↔ Ψ̇σ(q). (5.5)

Note that the first mapping is correct only to linear order, while the second one is exact if
the full x(q) is used. Assuming this translation, the solutions to the Lagrangian equations
of motion as described below are essentially identical to those extracted from Boltzmann
codes such as CAMB [220] or CLASS [48], provided one chooses post-recombination initial
conditions for the Lagrangian displacements.

To solve Equation 5.3 in the linear limit, it is convenient to rewrite the baryonic and
CDM displacements in terms of a mass-weighted matter component (Ψm = wcΨc + wbΨb),
which sources the gravitational potential, and a relative component that characterizes the
differential flows between baryons and CDM (Ψr = Ψb −Ψc), where we have defined the
mass fractions of each species, wσ = ρσ/ρm. These are related to the Eulerian quantities
δm = wbδb +wcδc and vr = vb− vc by δa = −∇ ·Ψa and va = Ψ̇a, where a = {m, r}, again at
the linear level. The equations of motion in terms of these components are

Ψ̈m +HΨ̇m = −∇Φ + wbFb (5.6a)

Ψ̈r +HΨ̇r = Fb. (5.6b)

If in addition non-gravitational forces are negligible, the matter and relative components
decouple, such that Equation 5.6a can be solved as

Ψm(τ) = −m+D+(τ) +m−D−(τ) ≈ −m+D+(τ) , (5.7)

where D+ is the usual linear-theory growth factor. In the last step we have neglected the
decaying mode, m−, since it is a tiny fraction of the total displacement at all redshifts
of interest. For non-gravitational forces, like Compton drag or pressure gradients, direct
integration of the linear equations of motion show that the non-gravitational terms make
a negligible contribution to the matter component Ψm, such that the transfer function at
redshifts below z = 6 agree with the linear solution in Equation 5.7 to within 0.2%, with
even better agreement at the lower redshifts of interest in this section. In the above we have
included a minus sign for convenience such that δm,0 = ∇ ·m+.

We end this subsubsection by discussing the full solution of the relative displacement
when Fb = Fb(τ) is independent of Ψr. In this case Equation 5.6b is linear and first order in
Ψ̇r and can be solved as:

Ψ̇r(τ) = vr(τi)
(ai
a

)
+

1

a

∫ τ

τi

dτ ′ a(τ ′)Fb(τ
′), (5.8)
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where we have set the boundary conditions at initial time τi assuming the non-gravitational
effects encoded in Fb do not turn on until τ > τi. Equation 5.8 turns out to be an excellent
approximation for the large-scale Compton drag electrons experience in the reionization era
due to their relative motion with respect to the CMB rest frame, Fb = −neσT (ργ/ρb)avb,
where σT is the Thompson scattering cross section, ργ is the photon energy density and ne
the free electron number density. Eq. (5.8) also applies baryonic pressure forces on small
scales Fb ∝ −∇δb— in both cases the total-matter component may be substituted for the
baryonic component (i.e. δb ≈ δm) at the sub-percent level [317]. In the case of the large-scale
Compton drag, assuming vb ≃ vm yields

Ψ̇r(τ) = Ψ̇r(τi)
a(τi)

a(τ)
+

[
1

a

∫ ln(a(τ))

ln(a(τi))

d ln(a′)

(
ne(a

′)σT
ργ(a

′)

ρb(a′)

)
f(a′)D+(a

′)

a′2

]
Ψm(τi)

D+(τi)
, (5.9)

with f = dD+/d ln(a) the linear theory growth factor. The Compton drag thus induces a
mixing between the matter and relative components through a numerical prefactor dependent
only on the linear growth factor D+ and reionization history via ne. Finally, we can integrate
5.9 to yield

Ψr(τ) = −r+ + r−Dr(τ, τi) +m+DCD(τ, τi), Dr(τ, τi) =

∫ τ

τi

H0dτ
′

a(τ ′)
(5.10)

where we can identify Ψr(τi) = −r+, a(τi)vr = H0r−, and the Compton-drag kernel DCD is
defined as the conformal time integral of the square-bracketed function in 5.9. The linear
solutions to both the total-matter and relative components are thus wholly specified by the
three modes m+ and r±. Jeans instabilities and baryonic pressure forces affect much smaller
scales and won’t be further discussed in the remainder of this work.

5.2.2 Initial conditions and transfer functions

The linear evolution of the density and velocity contrasts can be easily written in terms the
CDM and baryon linear transfer functions (output from, e.g. CAMB) as

Tδr(k) ≡ Tδb(k)− Tδc(k) and Tθr(k) ≡ Tθb(k)− Tθc(k) (5.11)

where θb,c(k) ≡ −δ̇b,c(k). It is worth noticing that while the velocity field is gauge dependent,
velocity differences are not. The transfer function for ∇·m+ is simply the present-day matter
transfer function Tm and we can furthermore define

T∇·r+(k) ≡ Tb(k, zi)− Tc(k, zi)

T∇·r−(k) ≡ [(1 + zi)H0]
−1
(
Tθb(k, zi)− Tθc(k, zi)

)
. (5.12)

These three functions specify the solution for the Ψm, Ψr and Ψ̇r at any z < zi. The choice
of zi is somewhat arbitrary but choosing redshifts before the onset of reionization has the
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Figure 5.1: Transfer functions for the relative component from Equation 5.13 at z = 1 (left column)
and z = 7 (right column). These transfer functions solve Equation 5.8. The top row shows the
transfer functions for ∇·Ψr, i.e. the relative density. The bottom row shows the transfer functions for
∇·Ψ̇r, i.e. the relative velocity divergence. The free-falling (Fb = 0) and Compton drag contributions
are shown separately, the effect of Compton drag on the relative velocity is immediately apparent
even right after reionization (zre = 7.90) at z = 7, whereas the relative displacement is dominated by
the Fb = 0 contribution at all but the largest scales shown. Unlike the Compton contribution, which
is flat at large scales, the primordial (Fb = 0) contributions fall off as k2 towards low wavenumbers,
reflecting the origin of relative perturbations in pre-recombination baryonic pressure forces. At low
redshifts, the solutions to the Lagrangian equations of motion, with initial conditions set at zi = 20,
are in excellent quantitative agreement with the results from CAMB (black dashed lines, barely
visible on the plot as they lie below the purple lines).
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advantage of separating the effects of gravity from Compton drag. This choice also justifies
the normalization in Eq. (5.12), since r− is independent of redshift. In the remainder of the
paper we assume zi = 20.

In addition to the above, we will show below that calculating the power spectrum at some
redshift z in the Lagrangian picture requires linear-theory spectra of the relative displacement
at that redshift, which will typically include corrections from Compton drag. These can be
calculated via Equations 5.7 and 5.8 to give

T∇·Ψr(k, z) = T∇·r+(k) +Dr(z, zi)T∇·r−(k) +DCD(z, zi)T∇·m+(k). (5.13)

Sample solutions of the equation of motion in Eq. (5.6) when Fb is given by Compton drag
with the CMB are shown in Figure 5.1. After reionization most of large scale power in
the relative velocity transfer function, T∇·Ψ̇r

, is provided by the Compton drag, which in
turn affects the evolution of the relative baryon-dark matter density at large scales (see top
panels in Figure 5.1). Figure 5.1 also justifies the approximations we used to compute the
drag forces, as one can see by the excellent agreement with the full CAMB output. Other
non-gravitational effects like pressure terms (Jeans instability) and radiative transfer effects
[289, 147, 382, 56], can be written in a similar form.

Ratios of the transfer functions to the total matter one are shown in Figure 5.2. We
notice that the relative density perturbation is much larger than the relative velocity one, by
a factor of a hundred at least, and the two relative components have the same behavior with
wave-number k at small and large scales. Nonetheless r+ and r− have significant differences
in shape around the BAO scales and therefore will have to be treated separately from the
point of view of the galaxy bias expansion.

5.3 Lagrangian Bias in the Two-Fluid Dynamics

In the Lagrangian approach, galaxy bias is assumed to arise as the response of the overdensity
of galaxies, or the precursors thereof, to the variation of the initial conditions encoded in the
fields {Ψσ(q)} of the various species, and then transported via advection to their present-day
positions x(q, t) = q+Ψg(q, t). Thus, when computing the density of a biased tracer the
number-conservation Equation 5.2 is modified to

1 + δg(x, τ) =

∫
d3q Fg[q| {Ψσ(q)}] δD [x− q−Ψg(q, τ)] . (5.14)

The standard picture of (local) Lagrangian bias, outlined above, has been developed in
the 1-fluid case by many authors, see for example [68, 231, 229, 20, 111, 67, 242, 396, 322]
and [109] for a recent review on galaxy bias. In this section our focus will be on extending
these arguments to the case of multiple fluids, and in particular to the two-fluid case. In the
presence of two fluids, the form of Equation 5.14 raises two questions: (1) the form of the
response Fg and (2) whether biased tracers follow the dark matter, baryons, or a combination
thereof. We address these in turn.
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Figure 5.2: Relative to total-matter-component transfer function ratios. (Left) Transfer function
ratios between the initial fields m+ and r± defined at z = 20. The so-normalized constant r+, which
roughly corresponds to the relative overdensity mode, is a percent level contribution relative to the
total-matter growing mode m+. The decaying mode r−, which corresponds roughly to the relative
velocity, enters at significantly below the percent level. Note however that our definition somewhat
exaggerates its smallness by “redshifting” it to z = 0. The equivalent ratio for one percent of the
growing mode at z = 3 is plotted for comparison in black. (Right) Transfer function ratios between
the evolved relative and total matter displacements at redshifts z = 2 − 6. While the relative
displacement is a percent level effect at low redshifts (z = 2), it enters at close to the ten percent
level at higher redshifts (z = 16).

5.3.1 Bias Expansion

The initial tracer overdensity, Fg[q| {Ψσ(q)}], is defined to be a functional encoding the
physics of gravitational collapse and galaxy formation at some Lagrangian position q. Since
the galaxy density field is a scalar quantity under rotations, Fg will also be a scalar. We will
assume this functional is local, in the sense gravitational collapse depends only on the value of
the fields within a characteristic patch of size Rh, which then flows coherently on large scales
with Ψg [109]. In the fluid limit, these conditions imply that the system is wholly specified –
albeit in some complex, nonlinear way – by the species overdensities, δσ(q), velocities, vσ(q),
and the gravitational potential1, Φ(q), at some initial time τi. The condition that Fg is local –
or rather, nonlocal with width Rh – can be equivalently (but more conveniently) expressed by
requiring Fg depend only on the initial fields and their spatial derivatives, with nth derivatives
suppressed by n powers of Rh [109].

1The gravitational potential Φ, while not independent of δm, depends on the total matter density in a
very non-local way. To make our bias expansion local, and be able to truncate the derivative expansion at a
reasonable order, we thus include it as a standalone quantity here.
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In addition to the assumption of locality, the form of Fg is strongly restricted by various
symmetries. General relativity requires that all physical quantities be diffeomorphism
invariant, which in our case reduces to rotational invariance and invariance under generalized
Galilean transformations [179]:

q → q , Ψσ → Ψσ + n(τ) , Φ → Φ → Φ− x · (n̈+Hṅ) , (5.15)

where n are time-dependent but spatially constant vector fields.
Rotational invariance simply requires that only contracted scalar quantities enter the

bias; the restrictions placed on the bias expansion by general Galilean invariance are more
subtle, and it is here that the two-fluid case diverges from the single-fluid case. Under this
symmetry, densities remain unchanged— for instance that at first order δσ(q) = −∇·Ψσ(q)—
while velocities get boosted by a spatially constant amount (leaving ∂v invariant) and the
gravitational potential changes in a spatially linear way (leaving ∂∂Φ invariant). In the single-
fluid regime, where only one set of densities and velocities exist, this directly implies that
velocities can only enter with at least one spatial derivative, and the gravitational potential
can only enter as second (spatial) derivatives and beyond. The single-fluid overdensity, which
is unchanged under the transformation, can enter at any order.

The presence of two or multiple fluids relaxes some of the above restrictions. In par-
ticular, since all particle velocities are boosted by the same amount (n′) under a Galilean
transformation, the relative velocity vr = vb − vc remains invariant and can thus enter the
bias expansion at zeroth order in derivatives. The total matter velocity, vm, on the other
hand, is boosted and can thus still only enter at the derivative level. These two quantities
form an equivalent basis to the individual species velocities and there is no loss of generality
in defining the bias expansion in terms of them. We may similarly write terms involving
species densities, which can enter separately, in the total matter and relative density basis.
In general relativity the gravitational potential is unaffected by the number of species as a
consequence of the equivalence principle, i.e. gravitational interactions are universal. The
full set of physical fields that can enter Fg in the two fluid case is then

Fg = Fg [δσ,vσ,Φ] ≡ Fg [δm, δr, ∂vm,vr, ∂∂Φ, · · · ] , (5.16)

where the dots stand for higher derivative operators. To first order in the fields we can
therefore write2

1 + δg(q) = 1 + b1δm + brδr + bθθr + · · · (5.17)

which is similar to the Eulerian linear theory expression in [316]. This is not surprising, since
at first order q ≃ x, however we will see below that differential advection can introduce
further terms degenerate with the initial Lagrangian bias terms above, such that the Eulerian
relative-component bias will in general be a combination of these terms. Note that in this
chapter “m” refers to the linear matter mode and not the nonlinear matter density.

2A list of bias terms up to second order is given in Appendix E.2.
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Finally, since Fg is defined as a functional on the initial conditions which can be chosen
to be sufficiently early that they lie deep in the linear-theory regime, its form can be further
simplified and expressed purely in terms of the initial modes m+ and r±. In the single fluid
case, this restriction leads to the simplification that all bias terms can be written in terms of
spatial derivatives of the total matter displacement m+ ∼ Ψm; this is a direct consequence
that, up to time-dependent constant factors, δm ∼ ∂Ψm, vm ∼ Ψm and ∂∂Φ ∼ ∂Ψ in linear
theory. In the two-fluid case these terms must be supplemented by those involving the
relative modes. Specifically, including the vr dependence requires the inclusion of terms
proportional to r− and including δr dependence similarly requires terms proportional to
∇ · r+. Equation 5.17 can thus be re-expressed as:

Fg(q) = b1δm + b+∇ · r+ + b−∇ · r− + ... (5.18)

We therefore have a direct correspondence in the bias expansion between the initial modes
expressed in Eulerian and Lagrangian space. Notice that the bias expansion defined above is
complete, in the sense that it contains all possible operators compatible with the symmetries
of the problem. In particular, while r± are defined at a particular initial redshift zi, in the
linear regime this dependence amounts to a simple linear transformation and can be absorbed
into the definition of the bias parameters (Appendix E.1).

Finally, an additional complication arises when halo formation is affected by Compton
drag. As pointed out by [317], by picking out the local CMB rest frame such that the drag
force ∝ vb, we lose the gauge redundancy of Galilean transformations. This will in general
produce heretofore forbidden terms such as those proportional to the matter-component
velocity vm. However, the terms thus generated are required by rotational invariance to enter
at second order and beyond. For the remainder of this section we will thus neglect these
contributions, which are subdominant to the already sub-percent level contributions we study.

Whereas there exists quite a large literature on measuring and predicting, using approxi-
mate physical models, the value of the bias parameters in one-fluid scenarios, less attention
has been devoted to the multi-fluid case. From an effective field theory perspective the
dimensionless parameters should be of order unity, but in reality the actual value of the bias
parameters is tracer-dependent and can be quite a bit larger or smaller. In this work we
will assume, unless otherwise noted, that typical values are given by b+ ≃ 1 and b− ≃ 6.8
derived in [316] using a spherical collapse model. These numbers are consistent with the
non-detection of relative bias effects in BOSS DR12 by ref. [43], who find e.g. b+ = −1.0± 2.5
to within one sigma when fitting for b+, b− and c− (Section 5.4.3) across all redshift bins, with
large systematic biases measured in dark-matter only simulations that had to be subtracted.

5.3.2 Modifications to Tracer Advection

Once the initial, biased tracer overdensity is set, the overdensity at later times is set by the
tracer “fluid” advecting from initial (Lagrangian) q to final positions q+Ψg along trajectories
described by the tracer equation of motion

Ψ̈g +HΨ̇g = −∇Φ + Fb, g, (5.19)
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where we have included a non-gravitational term, Fb, g, to account for the possibility that
tracers feel non-gravitational forces. Such non-gravitational contributions may arise, for
example, from the Compton drag on the baryonic component of galaxies, or from various
galaxy formation processes. Since such contributions are always local in space and time, we
will assume the above equation satisfies the same symmetries of Eq. (5.15), i.e. the force
acting on galaxies depends only on density fields and velocity gradients.

Equation 5.19 can be solved by subtracting the equation of motion of the total matter
displacement (Equation 5.6a) and defining Ψr,g = Ψg − Ψm. Neglecting the baryonic
contributions such that the tracers’ dynamics are governed only by gravity, and assuming
that the initial tracer displacements are a weighted average of the baryonic and CDM
displacements, i.e. Ψg,i = Ψm,i + fgΨr,i, this immediately yields the time evolution

Ψg(τ) = Ψm(τ) + fg[Ψr(τ)]CD = 0, (5.20)

where the relative displacement is evaluated assuming zero Compton drag. Note that if we
assume that the tracer field is made of objects composed of the same mass fractions of baryons
and CDM as the total matter content of the universe, i.e. with fg = 0, Equation 5.20 reduces
to the trajectory of the matter component. Similarly, objects composed purely of baryons or
the CDM will (at the linear level) follow the baryon or CDM displacements, respectively.

We can alternatively think of Eq. (5.20) as a bias expansion of the galaxy displacements
in terms of the underlying fields, since Ψm and Ψr are the only two linear operators allowed
by symmetries at lowest order in spatial derivatives. If the tracer flow is purely gravitational,
as assumed above, the equivalence principle further restricts the coefficient of the total matter
displacement – which encapsulates the motion due to the gravitational potential – to be
exactly 1 at all times. However, this restriction can be broken by baryonic contributions
(∝ Fb, g) such as the Compton drag. As seen in the second term on the right hand side of
Equation 5.9, the acceleration due to Compton drag generates displacements proportional to
Ψm; this contribution, on top of the aforementioned gravitational displacements, can lead
to an expansion Ψg = (1 + αCD)Ψm + fgΨr + ... for some nonzero coefficient αCD due to
Compton drag, where the total-matter coefficient deviates from unity. Consequences of this
modified expansion for the power spectrum are considered at the end of Section 5.4.1 and in
Figure 5.6. Other baryonic forces, such as pressure forces at small scales, can similarly be
included as further terms (Ψg ∋ c2s∇δb) in this expansion.

5.4 Galaxy Power Spectra in the Zeldovich

Approximation

5.4.1 Analytic Form

From Equation 5.14, the power spectrum at redshifts z for a biased tracer can be computed
as

Pgg(k, z) =

∫
d3q eik·q

〈
Fg[q1]Fg[q2] e

ik·(Ψg(q1,z)−Ψg(q2,z))
〉
q=|q2−q1|

, (5.21)
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Figure 5.3: Correlation functions entering the galaxy power spectrum in Eq. (5.27) at z = 1.2. Left
panel: the displacement auto- and cross-correlation functions between the different components.
Right panel: bias-weighted, displacement correlation functions. Correlation functions involving the
relative component exhibit abrupt features around q ∼ 102 h−1 Mpc, reflecting the baryon acoustic
oscillation scale.

where the subscripts denote quantities evaluated at two points separated by q in Lagrangian
space. It is important to note that the bias functions Fg are evaluated in terms of the linear
modes m+, r± defined at the initial redshift zi. In the Zeldovich approximation displacements
are solved to linear order but the full mapping between initial and final times is kept. This
amounts to keeping the displacement correlators exponentiated in what follows [231]. We
will adopt the bias expansion in Equation 5.18. We evaluate integrals involving Fg by
functional differentiation in the usual manner [231, 229, 58]: we include a term (e.g. λX)
in the exponential for each argument, X, of Fg and evaluate terms like Xn via ∂n/∂λn of
exp[λX].

Under the above assumptions our task reduces to evaluating

eiM ≡
〈
exp

(
ik ·∆g(z) + λδm,1δm,1 + λ+,1∇r+,1 + λ−,1∇r−,1 + (1 ↔ 2)

)〉
(5.22)

with numerical subscripts referring to Lagrangian coordinates, q1 and q2, and

∆g = Ψg,1 −Ψg,2 = Ψm,1 −Ψm,2 + fg(Ψr,1 −Ψr,2) ≡ ∆m + fg∆r (5.23)

The function eiM can be evaluated using the cumulant theorem as the exponential of the
connected components. The Zeldovich approximation assumes linear dynamics, such that
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only quadratic terms survive

eiM = exp

{
− 1

2
kikjA

mm
ij − fgkikjA

rm
ij −

f 2
g

2
kikjA

rr
ij

+ ik ·
(
(λδm,1 + λδm,2)(Umm + fgUrm)

+ (λ+,1 + λ+,2)(Um+ + fgUr+) + (λ−,1 + λ−,2)(Um− + fgUr−)
)

+ (λδm,1λ+,2 + (1 ↔ 2) ) ξδm∇r+ + (δm,∇r−) + (δm, δm)

+ (∇r+,∇r+) + (∇r+,∇r−) + (∇r−,∇r−)

}
, (5.24)

where we have defined

Aabij =
〈
∆a
i (z)∆

b
j(z)

〉
, Ua±

i = ⟨∆a
i (z)∇ · r±(q1)⟩ , ξab = ⟨a(q1)b(q2)⟩ , (5.25)

noting that the ∆’s carry an implicit redshift dependence while the other fields do not. For
the total-matter component this redshift dependence is a direct growth factor scaling and
we will for convenience take the linear field’s value as evaluated at the observed redshift
δm = −Dm(z)∇ ·m+. The paired parentheses denote terms similar to the preceding except
with the indicated pair of variables. For example, in the third line

(δm,∇r−) ≡
(
λδm,1λ−,2 + (1 ↔ 2)

)
ξδm∇r−(q) (5.26)

and when the elements of a pair are repeated the term should be divided by a symmetry
factor of two.

Figure 5.3 shows the different correlation functions entering the above calculation. Since
the correlation function of the different displacements fields, Aabij (q), is a tensor, we can
decompose it as Aabij (q) = Xab(q)δKij + Y ab(q)q̂iq̂j, and the functions X(q)’s and Y (q)’s are
shown in the left panel of Figure 5.3. Clearly the galaxy displacements are dominated by
the total matter component, with the relative terms contributing much less than a % to
the bulk flows. This fact will enable us to treat the terms proportional to fg perturbatively,
as they will be much smaller than one for wavenumbers below the nonlinear scale defined
by k2Σ2 ≲ 1, where the Zeldovich r.m.s. displacement is Σ ∝ Xmm(q → ∞). The same
conclusions apply for the bias weighted displacements U(q)’s, shown on the right hand panels
in Figure 5.3, where Um(q) ≫ U±(q).

Working to linear order in the power spectrum we then have that the galaxy-galaxy power
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spectrum is given by

Pgg(k) =

∫
d3q eik·q−

1
2
kikjA

mm
ij

[
1− fgkikjA

rm
ij −

f 2
g

2
kikjA

rr
ij

+ 2ik · (b1Umm + b+Um+ + b−Um−)

+ 2fgik · (b1Urm + b+Ur+ + b−Ur−)

+ b2mξδmδm + 2bmb+ξ∇r+δm + 2bmb−ξ∇r−δm

+ b2+ξ∇r+∇r+ + 2b+b−ξ∇r+∇r− + b2−ξ∇r−∇r− +O(P 2
L)
]
.

(5.27)

Figure 5.4 shows the different contributions to the galaxy power spectrum in the Zeldovich
approximation at z = 1.2. The leading corrections to the total-matter power spectrum come
at the roughly percent level from terms in Equation 5.27 linear in r+, i.e. in b+ and fg. These
contributions are essentially degenerate, with differences due to the dynamical evolution of
Ψr in the fg term, as we will discuss in the next paragraph. Corrections quadratic in r+ or
linear in r− enter at roughly the same size four orders of magnitude below the total-matter
contributions.

An interesting consequence of the advection of biased tracers with |fg| > 0 is the
appearance of relative bias terms even if none were present in the initial Lagrangian bias
expansion. To see this, we can take the low-k limit of Eq. (5.27), neglecting for the moment
non-gravitational contributions to Ψr(q), and obtain up to O(P (k))

Pgg(k, z) =(1 + b1)
2 Pδmδm(k)

+ 2(1 + b1)(b+ + fg)Pm∇r+(k) + 2(1 + b1)(b− + fgDr(z))Pm∇r−(k)

+ (b+ + fg)
2P∇r+∇r+(k) + (b− + fgDr(z))

2P∇r−∇r−(k)

+ 2(b+ + fg)(b− + fgDr(z))P∇r+∇r−(k) . (5.28)

We immediately recognize the familiar expression for the Eulerian linear bias, bE1 = 1+b1, and
that the relative density and velocity bias terms get renormalized by terms proportional to
fg. To make further contact with the existing literature employing the Eulerian formulation
of the equations of motion [316, 317], we can identify the relative baryon dark-matter density
perturbation δr with the divergence of r+, δr ≡ ∇ · r+, and the relative baryon dark-matter
velocity divergence θr with the divergence of r−, θr ≡ (1 + z)H0∇ · r−. This implies that
the bias parameters in [316, 317] associated to the Eulerian fields are bEδr = b+ + fg and
bEθr = (1 + z)−1H−1

0 (b− + fgDr(z)). Note that the referenced overdensities and velocities are
those defined at the initial redshift zi so should not be directly substituted for their Eulerian
counterparts; for more details about the mapping of bias parameters from some initial time
zi to Eulerian coordinates see Appendix E.1.

A final caveat occurs when the non-gravitational forces on the tracer, Fb,g are nonzero.
The integrated effect of such forces on Ψr,g must then be accounted for. For example, when
dealing with baryons and dark matter, the effects of Compton drag on large scales are
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Figure 5.4: Different contributions to the galaxy power spectrum in the Zeldovich approximation,
Eq. (5.27), at z = 1.2. Terms proportional to b+b−, fgb−, and b

2
− have been omitted as they are

two orders of magnitude smaller than the smallest contributions shown. Many terms, such as those
involving fg and b+, are essentially degenerate.

non-negligible. In this case, since the Compton drag force is proportional to the total-matter
displacement, the two-point functions in Eq. 5.25 involving ∆r will gain a contribution
proportional to ∆m (Fig. 5.5). Such contributions can be non-negligible at large scales
and can dominate in the contributions to the power spectrum proportional to fg at low
wavenumber (Fig. 5.6). Importantly, terms proportional to b± are unaffected since they
are related only to the primordial modes r±, breaking the degeneracy between fg and b+.
Since the difference between these terms is proportional to the total-matter component, this
difference can alternatively be absorbed into the total-matter bias bm [317]. Comparisons
of these terms with and without Compton drag are shown in Figure 5.6. Comparing the fg
contribution with and without Compton drag we see, as expected, that renormalizing the
linear total-matter bias b1 to include a contribution proportional to fgDCD(z) (purple dotted
curve) is sufficient to account for the non-gravitational Compton drag contributions.
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Compton drag. While the differences are small (c.f. Fig. 5.3), they are non-neglible at large scales.
The contributions from r+ have been subtracted off for ease of comparison.
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drag (red and black). The two are largely degenerate in the latter case, but with Compton drag
the fg terms are dominated by a contribution proportional to the total-matter power spectrum
at large scales, which can alternatively be renormalized into the matter bias b1, shown separately
as a dashed magenta curve. The left panel shows contributions due to contracting the relative
components (fgΨr or b+∇ · m+) with the total matter displacement Ψm, while the right panel
shows contractions with the total matter bias b1δm.
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5.4.2 Cross-Spectra of different tracers and IR Resummation

So far we have dealt only with tracer auto-spectra. The situation for cross-spectra is
complicated by the non-cancellation of the IR-exponent at small separations, q. For two
generic fluids, X and Y , such that ΨX,Y = Ψm + fX,YΨr, the cross spectrum will take the
form as in Equation 5.2:

PXY (k) =

∫
d3q eik·qe−

1
2
kikjA

XY
ij

[
· · ·
]
, (5.29)

where the exponentiated two-point function AXY is given by

AXYij (q) =
(
⟨ΨX

i Ψ
X
j ⟩+ ⟨ΨY

i Ψ
Y
j ⟩ − 2⟨ΨX

i Ψ
Y
j ⟩
)
+
(
2⟨ΨX

i Ψ
Y
j ⟩ − 2⟨ΨX

i (q)Ψ
Y
j (0)⟩

)
, (5.30)

and expectation values of point operators are displayed without arguments. Both terms in
parentheses on the RHS of Equation 5.30 are well-defined and invariant under generalized
Galilean transformations; however the second term vanishes as q → 0 while the first does
not3. As first noted in Ref. [217], this is in contrast to the single-fluid case where Aij had to
vanish at small scales due to Galilean invariance.

In principle, the non-cancellation discussed above will introduce a large scale damping in
the power spectrum at scales proportional to the difference |ΨX−ΨY |2. However, since ΨX,Y

are both expected to have the same coefficient in the total-matter component (i.e. unity) this
difference squared will generically be proportional to (fX−fY )2O(Ψ2

r), and thus is suppressed
by about four orders of magnitude relative to the Zeldovich displacement, Σ2, at the redshifts
with which we are concerned (z < 10). On the other hand, while differential streaming is
expected to damp cross spectra negligibly even if fX is of order unity, as discussed in the
previous section it will still generate an observable effect degenerate with the relative bias b+.

5.4.3 Higher Order Bias

Thus far we have not discussed the fact that any perturbative model should be considered an
effective field theory, working up to some scale Λ [28, 60, 332]. This forces us to introduce a set
of counterterms that remove the small scale sensitivities of the perturbative calculations. For
instance all the Aij(q) terms contain a zero-lag piece computed at zero separation, i.e. q = 0,
where perturbation theory breaks down. In the single fluid case, this UV-sensitivity is
renormalized to lowest order in the power spectrum by a counterterm csk

2PZA(k) [290, 399],
where the free parameter cs has to be matched to simulations or data. The same structure
of the counterterms appears in the two fluid scenario: for instance, the Aabij (q) required
to calculate auto and cross spectra feature the same UV-sensitive contributions as q → 0,
requiring one value of cas for each species. In principle, terms in the equations of motion due
to the relative component will add additional UV sensitivities to our predictions; in practice,

3A similar non-cancellation occurs in the modeling of BAO reconstruction, where the cross-term between
the ‘displaced’ and ‘shifted’ fields exhibits the same behavior [266, 414].
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however, such contributions are subdominant in the dynamics of the relative component and
negligible for the total-matter component. To the extent that these contributions can be
ignored, then, the two-fluid equations of motion can be renormalized identically to the single
fluid case with one set of counterterms for each species or tracer. As counterterms have minor
impact on BAO scales, and are anyway fitted to the data in both the single and multiple
fluid cases, we do not include them in the Fisher calculation in the next section.

We have equally refrained from discussing bias beyond linear order. As in the equations
of motion, contributions beyond first order in the linear power spectrum proportional only
to the total-matter component can be added consistently as in the single-fluid case, and we
will ignore small nonlinear contributions proportional to one or more powers of the relative
component4. However, one exception must be made: operators involving the relative-velocity
between the baryon and dark matter squared, which, despite being at second order in the
relative component, can be non-negligible due to their distinct dimensional scaling [98, 427,
51, 316]. Such contributions were the focus of the first studies of bias [98, 427, 51] in the
two-fluid picture, and we will show how their calculation fits naturally into the Lagrangian
framework. For a discussion of other second order bias operators see Appendix E.2.

At second order in the bias expansion we can write

Fg[Ψm, Ψr|q] ⊃ bvσ
2
vr

[vb(q)− vc(q)]
2

σ2
vr

= bvσ
2
vr

r−(q)
2

σ2
r−

≡ c−[r−(q)]
2 (5.31)

where σ2
vr is the 1-point variance of the relative velocities and σ2

r− = (1 + z)−2H−2
0 σ2

vr . As
several authors [98, 316] have pointed out, baryon-dark matter relative velocities can be quite
large at the time when the first halos and galaxies form, which could result in a large value of
bv for their late time descendants. The value of bvσ

2
vr can be as large as 0.01, which will make

this contribution at second order in the power spectrum larger than the b− terms, even on
linear scales. It is however worth remembering that a value of bvσ

2
vr ≃ 10−5 is also plausible,

which would substantially reduce the importance of this contribution.
To consistently compute the power spectrum contributions due to c− ∼ bv2 we must go

beyond the Zeldovich approximation. Up to 1-loop in Lagrangian perturbation theory we
have to compute 4 new terms to properly include the new bias parameter c−. Beyond these,
terms proportional to c2− can be safely neglected as they are O(P 2

∇r2−
). For the same reason

we drop all the terms proportional to b±c−, as well as contributions of the relative component
to the equations of motion. This leaves us with contributions proportional to c−, b1c−, b2c−,
and bs2c−.

The first of these, proportional to c−, contains a 1-loop contribution and is given by

Pgg(k) ⊃ c−

∫
d3q eik·q e−

1
2
kikjAij

(
2ikiUi(q)−

1

2
kikjA

m−
ik Am−

jk

)
, (5.32)

4A proper accounting of such terms would in addition require solving the relative-component equations of
motion to beyond linear order, which is beyond our present scope.
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where we have defined Am−
ij = ⟨∆m,i (r−,2 − r−,1)j⟩ and the 1-loop contribution from the

second-order Lagrangian displacement Ψ(2) enters as

Ui(q) ≡
〈
∆(2)r2−,1

〉
= q̂i

∫
dk

2π2
k2Qv2(k)j1(kq) (5.33)

The kernel Qv2 is derived in Appendix E.3.
The remaining terms do not contain loop contributions and follow straightforwardly from

evaluating the second and third cumulants in Eq. (5.21) within the Zeldovich approximation.
These are those proportional to the first order bias:

Pgg(k) ⊃ 2iki b1c−

∫
d3q eik·q e−

1
2
kikjAij Am−

ij (q) U−m
j (q) , (5.34)

second order bias:

Pgg(k) ⊃ 2b2c−

∫
d3q eik·q e−

1
2
kikjAijUm−

i (q) Um−
i (q), (5.35)

and shear

Pgg(k) ⊃ 4bs2c−

∫
d3q eik·q e−

1
2
kikjAijW s−

ijk (q) W
s−
ijk (q), (5.36)

where we have defined the 2-point functions U−m ≡ ⟨r−(q)δm(0)⟩ = Um− and W s−
ijk (q) =

⟨sij(q)r−,k(0)⟩. Details of the above calculation can be found in Appendix E.3.
The contributions proportional to c− and their comparison with the 1-piece in Eq. (5.27)

and with the b± ones computed in the previous section is shown in Fig 5.7 for z = 1.2,
assuming bvσ

2
v2r

= 0.01. The c− terms are indeed larger than the b− terms on most scales,
but still subdominant compared to the b+ terms. Notably, the c− terms feature significantly
larger oscillatory features than contributions from b±, with minima that differ from maxima
by more than an order of magnitude.

5.5 Degeneracies and bias to BAO

Baryon acoustic oscillations (BAO) in the photon-baryon fluid before combination imprint a
characteristic clustering scale in the distribution of galaxies that can be used as a standard
ruler to constrain the cosmic expansion history [364]. In general this method is regarded
as highly robust as it probes very large scales which are largely unaffected by astrophysical
processes. However, relative component contributions to the two-point function also occur
on very large scales and their oscillatory features, although arising from the same physical
process of the standard BAO features in the matter density power spectrum, could bias our
estimates of the distance scale if not properly taken into account [51, 43, 351]. Indeed, as
shown in the left panel of Fig. 5.8, all the relative component contributions we have considered
show distinct features around the BAO peak.
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The extent to which contributions from the relative component can contaminate mea-
surements of the BAO scale can be estimated using the Fisher matrix formalism [372]. The
galaxy overdensity has a covariance that is diagonal in Fourier space and given by the power
spectrum plus shot noise, P̂gg = Pgg(k) + n̄−1; for the parameters {θi}, the Fisher matrix is
given by

Fij = Vobs

∫
d3k

(2π)3
1

2

∂ ln P̂gg(k)

∂θi

∂ ln P̂gg(k)

∂θj
, (5.37)

where Vobs is the observed volume. For simplicity we neglect redshift space distortions and focus
only on the isotropic BAO signal, though we will comment on how our Lagrangian analysis
can be naturally extended to redshift space in the final paragraph. We model the power
spectrum using the two-fluid Zeldovich terms derived above and include matter contributions
up to one loop (see e.g. [396]), including contributions from the quadratic Lagrangian bias b2.
We consider only scales between kmin = 10−2 hMpc−1 and kmax = 0.25 hMpc−1, and fiducial
value of b1 = 0.53 and b2 = 0.2. The number density of galaxies is n̄ = 4.2× 10−4 h3Mpc−3

and we assume V = 5h−3Gpc3. These numbers are chosen to be similar to what galaxy
surveys like DESI [108] or Euclid [12] are expected to measure, and in particular are based
off the expected DESI ELG population at z = 1.25 in a bin of width ∆z = 0.1 and 14,000
square degrees of observation.

To quantify the potential impact of the relative component on standard BAO analyses,
we will compare two models of the power spectrum within the Fisher formalism: the “correct”
model M1, which is a function of all total-matter and relative component biases, and the
nested “standard” model M0, wherein the relative component biases are set to zero (i.e.
b±, c− = 0). The observed power spectrum is in addition a function of the BAO scaling
parameter α such that

Pgg(k, z, α,M) = α−3Pgg

(
k

α
, z,M

)
. (5.38)

The derivative of the baseline galaxy power spectrum with respect to the parameters is shown
in Figure 5.8. These templates all show oscillatory features of roughly the same frequency
as the BAO scale but exhibit distinguishable scale dependence. For reference, applying
Eq. (5.37) returns sub-% error on the BAO scale, with σα = 0.9%, for the standard analysis
using M0.

We can now compute the systematic shifts in α that would be incurred by neglecting
the relative component, i.e. by fitting to M0. For convenience, we will split the parameters
in M1 into θ = (ϕa, ψσ), where ϕa with Latin indices are the BAO scale and total-matter
parameters and ψσ with Greek indices are the relative component biases, such that M0 is
given by θ = (ϕa, ψσ = 0). In this language the shift in α and b1 due to using the standard
model can be calculated to first order as [370]

δθa = −(F0)
−1
ab Gbσδψσ, a, b = α, b1, σ = b±, c−. (5.39)

Here F0 and G are respectively diagonal and off-diagonal blocks of the full Fisher matrix
F = F (θ0) calculated at the best fit parameters θ0 for the full model M1, such that F0,ab = Fab
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Figure 5.9: (Top) Best fit power spectra using the total-matter-component-only model, M0, for a
universe where b+ = 5 with varying maximum fitted wave numbers kmax. (Bottom) Residuals of the
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range (kmax = 0.1hMpc−1) results in a highly biased phase, while fits using larger wave number
ranges covering more than one BAO wiggle are essentially in phase. The remaining oscillating
residuals significantly exceed the expected error and are due to lack-of-fit for the oscillations in the
relative component.
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and Gbσ = Fbσ, and δψ is the deviation of ψ in the standard cold dark matter only model
M0 from M1, i.e. δψ = −ψ0.

As a simple first example, we consider a toy-model Universe in which the only relative
contribution is b+. Figure 5.9 compares the “true” power spectrum, P1(k), assuming b+ = 5,
with best fits to the power spectrum in a dark matter only universe P0(k), described by the
model parameters M0, where the values of α, b1, b2 are shifted from their true values according
to Equation 5.39. Different values of the maximum wave number kmax included in the Fisher
calculation are shown with different lines. For kmax = 0.1hMpc−1, we find a significant
departure in phase between the two models, compared to higher limiting wavenumbers, as
evident from the phase of the residual in the bottom panel. Beyond kmax = 0.15hMpc−1

there are sufficient BAO wiggles that the phase of the residuals are essentially locked. We
caution that the same exercise repeated with both matter and relative terms in the Zeldovich
approximation can lead to wide swings in the BAO scale δα as a function of kmax. This
can be understood as follows: at k ≳ 0.1hMpc−1, b+ contributes both oscillatory behavior
and a broadband shape identical to the total matter component. The latter is essentially
an amplitude change and can be roughly cancelled by a shift δbm, which it is thus fixed
independently of kmax. This then requires δα to shift with kmax as more oscillations are
included until the oscillations in r+ relative to m+ are damped at large k (Figure 5.2). This
broadband effect is ameliorated by including nonlinear terms for BAO measurements, but
the partial degeneracy of b+ with the power spectrum amplitude likely implies that ignoring
two-fluid effects may affect measurement of the amplitude of the power spectrum (though
this effect will also be partially mitigated by redshift-space distortions).

The same formalism can be applied to more realistic bias models. In the upper left panel
of Figure 5.10 we consider the case when the observed power spectrum contains nonzero
values b± and c− = 0, and forecast the shifts in α due to the wrong assumption of b± = 0.
Due to the small size of the b− contributions (see Figure 5.4), we expect shifts in BAO inferred
distances to be dominated by b+, and this is indeed what we find, contours of constant δα
are almost independent of b− even when |b−| = 10. On the other hand, we see that values of
b+ ∼ 5 shift the measured α by up to 0.4%, close to half of the error on α expected when
using M0.

However, the physics behind the relative components is quite well understood and can
be easily included in Fisher forecasts or power spectrum analyses. Indeed, as seen in
Figure 5.8, the templates for the various relative biases and α have distinct shape and could
be distinguishable depending on the noise level of the measurements. The upper right plot in
Figure 5.10 shows the increase in σα induced by marginalizing over b± in universes where b±
and bv are not necessarily nonzero 5. The total loss of constraining power is modest, with
less than 10% worse error bars even after marginalizing over two extra parameters. In both
the computations of the shifts in α and the increase of σ(α), the volume of the survey does
not enter, and the final results depend only on the shot noise levels.

5The nonzero b±,v produce shifts in the measured α, bm when using M0, which must be taken account
when computing σα. To first order, the shifted Fisher matrix is given by F0.
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Figure 5.10: (Top Left) Shift in measured α when neglecting relative component biases as a function
b± in the absence of c−. While b− contributes negligibly, b+ = 5 produces a shift up to a 0.4%.
(Top Right) Ratio of error bars in α when marginalizing over b± vs. when they are kept fixed at
zero, such that the best-fit value of α is biased in the latter case. In the latter case the forecast
takes into account the shift away from the true value due to incorrect model assumptions. (Bottom
Row) Same as the above, but with c− added as a nonzero parameter in M1. We have set the true
b− = 0 for convenience but marginalize over it to calculate uncertainties. While even c−σ

2
r− = 0.01

contributes only a tenth of a percent to the shift in α, the error bars are inflated relative to the top
row by up to twenty percent. We assume kmax = 0.25hMpc−1 throughout.



CHAPTER 5. APPLICATIONS OF IR RESUMMATION I 157

0 1 2 3 4 5
b +

100

101

102

b
+
/b

+

M b + , b , c
M b +

10 3 10 2

c 2
r

100

101

102

c
/c

M b + , b , c
M c

Figure 5.11: Constraints on b+ and c− in our fiducial setup if only each respective parameter can be
varied (black), and if all relative parameters are simultaneously marginalized over (red). Notably,
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In the lower set of plots in Figure 5.8, we repeat the same exercise described above
including c− as an extra free parameter. Since b− is irrelevant for the final results we set it to
zero (but still marginalized over it). We find that b+ and c− are anti-correlated, with larger
shifts compared to the b± case, but δα/α ≤ 0.5% in all cases. Marginalizing over the extra
parameter c− results in a 20-30% increase in σ(α), which is still benign for BAO constraints.
Our results therefore advocate for the implementation of relative component biases, at least
of b+ and c−, in standard BAO data analysis of the galaxy power spectrum or correlation
function.

Finally, in Figure 5.11 we investigate the detectability of the two-fluid effects in the same
setup. On their own, both b+ and c− become 1σ detectable at the upper end of our explored
parameter ranges, shown as the red lines in Figure 5.11. However, once all three relative
bias parameters are marginalized over, the black set of curves in Figure 5.11, neither will be
detectable within our fiducial volumes, with c− in particular at 0.1σ, well out of reach even if
all the DESI redshift bins are combined.

5.6 Conclusions

The large scale structure of the universe, whose formation is dominated by the dynamics of
gravitational collapse, is one of the premier probes into fundamental physics. At subleading
order, the presence of multiple particle species, broadly categorized into cold dark matter,
baryons and neutrinos, with distinct properties beyond their shared gravitational attraction,
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can present additional features in this structure, which will become increasingly important as
future surveys push to higher precision. In particular, relative perturbations between baryons
and cold dark matter are prominent at the same scale as baryon acoustic oscillations and
have the potential to cause systematic biases in future BAO measurements.

In this section, we develop the Lagrangian formalism to calculate the clustering of biased
tracers in the presence of multiple fluids, focusing specifically on the two-fluid scenario with
dark matter and baryons. The Eulerian description of two-fluid dynamics has been studied
extensively in the past and we make contact with previous work as appropriate throughout
the text. LPT includes an automatic resummation over long-wavelength bulk flows and is
thus able to accurately capture the shape of BAO features for biased tracers. In addition,
LPT naturally maps bias terms from their initial Lagrangian positions to advected Eulerian
positions, in contrast to Eulerian theory in which advective terms must be put in by hand,
thereby simplifying the treatment of bias as responses to linear initial perturbations.

The presence of two fluids introduces terms beyond those encountered in traditional single
fluid cosmological perturbation theory, with modifications in both the bias expansion and
tracer advection. In the former, the generalized Galilean invariance that restricted the bias to
contain only second derivatives of the gravitational potential in the single fluid case, allows
terms including relative overdensities and velocities between different species. In the latter,
initial relative displacements between various species are preserved under free fall and present
an additional source of bias. Large scale non-gravitational forces such as Compton drag
induced by the CMB can introduce additional corrections. We formulate modifications to
tracer bias and advection in terms of three initial modes, constants of motion in the linear
equations of motion, which roughly correspond to the initial total-matter displacement field
and the relative displacement and velocity fields between dark matter and baryons.

We explicitly calculate the galaxy auto-power spectrum in the Zeldovich approximation
within this formalism. Cross correlations between the relative modes introduce eight terms
linear in the power spectrum—however, those quadratic in the relative component are
suppressed by four orders of magnitude relative to the single fluid terms at low redshifts
relevant for the next generation of galaxy surveys. Comparing to the Eulerian result explicitly
to first order in the power spectrum, we find that the Eulerian relative component bias
corresponds to linear mixtures of the Lagrangian bias, with modifications to the tracer
advection entering both the Eulerian relative overdensity bias and the Eulerian relative
velocity divergence bias. We then take up the calculation of cross spectra, finding a large
scale damping due to an IR noncancellation in the relative component that is nonetheless
negligibly small on perturbative scales. We also briefly discuss higher order corrections to
the equations of motion in the presence of two fluids from an effective theory point of view,
and perform an example one loop calculation for the relative velocity effect (∝ v2

r).
We conduct an exploratory analysis into whether two-fluid effects can cause systematic

biases in measurements of the BAO scale. Taking the example of DESI ELGs at z = 1.25,
we show that while ignoring two-fluid effects can lead to systematic shifts in the measured
BAO scale as large as half a sigma, properly marginalizing over these effects induces less
than ten percent loss in precision for a wide range of bias values. Since the scale dependence
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of the underlying physics is well understood, these results advocate for including two-fluid
terms at linear order in future analyses. The dominant relative bias term (∝ b+) does not
fall quadratically with the growth factor like the total-matter contributions, and we therefore
expect the relative bias signal as a fraction of total power to scale with redshift as D−1

+ (z)
and become proportionally more significant for surveys (such as the proposed Stage II 21-cm
survey [90]) at higher redshifts. Studies of more highly biased tracers such as DESI quasars
[108], for which the total-matter contributions are correspondingly larger, will on the other
hand be less influenced by the relative bias for similar reasons.

While the Lagrangian picture is a natural playground for their study, in this section we
have opted not to study redshift space distortions (RSD). We note, however, that of the two
relative components, r+ is dominant but stationary while r− is so small as to be essentially
negligible— two-fluid impacts should thus have a relatively small impact on RSD. However,
as noted in the previous section, since the dominant relative component contribution b+ is
somewhat degenerate with the overall power spectrum amplitude, it is possible that two-fluid
effects could hinder the accuracy of fσ8 measurements beyond the percent level. We will
return to this issue in future work.
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Chapter 6

Applications of IR Resummation II:
Primordial Features

6.1 Introduction

Current observations of large-scale structure are consistent with a primordial power spectrum
that is featureless, upon which 14Gyr of evolution imprints two characteristic scales: the
horizon at the epoch of matter-radiation equality and the sound horizon of photon-baryon
acoustic oscillations prior to recombination [275, 114, 285]. However many modifications of the
standard model would lead to deviations from this simple picture. Many inflationary models
imprint features in the otherwise smooth spectrum of curvature fluctuations at early times (see
e.g. refs. [84, 353] for recent reviews and references to the extensive early literature). While
these features are in some sense generic, different models predict very different properties for
these features, their bandwidth, amplitude and shape. Detection of such features would open
new windows into the primordial Universe. In addition, the evolution of these primordial
perturbations across 14Gyr of cosmic history can ‘induce’ features in the observed spectrum.
One class of features which has been the focus of intense observational activity are baryon
acoustic oscillations [410]. However more generally new types of particle interactions, new
energy components or changes in the expansion history can all alter the observed, late-time
spectrum in observable ways.

The strongest constraints on primordial features to date come from a combination of
cosmic microwave background anisotropies [285, 288] and large-scale structure [44]. This has
placed upper limits on the amplitude of features at the several percent level for frequencies in
the range 102 < ω < 103 h−1Mpc (see previous references for more details). Future large-scale
structure surveys, especially those performed at high redshift over large cosmic volumes,
should be able to tighten these constraints significantly [353].

In this section we investigate the degree to which modern perturbative calculations can
quantitatively predict the clustering of biased tracers in redshift space, including the “washing
out” of primordial features by mode-coupling associated with non-linear evolution, changes
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to the broad-band shape of the spectrum by non-linear biasing and the mixing of the velocity
and density perturbations through redshift-space distortions. We are not the first authors to
address these topics, indeed there is an extensive literature on this topic within the context
of baryon acoustic oscillation (BAO) studies (see §6.4 for references). An important finding
of these studies is the existence of O(1) corrections to features for a wide range of parameters
and wavenumbers of interest. This leads one to consider resumming these O(1) contributions,
which arise from the large displacements, a process referred to as IR resummation. One
method of deriving the IR resummation process is as a saddle-point approximation to a
particular integral (§6.4). In this section we pay particular attention to the manner in which
IR resummation, mode coupling and the mixing of density and velocity perturbations implied
by redshift-space distortions appear in models with features at different scales than BAO,
and how IR resummation can deal with features with k-dependent frequency where the choice
of saddle is not immediately obvious.

The outline of the paper is as follows. In Section 6.2 we introduce the particle-mesh
simulations that we use to validate our perturbative models. Section 6.3 describes the specific
feature models that we test, which have been chosen to be representative of different classes
that appear in the literature, while Section 6.4 describes the perturbative calculations we
investigate. Section 6.5 presents the comparison between the theory and N-body power
spectra and we conclude in Section 6.6. Throughout we will assume a ΛCDM cosmological
model consistent with the latest Planck results [285, 286] and quote distances in comoving
h−1Mpc.

6.2 N-body simulations

To validate our model and further investigate the impact of non-linearity, bias and redshift-
space distortions on primordial features we have run a number of N-body simulations. For
each of several models we generated 6 realizations of Gaussian initial conditions at z = 9
using 2nd order Lagrangian perturbation theory and employed the Fastpm code [134] to
evolve 40963 particles in a 2.5h−1Gpc box with a (3× 4096)3 force grid over 40 time steps
linearly spaced in the scale factor, a, down to z = 0.5. With 40 steps, which improves the
convergence at higher k, the code behaves very much as a traditional particle mesh code.

Each model employed the same background cosmology, of the ΛCDM family and consistent
with the latest constraints from Planck [286]. Halo catalogs and 5 per cent of the dark
matter particles were output at z = 2, 1 and 0.5. The density power spectra in real and
redshift space and the real-space velocity spectra were computed using the Nbodykit
software [163]. Fourier transforms were done on a 40963 mesh. We bin the spectra in linear
k bins of width ∆k = 0.005hMpc−1 starting at kmin = 0.005hMpc−1. We compute power
spectrum “wedges”, P (k, µ), in 5 equal width µ bins centered at µ = 0.1, 0.3, 0.5, 0.7 and
0.9, as well as power spectrum multipoles, Pℓ(k) for ℓ = 0, 2 and 4. We use the plane-parallel
approximation throughout this work, for a periodic box within which estimating P (k, µ)
amounts to simply Fourier-transforming a gridded field, squaring, and binning by k and µ
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Figure 6.1: The linear theory power spectra (left) and correlation functions (right) for our fiducial
ΛCDM model and models with primordial features superposed. The “Lin.” model has sinusoidal
oscillations linear in k (Eq. 6.1), the “Lin.×2” model has sinusoidal oscillations linear in k with
two frequencies (ω1 = 50h−1Mpc and ω2 = 150h−1Mpc) and the “Log.” model has sinusoidal
oscillations in ln k (Eq. 6.2). See text for further details.

without the usual observational complications involving window functions or line-of-sight
effects which would need to be accounted for in real surveys like BOSS [151]. We do not
remove shot noise from any of our spectra, but rather include such contributions in our
models. We present the average of the P (k, µ) with the line of sight taken along each of the
cardinal directions of the box.

We have chosen to focus on two, mass limited halo samples, with densities of 10−3 h3Mpc−3

and 10−4 h3Mpc−3. These are characteristic of densities achieved by surveys such as DESI
[108], MegaMapper [314] or MSE [373], though significantly sparser than one might expect
from future 21 cm experiments [352]. We will highlight the results from the denser sample —
which we will call the fiducial sample throughout — since it is less noisy, but the results are
qualitatively similar for the lower density sample.

6.3 Feature models

We will consider two broad classes of “features” in the linear theory power spectrum. The first
will arise in the very early Universe (primordial features), for example when the perturbations
were originally generated by inflation. The second will be imprinted after inflation but at
much earlier times than the epoch of the observations. Let us take each in turn.
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6.3.1 Primordial features

We investigate several phenomenological models of primordial features, chosen to illustrate
various issues and highlight results, rather than models based on fundamental physics
calculations. Specifically we follow the recent literature in considering two types of oscillations
that are superposed upon the linear theory power spectrum computed for ΛCDM,

Plin(k) = PΛCDM(k)

{
1 + A sin (ωk) exp

[
−(krd)

2

2

]}
(linear) (6.1)

and

Plog(k) = PΛCDM(k)

{
1 + A sin

(
ω ln

k

k⋆

)
exp

[
−(krd)

2

2

]}
(logarithmic) (6.2)

with A = 0.05, k⋆ = 0.05hMpc−1 and rd = 2.5h−1Mpc. The first class of models have
oscillations linear in k, often termed “sharp features”, and tend to arise if the inflaton
temporarily departs from its slow roll (attractor) evolution. The second class, with oscillations
in ln k, are also termed “resonant features” [353]. Compared to earlier work we have chosen
a particular phase for the linear oscillations so that the modification tends to zero at low
k and damped the models at high k with a Gaussian. The high k damping more closely
reproduces the models based on features in the inflationary potential which tend to produce
band-limited oscillations (e.g. refs. [6]), and also ensures that our simulations are properly,
numerically resolving the features. While models with 5 per cent oscillations such as these
are observationally disfavored [288, 44], using larger amplitude oscillations provides higher
signal to noise in our simulations and a more stringent test of the modeling formalism. For
the linear model we choose ω = 50h−1Mpc, to emphasize non-linear evolution of the feature
compared to the BAO, while for the logarithmic model we take ω = 10, which ensures we
resolve the oscillations well with our 2.5h−1Gpc box. The linear theory power spectra and
correlation functions, extrapolated to z = 0, are shown in Fig. 6.1.

One of the advantages of the linear model is that it can be thought of as a single mode
in a Fourier decomposition of a more general class of features. Since all of our models are
built upon a ΛCDM template, a second feature (due to baryon acoustic oscillations in the
recombination-era Universe [114]) is always present. However, in order to gauge how well
we can model non-linear evolution, bias and redshift-space distortions in the presence of
multiple frequencies we also generate a linear model with two sine modes of frequencies
ω1 = 50h−1Mpc and ω2 = 150h−1Mpc (Fig. 6.1). Each mode has the same damping and
amplitude as for the “linear” model above.

6.3.2 Induced features

As a second class of features we consider changes to the matter power spectrum that arise
due to non-standard expansion histories. Since the growth of structure is damped by Hubble
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Figure 6.2: The linear theory power spectra (left) and their ratio (right) for our fiducial ΛCDM
model and models with features induced by a period of early dark energy (EDE) at z ≃ 104. See
text for further details.

expansion, long periods where unclustered species dominate the expansion lead to suppression
of large-scale structure that can be detected by comparing early- and late-time measures of the
fluctuation amplitude. A precise measurement of the power spectrum shape can also be used
to place constraints on (or detect) short-term deviations from matter or radiation domination,
since such periods will change the shape of the power spectrum due to differential growth of
modes. Recently this reasoning was used to place constraints on early dark energy (EDE)
models which contribute to the expansion near recombination [174, 86, 95, 203]. The point
is more general however, and an accurate measurement of the power spectrum constrains
deviations in the expansion history over a broad range of redshifts1.

As an exploration of this class of effects we consider scalar-field based models of Early
Dark Energy (EDE) wherein the impact of EDE is localized to time significantly before those
probed observationally. EDE models are a timely example as they have been the subject
of much recent interest as a potential way to resolve discordances between ΛCDM analyses
of various data sets [291, 355, 174]. In fact we use the modification of CLASS [48] by the
authors of ref. [174] and consider a model where the contribution from EDE peaks at z ≃ 104

with peak fractional contribution (to ρ) of 10 per cent.
The linear theory power spectrum for this model is compared to our fiducial ΛCDM model

in Fig. 6.2, with the right panel showing the ratio to better highlight the change in shape
induced by the non-standard expansion history. The position and amplitude of the feature
in the right panel of Fig. 6.2 are set primarily by the redshift at which the EDE becomes
non-negligible and the fraction of the energy density in dark energy (respectively).

1While we do not consider it here, features can also be introduced by interactions between or among
particle species
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6.4 Peturbative model

6.4.1 Overview of Previous Work

The effect of non-linearities and long-wavelength modes (IR-resummation) on oscillatory
features in the power spectrum has long been studied in the context of BAO. A large body of
work shows that these features can be accurately modeled in Lagrangian [46, 231, 229, 121,
266, 257, 58, 368, 232, 415, 402, 235] and Eulerian [92, 335, 321, 22, 50, 338, 112, 171, 278,
185] perturbation theory.

A perturbative analysis of features based on the Eulerian framework has been done recently
[44, 390] (see also ref. [24]), in which the authors studied the effects of long wavelength modes
on the primordial features of types given by Eqs (6.1) and (6.2). An important finding of
these studies is that higher-loop corrections give rise to O(1) modifications to the features
for a wide range of parameters and wavenumbers of interest. This leads one to consider
resumming these O(1) contributions, arising from the large displacements, as is done in the
case of BAO (see above).

For a general, oscillatory power spectrum component, refs. [44, 390] show that the long
modes’ effect on the one-loop contribution can be computed as

Pw
1-loop(k) =

1

2

∫ Λ d3p

(2π)3
(p · k)2

p4
P nw(k)

[
Pw(|k+ p|) + Pw(|k− p|)− 2Pw(k)

]
, (6.3)

where Λ is a cut-off scale such that p < Λ ∼ k. Taylor expanding the first two components in
the brackets of integrand in q and formally integrating gives a one-loop contributions of the
form

Pw
1-loop, X(k) = −1

2
k2Σ2

XP
w(k), (6.4)

where ΣX is the effective displacement dispersion at a point and X labels either the linear, or
logarithmic shapes given in Eqs (6.1) and (6.2). The dispersion can be well approximated by

Σ2
X =

1

3π2

∫ Λ

0

dp [1− j0 (ωXp) + 2j2 (ωXp)]P
nw(p), (6.5)

where for linear2 shapes (Eq. (6.1)) we have ωX = ωlin, while for logarithmic shapes we have
ωX = ωlog/k. The latter makes a further approximation that, due to the shape of P nw, the
Σlog integral has most of its contributions from the p≪ k part of the integral. In the case of
linear oscillations the above expression corresponds to the results obtained in BAO studies
and their IR-resummations.

Following the results of ref. [390], the total non-linear matter power spectrum at one-loop
can be obtained as

P1-loop,X(k) = P nw(k)L +

(
1 +

1

2
k2Σ2

X

)
e−

1
2
k2Σ2

XPw(k)L + P nw
1-loop

[
P nw
L + e−

1
2
k2Σ2

XPw
L

]
(k).

(6.6)
2These derivations always assume the rd → 0 limit.
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Figure 6.3: Comparison of the oscillatory components of the real-space power spectrum for our
fiducial halo sample at z = 1 as predicted by 1-loop EPT and LPT for a range of IR-resummation
choices in the ΛCDM cosmology. All choices are in excellent numerical agreement – the EPT schemes
are all within 10−4 of the total broadband power of each other and differ at the 10−3 level with the
LPT prediction. The latter number lets us place a minimum theoretical error on predictions for
feature amplitude.

This expression can readily be extended to the power spectrum for biased tracers, since the
above IR-resummation procedure remains unchanged. Moreover we see that if more than
a single distinct feature is present in the power spectrum (as is the case if one studies e.g.
BAO and some other feature), the above expression simply obtains additive Pw contributions,
given that, to a very good approximation, we can neglect the cross-correlation contributions
of different wiggle components (e.g. Pw

lin × Pw
BAO). For further details on these results we refer

a reader to refs [44, 390]. In what follows we shall show how the IR resummation is naturally
handled in LPT, and how this leads to a different way of obtaining an Eulerian resummation
procedure.

6.4.2 Lagrangian IR Resummation and Connection to Earlier
Approaches

In contrast to the above, within the Lagrangian framework (LPT) IR resummation can
be naturally incorporated by exponentiating long-wavelength displacements [231, 58, 402].
Within ΛCDM this is nearly equivalent to simply exponentiating the linear displacements,
since in such cosmologies the variance of displacements in linear theory due to modes at high
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k is relatively small while those at low k are approximately linear. In this regime the matter
power spectrum is given by

Pm =

∫
d3q eik·q−

1
2
kikjA

lin
ij

{
1− 1

2
kikjA

loop
ij +

i

6
kikjkkWijk + ...

}
, (6.7)

where Aij and Wijk are n-point statistics of pairwise displacements ∆ = Ψ1 − Ψ2 with
separation q = q1 − q2. In the expression above, in principle only the long modes of the
linear displacement field should be resummed. This can be accomplished by splitting the
exponentiated Aij in the above equation with the same kind of cutoff Λ as in Equation 6.5
and Taylor-expanding the short-wavelength component3. However, the cumulative effect
of introducing such an explicit IR scale, Λ, on any wiggle shapes (including BAO) is quite
small, constituting less then the 0.1% difference, as shown in Figure 6.3. This approximation
is of course true as long as the resummed displacement dispersion does not receive large
contributions from small scales, which is the case for ΛCDM-like spectra.

Within LPT, the Eulerian resummation can be recovered as a saddle-point approximation;
briefly, for an input linear power spectrum with smooth and wiggly components Plin =
Pnw +∆PX , the latter can be expanded out of the exponent, where its configuration-space
feature at some characteristic separation qX will pick out a nonlinear smoothing

e−
1
2
k2Σ2

X =
〈
exp

{
− 1

2
kikjA

nw,lin
ij (q)

}
|q|=qX

〉
. (6.8)

This recovers the Λ → ∞ limit of Eq. 6.5. The brackets in the above equation refer to the
angular average of the exponent in the space of q’s. Decomposing Aij = X(q)δij + Y (q)q̂iq̂j
into scalar components X and Y , the most straightforward approach is to take the average to
correspond to X+Y/3, though we note for example that Eq. 6.5 corresponds to taking X+Y .
If there are multiple oscillatory components, i.e. a superposition of sinusoidal components
as in “Lin.x2” (Fig. 6.1), then as long as each component is perturbatively small the above
argument can be applied independently to determine the saddle-point qX and damping factor
Σ2
X of each feature as argued for EPT in the discussion below Eq. 6.6. If the wiggly component

does not have a linear dispersion ϕ = ωk or is not a sum of several linear components the
Eulerian treatment is equivalent to making the approximation ϕ(k) ≈ ϕ′(k)(k − k0) + ϕ0 at
each k and performing the saddle-point integral there. For logarithmic scales this is

sin
(
ω ln

k

k∗

)
≈ sin

( ω
k0

(k − k0) + ϕ0

)
, (6.9)

so that qx(k) = ω/k. This approximation works increasingly well the larger ω is, and we give
a formal derivation in Appendix F.1.

Based on the Eulerian and Lagrangian discussions above it may seem like there exists
an over-abundance of possible IR resummation schemes. This is not, however, a matter of

3In practice we use a Gaussian cutoff. See also Section 4.3 in [74].
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great concern since it turns out all of these schemes behave quantitatively similarly, at least
within roughly ΛCDM cosmologies. For example, as noted above the difference between
setting Λ to be some fraction of k and letting Λ → ∞ as in LPT will be small in such
cosmologies due to the relative smallness of linear displacements at high k. Figure 6.3
shows a comparison of these schemes for our fiducial ΛCDM cosmology at z = 1, with bias
parameters taken from our fiducial halo sample. For clarity of presentation we have isolated
the oscillatory signal by subtracting a rough broadband computed using a Savitsky-Golay
filter, then supplementing each theory curve with a quartic polynomial in k such that curves
identical modulo such a quartic contribution will be coincident4. Taking Σ2

X = X + Y/3
derived from Eq. 6.8 as our baseline (blue curve), we see that the differences between this
choice and the conventional EPT dampings with Λ = 0.1, 0.2hMpc−1 are extremely small
and at the level of 10−4 when compared to the (linear theory) broadband power. This is

because much of the numerical difference between the “linear” e−
1
2
k2Σ2

X∆Pw is ameliorated
by correctly accounting for damping effects at one-loop level in Eq. 6.6. On the other hand,
the differences between these schemes and a direct LPT calculation in which the linear
displacements are fully resummed is larger, though still in excellent numerical agreement, at
about the 10−3 level, while an LPT calculation with Λ = 0.1h Mpc−1 lies in between. Finally,
let us note that while the (Gaussian) statistical error on power spectrum measurements scale
as amplitude of the total power, the theory error discussed above scales as the amplitude
of the wiggles only; for example, while it is at 10−3 of the total power for a 5% feature
(BAO), non-BAO primordial features bounded at the 1% level using BOSS and Planck data
by ref. [44], it will be at the 2× 10−4 level at the same redshift.

From the above comparison, we can conclude that (1) the disagreement between LPT and
EPT lets us set a minimum theoretical error on theoretical predictions for feature ampltidue
at about 0.1% and (2) that the difference between the various Eulerian IR resummation
schemes and their predictions for Σ2

X are small compared to this theoretical error, such that
we can be reasonably cavalier when choosing between them. Indeed, as k approaches the
nonlinear scale we should expect that oscillatory signals from beyond-one-loop contributions
will become increasingly prominent compared to the amplitude of the linear oscillations,
dwarfing the theoretical differences highlighted above in the same way that the scale of the
bottom panel of Figure 6.3 is much smaller than that of the top panel. Given that the
one-loop EPT-LPT difference is only a few percent of the wiggle amplitude in ΛCDM—5
percent compare to 0.1 percent—even at the edge of our perturbative reach at k = 0.2h
Mpc−1, the above comparison suggests that searches for primordial features should focus on
exploring higher redshifts and volumes.

4In this and other plots of the nonlinear oscillation signal below, we remove broadband differences by
fitting a quartic polynomial in k to the differences between plotted curves.
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6.4.3 Redshift-Space Distortions

Since next-generation galaxy redshift surveys will be the natural hunting ground for primordial
features, the focus of this section is to extend the modeling of primordial features in previous
works to redshift space. We use 1-loop Lagrangian and Eulerian perturbation theory (LPT and
EPT) described in the previous subsections to model both the real- and redshift-space power
spectra of biased tracers (i.e. halos in our context) within the plane parallel approximation
as described in detail in ref. [74]. The redshift-space power spectrum, Ps(k, µ), is evaluated
as an expansion in the line-of-sight wavenumber, k∥ = kµ, multiplying nth-order pairwise
velocity spectra, such that

Ps(k, µ) =
∞∑

n=0

(ikµ)n

n!
Ξ̃
(n)
∥ (k, µ). (6.10)

The model includes Lagrangian and Eulerian third-order bias expansions along with counter
terms and stochastic terms to account for small-scale physics that we do not explicitly model.
Our fiducial model includes terms up to second order in the velocity expansion, but employ an
ansatz for the third moment which is shown to be highly accurate for ΛCDM-like models [74].
As discussed in ref. [74], while a finite-order expansion in the velocity moments Ξ̃ necessarily
omits feature damping due to bulk velocities that would be included in a “complete” IR
resummation scheme, particularly at high µ, we will show that it is nonetheless sufficiently
accurate for upcoming galaxy surveys like DESI; however, for completeness we also include
comparisons to (1) the Gaussian streaming model and (2) one-loop EPT wherein both
bulk displacements and velocities are resummed where appropriate. We set the third order
Lagrangian bias to zero since its effects are subdominant for the halos and scales of interest
[214, 4].

6.5 Results

To see how well our perturbative models predict the non-linear evolution and redshift-space
distortions in models with primordial or induced features we compare to our N-body results.
For each model we fit to the average of the 6 simulations. The fits are done using the model
“out of the box”, i.e. without tweaking or adjusting any settings, letting only bias parameters
and effective corrections float, and assuming the correct cosmology and linear theory power
spectrum.

Figure 6.4 shows an example of our fits to the real-space halo spectra for the primordial
feature models. The real-space spectra are not directly observable (except in projection,
which will tend to wash out the features) but serve to show that the model is able to predict
the underlying clustering well. We focus on the middle redshift (z = 1) and highest number
density (n̄ = 10−3 h3Mpc−3) sample since this has the smallest error bars. The agreement
between both models and N-body data is excellent over the entire range of quasi-linear scales
and into the regime where shot-noise begins to dominate the spectra. While not shown, we
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Figure 6.4: The real-space, halo power spectra from our simulations at z = 1 and model fits. We
show results for the n̄ = 10−3 h3Mpc−3 sample, since it has lower shot noise, but results for the
sparser sample are qualitatively similar. The open, black circles show the average of P (k) over the
4 boxes. The orange and green lines (which are almost on top of each other) show the best-fit LPT
and EPT models while the blue line shows linear theory with the same large-scale bias as the EPT
models.
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Figure 6.5: Broadband-subtracted pairwise-velocity moments in real space for our fiducial halo
sample with the “Lin.×2” linear power spectrum compared to predictions from LPT and EPT. As
in basic ΛCDM models, there is excellent quantitative agreement between LPT and EPT in the
zeroth and first moments, while in the second moment EPT slightly underpredicts the damping of
1-loop wiggles prominent at higher k.

have checked that the more biased sample and other redshift slices show similar levels of
agreement.

In addition to the real-space power spectrum we have also measured the first two, real-
space pairwise velocity moments of our halo samples and compared them to perturbation
theory. These velocity statistics inform the angular structure of the redshift-space power
spectrum (which we expect will eventually provide our tightest observational constraints on
features) in addition to being well-defined observables in their own right, and extracting them
individually gives us a closer look at oscillatory features that only become prominent at high µ.
Figure 6.5 shows our best-fit LPT and EPT models for the model with two linear oscillations
(Lin.×2), again with broadband shapes subtracted to isolate the oscillatory components.
Much as in ΛCDM models [74] there is excellent agreement between LPT and EPT for the
real-space power spectrum (P ), and the pairwise velocity (v), while EPT tends to slightly
underpredict the damping for the second moment (σℓ), especially as the one-loop oscillations
become prominent at k > 0.1hMpc−1. These differences are, however, small and the models
predict almost identical power spectrum wedges. Nonetheless, they are helpful in informing
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our theoretical error budget when searchiing for oscillations close to the line-of-sight.
As Figs. 6.4 and 6.5 make clear the Eulerian and Lagrangian descriptions provide almost

identical performance over the range of scales where we expect perturbation theory to be
valid. We find this persists even for the redshift-space spectra, and so to avoid clutter we
shall show only the Lagrangian model in the following figures.

Figure 6.6 compares the theory prediction (LPT moment expansion) and N-body data for
the anisotropic power spectrum wedges P (k, µ) in redshift space. The theory and data are
in excellent agreement over a large range of scales and LOS angles µ, though we note that
the shot noise ∼ n̄−1 plays an increasingly dominant role at the highest k’s shown. We focus
on the redshift-space wedges, which are independent in linear theory, but have checked that
the theory returns an equivalently good fit to the smooth and oscillatory components of the
multipoles.

As an additional check on possible theory differences, Fig. 6.7 shows the predictions for
the oscillatory components of Pℓ(k) (i.e. with the broadband subtracted) for our fiducial halo
sample using our LPT moment expansion model, Gaussian streaming model and resummed
Eulerian perturbation theory. Despite the Lagrangian and Eulerian models being fit separately
to the wedges, i.e. P (k, µ) data, all three models are in excellent agreement with each other
and the N-body data for the multipoles, Pℓ(k). The agreement is particularly impressive in
comparison to the scatter in the N-body data, which are themselves tighter than expected for
upcoming surveys with a total simulated volume of > 90h−3Gpc3. In order to demonstrate
their equivalence at low k, we have matched the countererms between the moment expansion
and Gaussian streaming model predictions (Appendix F.2), but note that at the highest
k’s shown the GSM predictions for the quadrupole are in fact in slightly better agreement
with the EPT prediction, suggesting that differences there are driven by the incomplete IR
resummation of bulk velocities in the moment expansion (see ref. [74] for further discussion).

Finally, Fig. 6.8 shows similar fits to the model with 10 per cent early dark energy at
z ≃ 104. Again the fiducial LPT model provides an excellent fit to the N-body data in both
real and redshift space on quasi-linear scales, indicating that these scales can be used to
constrain the amount of unclustered dark energy contributing to the expansion when such
modes entered the horizon. A similar level of fit is obtained using other schemes such as
resummed EPT, though we have not shown them for sake of brevity. Future surveys, probing
large volumes at high redshift, should be able to constrain the expansion history via its effect
on growth over a broad range of cosmic history.

6.6 Conclusions

We have investigated how well 1-loop perturbation theory, both Eulerian and Lagrangian,
can model the redshift-space power spectra of biased tracers such as dark matter halos in
models with either primordial or induced features. By comparing the models of ref. [74] to
clustering statistics measured from a series of large N-body simulations, we have shown that
bias, non-linear evolution and redshift-space distortions can all be accurately accounted for
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Figure 6.6: The redshift-space, halo power spectrum wedges from our simulations at z = 1 and
model fits. We show results for the n̄ = 10−3 h3Mpc−3 sample, since it has lower shot noise, but
results for the sparser sample are qualitatively similar. The open circles show the average of P (k, µ)
for µ = 0.1, 0.3, ..., 0.9 (colors, bottom to top), the solid lines show the best-fit LPT model.
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Figure 6.7: Predictions using the LPT moment expansion, Gaussian streaming model and IR-
resummed EPT (REPT) for the oscillatory components of the redshift-space power spectrum
monopole and quadrupole at z = 1 for the n̄ = 10−3 h3Mpc−3 sample. The LPT and REPT models
are in excellent agreement, especially compared to the scatter of the N-body data to which they
were independently fit.
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Figure 6.8: As for Figs. 6.4 and 6.6 but for the model with an “induced feature” (see text and
Fig. 6.2).

by existing perturbative models with no need for any tuning or modification. This is the first
demonstration that such perturbative models can fit the redshift-space clustering of biased
tracers in such theories to per cent level precision on quasi-linear scales.

We compare three primordial feature models (Fig. 6.1) and one model with an “induced”
feature imprinted by an epoch of early dark energy (Fig. 6.2). We investigated two different
schemes for modeling the dynamics (Eulerian and Lagrangian), several different IR resum-
mation schemes, and different methods for including redshift-space distortions (a moment
expansion and a cumulant expansion: the Gaussian Streaming Model). In all cases we find ex-
cellent agreement between the different theories and the N-body simulations. Figure 6.3 shows
that different methods of performing IR resummation give extremely similar predictions for
the power spectrum. Figures 6.4 and 6.5 show that both LPT and EPT predict the real-space
density and velocity statistics measured in our N-body simulations well to k ≃ 0.25hMpc−1.
With these ingredients, Fig. 6.6 shows that the moment expansion accurately describes the
redshift-space, power spectrum wedges, P (k, µ) with Fig. 6.7 highlighting the agreement on
the oscillatory features in the multipole moments for both the moment expansion and a
cumulant expansion. Figure 6.8 shows the same excellent agreement for features induced by
changes in the expansion history at high redshift, rather than imprinted upon the primordial
power spectrum.

This extensive set of comparisons and tests imply that current perturbative models are
up to the task of constraining models with features given suitably accurate redshift-space
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clustering data. Future surveys, capable of operating over large volumes at high redshift —
shifting the non-linear scale to higher k and the fundamental mode to lower k — would be
ideal in providing such constraints. We intend to return to the detectability of these features
by different surveys [24], and the impact of degeneracies, in a future paper. However, it is
clear that future surveys that probe large volumes at high redshift should be able to constrain
both primordial features and the expansion history over a broad range of cosmic history (via
its effect on growth).
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Chapter 7

Simulations and Symmetries:
Combining N-body Dynamics and
Lagrangian Bias Expansions

This chapter was originally published as

Chirag Modi, Shi-Fan Chen, and Martin White. “Simulations and symmetries”.
In: MNRAS 492.4 (Mar. 2020), pp. 5754–5763. doi: 10.1093/mnras/staa251.
arXiv: 1910.07097 [astro-ph.CO]

In Chapters 4, 5 and 6 we used the natural IR resummation due to the nonlinear mapping
between displacements and densities in the Lagrangian formalism to study how structure
formation affects the BAO peak and other features in the linear 2-point function. However,
as we discussed in the Introduction, this nonlinear mapping is valid beyond the perturbative
single-stream regime, as long as all solutions to the relation x = q + Ψ(q) are kept. In
this chapter we will construct a model for real-space correlations between galaxies and
matter beyond the traditional reach of perturbation by exploiting this mapping and using
displacements from N-body simulations. Since N-body simulations represent a (near) exact
solution to the Lagrangian system, plugging in N-body displacements into the delta function
in Equation 1.70 represents a resummation of dynamical nonlinearities to all order and, in the
event that the dynamical nonlinear scale k−1

nl is larger than the halo radius Rh, can extend
the reach of Lagrangian bias past the reach of conventional LPT. This method represents
a way to model galaxy-matter correlations past the nonlinear scale without needing to run
high-resolution simulations that can resolve halos and subhalos and, indeed, since its original
publication has been adopted by multiple groups to do just that [207, 156, 432].

https://doi.org/10.1093/mnras/staa251
https://arxiv.org/abs/1910.07097
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7.1 Introduction

The study of the form and evolution of the large-scale structure in the Universe is one of the
most promising probes of cosmology and fundamental physics [410, 12]. One of the major
difficulties in interpreting data from large-scale structure surveys is that we measure a biased
tracer of the non-linear density perturbations (and, for some surveys, in redshift space). The
combination of non-linear evolution and the non-linear dependence of galaxy bias makes
robust inferences difficult.

The non-linearity of the dark matter field does not itself pose insurmountable difficulties.
On quasi-linear scales perturbation theory provides an accurate solution [see 396, 186, 96, for
recent examples]. Further, the evolution of dark matter particles under gravity from known
initial conditions is a well posed numerical problem which can be solved with high accuracy
and efficiency with modern N-body codes [357, 154, 144]. With care, percent level accuracy
on the low order statistics of the density field can be obtained [165, 324], and interpolation
formulae (‘emulators’) can be devised to provide predictions as a function of cosmological
model [167, 166, 212, 435, 126, 420].

By contrast the behavior of the baryonic component, including hydrodynamics, star and
black hole formation and feedback, remains a challenge. Despite decades of progress in models,
numerical algorithms, codes and computers a quantitative understanding of the translation
from mass to light continues to elude us. However, on sufficiently large scales all of these
complexities can be parameterized by a series of numbers, the bias expansion, in a way that
is informed by the symmetries of the underlying laws rather than the details of the specific
processes that act [see e.g. 110, for a recent review]. In detail, while the process that form
and shape galaxies and other astrophysical objects are complex, all such objects arise from
simple initial conditions acted upon by physical laws which obey well-known symmetries:
for non-relativistic tracers these are the equivalence principle and translational, rotational
and Galilean invariance. This symmetries-based approach serves as a counterpoint to the
“halo model” approach [e.g. 408], which seeks to parameterize the manner in which galaxies
inhabit halos of a given mass (and other properties). While the latter offers us a fuller picture,
which is more closely tied to the underlying physics, the former provides a fully flexible
parameterization that captures the relevant effects on the large scales that dominate most
cosmological inference (i.e. on scales where the observed density field is still highly correlated
with the early-Universe density field and the present day matter field).

A symmetries-based bias expansion is now quite common in theories which treat the
dynamics perturbatively [396, 186, 96, 88], however the halo model approach is still more
common in simulation-based approaches [see e.g. 129, 420, 433, 435, for recent examples]. The
purpose of this chapter is to investigate the combination of the robust, symmetries-based bias
expansion with the (well behaved) N-body solution to the dynamics. Both the bias expansion
and the N-body solution represent controlled approximations which can be made increasingly
accurate given sufficient parameters and computational resources. Further, the number of
parameters and computational cost for a fixed accuracy can be lower than for many other
schemes on the scales of relevance to next-generation large-scale structure surveys.
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In this first chapter we shall investigate how well a quadratic Lagrangian bias model,
coupled with a “full” N-body dynamical model, can predict the real-space power spectrum of
halos and mock galaxies. Though the method can be straightforwardly extended to higher
order in the bias (albeit with a large increase in the number of parameters that need to be
included) and to configuration space, redshift space and higher order statistics, we focus first
on the real-space power spectrum both because it is the simplest statistic and because it is
of interest in interpreting projected statistics such as angular clustering and lensing (either
of the CMB or of galaxies). Recent related work on the accuracy of the Lagrangian bias
expansion at the field level has appeared in [322, 248] and for Eulerian fields in [411].

The outline of this chapter is as follows: in the next section (§7.2) we introduce our
(Lagrangian) bias expansion. In §7.3 we describe the N-body simulations which we use to
compute our basis spectra and to test the performance of the model. Our results are presented
in §7.4. We present our conclusions and comment upon future directions in §7.5.

7.2 The bias expansion

In this chapter we shall work within the context of Lagrangian bias, as formulated by [229].
In such a prescription the (smoothed) initial distribution of tracers (e.g. halos or galaxies)
is obtained by “weighting” fluid elements by a functional, F , of the local initial conditions
in the neighborhoods of their initial (or Lagrangian) positions, q. As long as we choose a
sufficiently early time the fluctuations should be small and we can Taylor expand F . We shall
work to second order in the bias expansion and thus each particle in our N-body simulation
will carry a weight

w(q) = F
[
δlin(q), δ

2
lin(q),∇2δlin(q), s

2
lin(q)

]

= 1 + b1δlin(q) + b2
(
δ2lin(q)−

〈
δ2lin(q)

〉)

+ bs
(
s2lin(q)−

〈
s2lin(q)

〉)
+ b∇∇2δlin(q). (7.1)

where s2lin(q) is the (squared) shear field. As is conventional, we define the linear overdensity,
δlin, by its linearly-evolved value at the observed redshift, i.e. δlin = D(z)δ0, where D(z) is
the growth factor (normalized to unity at z = 0). Other conventions amount to a rescaling of
the bias parameters, bi. The arguments of F are all of the terms, to second order, allowed by
symmetry and are to be interpreted as smoothed fields1.

In general, the bias expansion quantifies the local response of the galaxy overdensity
to long-wavelength density perturbations and will not hold to arbitrarily small scales. To
lowest order, the effects of smoothing, as well as any “non-local” behaviors, are captured
by the derivative bias b∇. We shall use the ‘natural’ smoothing of our simulation grids
(0.75h−1Mpc), and comment upon this later [see also 17]. Going to higher order in the bias

1Alternative bases for this expansion are possible, and sometimes used in the literature. A change of
basis would simply lead to a linear mixing of the bias parameters and would not fundamentally change our
conclusions.
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expansion requires the addition of many more terms, with cubic order already doubling the
number of coefficients [215, 4]. Unlike the quadratic biases (b2 and bs), many of the cubic
bias parameters have been detected in simulations with only a marginal significance even in
more massive halo samples than the ones we investigate in this chapter.

The biased density field, δB(x), is then obtained by advecting the particles to their present
day position, i.e.

1 + δB(x) =

∫
d3q F (q) δD(x− q−Ψ(q)), (7.2)

where Ψ(q) denotes the displacement of fluid elements from their original (Lagrangian)
positions to their final (Eulerian) positions. We denote Ψ as a function of q since this is
common in the literature on Lagrangian perturbation theory and since in N-body simulations
particles are often assigned ID numbers based on their initial positions. We take the
displacement, Ψ, for each particle directly from the simulations. Operationally δB can be
easily computed by placing each particle onto a grid at its position at the time of interest (using
the N-body position and possibly velocity) with a weight calculated from its initial position
and the initial conditions according to Eq. (7.1). We note that our scheme corresponds to
selectively resumming only dynamical nonlinearities in the galaxy density field or, in the
language of Eulerian bias, assuming values of Eulerian bias consistent with those generated
by advection given nonzero b1, b2 and bs.

Within this formalism we can write halo power spectra as linear combinations of component
cross spectra. Specifically, defining the component fields δi(x) as the initial fields i =
{1, δL, δ2L, s2L,∇2δL} advected from q to x as in Eq. (7.2), we have that the cross power
spectrum between two biased tracers (a and b) is given by

P ab(k) =
∑

i,j

F a
i F

b
j Pij(k) + P SN, (7.3)

where F a,b are the coefficients in wa(q) =
∑

i F
a
i δi(q) and, for example, Pδ,δ2 is the cross

spectrum between the advected linear density field and its square while P11 is the (non-linear)
matter power spectrum2. We also include a shot-noise term, PSN, to account for stochastic
contributions to the halo field not accounted for by the bias expansion. The extension of
Eq. (7.3) to multispectra is straightforward. We emphasize that the 15 independent spectra,
Pij, can be individually computed from N-body simulations as described in the previous
paragraph by weighting and advecting simulation particles, independently of the tracers in
question. Each of these spectra is a function only of the cosmology (and redshift), with all of
the bias dependence for any tracer contained within the coefficients, F . Avoiding the need
to identify halos reduces the computational burden, both of finding the halos but also of
sufficiently resolving them and possibly their histories, orientation, profiles and substructure.
The fact that P (k) for all tracers (that can be described by quadratic bias) can be predicted

2We caution that our notation has e.g. Pδ,δ2 = Pδ2,δ both contributing to P ab. The convention in
perturbation theory calculations is often to absorb the factor of 2 into the definition of Pδ,δ2 and omit the
second term. We keep the symmetric form as it more naturally describes cross-spectra.
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Figure 7.1: The 15 ‘basis’ cross-spectra, Pij , at z = 0 (upper panels) and z = 1 (lower panels).
The halo and galaxy power spectra are formed from linear combinations of these spectra, as in
Eq. (7.3). The matter and linear bias contributions (P11, P1,δ and Pδ,δ) dominate and are essentially
degenerate on large scales, while differing at large k where the other components also contribute.
The field ∇2δ has been multiplied by 10 h−2 Mpc2 for ease of presentation.

from these Pij using Eq. (7.3) means an emulator does not need to include any HOD-related
parameters.

In the discussion above we have purposefully left out the effects of small-scale baryonic
physics. This is because the bias expansion is only expected to be valid on scales where these
baryonic effects – for example due to AGN feedback or ionizing radiation – are expected to be
small [83, 53, 384] and manifest as perturbative corrections ∝ k2PL(k) to the power spectrum
[217, 317]. Such corrections are nearly degenerate with contributions from derivative bias, b∇
(e.g. the fitting function of [384] is fit by k2P to one per cent on the scales where our bias
model holds). Indeed, the bias expansion itself would not be perturbative on scales where
such baryonic effects are large. On larger scales, baryons can also affect galaxy power spectra
through primordial relative density and velocity perturbations [427, 51, 316, 70, 25]. These
effects are small and, while they are nondegenerate with contributions from our model, can
be easily included at lowest order in perturbation theory. The inclusion of massive neutrinos
is analogous, for light neutrinos.
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7.3 N-body simulations

To investigate the performance of our quadratic bias model we make use of N-body simulations
run for this purpose with the FastPM code [133]. The FastPM code uses a relatively low
resolution particle mesh algorithm with large, global timesteps to evolve particles and thus
does not provide accurate predictions for the profiles or substructure in halos. However, it
does produce halo catalogs which are close to those produced by a more traditional N-body
code [133, 112, 247, 97]. Since our purpose here is not to provide a percent level accurate
prediction for a wide range of cosmologies but rather to test the performance of the bias
model, any residual inaccuracy in the evolution should not be a concern: we aim to predict the
clustering of halos and mock galaxies in the FastPM simulations using the particle dynamics
generated by FastPM.

We ran 10 simulations, each of the same cosmology but differing in the random number
seed used to generate the (Gaussian) initial conditions. Each simulation employed 20483

particles within a cubic, periodic box of side 1.536h−1Gpc, with forty time steps between
redshifts z = 9 and 0 and snapshots output between z = 3− 0. The forces were computed
on a 40963 grid (i.e. B = 2). The simulations all assume a flat ΛCDM cosmology consistent
with [285] (Ωm = 0.309167,Ωbh

2 = 0.02247, σ8 = 0.822, h = 0.677).
We extract the particle data, and the friends-of-friends halo catalogs, from the outputs at

z = 2, 1, 0.5 and 0. We also use the initial conditions (at z = 9), from which we generate the
weights for each particle (Eq. 7.1). Each particle is assigned a unique ID number to allow it to
be tracked across outputs, and we compute the displacements simply by matching the initial
and final positions for each particle. We compute the weights from the initial conditions
on a 20483 grid corresponding to a 0.75h−1Mpc cell size. We use cloud-in-cell interpolation
of the particles onto the grid and of the weights onto the particles so this cell size forms a
natural smoothing scale for our Lagrangian quantities. That the cells are not ≪ 1h−1Mpc
will affect the range over which we can expect to obtain good results, but we felt 0.75h−1Mpc
was a good compromise between efficiency and convergence. We caution, however, that all
Lagrangian weights are not created equal: while the linear weights are smoothed much like
the matter and halo fields, quadratic weights like δ2 and s2 are squares of smoothed fields
which contain two factors of the window function, making them more susceptible to grid-size
numerics. We compute the component spectra using the NbodyKit software [163] using
FFTs on 20483 grids at the desired output time, with particles assigned to the grid using
cloud-in-cell interpolation. We do not subtract a (Poisson) shot-noise component from the
spectra, as this is included in our model (Eq. 7.3; in all cases we find a best-fit PSN that is
within twenty per cent—and typically just a few per cent— of the Poisson prediction).

We are interested in how well we can predict the real-space power spectra of (massive)
halos and mock galaxies using our Lagrangian bias model. Our focus will beM > 1012 h−1M⊙
halos for two reasons. First, these halos are better resolved allowing more accurate comparison
with our theoretical model. Second, these halos have higher and more scale-dependent bias,
particularly at higher z, and so provide a stronger test of our model. We consider three mass
bins (see Table 7.1) chosen to span a range of bias values while being well resolved and still
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z = 0 z = 1
log10M n̄ b n̄ b

(12.0,12.5) 24.3 0.80 23.7 1.30
(12.5,13.0) 9.5 0.89 7.9 1.69
(13.0,13.5) 3.6 1.10 2.2 2.36

Table 7.1: Properties of the halo samples used in this work. Halo masses are in h−1M⊙ and number
densities in 10−4 h3Mpc−3. The large-scale bias, b, is quoted as an Eulerian bias and is related to
our Lagrangian bias, b1, via b = 1 + b1.

having a high enough number density to permit good measurements of the power spectra:
12.0 < log10M < 12.5, 12.5 < log10M < 13.0 and 13.0 < log10M < 13.5, with M the halo
mass measured in h−1M⊙. We describe our model for mock galaxies, which occupy a range
of halo masses and include both satellites and centrals, in §7.4.3.

7.4 Results

The Lagrangian prescription enables separate treatment of tracer bias and nonlinear dynamics.
Section 7.2 describes a power spectrum model in which the latter are treated exactly (to
simulation accuracy) while the former is treated perturbatively. By comparison, traditional
approaches to perturbation theory (PT) treat both as effective expansions. As such, our
approach can be expected to improve upon these calculations in the regime where the
dynamics are no longer sufficiently captured by PT but the bias expansion remains valid, for
example at low redshifts where dynamics become highly nonlinear but halos have relatively
low biases. At high redshifts, where biases are large but dynamics essentially linear on most
the scales of interest, our model should be valid over the same range of scales as traditional
PT approaches.

The goal of this section is to investigate the range of scales over which our quadratic bias
expansion is valid and useful. We proceed in two steps: in §7.4.1, we extract component
spectra from the simulations and compare them to their predicitions in one-loop Lagrangian
perturbation theory (LPT). Then, in §7.4.2, we use the extracted component spectra to fit
mass-limited halo power spectra and establish the scales over which the bias expansion is
valid for various halo masses. Our model gains over traditional techniques in the regime
where the dynamics are insufficiently captured by perturbation theory but the bias expansion
remains valid. We extend the comparison to mock galaxies, generated from a halo occupation
distribution, in §7.4.3.
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Figure 7.2: Comparison of halo autospectrum spectra predicted by our model and one-loop pertur-
bation theory (LPT) for the same bias parameters. The latter matches our model on large scales
but deviates towards large k as perturbative dynamics breaks down, particularly at towards lower
redshift.

7.4.1 Component Spectra and Comparison to Perturbation
Theory

Figure 7.1 shows the cross-spectra between the advected bias components, extracted from the
simulations as described in §7.2 and averaged over all ten simulation boxes, at redshifts z = 0
and 13. We note that the cross spectra between linear and quadratic initial fields (e.g. Pδ,δ2)
are particularly noisy since their variance includes contributions cubic in the linear spectrum
(e.g. σ2

δ,δ2 ∋ Pδ,δPδ2,δ2 ∼ O(P 3
L)) while their means are O(P 2

L) at lowest order, leading to
a signal-to-noise ratio below unity. We substitute the predictions of 1-loop LPT for these
spectra at k < 0.08hMpc−1, where the theory is accurate but the N-body results very noisy4.

Figure 7.1 demonstrates that the matter and linear bias contributions (P11, P1,δ, Pδ,δ)
dominate and are essentially degenerate on large scales, as expected. The dashed lines show
the one-loop LPT predictions for these component spectra, which agree with the simulated
component spectra on large scales but deviate on small scales where contributions due to

3A similar plot appeared in Fig. 7 of [4], who compared cross-spectra of cubic fields to two-loop standard
perturbation theory.

4Since this component noise will also be present in any fitted data, given simulated volumes comparable
to a given survey the summed model components will be no more noisy than the data even if some individual
components have SNR less than unity.
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Figure 7.3: Halo auto-spectra (dashed) and halo-matter cross-spectra (dotted) for our three halo
samples (Left: 12.0 < log10M < 12.5, Middle: 12.5 < log10M < 13.0 and Right: 13.0 < log10M <
13.5) at z = 0 (top) and z = 1 (bottom). Black lines show the N-body spectra while the colored line
shows the best-fit model of Eq. (7.3). For each combination we show both the full spectra and the
fractional error as a function of k. The gray lighter and darker shaded regions show 3 and 1 percent
errors, respectively.
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quadratic and derivative bias also become significant, especially towards low redshifts5.
The dashed comparisons shown in Fig. 7.1 were computed using “traditional” perturbation

techniques; however, there has been much recent progress towards properly treating small-
scale physics within the LPT framework using effective field theory techniques [290, 399],
which must be included for a fair comparison with N-body simulations. Figure 7.2 shows the
predicted halo spectra within our model of quadratic bias plus N-body displacements (solid)
compared to one-loop Lagrangian perturbation theory for values of bias (b1, b2, bs) that best
fit the 12.5 < log10M < 13.0 halos at z = 0, 1 and 2. For simplicity we have not included
nonzero derivative bias b∇, but adjust a one-loop counterterm ∝ k2PL(k) for the LPT spectra
to improve the agreement with simulation. In performing these fits we have adjusted the
counterterm by eye to ensure good asymptotic behavior at large scales instead of maximizing
the degree-of-fit over a wider range of k in order to best show the domain of validity of
LPT. At z = 2, one-loop perturbation theory shows good quantitative agreement with the
the modeled N-body spectrum out to k ≃ 0.5hMpc−1, while even with a relatively large
counterterm it agrees with simulation only to k ≃ 0.2hMpc−1 at z = 0. These ranges-of-fit
are consistent with the studies of the matter power spectrum within Lagrangian perturbation
theory cited above and, roughly speaking, tell us when the nonlinear dynamics are no longer
sufficiently described by perturbation theory (though some of the disagreement could also
come from limited resolution in the simulations). They suggest P (k) cannot be fit beyond
kΣ ≲ O(1), where Σ is the rms displacement of particles computed in linear theory, as would
be expected on theoretical grounds. We note that this comparison with LPT shares only
one free parameter – the counterterm – with usual fits to N-body halo spectra, as the bias
parameters are fixed.

Our conclusions are in good agreement with those of [251], who showed that even if
protohalo particles were properly identified in the initial conditions of a simulation using only
perturbative displacements leads to poor prediction of P (k) at non-linear scales. Comparing6

to their Fig. 3, it seems that the Lagrangian bias expansion does roughly as well as properly
identifying protohalo particles in the initial conditions.

7.4.2 Fitting halo spectra

Next we consider how well our model with N-body displacements predicts the (real space) halo
auto-spectra and halo-matter cross-spectra for our three halo samples (12.0 < log10M < 13.0,
12.5 < log10M < 13.0 and 13.0 < log10M < 13.5). In each case we adjust both the 4
bias parameters plus the shot noise component to jointly fit the N-body halo autospectrum
and halo-matter cross-spectrum. We use a Gaussian approximation to the covariance of
P (k) to avoid noise in the error estimate from having only 10 independent realizations and
consider the fits as a function of kmax. Once the k-modes become non-linear they also become
increasingly correlated, and our error estimate thus gives too much weight to the high k

5We have rescaled the b∇ components to match k2PL(k) in physical units at large scales.
6We thank E. Castorina for emphasizing this point to us.
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modes. However, in this regime the noise is also very small and simply requiring our model
to fit within 1 per cent is an effective strategy.

Figure 7.3 compares the halo auto-spectra and halo-matter cross-spectra for our two halo
samples at z = 0 and z = 1 to the best-fit model of Eq. (7.3). The agreement for both
statistics, with a common set of bias parameters, is excellent out to k ≃ 0.6hMpc−1 for all
three halo samples and both redshifts. This substantially increases the range of fit at z = 0,
compared to the LPT described earlier, and corresponds to kRgrid ≃ 0.45. We have found
that we could get even better agreement with only Phh(k), but at the cost of worsening the
fit to Phm. This suggests that such good agreement with Phh is partially artificial, so we deal
only with the joint fits in this chapter.

There are several important features to note in Fig. 7.3. First we see that the model is
performing at the percent-level or better, and usually well within the errors of the simulation
(visible as ‘noise’ in the lines in the lower panels) at low and intermediate k, before a sudden
shortfall of model power near k ≃ 0.6hMpc−1 in the cross spectrum (Phm). This rapid
decline indicates that our component spectra are not well resolved at large k, which is to
be expected given the finite size of the smoothing (0.75hMpc−1) we applied to estimate δL,
δ2L and s2. This is especially true for the latter two which, as noted in §7.3, are particularly
sensitive to smoothing. The auto spectrum (Phh) is typically saturated by shot noise at
k ≃ 0.6hMpc−1 and therefore less sensitive to these effects.

Secondly, the model does better at z = 1 than z = 0, even though the values of the bias
are higher. This is because the linear growth factor drops by 40 per cent between z = 0 and
z = 1, and for these samples the contributions from quadratic bias are relatively smaller at
z = 1 than z = 0. The improvement in the model performance is thus expected.

Finally, we note that in Fig. 7.3 we haven’t imposed any priors on the values of our bias
parameters. While values of the derivative bias b∇ will be sensitive to small-scale details such
as smoothing and are therefore not expected to be universal, an extensive literature exists
studying physical models for b1, b2, bs (see §7.1 for references). To this end, we have checked
that enforcing, to within a few per cent, the peak-background split relations between (b1, b2)
from [342] (keeping ν as a free parameter) and values of bs from [4] only degrades our fits at
the few (∼ 3) per cent level in Phh and Phm and doesn’t significantly alter the range of fit.

It is important to note that the quadratic bias model fits the auto- and cross-power
spectra of the halo samples shown well into the quasi- or non-linear regime. As modes become
increasingly non-linear they also become increasingly correlated with each other and the halo
field is much less correlated with the matter field or the initial density field. Figure 7.4 shows
the scale-dependent halo-matter cross-correlation coefficients

rcc(k) =
Phm(k)√

Phh(k)Pmm(k)
(7.4)

of two of our mass bins at z = 0.7 We have computed rcc with and without the shot
noise subtracted to better showcase the decorrelation due to nonlinear dynamics and bias,

7We have avoided the highest mass bin with log10M ∈ (13.0, 13.5) as the halo power includes a significant
contribution from shot noise at all scales.
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Figure 7.4: The scale-dependent matter-halo cross correlation coefficient, rcc(k), at z = 0 for mass
bins log10M ∈ (12.0, 12.5) (blue) and (12.5, 13.0) (orange). The dashed lines show the “true” rcc
while the solid lines show rcc computed without shot noise in the halo autospectrum, which gives a
qualitative measure of the halo-matter decorrelation due to nonlinear dynamics and bias. In all
cases the cross-correlation drops below one as the field goes non-linear and is less than 90 percent
for most of the scales fit by our model.

though we caution that strictly speaking the latter is the “true” cross-correlation coefficient.
Nonetheless, in both cases rcc is at least ten per cent below unity across most of our fit range.
For these reason the information content is substantially less than a simple mode-counting
argument would suggest [see e.g. 394, 404, for discussion]. It is also at these smaller scales
that scale-dependent bias and complex physics involving the baryonic components becomes
relevant, potentially requiring many more parameters to model faithfully. Furthermore, most
large-scale structure surveys are designed so that shot noise becomes comparable to the
clustering signal near the non-linear scale, which further limits the information available
from high k modes. Bearing all of this in mind, the performance of the quadratic bias model
demonstrated above is likely to be sufficient for many science goals and we have not attempted
to further improve it.

Figures 7.2 and 7.3 demonstrate that, at low redshift, the perturbative dynamics breaks
down before the quadratic bias model. As we move to higher redshifts, and more biased
tracers, the limitations imposed by perturbative dynamics become less severe and eventually
we expect the bias model to become more limiting than the inaccuracies in the perturbative
dynamics. We have not investigated this limit.
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7.4.3 Fitting galaxy spectra

As a final test we fit to a mock galaxy sample, generated from our simulations by populating
halos using a simple halo occupation distribution. Specifically we assume the now-standard
form [441]

⟨Ncen⟩ (Mh) =
1

2

{
1 + erf

[
lgM/M min

σ

]}
(7.5)

and

⟨Nsat⟩ (Mh) = Θ(Mh −Mmin)

(
Mh −Mmin

M1

)α
(7.6)

For each halo in the simulation we draw a Poisson number of satellites and either 0 or 1
centrals. The centrals are placed at the halo centers while the satellites are placed assuming
an NFW profile [253] dependent only on radius.

Figure 7.5 shows Pgg and Pgm for a ‘galaxy’ sample with Mmin = 1012.5 h−1M⊙, M1 =
20Mmin, σ = 0.2 dex and α = 0.9. These are chosen to be similar to HODs found for
magnitude limited samples of galaxies, though none of our conclusions depend upon the
exact values of these parameters. For reference, our HOD parameters correspond to satellite
fractions of fsat = 0.18 and 0.1 at z = 0 and 1, respectively.

The results are very similar to those shown in Fig. 7.3. The Lagrangian bias model fits
the auto- and cross-spectra of our mock galaxies, simultaneously, within 3 per cent out to
k ≃ 0.6hMpc−1 for 0 ≤ z ≤ 1 (Fig. 7.5). This would be sufficient to model the angular
clustering of galaxies in photometric surveys, galaxy-galaxy lensing or the cross-correlation of
galaxies with CMB lensing out to angular multipole ℓ ≈ kmaxχ where χ is the characteristic
distance to the objects in question. Assuming kmax = 0.6hMpc−1 and χ ≈ 1.3h−1Gpc
(z = 0.5) gives ℓmax ≃ 800 or ℓmax > 103 for z > 0.7. Beyond this ℓmax the errors grow, but
smoothly rather than dramatically. It is on these smaller scales that we expect contributions
from baryonic physics to become increasingly important.

7.4.4 Common bias model

It is also instructive to compare our approach to the commonly assumed approximation of a
constant or scale-dependent bias times the non-linear matter power spectrum. Specifically
we test the model

Phm =
[
b′0 + b′1k + b′2k

2
]
Pm(k) (7.7)

Phh =
[
b′0 + b′1k + b′2k

2
]2
Pm(k) + PSN (7.8)

with three bias and one constant shot noise parameter. The parameter b′0 denotes a scale-
independent bias, and is the most widely used model for galaxy or halo bias. The b′2 term
describes a correction due to peaks theory [110] and has been used in modeling data [e.g. 145].
The term b′1 k has no theoretical justification and is included merely because we noted that it
improved the fit. We use the N-body determined Pm(k) in Eqs. (7.7, 7.8) as we found the
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Figure 7.5: Comparison of the auto- and cross-spectra for samples of mock galaxies, generated
from the simulations using a halo occupation distribution at z = 0 (top) and z = 1(bottom). The
blue and orange curves show the fits from our model for the galaxy autospectrum (dashed) and
galaxy-matter cross spectrum (dotted), respectively. The model performance is qualitatively similar
for our mock galaxies and halo samples.
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Figure 7.6: A comparison of our Lagrangian bias model with the model of Eqs. (7.7, 7.8) and the
benchmark linear bias model. Solid lines show the fits of each model to the halo-halo autospectrum,
while dashed lines show fits to the halo-matter cross spectrum. The linear bias model only fits
the data on the largest scales. While the scale-dependent bias model can be made to fit the
autospectrum, only our model fits both auto- and cross-spectra with a consistent set of parameters.

HaloFit model [160, 273, 354, 362, 237, 236] was not as accurate and we wished to provide
the most fair comparison.

Note the assumption above that the prefactor of the halo-halo auto-correlation is the
square of the prefactor in the halo-mass cross-spectrum. This is equivalent to the assumption
that the halo and matter field have cross-correlation coefficient rcc ≈ 1. However, this
assumption increasingly breaks down as dynamics and bias become nonlinear at low redshift
and high mass (Fig. 7.4; see also [246, 421]). The model of Eq. (7.3) allows us to relax the
assumption that rcc = 1.

Figure 7.6 shows the results at z = 0 for the 4-parameter model (Eqs. 7.7, 7.8) on the halo
sample with 13.0 < log10M < 13.5. We have chosen this redshift and mass bin as it illustrates
dynamics and biasing at their most nonlinear, though other choices yield qualitatively similar
results. As a reference, we also consider the case of constant bias (only b0 ̸= 0 above). While
the Lagrangian bias model provides a good fit to both spectra simultaneously, as we have seen
previously, this is not true of Eqs. (7.7, 7.8). We have chosen to adjust the parameters in b(k)
to predict Phh on quasi-linear scales as in observations Phh would most likely have the highest
signal to noise ratio. The freedom inherent in the quadratic function, b′0 + b′1k + b′2k

2, allows
us to fit Phh well up to k ≈ 0.8hMpc−1, comparable to our Lagrangian bias model. However
the form preferred by Phh provides a very bad fit to Phm at intermediate to high k, as can
most easily be seen in the lower panel of Fig. 7.6. This leads to a significant misestimate of
Phm, which would translate into errors in the inferred large-scale bias and underlying matter
clustering amplitude (σ8).
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Figure 7.7: The cosmology dependence of the component spectra. Here we show three representative
components: P11, P1,δ2 , Pδ2,δ2 at z = 0 for values of Ωm within ten percent of our fidicucial cosmology,
with all other parameters kept fixed. For simplicity we have used 1-loop LPT as a proxy for the
N-body spectra. The components vary smoothly with cosmology, with Pδ2,δ2 showing very little
variation. Critically, the component spectra change with cosmology at about the same rate as (or
less than) the matter power spectrum, P1,1.

Despite its ubiquity in analyses, the constant bias model does even more poorly. The
significant scale-dependent bias inherent in the clustering of this mock galaxy sample makes
it impossible to fit both the auto- and cross-spectra except at the very largest scales,
k < 0.1hMpc−1. Inferences about cosmological parameters from using this model would be
highly biased unless drastic scale cuts were employed.

7.5 Conclusions

We have tested the performance of a power spectrum model for biased tracers based on
a quadratic, Lagrangian bias expansion. The model uses N-body simulations to compute
the gravitational evolution of dark matter particles, which are resummed to all order using
the Lagrangian q → x mapping, but substitutes a 4-parameter bias model for the halo-
based galaxy modeling more traditionally employed in simulations. Both the dynamical
model and bias expansion are theoretically well motivated, and the method places only
modest requirements on the input simulations since it does not explicitly use properties of
halos or subhalos. This is an advantage given that properly resolving halos and subhalos is
quite computationally demanding [385, 106, 97] and complex halo occupations – potentially
including halo assembly information – can be required in order to properly model samples
selected by emission lines, color cuts or other complex selections [302, 130, 436, 57, 408, 129,
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226, 420, 433, 435]. The approach combines methods from the ‘analytic’ and ‘numerical’
communities in a manner which plays to their relative strengths.

The Lagrangian bias model is quite accurate on large and intermediate scales. We
have showed that going to quadratic order in the bias expansion enables us to fit the (real
space) auto- and cross-power spectra of halos and mock galaxies to a few per cent out to
k ≃ 0.6hMpc−1 for 0 ≤ z ≤ 1 (Figs. 7.3, 7.5). To fit beyond this scale would require
increasing the number of parameters (and component spectra) and calculating the Pij with
higher resolution simulations. However, this performance is already highly encouraging, as
these scales provide the bulk of the information in many cosmological analyses. Smaller
scales tend to be non-linear and significantly affected by scale-dependent bias and baryonic
effects. The mode-coupling associated with non-linearity implies that there is less information
about primordial physics in these modes than a simple mode-counting exercise would imply
[e.g. 394, 404] and the combination of non-linearity and baryonic effects means that such
modes do not faithfully trace the primordial perturbations. The many parameters needed
to describe complex, scale-dependent effects can lead to degeneracies with cosmological
parameters. Furthermore, most large-scale structure surveys are designed so that shot noise
becomes comparable to the clustering signal near the non-linear scale, which further limits
the information available from high k modes. For these reasons, the performance of the
quadratic bias model is likely to be sufficient for many science goals.

In this chapter we have worked at fixed cosmology in order to focus on the range of
applicability of the quadratic bias expansion. While we intend to return to the problem of
emulating the power spectrum for different cosmologies in future work, we comment here on
the basic strategy. The component spectra in Eq. (7.3) vary with cosmology smoothly, with
variations similar to the linear power spectrum. As an example, in Figure 7.7 we have plotted
variations in the component spectra when Ωm is varied within ±10 per cent from our fiducial
cosmology; leading order terms like the matter power spectrum P11 vary like the linear power
spectrum, while the component spectra vary smoothly by similar factors or, in the case of
Pδ2,δ2 , significantly less. The variations with other cosmological parameters are qualitatively
similar. Thus the same techniques that have been used to emulate matter power spectra will
apply almost unchanged for emulating Pij. As shown in Fig. 7.2 we can use perturbative
methods for the low k part of the component spectra, which tends to be relatively noisy
when estimated from simulations of computationally tractable volumes, and switch to N-body
determined spectra at higher k. Given a grid of N-body simulations spanning the cosmologies
of interest standard Gaussian process regression, which has been successfully used for matter
power spectrum interpolation [167, 166, 213, 126, 384], can easily be used to predict each of
the component spectra as a function of cosmology. In a similar vein, the ratio of the N-body
to perturbation theory spectra can be emulated rather than the spectra themselves, removing
some of the cosmology dependence. Since the perturbation theory spectra can be efficiently
and accurately computed for any cosmology, this shouldn’t significantly change the efficiency
of the emulator.

An alternate emulation which also does not explicitly use properties of halos and subhalos
was adopted by [330, 162]. Those authors used Pade approximants to fit correction factors to
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perturbation theory or halo model inspired terms and then fit the coefficients as power laws
in the relevant cosmological parameters. Such an approach could also be attempted with
our component spectra, which are in large part relatively featureless and vary smoothly with
parameters.

While we have chosen a Lagrangian bias expansion, a similar procedure could be followed
using a complete set of Eulerian bias operators. However, we note that [322, 248] find that
the Lagrangian scheme outperforms the Eulerian bias expansion for a wide range of halo
masses, redshifts and weightings. Thus we do not expect it to improve over the prescription
we have developed here.

In this chapter our focus has been on the real-space power spectrum, of direct relevance
to modeling photometric and lensing surveys, though one can extend the method to higher
order functions, covariances and to redshift space. For the latter, one can either model the
contributions to P (k, µ) directly in simulations, or one can choose to model the real-space
power spectrum and velocity moments and construct the redshift-space power spectrum from
those components (see e.g. [162] for a recent example and [398] for a recent discussion of such
methods for modeling redshift-space distortions). We intend to return to this topic, and to
the construction of an emulator, in future publications.
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Chapter 8

Cosmological Analysis of the Power
Spectrum and Post-Reconstruction
BAO in the BOSS Survey

This chapter was originally published as

Shi-Fan Chen, Zvonimir Vlah, and Martin White. “A new analysis of galaxy
2-point functions in the BOSS survey, including full-shape information and post-
reconstruction BAO”. in: JCAP 2022.2, 008 (Feb. 2022), p. 008. doi: 10.1088/
1475-7516/2022/02/008. arXiv: 2110.05530 [astro-ph.CO]

We have spent the first six chapters of this dissertation developing theoretical models of
galaxy clustering in perturbation theory, with a particular focus on Lagrangian perturbation
theory methods. In this chapter and the next, we will make a change of pace and apply
these models to data. In this chapter, our focus will be on the two main prongs of modern
spectroscopic surveys, BAO and RSD.

We present a new method for consistent, joint analysis of the pre- and post-reconstruction
galaxy two-point functions of the BOSS survey. The post-reconstruction correlation function
is used to accurately measure the distance-redshift relation and expansion history, while
the pre-reconstruction power spectrum multipoles constrain the broad-band shape and the
rate-of-growth of large-scale structure. Our technique uses Lagrangian perturbation theory
to self-consistently work at the level of two-point functions, i.e. directly with the measured
data, without approximating the constraints with summary statistics normalized by the drag
scale. Combining galaxies across the full redshift range and both hemispheres we constrain
Ωm = 0.303± 0.0082, H0 = 69.23± 0.77 and σ8 = 0.733± 0.047 within the context of ΛCDM.
These constraints are consistent both with the Planck primary CMB anisotropy data and
recent cosmic shear surveys.

https://doi.org/10.1088/1475-7516/2022/02/008
https://doi.org/10.1088/1475-7516/2022/02/008
https://arxiv.org/abs/2110.05530
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8.1 Introduction

The large-scale structure of the Universe, as traced by galaxies, provides fundamental physics
information through its connection to both initial conditions in the primordial universe and
general relativity through the gravitational formation of structures on the largest observable
scales [275, 114]. A well-established measure of this structure is the redshift-space two-point
function as measured by galaxy redshift surveys [196, 158], which encodes both the power
spectrum shape of fluctuations in the early universe and, through the quirk that line-of-sight
distances in such surveys are inferred from their redshifts, cosmological velocities in the form
of redshift-space distortions (RSD).

A particularly interesting and relevant interplay of the initial conditions and gravitational
dynamics occurs in the galaxy baryon acoustic oscillations (BAO) signal. The BAO signal is
the imprint of early-universe acoustic waves on the observed clustering of galaxies, manifesting
as a localized peak in the galaxy correlation function at separations around the characteristic
size of these waves [410]. The linear physics underlying the size and shape of the BAO feature
is well-understood [120, 238], making it a robust cosmological signal of both the early universe
and the redshift-distance relation. However, the process of nonlinear structure formation
leads to a slight wrinkle in this picture: nonlinearities, particular due to bulk displacements of
galaxies on large scales, tend to dampen and shift the BAO signal [121, 92]. To better extract
the BAO signal, ref. [122] proposed a now-standard method known as “reconstruction” to
cancel a large portion of these effects by estimating large-scale displacements and subtracting
them from the observed positions of galaxies.

In recent years there have been significant advances in the modeling and theoretical
understanding of both redshift-space distortions and the nonlinear damping of BAO. For the
former, the recasting of cosmological perturbation theory in the language of effective field
theories has provided a systematic way in which to write down the possible contributions to
galaxy clustering on quasilinear scales based on fundamental symmetries while clarifying and
taming dependences on small-scale physics (see e.g. refs [234, 28, 60, 399, 280, 398, 74, 82]).
For the latter, improved understanding of the effects of large-scale displacements through
so-called infrared (IR) resummations allows us to quantitatively describe nonlinear damping
of the BAO peak, both for the raw and reconstructed power spectrum, in perturbation theory
[231, 58, 402, 112, 78]. These developments allow us to model diverse sets of cosmological
observables— in real and redshift space, power spectrum and correlation function, pre- and
post-reconstruction— within the consistent theoretical framework of perturbation theory.

Our aim in this chapter is to present a consistent analysis of the pre- and post-reconstruction
2-point correlation function in Fourier and configuration space using the BOSS survey [101]
as an example. We will work within the framework of Lagrangian perturbation theory [39],
which the present authors have used to develop models for redshift-space distortions and
reconstruction [78, 82]. We will operate directly at the level of two-point correlation functions,
i.e. given a set of cosmological and galaxy bias parameters Θ, we will use the redshift-space
power spectra and correlation function multipoles, pre- or post-reconstruction, to construct a
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likelihood:

L ∝ exp
{
− 1

2

(
m(Θ)− d̂

)T
C−1

(
m(Θ)− d̂

)}
, d̂ = (Pℓ, ξ

recon
ℓ , · · · ), (8.1)

where m(Θ) is the model, d̂ is a data vector composed of two-point correlation functions
measured from data and C is the covariance matrix.

This work is not the first to analyze galaxy clustering with an effective theory framework,
and follows a number of papers analyzing the BOSS redshift space power spectrum using
effective Eulerian perturbation theory [86, 96] as well as work by refs. [283, 94] combining
these analyses with additional BAO information through reconstruction. Our goal, rather,
is to perform a joint analysis of pre- and post-reconstruction data without resorting to
additional assumptions or machinery (Fig. 8.1). In particular, previous work combining pre-
and post-reconstruction measurements (e.g. refs [45, 283, 94]) have typically sought to distill
the content of the latter by fitting a set of BAO parameters α̃∥,⊥ (§ 8.3.2) which scale the
BAO signal in a template, or fiducial, linear power spectrum to match that of the observed
signal. Then, since the BAO oscillations in the template differ from the observed by the
cosmological dependence of the sound horizon (rd) in addition to simple distance scalings by
redshift, these best-fit α̃’s are fit to the ratio of cosmological distances to rd in conjunction to
the pre-reconstruction power spectra, such that the data vector is instead d̂ = (Pℓ, α̃∥, α̃⊥).
The covariance of the power spectra and α̃’s is then inferred from measurements of α̃ from
the power spectra in mock catalogs. A schematic comparing our approach in this work to the
standard one is shown in Fig. 8.1. For a given set of cosmological parameters the information
about rd and cosmological distances is inherent in the perturbation-theory prediction ξreconℓ (Θ),
allowing us to bypass the need to approximate the BAO signal as a scaled version of a fixed
power spectrum template and directly compare cosmology with data. In particular, since
the BAO information in the correlation function is effectively isolated in configuration space
as a sharp peak at large scales, our fiducial setup will combine the post-reconstruction
correlation function around the peak with a full-shape analysis of the pre-reconstruction
power spectrum. Note that while we have focused our discussion on the post-reconstruction
BAO measurement, the BOSS collaboration (but not refs. [283, 94]) similarly also distilled
the RSD signal pre-reconstruction into a best-fit fσ8, such that the final data vector fit to
cosmological parameters was d̂ = (fσ8, α̃∥, α̃⊥).

The simplified approach advocated for in this work has a number of advantages for
obtaining cosmological constraints from surveys like BOSS. For a given set of theory parameters
(including cosmology and galaxy bias) there is a unique ‘forward’ mapping — shown in the
top row of Fig. 8.1 — from these parameters to the (model-independent) observational
data. This implies that constraining information in the data that is implied by the theory
model is captured without loss. By comparison, in the standard approach one assumes
e.g. that any BAO information post-reconstruction can be distilled into two BAO scaling
parameters which, by themselves, do not uniquely map into the space of post-reconstruction
observables, potentially leading to information loss (§8.3). Furthermore, while the standard
approach requires measuring the covariance of these summary statistics from approximate



CHAPTER 8. COSMOLOGICAL ANALYSIS OF BOSS 198

Cosmology Nonlinear Clustering Observed Pre- and Post-
Reconstruction Pl , ξl

Theory of 
Structure 
Formation

Observa@on

Cosmology

Nonlinear Clustering
Observed Pre-
Reconstruction 

Pl , ξl

Theory of 
Structure 
Formation

BAO 
ParametersDistances + 

Sound Horizon

Observed Post-
Reconstruction

Pl , ξl

Rescale Template

Model-Independent Data Products
This Work

Standard Approach

Post-Recon 
Clustering

Data Vector in Likelihood !𝑑 Map to Data Vector m(Θ)

Figure 8.1: Flowchart comparing our method with the standard approach to combining full-shape
RSD and BAO analyses. Arrows denote the unique mapping from theory parameters to observed
data. Our approach allows for a direct translation from cosmological parameters into measured
2-point correlation functions (black dashed box) via a theory of structure formation (LPT) and
does not rely on power spectrum templates or model-dependent BAO parameters derived therefrom.
Squares highlighted in red indicate the actual data vector fit in the likelihoods of each approach,
related to cosmological parameters through a model m(Θ) (red arrows), and each row to the right of
“cosmology” indicates separate fits which must be combined using simulated mocks. Our approach
features a single fit to the observed data while the standard approach separately fits theory-dependent
BAO parameters that depend highly non-linearly on the data and the pre-reconstruction clustering.

mock catalogs, computing the likelihood at the level of model-independent data in principle
allows us to straightforwardly use the statistical uncertainties implied by the theory model
itself, e.g. by computing covariance matrices analytically within perturbation theory [404]1.
Future theory calculations of noise-free data covariances have the potential to ease numerical
difficulties from estimating covariances of statistics beyond the pre-reconstruction power
spectrum with only a finite number of mocks.

The outline of the chapter is as follows. In §8.2 we present the galaxy samples that we
analyze, which are all drawn from the BOSS survey [101]. The models we fit to these data,
all based on cosmological perturbation theory, are described in §8.3. Our fiducial analysis
setup, including scale cuts, parameter choices and priors are presented in §8.4. Our final

1See, however, ref. [283] for an idealized calculation using Fisher matrices.
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Figure 8.2: The pre-reconstruction power spectrum (top) and pre- and post-reconstruction correlation
functions (bottom) of the BOSS DR12 galaxies. The monopole and quadrupole of each are both
shown in blue and orange, respectively. For the power spectrum, the separate measurements for the
NGC and SGC samples are shown as filled and open circles. Pre- and post-reconstruction (“Raw”
and “Rec”) correlation function measurements are shown with round and crossed markers. The
correlation function is measured jointly across both galactic caps. Error bars represent the diagonals
of the covariance matrix computed using 1000 Patchy mocks.

cosmoloical constraints are given in §8.5, where we also discuss constraints from different
subsamples of the BOSS data and compare to constraints from other groups and experiments.
We conclude in §8.6. Some technical details are relegated to a series of Appendices.

8.2 Data

We analyze the clustering of galaxies drawn from the BOSS galaxy redshift survey [101],
part of the Sloan Digital Sky Survey III [123]. Galaxies in BOSS were targeted with two
independent selection criteria: one (LOWZ) targeted luminous red galaxies up to z = 0.4
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while another (CMASS) targeted massive galaxies with 0.4 < z < 0.7; however, due to
an incorrect application of the LOWZ criteria in the first nine months of the survey, two
additional samples (LOWZE2, LOWZE3) had to be separated out. All of these samples are
described in more detail in ref. [300]. Ref. [7] combined these samples into three redshift bins
with 0.2 < z < 0.5, 0.4 < z < 0.6 and 0.5 < z < 0.75 (named z1, z2 and z3, respectively).
Since z2 overlaps both z1 or z3 in redshift and thus gives correlated constraints we choose
to analyze z1 and z3 only in this work. Each redshift bin can be further split into galaxies
observed in the Northern (NGC) and Southern (SGC) galactic caps. Because the imaging
in the north and the south differ slightly, the samples have slightly different properties and
should be analyzed separately. The final BOSS sample covers 1,198,006 galaxies in total over
10,252 square degrees of sky.

The power spectra and correlation function multipoles of these samples were measured in
refs. [45, 388] and the data are shown in Fig. 8.2. The BOSS two-point function measurements
were computed assuming a flat ΛCDM cosmology with present-day matter density ΩM,fid =
0.31. This implies that the reported redshift-space power spectrum is related to its value in
the coordinates of the true cosmology by

P obs
s (kobs) = α−2

⊥ α−1
∥ Ps(k) , kobs∥,⊥ = α∥,⊥k∥,⊥ ,

where the Alcock-Paczynski parameters are defined as [9, 265]

α∥ =
Hfid(z)

H(z)
, α⊥ =

DA(z)

Dfid
A (z)

. (8.2)

Since all distances are reported in h−1Mpc units the above ratios should be computed
assuming a fixed h. The equivalent relations for the correlation function are simply the Fourier
transforms of the above equations. The mismatch between true and fiducial coordinates
imprints additional anisotropy in the galaxy two-point function and serves as a further source
of cosmological information known as the Alcock-Paczynski (AP) effect [9] (Appendix G.3).

For the power spectrum we use the updated pre-reconstruction measurements of both
data and mock catalogs presented in ref. [42]. On top of the AP effect the geometry of the
survey itself leaves an imprint in the clustering of the galaxies, so that the measured power
spectra are the convolution of the true clustering signal with a window function and taking
into account wide-angle effects [131, 422, 63, 41]; to this end ref. [42] provide for each sample
a wide angle matrix M and window function matrix W such that for an input vector of
appropriately-binned theoretical (including AP) power spectrum multipoles P the observed
(binned) power spectra are given by2

Pconv = WMP, P = (P0, P2, P4).

2We use the updated values of the power spectrum multipoles and window functions from a revised version
of ref. [42]. These measurements fix a mismatch in the normalizations of the window function and power spectra
at the roughly 10% level that afflicted earlier results and which improves the agreement with correlation function
fits which do not require multiplying by a window function. This normalization issue is discussed in detail in
the published version of ref. [42], with resulting amplitude corrections to each BOSS sample tabulated in Table
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Figure 8.3: The joint correlation matrix of the z1 and z3 pre- and post-reconstruction two-point
function samples, computed using 1000 Patchy mocks. For clarity of presentation we have restricted
the power spectrum to wavenumbers 0.02hMpc−1 < k < 0.20hMpc−1 (18 bins) and the correlation
function to 80h−1Mpc < r < 130h−1Mpc (20 bins). The numbers on the x axis denote bin number.

While the output Pconv contains both the hexadecapole as well as odd multipoles P1,3 we will
restrict our analysis in this chapter to the monopole and quadrupole only.

For our post-reconstruction BAO analysis we use the post-reconstruction correlation
function multipoles obtained in ref. [388]. Both pre- and post-reconstruction correlation
function multipoles were measured for the combined NGC and SGC samples at the redshift
bins z1 and z3. The reconstruction in the public BOSS data was performed using the so-
called RecIso convention, with reconstructed displacements solved-for using a finite-difference
approach on the observed galaxy density field smoothed by a Gaussian filter with width
R = 15h−1 Mpc. We will discuss further details of the procedure in Section 8.3.2.

Finally, to obtain the joint covariances of the power spectrum3 and correlation function4

measurements used in our analysis we used the V6C BigMultiDark Patchy mocks [202] released
with DR12 of the SDSS-III Survey. These mocks were prepared using approximate gravity
solvers with galaxy biasing calibrated to the BigMultiDark simulation in a redshift-dependent
way to capture the time-depedence of the BOSS galaxy sample [202]. The thus-derived

1 of that work; roughly, there is an overall degeneracy between the power spectrum and window function
amplitudes, such that no results are affected when both are adjusted simultaneously by a single multiplicative
factor–however, this is premised upon the two being normalized consistently when computed. We thank
Pat McDonald and Florian Beutler for helpful discussions of this issue. Upated versions of the BOSS power
spectra and window functions can be found in https://fbeutler.github.io/hub/deconv_paper.html.

3For the power spectrum mocks, see: https://fbeutler.github.io/hub/deconv_paper.html.
4We thank Mariana Vargas for providing the correlation function mock measurements.

https://fbeutler.github.io/hub/deconv_paper.html
https://fbeutler.github.io/hub/deconv_paper.html
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correlation matrix for the power spectrum and post-reconstruction correlation function is
shown in Fig. 8.3. Since the correlation-function mock measurements were only obtained for
1000 of these mocks that is also the number of power spectrum measurments we use to obtain
the joint pre- and post-reconstruction covariance. The thousand mocks are sufficient for our
purposes; concretely, our most extensive analysis setup will include (for each independent
redshift bin) 18 k-bins per power spectrum multipole per galactic cap and 10 radial bins per
correlation function multipole, yielding a 92-element data vector. Applying a multiplicative
correction to unbias the precision matrix [164] would lead to rescalings of the parameter
errors of less than 5%, with no change in the matrix structure. As a further test, reducing to
Nmocks = 500 changed the χ2 of the best-fit model found for the z3 sample by ∆χ2 = 3.5, i.e.
far less than one per d.o.f. for our fiducial setup (§ 8.4.1), suggesting that one thousand mocks
measurements is sufficient for our purposes. Finally, while we have not found it necessary in
our analysis, we note that if we were to rebin the power spectrum data into broader k bins
we would reduce the number of degrees of freedom and more cleanly separate the BAO and
broadband shape information between the correlation function and power spectrum. This
may be beneficial in future analyses.

8.3 Model

Our aim in this work is to jointly model the redshift-space galaxy two-point function both pre-
and post-reconstruction within a consistent theoretical framework. Specifically, we will operate
within Lagrangian perturbation theory (LPT; [39, 231]), which models nonlinear structure
formation through the evolution of galaxy displacements Ψ(q, τ), relating observed (Eulerian)
positions x at a given time τ to initial (Lagrangian) positions q through x = q + Ψ. The
displacements are expanded order-by-order in the initial conditions Ψ = Ψ(1)+Ψ(2)+Ψ(3)+ ....
In this work we will operate within the EdS approximation wherein the nth order displacement
scales as the nth power of the linear growth factor D(z); this has been shown to be an excellent
approximation for current and upcoming galaxy surveys in [361, 128, 36, 139, 115], with
a slight caveat due to scale dependence from massless neutrinos which we will address in
Section 8.4. The nature of the mapping between Lagrangian and Eulerian coordinates makes
LPT a natural arena in which to understand both redshift-space distortions and nonlinear
BAO damping, which we discuss in term below. In addition, in order to speed up our
calculations and avoid repeatedly calling Boltzmann codes at each new point in our Markov
chains, in this chapter we have chosen to approximate our theory components as a Taylor
series in the cosmological parameters. The grid of PT predictions used to compute the
Taylor-series coefficients was computed using CLASS [48] and velocileptors [74, 82]. The
details of our approximation scheme are discussed in Appendix G.1.



CHAPTER 8. COSMOLOGICAL ANALYSIS OF BOSS 203

8.3.1 One-Loop Redshift Space Power Spectrum

In spectroscopic galaxy surveys like BOSS a galaxy’s position along the line of sight (LOS)
is inferred from its measured redshift. Since a galaxy’s cosmological redshift and peculiar
velocities both contribute to this redshift, its redshift-space position \ is boosted along
the LOS by its peculiar LOS velocity in the appropriate units, that is \ = x + u, where
u = (n̂ ·v)n̂/H and H is the conformal Hubble parameter [196]. Within LPT this is equivalent
to boosting the displacement Ψ by the LOS component of its (appropriately normalized) time
derivative, i.e. Ψs = Ψ+ Ψ̇ [231, 82]; conveniently, this boost can be recast as a coordinate
transformation

Ψ
(n)
s,i = Ψ

(n)
i + nfn̂in̂jΨ

(n)
j ≡ R

(n)
ij Ψ

(n)
j . (8.3)

For the remainder of this chapter we will in addition make the plane-parallel approximation
that the LOS vector n̂ is a constant independent of position.

The translation between densities and displacements follows from number conservation.
Assuming galaxies are sampled from the initial conditions δ0 according to some functional
ρg(q) = F [δ0(q)] this implies that the present day density satisfies ρg(x)d

3x = ρg(q)d
3q or,

in Fourier space, [229, 402, 110, 82]

1 + δg(k) =

∫
d3q eik·(q+Ψ)F (q) . (8.4)

The equivalent equation in redshift space follows by substituting Ψ for Ψs. The bias functional
F (q) can be perturbatively expanded as

F (q) = b1δlin(q) +
1

2
b2(δlin(q)

2 −
〈
δ2lin
〉
) + bs(s

2
lin(q)−

〈
s2lin
〉
) (8.5)

where s2lin = (∂i∂j/∂
2 − δij/3)δlin is the shear tensor. For a complete accounting of terms

relevant to the one-loop power spectrum we in principle have to also account for third order
bias operators; however, since we expect them to be small for all but the most massive halos
[140, 86, 74], and highly degenerate with the effective-theory corrections discussed below, we
will set them to zero for the rest of this work.

The power spectrum in redshift space is then given by [231, 82]

Ps(k) =

∫
d3q

〈
eik·(q+∆s)F (q1)F (q2)

〉
q=q1−q2

, (8.6)

where we have defined the pairwise displacement in redshift space ∆s = Ψs(q1)−Ψs(q2). In
the case of matter (F = 1) within first-order LPT (Zeldovich approximatin) Equation 8.6 can
be evaluated exactly to give PZel =

∫
d3q exp[ikiqi − kikjAij/2] where we have defined the

second cumulant of pairwise displacements Aij = ⟨∆i∆j⟩. The exponentiation of the pairwise
displacement in Equation 8.6 is highly significant and allows LPT to capture the nonlinear
damping of BAO due to the large-scale (bulk) displacements [335, 399, 22, 402, 50]. In
practice we keep only these long-wavelength displacements exponentiated and perturbatively
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expand those above a certain wavenumber (kIR = 0.2hMpc−1) perturbatively; for further
details we refer interested readers to ref. [82], which also provides a detailed exposition of the
various terms implied in Equation 8.6 as well as relevant numerical methods. Finally, as an
effective perturbation theory LPT requires a number of counterterms to properly tame its
sensitivity to small-scale (UV) physics; in this work we adopt the parametrization of ref. [74]
and write

Ps(k) = PPT
s (k) + (α0 + α2µ

2)k2PZel(k) +R3
h(1 + σ2k2µ2) (8.7)

where PZel is the Zeldovich matter power spectrum. Note that while the above parametrization
is not exhaustive (i.e. we should in principle include terms like α4µ

4), this parameter set has
been tested extensively against simulations (e.g. refs. [78, 74, 76, 82]) and the neglected terms
are extremeley degenerate with those listed when fitting the monopole and quadrupole only.
The above parameter set can also be used to fit the pre-reconstruction correlation function,
which can be obtained directly by Fourier transforming the theory prediction for the power
spectrum.

8.3.2 Nonlinear BAO Damping Post Reconstruction

It is well known that nonlinear structure formation smooths out the BAO peak in the galaxy
two-point function [46, 121, 231, 92, 266, 257], reducing its prominence and as a result also
the signal-to-noise of BAO measurements. Within LPT this phenomenon can be understood
by looking at contributions to Equation 8.6 such as [76]

PBAO(k) ∼
∫
d3q eik·q−

1
2
kikjAij(q) ξBAO(q) ≈ e−

1
2
k2Σ2

∫
d3q eik·q ξBAO(q).

Since the BAO peak is well-localized at the sound horizon at the drag epoch rd, it acts to
pick out a particular scale at which to evaluate Aij, from which a specific damping scale
Σ2 = ⟨Aij⟩|q|=rd , leading to Gaussian damping of the BAO. Within ΛCDM most of the

displacement power comes from relatively low wavenumbers [121].
The purpose of standard reconstruction [122] is to sharpen the BAO feature by undoing

some of this damping. To do so, one smooths the observed galaxy density field using
a Gaussian filter S(k) on a sufficiently large scale that the Kaiser formula δg(k) = (b +
fµ2)δm is a good approximation, uses the smoothed field to solve for the (smoothed) linear
Zeldovich displacement S(k)ΨZel(k) = ik/k2S(k)δm, and subtracts these displacements from
the observed galaxy positions. To preserve power on large scales a random catalog is shifted
using the same displacements, with the difference between the displaced galaxies (d) and
shifted randoms (s) constituting the full reconstructed density field δrec = δd − δs. The
presence of redshift space distortions presents a slight complication and there is no general
settled-upon convention in the literature: the BOSS data analyzed in this work followed
the so-called RecIso convention wherein the galaxies were displaced with RSD (that is, the

reconstructed displacement multiplied by R
(1)
ij ) while the randoms were shifted without RSD

[267].
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The residual damping left in the BAO signal after reconstruction can be modeled in the
same way as was the damping pre-reconstruction. Specifically, we can think of the displaced
galaxies (d) and shifted randoms (s) as two additional tracers with displacements [266, 257,
414, 78]

Ψd
i = R

(1)
ij (1− S) ∗ΨZel

j , Ψs
i = −S ∗ΨZel

i . (8.8)

The two-point statistics of these displacements can then be computed at the sound horizon
rd as in the pre-reconstruction case and used to damp the BAO feature. Specifically, for a
given linear power spectrum Plin we can decompose it into a “wiggle” component with the
BAO feaure and a smooth component without, i.e. Plin = Pw + Pnw. The prediction for each
(cross) spectrum between d, s is then

P ab(k) = Kab(k, µ)
[
Pw(k)e

−k2Σab(µ)/2 + Pnw(k)
]

(8.9)

where Kab(k, µ) is a linear-theory function of the growth rate f(z) and linear bias b1 taking
into account Kaiser infall and the smoothing filter.

Equation 8.9 captures (resums) the nonperturbative effect of bulk displacements on
linear-theory BAO wiggles; in principle, nonlinear effects such as mode coupling can induce
further modifications to the BAO feature. A full treatment of these additional effects for
galaxies at one-loop order is complex and beyond the scope of this work (see however ref. [172]
for the calculation in the case of matter only). Calculations taking into account nonlinear
bias within the Zeldovich approximation show that phase shifts due to mode coupling are
substantially reduced post-reconstruction, suggesting that the in-phase damping of the BAO
feature due to IR displacements is the dominant nonlinear effect [78]. However, in order to
further insulate our full-shape fits from potential systematics of the reconstruction procedure,
including due to residual nonlinear contributions, we set the linear bias and growth rate in
the BAO model to be free parameters called F and B1, and in addition allow for broadband
deviations between the theory predictions for ξℓ and the data by fitting adding a linear
template to the theory predictions, that is

ξℓ(r) = ξthℓ (r) + aℓ,0 +
aℓ,1
r

(8.10)

where ξthℓ are the multipoles of the Fourier transformed (with AP) theory predictions of
Equation 8.9. Detailed functional forms and integrals are given in Appendix G.2.

Let us conclude this section by comparing our approach in BAO fitting with that in
previous work. Traditionally, the BAO have been fit using a template power spectrum whose
BAO component is scaled by

α̃∥,⊥ =

(
rfidd
rd

)
α∥,⊥. (8.11)

This takes into account stretching of the BAO signal due both to changing distance scales
(α∥,⊥) and sound horizon (rd). Typically this template model is used to fit directly for the α̃’s,
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whose output likelihoods can then be used in broader cosmological analyses. Note that this
prescription mixes two in-principle distinct physical effects: the cosmological dependence of
the sound horizon rd and the anisotropy due to the Alcock-Paczynski effect (α∥,⊥), While the
latter would exist even in the absence of the BAO peak, the conventional method assumes
the BAO carries the bulk of the signal, with other effects from the broadband shape of the
power spectrum discarded, or marginalized away, via polynomial parameters.

In this work we eschew the use of templates for both pre- and post-reconstruction fitting,
choosing instead to extract the BAO wiggles for each cosmology directly from the transfer-
function outputs of Boltzmann codes, with the perspective that Equation 8.6 and 8.9 are
definite predictions of the pre- and post-reconstruction galaxy two-point function for any given
cosmology. This obviates the need for the rd scaling in α̃, since the frequency of the BAO
wiggles is automatically encoded in the linear power spectrum, and automatically includes
any distance and anisotropy information present in the data. Modeling the reconstructed
BAO at the data instead of the summary statistic level also has advantages for constraining
non-standard physical effects like beyond ΛCDM physics. While measurements of the BAO
scale are robust to many such physical effects [38], there are notable and theoretically
well-understood exceptions, for example features around the BAO scale due to relative
perturbations between baryons and dark matter [317, 70]. Beyond robustness, measurements
of BAO scaling parameters alone cannot capture many effects related to oscillatory features in
the power spectrum that can be sharpened by reconstruction, including neutrino or light-relic
induced phase shifts in the BAO [27] or inflationary signatures [390, 44, 76]. Indeed, ref. [29]
detected the neutrino-induced phase shift in reconstructed BOSS data by expanding the
standard template fit with an additional phase-shift parameter. On the other hand, for a
given cosmological model, any such effects are automatically included when fitting at the data
level without modification and, once included in a theory model, cannot act as a theoretical
systematic by default. For completeness, and to correct some typos in the literature, we
include a detailed description of the standard method in Appendix G.3.

8.4 Analysis Setup

In this chapter we aim to perform a joint analysis combining full-shape information in
pre-reconstruction power spectrum and additional information in the post-reconstruction
correlation function. To this end, our fiducial setup will combine the former with the latter in
a narrow band around the peak where most of the BAO information is isolated. Our goal in
this section is to outline and explain this setup, and lay out the accompanying cosmological
and effective-theory parameter choices and priors.

8.4.1 Scale Cuts

We begin by setting up the Fourier-space side of our analysis. Throughout this chapter we
will adopt the Fourier-space scale cuts kmin = 0.02hMpc−1 and kmax = 0.20hMpc−1. The
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Figure 8.4: Best fit models to the NGCz3 pre-reconstruction power spectrum multipoles (top) and
their residuals (bottom), fixing Ωm and h to their Planck best-fit values and a scan in σ8 (different
curves; see legend). The biases and counterterms are varied to find the best fit for each σ8 and
so differ between curves. The models primarily vary in their predictions for the low k quadrupole
amplitude while making essentially identical predictions to the high k amplitude across different
σ8’s. This suggests the constraining power on σ8 comes primarily from large scales.
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LPT model we use in this work was shown to yield unbiased cosmological constraints on
this range of scales for BOSS-like samples even at significantly larger volumes [82]. We drop
the lowest two k bins below 0.02hMpc−1; including them increased the best-fit χ2 for the
NGCz3 sample when limiting to a Planck cosmology by ∆χ2 = 20, suggesting systematic
errors in the data beyond our theoretical modeling.

It is worth noting that we have chosen to adopt a more conservative scale cut than some
other works in the literature, like Ref. [86] who adopt kmax = 0.25hMpc−1, even though
we expect our theoretical model to perform as well as other effective-theory models on the
pre-reconstruction power spectrum. We have made this choice on the reasoning that the
information on the primordial (linear) power spectrum rests primarily on large scales, such
that fitting smaller scales mainly serves to fit the shape of nonlinearities in the redshift-space
power spectrum like fingers of god (FoGs). In fact, ref. [74] found that Pℓ became dominated
by nonlinear, higher-order velocity statistics at around our chosen scale cut for ℓ > 0. As an
illustrative example of these effects, in Figure 8.4 we show the best-fit models to the NGCz3
power spectrum multipoles for a series of cosmologies with Ωm and h fixed to their Planck
best-fit values and σ8 scanned from 0.63 to 0.89. For each σ8 we then vary the bias parameters
and counter terms to fit the NGCz3 multipoles. Notably, the only change from varying σ8
is in the quadrupole at k ≲ 0.1hMpc−1, with the higher k points having essentially the same
residuals compared to the data across a broad range of power spectrum amplitudes. The
best-fitting values of the biases and counter terms that we find appear reasonable for each of
the σ8 values we tried. We can understand this effect as follows: since the linear bias is well-
constrained by the monopole, varying σ8 effectively tunes the linear quadrupole amplitude,
but as effective-theory corrections like nonlinear bias turn on at higher wavenumbers this
variation is erased by all the nonlinear parameters conspiring to fit a relatively smooth
and featureless P2. This suggests that, absent a detailed understanding of the small-scale
physics underlying the bias parameters, there is not signficant information to be gained
at smaller scales. Conversely, the fact that the variations in the quadrupole amplitude on
large scales cannot be fit away by (reasonable) bias parameters is a demonstration that in
effective theories the large scale clustering signal cannot be polluted by small-scale physics in
unphysical ways. This also suggests that future surveys capable of reducing the errors at low
k would significantly improve the constraints on the amplitude.

For the configuration-space side of our analysis, since we are primarily interested in fitting
the BAO feature, we restrict our fitting of the post-reconstruction correlation function to
80 < s < 130h−1 Mpc for our fiducial setup. This range of scales effectively isolates the
BAO peak and most of the additional distance information coming from reconstruction. It is
worth noting that a fit using the same model in Fourier space would have required fitting
over a wide range of wavenumbers to cover all the BAO wiggles in the power spectrum
and risked numerical issues in the covariance matrix due to significant correlation with the
pre-reconstruction power spectrum; the fact that the BAO feature is localized at a large scale
in the correlation function, which happens to also be significantly sharpened by reconstruction
at those radii, is thus a useful fact in combining pre- and post-reconstruction data. We
also note that using broader bins in Pℓ(k) could further separate the BAO and broad-band
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information, making the constraints even less correlated, but we have not needed to take
that step for BOSS. Finally, as a consistency check we will also want to compare fits to the
pre-reconstruction correlation functions for z1 and z3 samples to our fiducial setup fitting
the pre-reconstruction power spectrum; for these fits we will fit the correlation function over
the entire range shown in the bottom panel of Figure 8.2, i.e. r > 25h−1Mpc.

8.4.2 Parameters and Priors

We choose to sample the cosmological parameter space uniformly in Ωm, h and ln(1010As).
For the purposes of our analysis we will fix the values of the baryon density Ωbh

2 = 0.02242
and spectral index ns = 0.9665 to the best-fit values from Planck [286], since the BOSS data
are not very sensitive to these parameters which are very well-determined in the CMB and, in
the case of the baryon density, also big-bang nucleosynthesis (BBN) [86]. We also fix the sum
of the neutrino masses to be the minimal allowed Mν = 0.06 eV. While a number of recent
works (e.g. ref. [18]) have sought to more exactly integrate the scale-dependent effects of
massive neutrinos into LPT, in this work we will approximate the effect of neutrinos on galaxy
clustering by using the “cb” prescription [66]. This prescription is motivated by the intuition
that galaxies trace the cold dark-matter and baryon fluid with linear power spectrum Pcb
and small-scale growth rate fc = (1− 3fν/5)fΛCDM, where fν is the neutrino mass fraction.
This was recently shown to be an excellent approximation using phase-matched simulations
in ref [33].

For our pre-reconstruction power spectrum model we choose to fit each of the four samples
with independent sets of bias parameters. As can be seen in Figure 8.2 the NGC and SGC
samples at z1 have signficantly different power spectrum multipoles on all scales shown;
indeed, using the best-fit bias parameters for a Planck cosmology for the NGC sample and
convolving it with the SGCz1 window function yields a noticeably worse fit (∆χ2 = 19 with
our fiducial scale cuts). The multipoles at z3 show greater agreement, and performing the
same exercise of convolving the best fit model from one galactic cap with the window function
of the other yields a much better fit. Nonetheless, we have opted for the more conservative
approach and fit all four (statistically independent) samples pre-reconstruction using separate
sets of bias parameters. Since the correlation function data were computed jointly for the
NGC and SGC samples we are forced to use a unified set of bias parameters when fitting in
configuration space; however, since our primary interest in fitting the post-reconstruction ξℓ’s
are to extract large-scale BAO information, and since we find that the linear biases between
the two galactic caps are in good agreement in our power-spectrum only fits, we do not expect
this to significantly affect our results.

Our priors on the effective-theory and bias parameters are listed in Table 8.1. We adopt
broad, uninformative priors for the BAO broadband parameters B1, F , with similarly broad
priors on the polynomial broadband terms with widths such that they do not dominate
the clustering signal on BAO scales. For the pre-reconstruction power spectrum we use
generally broad priors for the quadratic biases b2, bs on the assumption that they are free
effective-theory coefficients of order unity. Our counterterms α0, α2 are set to Gaussian
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Parameter Prior
ln(1010As) U(1.61, 3.91)

Ωm U(0.20, 0.40)
H0 [km/s/Mpc] U(60.0, 80.0)

B1 U(0, 5.0)
F U(0, 5.0)
aℓ,0 N (0, 0.05)

aℓ,1 [h−1 Mpc] N (0, 5)

Parameter Prior
(1 + b1)σ8 U(0.5, 3.0)

b2 N (0, 10)
bs N (0, 5)

α0 [h−2 Mpc2] N (0, 100)
α2 [h−2 Mpc2] N (0, 100)
R3
h [h−3 Mpc3] N (0, 1000)

R3
hσ

2 [h−5 Mpc5] N (0, 5× 104)

Table 8.1: Parameter priors for our analysis. Uniform and normal distributions are indicated by
U(xmin, xmax) and N(µ, σ), respectively.

priors with the expectation that the galaxy power spectrum deviate from linear theory by a
factor less than unity on perturbative scales. Finally, while one might expect the isotropic
stochastic term R3

h to be a free parameter in the ball-park of the inverse galaxy number
density n̄−1 ≈ 3000h−3Mpc3, we put a relatively tight Gaussian prior with width 1/(3n̄) on
it given that we find an almost exact degeneracy between it and α0 in our fits that did not
correlate significantly with any cosmological parameters for reasonable values of R3

h and α0.
We put a physically motivated prior on R3

hσ
2 based on the expectation that characteristic halo

velocities for BOSS LRGs are around 500 km/s, or about 5h−1Mpc. Our pre-reconstruction
fits to the pre-reconstruction correlation function follow the same set of priors as the power
spectrum fits.

8.4.3 Test on Mocks

As we have discussed, the model described in Section 8.3, i.e. LPT, has been tested extensively
against simulated galaxy samples both pre- and post-reconstruction, e.g. in refs. [82, 78].
These tests were performed using periodic boxes without observational effects like window
functions and realistic survey geometries; while these effects are well understood and not
expected to significantly affect the accuracy of our models over the relevant scales, it is
worth checking that our fiducial setup in this chapter (jointly fitting the redshift-space power
spectrum and post-reconstruction correlation function near the BAO peak) does not yield
unexpected biases in cosmological constraints. To this end, in this subsection we apply the
same analysis pipeline we will use to analyze the BOSS data to obtain mock constraints
from the mean of the 1000 Patchy mocks released by the BOSS collaboration described in
Section 8.2. In particular, we perform our test on mocks of the z3 sample, including the
NGC and SGC power spectra and combined correlation function multipoles. While these
mocks employ approximate dynamics that may not exactly match the ab initio predictions
of perturbation theory, they are designed to match the survey geometry and observational
systematics of the BOSS survey, and are thus a reasonable way to test whether these effects
or our joint Fourier and configuration space setup meaningfully affect our results.
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Figure 8.5: (Left) Contours of mock constraints from the mean of 1000 Patchy mocks for the z3
sample fitting redshift-space power spectrum monopole and quadrupole between 0.02hMpc−1 <
k < 0.20hMpc−1 with (red) and without (blue) additional BAO information from the post-
reconstruction correlation function near the BAO peak. Gray lines show the true cosmology of the
Patchy mocks. (Right) A table of the mock constraints (mean±1σ). The true cosmology is given by
Ωm = 0.307115, H0 = 67.77, σ8 = 0.8288, well within the 1σ bounds shown.

The results of this test are shown in Figure 8.5. The constraints both with and without
BAO information recover the true cosmology (Ωm = 0.307115, H0 = 67.77, σ8 = 0.8288) of
the Patchy mocks to within 1σ, and adding in the post-reconstruction correlation function
tightens but does not lead to significant (< 0.3σ) shifts in the resulting constraints. We
note that our results both with and without reconstruction show up to 0.5σ deviations
from “truth” in both Ωm and σ8 despite the low statistical scatter from averaging over 1000
mocks, which could be due to either the approximate nature of the mocks themselves or
parameter projection effects; nonetheless, these results are satisfactory for our purposes since
(1) they demonstrate the main goal of this subsection, which was to show that adding in
the post-reconstruction correlation function does not bias our results and (2) the parameter
shifts occur both with and without reconstruction, despite our having tested the latter case
in simulation volumes significantly (100×; [255]) larger than the BOSS survey and with
correspondingly tighter constraints and recovered unbiased constraints. Indeed, adding in
post-reconstruction BAO shifts both Ωm and σ8 closer to “truth” while leaving H0 firmly
centered at the true value, potentially due to reduced parameter-projection effects coming
from tighter constraints.
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Figure 8.6: (Left) Constraint contours for fits to the BOSS galaxy power spectra alone (blue) and
with post-reconstruction correlation function multipoles (BAO) added (red) compared to posteriors
from Planck (blue), with which our constraints are broadly consistent. (Right) Binned best-fit
models for the power spectrum and post-reconstruction correlation function multipoles from our
chains. Here we show only the results for NGCz3 power spectra and z3 correlation functions
for brevity; the other samples are similarly well fit, with total χ2/d.o.f = 1.06. Gray bands in the
correlation function plot show separations excluded by our fit.

8.5 Results

8.5.1 ΛCDM Constraints from BOSS with and without BAO

The main results of this chapter – constraints on ΛCDM parameters from pre-reconstruction
power spectra and post-reconstruction correlation function multipoles for the full BOSS
sample, including both galactic caps and redshift slices – are shown in Figure 8.6 and listed in

Pℓ Pℓ + BAO Planck
ln(1010As) 2.84± 0.13 2.81± 0.12 3.044± 0.014

Ωm 0.305± 0.01 0.303± 0.0082 0.3153± 0.0073
H0 [km/s/Mpc] 68.5± 1.1 69.23± 0.77 67.36± 0.54

σ8 0.738± 0.048 0.733± 0.047 0.8111± 0.0060

Table 8.2: Constraints from the full BOSS sample, i.e. NGCz1 SGCz1, NGCz3 and SGCz3, with
and without additional BAO information from the reconstructed correlation function, summarized
as mean ±1σ. The equivalent constraints from Planck are also tabulated for comparison.
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Table 8.2. Fitting to pre-reconstruction power spectra alone we constrain Ωm = 0.305± 0.01,
H0 = 68.5±1.1 and σ8 = 0.738±0.048; adding in the post-reconstruction correlation function
gives Ωm = 0.303± 0.0082, H0 = 69.23± 0.77 and σ8 = 0.733± 0.047. When fit with a shared
set of cosmological parameters, our model provides good fits to all of the individual statistics
included in the likelihood (pre-recon Pℓ and post-recon ξℓ with ℓ = 0 and 2), with a combined
χ2/d.o.f = 1.05. As an example, the right panel of Figure 8.6 shows the best-fit Pℓ and ξℓ for
the NGCz3 and z3 samples, respectively. The other samples look similar.

Comparing the red and blue contours in Figure 8.6, we see that the primary effect of
including post-reconstruction correlation functions is to tighten constraints on the Hubble
parameter H0 (by around 40%) while also slightly tightening constraints on Ωm and keeping
the σ8 constraint largely untouched. This is to be expected since (1) the main purpose of
standard reconstruction is to sharpen the BAO peak and (2) we have fit the post-reconstruction
correlation function only near the peak at 80h−1Mpc < r < 130h−1Mpc. Our motivation
to include the post-reconstruction correlation function in this chapter was to include the
information in the linear power spectrum isolated at the BAO peak in configuration space and
not to use it as a further probe of nonlinearities in structure formation; indeed, the purpose of
freeing the Kaiser factors B1, F and linear broadband polynomials in our correlation-function
model was precisely to prevent systematics in reconstruction from biasing our constraints on
the broadband amplitude of the linear power spectrum.

Let us conclude this subsection by comparing our results to those of other groups and
experiments. As can be seen in the left panel of Figure 8.6, our constraints from BOSS, both
with and without additional information in the form of the reconstructed correlation function,
are also broadly consistent with cosmic microwave background (CMB) constraints, lensing
included, from Planck [286]. Indeed, our pre-reconstruction fit has the Planck best-fit Ωm

and H0 within its 1σ contours, and σ8 at about 1.5σ lower. This is in contrast with earlier
chapters using effective theory approaches to fitting the BOSS data, e.g. ref.’s [86, 188, 96],
which found σ8’s significantly (> 2σ) lower than Planck. These discrepancies are potentially
attributable to the data normalization issue described in Section 8.2 as our pre-reconstruction
Ωm and H0 constraints are in much better agreement with those earlier works; specifically,
this normalization issue resulted in power spectra that were roughly 10% too low in amplitude
for a fixed window function normalization, translating to a roughly 5% lower best-fit σ8. We
recover essentially identical σ8 constraints to previous works if this correction is neglected.
Indeed, after our paper was first posted to the arXiv, updated results free of window-function
systematics from the authors of the aforementioned works appeared: specifically, ref. [438]
used correlation functions to obtain σ8 = 0.7537+0.055

−0.06 and 0.7559+0.052
−0.062 with and without

BAO, in good agreement with results from their independently measured power spectra, and
ref. [282] obtained σ8 = 0.729+0.040

−0.045 using a window-function free power spectrum estimator
and σ8 = 0.737+0.040

−0.044 when using the same updated BOSS power spectra as the present work,
virtually identical to our pre-reconstruction constraints5. Our results are also in excellent

5For a clean comparison, we have quoted their constraints fixing the spectral tilt ns and without including
the bispectrum monopole or finger-of-god reduced two-point statistics.
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agreement with constraints from the BOSS data using an emulator approach [204] and the
configuration-space analysis in ref. [331].

Adding the post-reconstruction correlation function, which sharpens the BAO peak and
tightens the H0 constraint, puts the Hubble parameter best-fit from Planck at about 2σ.
This is in contrast to the BOSS fits in Ref. [283], who find H0 = 67.81+0.68

−0.69
6 after adding in

fits to α̃’s from post-reconstruction power spectra despite a similar tightening of constraints,
though we note that we use different post-reconstruction data (Pℓ vs. ξℓ) and covariance
matrices and that the mock tests in §8.4.3 suggest that adding in the post-reconstruction
correlation function does not bias our results. Nonetheless, our constraints with and without
BAO both lie on the surface of constant Ωmh

3 given by the Planck best-fit parameters; this
combination is close to a principle component of the Planck posterior and is much better
constrained than either H0 or Ωm alone.

Finally, our redshift-space constraints offer an independent check to the measurements of
power spectrum amplitude from weak lensing surveys like DES and KiDS, which primarily
measure the hybrid quantity S8 = σ8(Ωm/0.5)

0.5 and have found it to be significantly
lower than the value implied by Planck (0.832± 0.013 [286]). Figure 8.7 summarizes these
constraints in the Ωm − σ8 plane. Since σ8 and Ωm are positively correlated in our posteriors,
our constraints are not optimized to measure S8; nonetheless, we obtain S8 = 0.736± 0.051,
slightly less than 2σ lower than the Planck result and measurements of 0.775+0.026

−0.024 (3× 2pt
only) or 0.812 ± 0.008 (+BAO, RSD and SNIA) from DES Y3 [2]7 and of 0.766+0.020

−0.014

from a joint KiDS, BOSS and 2dFLenS analysis [169]. At lower redshifts, once BAO
and weak priors are included, the constraint from CMB lensing measured by Planck is
Σ8 ≡ σ8(Ωm/0.3)

0.25 = 0.815 ± 0.016 [287]. Our joint analysis finds Σ8 = 0.735 ± 0.0495,
about 1.5σ lower.

8.5.2 Consistency Checks

As discussed in Section 8.3, (Lagrangian) perturbation theory provides a framework within
which we can model large-scale structure observables like the power spectrum and correlation
function with a consistent theoretical model. This allows us to, for example, jointly model the
pre-reconstruction power spectrum and post-reconstruction BAO feature without resorting
to intermediate statistics like αBAO’s measured from fixed-shape templates. In addition, the
fact that we can model all these observables within the same framework allows us check
the consistency of our model assumptions about the background cosmology and nonlinear
structure formation or, alternatively, to check for systematics in each statistic. In this
subsection we will describe two such consistency tests: between the high and low redshift
samples and between Fourier and configuration space.

The left panel of Figure 8.8 shows constraints obtained by fitting the two redshift slices,
z1 and z3, independently while including post-reconstruction BAO information in each. The

6We compare to their results keeping ns fixed rather than free for a more apples-to-apples comparison.
7We caution that these analyses, unlike ours, freed the total neutrino mass Mν .
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Figure 8.7: A comparison of our σ8-Ωm constraints with a selection of other experiments, including
Planck (including lensing) [286], Planck lensing (P-lens) with BAO prior [287], KiDS+BOSS+2dFlens
analysis [169], and unWISE galaxy-CMB lensing cross correlations [208]. Our BOSS constraint
probes different degeneracy directions than these (primarily lensing) surveys, but is nonetheless
consistent with each.

cosmological posteriors derived from the two samples are broadly consistent with each other,
with significant overlap between the 1σ regions: the Ωm and σ8 distributions both have means
consistent to within 1σ. On the other hand, while the z1 sample prefers a value of H0 very
similar to the Planck (black contours) best fit, z3 prefers values around 2σ above Planck; we
emphasize however that the combined constraints are themselves consistent with Planck.

The right panel of Figure 8.8 compares fits to the pre-reconstruction power spectra (solid)
and correlation functions (dashed) in each redshift slice. Again, the constraints from each
Pℓ, ξℓ pair are broadly consistent, with overlapping 1σ regions for all three cosmological
parameters. However, while both σ8 and H0 constraints vary consistently across samples,
slightly decreasing and increasing respectively with sample redshift, the Ωm constraints are
slightly lower in configuration space than Fourier space. Given the different ranges over
which we fit these statistics and the different data subsamples we do not expect perfect
agreement. Nonetheless, all three parameters are broadly consistent, especially taking into
account that (1) the configuration space constraints on Ωm and H0 are substantially less
tight than their Fourier space counterparts and (2) unlike the power spectra, the correlation
functions were computed assuming that the NGC and SGC subsamples could be meaningfully
combined into one. While we find the large scale (linear) bias to be compatible between the
two galactic caps at both redshifts, this does not appear to be true for the full set of bias
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Figure 8.8: (Left) Constraints from the two independent redshift slices z1 (blue) and z3 (orange)
compared to the joint constraint (BOSS) from both samples (gray). The two redshift bins are broadly
consistent with each other, as well as with constraints from Planck (black). (Right) Constraints
using pre-reconstruction power spectra and correlation functions in each of the redshift slices, fit
using the same theory model.

parameters, i.e. taking the unconvolved best fit power spectrum from fitting the NGC and
convolving it with the SGC window function does not yield a comparably good fit to the SGC
power spectrum, particularly for the z1 samples, leading to potential systematic differences
between the configuration and Fourier space fits. The differences are not important for our
post-reconstruction BAO constraints, and a full re-measurement of the BOSS correlation
function, and its covariance, in each galactic cap is beyond the scope of this chapter.

We can also compare our results to the growth-rate (fσ8) measurements made by the
BOSS survey: our indepenent chains for each redshift bin imply fσ8(zeff = 0.38) = 0.419+0.035

−0.041

and fσ8(zeff = 0.61) = 0.422+0.035
−0.040, in mild tension with the official BOSS survey results.

Their consensus results (including full-shape and BAO, both using template fits) were
0.497± 0.046 and 0.436± 0.0358, respectively [7]. It is worth noting that the BOSS consensus
results are a weighted combination of various analyses, including both Fourier-space and
configuration-space results. The configuration space results are not affected by issues like
that of window-function normalization discussed in Section 8.2. Comparison of results in each
of these categories within the BOSS full-shape analysis shows differences between mean fσ8’s
greater than one standard deviation, whereas our analysis using the new window function

8Here we have combined the statistical and systematic uncertainties via quadrature. A complete table of
the official BOSS results can be found in Table 7 of ref. [7].
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normalizations yield Fourier and configuration space means within 1σ; for z1 we get fσ8
constraints of 0.434±0.038 and 0.470±0.054 and for z3 we get 0.413±0.039 and 0.414±0.050
in Fourier and configuration space, respectively, pre-reconstruction.

8.6 Conclusions

Galaxy redshift surveys are an important source of cosmological information, allowing us
to constrain properties of the early universe and general relativity through measurements
of redshift-space distortions and baryon acoustic oscillations in galaxy clustering. Recent
developments in cosmological perturbation theory, particularly in the arena of effective
theories and IR resummation, have further put these data on rigorous and precise footing,
making it possible to consistently fit a range of measurements from these surveys within
a consistent framework. In the next few years, surveys like DESI [108] and Euclid [211]
will probe larger volumes at higher redshifts, greatly increasing our constraining power on
cosmological parameters while making accurate modeling on quasilinear scales ever more
important.

In this chapter we have presented an analysis of the pre- and post-reconstruction power
spectra and correlation functions from the BOSS survey [101] within the framework of
Lagrangian perturbation theory. Unlike previous works, we do not combine pre- and post-
reconstruction data through additional fitting parameters for the BAO (e.g. α̃∥,⊥) whose
covariances are determined from mocks. Rather, for a given set of cosmological parameters
(Ωm, h, σ8) and galaxy bias coefficients we compute directly the power spectrum and correlation
function as predicted by perturbation theory and compare them with observations to compute
the likelihood.

For our main result, we jointly fit pre-reconstruction power spectrum and post-
reconstruction correlation function multipoles for the full BOSS sample. In order to
avoid undue correlation with the power spectrum measurements, we take advantage of
the fact that the BAO signal is well-isolated in the correlation function, particularly after
reconstruction, and only fit the correlation function in a narrow band containing the peak
(80h−1Mpc < r < 130h−1Mpc). Our results are consistent with constraints from Planck,
as well as with S8 measurements from weak lensing surveys. We have further checked our
analyses by considering constraints from each of the redshift slices (zeff = 0.38, 0.61) with
and without post-recon BAO, and in the former case by fitting both the power spectrum and
correlation function, finding that constraints from each subsample or observable are broadly
consistent.

Let us conclude by pointing out some possible future directions. A natural extension of this
work is to include further observables in our analysis: LPT in the context of galaxy-lensing
cross correlations has been studied in ref. [246, 421, 201] and formed the basis of the model
applied to the unWISE data in ref. [208], as well as luminous red galaxies (LRGs) from DESI
in ref. [417]. Recent work [244, 206, 156, 432] combining the Lagrangian bias scheme used in
this chapter with nonlinear dynamics from N-body simulations should further extend the
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reach and applicability of LPT for analyzing lensing cross correlations within a Lagrangian
framework. This would allow for a consistent analysis of lensing surveys along with RSD
and BAO (as shown in this chapter) which will become very powerful in the era of DESI
[108], Euclid [211], Rubin [224] and CMB-S4 [1]. In parallel, our analysis can be extended
to include other physical effects such as relative baryon-dark matter perturbations or more
exotic early-universe physics such as early dark energy light relics or primordial features in
the power spectrum; the modeling of these effects have been studied within LPT [70, 76,
298] and applied to data within Eulerian perturbation theory without reconstruction [43,
317, 187, 95]. Many of these signatures are sharpened by reconstruction. Another potential
effect is that of anisotropic secondary bias due to line-of-sight selection biases, which have
the potential to skew measurements of σ8 from RSD [176]. These effects have so far not
been modeled with LPT, though the equivalent Eulerian framework have been explored in
e.g. Ref. [110]. We discuss the current status of evidence for these effects in Appendix G.4.
Of course, many of these additional effects will likely be better constrained by combining
data: for example, relative baryon-dark matter perturbations have a potential to bias BAO
measurements but conversely, by including its effects in a theory model, it may be easier
to constrain the size of their effect on galaxy clustering when post-reconstruction data is
included in the analysis. We leave these developments for future work.
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Chapter 9

Joint Cosmological Analysis of
Redshift-Space Clustering and CMB
Lensing from the BOSS and Planck
Surveys

This chapter was originally published as

Shi-Fan Chen et al. “Cosmological Analysis of Three-Dimensional BOSS Galaxy
Clustering and Planck CMB Lensing Cross Correlations via Lagrangian Perturba-
tion Theory”. In: arXiv e-prints, arXiv:2204.10392 (Apr. 2022), arXiv:2204.10392.
arXiv: 2204.10392 [astro-ph.CO]

In this final chapter we augment our analysis of the three-dimensional clustering of galaxies
in the BOSS survey in Chapter 8 by adding in cross correlations of the galaxy and matter
densities, with the latter represented by the weak lensing of the CMB. We present a formalism
for jointly fitting pre- and post-reconstruction redshift-space clustering (RSD) and baryon
acoustic oscillations (BAO) plus gravitational lensing (of the CMB) that works directly
with the observed 2-point statistics. The formalism is based upon (effective) Lagrangian
perturbation theory and a Lagrangian bias expansion, which models RSD, BAO and galaxy-
lensing cross correlations within a consistent dynamical framework. As an example we
present an analysis of clustering measured by the Baryon Oscillation Spectroscopic Survey in
combination with CMB lensing measured by Planck. The post-reconstruction BAO strongly
constrains the distance-redshift relation, the full-shape redshift-space clustering constrains
the matter density and growth rate, and CMB lensing constrains the clustering amplitude.
Using only the redshift space data we obtain Ωm = 0.303 ± 0.008, H0 = 69.21 ± 0.78
and σ8 = 0.743 ± 0.043. The addition of lensing information, even when restricted to the
Northern Galactic Cap, improves constraints to Ωm = 0.300± 0.008, H0 = 69.21± 0.77 and
σ8 = 0.707±0.035, in tension with CMB and cosmic shear constraints. The combination of Ωm
and H0 are consistent with Planck, though their constraints derive mostly from redshift-space

https://arxiv.org/abs/2204.10392
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clustering. The low σ8 value are driven by cross correlations with CMB lensing in the low
redshift bin (z ≃ 0.38) and at large angular scales, which show a 20% deficit compared to
expectations from galaxy clustering alone. We conduct several systematics tests on the data
and find none that could fully explain these tensions.

9.1 Introduction

The large-scale structure of the Universe provides information on galaxy formation, cosmology
and fundamental physics [275, 114]. Perhaps the most powerful measure to date has been the
redshift-space two-point function measured by galaxy redshift surveys, which measures both
the shape of the primordial power spectrum including distance information in baryon acoustic
oscillations (BAO; [410, 120, 238]) and cosmological velocities in the form of redshift-space
distortions (RSD; [196, 158]). A complementary view of large-scale structure comes from
gravitational lensing, which probes the projected (Weyl) potential sourced by fluctuations in
the matter density. Of particular interest to us here is the lensing of the cosmic microwave
background (CMB) anisotropies, which provide a well-characterized source screen at a well-
known redshift [285] far behind the lensing potentials. Either of these probes, or their
combination, can be used to measure the amplitude and growth rate of large-scale structure
over cosmic time with high precision, providing valuable constraints on our cosmological
model and its constituents.

The theoretical study of large scale structure is by now quite mature thanks to continued
developments in perturbation theory (PT). Within PT the growth of structure is treated
systematically, order-by-order in the initial conditions with nonlinearities at small scales
marginalized away using effective-theory techniques [28, 60, 399]. Biased tracers of large-scale
structure like galaxies can similarly be treated by identifying contributions to their clustering
at each order allowed by fundamental symmetries [234, 332, 109, 396, 74, 139]. Much of this
modeling effort has focused on the clustering of galaxies in redshift-space, as measured in
spectroscopic surveys, leading to models with accuracy well beyond the expected statistical
uncertainty in any realistic surveys [255, 82, 189], and which have been tested extensively
on existing surveys like BOSS and eBOSS [186, 96, 184, 73, 438, 282]. The same models
can also be used to predict weak-lensing measurements, particularly their cross-correlations
with galaxy surveys (which allow for cleaner separation of scales by virture of being more
localized in redshift). These measurements probe matter clustering and its cross-correlation
with galaxy densities, both without redshift-space distortions, and are in fact easier to model
within PT since they do not involve large contributions from small-scale velocities. Such
predictions have received less attention to date, though there is a long history of PT-inspired
models of galaxy lensing cross correlations applied to both simulations and data (e.g. refs. [21,
208, 269]), and full PT models have recently been successfully applied to cross-correlations
between Planck CMB lensing and galaxies from the DESI Legacy Imaging Survey [201, 417].

A particular advantage of perturbative models of large-scale structure is that they rely on
only a minimal set of theoretical assumptions to consistently model a wide range of clustering
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data. For example, the same bias parameters used to model the redshift-space clustering of
BOSS galaxies in ref. [73] also make robust predictions for their cross-correlation in weak
lensing. Figure 9.1 shows the posterior predictive distribution for these cross correlations,
summarized as the angular multipoles of their 2-point function (Cκg

ℓ ), with clustering and
cosmological parameters conditioned on the redshift-space clustering data; those data tightly
predict Cκg

ℓ on large scales, while nonlinear bias and an additional effective-theory contribution
to the matter-galaxy cross spectrum not probed by redshift-space clustering broaden the
range of clustering amplitudes at smaller scales. Indeed, we can already see an intriguing
feature of the joint BOSS and Planck data: the CMB lensing cross correlations at large scales
(low ℓ) are lower than what might be expected from the redshift-space clustering of BOSS
galaxies, even after we marginalize over cosmology and nonlinear bias. This is interesting, as
the theoretical assumptions underlying the predictions are quite minimal: weak field gravity,
at-most-weakly interacting and cold particle dark matter and a FLRW metric (by now well
constrained by distance-redshift measurements). Figure 9.1 also illustrates a more general
feature of perturbative analyses of large-scale structure, which tend to extract cosmological
information from large scales while1 marginalizing over the transition to nonlinearity with
bias and effective-theory parameters. Conversely, since additional information about these
parameters cannot straightforwardly be gained by extending beyond the nonlinear scale,
combining competing probes of the same structure (e.g. redshift-space clustering and weak
lensing) can help better constrain these nuisance parameters by probing different combinations
on perturbative scales.

The purpose of this chapter is to demonstrate the viability of combined redshift-space
and lensing analyses within perturbation theory using publically available data. In particular,
we will use galaxies from the BOSS survey [101] and CMB lensing maps from Planck [287],
along with a theoretical model based on one loop (Lagrangian) perturbation theory [82]. We
are not the first to look at this combination of data (see e.g. refs. [294, 346, 119, 347]), but
are, to our knowledge, the first to apply the full machinery of perturbation theory in this
context, applying a consistent dynamical model without empirical prescriptions for galaxy
clustering to model both the two and three-dimensional data, a technique which we expect
will be critical given the significantly enhanced accuracy needs and scientific promise of the
currently operating cosmological surveys like the Dark Energy Spectroscopic Instrument
[108], the Atacama Cosmology Telescope [374], the South Pole Telescope [37] and their even
more powerful successors. Since our main purpose is to perform a proof-of-principle study on
public data, throughout this work we follow the BOSS collaboration’s choices for systematics
weights, masks and redshift binning in order to leverage the considerable effort that has gone
into measuring the statistics, performing systematics checks and creating mock catalogs for
covariance matrices for these samples, with only a few small, theoretically-motivated tweaks
which we believe will be useful in future analyses.

The outline of the chapter is as follows. In the next section we discuss the data sets that
we use. Section 9.3 describes the mock catalogs used to validate our analysis pipeline, while

1See e.g. Fig. 4 of ref. [73] for a demonstration in the case of redshift-space clustering.
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Figure 9.1: The posterior-predictive distribution (grey bands) for the cross-correlation between BOSS
galaxies and CMB lensing convergence, conditioned on the redshift-space galaxy clustering (including
redshift-space distortions and baryon acoustic oscillations). The measured cross-correlation (blue
points) at high ℓ don’t give much constraint within the context of perturbative models due to the
combination of their large errors and the marginalization over counterterms (an effect which is more
significant at lower redshifts i.e. z1). The effect of the lensing data is thus largely a downward pull
due to the low ℓ points.

section 9.4 describes our theoretical models and assumptions. Our results are presented in
section 9.5, along with a comparison to previous results. We conclude in section 9.6, while
some technical details of how we handle massive neutrinos are relegated to an appendix.

9.2 Data

9.2.1 BOSS Galaxies

The BOSS survey [101] is a spectroscopic galaxy survey part of the Sloan Digital Sky Survey
III [123], covering 1,198,006 galaxies over 10,252 square degrees of sky. Our analysis of
the three-dimensional clustering of these galaxies follows that of [73], which is described in
detail in Section 2 of that work. Briefly, we follow the convention in ref. [7] and split the
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BOSS galaxies into four independent samples, defining two redshift bins 0.2 < z < 0.5 (z1)
and 0.5 < z < 0.75 (z3) split between the Northern (NGC) and Southern (SGC) galactic
caps. In particular, we make use of the publicly available power spectrum, window function
and mock measurements of each of these samples presented in ref. [42]. In order to better
utilize the cosmological distance information in galaxy clustering, particularly through baryon
acoustic oscillations (BAO), we will also use the post-reconstruction correlation functions
measured in ref. [388]. Unlike the power spectra, these correlation functions were measured
assuming that the NGC and SGC samples could be combined into one homogeneous sample.
In order to take into account the cross-correlations between the power spectra and correlation
function measurements, we construct our covariance matrix using measurements of these
quantities in the V6C BigMultiDark Patchy mocks described in [202]; these measurements
are also publicly provided by refs. [42, 388]. Both power spectra and and correlation functions
were computed assuming a fiducial cosmology with Ωm,fid = 0.31.

In order to cross-correlate the BOSS galaxy density with CMB lensing, as described below,
we also generate projected two-dimensional sky maps of the galaxy density. These maps
are generated in the standard manner. We first cut the galaxies to the desired hemisphere
and redshift range (using the spectroscopic redshift). Each galaxy is assigned a weight,
wsys-tot(wcp + wno-z − 1), as described in detail in the BOSS papers [300, 307]. The weighted
counts of galaxies are computed in Healpix [149] pixels at Nside = 2048 to form a “galaxy map”
in galactic coordinates. The random points supplied by the BOSS team are also binned into
Healpix pixels to form the “random map”. The overdensity field is defined as the “galaxy map”
divided by the “random map”, normalized to mean density and mean subtracted. We obtain
a (binary) mask for the galaxies by keeping only those pixels where the random counts exceed
20% of the mean random count (computed over the non-empty pixels) and overdensities
outside of the mask are set to zero. We use the magnification bias slopes measured in [403],
viz. sz1 = 0.77± 0.02 and sz3 = 1.05± 0.11.

Since the 2D (auto) clustering information within the galaxy map is a subset of that
included in the 3D clustering measurements described above, we do not use the 2D galaxy
angular power spectrum Cgg

ℓ derived from these maps except when estimating covariances,
as described below. Not including Cgg

ℓ somewhat immunizes our analysis against purely
angular systematics in the galaxy maps since, unlike Cgg

ℓ which only depends on line-of-sight
angles µ ≈ 0, the clustering information in redshift-space multipoles are weighted across all
µ, though we note that our model fits either measurement in the data consistently.

9.2.2 Planck CMB Lensing

Our treatment of the Planck CMB lensing maps is quite standard, and in detail follows
that in refs. [201, 417]. Specifically we use the 2018 Planck release [287] available from
the Planck Legacy Archive.2 These data are provided as spherical harmonic coefficients
of the convergence, κℓm, in HEALPix format [149] and with ℓmax = 4096. We use the

2PLA: https://pla.esac.esa.int/

https://pla.esac.esa.int/
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Figure 9.2: The data to which we fit, in the form of 2-point functions vs. linear or angular scale.
The top row shows the pre-reconstruction redshift-space galaxy power spectrum multipoles for
the two galactic hemispheres (NGC and SGC) and two redshift slices. The middle row shows the
post-reconstruction galaxy correlation function multipoles. The bottom row shows the angular
cross-spectrum between the galaxy overdensity and CMB convergence. In each row the upper panels
show the data while the lower panels show the ratio of the data to the best-fitting theoretical model
(shown as the lines in the upper panels in each case).
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minimum-variance (MV) estimate obtained from both temperature and polarization, based
on the SMICA foreground-reduced CMB map. The maps are low-pass filtered and apodized as
in ref. [417] to produce a κ map in HEALPix format at Nside = 2048.

Since the MV reconstruction in Planck is dominated by temperature, residual galactic and
extragalactic foregrounds may contaminate the signal. Extensive testing has been performed
by the Planck team, indicating no significant problems at the current statistical level [287].
However, as a test, we repeated the analysis with a lensing reconstruction provided by the
Planck team that is based upon SMICA foreground-reduced maps where the thermal tSZ effect
[360] has been explicitly deprojected [287]. While they mitigate the effect of tSZ, these maps
also tend to enhance the effect of other foregrounds like the cosmic infrared background (CIB)
[308]. Swapping in these maps for the fiducial ones can therefore serve as a sanity check to
test our sensitivity to residual foregrounds. We found that our results are very consistent
between analyses, with the deprojected map leading to larger uncertainties, as expected.
This is in line with the expectation that extragalactic foregrounds lead to very small biases
compared to our error bars [387, 262, 32, 308, 100], though those biases would typically be
to lower κ if the foregrounds have significant small-scale power (since they “appear” like a
demagnified region). We shall return to this in §9.5. Additionally, the Planck lensing maps
mask regions with SZ clusters, removing high-density regions; biases due to this effect are
known to be very subdominant, however [287].

In order to estimate the cross-correlation of the CMB κ map with BOSS galaxies, we use
the pseudo-Cℓ method [178] as implemented within the NaMaster package [11] to estimate
our angular power spectra. This technique is now very standard and has been described in
detail elsewhere (e.g. refs. [143, 417] and the many references therein). Briefly, this approach
first computes the (pseudo) angular power spectrum as an average over m-modes of the
spherical harmonic transform of the masked field. The pseudo-spectra are binned into a
discrete set of bandpower bins, L, and the mode coupling is deconvolved [178]. We use the
compute full master method in NaMaster [11] to calculate the binned power spectra and
the bandpower window functions relating them to the underlying theory: ⟨CL⟩ =

∑
ℓWLℓCℓ.

We choose a conservative binning scheme with linearly spaced bins of size ∆ℓ = 30 starting
from ℓmin = 50. The bin width is larger than expected correlations between modes induced by
the survey masks, while being narrow enough to preserve the structure in our angular spectra.
To avoid power leakage near the edge of the measured range we perform the computation to
ℓ = 6000, and simply discard the bins beyond some ℓmax [209].

9.2.3 Covariance

Throughout we shall make use of a Gaussian likelihood function with fixed covariance. The
covariance matrix for the three dimensional clustering (both pre- and post-reconstruction) is
computed from mock catalogs supplied by the BOSS collaboration. The covariance matrix
for the lensing-galaxy cross-correlation is computed using NaMaster taking into account the
disconnected contributions which dominate in the regimes of interest.
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We neglect the covariance between the three dimensional clustering measures and the
lensing-galaxy cross-correlation. Since the lensing kernel is so broad, the lensing-galaxy
cross-correlation probes modes with very low wavenumber k∥ along the line of sight, while the
three dimensional clustering measurements are dominated by k∥ ∼ k, leading to little overlap
in Fourier space [371]. In addition, the lensing signal is predominantly from matter clustering
at higher redshifts than the range we probe in this work, and moreover are dominated by
noise in the temperature maps used for the lensing reconstruction over most of the ℓ range
that we fit to.

9.3 Mock catalogs

In this section we describe the N-body-based mock catalogs that we used to validate our
analysis pipeline and compare their clustering to the BOSS data. Since the mock catalogs
used for pipeline validation were not used as inputs to the analysis (e.g. as part of the theory
model or covariance calculation) but rather simply as validation tools the requirements on
those mocks can be quite relaxed.

Our analysis was not conducted blindly, because the catalogs and clustering measurements
have long been public and we had previously done cosmology fits to the BOSS data alone
[73]. However, we did validate a number of the analysis choices on mock catalogs prior to
performing the cosmology fits and we did not modify those choices when we fit to the data
itself.

9.3.1 Mock BOSS Catalogs

Our mock catalogs are constructed from the Buzzard v2.0 simulations [107, 103] in order
to approximately reproduce the z3 bin from the data. We do not use the z1 bin from the
simulations as the redshift range of this bin overlaps the transition between two distinct
N -body simulations that the Buzzard catalogs are constructed from. Galaxies are included in
these simulations using the Addgals algorithm [409, 104], which assigns galaxies with mock
SEDs, shapes and sizes to particles in the N -body lightcones. The spectra are integrated
over the desired bandpasses to obtain broadband apparent magnitudes. The simulations are
ray-traced in order to compute weak-lensing deflections, shears and magnifications for each
galaxy. In order to select a CMASS-like sample from our simulations, we apply the CMASS
color selection to our simulated catalogs, with minor adjustments to the color cuts that are
tuned in order to better reproduce the redshift distribution of the z3 sample. The effective
redshift of our mock sample is zeff = 0.575 and a magnification coefficient of αmag = 1.3. All
mock measurements used in this work are the mean of 7 quarter-sky simulations.
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9.3.2 Power spectrum multipoles

We compute mock spectra in our simulations using an independent pipeline from that used
in the data. We compute Pℓ(k) using the algorithm described in [161], making use of FKP
weights and assuming the same k binning as used in the BOSS data. In order to account for
the effect of the window function, integral constraint, and wide-angle effects on our redshift-
space clustering measurements, we follow the formalism described in [42], implemented in
an independent pipeline from that used on the data, and validated against the BOSS DR12
NGC z3 window and wide-angle matrices used in this work.

9.3.3 Lensing cross-correlations

We compute Cκg
ℓ and mode coupling matrices from our simulations using NaMaster, using the

same ℓ binning and mask apodization as that used in the data. The CMB lensing convergence
field is computed using the Born approximation. We also use the same weighting scheme
as applied to the BOSS data, including both FKP and inverse lensing kernel weights as
described in section 9.4.3.

9.3.4 Post-reconstruction correlation functions

Non-linear evolution broadens the BAO peak in the correlation function, weakening the
inferred distance constraints [121, 92]. However much of the broadening comes from large
scales that can be well modeled and measured by a galaxy redshift survey. The displacements
induced by these large-scale modes can be inferred from the data and their impacts ‘undone’,
in a process known as reconstruction [122]. This has become a standard feature of BAO
analyses, and was used throughout the BOSS survey [388]. We apply the same procedure to
the mock catalogs. We use recon code3, adopting the isotropic BAO (or ‘Rec-Iso’) [414, 266,
338] convention as in ref. [388]. To form the overdensity field, the galaxy and random catalogs
are converted to Cartesian coordinates using the correct distance-redshift relation for the
cosmology of our mocks and deposited to grids using cloud-in-cell interpolation to a grid with
Ng = 512 points in each dimension. The over-density field is δg(x) = ρgal(x)/ρrand(x) − 1,
where regions with ρrand = 0 are set to zero by default. This field is then smoothed by a
Gaussian kernel given by exp [−(x/Rf )

2/2], with Rf = 15h−1Mpc, giving a smoothed field

δ̃(x). The displacement field, Ψ̂
rec
, is the solution of

∂iΨ̂
rec
i + β∂i

(
r̂ir̂jΨ̂

rec
j

)
=
δ̃

b
. (9.1)

where we have used b = 1.8 and f = 0.872 since the values used by BOSS were not given
in ref. [388]. This equation is solved using a multigrid relaxation technique with a V-cycle

based on damped Jacobi iteration. Both randoms and galaxies are then shifted by Ψ̂
rec
, with

3https://github.com/martinjameswhite/recon_code

https://github.com/martinjameswhite/recon_code
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Parameter Prior
ln(1010As) U(1.61, 3.91)

Ωm U(0.20, 0.40)
H0 [km/s/Mpc] U(60.0, 80.0)

Parameter Value
Ωbh

2 0.02242
ns 0.9665
Mν 0.06 eV

Table 9.1: Cosmological parameter priors and values for our analysis. Uniform distributions are
denoted U(xmin, xmax).

their appropriate factors in the “Rec-Iso” scheme, and their locations are converted back to
angular coordinates and redshifts.

The multipoles of the correlation function ξℓ(\) are measured from the above catalogs
using corrfunc [349]. Denoting by D, S and R the shifted data and randoms and the fiducial
random catalogs, respectively, the Landy-Szalay estimator

ξrec(s, µ) =
DD(s, µ)− 2DS(s, µ) + SS(s, µ)

RR(s, µ)
, (9.2)

is used to estimate ξrec(s, µ). We adopt linearly spaced bins of width ∆s = 5h−1Mpc and 100
bins in µ ∈ [0, 1) following ref. [307]. Multipoles of the correlation function are constructed
by integrating in the µ direction.

9.4 Theory Model

In this work we aim to obtain cosmological constraints combining the three-dimensional
distribution of galaxies in redshift space and the distribution of dark matter that they trace,
reflected in its contribution to CMB lensing. To this end we will use Lagrangian perturbation
theory (LPT), which models the gravitational clustering underlying RSD, BAO and CMB
lensing within a unified dynamical framework. In the following subsections we describe how
to connect this clustering with observables, provide a brief summary of LPT and describe
how we efficiently emulate its predictions using Taylor series for the purposes of MCMC.

9.4.1 Cosmological Parameters, Neutrinos and Linear Theory

Throughout this chapter, we will assume a ΛCDM cosmology with uniform priors on Ωm,
H0 and ln(1010As) as described in Table 9.1, with all other parameters fixed to their Planck
best-fit values and assuming a minimal neutrino mass scenario Mν = 0.06 eV, mirroring
the setup in ref. [73]. Given such a set of cosmological parameters, we use CLASS [48] to
compute the linear-theory power spectrum as the input to our one-loop perturbation theory.
We operate within the EdS approximation wherein higher-order corrections scale linearly
with powers of the linear power spectrum amplitude [361, 128, 36, 139, 115].
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In order to account for the effect of massive neutrinos we use the now-standard approx-
imation that galaxies trace the cold dark matter and baryon cb field [66], i.e. δg = δg[δcb] ,
which was recently shown to be an excellent approximation well into the quasilinear regime
[33]. Within this approximation the redshift-space galaxy power spectrum can be computed
simply by plugging Pcb,lin as the linear power spectrum into the perturbation theory formulae.

Weak lensing-galaxy cross correlations, on the other hand, require a bit more care. In
particular, as lensing is sourced by all matter, we must take the contribution from neutrinos
into account explicitly. Indeed, this explicit neutrino mass dependence is precisely what
allows galaxy-lensing cross correlations to be a potentially powerful probe of the neutrino
mass [428, 33]. At linear order this implies that Pgm = bPcb,m, where b is the Eulerian galaxy
bias. Since neutrinos contribute negligible clustering power below the free-streaming scale,
one approximation [209] is to use the fact that Ωmδm ≈ Ωcbδcb on these scales to make the
substitution ΩmPcb,m ≈ ΩcbPcb. However, as shown in Fig. 9.3, the quasilinear scales on which
our analysis is based covers much of the transition region between the high k modes with
‘unclustered’ neutrinos and the low k regime where neutrinos cluster with cold dark matter.
In order to better capture this transition, we will instead compute perturbation predictions
for the matter-galaxy cross power spectrum using Pcb,m as the input linear power spectrum
assuming the same bias coefficients as those in δg = δg[δcb]. As we show in Appendix H.1,
such a scheme is accurate to order fνO(P 2

L), that is of order the neutrino mass fraction times
the typical (subleading) one-loop correction, and thus more than adequate for any upcoming
analyses.

9.4.2 Lagrangian Perturbation Theory

Lagrangian perturbation theory models gravitational structure formation by following the
displacements Ψ(q, τ) of fluid elements starting at Lagrangian positions q at the initial time.
These displacements follow Newtonian gravity in expanding spacetimes Ψ̈ +HΨ̇ = −∇xΦ,
where dots are with respect to conformal time, and map the initial positions of fluid elements
to their observed ones via x = q+Ψ(q, τ). The Newtonian potential Φ is in turn sourced by
the overdensity δm of fluid elements under this evolution, given via mass conservation to be
[231]

1 + δm(x, τ) =

∫
d3q δD(x− q−Ψ(q, τ)). (9.3)

Within this framework the displacements are then solved order-by-order, that is perturbatively,
in the initial conditions, i.e. Ψ = Ψ(1)+Ψ(2)+Ψ(3)+ ..., with the first-order solution commonly
referred to as the Zeldovich approximation [431, 39]. Finally, within the effective-theory
approach of LPT the effect of short-wavelength densities and velocities are integrated out,
resulting in free counterterms and stochastic contributions whose form are restricted by
symmetries but whose values must be fit to data and cannot be determined a priori [290,
399].

To model the distribution of galaxies we need to account for the fact that galaxies are
imperfect and nonlinear tracers of matter. In the Lagrangian picture this is accomplished by
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Figure 9.3: Ratios of linear theory total-matter power spectrum and matter and dark matter-baryon
cross spectrum to the dark matter-baryon power spectrum (left), as well as the corresponding
ratios for mass-weighted power spectra (right) in the Planck cosmology with minimal neutrino mass
Mν = 0.06 eV. Green and orange shaded regions show the corresponding wave numbers probed by
the lensing-galaxy cross correlations and grey regions show the wavenumbers probed in our RSD
analysis.

writing the initial number density of proto-galaxies F (q) as a local functional of the initial
conditions. These proto-galaxies are then advected to their observed positions to give

1 + δg(x, τ) =

∫
d3q F (q) δD(x− q−Ψ(q, τ)). (9.4)

In this chapter we follow [73] and use the form [229, 58, 396, 74]

F (q) = 1 + b1δlin(q) +
1

2
b2(δ

2
lin(q)−

〈
δ2lin
〉
) + bs(s

2
lin(q)−

〈
s2lin
〉
). (9.5)

In particular we will operate under the assumption that third-order Lagrangian bias is small
for small-to-intermediate mass halos [4, 215] and, along with the lowest-order derivative bias
∝ ∇2δm,0, highly degenerate with counterterms. The matter density is equivalent to a tracer
with all the Lagrangian bias parameters equal to zero, i.e. F (q) = 1.

Our analysis in this chapter specifically requires LPT predictions for the matter and
galaxy two-point functions, in real and redshift space, pre- and post-reconstruction. Briefly,
from Equation 9.4 the power spectrum can be written as

(2π)3δD(k) + P (k) =

∫
d3q

〈
eik·(q+∆)F (q1)F (q2)

〉
q=q1−q2

, (9.6)

where the pairwise displacement is given by ∆ = Ψ(q1) − Ψ(q2). To compute the power
spectrum in redshift space, wherein line-of-sight distances are inferred from redshifts and hence
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include a contribution from peculiar velocities Ψ̇, simply requires swapping in redshift-space
displacements Ψs boosted by line-of-sight velocities.

A notable feature of Equation 9.6 is that the exponentiation of the pairwise displacement
allows for resummation of long-wavelength (IR) displacements which captures important
physical effects such as the nonlinear damping of the BAO peak; to maintain consistency
between the pre-reconstruction galaxy-galaxy and matter-galaxy power spectrum predictions
we use the scheme proposed in ref. [82] wherein linear displacements and velocities below
kIR = 0.2hMpc−1 are resummed while shorter-wavelength modes are perturbatively expanded.
This scheme is different than the one used in refs. [201, 417], where all the linear displacements
were resummed, but has been tested extensively in simulations and mocks [82, 73]4. In a
similar vein, since reconstruction subtracts part of the large-scale displacements responsible
for the nonlinear damping of the BAO, computing the two-point function after reconstruction
requires the displacements in Equation 9.6 have these subtracted as well; following [73] we
will in addition make use of a saddle point approximation at the BAO scale to model the
BAO damping form in the post-reconstruction correlation function, using a broadband model
linear in 1/r to capture any residual smooth contributions. Our calculations throughout this
work make use of the publically available code [74] velocileptors5; we refer the interested
reader to refs. [82] and [78] for further discussions on modeling redshift-space distortions and
reconstruction within LPT, respectively.

9.4.3 Galaxy Clustering in 2D and 3D

The observables we analyze in this work — 3D clustering in redshift surveys and 2D angular
cross-correlations with weak lensing from CMB experiments — jointly probe matter and
galaxy clustering within the cosmological volume surveyed by BOSS. While they reflect the
same underlying clustering, however, the particularities of each measurement are sufficiently
different that it is worth describing in some detail the connection between this clustering and
each observable.

Redshift-Space Clustering

The 3D galaxy correlation function and power spectrum multipoles are measured in dimen-
sionful coordinates (r and k respectively)— a cosmological model must thus be assumed to
convert angles and redshifts into comoving distances. For BOSS the Cartesian coordinates
of the galaxies were computed assuming a fiducial ΛCDM cosmology with ΩM,fid = 0.31.
This implies that when we test a model with a different redshift-distance relation to the
fiducial model we must apply a rescaling of distances relative to the “true” cosmology in
directions parallel and perpendicular to the line of sight. This is often referred to as the
Alcock-Paczynski effect [9, 265] and is included in our model for the power spectrum and

4In particular, we use the µ = 0 output of the redshift-space power spectrum in velocileptors for the
real-space power spectrum.

5https://github.com/sfschen/velocileptors
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post-reconstruction correlation function. Finally, the observed Fourier-space clustering power
of galaxies in redshift surveys is the convolution of the true power with the survey window
function; to take into account this and wide angle effects we adopt the formalism and data
outputs of ref. [42]. Our treatment of these steps is identical to that in ref. [73], to which we
refer readers seeking further details.

Angular Power Spectra

The 2D galaxy-lensing cross correlation, on the other hand, is reported in dimensionless
angular coordinates. Within the Limber approximation [221] the angular multipoles are
related to the matter-galaxy cross power spectrum Pmg by

Cκg
ℓ =

∫
dχ

(
W κ(χ)W g(χ)

χ2

)
Pmg

(
k =

ℓ+ 1/2

χ
, z
)
; (9.7)

All the dependence on cosmological distances is implicit in this integral such that the end
result is independent of any fiducial cosmology. The galaxy and lensing kernels are given by

W g(χ) = H(z)
dN

dz
, W κ(χ) =

3

2
Ω2
mH

2
0 (1 + z)

χ(χ∗ − χ)

χ∗
, (9.8)

where dN/dz is the weighted galaxy distribution and χ∗ is the distance to last scattering. In
addition to the above term the projected galaxy density also receives a contribution from
the so-called magnification bias. The magnification term is only a small contribution to the
total signal, but because it probes the line of sight all the way to small radial distances it is
sensitive to smaller scales than the other contributions. We make use of the HaloFit fitting
function for Pmm ([354, 362] as implemented in CLASS) for the magnification contributions.

Effective Redshift

Both the two- and three-dimensional measurements above average galaxy and matter clustering
over large spans of redshift (z1 and z3) over which the universe expands by up to 20%, with
comparable changes in other cosmological quantities like the linear growth factor, D(z). In
order to account for the evolution of both the background and galaxy sample we will make
use of the effective-redshift approximation which we will now describe in some detail.

Defining the auto- and cross-spectra of each sample to evolve with redshift as Pgg,gκ(k, z),
both the two- and three-dimensional power spectra in this work can be written in the form

Θ̂ =
∑

i

wiP (k(zi), zi) (9.9)

=
∑

i

wi

(
P (ki, zeff) + (zi − zeff)∂zP (ki, zeff ) +

1

2
(zi − zeff)

2∂2zP (ki, zeff) + ...
)

(9.10)
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The effective redshift6 zeff is then defined such that the linear term cancels, i.e. zeff =
∑

iwizi.
For example, cross-correlation of galaxies and CMB κ has [246]

zxcorreff =

∫
dχ

χ2
W g(χ)W κ(χ)z(χ). (9.11)

Similarly the galaxy auto-spectrum has an effective redshift given by [228, 416, 419, 442, 102]

z3Deff =

∫
d3r n̄(r)2z(r)∫
d3r n̄(r)2

=

∑
iwin̄izi∑
iwin̄i

(9.12)

where the sum is over the galaxies, n̄ is the galaxy number density accounting for systematic
and FKP weights, and wi are the product of the weights on each galaxy. The second equality
above uses that

∫
d3r n̄ =

∑
iwi. The above definition is distinct from, and more accurate

when used on two-point clustering statistics [293], than the one defined in the official BOSS
analysis [45]. The BOSS analyses used the mean redshift, written as

zmean =

∑
ij wiwj(zi + zj)/2∑

ij wiwj
=

1

2

∑
iwizi

∑
j wj∑

iwi
∑

j wj
+

1

2

∑
j wjzj

∑
iwi∑

j wj
∑

iwi
=

∑
iwizi∑
iwi

(9.13)

Since the product fD is quite slowly varying, the difference in zeff and zmean is of little
import for analyses of redshift-space distortions or baryon acoustic oscillations. However
it is potentially more important for measurements depending upon D(z) itself, such as our
lensing-galaxy cross-correlation. Comparing these definitions, the linear growth factor D(z)
is 1% higher at zeff = 0.59 compared to zmean = 0.61 for the z3 bin, though they agree to
within a fifth of a percent for z1 (zeff ≃ zmean ≃ 0.38).

The above discussion makes clear that the two and three-dimensional clustering analyzed
in this work primarily reflect galaxy clustering at zxcorreff and z3Deff , respectively. These can
in principle be quite different; for the fiducial BOSS samples they are 0.367 and 0.380 for
z1 and 0.589 and 0.602 for z3, respectively. Since we are interested in using the shared
galaxy clustering from the two statistics, we take the additional step to weight the galaxies
in the lensing cross correlation such that zxcorrzeff ≈ z3Dzeff. In particular, we weight each
galaxy by an additional factor w(z) = W g/W κ (calculated assuming Ωfid

m = 0.31) such that
W gW κ → (W g)2 and the cross-correlation has the same effective redshift as the (un-weighted)
auto-correlation. To maintain consistency between the 2D and 3D clustering statistics it is

6We will follow convention and use the redshift, z, as the ‘time’ coordinate. This is not a unique choice
and it is in principle possible to adopt other time coordinates, for example the scale factor a — the varying
accuracy of the “effective time” approximation, i.e. dropping all but the leading term in Equation 9.10, then
depends on the size of the quadratic correction. As an example, in linear theory where we have that the
matter power spectrum scales approximately as D2(z) ∼ a2 ∼ (1 + z)−2, the error incurred by adopting
zeff would be three times larger than if we had instead chosen aeff. Since b(z)D(z) and f(z)D(z) are both
extremely flat functions of redshift, we expect our analysis to be insensitive to this choice, though we do note
that in the same limit Cκg ∝ b(z)D2(z) ∼ a is linear in the scale factor, suggesting that using aeff might be
somewhat better for future analyses with greater accuracy needs.
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important to employ the same set of weights in each; in particular, each galaxy receives the
same set of systematic and FKP weights when computing the power spectrum, correlation
function and angular multipoles. The two- and three-dimensional autocorrelation effective
redshifts, as defined above, are equivalent. For example, for the 2D autocorrelation we have

z2Deff =
1

N

∫
dχ

χ2
[W g(χ)]2 z(χ) =

1

N

∫
dχ

χ2

[
H(z)

dN

dz

]2
z(χ) with N =

∫
dχ

χ2
[W g]2 .

Since H dN/dz ∝ χ2 n̄ and d3r ∝ χ2dχ the integral in the numerator reduces to
∫
d3r n̄2 z,

i.e. given the same galaxy weights and distributions, z2Deff = z3Deff . We have checked that our
weighting leads to effective redshifts agreeing to within a tenth of a percent for the cosmologies
of interest in this work.

9.4.4 Gravitational slip

Within general relativity, weak lensing and redshift-space distortions jointly probe the
amplitude of matter clustering through gravity’s effect on the trajectories of massless (photons)
and massive (galaxies) particles. In principle, photon and galaxy trajectories are influenced
by different components of the metric, the latter by the Newtonian potential Ψ and the
former by the Weyl potential (Φ + Ψ)/2 — these are equal at late times within General
Relativity but could be different in modified theories of gravity. To test for such differences
we include a free factor multiplying the amplitude of the lensing-galaxy cross correlation,

cκ =
1 + γ

2
, (9.14)

where γ = Φ/Ψ is the gravitational slip (see ref. [193] and references therein), and similarly the
magnification bias-CMB lensing cross correlation by c2κ. Since our analysis is sensitive to the
relative amplitude difference between redshift-space clustering and lensing cross-correlations,
any deviation of the fit γ from unity could indicate departures from general relativity in either
velocities or gravitational lensing. Were we to free the neutrino mass within our analysis, this
effect would be somewhat degenerate with the additional suppression of matter clustering due
to free-streaming neutrinos — our constraint on γ therefore will also serve as some indication
of our ability to constrain the neutrino mass through combining galaxy clustering with CMB
lensing.7 Alternatively, within a fixed physical model comparing the relative amplitudes of
the lensing and RSD signals through cκ allows us to perform a consistency check between the
two datasets and check for systematics, akin to the scaling parameter Xlens multiplying cross
spectra in the DES Y3 3× 2pt analysis [2].

7In particular, if we think of the lensing amplitude as probing δm ≈ (1− fν)δcb and the RSD as probing
f(z) σ8,cb(z) ∼ fMν=0(z) (1− 3

5fν) σ8,cb(z) then the relative amplitude of the lensing to RSD compared to
the case where Mν = 0 is cκ ∼ 1− 2

5fν .
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9.4.5 Emulators

We use the now-standard method of Markov Chain Monte Carlo to explore the posterior
distribution of our parameters. In a high dimensional parameter space such as ours this
involves many likelihood evaluations. In order to minimize the computing resources we
require, we replace the model calculations involved in the likelihood computation with an
emulator based on Taylor series expansions [96, 88, 240, 73, 105]. This reduces the time-per-
likelihood-evaluation to tens of milliseconds. Evaluation of the Taylor series coefficients is
very fast (a few minutes per spectrum on one node of the Cori machine at NERSC8). Using a
4th order Taylor series, with coefficients computed by finite difference from a 93 element grid
centered around Ωm = 0.31, h = 0.68 and log(1010As) = 2.84 we achieve an accuracy of better
than 10−3 for real-space power spectra and the redshift-space monopole, and 10−2 for the
redshift-space quadrupole, or better than 10−3 at k < 0.1hMpc−1, in terms of 68th percentile
fractional residuals, corresponding to less than one-tenth of the statistical error in any entry
in our data vector. To further speed up model evaluations we emulate the (un-windowed)
two and three-dimensional clustering directly — given a set of cosmological parameters we
predict the bias contributions to Pℓ, ξℓ and C

κg taking into account the effective redshifts,
fiducial distances and redshift kernels assumed for each sample.

9.5 Results

Having laid out both the theory models and data measurements in the previous sections we
are now in a position to extract cosmological constraints from the combined BOSS and Planck
data. Since, unlike in the case of pure spectroscopic data, our methodology has not been
previously tested, and in the view of preparing for the next-generation of cross-correlations
analyses, we will proceed cautiously, starting by validating our theory model against the
mock data described in §9.3 and performing sanity checks on the data before describing the
cosmological constraints themselves.

9.5.1 Priors and Scale Cuts

We begin by defining the scales over which we will fit the data. For the BAO and RSD data
we largely follow ref. [73], fitting the pre-reconstruction monopole and quadrupole moments
of the power spectrum for 0.02 < k < 0.20hMpc−1 and the post-reconstruction monopole
and quadrupole moments of the correlation function for 80 < s < 130h−1Mpc. These scale
cuts have been extensively validated against simulations to show that our perturbative model
works to the desired accuracy within them. For the angular cross-clustering, Cκg

ℓ , we choose
ℓmax = 250 for the z1 slice and 350 for the z3 slice. We have chosen these conservatively to
correspond to kmax ≈ 0.20hMpc−1, the same scale cut we use for the redshift-space analysis,

8www.nersc.gov

www.nersc.gov
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Parameter Prior
(1 + b1)σ8 U(0.5, 3.0)

b2 N (0, 10)
bs N (0, 5)

α0 [h−2 Mpc2] N (0, 30)
α2 [h−2 Mpc2] N (0, 50)
αx [h−2 Mpc2] N (0, 30)
R3
h [h−3 Mpc3] N (0, 1

3n̄
)

R3
hσ

2 [h−5 Mpc5] N (0, 5× 104)

Parameter Prior
B1 U(0, 5.0)
F U(0, 5.0)
aℓ,0 N (0, 0.05)

aℓ,1 [h−1 Mpc] N (0, 5)

Table 9.2: Perturbation theory (left) and nuisance broadband parameter (right) priors and values
for our analysis. Uniform distributions are denoted U(min,max) while normal distributions are
denoted by N (µ, σ). The prior isotropic stochastic term R3

h has its width set to one-third of Poisson
value after shot-noise subtraction — this is roughly n̄−1 ≈ 3000h−3Mpc3 for z1 and 6000h−3Mpc3

for z3.

at the distance implied by the mean redshift of each sample. Our results are not very sensitive
to either choice because the Planck κ maps are very noisy at these scales.

In addition to the cosmological parameters (Table 9.1), our model contains numerous
bias parameters, counter terms and stochastic terms for each redshift slice and galactic cap.
The priors we adopt for these are given in Table 9.2, and are based on those adopted in ref.
[73] with two exceptions: we have narrowed the counterterm αn priors in the view that they
are in any case sufficiently well constrained by the data that the priors are uninformative,
and that they should represent only modest corrections to linear theory on scales where
perturbation theory is valid. We have also updated the prior on the isotropic stochastic term
R3
h for the higher-redshift sample to better reflect the effective number density of the z3,

where n̄−1 ≈ 6000h−3Mpc3, such that the priors on R3
h in both z1 and z3 reflect the latest

studies on stochasticity in BOSS-like galaxies [206]. Adopting these new priors shift our
constraints on σ8 by roughly 0.2σ, with all other parameters essentially unaffected, compared
to ref. [73].

9.5.2 Tests on Mock Data

While the models we use in this chapter have been tested extensively on mocks and data in
the context of both spectroscopic surveys [82, 73] and angular cross correlations of galaxy
clustering and lensing [246, 417], they have not been tested on the combination of these data
as required for this work. In this subsection we use the mock data described in §9.3 to test
whether LPT can indeed jointly and consistently model the matter and galaxy clustering
encoded in our data to the required accuracy. To this end we apply the same pipeline,
swapping only the input data vectors, that we will apply to the observed data, with the same
scale cuts and priors. By necessity, this test only covers one redshift bin (z3), and the fixed
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Figure 9.4: (Left) Mock constraints from the mean of the Buzzard mocks for the z3 sample fitting
redshift-space power spectrum and post-reconstruction correlation function, with and without (red
and blue) galaxy-CMB lensing cross-correlations multipoles. Gray lines indicate the true cosmology
of mocks given by Ωm = 0.286, h = 0.7 and σ8 = 0.82. (Right) Summary of the mock constraints
(mean±1σ). Adding angular cross-correlations to the data vector improves σ8 constraints by close
to 20%.

cosmological parameters (ωb, ns,Mν) have been adjusted to those of the mocks.
Our results are shown in Figure 9.4. Fits using LPT recover the true cosmology of the

Buzzard mocks to well within 1σ both before (blue, left) and after (red, right) the addition
of angular galaxy-lensing cross correlations. Indeed, the implied means of both Ωm and σ8
fall within 0.38σ of the truth, roughly the expected statistical deviation for these mocks
given that the Buzzard mocks cover 7 times the sky area of BOSS9. The Hubble parameter
H0 falls 0.5σ from truth, also not inconsistent with statistical scatter, especially since the
H0 constraint derives almost entirely from redshift space and previous tests on simulations
[82, 73] with far lower statistical scatter have shown that our model can recover unbiased
H0 in these cases. These results therefore validate our perturbation theory modeling of the
underlying gravitational nonlinearities studied in this work. In addition, including angular
CMB-lensing and galaxy cross correlations improves the σ8 constraint from these mocks by
close to 20%, and the Ωm constraint by 10% — even given the relatively noisy Planck lensing
data — demonstrating the potential gains from cross-correlations analyses like ours.

9We note that this scaling is not exact for a number of reasons, including that the redshift-space quadrupole
is roughly 25% larger than that in the BOSS data, and therefore noisier than the covariance matrix we
use might imply, and that the lensing maps in the simulations are in principle “noiseless” and therefore
cosmic-variance dominated at all scales, unlike the Planck maps for which this is true only at large scales
(ℓ ≲ 150) — which are however the scales from which most of the σ8 constraint is derived.
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9.5.3 Systematics Checks and Analysis Setup

To check for non-cosmological contributions to the projected clustering in the BOSS galaxy
maps, we cross-correlate the z1 and z3 samples in both the NGC and SGC. Since these
maps are separated in redshift, with galaxy redshifts determined spectroscopically, in the
absence of systematics the cross-correlation signal should be dominated by the effects of
magnification. A similar test was conducted in ref. [119], who cross correlate the LOWZ and
CMASS samples (which were combined to form jointly form the z1 and z3 samples used
in this work) and find no significant evidence of correlations due to either systematics or
magnification bias. This is not true for the z1 and z3 samples, as we show in Fig. 9.5. This
apparent discrepancy could potentially be due to the fact that the BOSS systematic weights
were computed to normalize the angular distributions of LOWZ and CMASS individually
and account for effects like stellar density and seeing — however this re-weighting may not
be optimal for the combined sample, split by redshift, if the weights are not readjusted for
this purpose, as we show in Appendix H.2, particularly if the effects of the systematics are
redshift-dependent. Any such angular systematics can in turn correlate with the CMB κ map
and bias our results.

Concentrating first on the inset panels of Fig. 9.5 we see a very large cross-correlation at
ℓ < 50, that is inconsistent with the expected size of any magnification signal. In order to
match the amplitude seen at ℓ < 50 the slope of the number counts in the z3 slice would
need to be sµ ≈ 8, which would then result in a signal grossly inconsistent with the points
at ℓ > 50. Given the rapid drop in cross-power with ℓ we suspect this contamination may
be galactic in origin. To isolate ourselves from this effect, we have chosen ℓmin = 50 when
computing Cκg

ℓ (§9.2).
The second thing to note in Fig. 9.5 is the negative cross-correlation for 50 < ℓ < 200

in the SGC, with no such signal in the NGC. Such an anti-correlation is unlikely to arise
from magnification given reasonable slopes for the number counts, sµ. The signal is well
detected, statistically, and covers the whole range of scales where we expect significant S/N
in our cross-correlation signal. We do not know the cause of this anti-correlation, and we
are not certain that this systematic would correlate with the CMB lensing signal. Out of
an abundance of caution, and because the SGC contains relatively little statistical weight
overall, we choose to drop the lensing cross-correlation in the SGC from our data vector,
retaining only the NGC data.

It is worth noting10 that the LOWZ sample comprising most of the galaxies in z1 contains
early “chunks” in the NGC selected using a slightly different algorithm than later ones [300,
307]. These data could potentially have different systematics than the later chunks, and
indeed one of them was found to require corrections based on seeing. Simply masking these
data in the cross-correlation is not possible however, as they may represent a different subset
of galaxies than the full sample and our assumption that a single set of biases describes both
the redshift-space and projected clustering would be invalidated. In order to make use of
the publicly available clustering data released by the BOSS collaboration, including window

10We thank Ashley Ross for pointing out this potential source of systematics.
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Figure 9.5: The (angular) cross-power-spectra for the low (z1) and high (z3) redshift galaxy samples.
Since the two maps are disjoint in redshift, any signal should be dominated by magnification of the
higher redshift sample (solid lines). The main panel shows the cross-correlation in the NGC (blue)
and SGC (orange) respectively, while the inset shows a zoom-out on the y-axis to capture the large
signal seen at ℓ < 50. The dotted lines show the size of the magnification bias predicted for sµ ≈ 8.

functions and mocks, thus depends critically on the collaboration’s determination that the
combined sample is sufficiently uniform after the corrections they performed [300, 307].

As an additional check11 we cross-correlated a map constructed from the systematics
weights applied to the galaxies with the Planck κ map. In principle there should be no
correlation, but we find something small but non-zero for both z1 and z3. This must arise
due to correlations between signal, foregrounds or noise patterns in the κ map that correlate
with the inputs from which the systematics weights are derived (for the BOSS CMASS sample
these were stellar density and seeing, no such weights were applied for LOWZ [300]). The
measured correlation is about an order of magnitude lower than the cross-correlation signal
between galaxy density and κ, so any error in the weights would have to be very significant
to make a large impact on our results.

As a last test we cross-correlated a map of extinction [315] against each of our galaxy
overdensities in the NGC and the Planck κ map. Since the extinction map used to perform
magnitude corrections is tracing both galactic and extragalactic structure [216, 425], it
is possible that incorrect extinction corrections may cause artificial correlation between
galaxy overdensity and κ. Assuming the projected galaxy over-density receives an additive

11We thank Anton Baleato Lizancos for suggesting this test.
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Pℓ, ξ
rec
ℓ Pℓ, ξ

rec
ℓ , Cκg

ℓ Planck
ln(1010As) 2.83± 0.11 2.75± 0.11 3.044± 0.014

Ωm 0.3032± 0.0084 0.3001± 0.0078 0.3153± 0.0073
H0 [km/s/Mpc] 69.21± 0.78 69.21± 0.77 67.36± 0.54

σ8 0.743± 0.043 0.707± 0.035 0.8111± 0.0060

Table 9.3: Cosmological constraints from fitting the full BOSS RSD+BAO data, with and without
cross correlations with CMB lensing from Planck in the Northern Galactic Cap. The corresponding
constraints from Planck are shown as comparison.

contribution proportional to the extinction, we find that the galaxy autospectrum receives
a bias due to extinction that should be well-below the percent level, in agreement with
the finding of the regression analysis by the BOSS team that established no correlation of
pixelized galaxy density with extinction value (and hence no need to include extinction as
a contributor to the angular systematics weights [307, 300]), though those tests were done
on the LOWZ and CMASS samples individually not the shuffled z1 and z3 samples. On
the other hand, while our measurements are noisy, we find that the galaxy-κ cross spectrum
could be biased by up to a few percent from the extinction component in the observed galaxy
field alone, even before taking into account the effect it has on the lensing estimator. If
present, such a correction would constitute a significant fraction of our error budget, since
our mock tests show that the z3 bin alone should give us close to 5% constraints on σ8.
However, we also find that our results are largely insensitive to changing the MV κ map
for the SZ-deprojected map, which should have larger contributions from galactic emission
and CIB and thus suggests that any such bias is small. In any case, while such a bias
would still be subdominant to our statistical uncertainty in this work, this test demonstrates
that cross-correlation analyses can require more stringent foreground mitigation than each
experiment individually.

9.5.4 ΛCDM Constraints from Full Sample

Table 9.3 and Figure 9.6 shows the cosmological constraints obtained using the fiducial setup
described in the previous sections, which includes RSD and BAO from the full BOSS sample,
with and without additional information from cross-correlations with CMB lensing in the
Northern galactic cap, as compared to constraints from Planck. The redshift-space only
results are essentially identical to those recovered in ref. [73] and while lower in amplitude are
consistent with Planck constraints; we refer the reader to that work for further discussion of
the information contained within RSD-only fits. As was seen in our mock analysis, adding in
Cκg
ℓ mainly serves to to tighten constraints on the amplitude σ8, with slight improvement in

the Ωm constraint as well due to degeneracy breaking. Including lensing cross correlations in
our analysis also decreases the mean σ8 to 0.707±0.035, in roughly 3σ tension with Planck and
close to 1σ below the constraints from redshift-space alone. In terms of the S8 = σ8(Ωm/0.3)

0.5
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Figure 9.6: The marginalized posteriors for the cosmological parameters from our analyses, compared
to Planck (grey contours). The blue shaded contours show constraints including only the RSD and
BAO data, the other contours include the CMB lensing cross-correlation. The orange contours
include the full range of Cκgℓ , the green contours show the effect using the SZ-deprojected Planck
lensing map and the red contours illustrate the effect of dropping the lowest ℓ point Cκgℓ .

parameter best-probed by weak lensing, our analysis finds S8 = 0.707± 0.037, compared to
S8 = 0.747± 0.047 from redshift-space data alone. Adding in lensing data leads to fractional
improvements in the S8 constraint greater than improvements in the σ8 constraint due to
degeneracy breaking; however, it is worth noting that even after including Cκg

ℓ our σ8 and
Ωm constraints remain slightly positively correlated due to the relative dominance of the
redshift-space data. Future surveys where the lensing-galaxy cross correlation can be better
measured should lead to further degeneracy breaking and further narrow constraints on the
shape (Ωm, H0) of the power spectrum by better measuring its amplitude (σ8).

We can perform a few simple tests within the fiducial setup to ensure the robustness of
our analysis and data. Our results are almost unchanged if we swap out the fiducial lensing
map for the tSZ-deprojected one, also provided by the Planck collaboration: σ8 changes to
0.699 ± 0.036, a 0.2σ shift. This is a valuable cross check because the amount of cosmic
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Figure 9.7: Our marginalized constraints on σ8 as a function of the minimum ℓ included in the
lensing-galaxy cross-correlations, ℓmin. Note that we quote the minimum ℓ, which starts at ℓ = 50,
rather than the band center which would be larger by ∆ℓ/2 = 15. The shaded grey band with
dashed line shows the result from just the BAO+RSD data.

infrared background and galactic foregrounds in the tSZ-deprojected maps is expected to be
larger than in the (default) minimum variance map. We can also restrict our constraints to
smaller scales, or larger ℓ, since our systematics checks showed nontrivial large-scale angular
systematics in the galaxy maps. As shown in the red contour in Figure 9.6, dropping the
lowest ℓ bin shifts the σ8 constraint upwards to 0.726 ± 0.037, representing a more than
0.5σ shift. Shifts of this magnitude are not unexpected when dropping data points, simply
due to statistical fluctuations, though we note that the change in constraining power from
dropping this one point is relatively meager. Figure 9.7 shows the effect of removing lensing
data up to some scale ℓmin. Removing the lowest ℓ’s reduces the statistical tension with
the redshift-space, with mean σ8 steadily rising with ℓmin. Much of this shift is because
the most statistically constraining κg data are the low ℓ values (due to a combination of
observational and theoretical errors), and thus the joint fit becomes increasingly dominated
by the RSD+BAO, with increased error bars to match. However a part of the shift to larger
σ8 is due to the κg pulling upwards.

Our analysis in this work is relatively constrained to work primarily at large angular
scales. We have been very conservative in our scale cuts when modeling Cκg

ℓ , fitting to the
same implied kmax as the redshift-space data which exhibit far more onerous nonlinearities
due to small-scale velocities like fingers-of-god. More importantly, the Planck κ map is
signal dominated only at the lowest ℓ that we fit, significantly limiting our ability to better
constrain the onset of nonlinearities in the data. Better data from current and planned
CMB surveys will significantly expand the available information towards high ℓ, allowing us
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Figure 9.8: The marginalized posteriors for the cosmological parameters from our analyses of the z1
(left) and z3 (right) samples. The blue contours show the results using just the redshift-space data
(i.e. BAO+RSD) while the orange contours include the galaxy-lensing cross-correlation.

to break bias degeneracies and check for systematics by comparing constraints from large
and small scales. In order to maximally leverage this new information we will need to
either validate PT models to beyond the conservative scales we use in this work or, more
ambitiously, extend our modeling to smaller scales using simulations-based techniques. A
particular class of these techniques, the so-called “hybrid EFT” (HEFT) approaches [244,
207, 432, 156], show particular promise because they share an identical set of clustering
parameters with LPT, to which they reduce on large scales, while employing N-body dynamics
to accurately predict clustering to the halo scale through a resummation scheme based on
LPT. By extending perturbative bias modeling into the regime where dynamical nonlinearities
are non-negligible, HEFT has the potential to break bias degeneracies and significantly tighten
cosmological constraints from lensing-galaxy cross correlations, as we discuss in more detail
in Appendix H.3.

9.5.5 Consistency Tests

Our main result — ΛCDM constraints from the combination of two- and three-dimensional
data — is not only in strong tension with Planck, but also in some tension with constraints
from redshift-space data only. Our goal in this subsection is to investigate the source of this
tension through considering subsamples of the BOSS data and by testing the consistency of
amplitudes between RSD and lensing.

Fig. 9.8 shows the marginal posteriors for the cosmological parameters, with and without
lensing, for the two BOSS redshift slices z1 and z3. Within each subsample, the redshift-space
data (including BAO) tightly constrain Ωm and h while the lensing data mainly sharpen
constraints on σ8. Comparing results with and without lensing, we see that σ8 is more-or-less
consistent with and without lensing in z3, but that the lensing data in z1 prefer lower σ8
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than RSD and BAO alone, producing visible shifts in both Ωm and, more significantly, in
σ8. It is worth noting that redshift-space only constraints on σ8 are highly consistent across
redshift bins (see ref. [73]) — these results therefore suggest that the downward shift in σ8
with the addition of lensing data are being driven chiefly by the z1 sample.

As a further test, we can free the lensing amplitude cκ = (1 + γ)/2 from its prediction
within general relativity and constrain it directly from the data. Measuring cκ acts both as
a test of general relativity through measuring the gravitational slip γ and as a consistency
test between the redshift-space and lensing data. Figure 9.9 shows the marginal posterior
on cκ. The blue line shows the combined constraint from the high and low redshift samples
while orange and green lines show z1 and z3, respectively. The combined-sample constraint
is γ = 0.74+0.17

−0.21, with the z1 sample giving γ = 0.66+0.17
−0.37 and z3 giving γ = 0.94+0.28

−0.36. In line
with our σ8 results from the redshift subsamples, cκ constraints from z3 are consistent with
the prediction from general relativity, while those from z1 show a mild preference for lower
values, with a peak approximately 25% below unity. This implies that the lensing-galaxy
cross correlation in the latter sample is roughly 25% lower than might be expected from
the redshift-space data within ΛCDM, consistent with expectations based on Figs. 9.8 and
9.1. Nonetheless, our findings for both redshift slices and the combined sample are broadly
consistent with the general-relativistic prediction of γ = 1, though they are again suggestive
that lensing in the lower-redshift slice is driving our low σ8 constraint. It is worth noting
that, while it is possible to suppress the weak lensing amplitude relative to RSD via massive
neutrinos, the mean suppression for our combined sample would translate (§9.4.4) to a
neutrino mass fraction fν of roughly 30%, corresponding to Mν ≈ 4 eV, well above limits set
by ground-based experiments.

9.5.6 Comparison to Previous Results: When they go low, we
go...

Our results add to the growing number of measurements at “low z” that have less clustering
than inferred by Planck within the context of ΛCDM. This is typically summarized in terms
of S8 = σ8(Ωm/0.3)

0.5. In terms of this statistic we find S8 = 0.707± 0.037 for the combined
sample, lower than Planck’s S8 = 0.832± 0.012. To further illustrate the tension, Figure 9.10
compares predictions for the CMB temperature and lensing anisotropies conditioned on our
fiducial cosmological constraints and our redshift-space-only constraints compared to data
from WMAP and Planck. Even when only redshift-space data are included the models with
high likelihood underpredict both CMB statistics, and adding in cross correlations with
lensing puts the best-fit models in strong tension with the CMB both by lowering the mean
amplitude and tightening constraints.

We are not the first to study the combination of CMB lensing from Planck and galaxy
clustering from BOSS. A number of authors have investigated cross correlations between
the 2D (projected) galaxy clustering with lensing. Among the earliest was ref. [294], who
found within the best-fit Planck 2013 cosmology that the CMASS-lensing cross correlation
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Figure 9.9: Marginal posterior on the parameter, cκ = (1 + γ)/2, by which the galaxy-lensing
cross-spectra are scaled in models with gravitational slip (§9.4.4). The blue line shows the combined
constraint from the high and low redshift samples while orange and green lines show z1 and z3,
respectively. All of the constraints are consistent with the GR prediction of γ = 1, though the
lower redshift sample has lower Cκgℓ than expected at modest significance. We put a prior that
0.2 < γ < 1.8, so values of cκ below 0.6 are not allowed. The z1 sample hits this prior at the low
end.

amplitude was 0.754± 0.097 times the expected value. Ref. [346] studied the galaxy-galaxy
and galaxy-CMB lensing cross correlations using the BOSS LOWZ and CMASS samples
assuming the Planck 2015 [284] cosmology, finding correlation coefficients of rcc = 1.0± 0.2
and 0.78±0.13, respectively, on scales with projected radii larger than 20h−1Mpc; in addition,
cross-correlating with galaxy shears from the Sloan Digital Sky Survey they found that the
amplitude of CMB lensing is reduced by a factor A = 0.63± 0.18 below angular separations
roughly corresponding to radial distances of 100h−1Mpc.

Varying cosmological parameters, ref. [119] investigated the cross correlations of both
BOSS galaxies and quasars, again finding that analyzing only the relatively low redshift
galaxy-galaxy and galaxy-lensing cross correlations yields lower power spectrum amplitudes
ln(1010As), with a mean of roughly 2.9, than when the CMB-lensing autospectra, which
predominantly probe matter clustering at z ≳ 2, are included, in which case the derived
amplitudes are consistent with Planck12. It should be noted that the low-redshift constraint
includes the (relatively) higher redshift BOSS quasars, whose cross-correlation amplitude

12We have inferred these numbers from the Figure 14 of ref. [119] since no tables with constraints for each
of these data combinations was provided.
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Figure 9.10: The predictions for the ΛCDM model conditioned on our full data set (green;
RSD+BAO+κ) or without the lensing (red; RSD+BAO) compared to the CMB angular power
spectra measured by Planck [286] and WMAP [175] (left) or the convergence auto-spectrum (CκκL ;
right). The shaded bands show the mean and ±1- and ±2-standard-deviation range for the model
predictions while the points with errors show the best-estimate, foreground cleaned temperature or
convergence power spectra from the CMB satellite missions.

with CMB lensing more closely matches the Planck prediction than either LOWZ and
CMASS; should the quasar data be dropped the galaxy-galaxy and galaxy-lensing data would
presumably prefer even lower σ8. Similarly, ref. [347] analyzed the cross-correlation with
LOWZ and CMASS and constrained the combination σ0.8

8 Ω0.6
m to be 0.9 ± 0.12 times that

predicted by Planck for both samples. None of the BOSS and Planck κ analyses above adopt
the full set of bias and dynamical contributions to galaxy clustering required by fundamental
symmetries as we do in this work and therefore do not exhaustively account for the possible
contributions to clustering in the quasilinear regime — they thus extract their amplitude
information from a different set of scales, with greater theoretical uncertainty; however they
are nonetheless suggestive (with relatively low significance) of a deficit in cross-clustering
power between lensing and galaxy clustering at low redshifts when compared to Planck due
to either unknown physics or systematics, as our more complete analysis finds at roughly 3σ
significance.

Previous authors have also studied the combination of three-dimensional BOSS galaxy
clustering and lensing analyzed in this work. These works have typically employed the so-
called EG statistic, a test of general relativity proposed in ref. [437]. In that work, the linear
theory of matter and galaxy clustering are combined with general-relativistic considerations to
relate the ratio of galaxy-lensing cross correlations and redshift-space clustering anisotropies
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to fundamental quantities; schematically,

ÊG ∼ Cκg
ℓ

P2

,
〈
ÊG

〉
=

(1 + γ)Ωm

2f(z)
. (9.15)

Assuming Ωm is known, measuring this ratio in galaxy-lensing cross correlations constrains
the gravitational slip, as we have done above. Previous works leveraging BOSS redshift-space
clustering and CMB lensing arrived at mixed results; ref. [294] found lensing to be 2.6σ
lower than that predicted for CMASS while ref. [348] found both CMASS and LOWZ to
be in excellent agreement with general relativity. It should be noted however that, unlike
in our approach, using EG to constrain gravity requires working within linear theory with
scale-independent bias — the state-of-the-art in analyses such as ref. [348], who compare
compute this ratio using a combination of BOSS galaxies, CMB lensing and cosmic shear
surveys, account for the neglected gravitational nonlinearities by calibrating to simulations. In
addition, the EG statistic is defined to be a single number computed by combining summary
statistics of galaxy clustering and lensing evaluated at different scales and redshifts, reliant
on the acceptability of the linear-theory prediction at a single redshift across these scales and
redshifts in order to be compared to Equation 9.15. By comparison, our approach is able to
constrain the (scale-independent) gravitational slip leveraging both linear and quasilinear
scales while simultaneously marginalizing over cosmological parameters directly, confirming
the result of ref. [294] that the lensing-galaxy cross correlations measured from BOSS and
Planck are lower than their observed redshift-space distortions imply, particularly for z1,
though with only modest significance.

Beyond those combining BOSS and Planck there have been a wealth of recent results
obtaining cosmological constraints from weak lensing and its cross correlation with galaxy
clustering, most of which find S8 to be lower than Planck but higher than that implied by our
analysis, as shown in Figure 9.11. In the case of weak lensing only, the DES Y3 shear-only
correlation function [13, 327] and harmonic space analyses [118] find S8 = 0.772 ± 0.017
and S8 = 0.784 ± 0.026 respectively, 2σ lower than Planck but also in tension with our
fiducial constraints at the 2 σ level, though the tension is slightly reduced if we instead
compare to the fiducial scale cut results instead of the ΛCDM optimized setup. A recent
analysis of the KiDS-1000 data [386] similarly found S8 = 0.748+0.021

−0.025, in slightly more tension
with Planck but slightly closer to our result. Earlier analyses of cosmic shear in HSC [170]
and CFHTLenS [168] paint a similar picture. Adding in galaxy clustering from non-BOSS
surveys, the DES Y3 “3× 2” analysis finds S8 = 0.776± 0.017 [2] and, dropping the weak
lensing autocorrelation, a cross-correlation of unWISE-selected galaxies with Planck lensing
[208] found S8 = 0.784± 0.015, while using luminous red galaxies selected from DECALS
ref. [417] found S8 = 0.73± 0.03. Our constraints are in modest (≲ 2σ) tension with most
of these cross-correlations analyses except for this last work, for which S8 is just shy of
1σ higher than our result. A combined analysis of cosmic shear, CMB lensing and galaxy
clustering data, mostly sensitive to growth between 0.2 < z < 0.7, by ref. [143] found
S8 = 0.7781±0.0094. The combination of these previous results (many of which probe similar
redshift ranges to this work) could be an indication that the BOSS galaxy and Planck CMB
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Figure 9.11: A summary of recent S8 constraints. The different colored points indicate different
combinations of data that have been used in the constraints. In particular, we include constraints
from the CMB (blue), cosmic shear (orange, γγ), projected galaxy clustering and galaxy-galaxy
lensing (green; δgδg + γδg), projected galaxy clustering and CMB lensing (red; δgδg + κδg), a
combination of all of these (purple), redshift space clustering in various forms (brown), and the
combination of data used in this work (black). As in Figure 9.12, we have limited ourselves to
analyses using large scales. Despite the different models and statistics being used in these analyses,
they all yield constraints below those from the CMB.

κ cross correlation measurement may be contaminated by some yet-unidentified foreground
or systematic, since in the absence of such an effect we would be probing similar epochs of
structure formation, though more concrete conclusions regarding these tensions will likely
have to wait for upcoming CMB lensing measurements from e.g. ACT, whose instrument
noise on the scales we study will be significantly reduced.

The fact that Cκg
ℓ has an amplitude close to 20% lower than implied by redshift-space

clustering hints that there may be an unknown systematic leading to internal inconsistency
within the data. The latter measurement is by now under excellent theoretical control and,
in addition to our results, recent analyses of BOSS by refs [438, 282] using the redshift-space
galaxy 2-point function in configuration and Fourier space give σ8 = 0.766 ± 0.055 and
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CMB Planck TT,TE,EE+lowE+κκ Aghanim et al. (2020d)

CMB ACT+WMAP Aiola et al. (2020)

zeff = 0.38 BOSS, Planck D(z), f(z) Alam et al. (2017)

zeff = 0.51 BOSS, Planck D(z), f(z) Alam et al. (2017)

zeff = 0.70 eBOSS LRG, Planck D(z), f(z) Alam et al. (2020)

zeff = 0.85 eBOSS ELG, Planck D(z), f(z) Alam et al. (2020)

P` BOSS sim. based Kobayashi et al. (2021)

P` +B BOSS Philcox & Ivanov (2022)

ξ` BOSS Zhang et al. (2022)

P` eBOSS Ivanov (2021)

ξ` + P` BOSS This work

ξ` + P` + κδg BOSS+Planck This work

Figure 9.12: A summary of σ8 constraints from recent CMB measurements (blue) compared to
those made using template based (cyan) and full-shape (brown) fits to anisotropic redshift space
correlation functions (ξℓ), power spectra (Pℓ), and bispectra (B), as well as including Cκg in this
work (black). For the purposes of this figure, we have limited ourselves to analyses that focus on
large scales, although we provide a more complete overview in Section 9.5.6. For the template
based fits, we quote “consensus” constraints, which are weighted averages of multiple analyses.
These template based fits constrain fσ8(zeff) directly, so we have assumed the best fit cosmology
from [286] to compute D(zeff) and f(zeff) in order to convert to σ8(z = 0). The template based
fits are largely more consistent with the CMB constraints, other than the eBOSS ELG point. The
full-shape analyses yield lower σ8 values than the template based fits and the CMB, and are relatively
consistent despite using significantly different models and statistics. The inclusion of the CMB
lensing data in our analysis tightens our σ8 constraint by partially breaking the degeneracy between
Ωm and σ8, but also drives it significantly lower than our RSD-only fits.
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0.737+0.040
−0.044

13 both in excellent agreement with our results, as shown in Figure 9.12. These
recent analyses employ improved models of galaxy clustering compared to the earlier (official)
results of the BOSS collaboration, marginalize over cosmological parameters like Ωm and H0

beyond the growth rate f(z), and also correct for errors in the window-function normalization.
Together, this new generation of BOSS constraints confirms that there is a deficit of power in
Cκg compared to that inferred from the velocity-induced anisotropy in galaxy clustering14,
though at lower significance given that redshift-space constraints on σ8 are considerably
weaker due to bias degeneracies. Unlike in the case of weak lensing, however, redshift-space
analyses like the above are able to independently constrain parameters like Ωm and σ8
instead of highly degenerate combinations like S8. It is worth noting that analyses of BOSS
galaxy clustering using N-body based emulators [204, 434, 430], or similar simulation based
techniques [210], also return constraints very close to our redshift-space result, with smaller
error bars, though we caution that these constraints rely on far more restrictive assumptions
about the small-scale behavior of galaxy clustering and thus have a larger systematic error.
A more theoretically robust alternative for improving cosmological constraints from galaxy
clustering is to also perturbatively model higher n-point functions; when the bispectrum
is taken into account, ref. [282] find that their σ8 constraint tightens to σ8 = 0.722+0.032

−0.036, a
similar gain in constraining power to the addition of lensing information seen in this work.
The bispectrum in principle breaks the fσ8 degeneracy in galaxy clustering and can provide
σ8 information beyond that in the velocities; curiously, this nonlinear information also prefers
(slightly) lower σ8 than the linear RSD alone. In discussing ref. [282] here and above we have
used their results with the spectral index ns fixed to better match the analysis setup employed
in this work—freeing ns in our analysis yields verys similar redshift-space only constraints to
that work, while adding in lensing data lowers σ8 by about 1σ as in the fixed ns case, as we
show in Appendix H.4. Higher-order statistics and cross correlations with nonlinear matter
through lensing yield competitively tight constraints on cosmological parameters, and will
provide complimentary clustering information in upcoming surveys useful both as internal
consistency checks and probes of new physics beyond the standard, linear redshift-space
distortions traditionally probed by spectroscopic surveys.

9.6 Conclusions

The two and three dimensional clustering of galaxies measured by spectroscopic surveys offer
complementary cosmological information: the latter encodes the shape of the primordial power
spectrum, distance information through baryon acoustic oscillations, and cosmic velocities
through redshift-space distortions, while the former, when in combination with probes of

13We have adopted their constraints using the public power spectra modeled with fixed ns, for better
comparison with our analysis.

14The σ8 constraints from eBOSS ELG’s in refs. [184, 8] are notably lower than the others shown in
Figure 9.12, but the strong tension with other measurements at similar redshifts, including eBOSS LRG’s,
suggest that this may be due to systematics (e.g. the large redshift range fit).
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weak lensing like the CMB, probes the amplitude of matter fluctuations through their induced
Weyl potential. In this chapter we lay out a formalism to jointly analyze these two distinct
probes in the language of effective perturbation theories, presenting a proof-of-principle
analysis using Lagrangian perturbation theory to model publicly available data from galaxies
in the BOSS survey [101, 7] and CMB lensing data from the Planck satellite [287]. To our
knowledge this is the first such joint analysis to use a consistent theoretical model valid
into the quasilinear regime taken all the way to the data (2-point functions), rather than
utilizing linear theory and compressed statistics derived from it. This is significant because
perturbation theory allows for rigorous and systematic modeling of structure formation on
large scales scales with minimal theoretical assumptions and will be invaluable to distinguish
true cosmological signals from either theory or data systematics for current and upcoming
surveys.

A particular goal of this work has been to set up this analysis in a theoretically well-
motivated way (§9.4). To this end we have, for example, been careful in our perturbative
treatment of neutrinos, which affect galaxy-galaxy and galaxy-matter spectra in meaningfully
different ways, and we introduced redshift-dependent weights to the galaxy-lensing cross-
correlations measurements to ensure they probe clustering at the same effective redshift as
the three-dimensional power spectrum. As a test of our formalism, we validate our various
theoretical choices and approximations using lightcone mocks of BOSS galaxies (§9.3) based
on the Buzzard simulations [107], showing that our model is able to recover the “truth” to
within the statistical scatter expected from the volume of these simulations (§9.5.2).

The data consist of 1,198,006 galaxies covering 25% of the sky (10,252 sq.deg.) [300], and
the Planck lensing map covering approximately 60% of the sky, though for cross-correlation
with the Planck lensing maps we utilize only the 7,143 sq.deg. in the NGC. The Planck
lensing map is signal dominated near ℓ ≈ 40 [287]. We use the low- (z1; 0.2 < z < 0.5) and
high-redshift (z3; 0.5 < z < 0.75) samples based on spectroscopic redshifts as defined by
the BOSS collaboration [7]. As also discussed in ref. [73], while making new galaxy samples
and measurements more tailored to our analysis is in principle possible, doing this work —
including re-making enough mock measurements to estimate the covariance matrix — would
require resources beyond the scope of this project. We therefore leave data-side optimization
of this analysis to future work.

The main results of our analysis, constraints on Ωm, H0 and σ8 based on the combination
of BOSS galaxy clustering and Planck CMB lensing, are described in §9.5. We perform
systematics tests of the galaxy and lensing maps in §9.5.3, finding that the systematics weights
for the BOSS galaxies would have to have left significant traces of the mitigated systematics
in the maps to have even few-percent effects on the cross-correlation amplitude, Cκg

ℓ . Cross
correlating the galaxy and lensing maps with maps of extinction, an effect not included in
the systematics weights for BOSS galaxies due to its relatively small effect, indicates that
extinction errors also have a small impact at the at-most few-percent level in cross correlations.
We also cross-correlate the non-overlapping low and high redshift (z1, z3) samples, finding
spurious large scale correlations in the lowest ℓ bins and in the SGC — out of an abundance
of caution we therefore drop these data points from our main analysis.
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Our main result, using the full three-dimensional galaxy clustering data from BOSS and
CMB lensing in the NGC, is summarized in Table 9.3 and Figure 9.6. While the three-
dimensional clustering data including power spectra and reconstructed correlation functions
strongly constrain Ωm, H0 through the shape of the linear power spectrum, including lensing
information through Cκg

ℓ sharpens the amplitude (σ8) constraint by roughly 20% and, since
lensing probes this amplitude multiplied by the matter density, also somewhat sharpens the
constraint on Ωm. Adding the lensing data, which are substantially lower on large scales than
the redshift-space data might predict (Fig. 9.1), has the effect of lowering both, though Ωm

decreases by less than half a sigma and our model still predicts an acoustic scale (∼ Ωmh
3)

highly consistent with the narrow range allowed for by Planck. On the other hand, including
lensing we constrain σ8 = 0.707 ± 0.035, in roughly 3 σ tension with Planck constraints,
and an implied lensing amplitude, S8, roughly 2σ lower than cosmic shear analyses, though
in good agreement with another effective-theory based analysis of BOSS galaxy clustering
including the bispectrum.

Looking at subsamples of our data separately we find that the drop in σ8 is driven
primarily by the low redshift sample z1 (§9.5.5). By freeing the gravitational slip γ, we find
for that sample that the implied ratio of the Weyl to Newtonian potentials cκ = (1 + γ)/2
is roughly 20% lower than predicted by general relativity, but at less than 2σ significance
(Fig 9.9), and indeed we do not detect any deviation from unity for this ratio at more than 2 σ
significance in either the redshift slices separately or in combination. It is worth noting that
our ability to leverage the relative amplitudes of galaxy clustering and galaxy-lensing cross
correlations has implications beyond gravitational slip. For example, massive neutrinos will
tend to suppress the latter relative to the former, though at a level far below the current level
of constraints. Conversely, much recent attention has been paid to whether selection-induced
anisotropic bias can be a significant contaminant of the RSD signal [176, 259]. Such an
effect would add a term bzzszz, where szz is the component of the shear tensor along the
line-of-sight, to the bias expansion (at leading order) such that the linear galaxy overdensity
in redshift-space becomes

δg,s(k, z) =

[
1 + b1 −

bzz
3

+ (f(z) + bzz)µ
2

]
δm(k) + · · · , (9.16)

leading to an exact degeneracy between bzz and the amplitude of the RSD anisotropy, and to
biases in values of σ8 inferred from redshift surveys. However, this degeneracy can be broken
by the inclusion of lensing cross correlations, which measure σ8 through the µ ≈ 0 component;
together with spectroscopic clustering measurements, which also determine Ωm and thus
f(z), this combination allows for a clean measurement of bzz and σ8. Indeed, since Figure 9.9
implies that lensing and redshift-space clustering amplitudes are roughly in agreement, bzz
at least cannot be of order unity for either redshift slice. Future surveys will significantly
improve our ability to exploit this synergy between lensing and RSD.

While our results are sufficiently constraining to considerably sharpen the tension in σ8
between the CMB and LSS in ΛCDM, we still remain limited by the data that we use and
by our modeling. Luckily, we anticipate rapid progress in both directions in the very near
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future. The galaxy maps are already sample variance dominated on the large scales from
which we derive most of our cosmological information, so the next major improvement in
errors at intermediate ℓ will come from CMB lensing maps with lower noise than Planck.
Redshift-space clustering measured from DESI will also dramatically improve over those we
used here. Using maps optimized for cross-correlations, with careful attention to foreground
cleaning or hardening, derived from more sensitive and higher angular resolution ground-based
experiments will dramatically lower the uncertainties of Cκg

ℓ . These lower-noise measurements
should allow us to better distinguish between the shapes of various nonlinear contributions
to Cκg

ℓ even on the scales we have analyzed in this work. More ambitiously, as discussed
in Appendix H.3, recent work extending the LPT modeling in real space to more nonlinear
scales using hybrid N-body models [244] can allow us to self-consistently double the ℓ reach of
our formalism by switching the perturbative calculations of Cκg

ℓ for an emulator (e.g. [207]).
Combined with improved modeling future experiments will improve the constraints on the
power spectrum amplitude, σ8, and allow us to check the consistency between constraints
derived from large and small scales, even from within the same and related theoretical models.
The well-motivated and tested theoretical framework outlined herein should be ideal for such
future work.

In terms of improvements in the input maps, we note that reducing systematics at low ℓ
is particularly important for improving constraints. Scale-dependent bias and astrophysical
effects become increasingly important at small scales (larger k) and having sufficiently
constraining data over a range of scales is crucial for constraining departures from linearity
and breaking degeneracies between bias and effective-theory parameters. While upcoming
CMB experiments will straightforwardly reduce the noise in CMB lensing measurements on
quasilinear scales (intermediate ℓ), there is also much to be gained by ensuring that both the
galaxy and CMB lensing data are uncontaminated on large scales.
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Appendix A

Introduction

A.1 Eulerian and Lagrangian Kernels to Third Order

For the Eulerian kernels we have [40] for the density

F1(p1) = 1

F2(p1,p2) =
5

7
+

1

2

(p1 · p2

p21
+

p1 · p2

p21

)
+

2

7

(p1 · p2)
2

p21p
2
2

. (A.1)

and velocity

G1 = 1

G2(p1,p2) =
3

7
+

1

2

(p1 · p2

p21
+

p1 · p2

p21

)
+

4

7

(p1 · p2)
2

p21p
2
2

. (A.2)

The Lagrangian kernels are given by (k =
∑

i pi) [231]

L1(p1) =
k

k2

L2(p1,p2) =
3

7

k

k2

(
1− (p1 · p2)

2

p21p
2
2

)

La3(p1,p2,p3) =
5

7

k

k2

(
1− (p1 · p2)

2

p21p
2
2

)(
1−

((p1 + p2) · p3

|p1 + p2|p3

)2
)

+
1

3

k

k2

(
1− 3

(p1 · p2)
2

p21p
2
2

+ 2
(p1 · p2)(p2 · p3)(p3 · p1)

p21p
2
2p

2
3

)
+ k× T (p1,p2,p3). (A.3)

Here T is the transverse piece of the third-order displacement, which we will not need explicitly
in the following. It is convenient to define the symmetrized kernel L3 =

1
3
(L3(123)+L3(231)+

L3(312)). The third-order EPT kernels can be computed by combining the Lagrangian ones
so we will not independently list them here (see e.g. [148] for an explicit expression).
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A.2 Equivalence of Green’s Function and Power Series

Solution in EdS

In this section we will derive the second-order kernel F2 using the Green’s function approach
and show that it recovers the same solution as the power series ansatz described in the text.
See refs. [268] and [290] for similar discussions in the context of EPT and LPT.

To begin we can use the nonlinear continuity equation to eliminate θ, since1

θ = −∂δ
∂τ

−
∫

p

α(p,k− p) θ(p)δ(k− p).

From this we can rewrite the Euler equation as

∂2δ

∂τ 2
+H∂δ

∂τ
− 3

2
H2Ωmδ = −

∫

p

α(p,k− p)
(
θ̇(p)δ(k− p) + θ(p)δ̇(k− p)

+Hθ(p)δ(k− p)
)
+

∫

p

β(p,k− p)θ(p)θ(k− p).

For simplicity in the following we will work to second order only and neglect any higher-
order terms. In order to proceed we will make use of the linear theory expressions

δ(1) = D(τ)δ0, δ̇(1) = −θ(1) = f(τ)H(τ)D(τ)δ0

θ̇(1) = −H(τ)θ(1) − 3

2
H2(τ)Ωm(τ)δ

(1) = f(τ)H2(τ)δ(1) − 3

2
H2(τ)Ωm(τ)δ

(1); (A.4)

Using this a bit of algebra gives

∂2δ

∂τ 2
+H∂δ

∂τ
− 3

2
H2Ωmδ =

(3
2
H2Ωm + f 2H2

)
D2

∫

p

α(p,k− p) δ0(p)δ0(k− p)

+ f 2H2D2

∫

p

β(p,k− p) δ0(p)δ0(k− p).

Notice that the time- and scale-dependence are decoupled, as expected.
In an EdS universe we have f,Ωm = 1, D = a and H = aH = a−1/2, and the time

evolution simplies dramatically. Defining the retarded Green’s function

G(τ, τ ′) =
D(τ)D−(τ

′)−D−(τ)D(τ ′)

Ḋ(τ ′)D−(τ ′)− Ḋ−(τ ′)D(τ ′)
,

where dots denote conformal time derivatives, we have that in this case

G(τ, τ ′) =
2

5

(
a−1/2(τ ′)a(τ)− a2(τ ′)a−3/2

)
(A.5)

1In what follows we will ignore time and wavenumber labels for δ and θ and write
∫
p
=
∫
d3p/(2π)3 for

brevity.
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and, integrating, we get

δ(2)(k, τ) =

∫
dτ ′ G(τ, τ ′)F [δ(1), θ(1)]

=
2

7
D2

∫

p

(5
2
α(p,p− k) + β(p,k− p)

)
δ0(p)δ0(k− p)

≡ D2

∫

p

F2(p,k− p)δ0(p)δ0(k− p) (A.6)

where F2 is as defined in the previous appendix.
The derivation of the Lagrangian equivalent L2 involves the exact same integral∫
dτ ′G(τ, τ ′)D2(τ) but is even more straightforward since it doesn’t involve any time deriva-

tive conversions. Following the discussion above Equation 1.26 we have for the second-order
equations of motion

∂2Ψ
(2)
i,i

∂τ 2
+H

∂Ψ
(2)
i,i

∂τ
− 3

2
H2ΩmΨ

(2)
i,i = −3

2
ΩmH2

(1
2

(
Ψ

(1)
i,i

)2 − 1

2
Ψ

(1)
i,jΨ

(1)
j,i

)

∂2(∇×Ψ(2))

∂τ 2
+H∂(∇×Ψ(2))

∂τ
= 0.

The right-hand side of the top equation has the same time dependence within EdS as the
second-order overdensity, H2D2, so we can write integrate it to give

Ψ
(2)
i,i = − 1

2!

3

7

((
Ψ

(1)
i,i

)2 −Ψ
(1)
i,jΨ

(1)
j,i

)

and, since no vorticity is generated at second order, we have

Ψ
(2)
i (k, τ) =

i

2

∫
d3p

(2π)3
L
(2)
i (p,k− p) (A.7)

where L
(2)
i is as defined in the previous appendix. For a related discussion see ref. [290].

A.3 Lagrangian Correlators

The goal of this section is to provide a definitive list of all the correlators in Lagrangian
space required to compute various two-point functions within LPT, as discussed in both
the Introduction and the body of the dissertation, correcting for various typos that have
accumulated in the literature over time. Following [58] we use the notation

C
n1n2(m1m2...)
i1i2...

= ⟨δn1
1 δ

n2
2 ∆

(m1)
i1

∆
(m2)
i2

...⟩ (A.8)

where the numbers in parentheses denote the order of the Lagrangian solution and the ellipsis
denotes further powers of ∆. The same quantities with parentheses omitted imply the sums
to all orders, e.g. C00

ij = C
00(11)
ij + C

00(22)
ij + C

00(13)
ij + C

00(31)
ij + ... to quadratic order.



APPENDIX A. INTRODUCTION 258

In the below we will sometimes make use of the notation

ξℓn(r) =

∫
dk

2π2
k2+njℓ(kr)Plin(r) (A.9)

for generalized linear correlation functions as defined in ref. [320]. In addition, in the below
we will express many integrals in the form of PT kernels Rn(k) and Qn(k). These were
originally defined in ref. [229] to describe correlators between Lagrangian bias operators Oi(q)
and displacements Ψ(m)) and can be inferred from the definitions below; readers interested in
further details should consult that authoritative work. Expressions for these kernels in terms
of the above generalized correlation functions can be found in Appendix B.5.

A.3.1 Linear Correlators

At linear order we have the correlators

Alin
ij (q) = ⟨∆(1)

i ∆
(1)
j ⟩ = X lin(q)δij + Y linq̂iq̂j

U lin
i (q) = ⟨δ1∆(1)

i ⟩ = U lin(q)q̂i

ξlin(q) = ⟨δ1δ2⟩. (A.10)

The scalar components are given by

X lin(q) =
2

3

∫
dk

2π2

[
1−

(
j0(kq) + j2(kq)

)
Plin(k)

]

Y lin(q) = 2

∫
dk

2π2
j2(kq)Plin(k)

U lin(q) = −
∫
dk k

2π2
j1(kq)Plin(k)

ξlin(q) =

∫
dk k k2

2π2
j0(kq)Plin(k). (A.11)

A.3.2 1-loop Terms

At next to leading order there are many terms, which we now list:

1. Matter Terms:

• A1-loop
ij = A

(22)
ij + A

(13)
ij + A

(31)
ij



APPENDIX A. INTRODUCTION 259

Defining as usual Aij = Xδij + Y q̂iq̂j:

X(22) =

∫
dk

2π2

9

98
Q1(k)

(2
3
− 2

3
(j0(kq) + j2(kq))

)

Y (22) =

∫
dk

2π2

9

98
Q1(k) 2j2(kq)

X(13) =

∫
dk

2π2

5

21
R1(k)

(2
3
− 2

3
(j0(kq) + j2(kq))

)

Y (13) =

∫
dk

2π2

5

21
Q1(k) 2j2(kq)

• Wijk = W
(112)
ijk + (211) + (121)

Defining W
(112)
ijk = V1(q̂iδjk + q̂jδik) + V3q̂kδij + T q̂iq̂j q̂k, we have2

V1 =

∫
dk

2π2
k−1

(
− 3

7
R1(k)

)
j1(kq) + S(q)

V3 =

∫
dk

2π2
k−1

(
− 3

7
Q1(k)

)
j1(kq) + S(q)

S =

∫
dk

2π2
k−1 3

7

(
2R1 + 4R2 +Q1 + 2Q2

)j2(kq)
kq

T =

∫
dk

2π2
k−1 − 3

7

(
2R1 + 4R2 +Q1 + 2Q2

)
j3(kq).

The above form can be rewritten using the identity j1(x)+ j3(x) = 5j2(x)/x to get

V1 =

∫
dk

2π2
k−1 3

35

(
− 3R1 + 4R2 +Q1 + 2Q2

)
j1(kq)−

T

5

V3 =

∫
dk

2π2
k−1 3

35

(
2R1 + 4R2 − 4Q1 + 2Q2

)
j1(kq)−

T

5

This is empirically more numerically stable and avoids large cancellations at low k.

Summing up the components we have

Wijk =
1

3
Ṽ (q)(q̂iδjk + q̂jδik + q̂kδij) + T̃ (q)q̂iq̂j q̂k (A.12)

where we have defined Ṽ (q) = 3(2V1 + V3) and T̃ (q) = 3T.

2. Density Bias Terms

• U
(3)
i = ⟨δ1∆(3)

i ⟩:
Defining as usual Ui = Uq̂i, we have

U (3) =

∫
dk

2π2
k
(
− 5

21
R1j1(kq)

)

2Note that the corresponding expression in [58] has a typo and omits the S(q) terms in the first two lines.
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• A10
ij = A

10(12)
ij + A

10(21)
ij

X10(12) =

∫
dk

2π2

1

14

(
2(R1 −R2)− (4R2 + 2Q5)j0(kq)

− (3R1 + 4R2 + 2Q5)j2(kq)
)

Y 10(12) =

∫
dk

2π2

3

14

(
(3R1 + 4R2 + 2Q5)j2(kq)

)

• U11
i = U

11(2)
i and U20

i = U
20(2)
i

Note that the parentheses (2) here is redundant.

U11 =

∫
dk

2π2
k
(
− 6

7
(R1 +R2) j1(kq)

)

U20 =

∫
dk

2π2
k
(
− 3

7
Q8(k) j1(kq)

)

3. Shear Terms
In fact there is only one (connected) one loop shear term which is given by3

V 10
i (q) = ⟨s21∆i⟩ = −1

7
q̂i

∫
dk

2π2
k Qs2(k)j1(kq). (A.13)

However for convenience we also include the following “disconnected” two point functions
at second order in the power spectrum

Υij =
〈
s21∆i∆j

〉
= Xs2(q)δij + Ys2(q)q̂iq̂j

V 12
i =

〈
δ1s

2
2∆i

〉
= V 12(q)q̂i

χ(q) =
〈
δ21s

2
2

〉
, ζ(q) =

〈
s21s

2
2

〉

where the scalar components are given by [396]

Xs2 = 4J 2
3 , Ys2 = 6J 2

2 + 8J2J3 + 4J2J4 + 4J 2
3 + 8J3J4 + 2J 2

4

V 12 = 4J2ξ
2
0 , χ =

4

3
(ξ20)

2, ζ =
8

45
(ξ00)

2 +
16

63
(ξ20)

2 +
16

35
(ξ40)

2

with

J2 =
2

15
ξ1−1 −

1

5
ξ3−1 J3 = −1

5
ξ1−1 −

1

5
ξ3−1, J4 = ξ3−1. (A.14)

Whew! Hopefully this is all correct!

3Note that this is different by a factor of two from [396].
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Appendix B

Redshift-Space Galaxy Clustering I

B.1 Lagrangian Time Derivative Correlators

In this section we offer a hopefully comprehensive list of Lagrangian correlators involving
displacement time derivatives that appear in the first five pairwise velocity moments and are
therefore necessary to compute the 1-loop redshift-space power spectrum. These correlators
are denoted with dots ˙( ), where the number of dots is equal to the number of velocities Ψ̇.
Many of these expressions have previously appeared in refs. [405, 396], but we include this
appendix here for completeness and to correct for typos, hopefully without introducing new
ones.

B.1.1 Terms Linear in the Pairwise Velocity

1. Matter Terms

• Defining, Ȧij =
〈
∆i∆̇j

〉
= (11) + 2(22) + 3(13) + (31), we have:

Ȧij = Ẋδij + Ẏ q̂iq̂j, i.e. f
−1Ẋ = X lin + 2X22 + 4X31 and similarly for Ẏ .

• Ẇijk =
〈
∆i∆j∆̇k

〉
= 2(112) + (121) + (211):

Here instead of writing result explicitly we will only comment on the relevant con-
traction(s), which is in this case given by k̂ik̂j k̂kẆijk =

4f
3
k̂ik̂j k̂kWijk by symmetry.

2. Density Bias Terms

• Ȧ10
ij =

〈
δ1∆i∆̇j

〉
= 2(12) + (21) = 3

2
fA10

ij

• U̇i =
〈
δ1∆̇i

〉
= (1) + 3(13) = f U lin

i + 3f U
(3)
i

• U̇ (11) =
〈
δ1δ2∆̇

〉
= 2(2) = 2f U11

• U̇ (20) =
〈
δ21∆̇

〉
= 2(2) = 2f U20
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3. Shear Bias Terms

• V̇ 10
i =

〈
s21∆̇i

〉
= 2(2) = 2fV 10

i

• The other contributions are all linear-theory at one loop order, e.g.
〈
s21δ2∆̇i

〉
=

f
〈
s21δ2∆̇i

〉
and

〈
s21∆i∆̇j

〉
= f ⟨s21∆i∆j⟩.

B.1.2 Terms Quadratic in the Pairwise Velocity

There are way fewer terms at quadratic order.

1. Matter Terms

• Äij =
〈
∆̇i∆̇j

〉
= (11) + 4(22) + 3(13) + 3(31), i.e. f−2Ẍ = X lin + 4X22 + 6X13.

• Ẅijk =
〈
∆i∆̇j∆̇k

〉
= 2(112) + 2(121) + (211).1

As in the previous subsection we will focus on the various contractions, of which
there are two:

a) f−2k̂ik̂j k̂kẄijk =
5
3
k̂ik̂j k̂kWijk by symmetry.

b) f−2k̂iδjkẄijk = (18V1 + 7V3 + 5T )µ

Note that there is in principle a third contraction k̂kδij but it does not appear in
any quantities of interest.

2. Density Bias Terms

The only nontrivial one is Ä10
ij =

〈
δ1∆̇i∆̇j

〉
= 2(12) + 2(21) = 2f 2A10

ij .

3. Shear Bias Terms The only contribution here is the trivial Ϋij = f 2Υij, where the
velocities can only enter at lowest order at one loop.

B.1.3 Terms Cubic in the Pairwise Velocity

Here we will only look at one term

...
W ijk = 2(112) + 2(121) + 2(211) = 2f 3Wijk. (B.1)

The relevant contractions are

k̂ik̂j k̂k
...
W ijk = 2f 3

(
Ṽ µ+ T̃ µ3

)
, k̂iδjk

...
W ijk = 2f 3

(5
3
Ṽ + T̃

)
µ. (B.2)

Equivalently we can define
...
V = 2f 3Ṽ and identically for

...
T .

1Note that the expression in [396] is wrong–the indices should not be permuted along with the orders.
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B.2 Velocity moments and RSD power spectrum in

Eulerian PT

B.2.1 Third-Order Bias Expansion in EPT and LPT

In this chapter we extend the expressions for the real-space power and pairwise-velocity
spectra found in [396] to include contributions from third-order bias operators. In principle,
going to third order in bias requires an additional four bias parameters (see e.g. [109]),
however as shown in [234] for EPT at one-loop order many of these contributions are either
zero or amount to re-definitions of the linear bias parameter b1. The remaining contributions
are all degenerate and can be combined into a single (EPT or LPT) third-order bias parameter
c3 or b3. In this subsection we will review the bias expansion in EPT and provide details for
including the effects of third-order bias in LPT predictions of the velocity moments.

In order to evaluate these velocity moment correlators in Eulerian PT we adopt the biasing
scheme of ref. [234] in Equation 2.17 up to third order, which we repeat here for convenience:

δh = c1δ +
c2
2
δ2 + css

2 +
c3
6
δ3 + c1sδs

2 + cstst+ cs3s
3 + cψψ, (B.3)

where s2 = sijsij, s
3 = sijsjlsli and st = sijtij, and the shear operators are defined as

ψ = η − 2

7
s2 +

4

21
δ2, sij =

(
∂i∂j
∂2

− 1

3
δij

)
δ, tij =

(
∂i∂j
∂2

− 1

3
δij

)
η, η = θ − δ. (B.4)

As usual we assume subtraction of mean field values like ⟨δ2⟩. In Fourier space, the second
and third order shear operators are given by the kernels in momentum space

S
(2)
2 (k1,k2) =

(k1 · k2)
2

k21k
2
2

− 1

3
, (B.5)

S
(3)
2 (k1,k2,k3) = 2S2 (k1,k2 + k3)F2 (k2,k3) ,

S
(3)
3 (k1,k2,k3) =

(k1 · k2)(k2 · k3)(k3 · k1)

k21k
2
2k

2
3

− (k1 · k2)
2

3k21k
2
2

− (k1 · k3)
2

3k21k
2
3

− (k3 · k2)
2

3k23k
2
2

+
2

9
,

S
(3)
st (k1,k2,k3) =

2

7
S2 (k1,k2 + k3)

[
S2 (k2,k3)−

2

3

]
,

S
(3)
ψ (k1,k2,k3) = G3 (k1,k2,k3)− F3 (k1,k2,k3)−

4

7

(
S2 (k1,k2 + k3)−

2

3

)
F2 (k2,k3) .

Given that in this chapter we are interested only in two-point statistics, many of the third
order bias operators listed above do contribute to the one-loop power spectrum in degenerate
manner. After shot-noise renormalization only one non-vanishing independent contribution
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remains. The relevant correlators in one-loop EPT for the real-space power spectrum are:

〈
δlin|

[
δs2
](3)〉′

=
〈
δlin|[s3](3)

〉′
= 0, (B.6)

〈
δlin|[δ2](3)

〉′
=

68

21

〈
δ2lin
〉
PL(k),

〈
δlin|ψ(3)

〉′
= 3Plin(k)

∫

p

Sψ(p,−p,k)Plin(p),

=
16

21

(〈
δlin|[st](3)

〉′
+

16

63

〈
δ2lin
〉′
PL

)

= − 16

105

(〈
δlin|(s2)(3)

〉′ − 136

63

〈
δ2lin
〉′
PL

)
,

The corresponding contributions to the pairwise velocity, due to the correlator ⟨δh|vi⟩ can be
obtained by simply multiplying these terms by iki

k2
.

The above degeneracies also exist in one-loop LPT. In particular, for two third-order EPT
operators O3(x) and O

′
3(x) such that ⟨δlin|O3⟩ = ⟨δlin|O′

3 + A ⟨δ2lin⟩ δlin⟩ at one-loop, we also
have the degeneracies

⟨O3(q1)∆i⟩ = ⟨O′
3(q1)∆i⟩+ A

〈
δ2lin
〉
U lin
i (q), (B.7)

⟨O3(q1)δlin(q2)⟩ = ⟨O′
3(q1)δlin(q2)⟩+ A

〈
δ2lin
〉
ξlin(q)

in one-loop LPT. In the main body of the chapter we will thus summarize these contributions
with the third-order parameter O3(q) = sij(q)tij(q)+

16
63
⟨δ2lin⟩. This introduces the additional

correlators

Ub3,i(q) = Ub3(q) q̂i = ⟨O3(q1)∆i⟩ = −
∫
dk k

2π2
Rb3(k)j1(kq) (B.8)

θ(q) = ⟨O3(q1)δlin(q2)⟩ =
∫
dk k2

2π2
Rb3(k)j0(kq).

An explicit formula for Rb3 expressed as a Hankel transform is given in Appendix B.6. Finally,
the expression for the pairwise velocity spectrum requires the time derivative of Ub3 , which is

given by U̇b3 =
〈
O3∆̇

〉
= fUb3 .

B.2.2 Eulerian moment expansion

In this section we give a short overview of the Eulerian moment expansion framework for RSD
based on the distribution function model [328, 400, 401], using one-loop, Eulerian effective PT
to compute the components. These results, after including IR-resummation, are equvivalent
to those recently used in refs. [96, 186].



APPENDIX B. REDSHIFT-SPACE GALAXY CLUSTERING I 265

The velocity moments are combined to give the RSD power spectrum as in Eq. (2.5). Up
to one-loop we need to consider the contributions of several velocity moments

Ξ̃
(0)
n̂ (k) = P00(k), (B.9)

Ξ̃
(1)
n̂ (k) = P01(k, µ)− P ∗

01(k, µ)

= 2iIm[P01(k, µ)],

Ξ̃
(2)
n̂ (k) = P02(k, µ)− 2P11(k, µ) + P ∗

02(k, µ)

= 2Re[P02(k, µ)− P11(k, µ)],

Ξ̃
(3)
n̂ (k) = P03(k, µ)− 3P12(k, µ) + 3P ∗

12(k, µ)− P ∗
03(k, µ)

= 2iIm[P03(k, µ)− 3P12(k, µ)],

Ξ̃
(4)
n̂ (k) = P04(k, µ)− 4P13(k, µ) + 6P22(k, µ)− 4P ∗

13(k, µ) + P ∗
04(k, µ)

= 2Re[P04(k, µ)− 4P13(k, µ) + 3P22(k, µ)].

where the component spectra PLL′ are the cross-correlations of different velocity moments

PLL′(k, µ) ≡
〈(

1 + δ
)
∗ uLn̂

∣∣∣
(
1 + δ

)
∗ uL′

n̂

〉′
≡
〈(

1 + δ(k)
)
∗ uLn̂(k)

(
1 + δ(k′)

)
∗ uL′

n̂ (k′)
〉′
,

(B.10)
where, for brevity, we introduce the primed expectation values to denote expectation values
with Dirac delta function dropped, i.e. ⟨A|B⟩ ≡ ⟨A(k)B(k′)⟩ = (2π)3δD(k+k′) ⟨A(k)B(k′)⟩′.

Note that PLL′ = P ∗
L′L, so, without loss of generality, we can assume L ≤ L′. See ref. [398]

for a more detailed connection between the moment expansion and streaming models.
Contributions to Ξ(0) arise from only P00. This is the usual real space halo-halo power

spectrum. We have

⟨δh|δh⟩′ = c21Plin(k) + 2c21

∫

p

([
F2(p,k− p)

]2
Plin(|k− p|) + 3F3(p,−p,k)Plin(k)

)
Plin(p)

(B.11)

+ 2c1c2

∫

p

F2(p,k− p)Plin(p)Plin(|k− p|)

+ 4c1cs

∫

p

F2(p,k− p)S2(p,k− p)Plin(p)Plin(|k− p|)

+
c22
2

∫

p

Plin(p)Plin(|k− p|)

+ 2c2cs

∫

p

S2(p,k− p)Plin(p)Plin(|k− p|)

+ 2c2s

∫

p

[
S2(p,k− p)

]2
Plin(p)Plin(|k− p|)

+ 6c1c3Plin(k)

∫

p

Sψ(p,−p,k)Plin(p) (in EPT)
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where the third-order bias operators can be combined into a single term with the coefficient c3.
Counter terms that are required to regularise the one loop Ξ(0) terms are of form (k2/k2⋆)Plin(k)
(k⋆ is a characteristic proto-halo size scale) and thus degenerate with the derivative bias
contribution. Besides these there is a constant shot noise contributions obtained by correlating
the stochastic component of the halo density field ϵh(k), and we neglect the higher derivative
stochastic terms. Thus the total Ξ(0) expression reads

Ξ̃
(0)
1-loop(k) = (B.11) + c

(0)
0

k2

k2∗
Plin(k) + s0 + . . . , (B.12)

where s0 = ⟨ϵh|ϵh⟩′, and c(0)0 is the leading derivative counterterm. In general, for counterterms

we will use the notation c
(ℓ)
m taking into account that different angular dependences can have

different counterterm contributions.
Contributions to Ξ(1) arise from only the P01 term. This gives us

〈
δh|(1 + δh) ∗ v∥

〉′ ≈
〈
δh|v∥

〉′
+
〈
δh|δh ∗ v∥

〉′
, (B.13)

where in one-loop EPT we have

〈
δh|v∥

〉′ ≈ −iµ
k

(
c1Plin(k) + 2c1

∫

p

F2(p,k− p)G2(p,k− p)Plin(p)Plin(|k− p|) (B.14)

+ 3c1Plin(k)

∫

p

[
F3(p,−p,k) +G3(p,−p,k)

]
Plin(p)

+ c2

∫

p

G2(p,k− p)Plin(p)Plin(|k− p|)

+ 2cs

∫

p

S2(p,k− p)G2(p,k− p)Plin(p)Plin(|k− p|)

+ 3c3Plin(k)

∫

p

Sψ(p,−p,k)Plin(p)

)
, (in EPT)

and

〈
δh|δh ∗ v∥

〉′ ≈ −2i

(
c21

∫

p

p∥
p2
F2(p,k− p)Plin(p)Plin(|k− p|) (B.15)

+ c21Plin(k)

∫

p

[
p∥
p2
F2(p,−k) +

(k− p)∥
(k− p)2

G2(p,−k)

]
Plin(p)

+ c1c2
1

2

∫

p

p∥
p2
Plin(p)Plin(|k− p|)

+ c1cs

∫

p

p∥
p2
S2(p,k− p)Plin(p)Plin(|k− p|),

)
. (in EPT)
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Note that, due to the angular symmetry, c2 and cs do not contribute to the tadpole diagrams,
i.e. to the P13-like terms.

Counter terms that are needed to regularise the one-loop Ξ(1) terms scale as µ(k2/k2⋆)Plin(k)
and are again degenerate with the derivative bias contribution. Collecting all the contributions
to Ξ(1) we have

Ξ̃
(1)
1-loop(k) = 2 [(B.14) + (B.15)]− ic

(0)
1

µk

k2⋆
Plin(k) + . . . . (B.16)

Contributions to Ξ(2) arise from two correlators P02 and P11. P02 starts to contribute
at one-loop order, while P11 also has a linear contribution. We can write for the former

〈
δh|(1 + δh) ∗ v2∥

〉′ ≈
〈
δh|v2∥

〉′
+ ⟨δh|δh⟩′

〈
v2∥
〉
, (B.17)

= −2c1

∫

p

p∥(k− p)∥
p2(k− p)2

F2(p,k− p)Plin(p)Plin(|k− p|)

− 4c1Plin(k)

∫

p

p∥(k− p)∥
p2(k− p)2

G2(p,−k)Plin(p)

− c2

∫

p

p∥(k− p)∥
p2(k− p)2

Plin(p)Plin(|k− p|)

− 2cs

∫

p

p∥(k− p)∥
p2(k− p)2

S2(p,k− p)Plin(p)Plin(|k− p|)

+ c21Plin(k)σ
2
lin, (in EPT)

and for the latter

〈
(1 + δh) ∗ v∥|(1 + δh) ∗ v∥

〉′ ≈
〈
v∥|v∥

〉′
+ 2

〈
v∥|δhv∥

〉′
+
〈
δhv∥|δhv∥

〉′
(B.18)

=
µ2

k2

(
Plin + 2

∫

p

[
G2(p,k− p)

]2
Plin(p)Plin(|k− p|)

+ 6Plin(k)

∫

p

G3(p,−p,k)Plin(p)

)

+ 4c1
µ

k

(∫

p

p∥
p2
G2(p,k− p)Plin(p)Plin(|k− p|)

+ Plin(k)

∫

p

[
(k− p)∥
(k− p)2

G2(−p,k) +
p∥
p2
F2(−p,k)

]
Plin(p)

)

+ c21

∫

p

p∥
p2

(
p∥
p2

+
(k− p)∥
(k− p)2

)
Plin(p)Plin(|k− p|). (in EPT)

The second contribution in P02 (i.e. ∝ c21Plinσ
2
lin) and the last term in P11 ensure IR cancelation

in the soft limit.
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A new feature of the Ξ(2) correlator is that it has terms with isotropic angular dependence,
µ0, as well as µ2 dependence. Both of these have one-loop terms that need to be regularised
and thus we have to introduce counterterms of form (k2/k2⋆)Plin(k) for each of these two angular
dependencies. The contribution to the isotropic angular dependence comes primarily due to
the small-scale velocity dispersion contribution in the P02 term, i.e. P00σ

2 ∋ c21Plin(k)σ
2
non-lin.

Here σnon-lin encapsulates the non-perturbative, small-scale, contribution to the halo velocity
dispersion.

In addition to these derivative terms the Ξ(2) correlator contains both isotropic and
anisotropic stochastic contribtuions. For example, the UV dependence of the c2 contribution
to P02 needs to be renormalized by a constant, isotropic contribution proportional to δij.
Moreover, Ξ(2) will generically inherit a stochastic contribution via P00 in (B.17). We can
write 〈

δh|δh ∗ v2∥
〉′ ∋ ⟨ϵh|ϵh⟩′

〈
v2∥
〉
= s0

(
σ2
lin + σ2

non-lin

)
, (B.19)

where, in the last line, we split the halo velocity dispersion into the linear component and
the residual non-linear component coming from small-scales. However a similar contribution
can be obtained from the last term in P11, where we again have

〈
δh ∗ v∥|δh ∗ v∥

〉′ ∋ FT
[
⟨ϵh|ϵh⟩

〈
v∥|v∥

〉 ]′
= ⟨ϵh|ϵh⟩′

〈
v2∥
〉
= s0

(
σ2
lin + σ2

non-lin

)
, (B.20)

and the two shot noise contributions exactly cancel in the sum. In the more general case,
the power spectrum of stochastic field ϵh can have some nontrivial scale dependence, i.e.
⟨ϵh|ϵh⟩′ = Pϵ(k). In that case, the above discussed cancellation is no longer exact and we have

〈
δh|δh ∗ v2∥

〉′ −
〈
δh ∗ v∥|δh ∗ v∥

〉′ ∋
∫

p

(
Pϵ(k)− Pϵ(k− p)

)
Pvv(p) ≈ s2 + · · · , (B.21)

where Pvv(p) =
〈
v∥|v∥

〉′
is the halo velocity spectrum. It is also instructive to investigate a

polynomial scale dependence of the stochastic power spectrum, Pϵ(k) = a0+a2k
2+a4k

4+ . . ..
In that case it follows that the noise contribution takes the simple form

∫

p

(
Pϵ(k)− Pϵ(k− p)

)
Pvv(p) ≈ s

(0)
2,0” + s

(0)
2,2k

2 + s
(2)
2,2µ

2k2 + · · · , (B.22)

from which it follows that only the isotropic part obtains a shot noise like contribution.
Collecting all the contributions we get

Ξ̃
(2)
1-loop(k) = 2

[
(B.17)− (B.18)

]
− 2

(
c
(0)
2 + c

(2)
2 µ2

) 1

k2⋆
Plin(k) + s2 + . . . . (B.23)

Contributions to Ξ(3) arise from two correlators, P03 and P12, both of which contribute
at one-loop

〈
δh|(1 + δh) ∗ v3∥

〉′ ≈ 3P01σ
2 (B.24)

= −3i
µ

k
c1Plinσ

2
lin, (in EPT)
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〈
(1 + δh) ∗ v∥|(1 + δh) ∗ v2∥

〉′ ≈
〈
v∥|v2∥

〉′
+
〈
v∥|δhv2∥

〉′
+
〈
δhv∥|v2∥

〉′
(B.25)

= − i

k

(
2µ

∫

p

p∥(k− p)∥
p2(k− p)2

G2(p,k− p)Plin(p)Plin(|k− p|)

+ 4µPlin(k)

∫

p

p∥(k− p)∥
p2(k− p)2

G2(p,−k)Plin(p)

+ 2kc1

∫

p

p2∥(k− p)∥

p4(k− p)2
Plin(p)Plin(k− p)

− c1µPlinσ
2
lin

)
, (in EPT)

The combination of P03 and the last two terms of P12 ensure IR cancelation in the soft limit.
Collecting all the one-loop contributions we get

Ξ̃
(3)
1-loop(k) = 2

[
(B.24)− 3(B.25)

]
+ 6i

(
c
(0)
3 + c

(2)
3 µ2

) µ
k

1

k2⋆
Plin + . . . . (B.26)

Contributions to Ξ(4) can be approximated by a contribution giving zero lag (which
we can consider as a non-perturbative contribution) multiplied by the lower order moments.
Heuristically we can write:

〈
δh|(1 + δh) ∗ v4∥

〉′ ≈ 3P02σ
2 ≈ 3P00σ

4 (B.27)

= 3c21Plinσ
4
lin, (in EPT)

〈
(1 + δh) ∗ v∥|(1 + δh) ∗ v3∥

〉′ ≈ 3P11σ
2 (B.28)

= 3
µ2

k2
Plinσ

2
lin, (in EPT)

〈
(1 + δh) ∗ v2∥|(1 + δh) ∗ v2∥

〉′ ≈
〈
v2∥|v2∥

〉′
+ P00σ

4 (B.29)

≈ 2

∫

p

[
p∥(k− p)∥
p2(k− p)2

]2
Plin(p)Plin(|k− p|)

+ c21Plinσ
4
lin (in EPT)

The only proper one-loop contributions in the fourth moment come from P13 ∝ Plinσ
2
lin and

P22 ∼
〈
v2∥|v2∥

〉′
, terms that also exhibit a degree of IR cancelation in the soft limit in their µ2

angular dependence. Similar cancelation also appears at the two-loop level for the µ0 angular
dependence where all of the c21Plinσ

4
lin terms cancel in the IR limit.

Similarly to the case of Ξ(2), we can show that the scale dependence of the stochasticity
field generates a shot-noise contribution in the Ξ(4) term, even though to show these explicitly
a two-loop calculation is formally required. However, treatment of the shot noise terms on
equal perturbative footing as the deterministic fields might not generally be justified and
thus even an indication of the presence of such stochastic terms could serve as a justification
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for adding a shot noise contribution. These stochastic terms would be suppressed by (µk)4

factors in the total power spectrum.
Collecting all the one-loop contributions we get

Ξ̃
(4)
1-loop(k) = 2

[
(B.27)− 4(B.28) + 3(B.29)

]
+ 24c

(2)
4

µ2

k2
1

k2⋆
Plin(k) + s4 + . . . . (B.30)

B.2.3 Eulerian redshift-space power spectrum

Using the moment expansion of the redshift-space power spectrum given in Eq. (2.5) we
obtain the one-loop result

P s
1-loop(k) = Ξ̃(0)(k) + ikµΞ̃(1)(k)− 1

2
k2µ2Ξ̃(2)(k)− i

6
k3µ3Ξ̃(3)(k) +

1

24
k4µ4Ξ̃(4)(k) (B.31)

=

[
(B.11) + 2ifkµ [(B.14) + (B.15)]− f 2k2µ2

[
(B.17)− (B.18)

]

− i

3
f 3k3µ3

[
(B.24)− 3(B.25)

]
+

1

12
f 4k4µ4

[
(B.27)− 4(B.28) + 3(B.29)

]]

EPT

+
(
c0 + fc1µ

2 + f 2c2µ
4 + f 3c3µ

6
)k2
k2∗
Plin(k) +

(
s0 + s1f

2µ2k
2

k2⋆
+ s2f

4µ4k
4

k4⋆

)
.

The first two lines above refer to the EPT expressions of the given one-loop power spectra,
while in the last line counter terms and stochastic contributions are listed. The counter terms
are redefined so that c0 = c

(0)
0 , c1 = c

(0)
1 + fc

(0)
2 , c2 = c

(2)
2 + fc

(0)
3 and c3 = c

(2)
3 + fc

(2)
4 . This

ensures that all the UV sensitive P13 terms are under control. In the last line we have also
defined the stochastic parameters s1 = −1

2
k2⋆

s2
s0

and s1 =
1
24
k4⋆

s4
s0
. In the result above we have

neglected higher derivative contributions to the stochasticity. This result, up to the couple
of different choices for the counter terms and stochastic contributions, agree with recent
references [96, 186].

B.2.4 IR resummation of Velocity Moments and RSD power
spectrum

Eulerian perturbation theory expands density and velocity fields, and correlators thereof, in
powers of long wavelength modes that are assumed to be small. However, this assumption
does not hold for long displacement modes that can have order one contributions and thus
should be resummed, i.e. treated non-perturbatively. Given that in the equal time correlators
most of the effects of such long wavelength displacements cancel out standard Eulerian PT
is still an operational framework. However, the presence of the BAO feature on fairly large
scales makes it more prone to these displacements and thus it is of interest to handle these
non-perturbative contributions. The procedure for handling these long modes goes under
the name of IR-resummation, and is most naturally done in Lagrangian perturbation theory
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[121, 231, 335, 399, 402, 112]. However, in Eulerian perturbation theory results can also be
resummed in order to obtain the equivalent behavior [22, 50, 278, 185].

In the Eulerian framework the most pragmatic rendering of these IR-resummation pro-
cedures relies on splitting the linear power spectrum into smooth and oscillatory parts,
Plin(k) = P nw

lin + Pw
lin. The choice of splitting is in many ways arbitrary. The displacement

resummation is taken to act on Pw
lin alone, and is usually applied to produce the real-space

power spectrum. However, the procedure can be generalised to any velocity moment power
spectrum giving

Ξ̃
(n),IR
1 - loop(k) = Ξ̃

(n),nw
lin (k) + e−

1
2
Σ2k2

(
1 + 1

2
Σ2k2

)
Ξ̃
(n),w
lin (k) (B.32)

+ Ξ̃
(n)
loop(k)

[
Plin(k) → P nw

lin (k) + e−
1
2
Σ2k2Pw

lin(k)
]

≈ Ξ̃
(n),nw
1 - loop(k) + e−

1
2
Σ2k2

(
1 + 1

2
Σ2k2

)
Ξ̃
(n),w
lin (k) + e−

1
2
Σ2k2

(
Ξ̃
(n)
loop(k)− Ξ̃

(n),nw
loop (k)

)

where the label “loop” stands for the next-to-linear-order correction in PT while the label “1
- loop” stands for the total one-loop result, i.e. a sum of linear and next-to-linear orders. In
the above Σ is the estimated dispersion of the long wavelength displacement contributions:

Σ2 =

∫ Λ

0

dk

3π2

[
1− j0 (krbao) + 2j2 (krbao)

]
Plin(k), (B.33)

and Λ is the scale of the IR mode split. In practice, Λ can be chosen to be arbitrarily large
given that the integral is naturally saturated by the power law drop of Plin at high k.

For redshift space power spectra, in addition to the long wavelength displacements one can
also resum long wavelength velocity modes. This introduces slight change to the expression
above, making the total redshift space dispersion Σs dependent on the angle to the line of
sight, i.e.

Σ2
s(µ) =

[
1 + f(f + 2)µ2

]
Σ2, (B.34)

where the Σ2 is given by Eq. (B.33). The power spectrum becomes

P s,IR
1 - loop(k) = P s,nw

lin (k) + e−
1
2
Σ2

s(µ)k
2 (

1 + 1
2
Σ2
s(µ)k

2
)
P s,w
lin (k) (B.35)

+ P s
loop(k)

[
Plin(k) → P nw

lin (k) + e−
1
2
Σ2

s(µ)k
2

Pw
lin(k)

]

≈ P s,nw
1 - loop(k) + e−

1
2
Σ2

s(µ)k
2 (

1 + 1
2
Σ2
s(µ)k

2
)
P s,w
lin (k) + e−

1
2
Σ2

s(µ)k
2 (
P s
loop(k)− P s,nw

loop (k)
)
,

where the wiggle and no-wiggle P s
1 - loop (and similarly the P s

loop by dropping the linear Kaiser
part) are given by Equation (B.31).

B.3 Gaussian Streaming Model

The Gaussian Streaming Model (GSM), like the ME and FSM described in the main body of
the text, is yet another way to expand the exponential in Equation 2.4. However, it differs
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from the two aforementioned models in that it is a cumulant expansion in configuration space
[396, 398]. Our goal in this section is to explain why this structure makes it particularly easy
to handle the effects of bulk (IR) velocities within the GSM.

We begin by reviewing the derivation of the GSM as presented in ref. [396]. The exponential
in Equation 2.4 can be expanded using configuration space statistics as

〈
(1 + δg(x1))(1 + δg(x2))e

ik·∆u
〉
= (1 + ξg(r)) exp

{
∞∑

n=0

in

n!
ki1 ...kinC

(n)
i1...in

(r = x1 − x2)

}

where, for example, the first two configuration-space cumulants are given by

C
(1)
i (r) = (1 + ξg)

−1Ξ
(1)
i (r)

C
(2)
ij (r) = (1 + ξg)

−1Ξ
(2)
ij (r)− C

(1)
i C

(1)
j , (B.36)

and can be straightforwardly interpreted as the mean and variance of the density-weighted
pairwise velocity. Truncating the cumulant expansion at second order and Fourier transforming
yields the intuitive form [301]

1 + ξs(s) =

∫
dy√
2πC

(2)
∥

(1 + ξg) exp





(
s∥ − y − µC

(1)
∥

)2

2C
(2)
∥




. (B.37)

As shown in Section 2.3, truncating the velocity expansion at second order yields rather
imperfect fits to the redshift-space power spectrum, especially towards small scales and large
µ, and thus does not yield a good model for the power spectrum broadband. However, the
configuration space structure is particularly suited to the close-to-Gaussian statistics of the
large-scale bulk motions critical to describing the BAO feature. This is because, roughly
speaking, C(n>2) do not contribute to BAO damping, which can be attributed to

• The correlation function is much smaller than unity, such that 1 + ξg ≈ 1.

• For the nonlinear damping of the BAO we only need to consider the Gaussian statistics
of the linear ∆ and ∆u, such that higher moments factorize via Wick’s contraction.

For example, for the fourth cumulant we can write

C(4) ∼ ⟨∆u∆u∆u∆u⟩ − 6C(2)C(2) ≈ 6 ⟨∆u∆u⟩ ⟨∆u∆u⟩ − 6C(2)C(2) ∼ 0. (B.38)

Thus the truncation at second order, while not a good approximation for the power spectrum
broadband in general, well-describes physics around the BAO scale. Note that this is not
the case for the FSM, because the Fourier-space cumulants do not factor multiplicatively via
Wick contractions.
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B.4 Wedges vs. Multipoles

While perturbation theory models of the power spectrum expand in k∥ = kµ and thus
naturally predict the values of power spectrum wedges, analyses of actual spectroscopic
surveys naturally produce power spectrum multipoles Pℓ(k) [426, 325, 47, 161]. Since P (k, µ)
is a relatively smooth function of µ, dominated in amplitude by the monopole and quadrupole,
choosing to analyze the first few multipoles of the power spectrum vs. wedges should amount
to little more than a change of basis. However, as we have seen in Figures 2.1 and 2.2, this
choice of basis can make a dramatic and somewhat counterintuitive difference in the apparent
goodness of fit or range of model validity, which we comment on briefly in this appendix.

Perhaps the most surprising aspect of multipoles vs. wedges is that the errors on ℓ > 0 do
not have to be lesser in magnitude than wedge errors. Perhaps more importantly, even the
quadruople can diverge from perturbative predictions while all but the highest µ wedges are
predicted at the sub-percent level. This was already seen in Figures 2.1 and 2.2; however,
since in that case much of the monopole power at higher k derives from shot noise it is worth
considering a simpler example which emphasizes the point.

Specifically, let us consider a shot-noise free example wherein our theory model is linear
theory, P (k, µ) = (b + fµ2)2Plin(k), while “truth” is given by that model multiplied by
1 + k2σ2µ6, with σ normalized to produce a 10% error at k = 0.2hMpc−1 and µ = 1. Such
an error term is exactly what one might expect from the virial velocities in the fourth velocity
moment which we do not model in this work. In this example, shown in Figure B.1, we see
that while the µ = 0 and 0.5 wedges are predicted by “theory” at sub-percent levels for all
scales shown, the quadrupole already differs from theory by ten percent by k = 0.15hMpc−1.
The mathematical reason for this is straightforward: unlike the monopole, the quadrupole is
not a positive-definite average of power spectrum wedges. Indeed, the Legendre polynomial
L2(µ) =

1
2
(3µ2 − 1) will tend to pick up differences in the error between µ = 0, where errors

are small and L2 is negative, and µ = 1, where errors are maximal and L2 is positive. The
situation is particularly acute for perturbative treatments of redshift space, which as we have
shown expand order-by-order in µ, making much better predictions perpendicular to the
line-of-sight than parallel to it.

The error properties of multipoles vs. wedges described above carry implications for data
analysis. From an aesthetic standpoint, presenting data in terms of P (k, µ) has the slight
advantage that fractional errors ∆P (k, µ)/P roughly correspond to standard deviations in
the Gaussian approximation while ∆Pℓ/Pℓ are hard to interpret as the errors for Pℓ>0 are
dominated by the monopole. Nonetheless, as the two statistics are connected by a basis
transformation, the choice between them should in principle be irrelevant to data analysis
as long as errors are properly taken into account, and theory errors2 for higher-order FoGs
that scale strongly with µ will have the desired effect of down-weighting data from higher
µ. However, the magnitude and shape of the theory error can be hard to estimate for

2See ref. [85] for an example calculation of the theory error on multipoles. Their calculation uses a
different ansatz for higher-order FoG effects than our k2µ4P (k), underscoring the difficulty of modeling FoG
effects not incorporated into the base model.
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Figure B.1: Toy model illustrating the different error properties of wedges (left) vs. multipoles
(right). In this example the “theory” is given by the Kaiser approximation with b = 2 and f = 1
while “truth” is given by Kaiser multiplied by 1 + k2σ2µ6 normalized such that the power spectrum
is 10% away from theory at k = 0.15hMpc−1 and µ = 1. While the µ = 0 and 0.5 wedges agree
with theory at sub-percent level over the entire range shown, the quadrupole deviates from theory
by more than 10% already at k = 0.2hMpc−1, showing that fractional errors on the quadruople do
not have to be less than or equal to those on the wedges.

non-simulated samples, and a far more common choice in the literature is to adopt hard
scale cuts kmax when fitting to theory (corresponding to infinite theoretical error beyond
that scale). In this case, operating in wedges corresponds to defining an angular theshold
kmax(µ) where all but the highest µ wedge can be fit over most perturbative scales, while
µ ≈ 1 has be cut off at much smaller k due to virial motions, fingers-of-god and (for real
surveys) redshift errors. On the other hand, operating within the multipole formalism means
setting kmax,ℓ, which means much of the angular information carried by the lower-µ wedges
will be lost by the scale-cut in the quadrupole due to contamination from the highest-µ
bin (complementary discussions of the robustness of wedges can be found in refs. [306, 186,
85]). However, since redshift space power spectra are naturally measured as multipoles, an
alternative approach beyond the strict wedges/multipoles dichotomy might be to weight
multipoles in a scale-dependent fashion to minimize contamination by FoG effects at high µ.
Devising such an estimator is outside the scope of this work, though we note that related
strategies have been suggested to deal with systematics in configuration space [302, 249]
and plane-of-the-sky effects near µ = 0 [161]. The above suggests that rather than simply
discarding one wedge or finding an orthogonal basis on the range [−µmax, µmax], the practical
need to go through the multipole basis promotes an apodization or tapering of the wedges in
µ to restrict the support in ℓ. Making predictions for apodized wedges presents no problems
over the case of sharp-edged wedges.
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B.5 Fast Evaluation of LPT Kernels via FFTLog

One of the more time-consuming steps in computing LSS statistics beyond linear order in
perturbation theory is the evaluation of one-loop integrals [229, 58, 396]. Recently, ref. [320]
proposed a method to dramatically speed up these calculations by exploiting the underlying
spherical symmetry of these integrals. To do so they note that these kernels can generally be
decomposed into sums of integrals of the form
∫
d3q qn1|k−q|n2 Pℓ(q̂·k̂ − q) PL(q)PL(|k−q|) = (−1)ℓ4π

∫
dr r2j0(kr)ξ

ℓ
n1
(r)ξℓn2

(r) (B.39)

where Pℓ are Legendre polynomials and the generalized linear correlation functions are defined
by

ξℓn(r) =

∫
dk

2π2
k2+njℓ(kr)PL(k). (B.40)

The intuition behind Equation B.39 is that, as the scalar-valued left hand side must be
independent of the orientation of k, the angular integral in q can be performed analytically,
for example using the plane-wave expansion, to yield the spherical Bessel integrals in right-
hand-side expression. Conveniently, these spherical Bessel integrals can be readily computed
as Hankel transforms, which can in turn be efficiently computed using the FFTLog algorithm.

Ref. [320] applied the above-described method to LPT kernels relevant to the matter
power spectrum, which can be written as

R1(k) = k2PL(k)

[
8

15

∫
dr r j0(kr)ξ

0
0 −

16

21

∫
dr r j2(kr)ξ

2
0 +

8

35

∫
dr r j4(kr)ξ

4
0

]

R2(k) = k2PL(k)

[
− 2

15

∫
dr r j0(kr)ξ

0
0 −

2

21

∫
dr r j2(kr)ξ

2
0 +

8

35

∫
dr r j4(kr)ξ

4
0

+
2k

5

∫
dr r j1(kr)ξ

1
−1 −

2k

5

∫
dr r j3(kr)ξ

3
−1

]
(B.41)

and

Q1(k) = 4π

∫
dr r2j0(kr)

[
8

15
(ξ00)

2 − 16

21
(ξ20)

2 +
8

35
(ξ40)

2

]

Q2(k) = 4π

∫
dr r2j0(kr)

[
4

5
(ξ00)

2 − 4

7
(ξ20)

2 − 8

35
(ξ40)

2 − 4

5
ξ11ξ

1
−1 +

4

5
ξ31ξ

3
−1

]

Q3(k) = 4π

∫
dr r2j0(kr)

[
38

15
(ξ00)

2 +
68

21
(ξ20)

2 +
8

35
(ξ40)

2

+
2

3
ξ02ξ

0
−2 −

32

5
ξ11ξ

1
−1 +

4

3
ξ22ξ

2
−2 −

8

5
ξ31ξ

3
−1

]
, (B.42)
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where the r dependence of the generalized correlation functions is left implicit. In this
Appendix we complete this list by deriving Hankel-transform expressions for the remaining
LPT kernels relevant to biased tracers up to one-loop order; these are:

Q5(k) = 4π

∫
dr r2j0(kr)

[ 2

3
(ξ00)

2 − 2

3
(ξ20)

2 − 2

5
ξ11ξ

1
−1 +

2

5
ξ31ξ

3
−1

]

Q8(k) = 4π

∫
dr r2j0(kr)

[ 2

3
(ξ00)

2 − 2

3
(ξ20)

2
]

Qs2(k) = 4π

∫
dr r2j0(kr)

[
− 4

15
(ξ00)

2 +
20

21
(ξ20)

2 − 24

35
(ξ40)

2
]

Rb3(k) =
8

63
P (k)

∫
dr r

[24k2
5

ξ00j0(kr)−
16k

5
ξ11j1(kr)−

(20k2
7

ξ20 − 4ξ22
)
j2(kr)

− 24k

5
ξ31j3(kr) +

72k2

35
ξ40j4(kr)

]
, (B.43)

where the final kernel is defined such that

⟨δlin|(st+
16

63
σ2
δδlin)⟩ = Rb3(k). (B.44)

The relation of these kernels to physical quantities in LPT can be found in, for example,
refs. [229, 58, 396].

B.6 Hankel Transforms

In this section we give expressions for the Hankel transforms that give the k-space velocity
moments in both LPT and EPT described in the main chapter. We begin with LPT, from
which we show that the expressions for EPT can be extracted as an especially simple limit.
Similar approaches to evaluating the integrals in EPT are discussed in e.g. [320, 319, 127,
344, 377]. We differ from these mainly in that the FFTLog expressions are derived using the
Lagrangian bias basis, which naturally organizes 1-loop contributions into combinations of
linear generalized correlation functions ξnℓ that are automatically Galilean invariant. We set
the linear growth rate f = 1 throughout this section, with the nth velocity moment carrying
an implicit factor fn.

B.6.1 LPT

The integrals for velocity moments in LPT take the form
∫
d3q eik·q−

1
2
kikjA

lin
ij µmf(q)

=
∞∑

n=0

4π

∫
dq q2 e−

1
2
k2(Xlin+Y lin)fmn (k2Ylin)

(kYlin
q

)n
f(q) jn(kq), (B.45)
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where µ = k̂ · q̂ and we have used Equation B.61; explicit expressions for fmn are provided
in Appendix B.7. The summands are Hankel transforms and can be efficiently evaluated
using the FFTLog algorithm. In practice we find that this series converges quickly; for the
matter contribution in the power spectrum (i.e. f(q) = 1) the series converges to sub-percent
precision at z = 0.8 and k = 0.25hMpc−1 for typical cosmologies when nmax = 5, with
improving performance towards smaller wavenumbers and higher redshifts. Our expressions
agree with those in ref. [398] up to shear and counterterms, as well as that for the power
spectrum in ref. [396], and we follow the conventions in refs. [58, 396] for the Lagrangian-space
two-point functions (Ui, Aij,Wijk etc.) though we correct for minor algebraic mistakes in a
few cases. In this section only we will ignore the stochastic contributions and counterterms
as they have trivial scale dependence.

Real-Space Power Spectrum

The real-space power spectrum expressed as an infinite sum of Hankel transforms was given
in Appendix B of ref. [396]. As it is an important component of our model, we include it
here for completeness:

P (k) =

∫
d3q eik·qe−

1
2
kikjA

lin
ij

{
1− 1

2
k2
(
X loop + Y loopµ2

)
− i

6
k3
(
Ṽ µ+ T̃ µ3

)

+ b1

(
2ikUµ− k2(X10 + Y 10µ2)

)
+ b21

(
ξ2lin − k2U2

linµ
2 + ikU11µ

)

+ b2

(
− k2U2

linµ
2 + ikU20µ

)
+ 2ib1b2kξlinU

linµ+
1

2
b22ξ

2
lin

+ bs

(
− k2(Xs + Ysµ

2) + 2ikV 10µ
)
+ 2ib1bskV

12µ+ b2bsχ+ b2sζ

+ 2ib3kUb3µ+ 2b1b3θ
}

(B.46)

where for brevity we have defined we have defined Ṽ = 3(2V1 + V3)
3, T̃ = 3T and Υij =

Xsδij + Ysq̂iq̂j.

3Note that there is a typo in Equations B21, B22 of ref. [58], such that one should substitute V1,3 → V1,3+S,
where S(q) is defined in Equation B23, for the correct expressions.
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Pairwise Velocity Spectrum

This scalar decomposition of the pairwise velocity spectrum is given by vi(k) = iv(k)k̂i, with

v(k) =

∫
d3q eik·q e−

1
2
kikjA

lin
ij

{
k
(
Ẋ + Ẏ µ2

)
+
ik2

2

(
V̇ µ+ Ṫ µ3

)

+ 2b1

(
i(k2U linẊ lin − U̇)µ+ ik2U linẎ linµ3 + k(Ẋ10 + Ẏ 10µ2)

)

+ b21

(
kξlinẊ

lin + k(ξlinẎ
lin + 2U linU̇ lin)µ2 − iU̇11µ

)

+ b2

(
2kU linU̇ linµ2 − iU̇20µ

)
− 2ib1b2ξlinU̇

linµ

+ bs

(
− 2iV̇ 10µ+ 2k(Ẋs + Ẏsµ

2)
)
− 2ib1bsV̇

12µ− 2ib3U̇b3µ
}

(B.47)

where we have followed the dot notation of Refs. [405, 396] such that each dotted quantity is
proportional to f . We have used dots on the scalar components to denote the components
of the vector quantities, e.g. U̇i = U̇ q̂i. However, the three-indexed Ẇijk has a somewhat
more complicated structure than the one- or two-indexed quantities4 and we have chosen
to summarize its contributions in terms of its contractions with k̂ alone, i.e. V̇ = 4f

3
Ṽ and

V̇ = 4f
3
T̃ .

4Any one-indexed Lagrangian correlator must be proportional to q̂i and any two-indexed correlator must

be a linear sum of δij or q̂iq̂j and therefore symmetric, whereas W
(112)
ijk for example is not symmetric in all

indices.
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Pairwise Velocity Dispersion Spectrum

For the pairwise velocity dispersion we have chosen to compute the two contractions σ2
k̂k̂

and

σ2
ii. These are related to the multipole moments via σ2

ii = 3σ0 and σ2
k̂k̂

= σ0 + σ2.

σ2
k̂k̂

=

∫
d3q eik·q e−

1
2
kikjA

lin
ij

{(
(Ẍ − k2Ẋ2

lin) + (Ÿ − 2k2ẊlinẎlin)µ
2 − k2Ẏ 2

linµ
4
)

+
5f 2ik

3

(
Ṽ µ+ T̃ µ3

)

+ 2b1

(
ik(U linẌ lin + 2U̇ linẊ lin)µ+ ik(U linŸ lin + 2U̇ linẎ lin)µ3 + Ẍ10 + Ÿ 10µ2

)

+ b21

(
ξlinẌ

lin + (ξlinŸ
lin + U̇ linU̇ lin)µ2

)
+ 2b2U̇

linU̇ linµ2 + 2bs

(
Ẍs2 + Ÿs2µ

2
)}

σ2
ii =

∫
d3q eik·q e−

1
2
kikjA

lin
ij

{(
3Ẍ + Ÿ − k2Ẋ2

lin − k2(Ẏ 2
lin + 2ẊlinẎlin)µ

2
)

+ if 2k(18V1 + 7V3 + 5T )µ

+ 2b1

(
ik(U lin(3Ẍ lin + Ÿ lin) + (3Ẍ10 + Ÿ 10) + 2U̇ lin(Ẋ lin + Ẏ lin))µ

)

+ b21

(
ξlin(3Ẍ

lin + Ÿ lin) + 2U̇ linU̇ lin
)
+ 2b2U̇

linU̇ lin + 2bs(3Ẍs2 + Ÿs2)
}
. (B.48)

Quantities with two dots are proportional to f 2. Once again, the time derivative Ẅijk is
more complicated than the one- or two-indexed quantities, and in this case we have chosen
to simply write them out as f 2 multiplied by the relevant un-dotted quantities5.

Higher Moments

As usual we decompose −iγijk = 1
3
γ1 k̂{iδjk} + γ3 k̂ik̂j k̂k where the scalar components can be

derived from the contractions:

−ik̂ik̂j k̂kγijk = γ1 + γ3 = −i
∫
d3q eik·q−

1
2
kikjA

lin
ij

{ ...
V µ+

...
T µ3

+ 3ik
(
Ẋ lin

(
Ẍ lin + Ÿ linµ2

)
+ Ẏ linµ2

(
Ẍ lin + Ÿ linµ2

))

+ 6b1U̇
linµ
(
Ẍ lin + Ÿ linµ2

)}

−ik̂iδjkγijk =
5

3
γ1 + γ3 = −i

∫
d3q eik·q−

1
2
kikjA

lin
ij

{(5
3

...
V +

...
T
)
µ

+ ik
(
Ẋ lin

(
5Ẍ lin + (1 + 2µ2)Ÿ lin

)
+ Ẏ linµ2

(
5Ẍ lin + 3Ÿ lin

)

+ 2b1U̇
lin
(
5Ẍ lin + 3Ÿ lin

)
µ
)}
.

5Note that Equation C. 11 in ref. [396] should instead be Ẅijk = f2(2W
(112)
ijk + 2W

(121
ijk +W 211

ijk ), i.e. the
indices on the right-hand side should not be permuted with the order of solution.
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For the sake of brevity we have defined the triple-dotted quantities
...
V = 2f 3Ṽ and

...
T = 2f 3T̃

such that k̂ik̂j k̂k
...
W ijk =

...
V µ+

...
T µ3 and k̂iδjk

...
W ijk =

5
3

...
V +

...
T .

The fourth moment κijkl =
〈
(1 + δ1)(1 + δ2)∆̇i∆̇j∆̇k∆̇l

〉
has only one contribution at

one loop order; in Fourier space this is

κijkl =

∫
d3q eik·q−

1
2
kikjAij

〈
∆̇i∆̇j∆̇k∆̇l

〉
=

∫
d3q eik·q−

1
2
kikjAij Ä{ijÄkl} (B.49)

where the distinct unordered indices are now {ijkl} = (ij)(kl) + (ik)(jl) + (il)(jk). This
can be similarly decomposed as κijkl =

1
3
κ0δ{ijδkl} +

1
6
κ2k̂{ik̂jδkl} + κ4k̂ik̂j k̂kk̂l, for which the

following linear equations hold

5κ0 +
5

3
κ2 + κ4 =

∫
d3q eik·q−

1
2
kikjA

lin
ij

{
15Ẍ2

lin + 10ẌlinŸlin + 3Ÿ 2
lin

}

5

3
κ0 +

4

3
κ2 + κ4 =

∫
d3q eik·q−

1
2
kikjA

lin
ij

{
5Ẍ2

lin + (1 + 7µ2)ẌlinŸlin + 3µ2Ÿ 2
lin

}

κ0 + κ2 + κ4 =

∫
d3q eik·q−

1
2
kikjA

lin
ij

{
3Ẍ2

lin + 6µ2ẌlinŸlin + 3µ4Ÿ 2
lin

}
. (B.50)

B.6.2 EPT

As described in Section 2.4.3, EPT is equivalent to LPT when the exponential of

− 1

2
kikjA

lin
ij = −1

2
k2(X lin + Y linµ2)

is expanded as its Taylor series. Doing so reduces Equation B.45 to the simpler form

∫
d3q eik·q µn f(q) =

n∑

ℓ=0

4π

∫
dq q2 f(q) α

(n)
ℓ jℓ(kq), (B.51)

where Hankel transform no longer has k-dependence beyond the spherical bessel function
jℓ(kq) and the coefficients α

(n)
ℓ are defined such that µn =

∑
ℓ α

(n)
ℓ Lℓ(µ). The fact that the k

dependence is isolated to the Bessel function in EPT means that bias contributions at each k
can be calculated all at once, instead of requiring one set of FFTLogs per k point as in LPT.
Transforming these expanded LPT integrands into the EPT bias basis using Equation 2.19
yields Hankel transform expressions for all one-loop contributions to the EPT redshift-space
power spectrum at one loop. An especially convenient feature of computing EPT integrals in
the LPT basis is that the IR cancellations in the small k limit are explicitly satisfied in each
expression.

Since the expressions required in the calculation outlined above are essentially identical
to those in the previous section for LPT, we have chosen not to explicitly enumerate them.
However, let us briefly comment on two particular numerical choices that both simplify the
calculation and improve stability. Firstly, a subset of the terms involved, due to “connected”
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Ξ̃(0) F (q) F̃ (k)

1 −1
2
kikj

(
Alin
ij + Aloop

ij

)
− i

6
kikjkkWijk PL +

9
98
Q1 +

10
21
R1 +

6
7
R2 +

3
7
Q2

b1 2ikiUi − kikjA
10
ij 2PL +

10
21
R1 +

1
7
(6R1 + 12R2 + 6Q5)

b21 ξlin + ikiU
11
i PL +

6
7
(R1 +R2)

b2 ikiU
20
i

3
7
Q8

bs 2ikiV̇
10
i

2
7
Qs2

b3 2ikiUb3 2Rb3

b1b3 2θ 2Rb3

Table B.1: Contributions to the real-space power spectrum from “connected” cumulants in LPT.

Ξ̃
(1)
i F (q) k2F̃ (k)

1 ikj

(
Ȧlin
ij + Ȧloop

ij

)
− 1

2
kjkkẆijk −iki(2PL +

18
49
Q1 +

40
21
R1 +

12
7
Q2 +

24
7
R2)

b1 2U̇i + 2ikjȦ
10
ij −iki(2PL + 4R1 +

36
7
R2 +

18
7
Q5)

b21 U̇11
i −iki(12/7)(R1 +R2)

b2 U̇20
i −iki(6/7)Q8

bs 2V̇ 10
i −iki(4/7)Qs2

b3 2U̇b3,i −iki2Rb3

Table B.2: Contributions to the pairwise velocity spectrum from “connected” cumulants in LPT.

correlators in Fourier space, can be Fourier-transformed explicitly as the kernels (Rn, Qn)
involved were themselves already computed using FFTLogs of products of generalized linear
correlation functions (App. B.5). For example the matter power spectrum contains both the
connected terms

P1(k) ∋
∫
d3q eik·q

{
1− 1

2
kikj

(
Alin
ij + Aloop

ij

)
− i

6
kikjkkWijk

}

= Plin(k) +
9

98
Q1(k) +

10

21
R1(k) +

6

7
R2(k) +

3

7
Q2(k)

and a disconnected contribution equal to the Fourier transform of kikjkkklA
lin
ij A

lin
kl /8 — the

former need not be Fourier transformed a second time. Note that since all displacement
correlators appear as pairwise displacements ∆, this split does not break Galilean invariance.
The connected components for each of the velocity moments are given in Tables B.1, B.2,
B.3 and B.4.

Secondly, the coefficients α
(n)
ℓ are not unique and can be expressed in a number of ways

by utilizing the recurrence relations of spherical Bessel functions. Perhaps the most obvious
in the context of LPT corresponds taking the B → 0 limit of Equation B.53, in which case
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Ξ̃
(2)

k̂k̂
F (q) k2F̃ (k)

1 Äk̂k̂ + iknẄk̂k̂n −(2PL +
36
49
Q1 +

20
7
R1 +

30
7
Q2 +

60
7
R2)

b1 2Ä10
k̂k̂

−(24/7)(R1 + 2R2 +Q5)

Ξ̃
(2)
ii

1 Äii + iknẄiin −(2PL − 4
7
R1 − 6

49
Q1 +

60
7
R2 +

30
7
Q2 )

b1 2Ä10
ii −(24/7)(2R2 +Q5)

Table B.3: Contributions to the pairwise velocity dispersion from “connected” cumulants in LPT,
decomposed into its trace σ212,ii and k̂ component σ2

12,k̂k̂
.

Ξ̃
(3)
ijk k3F̃ (k)

−ik̂ik̂j k̂kγijk (36/7)(2R2 +Q2)

−ik̂iδjkγijk −(12/7)(2R1 − 6R2 +Q1 − 3Q2)

Table B.4: Contributions to the third pairwise velocity moment from “connected” cumulants in
LPT, decomposed into its contractions with the unit vector k̂ and δij . At one-loop order, all such

contributions are due to matter velocities in the form of
...
W ijk and therefore aren’t multiplied by

any bias paremeters.

for example ∫
d3q eik·q µ2f(q) = 4π

∫
dq q2 f(q)

(
j0(kq)−

2j1(kq)

kq

)
.

This choice, however, leads to extra factors of kq multiplying jℓ that make the separation of
k-dependences messier. Thus, we have chosen in our calculations to use, e.g.

∫
d3q eik·q µ2f(q) = 4π

∫
dq q2 f(q)

(
1

3
j0(kq)−

2

3
j2(kq)

)
. (B.52)

B.7 Useful Mathematical Identies

To evaluate the power spectrum we make use of the angular integrals of the form

I2m(+1)(A,B) =
1

2

∫
dµ µ2m(+1)eiAµ−

Bµ2

2 = i0(+1)e−B/2
∞∑

n=0

f 2m
n (B)

(B
A

)n
jn(+1)(A) (B.53)

where the series coefficients f 2m
n (B) can be explicitly written using confluent hypergeometric

functions of the second kind

f 2m
n (B) =

( 2

B

)m
U(−m,n−m+ 1,

B

2
) (B.54)
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. For convenience we list the first few such integrals (see also Refs. [396, 398]):

1

2

∫
dµ µ0eiAµ−

Bµ2

2 = e−B/2
∞∑

n=0

(B
A

)n
jn(A) (B.55)

1

2

∫
dµ µ1eiAµ−

Bµ2

2 = ie−B/2
∞∑

n=0

(B
A

)n
jn+1(A) (B.56)

1

2

∫
dµ µ2eiAµ−

Bµ2

2 = e−B/2
∞∑

n=0

(
1− 2n

B

)(B
A

)n
jn(A) (B.57)

1

2

∫
dµ µ3eiAµ−

Bµ2

2 = ie−B/2
∞∑

n=0

(
1− 2n

B

)(B
A

)n
jn+1(A) (B.58)

1

2

∫
dµ µ4eiAµ−

Bµ2

2 = e−B/2
∞∑

n=0

(
1− 4n

B
+

4n(n− 1)

B2

)(B
A

)n
jn(A) (B.59)

The integrals that begin with jn+1 can be merged with those that do not by shifting indices,
e.g.

1

2

∫
dµ µ3eiAµ−

Bµ2

2 = ie−B/2
∞∑

n=0

(AΘn

B

)(
1− 2(n− 1)

B

)(B
A

)n
jn(A), (B.60)

where Θn = 1 for integers n greater than zero and is zero for n = 0, such that we can write

Im(A,B) =
1

2

∫
dµ µmeiAµ−

Bµ2

2 = e−B/2
∞∑

n=0

cmn (B)
(B
A

)n
jn(A). (B.61)

B.8 Implementation in Python

Our python code to calculate the velocity components and combine them into redshift-space
power spectra, velocileptors, is publicly available6 and includes example Jupyter notebooks
and scripts introducing the main modules.

The library is split into two main subdirectories, LPT and EPT which house the calculations
performed in LPT and EPT, respectively. The main workhorse module in each is called
moment expansion fftw.py, which produces the IR-resummed velocity moments and
contains functions to combine them into redshift-space power spectra. This is supplemented
by fourier streaming model fftw.py and gaussian streaming model fftw.py in LPT

and
ept fullresum fftw.py in EPT, the latter of which calculates the one-loop EPT redshift-space
power spectrum directly.

6https://github.com/sfschen/velocileptors
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In addtion to these the folder Utils contains various useful functions necessary for the
above calculations, the most important of which is qfuncfft.py, which comptues various
one-loop PT kernels and correlators using the FFTLog formalism described in ref. [320] and
expressions derived in Appendix B.5.

The structure of the basic LPT, and by extension EPT, class cleft fftw.py is based
on earlier code7, with a few modifications. Most importantly, the FFTLogs are evaluated
using spherical bessel transform fftw.py, a custom FFTLog module based on mcfit8

that saves time on the Hankel transforms used to compute the various LPT spectra by
storing the FFTLog kernels9, whose evaluations were the slowest steps of previous LPT codes,
rather than computing them on the fly. To further speed up these Hankel transforms we
use a multi-threadable python wrapper for FFTW10, pyFFTW11, which can be installed via
pip. Our LPT code takes less than one and a half seconds to generate power spectra at 50
wavenumbers running on one thread on a Macbook Pro purchased in 2013 and summing over
spherical Bessel functions up to ℓ = 5, generating all the bias contributions independently
such that power spectra within the same cosmology (but potentially different f) can be
re-computed essentially instantly, as can power spectra at different LOS angles µ. We found
that this setting was sufficient to produce < 0.5% errors out to k = 0.25hMpc−1 on all
relevant spectra. Results at an arbitrary number of ks can then be provided via cubic spline
interpolation with no loss of accuracy. The EPT code is slightly faster still and takes less
than a second to run (independent of the number of k points). For completeness, we include
the capability to set 1-loop terms to zero (for Zeldovich calculations) as well as a module to
compute correlation functions in redshift-space via the Gaussian streaming model.

7C. Modi. https://github.com/modichirag/CLEFT
8Y. Li. https://github.com/eelregit/mcfit
9https://jila.colorado.edu/ ajsh/FFTLog/index.html

10http://www.fftw.org/
11https://hgomersall.github.io/pyFFTW
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Appendix C

Redshift-Space Galaxy Clustering II

C.1 Infrared Resummation and the Broadband

Our goal in the main body of this paper was to develop the fully-resummed LPT model and
compare its performance to existing models such MOME and REPT. To be as fair as possible
to each of these models, we have independently fit for the bias parameters in counterterms
in each. However, it should be noted that in principle the bias bases for LPT and MOME
are identical, and equivalent up to a mapping to the Eulerian basis employed in REPT1.
However, while all three models should be equivalent order-by-order under these mappings,
they tend to make somewhat different predictions, especially towards small scales, due to
the different IR resummation schemes involved. Namely, each of the three schemes organizes
the perturbative expansion in slightly different expansion parameters. While LPT resums
all the two-point long wavelength displacement and velocity contributions, in EPT these
are considered perturbative and are accordingly expanded. Nevertheless, in EPT what is
resummed are the contributions to the BAO feature from the relative motions of the long
modes. In the MOME expansion, RSD contributions are organized following the moment
expansion [328, 400, 401, 398], while each of the contributions is then evaluated in LPT [74].
This seemingly leaves the long velocity contributions expanded, contrary to the full LPT
approach. In ref. [74] these were left un-resummed, although a straight forward approach to
add these would follow the EPT procedure, just excluding the displacement contributions
which have already been resummed. For MOME we can thus write

P s,IR
1-loop(k) ≈ P s,nw

1-loop(k) + e−
1
2
Σ2

s(µ)k
2 (

1 + 1
2
Σ2
s(µ)k

2
)
P s,w
lin (k)

+ e−
1
2
Σ2

s(µ)k
2 (
P s
loop(k)− P s,nw

loop (k)
)
,

where the wiggle and no-wiggle P s
1 - loop (and similarly the P s

loop by dropping the linear
Kaiser part) are given by MOME predictions computed in ref. [74]. The difference with the
EPT resummation scheme is in the definition of Σs which now contains only the velocity

1See, for example, Equation 4.8 in ref. [74]
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Figure C.1: Power spectrum predictions of the three models (LPT, MOME, REPT) given the same
set of bias parameters, but with all counterterms and stochastic parameters adjusted in the MOME
and REPT curves to match the LPT prediction with no counterterms or stochastic terms

. While much of the differences between the three formalisms can be soaked up by the
counterterms, the fractional residuals (lower panel) at high k and µ begin to show less trivial

behavior, suggesting non-negligible theory error.

contributions
Σ2
s(µ) = f(f + 2)µ2Σ2, (C.1)

where Σ2 is the velocity dispersion due to the long wavelength modes.
Figure C.1 shows the predictions for P (k, µ) of LPT, MOME and REPT when the bias

parameters (b1, b2, bs, b3) are fixed to the best-fit values for the fiducial halo sample in LPT,
with counterterms and stochastic contributions in the MOME and REPT cases adjusted to fit
the LPT result. The three schemes differ systematically towards higher k and µ. Compared
to its Eulerian counterpart, LPT shows significant supression of power towards high k,
particularly along the line of sight; this suppression is absorbed by adjusting counterterms
and stochastic contributions in Figure C.1, though the theories nonetheless begin to diverge at
the percent level around k = 0.15hMpc−1, especially towards higher µ. The LPT and MOME
schemes are quite similar at low µ since they differ only in the inclusion of higher-order
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velocities along the line of sight in the former2—and both are damped relative to REPT—but
closer to the line of sight their oscillatory components begin to differ significantly more than
between LPT and REPT since long velocity modes are not resummed in MOME.

The above differences in the three schemes have their origin in the fact that the expansion
parameters in these schemes do not match exactly. As we mentioned before, in LPT the long
wavelength displacement and velocity two-point contributions are directly resummed, while
in REPT only the relative effects of these are resummed and thus affect only the BAO. The
MOME scheme, on the other hand, takes a hybrid approach between the previous two. Since
the predictions of the three schemes, as plotted in Figure C.1, are equal up to second (one-loop)
order in the linear power spectrum when expanded order-by-order; the apparent differences
therefore reflect differences at two-loop order or beyond, even though these residuals are due
to the long mode contributions and are nominally under the perturbative control. At low k
they manifest as contributions proportional to the wavenumber squared and can be largely
absorbed by existing counterterms ∝ k2µ2nP (k) and stochastic contributions. The residual
deviations at higher k and µ, can also provide rough estimates of the theory error of these
common perturbative schemes, indicating the range of validity of current perturbative models.
We intend to return to a more in-depth comparison of these schemes in a future work.

In addition, as noted in the main body of the text, the choice of infrared cutoff kIR
has a significant effect on the broadband power of the anisotropic power spectrum within
the LPT model itself. Figure C.2 shows this effect on the power spectrum multipoles,
with bias parameters fixed to those obtained by fitting the fiducial sample to LPT with
kIR = 0.2hMpc−1. In all three multipoles shown, decreasing the IR cutoff results in increasing
power at high k, with higher ℓ increasingly sensitive to these nonlinearities. Indeed, by
k = 0.1hMpc−1 the hexadecapoles with kIR equal to zero is close to twice as large as that
with no IR cutoff, i.e. kIR = ∞. In the kIR → 0 limit the LPT prediction is equal to that in
EPT without any additional IR resummation and with the bias parameters appropriately
mapped. Of course, we caution that while the differences shown in Figure C.2 are intended
to demonstrate the full spectrum of resummations possible in our scheme, in reality much of
these differences can be absorbed by effective corrections as in Figure C.1.

The increasing effect of the IR cutoff on redshift space distortions at high µ can be
understood intuitively within the language of the moment expansion. In general, higher-order
velocities will tend to be more sensitive to the IR cutoff. This can be seen as follows: the
velocity statistics of interest for RSD can be schematically written as Mn =

〈
XneiX

〉
where

X = k ·∆. Approximating X to be Gaussian with variance σ2 we can write the even moments
as

M2n = ⟨X2n⟩(1 + a2σ
2 + a4σ

4 + ... ) exp
[
−σ2/2

]
. (C.2)

For n > 0 we always have a2 < 0, i.e. M2n damps faster than the exponential damping in
M0. This is easily understood: higher Mn receive more contributions from larger values of
X, where the complex exponential oscillates rapidly, and are suppressed by Xn at small

2In fact, MOME also shows slightly more suppression at low µ since we have followed the main text of
ref. [74] and the velocileptors code in not including any IR cutoffs in the expanded velocity moments.



APPENDIX C. REDSHIFT-SPACE GALAXY CLUSTERING II 288

0.00 0.05 0.10 0.15 0.20 0.25
k [h/Mpc]

0
200
400
600
800

1000
1200
1400
1600
1800

kP
(k

) [
(M

pc
/h

)2 ]

EPT
kIR = 0.05

kIR = 0.1
kIR = 0.2

kIR =
= 0

= 2
5 x = 4

Figure C.2: Power spectrum multipole predictions for a range of IR cutoffs kIR. Including more IR
modes by upping kIR damps the total power at high k, especially in the higher multipoles. The
limit of kIR → 0 corresponds to unresummed EPT (thin solid lines), with noticeably larger BAO
oscillations at both linear and one-loop order, though even kIR = 0.05hMpc−1 dramatically reduces
these.

X where the exponential varies slowly. Indeed, this effect was observed in ref. [74], where
it was noted that the broadband of the second moment of the pairwise velocity, σ12, ij =〈
(1 + δ1)(1 + δ + 2)∆̇i∆̇j

〉
is very sensitive to cutoff choice, with its monopole and quadrupole

respectively being better predicted by higher and lower values of kIR. Since the second
moment’s quadrupole is the leading µ4 contribution to the anisotropic power spectrum, one
might expect that P4 should in turn be very sensitive to this choice. In light of the effects
of kIR on the second moment, in this paper we have chosen the “intermediate” value of
0.2hMpc−1 as our fiducial IR cutoff (at z ≈ 0.8), though we caution that further investigation
is warranted when operating at significantly higher or lower redshifts or with highly biased
tracers.

Finally, let us note that, in contrast to the anisotropic broadband, the corresponding
BAO features in the correlation function monopole and quadrupole, shown in Figure C.3,
are rather insensitive to the specific choice of kIR. Indeed, even kIR = 0.05hMpc−1, which
is almost identical to EPT in its broadband, demonstrates significant damping of the BAO
feature. This figure also shows the unresummed EPT (kIR = 0) prediction, which clearly
illustrates the non-convergence of the configuration-space BAO feature in one-loop EPT that
necessitates the a posteriori IR resummation implemented in these models.
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Figure C.3: Correlation function multipole predictions with a range of IR cutoffs kIR for bias
parameters fixed to those obtained from the fiducial halo sample. The BAO features in both
the monopole and quadrupole are rather robust, showing little change for kIR > 0.05hMpc−1,
despite significant differences in the corresponding power spectrum broadbands. For reference,
the unresummed EPT (kIR = 0) prediction, which clearly illustrates the non-convergence of the
nonlinear configuration-space BAO feature absent IR resummation, is also shown (thin solid lines).

C.2 Method I

In this section we extend Method I, first presented in [398], to include terms up to one-loop
order. In contrast to Method II, described in the main body of the text, this method does
not rely on boosting the wavevector k into a more convenient frame but rather evaluates the
integral in Equation 3.5 directly in the observed frame.

From the form of the RSD operator R
(n)
ij = δij + nfn̂in̂j, where n index counts a given

order in PT, we can see that all integrals in Eq.(3.5) can be written in terms of scalar
functions and dot products between three unit vectors (q̂, k̂ and n̂). The angular structure is
given in terms of products

n̂ · k̂ = µ, q̂ · k̂ = µq, q̂ · n̂ = µqµ+
√
1− µ2

q

√
1− µ2 cosϕ, (C.3)

where ϕ is the azimuthal angle in a polar coordinate system where the zenith is given by k̂
and the plane ϕ = 0 is spanned by k̂ and q̂. The effect of RSD operators R(n) can then be
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captured by looking how it acts on the tensor basis comprised of q̂i, δij,. We have

kikjδij → kikjR
(m1)
in R

(m2)
jn = k2

[
1 + f(m1 +m2 +m1m2f)µ

2
]
, (C.4)

kiq̂i → kiR
(m)
ij q̂j = kµq

[
1 +mfµ2 +mfµ2γ(µq, µ) cosϕ

]
, (C.5)

where γ(µq, µ) =
√

1− µ2
q

√
1− µ2/µqµ. The azimuthal dependence of the exponentiated

linear displacements Asij requires us to calculate polar-coordinate integrals of the form [398]

In(f, µq, µ) =

∫ 2π

0

dϕ

2π
e−

1
2
k2Y (α2γ cosϕ+α3γ2 cos2 ϕ)µ2q , (C.6)

where α2 = fµ2(m1 +m2 + fm1m2µ
2) and α3 = m1m2f

2µ4. This expression can be used to
compute all the other loop contributions (except the Wijk term). These can be calculated by
taking derivatives in either α or β of the identity

Iϕ (α, β, µq) =

∫ 2π

0

dϕ

2π
eαµq

√
1−µ2q cosϕ+β(1−µ2q) cos2 ϕ =

∞∑

ℓ=0

Fℓ(α, β)
(
α2µ2

q/β
)ℓ
, (C.7)

where

Fℓ(α, β) =
ℓ∑

m=0

Γ(m+ 1
2
)

π1/2Γ(m+ 1)Γ(1 + 2m− ℓ)Γ(2ℓ− 2m+ 1)

(
−β

2

α2

)m

×M

(
ℓ− 2m; ℓ−m+ 1

2
;
α2

4β

)
M

(
m+

1

2
;m+ 1; β

)
(C.8)

and M(a, b, z) are hypergeometric functions of the first kind.
In order to capture the contribution of Wijk a slight generalisation of the integrals above

is required. The integral we need is of the form
∫ 2π

0

dϕ

2π

(√
1− µ2

q cosϕ
)
eαµq

√
1−µ2q cosϕ+β(1−µ2q) cos2 ϕ =

1

µq

d

dα
Iϕ (α, β, µq) . (C.9)

However, since F0(α, β) does not depend on α we have

1

µq

d

dα
Iϕ (α, β, µq) = µq

1

β

d

dα

∞∑

ℓ=0

α2Fℓ+1(α, β)
(
α2µ2

q/β
)ℓ
. (C.10)

C.3 Method II

C.3.1 General Mathematical Structure

The workhorse integral of Method II is [398]

I(A,B,C) =

∫
dµq dϕ e

−iC
√

1−µ2q cosϕ+iAµq+Bµ2q = 4πeB
∞∑

ℓ=0

(−2

ρ

)ℓ
G̃

(0)
0,ℓ(A,B, ρ)jℓ(ρ),
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where ρ2 = A2 + C2. The exact form of the kernel G̃
(0)
0,ℓ is given in Section C.3.4.

To compute the redshift-space power spectrum for biased tracers we will need the integrals
derived from A,C derivatives of I, i.e.

In,m(A,B,C) = im−n
∫
dµq dϕ e

−iC
√

1−µ2q cosϕ+iAµq+Bµ2q
(√

1− µ2
q cosϕ

)n
µmq (C.11)

= 4πeB
∞∑

ℓ=0

(−2

ρ

)ℓ
G̃

(m)
n,ℓ (A,B, ρ)jℓ(ρ). (C.12)

These satisfy the recursion relations

G̃
(m)
n,ℓ =

dG̃
(m)
n,ℓ

dA
+
A

2
G̃

(m−1)
n,ℓ−1 , G̃

(m)
n,l =

∂G̃
(m)
n,ℓ

∂C
+
C

2
G̃

(m−1)
n,ℓ−1 . (C.13)

For convenience we list the first few G̃
(m)
0,ℓ :

G̃
(1)
0,ℓ =

∂G̃
(0)
0,ℓ

∂A
+
A

2
G̃

(0)
0,ℓ−1

G̃
(2)
0,ℓ =

∂2G̃
(0)
0,ℓ

∂A2
+ A

∂G̃
(0)
0,ℓ−1

∂A
+

1

2
G̃

(0)
0,ℓ−1 +

A2

4
G̃

(0)
0,ℓ−2

G̃
(3)
0,ℓ =

∂3G̃
(0)
0,ℓ

∂A3
+

3A

2

∂2G̃
(0)
0,ℓ−1

∂A2
+

3

2

∂G̃
(0)
0,ℓ−1

∂A
+

3A2

4

∂G̃
(0)
0,ℓ−2

∂A
+

3A

4
G̃

(0)
0,ℓ−2 +

A3

8
G̃

(0)
0,ℓ−3. (C.14)

The derivatives with respect to C are entirely analogous, swapping C for A and m for n. In
addition, we will need

G̃
(1)
1,ℓ =

∂2G̃
(0)
0,ℓ

∂A∂C
+
C

2

∂G̃
(0)
0,ℓ−1

∂A
+
A

2

∂G̃
(0)
0,ℓ−1

∂C
+
AC

4
G̃

(0)
0,ℓ−2

G̃
(2)
1,ℓ =

∂3G̃
(0)
0,ℓ

∂A2∂C
+
C

2

∂2G̃
(0)
0,ℓ−1

∂A2
+ A

∂2G̃
(0)
0,ℓ−1

∂A∂C
+

1

2

∂G̃
(0)
0,ℓ−1

∂C

+
AC

2

∂G̃
(0)
0,ℓ−2

∂A
+
A2

4

∂G̃
(0)
0,ℓ−2

∂C
+
C

4
G̃

(0)
0,ℓ−2 +

A2C

8
G̃

(0)
0,ℓ−3

C.3.2 Example: One-Loop Matter Power Spectrum in Redshift
Space

Let us consider the one-loop matter power spectrum as an example for the kinds of angular
terms that can arise. For simplicity, we focus on what happens to the un-exponentiated
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one-loop contribution A
(22)
ij . In this case we have that the relevant quantity in redshift space

is

kikj(R
(1) + f n̂⊗ n̂)in(R

(1) + f n̂⊗ n̂)jmA
(22)
nm =

(
KiKj + 2fk∥,iKj + f 2k∥,ik∥,j

)
A

(22)
ij .

(C.15)

The first piece (KiKj) is identical in angular structure to those in the Zeldovich case, so we
restrict our attention to the other two.

Let’s begin with the term proportional to f in Equation C.15. We have (dropping the
(22) for brevity)

Kik∥,jAij = (K · k∥)X + (q̂ ·K)(q̂ · k∥)Y

= k2µ2(1 + f) X + (Kµq) kµ(A(µ)µq +B(µ)
√

1− µ2
q cosϕ) Y.

The piece proportional to X poses no problem since it has no angular dependence. The term
proportional to Y has a piece proportional to µ2

q , which can be computed via two derivatives
of Equation 3.13 w.r.t. A, and another with ϕ dependence calculable via a C derivative; both
are of the form C.12. The term proportional to f 2 is similar and involves

k∥,ik∥,jAij = k2µ2
[
X + (q̂ · n̂)2Y

]
.

This piece proportional to Y then involves up to two C derivatives.

C.3.3 General Angular Structure of Bias Contributions

Let us now list all the possible angular dependencies at one-loop order, organized in powers
µaq(n̂ · q̂)b. This format is convenient because each such power can be readily integrated in ϕ
and µq to give

µaq(n̂ · q̂)b =
b∑

n=0

(
b

n

)
An(µ)Bb−n(µ)µa+nq

(√
1− µ2

q cosϕ
)b−n →

4π
b∑

n=0

(
b

n

)
An(µ)Bb−n(µ)

(−2

kq

)ℓ
G̃a+n
b−n,ℓ jℓ(kq)

The simplest case involves correlators with one order n displacement, of the form U
(n)
i =

U(q)q̂i:

kiU
s,(n)
i = [Kµq + f(n− 1)kµ(q̂ · n̂)] U(q) (C.16)

Then we have terms involving two displacements with order n,m, which we can write as
A

(n,m)
ij = Xδij + Y q̂iq̂j:

kikjA
s,(n,m)
ij =K2[X(q) + Y (q)µ2

q] + (n+m− 2)fkµ[X(q)(K̂ · n̂) + Y (q)µq(q̂ · n̂)]
+ (n− 1)(m− 1)f 2k2µ2[X(q) + Y (q)(q̂ · n̂)2]. (C.17)
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bias (n,m, l): correlator

1 (1, 3): A
(13)
ij , (2, 2): A

(22)
ij , (1, 1, 2): W

(112)
ijk

b1 (3): U
(3)
i , (1, 2): A10

ij

b21 (2): U11
i

b2 (2): U20
i

bs (2): V 10
i

Table C.1: Contributions to the one-loop power spectrum and the perturbative order of the
displacements they contain.

Finally, at one-loop order there is one term involving three displacements involving their
(112) bispectrum W

(112)
ijk = V1(q̂iδjk + q̂jδik) + V3q̂kδij + T q̂iq̂j q̂k:

kikjkkW
(112)
ijk = 2

(
K3 + fK(kµ)2(1 + f)

)
µq V1(q)

+K2
(
Kµq + f(kµ)(n̂ · q̂)

)
V3(q)

+K2
(
Kµ3

q + f(kµ)µ2
q(n̂ · q̂)

)
T (q). (C.18)

The full list of non-Zeldovich angular dependences required for the one-loop power spectrum
is given in Table C.1.

C.3.4 G̃
(0)
0,m and Its Derivatives

The basic kernel for Method II is the function

G̃(0)
m (A,B, ρ) =

∞∑

n=m

fnm

(BA2

ρ2

)n
2F1

(1
2
− n,−n; 1

2
−m− n;

ρ2

A2

)
, (C.19)

where ρ =
√
A2 + C2, 2F1 is the ordinary hypergeometric function and fnm is

fnm =
Γ(m+ n+ 1

2
)

Γ(m+ 1)Γ(n+ 1
2
)Γ(1−m+ n)

. (C.20)

The angular dependences in Method II require us to take A and C derivatives of the
above. The first three derivatives of G̃

(0)
0 with respect to A are given by

dG̃
(0)
0,m

dA
=

∞∑

n=m

(BA2

ρ2

)n
fnm

[(2n
A

− 2nA

ρ2

)
2F1

(1
2
− n,−n; 1

2
−m− n;

ρ2

A2

)

+
(
− 2ρ2

A3
+

2

A

)(1
2
− n)(−n)

(1
2
−m− n)

2F1

(3
2
− n, 1− n;

3

2
−m− n;

ρ2

A2

)]

(C.21)
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d2G̃
(0)
0,m

dA2
=

∞∑

n=m

(BA2

ρ2

)n
fnm

(ρ2 − A2

ρ4

)

[
(2m− 1− 4n(m+ 1)) 2F1

(1
2
− n,−n; 1

2
−m− n;

ρ2

A2

)

+ (1− 4n2 +m(4n− 2)) 2F1

(3
2
− n,−n; 1

2
−m− n;

ρ2

A2

)]
. (C.22)

d3G̃
(0)
0,m

dA3
=

C2

Aρ6

∞∑

n=m

(BA2

ρ2

)n
fnm

[(
(2(1−m)(1− 2m) + 8n(2−m)(1 +m) + 8n2(1 +m))A2

− (1− 2m+ 4n(1 +m))C2
)

2F1

(1
2
− n,−n; 1

2
−m− n;

ρ2

A2

)

− (1− 2n)
(
2(1− 2m+ 2n)(1−m+ n)A2

− (1− 2m+ 4n(1 +m))C2
)

2F1

(3
2
− n, 1− n;

1

2
−m− n;

ρ2

A2

)]

The derivatives with respect to C are

dG̃
(0)
0,m

dC
= −C

ρ2

∞∑

n=m

(BA2

ρ2

)n
fnm

[
2F1

(1
2
− n,−n; 1

2
−m− n;

ρ2

A2

)

− (1− 2n) 2F1

(3
2
− n, 1− n;

1

2
−m− n;

ρ2

A2

)]
(C.23)

d2G̃
(0)
0,m

dC2
= ρ−4

∞∑

n=m

(BA2

ρ2

)n
fnm (C.24)

[(
(1 + 2m− 4n(1 +m))A2 + 2C2

)
2F1

(1
2
− n,−n; 1

2
−m− n;

ρ2

A2

)

− (1− 2n)
(
(1 + 2m− 2n)A2 + 2C2

)
2F1

(3
2
− n,−n; 1

2
−m− n;

ρ2

A2

)]
.

Note that we can use dG/dA = −(C/A) dG/dC to recast the first derivative w.r.t. A in a
convenient form as well.
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In addition, we need two mixed derivatives ∂C∂
(1,2)
A G. These are

∂2G̃
(0)
0,m

∂C∂A
= − C

Aρ4

∞∑

n=m

(BA2

ρ2

)n
fnm

[
(2(m− 2n(1 +m))A2 + C2)2F1(

1

2
− n,−n; 1

2
−m− n;

ρ2

A2
)

− (1− 2n)(2(m− n)A2 + C2)2F1(
3

2
− n,−n; 1

2
−m− n;

ρ2

A2
)

]
(C.25)

∂3G̃
(0)
0,m

∂C∂A2
=
C

ρ6

∞∑

n=m

(BA2

ρ2

)n
fnm

((
2(m− 2m2 − 4n(1−m2)− 4n2(1 +m))A2

+ 3(1− 2m+ 4n(1 +m))C2
)

2F1(
1

2
− n,−n; 1

2
−m− n;

ρ2

A2
)

− (1− 2n)
(
2(1− 2m+ 2n)(m− n)A2

+ (3− 6m+ 8n+ 4mn)C2
)

2F1(
3

2
− n,−n; 1

2
−m− n;

ρ2

A2
)
)

(C.26)

C.3.5 Implementation in Python

Our implementation of Method II, lpt rsd fftw.py, is available as part of velocileptors3,
a Python package for the one-loop redshift-space power spectrum that also includes modules
implementing the moment expansion, Gaussian streaming model, and resummed Eulerian
perturbation theory. The LPT module includes auxiliary functions to compute multipoles,
add Alcock-Paczynski parameters not equal to one and combine the various bias contributions.
We also include a sample jupyter notebook containing example usage.

Our IR-resummation procedure is inherently rather numerically involved because of the
angular dependence of the resummed displacements. To speed up this calculation (in Python)

we can take advantage of the fact that the derivatives ∂bC∂
a
AG̃

(0)
0,ℓ can be written as

∞∑

n=ℓ

[
− 1

2
K2Y lin(q)

]n
(kq)−(a+b)c2nFn(f, µ),

of which the only vector operations involve multiplying by q and Y (q). The remaining factors
are independent of k and q and can be tabulated for each value of µ. Further, the only special
functions we need are 2F1(

1
2
− n,−n; 1

2
−m − n;x), 2F1(

3
2
− n,−n; 1

2
−m − n;x), and the

Γ-functions in fnm, which can all be tabulated in advance and do not have to be calculated
at each wavenumber. With these simplifications, it takes about two and a half seconds to

3https://github.com/sfschen/velocileptors
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compute the mutipoles at 50 k points between 0.01 and 0.25hMpc−1; applying a cubic spline
to interpolate between these points is sufficient to achieve sub-percent accuracy for any k in
this range. Similarly, it takes less than a second to compute P (k, µ) over the same number of
points for a fixed µ.

C.3.6 An alternative formulation of Method II

In this section we provide an alternative numerical solution to the direct evaluation of the
RSD integrals in LPT. For simplicity we will present only the leading order term, i.e. the
Zeldovich approximation, but the main result is trivially extended to one-loop, for which
we will provide the necessary ingredients. We begin by writing the Zeldovich RSD power
spectrum as

Ps,Zel(k, µ) = 2π

∫
dqq2e−

1
2
K2(X(q)+Y (q))

∫ 1

−1

dµq e
iµqA+(µ2q−1)BJ0(C

√
1− µq) (C.27)

with A ≡ kqc, B ≡ −K2Y (q)/2 and C ≡ kqs. We then Taylor series expand in B and
integrate the A piece by parts n times, when n goes to infinity eventually, to rewrite the
integral over µq as

∞∑

n=0

(−1)n
∫ 1

−1

dµq
eiµqA

(iA/B)n
2n

dn

dµnq

(
(µ2

q − 1)n

2nn!
J0(C

√
1− µ2

q)

)
. (C.28)

Then use 10.1.48 of ref. [5] to expand the J0,

J0(C
√
1− µ2

q) =
∞∑

α=0

(4α + 1)
(2α)!

22α(α!)2
j2α(C)P2α(µq) (C.29)

to arrive, using the plane wave expansion of the exponential, at

C.28 =
∑

n,α,ℓ

(−1)n
2n(2α)!

22α(α!)2
(4α + 1)(2ℓ+ 1)

(i)ℓjℓ(A)j2α(C)

(iA/B)n
(C.30)

×
∫ 1

−1

dµq Pℓ(µq)
dn

dµnq

(
(µ2

q − 1)n

2nn!
P2α(µq)

)
. (C.31)

Now it turns out that

C.31 =

∫ 1

−1

dµq Pℓ(µq)
n∑

k=0

(
n

k

)
P−k
n (µq)Pk

2α(µq) (C.32)

= 2
n∑

k=0

(
n

k

)√
(2α + k)!(n− k)!

(n+ k)!(2α− k)!

(
ℓ n 2α
0 −k k

)(
ℓ n 2α
0 0 0

)
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in terms of 3-j symbols. Putting the above equations together, the angular part of the
Zeldovich RSD integral can be computed analytically

C.28 =
∑

n,α,ℓ

(−1)n
2n(2α)!

22α(α!)2
(4α + 1)(2ℓ+ 1)

(i)ℓjℓ(A)j2α(C)

(iA/B)n
(C.33)

× 2
∑

k

(
n

k

)√
(2α + k)!(n− k)!

(n+ k)!(2α− k)!

(
ℓ n 2α
0 −k k

)(
ℓ n 2α
0 0 0

)
(C.34)

≡
∑

ℓ,α

cℓ,α(k, µ, q)jℓ(A)j2α(C) , (C.35)

and we can rewrite ZA power spectrum in redshift space as

Ps,Zel(k, µ) =2π
∞∑

ℓ,α=0

∫
dq

q
q3e−1/2K2(X(q)+Y (q))cℓ,α(k, µ, q)jℓ(A)j2α(C) . (C.36)

The two remaining sums over α and ℓ run from zero to infinity, but in practice only the first
5 terms are relevant for sub-% precision. Upon expanding the non oscillatory part of the
integrand above in complex power laws (FFTlog) [159, 15],

q3e−1/2K2(X(q)+Y (q))cℓ,α(k, µ, q) ≡
∑

n

dℓ,α,n(k, µ)q
νn (C.37)

and then using the following analytic integral

∫
dq

q
qνnjℓ(kqc)j2α(kqs) (C.38)

=(kc)−νn
π2νn−3t2αΓ

(
1
2
(2α + ℓ+ νn)

)
2F̃1

(
1
2
(2α− ℓ+ νn − 1), 1

2
(2α + ℓ+ νn); 2α + 3

2
; t2
)

Γ
(
1
2
(−2α + ℓ− νn + 3)

)

(C.39)

≡ (kc)−νnI(ℓ, α, νn, t) (C.40)

with t ≡ s/c, and 2F̃1 a regularized Hypergeometric function, we can perform the remaining
integral in Eq. C.36 4. The Zeldovich RSD power spectrum can then be computed as

PZA(k, µ) = 2π
∑

ℓ,α,n

dℓ,α,n(k, µ)(kc)
−νnI(ℓ, α, νn, t) . (C.41)

For a given set of FFTlog parameters, the function I(ℓ, α, νn, t) can be tabulated in advance
and the sum above performed quickly.

4See for example p. 401 (13.4) of ref. [407]. The integral exists for any νn > −2, which is the case by an
appropriate choice of the FFTlog parameters.
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Loop integrals and bias terms introduce two main complications. First, new terms
proportional to µβq appear in the angular integral in Equation C.27. They can be easily
included by rewriting them as derivatives with respect to A or B, analogously to what is
done in the real space calculation [399]. Second, the loop structure will replace the J0 in
Equation C.27 with more complicated functions. For the one-loop calculation at hand, we
have to perform the angular integral in Equation C.28 with the following two terms

−i
√

1− µ2
q J1(C

√
1− µ2

q) and
1

2
(1− µ2

q)
[
J0(C

√
1− µ2

q)− J2(C
√
1− µ2

q)
]

(C.42)

instead of the J0. Those are easy to deal with by noticing that

−i
√

1− µ2
q J1(C

√
1− µ2

q) = i∂CJ0(C
√
1− µ2

q) −→ i∂Cj2α(C) (C.43)

= i
2aj2a(C)

C
− ij2a+1(C) (C.44)

and

1

2
(1− µ2

q)
[
J0(C

√
1− µ2

q)− J2(C
√

1− µ2
q)
]
= −∂2CJ0(C

√
1− µ2

q) −→ −∂2Cj2α(C) (C.45)

= −(4a2 − 2a− C2) j2a(C) + 2Cj2a+1(C)

C2
,

(C.46)

which boil down to a reshuffling of the coefficients in the sums of Equation C.35.
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Appendix D

Reconstruction in the Zeldovich
Approximation

D.1 Cross-spectra correlators

In this appendix we give analytic expressions for the two-point functions required to calculate
cross-spectra, which are slightly different from those required to calculate the auto-spectra
more commonly seen in the literature.

The two-point function for the Lagrangian displacement between two species separated
by Lagrangian distance q is given by

Aabij (q) = ⟨Ψa
iΨ

a
j ⟩+ ⟨Ψb

iΨ
b
j⟩ − 2⟨Ψa

i (q2)Ψ
a
j (q1)⟩ ≡ Xab(q) δij + Y ab(q) q̂iq̂j (D.1)

where

Xab(q) =
2

3

∫
dk

2π2

[ 1

2

(
P aa
L (k) + P bb

L (k)
)
−
(
j0(kq) + j2(kq)

)
P ab
L (k)

]

Y ab(q) = 2

∫
dk

2π2
j2(kq)P

ab
L (k). (D.2)

Note that for cross spectra Xab(q) does not in general vanish as q → 0. Similarly we have

U b
i = ⟨∆ab

i δ0(q2)⟩ ≡ U b(q)q̂i, Ua
i = ⟨∆ab

i δ0(q1)⟩ ≡ Ua(q)q̂i (D.3)

where

Ua(q) = −
∫
dk k

2π2
j1(kq)P

am
L (k) (D.4)

and P am is the linear theory cross spectrum between tracer a and matter, and the corre-
sponding expression for U b follows by direct substitution.

Finally, the non-scalar shear correlators are given by

V ab
i = V a(q)q̂i, Υa

ij = Xa
s2(q)δij + Y a

s2(q)q̂iq̂j (D.5)
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where the functions of q are given by

V a(q) = 2

∫
dk k

2π2
P am
L (k)

[ 4
15
j1(kq)−

2

5
j3(kq)

] ∫ dk k2

2π2
Pmm
L (k) j2(kq) (D.6)

and

Xs2(q) = 4(J a
3 )

2, Ys2(q) = 6(J a
2 )

2 + 8J a
2 J a

3 + 4J a
2 J a

4 + 4(J a
3 )

2 + 8J a
3 J a

4 + 2(J a
4 )

2

(D.7)

where following refs. [415, 396] we have defined

J a
2 =

∫
dk k

2π2
P am
L (k)

[ 2
15
j1(kq)−

1

5
j3(kq)

]
(D.8)

J a
3 =

∫
dk k

2π2
P am
L (k)

[
− 1

5
j1(kq)−

1

5
j3(kq)

]
(D.9)

J a
4 =

∫
dk k

2π2
P am
L (k) j3(kq). (D.10)

The remaining scalar shear correlators, ζ and χ12, are identical to those found in evaluating
the auto-spectrum, and we refer readers to refs. [415, 396].

D.2 The pre- and post-reconstruction Zeldovich

propagator

In this appendix we give expressions for the normalized cross-spectrum between the initial and
final or reconstructed field. This is essentially a correlation coefficient, though it is also referred
to as the propagator [92]. Specifically we define Ga(k) = ⟨δ0(−k)δa(k)⟩/⟨δ0(−k)δ0(k)⟩,
within the Zeldovich approximation, which quantifies the extent to which a tracer field a is
(de)correlated with the initial density δ0, and apply our results to derive the reconstructed
field. Our results generalize those in ref. [257] to include halo bias.

As defined, the propagator Ga is a special case of the cross spectrum and can be evaluated
using Equation 4.4 by assuming that the linear field δ0 is a tracer b with displacement
Ψb = 0 and bias functional F b = δ0, such that any Lagrangian two-point functions involving
the displacement Ψb (e.g. U b) or higher biases (e.g. bb2) vanish identically. Unlike in the
conventional case, however, F b does not have a zero order piece equal to unity— we can thus
compute our result directly by taking the derivative of Equation 4.4 with respect to bb1 with
the above assumptions. This gives

PL(k)Ga(k) =

∫
d3q eik·q e−k

2Σ2
aa/4
[
ikiU

a
i +b

a
1ξL

]
= e−k

2Σ2
aa/4
(
P am(k)+ba1P

mm(k)
)
, (D.11)

where we have used that

Aa0ij (q) = ⟨Ψa
iΨ

a
j ⟩ ≡

1

2
Σ2
aaδij, (D.12)
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only receives “half” of the zero-point contribution c.f. the power spectrum (where ⟨ΨbΨb⟩ ≠ 0).
Note that all higher bias contributions vanish. The generalization to the redshift space field
can be straightforwardly accomplished by multiplying by appropriate factors of Rij in the
numerator, though we will focus on real space in this appendix as RSD introduce an equally
important but parallel form of decorrelation into the problem.

From the above results, the reconstructed-field (δrec = δd − δs) propagator can be written
as Grec = Gd −Gs, where

Gd(k) =
e−k

2Σ2
dd/4
(
P dm(k) + b1P

mm(k)
)

PL(k)
, Gs(k) =

e−k
2Σ2

ss/4P sm(k)

PL(k)
, (D.13)

where the various linear spectra are defined as in Equation 4.14. The real-space post-
reconstruction propagator is then

Grec(k) = e−k
2Σ2

dd/4 [(1− S(k) + b1] + S(k)e−k2Σ2
ss/4. (D.14)

The expression for Grec helps to quantify how much of the decorrelation between the initial
conditions and the final field arises due to bulk motions, and the manner in which this can be
restored by the standard reconstruction algorithm. Roughly speaking, reconstruction reduces
the decorrelation from the full matter Σ2 to Σ2

dd past the smoothing scale for the matter
piece, with the correlation at low k close to unity assuming that the damping due to Σ2

ss

there is negligible.

D.3 Integrals for redshift space distortions via direct

Lagrangian expansion

Calculating the power spectrum in redshift space within the Zeldovich approximation requires
a few extra steps when compared to the calculation in real space due to the line-of-sight
dependence of RSD. In Appendices C.2 and C.3 we discussed two methods to compute the
requisite integrals corresponding, roughly speaking, to active and passive transformations in
Fourier space via Rij = δij + fn̂in̂j, respectively. The goal of this section is not to repeat
those discussions but to discuss specifics related to the reconstruction problem.

D.3.1 Direct Lagrangian Expansion: MI

In Appendix C.2 we described a general approach for computing contributions to the power
spectrum in LPT with linear displacements resummed. For reconstruction in the Zeldovich
approximation we only need those pieces corresponding to linear displacements, such that all
of the redshift-space transformation matrices are Rij ≡ R

(1)
ij .

An additional simplified but demonstrative example of MI can be found in the calculation
of the displaced-shifted cross spectrum in redshift space reconstruction via Rec-Iso. The H0

ℓ
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expansion in Equation 4.24 is essentially Equation C.7 in the limit where β → 0. To proceed
from Equation 4.24, we can use the identity in Equation B.53 and refactor the resulting
double sum over n and ℓ to get

P (ds)(k) = e−
1
2
k2(α0Σ(dd)2+Σ(ss)2 ) 4π

∞∑

n=0

∫
dq q2ek

2(1+fµ2)(X̃ds+Ỹ ds)
(−2kỸ ds

q

)n
(1 + fµ2)n

[
K(0)
n (q)jn(kq)− b1kU

d(q)K(0)
n (q)jn+1(kq)−

1

2
b2k

2Ud(q)2K(2)
n (q)jn(kq) + · · ·

]

(D.15)

where the redshift-space kernels are given by

K(0)
n (q) =

∞∑

ℓ=0

(
− fµ

√
1− µ2

1 + fµ2

)ℓ
Hℓ(A) U(−ℓ, n− ℓ+ 1,−B)

K(2)
n (q) =

∞∑

ℓ=0

(
− fµ

√
1− µ2

1 + fµ2

)ℓ
Hℓ(A)

[
U(−ℓ, n− ℓ+ 1,−B) +

n

B
U(−ℓ, n− ℓ,−B)

]

and, as before, A = k2fµ
√

1− µ2 Ỹ ds and B = k2(1 + fµ2) Ỹ ds. Deriving these kernels for
the other terms is entirely analagous1.

D.3.2 Direct Lagrangian Expansion: MII

In Appendix C.3, we discussed a method to compute LPT integrals in redshift space relying
on active transformations from Ψ to its redshift-space counterpart. From those arguments
the Zeldovich power spectrum for biased tracers can be calculated using spherical Bessel
transforms of the specific form

Ps(k) ∋ 4π
∞∑

ℓ=0

∫
dq q2 e−

1
2
K2(X+Y )

(−2

kq

)ℓ
G̃

(n)
0,ℓ (kqc,−

1

2
K2Y, kq) An(q) jℓ(kq), (D.16)

where the scalar function An are tabulated in Table D.1.

D.4 Wiggle/No-Wiggle split

Most analyses of BAO data to date have employed empirical models for the post-reconstruction
power spectrum or correlation function often motivated by theoretical calculations and
calibrated to N-body simulations. Refs. [402, 112] showed that the analytic form of these
empirical models can be interpreted within perturbation theory as a resummation of bulk
displacements at the BAO scale. In this appendix we re-derive their results within our

1The mater contribution was given in ref. [398].
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An n = 0 n = 1 n = 2 ...
1 1 0 0
b1 0 2KU(q) 0
b21 ξL(q) 0 K2U(q)2

b2 0 0 K2U(q)2

b1b2 0 KU(q)ξL(q) 0
b22

1
2
ξL(q)

2 0 0
bs −K2Xs2(q) 0 K2Ys2(q)
b1bs 0 2KV (q) 0
b2bs χ12(q) 0 0
b2s ζ(q) 0 0

Table D.1: Table of power spectrum contributions in MII.

Zeldovich calculation, updating the scale dependences and redshift-space factors where
appropriate.

Let us first examine the displaced-displaced cross spectrum in redshift space. Following
refs. [402, 112] we split the displacement two-point function into Addij = Add,nwij + ∆Add,wij ,
where the no-wiggle and wiggle pieces are calculated by substituting Pnw and ∆Pw into
Equation D.2. Making the assumption that the latter, ∆Add,wij , is small enough as to be
perturbative2, we can Taylor expand the exponential in the Zeldovich integrand to get

P dd(k) =

∫
d3q e−ik·q−

1
2
KiKjA

dd,nw
ij

(
1− 1

2
KiKj∆A

dd,w
ij +O(k4Σ4)

)(
1 + 2ib1KiU

d
i (q) + ...

)
,

where we have used the transformed Ki = Rijkj to encode redshift-space effects. Given that
the no-wiggle spectrum reproduces the broadband scale dependence of the linear theory
power spectrum, we can think of the no-wiggle exponential as resumming the non-BAO
component of large scale bulk flows. Since the wiggle component contributes negligibly
to the displacement power in the perturbative limit, keeping only one power of the wiggle
power spectrum in our calculations serves to distinguish the effect of the IR bulk flows from
BAO phenomena. The two-point functions entering the bias terms can likewise be split into
no-wiggle and wiggle pieces, e.g. U(q) = Unw + ∆Uw, where again, roughly speaking, the
former will contribute only to the broadband power while the latter will give rise to oscillatory
behavior. Keeping the above expression to order3 O(k2Σ2), and discarding terms that don’t

2Taking the nonlinear scale to be given by k2nlΣ
2(z) ∼ 1, we have knl ∝ D−1(z), such that the peak

magnitude of kikj∆A
w
ij is roughly in the few tenths of a percent range for our reference cosmology independent

of redshift.
3Note, however, that terms involving more powers of the wiggle displacement will be more suppressed

than those involving no-wiggle displacements.
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contain any no-wiggle pieces, we then have

P dd(k) ∋
∫
d3q e−ik·q−

1
2
KiKjA

dd,nw
ij

(
− 1

2
KiKj∆A

dd,w
ij + 2ib1Ki∆U

d,w
i (q) + b21ξ

w
L (q) + ...

)

≈ e−
1
2
KiKjĀ

dd,nw
ij

∫
d3q e−ik·q

(
− 1

2
KiKj∆A

dd,w
ij + 2ib1Ki∆U

d,w
i (q) + b21ξ

w
L (q) + ...

)

where in the final line we have used the fact that the wiggle contributions will be confined in
support around the BAO scale (q ∼ 100Mpc) and the non-wiggle pieces vary smoothly at
this Lagrangian separation, so we can pull the exponentiated no-wiggle contribution out of
the integral as an average. Following ref. [402], we have defined the quantity Ādd,nwij as the
“average” of the un-barred quantity over the support of the wiggle component; to zeroth order
in the approximation this is equivalent to evaluating Aij at the peak qmax of the support of

the wiggle feature. Neglecting any angular effects in µ = q̂ · k̂, which will enter at higher
order in the wave number, we further have that Ādd,nwij ≃ (Xdd,nw + 1

3
Y dd,nw)δij

4. Plugging in

for the expression of K = RTk, with K2 = (1 + f(f + 2)µ2)k2, the wiggle contribution to
the power spectrum is then approximately

P dd(k)wiggle ≈ e−
1
2
K2Σ2

dd

[(
K̂ · k̂

)2
P dd,w(k) + 2b1

(
K̂ · k̂

)
P dm,w(k) + b21P

mm,w(k)
]

= e−
1
2
K2Σ2

dd

[
(1 + fµ2)2(1− S(k))2 + 2b1(1 + fµ2)(1− S(k)) + b21

]
Pw(k)

= e−
1
2
K2Σ2

dd

[
(1 + fµ2)(1− S(k)) + b1

]2
Pw(k) (D.18)

where in the penultimate equality we have used the definition of the displaced field and defined
Σ2
dd = (Xdd,nw + 1

3
Y dd,nw)(qmax) to be evaluated at the peak of the wiggle displacements. This

recovers the form of the empirical model in ref. [112] when we take the Eulerian bias to
be bE1 = 1 + b1, and stick to the damping expansion approximation introduced in ref. [402].
Explicit expressions for X and Y are given in Equation 4.17. Taking S → 0 in the above
expression gives the unreconstructed power spectrum within this approximation.

We can now derive the analytical form of the reconstructed power spectrum for Rec-Sym
in this approximation. Explicitly, we have

P ds
wiggle(k) = −e−

1
2
K2Σ2

ds

(
(1 + fµ2)(1− S(k)) + b1

)
(1 + fµ2)S(k)Pw(k) (D.19)

P ss
wiggle(k) = e−

1
2
K2Σ2

ds(1 + fµ2)2S(k)2Pw(k). (D.20)

4The factor of a third, included also in ref. [402] but not in ref. [112], comes from the angular average
⟨q̂iq̂j⟩ = δij/3. This can be justified by noting that the integral

1

2

∫
dµq e

ikqµq− 1
2k

2µ2
qY/2 = e−k2Y/6j0(kq) +O(k4Σ4) (D.17)

We note, however, that this prescription is only approximate; for example, the same integral with an additional
factor of µq in the integrand, relevant for the b1 contribution, would instead yield exp[−3k2Y/10] j1(kq) at
leading order. In general, bias contributions with more angular dependence will be damped more. This effect
is automatically included in the full Zeldovich calculation.
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The Σ2
ab are defined as in the dd case. These are the same expressions as derived in ref. [112],

though we differ on the expressions for the Σ2
ab that are involved. Our expressions also agree

with those in refs. [87, 339] in the limit that qmax → ∞, though we note that this limit
doesn’t as accurately capture the damping of the feature since it resums the IR displacements
at q beyond the BAO scale. Adding the three spectra together, we recover the Kaiser limit
as k → 0, with different damping factors entering at different scales via Σ2

ab. Note that in
Rec-Sym the angular dependence of the damping is identical in each piece and is encoded
within the µ dependence of K2.

The reconstructed power spectrum with Rec-Iso requires a few additional modifications.
The displaced-displaced auto spectrum is unchanged, and the shifted-shifted auto spectrum
can be calculated by setting f = 0 in all formulae, as noted in the main body of the text.
However, the ds cross spectrum requires more care, since the zero lag pieces do not transform
equally. In particular, direct inspection of the exact expression in Equation 4.24 shows that
we should instead define

− 1

2
k2Σ2

ds,iso = −1

2
k2
[
(1 + f(f + 2)µ2)Σ(dd) + Σ(ss) − 2(1 + fµ2)

(
X̃ds +

1

3
Ỹ ds
)]

q=qmax

.

(D.21)
Note this expression differs in detail from that in ref. [112]. The cross spectrum is then
instead

P ds,iso
wiggle(k) = −e−

1
2
k2Σ2

ds,iso
[
(1 + fµ2)(1− S(k)) + b1

]
S(k)Pw(k), (D.22)

where the angular dependence is subsumed into the defintion of Σds,iso. Unlike Rec-Sym,
the damping factor in Rec-Iso is not captured by a single angular dependence.

We end this section with a discussion of the inclusion of higher bias terms and other
corrections. As seen in the main body of the text, higher bias terms b2 and bs, incorporated
in our Zeldovich calculation, contribute not only to the broadband but also serve to shift and
smear the BAO feature itself. It might thus be of interest to extend the above approximation
to include also these higher bias contributions. A potential avenue has been highlighted
in ref. [112], although an approach closer to our perturbative bias expansion could also be
explored.

Finally, the calculation in ref. [112] included a derivative bias, b∇2∇2δ, as a proxy to
estimate the contributions of the higher bias operators. These derivative bias terms can
easily be included in the above expressions by substituting b1 → b1 + k2b∇2 . However, there
is another context in which such a term might arise in which it would differ across the three
pieces dd, ds and ss: if the smoothing due to the Σ2

ab’s as defined above do not accurately
capture the IR bulk flows – for example if the broadband properities of Pnw are slightly off –
but differ by some perturbatively small k2δΣ2

ab, the resulting correction could be corrected
for by terms of the form c2abk

2P ab,w(k), where c2ab would constants fit individually to dd, ds
and ss. Such corrections are essentially identical to the EFT corrections described in the
text for the full Zeldovich calculation.
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D.5 Nonlinearities from the Lagrangian to Eulerian

mapping

In standard density field reconstruction, each galaxy is shifted by a smoothed displacement
field χ evaluated at the galaxy’s current Eulerian position x = q+Ψ(q) (Equation 4.10).
In the main body of the text, we worked in the approximation that χ(x) ≈ χ(q), with the
understanding that nonlinear corrections would be suppressed by the smoothing scale ∼ Ψ/R.
The goal of this appendix is to flesh out this statement by explicitly computing the leading
order corrections to the reconstructed matter power spectrum due to the mapping nonlinearity
in real space. For the sake of brevity we will defer the effects of other nonlinearities, such
as those arising from dynamics or from translating between displacements and densities, to
future work. Earlier treatments of such effects in Eulerian perturbation theory can be found
in refs. [321, 171].

Assuming that the shift field χ(q) defined in Lagrangian space is Gaussian, the displaced
field with mapping nonlinearities unsuppressed is given by

Ψ̃
d

i (q) = Ψd
i (q) +Ψn∂nχi(q) +

1

2
ΨnΨm∂n∂mχi(q) + ... ≡ Ψd

i +Ψ
(d,2)
i +Ψ

(d,3)
i + ... (D.23)

where we have kept the convention used in the main text to refer to the linear piece as

Ψd = (1−S)∗Ψ, referring to the nonlinear field as Ψ̃
d
= Ψ(q)+χ(q+Ψ). For the remainder

of this appendix we will focus on corrections due to Ψ(d,2).5

From the above,we can write the nonlinear displaced-displaced autospectrum as

P dd(k)−P dd
Zel(k) =

∫
d3q eik·q−

1
2
kikjA

dd
ij

(
exp

[
− 1

2
kikjA

dd,1-loop
ij − i

6
kikjkkW

dd
ijk

]
−1
)
+O(P 3

L)

where we have defined

Add,1-loopij =
〈
∆

(dd,2)
i ∆

(dd,2)
j

〉
c
+ 2

〈
∆

(dd,1)
i ∆

(dd,3)
j

〉
c

W dd
ijk =

〈
∆

(dd,1)
i ∆

(dd,1)
j ∆

(dd,2)
k

〉
c
+ (121) + (211). (D.25)

as in the case of the nonlinear matter power spectrum (e.g. [399]). To calculate these we
note that

⟨Ψ(d,2)
i (q2)Ψ

(d,2)
j (q1)⟩c =

〈(
Ψn∂nχi

)
(q2)

(
Ψm∂mχj

)
(q1)

〉
c

= ⟨Ψn(q2)Ψm(q1)⟩ ⟨∂nχi(q2)∂mχj(q1)⟩+ ⟨Ψn(q2)∂mχj(q1)⟩ ⟨Ψm(q1)∂nχi(q2)⟩

5At one loop order all corrections due to Ψ(d,3) are degenerate with the counterterms in our model. To
see this, note that such corrections contractions with linear displacements, e.g.

⟨Ψa
1,iΨ

(d,3)
2,j ⟩ = ⟨Ψm∂m∂nχj⟩⟨Ψa

1,iΨ2,n⟩+
1

2
⟨ΨnΨm⟩⟨Ψa

1,i∂n∂mχ2,j⟩, a = d, s. (D.24)

Multiplied by the appropriate factor of − 1
2kikj , the two pieces on the right hand side Fourier transform into

∼ k2P am
L (k) and ∼ k2P as

L (k), respectively, thus taking the form of our counterterms ∼ k2P ab(k).
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Figure D.1: Nonlinear corrections to the reconstructed matter power spectrum due to the Lagrangian-
to-Eulerian mapping at one loop order, for z = 0 and R = 15 h−1 Mpc. The left and right panels
show contributions to the ds and dd power spectra, respectively. Even for the worst case of z = 0,
the corrections are never more than a few percent of the total reconstructed power spectrum, though
they can become larger than the constituent dd, ds spectra at large or small scales.

and

W dd,112
ijk = 2

〈
Ψd

1,iΨ2,n −Ψd
iΨn

〉 〈
Ψd

1,j∂nχ2,k

〉
+
(
i↔ j

)
(D.26)

where numerical subscripts refer to coordinates q1,2 as usual.
The mapping corrections to the cross spectrum P ds can be similarly calculated. In this

case we need the displacement correlators

Ads,22ij =
〈
Ψ

(d,2)
i Ψ

(d,2)
j

〉
= ⟨ΨnΨm⟩ ⟨∂nχi∂mχj⟩ (D.27)

where all expectation values are evaluated at a point since Ψs receives no nonlinear corrections
from the Eulerian-Lagrangian mapping and similarly

W ds,112
ijk =

〈
Ψs
i,1Ψ

s
j,1Ψ

(d,2)
k,2

〉
−
〈
Ψd
i,2Ψ

s
j,1Ψ

(d,2)
k,2

〉
−
〈
Ψs
i,1Ψ

d
j,2Ψ

(d,2)
k,2

〉

=
( 〈

Ψs
1,iΨ2,n

〉
−
〈
Ψd
iΨn

〉 ) 〈
Ψs

1,j∂nχ2,k

〉
+
(
i↔ j

)
(D.28)

to one loop order.
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As might have been expected, the mapping corrections above all take the form of products
of displacement two point functions and their derivatives. Roughly speaking these corrections
each have amplitudes given by powers of the Zeldovich displacement Σ2 and wavenumber k
capped at R−1 by the smoothing filter; we can thus expect the corrections to enter at order
(Σ/R)4. For a 15h Mpc−1 filter at z = 0 this amounts to a percent-level effect, with smaller
effects at higher z. Concretely, these two point functions can be calculated using

⟨∂nχi(q2)∂mχj(q1)⟩ = Ass(q)(δijδnm + ... ) + Bss(q)(q̂iq̂jδnm + ... ) + Css(q)q̂iq̂j q̂nq̂m
⟨Ψn(q2)∂mχi(q1)⟩ = Dsm(q)(q̂iδnm + ... ) + Esm(q)q̂iq̂nq̂m
⟨Ψa

n(q2)∂mχi(q1)⟩ = Das(q)(q̂iδnm + ... ) + Eas(q)q̂iq̂nq̂m

where the ellipses denote all distinct permutations and the scalar functions are given by

Ass(q) =
1

105

∫
dk k2

2π2

(
7j0(kq) + 10j2(kq) + 3j4(kq)

)
P ss
L (k)

Bss(q) = −1

7

∫
dk k2

2π2

(
j2(kq) + j4(kq)

)
P ss
L (k)

Css(q) =
∫
dk k2

2π2
j4(kq)P

ss
L (k)

Dab(q) =
1

5

∫
dk k

2π2

(
j1(kq) + j3(kq)

)
P ab
L (k)

Eab(q) = −
∫
dk k

2π2
j3(kq)P

ab
L (k) (D.29)

where we have used the identification χ = Ψs. The remaining correlator ⟨Ψ2,iΨ1,j⟩ is
simply minus the non-zero lag piece of Aij. Finally, when some or all of the displacement
correlators in each product are contracted at the same point, as for example in the first term
in Equation D.26 and Equation D.27, the resulting contribution becomes proportional to
k2Pab,Zel and degenerate with the counterterms included in our model. The above corrections
from the nonlinear Eulerian-Lagrangian mapping are plotted at z = 0 for the smoothing scale
R = 15h−1 Mpc in Figure D.1. As expected, even at z = 0 they are never more than a few
percent of the total reconstructed power, though interestingly they can become comparable
or larger than the Zeldovich P dd and P ds individually on scales where the Zeldovich spectra
lose support. We caution that these curves do not include comparable corrections due to bias
or dynamical nonlinearities.

We close with some general comments about nonlinearities in reconstruction. Firstly, the
mapping corrections enumerated above are not the only ones at one-loop order; by focusing
only on corrections due to Ψ(d,2) we have explicitly avoided the (13) contributions due to
third-order mapping corrections. Moreover, as this was an exploratory exercise with which to
evaluate the magnitude of mapping nonlinearities, we chose not to include the effects of bias,
which would require the inclusion of terms such as ⟨δ21Ψ

(d,2)
i ⟩, though these will be in general

decomposable into components much like those in Equation D.29. Finally, in addition to
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mapping nonlinearities, by approximating the shift vector χ with the smoothed Zeldovich
displacement we have ignored nonlinearities induced by translating between the density field
and displacements. We expect these will be of similar importance to the mapping corrections
but defer their evaluation for future work, noting that only that both nonlinearities can be
trivially reduced by pushing the smoothing scale R deeper into the linear regime. That these
effects are expansions in Σ/R distinguishes them from nonlinear bias or dynamics.
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Appendix E

Applications of IR Resummation I

E.1 Redshift dependence and size of the of bias

parameters

The bias expansion in Equation 5.18 has an implicit dependence on the initial redshift zi that
must be taken into account to reach consistent conclusions. Since the initial conditions mix
at most linearly, no information can be lost by choosing one initial time τi over another; for
example, the sensitivity of halos to the relative velocity divergence after reionization, which
contains a contribution from the total matter overdensity (Eq. 5.9), can be directly accounted
for by calibrating the bias parameter for δm at an earlier redshift.

As a simple example we consider the redshift dependence of the relative components in
the sourceless (Fb = 0) case. If we set our initial time at τ ′i instead of τi we will get

Ψr(τ) =
(
− r+ + r−Dr(τ

′
i , τi)

)
+ r−Dr(τ, τ

′
i) ≡ −r′+ + r′−Dr(τ, τ

′
i). (E.1)

Re-expanding Fg at τ
′
i thus yields

Fg(q) = b1δm + b′+∇ ·
(
r+ − r−Dr(τ

′
i , τi)

)
+ b′−∇ · r′− + ... (E.2)

Since b′ and b apply to the same field configurations at different times, they must yield the
same initial overdensity Fg — this requirement can be satisfied by enforcing the differential
equations

db+
dτ

= 0,
db−
dτ

=
b+
a(τ)

. (E.3)

Intriguingly, the presence of a relative overdensity bias can “generate” a relative velocity bias
at later times. This can be understood as follows: the relative overdensity at late times is a
linear combination of the relative overdensity and velocities at earlier times. Similar, though
more complicated, versions of this relation hold when Fb ∝ m+, in which case mixing of all
three initial fields must be taken into account.
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E.2 Biasing at second order

Below we list all contributions to the bias expansion up to second order in the initial fields
omitting derivative corrections:

Fg = b1δm + bδrδr + bθrθr

+
1

2
b2δ

2
m + bs2sijsij + bδmδrδmδr + bδmθrδmθr + bvr∂δm(vr)i ∂iδm + bs ∂v∂i(vr)jsij

+ bv2rv
2
r + .... (E.4)

In the main body of this paper we consider relative bias terms up to first order in the power
spectrum, since even these represent only percent level effects, with the exception of the
relative velocity effect ∝ v2

r , which has a distinct scaling. As noted in the text, we note that
the presence of Compton drag can introduce additional terms due to loss of gauge redundancy;
we refer readers to the extensive discussion in [317].

E.3 Relative Velocity Bias Terms

In this appendix we provide details for the contributions of the relative velocity bias bv2 at
O(P 2) to the galaxy power spectrum. These contributions require the calculation of two new
2-point functions, the one-loop correlation between matter displacements and the squared
relative velocity, and the correlation function between the shear field sij and the relative
velocity. We describe these in turn.

The second order solution to the total-matter displacement (correct up to first order in
the relative component) is given by

Ψ
(2)
i (k) =

1

2

3

7

i ki
k2

∫
d3p

(2π)3

[
1−

((k − p) · p
|k − p||p|

)2]
δm,0(p) δm,0(k − p), (E.5)

and more simply the “normalized” relative velocity at first order is given by

r−,i(k) =
−i ki
k2

(
∇ · r−

)
(k). (E.6)

From this we can calculate the two-point function

⟨Ψ(2)(q) r2−(0)⟩ =
3

7

∫
d3k

(2π)3
eik·q

(−i ki
k2

) d3p

(2π)3
[
1−

((k − p) · p
|k − p||p|

)2]p · (k − p)

p2(k − p)2
Pδm∇r−(p)Pδm∇r−(k − p),

(E.7)

which can be simplified to give

⟨Ψ(2)(q)v2r,0(0)⟩ = q̂

∫
d3k

(2π)3
eik·qQv2(k), (E.8)
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where the kernel is defined as

Qv2(k) ≡
3

7

∫ ∞

0

dr Pm−(kr)

∫ 1

−1

dx

4π2

r (x− r)(1− x2)

(1 + r2 − 2rx)2
Pm−(k

√
1 + r2 − 2rx). (E.9)

Next, the shear-velocity correlation function W s−
ijk is given in Fourier space by

W s−
ijk (q) = i

∫
d3k

(2π)2
eik·q

(
kikjkk
k4

− 1

3
δij
kk
k2

)
Pm−(k) ≡ W̃ s−

ijk (q)−
1

3
δijU

m−
k (q). (E.10)

where in the last equality we have split W s−
ijk into a totally-symmetric piece and a familiar

piece proportional to Um−. The former can be decomposed into scalar components

W̃ s−
ijk (q) = A(q) q̂iq̂j q̂k + B(q) (q̂iδjk + q̂jδki + q̂kδij), (E.11)

with the scalar components defined as spherical Bessel transformations:

A(q) =

∫
dk k

2π2
j3(kq) Pm−(k) (E.12)

B(q) = −
∫
dk k

2π2

1

5

(
j1(kq) + j3(kq)

)
Pm−(k). (E.13)



313

Appendix F

Applications of IR Resummation II

F.1 Saddle-Point Approximation for Nonlinear

Dispersions

In this appendix we expand upon the argument for selecting scale q = ω/k in the logarithmic
case, and show it follows as a special case of a more general expression in the large ω limit.
Suppose we have

∆PX(k) = PΛCDM(k) sin(ωϕ(k)) (F.1)

where ω is a constant tunable parameter such that ωϕ(k) is the (nonlinear) phase of the
oscillating feature. We are interested in applying the saddle-point result for linear oscillations
to this case.

Around some wavenumber k = k0 of interest, we can Taylor-expand the phase as

ωϕ(k) ≃ ω
(
ϕ0 + ϕ′

0(k − k0) +
1

2
ϕ′′
0(k − k0)

2 + ...
)

(F.2)

where primes indicate derivatives with respect to k. Roughly, the linear approximation
ϕL = ϕ0 + ϕ′

0(k − k0) will be good provided that |k − k0| < |ϕ′
0/ϕ

′′
0| independently of ω. This

also defines the window within which to a good approximation dϕ/dk ≈ ϕ′
0.

However, unless ϕ(k) is linear, this window is not guaranteed to cover all interesting k. To
restrict our calculation to the interval around k0 where the linear approximation is valid, let us
multiply by a functionW (k, k0) with support in the interval and which falls to zero away from
k0 with characteristic width σk = |ϕ′

0/ϕ
′′
0|. Then we can approximate W (k, k0) sin(ωϕ(k)) as

W (k, k0) sin(ωϕL(k)) everywhere. In addition, for the saddle-point approximation to work
we also require that the Fourier-transformed feature be sharply localized at some scale, which
will be equal to qX = |ωϕ′

0| in our case. This condition is controlled by ω, since the number
of cycles within our interval is Ncyc = (2π)−1|ωϕ′2

0 /ϕ
′′
0|; for a given ϕ(k) the bigger ω is the

better.
Following the above we have that the “windowed” feature W (k, k0) ∆PX(k) receives a

damping factor well-approximated by Σ2(qX = |ωϕ′
0|). By the same logic we can fill out
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the oscillatory signal by sequence of windows W (k, ki) each with width ∼ |ϕ′
i/ϕ

′′
i | such that∑

iW (k, ki) = 1 at all k. Then, at any k we have that the damping is given by Σ2(qX = |ωϕ′
i|),

which will to a very good approximation be equal to ϕ′(k) from our previous arguments.
Let us apply this argument for the logarithmic features as an example. Setting ϕ(k) =

ln(k/k∗), we see that the width is set by σk ∼ k and that the requirement Ncyc ≫ 1 is
equivalent to ω ≫ 2π. This limit is met by our fiducial ω = 10 and by the frequencies
explored in the BOSS data in ref. [44], who also set a related criterion for the sharpness of
primordial features. Note that the fact that the corresponding ω’s are large also implies that
the approximation ϕ′(k) ≈ ϕ′

i is a good one, with corrections of order ω−1 for fixed Ncyc.

F.2 GSM vs. moment expansion

Beyond the moment expansion, the velocity statistics underlying redshift-space distortions
can also be expanded via cumulant expansions to yield a variety of so-called streaming models
[398]. A popular example is the Gaussian streaming model (GSM) [301, 396], which derives
from the cumulant expansion in (real) configuration space at second order. A particular
strength of the GSM is its ability to accurately capture the nonlinear smoothing of the
BAO feature in redshift space, which can be roughly attributed to the responsible bulk
displacements truncating at second order in the configuration-space cumulants [74].

Recently [74], we argued that percent-level modeling of the redshift-space power spectrum
requires including the third moment, or at least approximating its effect via a counterterm
ansatz. Naively, this would rule out using the GSM for full-shape RSD analyses at intermediate
(but perturbative) scales; however, a proper accounting of the counterterms in the second
moment shows that its quadrupole requires a counterterm degenerate with the above ansatz.
Specifically, splitting the two-point function into contributions from large-scale bias and
effective corrections as in Eq. 5.1 of ref. [74] and comparing with expressions for the velocity
moments in LPT (Eqs. 4.11-15) one sees that the complete set of counterterms for the power
spectrum can be obtained within the GSM by setting

αP = α0, αv = α2 −
1

18
α4, α(2)

σ = −2

9
α4, (F.3)

where α
(2)
σ is the counterterm to the quadrupole of σ2

12(k) multiplying the Zeldovich power
spectrum PZel(k). This implies that the Fourier-transformed GSM can adequately model the
redshift-space power spectrum while also accurately capturing nonlinear smoothing of power
spectrum features.
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Appendix G

Cosmological Analysis of BOSS

G.1 Fast Evaluation via Taylor Series

In order to speed up our model evaluations (obtaining transfer functions from CAMB alone
takes a few seconds per cosmology) we use a Taylor series centered around a representative
cosmology (Ωm, h, σ8 = 0.31, 0.68, 0.731) to evaluate the perturbation-theory predictions
of each cosmology in our chains. This technique has previously been applied to both full-
shape forecasts [240] and data analyses of BOSS data [96, 88], and even at the linear level to
approximate the predictions of a hybrid N-body/Lagrangian bias model of real-space clustering
[156]. Specifically, both the pre-reconstruction power spectrum and post-reconstruction
correlation functions (minus broadband terms) can written as inhomogeneous quadratic
polynomials in the bias parameters, e.g. for a fixed cosmology Θ

(
P0(k), P2(k), P4(k), ξ0(\), ξ2(\)

)
(Θ) = βiβjMij(Θ)

where the vector β = (1, b1, b2, bs, α0, α2, R
3
h, R

3
hσ

2, B1, F ). Each component of the matrix
Mij is a smooth function of the cosmological parameters so can be approximated as

Mij(Θ) =
N∑

n=0

1

n!
(Θ−Θ0)i1 ...(Θ−Θ0)in ∂i1...inMij(Θ0).

We evaluate the derivatives numerically using the publicly available FinDiff2 package. In
order to take advantage of central differences these derivatives are computed using a grid
with 2N + 1 points along each axis, where we find N = 4 to be sufficient for any cosmology
relevant for constraints from any of the sets of samples considered in our analysis. In Figure
G.1 we show differences between the unconvolved power spectrum multipoles as computed

1This central σ8 value was chosen prior to discovering the window-function normalization issue resulting in
systematically low σ8 constraints. The resulting Taylor-series predictions are nonetheless sufficiently accurate
for our final constraints, as shown below.

2https://findiff.readthedocs.io/en/latest/

https://findiff.readthedocs.io/en/latest/
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Figure G.1: Differences between unconvolved power spectra computed directly from CLASS and
velocileptors vs. approximated by a 4th-order Taylor series, sampled from a chain fitting the
NGCz3 power spectrum, compared to the data error bars on that sample. Solid lines show mean
deviation while ±1σ deviations are shown as dashed lines. The monopole and quadrupole deviations
are shown in blue and orange, respectively.

directly from velocileptors and the Taylor series approximation for 100 representative
elements of a power-spectrum fit to NGCz3, compared to the much larger error bars of the
data itself. Producing the grids used to compute derivatives using one core on Cori3 takes
about three minutes, while evaluating the Taylor series itself given the coefficients takes less
than a hundredth of a second.

G.2 Nonlinear Damping of the BAO within RecIso

In this appendix we give the specific form of the BAO damping in the reconstructed power
spectrum within the RecIso scheme. The reconstructed field is defined to be the difference
between the overdensities of displaced galaxies d and shifted galaxies s, i.e. δrecon = δd − δs.
Theoretical modeling of the nonlinear damping of the reconstructed field involves calculating
cross correlations between the Lagrangian displacements of the two fields. Thus in general
we expect each piece of

P recon
s (k, µ) = P dd

s − 2P ds
s + P ss

s , P ab
s = P ab

lin,nw + e−
1
2
k2Σ2

ab(µ)P ab
lin,w + ...,

3https://docs.nersc.gov/systems/cori/

https://docs.nersc.gov/systems/cori/
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to have a different damping form, where P ab
lin refers to the (undamped) linear-theory predictions

for each spectrum and Σ2
ab its damping parameter. Specifically, Σ2

ab is the isotropic component
of the displacement two-point function

Aabij =
〈
∆ab
i ∆

ab
j

〉
, ∆ab = Ψa(q1)−Ψb(q2). (G.1)

evaluated at the BAO scale, i.e. Σ2
ab =

1
3
δijA

ab
ij for q = rd.

Applying the above logic we then have the linear-theory forms

P dd
lin(k, µ) =

(
b− S + fµ2(1− S)

)2
Plin(k)

P ds
lin(k, µ) = −S

(
b− S + fµ2(1− S)

)
Plin(k)

P ss
lin(k, µ) = S2Plin(k)

and damping parameters

Σ2
dd(µ) = (1 + f(2 + f)µ2)

(
2Σ̃2

dd(0)− 2Σ̃2
dd(rd)

)

Σ2
ds(µ) = (1 + f(2 + f)µ2)Σ̃2

dd(0) + Σ̃2
ss(0)− 2(1 + fµ2)Σ̃2

ds(rd)

Σ2
ss(µ) = 2Σ̃2

ss(0)− 2Σ̃2
ss(rd)

where the tilded Σ’s are defined as

Σ̃2
dd(r) =

1

3

∫
dk

2π2

[(
1− S

)2
Plin(k) j0(kr)

]

Σ̃2
ss(r) =

1

3

∫
dk

2π2

[
S2 Plin(k) j0(kr)

]

Σ̃2
ds(r) =

1

3

∫
dk

2π2

[
− S

(
1− S

)
Plin(k) j0(kr)

]
. (G.2)

We refer the readers to [78] for a detailed derivation of these damping parameters.

G.3 Parameters for BAO Fit

Our goal in this appendix is to explicitly spell out the assumptions of the standard template
fits to the BAO (e.g. in [45, 388, 283, 94]). We begin by writing down Alcock-Paczynski
scalings needed to convert between fiducial and true cosmology before writing down the
additional assumptions that result in the traditional template fit with rd-dependent BAO
parameters.

G.3.1 Alcock-Paczynski Effect

Galaxy survey data are typically presented in units wherein redshifts and angles are translated
into distances via the Hubble function Efid(z) and angular-diameter distance Dfid

A (z) of some
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fiducial cosmology4. Given this choice of coordinates it is necessary given any cosmological
model Θ to rescale theory predictions from the true physical separations in the theory into
theory units. For the anisotropic power spectrum this is given by

P obs
s (kobs∥ , kobs⊥ ) = α−1

∥ α−2
⊥ P true(ktrue∥ , ktrue⊥ ), ktrue∥,⊥ =

kobs

α∥,⊥
(G.3)

where the Alcock-Paczynski (AP) parameters are defined as

α∥ =
Efid(z)

E(z)
, α⊥ =

DA(z)

Dfid
A (z)

. (G.4)

For covenience we will drop the superscript for the “true” quantities in the remainder of this
appendix. In terms of these quantities we can write the true wavenumber magnitude and
angle as [45]

k = α−1
⊥

√
1 + µ2

obs(F
−2
AP − 1) kobs

µ =
1

FAP

(√
1 + µ2

obs(F
−2
AP − 1)

)−1

µobs (G.5)

where FAP = α∥/α⊥. Note that both FAP and the µ are invariant under isotropic scaling
α∥,⊥ → cα∥,⊥.

G.3.2 BAO in the Power Spectrum

In standard template fits to the BAO the wiggles from a fixed “template” power spectrum
are rescaled to model the observed BAO signal. In this case we must allow for the possibility
that the true linear power spectrum of the universe has BAO wiggles with a slightly different
shape.

The trick is to assume that the linear power spectrum for a given cosmology Θ can be split
into a smooth “no-wiggle” component Pnw and a “wiggle” component Pw whose cosmology
dependence can be approximated in terms of its amplitude A and a template scaled by the
BAO radius rd:

Plin(k) = Pnw(k|Θ) + A(Θ)g(rd(Θ)k). (G.6)

In particular, for a given “template” power spectrum at the fiducial cosmology we can extract
the BAO template

Gfid(k) = Afidg(rfidd k). (G.7)

The “wiggle” component should be understood to be unique only up to a smooth (polynomial)
broadband that does not carry scale information.

4For concreteness we will assume throughout that all distances are given in h−1 units.
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The anisotropic redshift-space power spectrum, taking into nonlinear BAO damping due
to bulk displacements, is

Ps(k, µ) = (b+ fµ2)2
(
Pnw(k) + e−

1
2
k2Σ2(µ)Pw(k)

)
+ ...

where the ellipsis stands for higher order terms, which we will assume can be absorbed
by smooth broadband terms, particularly post-reconstruction. Combining with the above
parametrization of the linear power spectrum we get that the observed linear power spectrum
is

P obs
s (kobs, µobs) = α−1

∥ α−2
⊥ (b+ fµ2)2

(
Pnw(k) + e−

1
2
k2Σ2(µ)A(Θ)g(rdk)

)
+ ..., (G.8)

In particular, the damped “wiggle” component takes the form

P obs
w = α−1

∥ α−2
⊥ (b+ fµ2)2e−

1
2
k2Σ2(µ)Ag(rdk)

= α−1
∥ α−2

⊥ (b+ fµ2)2e−
1
2
k2Σ2(µ)Ag

(
rfidd

( rd
rfidd

)
α−1
⊥

√
1 + µ2

obs(F
−2
AP − 1)kobs

)

=

(
rfidd
rd

)−3

α̃−1
∥ α̃−2

⊥ (b+ fµ2)2e−
1
2
k2Σ2(µ)

( A

Afid

)
Gfid

(
α̃−1
⊥

√
1 + µ2

obs(F̃
−2
AP − 1) kobs

)

≡ Ã(b+ fµ2)2e−
1
2
k2Σ2(µ)Gfid

(
α̃−1
⊥

√
1 + µ2

obs(F̃
−2
AP − 1) kobs

)

≡ (B + Fµ2)2e−
1
2
k2Σ2(µ)Gfid

(
α̃−1
⊥

√
1 + µ2

obs(F̃
−2
AP − 1) kobs

)

where we have dropped the cosmology dependence in A = A(Θ) and rd = rd(Θ) and defined
the modified AP parameters

α̃∥,⊥ =

(
rfidd
rd

)
α∥,⊥, F̃AP ≡

α̃∥

α̃⊥
= FAP (G.9)

casting the BAO measurement specifically as one of ratios of cosmological distances with the
sound horizon. Note that the ratio β = F/B = f/b is equal to that in the normal Kaiser
formula and is invariant to the AP effect and template normalization. For the sake of brevity
we will not repeat the above derivation for the case of reconstruction but note that the
essential features (i.e. rd scaling with fixed FAP) are unchanged in that case.

In practice we would like to expand the power spectrum, broadband included, about the
fiducial cosmology, at which all the ratios X/Xfid are equal to unity. In this case, the “wiggle”
component can be exactly rescaled as above while changes in the broadband power spectrum
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are expected to be smooth and degenerate with smooth polynomials, i.e.

P obs
s (kobs, µobs) = (B + Fµ2

obs)
2P fid

nw(kobs) + (B + Fµ2)2

e−
1
2
k2Σ2(µ)Gfid

(
α̃−1
⊥

√
1 + µ2

obs(F̃
−2
AP − 1) kobs

)
+
∑

n,m

anmk
nµ2m. (G.10)

where P fid
nw is the “no-wiggle” power spectrum at the fiducial cosmology. In practice we work

with multipoles, in which case we can write

P obs
ℓ (kobs) =

(
...
)
ℓ
+
∑

n

aℓ,nk
n (G.11)

where the ellipses stand for multipoles of the non-polynomial terms. Equivalently, for
configuration space analyses we can simply supplement the Fourier transform of these terms
with a polynomial in the (inverse) radius:

ξobsℓ (sobs) = FT {(...)}ℓ +
∑

n

bℓ,ns
−n
obs (G.12)

where we have implicitly used that the Fourier transform of the smooth broadband is also
smooth over the range of interest.

G.4 Anisotropic secondary bias

Our analysis, in common with most other analyses in the field, has assumed that the
probability that a galaxy makes it into the sample is independent of the large-scale tidal
field in which that galaxy sits. Specifically, we assume that the galaxy overdensity is a
function of scalar quantities that can be constructed from second and higher derivatives of the
gravitational potential. Since several “non-scalar” halo properties, like shapes and angular
momenta, depend upon the large-scale tidal fields in which the halos are situated [258] there
is the possibility that important galaxy properties also inherit this dependence and if the
probability of the galaxy appearing in the catalog with a successful redshift depends upon
those properties we would introduce a non-scalar component to the bias [176, 110]. This
would invalidate our analysis.

The case for or against anisotropic secondary (or “assembly”) bias for BOSS galaxies is
currently uncertain [227, 259, 345]. The strongest claim so far is that of ref. [259], who argue
they have detected such a bias at 5σ by splitting the galaxies using a combination of stellar
mass and line-of-sight velocity dispersion. Specifically they show that for two subsamples of
galaxies, selected in the M⋆−σ⋆ plane, they can obtain different power spectrum quadrupoles
while matching the power spectrum monopole. Within linear theory and in the absence of
anisotropic bias P (k, µ) = (b + fµ2)2Plin(k) [196] and so matching the monopoles should
imply that the quadrupoles also match. However in the presence of anisotropic secondary
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Figure G.2: Model power spectra for 100 models chosen at random from a Markov chain fit to the
z = 0.61 NGC power spectrum with kmax = 0.25hMpc−1 for the monopole but kmax = 0.05hMpc−1

for the quadrupole. All of the models are thus consistent within statistical errors with a constant
monopole while being essentially unconstrained as to the quadrupole. Note the monopoles (blue
dashed lines) form a tight envelope while the quadrupoles (orange dotted lines) agree only at low k.
By k ≃ 0.1hMpc−1 the differences are about a factor of 2.

bias the prefactor becomes (b+ fµ2 + bq[µ
2 − 1/3])2, where bq is the anisotropic bias [259]

and it is possible to have different quadrupoles while matching the monopoles.
We should treat this claim with caution, since it is based upon a very simple model.

Indeed, we have already seen that samples of galaxies in the NGC and SGC regions of the
BOSS survey can have quite similar monopoles with relatively different quadrupoles. A
careful look at Figs. 3-6 of ref. [259] shows that most of the evidence for anisotropic secondary
bias arises from k > 0.1hMpc−1 where the linear analysis for the quadrupole is completely
inadequate. As one example, our models contain terms going as k2 Plin(k) that can have
different amplitudes between the monopole and quadrupole for different samples, showing
that the high-k part of the quadrupole can be quite different than linear theory estimates
may imply. Phrased differently, models that vary significantly in their satellite content and
finger-of-god can cause variations in the quadrupole at high k that are significantly larger
than the variations in the monopole that they induce.

To get a sense for how much non-linear bias and non-linear dynamics within the standard
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model (without anisotropic secondary bias) can modify the quadrupole at fixed monopole we
did the following experiment. We picked the z = 0.61 NGC sample, and fit our standard
pre-reconstruction power spectrum model to k ≃ 0.25hMpc−1 for the monopole but only
k ≃ 0.05hMpc−1 for the quadrupole5 at fixed cosmology. We then sampled 100 models from
the chain, each model having equal monopoles within statistical errors, to see how much
the quadrupoles can differ as a function of k. The results are shown in Fig. G.2. Note the
monopoles (blue dashed lines) form a tight envelope while the quadrupoles (orange dotted
lines) agree only at low k. By k ≃ 0.1hMpc−1 the differences are about a factor of 2.

Based upon this calculation we believe the case for anisotropic secondary bias in the
BOSS galaxies remains unproven. While our calculations do not prove the absence of such
an effect, existing measurements are also consistent with differences expected in currently
popular models that neglect these effects. Given its importance as a source of systematic
errors for future redshift surveys, further investigation is clearly warranted.

5Since the quadrupole is now highly unconstrained we narrowed the prior on α2 to be N (0, 25), corre-
sponding to a finger-of-god velocity dispersion of O(500km s−1) which is comparable to the values of α2 we
obtain from the fits in the main body of the paper.
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Appendix H

Joint Analysis of BOSS and CMB
Lensing

H.1 Neutrinos

Throughout this paper we have worked within the approximation that galaxy clustering
within massive neutrino cosmologies traces the dark matter-baryon component and that its
autocorrelation can be modeled by computing perturbation-theory predictions using Pcb,lin as
the input linear power spectrum. On the other hand, within the same approximation the
nonlinear galaxy-matter cross correlation has to be computed via a mixture of loop integrals
involving Pcb,lin, Pm,lin and Pcb, m,lin, which are shown in Figure H.1 as red, blue and purple
lines, respectively. Roughly speaking, this is because contractions involving only galaxy (“cb”)
or matter (“m”) vertices involve autospectra while contractions across vertices produce cross
spectra.

While the computation of these mixed diagrams is in principle straightforward, in this
paper we would like to make use of existing perturbation codes like velocileptors and
therefore make use of the additional approximation that cross spectra can be computed using
only Pcb, m,lin as the input power spectrum. As discussed in §9.4.1, this properly captures the
shape of the transition from clustered to unclustered neutrinos at the free streaming scale.
However, at the 1-loop level this prescription is not strictly correct—as shown in Figure H.1,
the (2, 2) contributions (left) depend on the cross Pcb, m,lin and will be correctly captured but
the (1, 3) contributions involve cb-m autospectra, which differ from calculations using the
cross spectrum by order O(fνPL).

Fortunately, the differences due to the above mistake will tend to be small for two reasons:
the neutrino mass fraction fν is small and, since they only appear at the 1-loop level, they
will be further suppressed relative to leading contributions, such that the total error will be
of order O(fνP

2
L). For example, the error incurred by evaluating the bottom-right diagram in
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Figure H.1: Diagrams of contributions to the 1-loop matter-galaxy power spectrum. Red vertices
(Gn) and lines (linear spectra) correspond to galaxies and the “cb” component while blue ones (Mn)
correspond to matter including neutrinos. Purple lines indicate the cb-m cross spectrum.

Figure H.1 will be

3M1(k)P
lin
cb,m(k)

∫

p

G3(k,p,−p)
(
P lin
cb,m(p)− P lin

cb (p)
)

∼ fνP
lin
cb,m(k)

∫

|p|>kfs
G3(k,p,−p)P lin

cb (p)

where we have used that, at wavenumbers larger than the free streaming scale kfs, Pcb,m ≈
(1 − fν)Pcb and we have defined the galaxy third-order kernel G3 and

∫
p
=
∫

d3p
(2π)3

. A
particular concern might be that the above mistake would lead to a contribution degenerate
with the linear bias ∆b P lin

cb,m, where ∆b would be sourced by dark matter density fluctuations
above the kfs, leading to inconsistencies in the bias definitions used in our real and redshift-
space analyses; however, such a contribution due to short-wavelength (UV) modes can be
prevented by adopting normal-ordered bias operators [234, 109], sometimes also referred to as
renormalized operators, as is done in velocileptors [74, 82]. Beyond this the next leading
correction will be of the form fνk

2Σ2P lin
cb , where Σ

2 is the variance of linear (cb) displacements
from small-wavelength modes1. Since such a correction has to be subleading even without

1We might also expect the cross-spectrum BAO damping paramater Σ2
BAO to be modified by order fν ,

but this will not concern us since the projected Cκg
ℓ are insensitive to BAO.
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the factor of fν in order for perturbation theory to be valid, it will be highly suppressed and
negligble for most purposes.

H.2 Redshift-Dependent Galaxy Selection Effects and

Cuts

One possibility for the non-zero cross-correlation we observe between the z1 and z3 slices,
whereas the similar correlation between the LOWZ and CMASS samples is smaller [119],
is that the systematics weights have a redshift dependence, either implicitly or induced
by a redshift-dependence in some other property (size, luminosity, color, etc.). Since such
a dependence has been neglected in deriving and applying the weights this would imply
that deriving the weights on one set of samples but then analyzing a shuffled set leads to
correlations.

The BOSS collaboration derived the weights by which they correct for observational
systematics by removing linear trends in the pixelized, projected galaxy number density vs.
systematic template [300]. He we provide a simple toy model for how redshift-dependence in
the impact of systematics could lead to a bias in such a procedure. Let the “true” redshift
distribution of a galaxy sample be dN/dz. Given a multiplicative selection bias, say due to
some galactic foreground, the observed distribution is

dNobs(θ)

dz
= [1 + T (θ, z)]

dN

dz
(H.1)

where the angular dependence is entirely due to the foreground contamination. To correct
for this we define a systematic weight, w(θ), whose θ-dependence arises from the systematics
template, such that the distribution of projected densities is uniform when plotted against
the value of the systematic, i.e.

w−1(θ) =
1

N̄

∫
dz

dN

dz

(
1 + T (θ, z)

)

≈ 1 + T (θ, z0) +
1

N̄

(∫
dz

dN

dz
(z − z0)

)
T ′(θ, z0) (H.2)

where N̄ is the average projected number density of the sample sans systematics and we
have Taylor-expanded the redshift dependence to first order. The final term vanishes when
z0 = zmean. However, if the sample is now split up into further redshift bins z ∈ (za, zb) this
will lead to an angular correction proportional to the offset in the mean redshift of the new
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Figure H.2: Left : The impact of including higher order Lagrangian bias in the observable signal of
Cgκℓ , compared to the uncertainty expected for a zeff ≈ 0.59 DESI-like number density and lensing
noise corresponding to the Planck and Simons Observatory (SO) surveys. Right: The logarithmic
derivatives of the Cgκℓ power spectrum with respect to bias parameters as a function of scale. The
vertical dashed line indicates the highest ℓ used in this analysis, which as discussed in § 9.5.1
corresponds to scales of k ≈ 0.2hMpc−1. The highest ℓ shown corresponds to k ≈ 0.6hMpc−1 for
this sample, the smallest scales where we expect second-order hybrid LPT approaches to recover
unbiased results.

sample compared to the old one:

Nab(θ) = w−1(θ)

∫ zb

za

dz
dN

dz

(
1 + T (θ, z)

)

=
N̄ab(1 + T0 + T ′

0∆zab)

1 + T0

≈ N̄ab(1 + T ′
0(θ)∆zab) with ∆zab ≡

1

N̄ab

∫ zb

za

dz
dN

dz
(z − zmean). (H.3)

H.3 Prospects for degeneracy breaking by pushing to

smaller scales

A limitation of the techniques used in this paper arises from the fact that contributions
from higher order biases (as well as shot-noise in the case of the auto-spectrum) are nearly
degenerate on the quasi-linear scales we have probed in this work. In Fig. 9.1, we can see the
uncertainties associated with poorly constrained counterterms reduce the constraining power
of scales which are well within the perturbative regime. While the combination of probes
we use depends on these parameters in different ways, these degeneracies are fundamentally
present in the 3D spectra, Pgg and Pgm, at these scales.
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In Fig. H.2 we show the fractional change in including higher order bias operators in the
model for Cgκ

ℓ for a DESI-like sample of galaxies cross-correlated with Planck and SO CMB
lensing. The bias parameters used are derived from the field-level inference of [206] for a
DESI-like HOD. The binning adopted uses bins ∆ℓ ≈ 3

√
ℓ, and each error bar should be

thought of as an independent data point. At scales ℓ > 350, relative to the SO uncertainties,
the impact of including each additional operator is significant. The sole exception is the tidal
bias bs2 , which is known to impact the Pgm spectrum weakly. In the galaxy–κ cross-spectrum
we can also observe that for ℓs that probe k < 0.2hMpc−1, many of the contributions are
approximately degenerate, as shown in the right-hand panel of Fig. H.2. However, at smaller
scales the responses of observables like Cgκ

ℓ to changes in bias parameters become distinct,
implying that accessing these smaller scales can help lift these degeneracies.

Despite the challenges of pushing to smaller scales in redshift space, the prospect of
extending galaxy-κ analyses to higher ℓ is tantalizing. This observable is largely insensitive to
the imapact of RSDs and can be readily modelled by hybrid LPT techniques [244, 207, 432,
156] that combine the same Lagrangian bias expansion (Eqn. 9.5) with N-body dynamics
to give an accurate model of Pgm up to kmax ≃ 0.6hMpc−1, corresponding to ℓmax ≈ 900.
Extending our analysis to such ℓmax, once the CMB lensing noise is sub-dominant at these
scales, will allow for a significantly longer lever arm that will simultaneously break degeneracies
between bias parameters, include more independent modes in the analysis, and reduce the
impact of potentially systematics-dominated lower-ℓ modes.

H.4 Fits with Free Spectral Index ns

As described in the body of the paper, our main analyses in this work have been performed
by fixing the spectral index to the best-fit value for Planck [285]. We have made this choice
because the large-scale structure data we consider in this work are unable to robustly constrain
ns and leaving it free results in the exploration of parts of the ΛCDM parameter space strongly
ruled out by Planck. However, for completeness, and to more fully compare with other results
in the literature, in this Appendix we consider the effect of extending our fits to include ns
with an uninformative uniform prior U(0.5, 1.5).

The main results of this extended analysis are shown in Table H.1 and Figure H.3.
When only three-dimensional redshift-space galaxy data, including BAO, are considered, this
analysis yields a mild (∼ 1.5σ) preference for values of ns below the Planck value, leading to
noticeable shifts and widening in the Ωm, H0, σ8 posteriors — notably, the mean σ8 shifts
further downward relative to the CMB — though the redshift-space only posteriors are still
in decent agreement with Planck, as the shifts in these parameters mostly lie along poorly
constrained degeneracy directions2 and the 2σ regions of BOSS and Planck overlap in all
cases. These shifts in the RSD constraints are in excellent agreement with ref. [282]. This

2Indeed, we note that both the best-fit elements in the chain and found by Cobaya’s in-built optimization
routine have ns and σ8 roughly 1σ above the mean and in agreement with the posteriors with ns fixed,
suggesting a potential volume effect.



APPENDIX H. JOINT ANALYSIS OF BOSS AND CMB LENSING 328

0.30 0.34 0.38
m

0.7

0.8

0.9

1.0

n s

0.6

0.7

0.8

8

66

68

70

72

H
0

66 68 70 72
H0

0.6 0.7 0.8
8

0.7 0.8 0.9 1.0
ns

RSD+BAO
+ g
Planck18
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Pℓ, ξ
rec
ℓ Pℓ, ξ

rec
ℓ , Cκg

ℓ Planck
ln(1010As) 2.66± 0.16 2.60± 0.15 3.044± 0.014

Ωm 0.322+0.015
−0.018 0.316+0.014

−0.015 0.3153± 0.0073
H0 [km/s/Mpc] 70.2± 1.0 70.0± 1.0 67.36± 0.54

ns 0.878± 0.060 0.893± 0.055 0.9649± 0.0042
σ8 0.705± 0.049 0.674± 0.042 0.8111± 0.0060

Table H.1: Cosmological constraints from BOSS with and without CMB lensing when ns is varied.

one-parameter extension does not alleviate the low σ8 tension in the main analysis; and as in
the main analysis, adding in cross correlations with CMB lensing leads to a further drop in
σ8 of roughly the same fractional size as that in our fiducial analysis (≈ 5%) while the other
ΛCDM parameters remain largely unchanged.
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