
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Towards a Formal Foundation of Cognitive Architectures

Permalink
https://escholarship.org/uc/item/93h774km

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors
Ragni, Marco
Sauerwald, Kai
Bock, Tanja
et al.

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/93h774km
https://escholarship.org/uc/item/93h774km#author
https://escholarship.org
http://www.cdlib.org/

Towards a Formal Foundation of Cognitive Architectures
Marco Ragni (ragni@cs.uni-freiburg.de)1, Kai Sauerwald (kai.sauerwald@fernuni-hagen.de)2

Tanja Bock (Tanja.Bock@tu-dortmund.de)3, Gabriele Kern-Isberner (gabriele.kern-isberner@cs.uni-dortmund.de)3

Paulina Friemann (friemanp@cs.uni-freiburg.de)1, Christoph Beierle (christoph.beierle@fernuni-hagen.de)2

1Cognitive Computation Lab, University of Freiburg, Freiburg, Germany
2Department of Mathematics and Computer Science, University of Hagen, Hagen, Germany

3Department of Computer Science, TU Dortmund University, Dortmund, Germany

Abstract

Cognitive architectures are an advantageous tool for creating
cognitive models. They provide a framework integrating general
cognitive structures and assumptions about the mind as for
example the working memory, structural modularity or their
interconnections. A vast number of cognitive architectures have
been developed in the last decades. While the architectures realize
the cognitive perspective, the formal foundation and similarities
of cognitive architectures remain open. To identify the cognitive
substrate of the architectures, we propose a generalized cognitive
framework allowing to embed different cognitive architectures
to analyze their properties and to have a common and formal
ground for comparisons. We demonstrate our approach – as proof-
of-concept – by embedding the two most popular architectures,
ACT-R and SOAR, and evaluate cognitive models for recognition
memory in our approach. Potentials and limitations are discussed.
Keywords: Formalization; Knowledge Representation; Cognitive
Architecture; Cognitive Modeling; ACT-R; SOAR

1 Introduction
Describing cognitive processes by concepts and terms from com-
puter science allowed for major progress in cognitive psychology
(Newell & Simon, 1972). This includes the distinction between
the underlying cognitive data structure (e.g., working memory)
and operations performed on it (e.g., retrieval of an item). A core
assumption for cognitive modeling is that the data structure is
stable across problems. It is crystallized in a cognitive architecture
that build on associations with brain regions (Anderson, 2007). At
a general and abstract level a cognitive architecture consists of a
data structure, which can contain an arbitrary number of substruc-
tures, and a set of operations to manipulate the data structure. Still,
most architectures are built on the idea of production rule systems
operating on different modality specific modules and buffers
(Anderson, 2007; Laird, 2012; Sun, 2001). Architectures have
been developed for each of the levels proposed by Marr (1982).
Recently, hybrid approaches have been introduced (e.g., ACT-R
(Anderson, 2007)) incorporating symbolic and subsymbolic
processes building on concepts from neural nets. There are
more than 26 cognitive architectures that have been descriptively
compared in 20121. In the last 3 years a desire to present a formal
description by employing means from software technique for
ACT-R have led to some abstractions and formalizations, e.g.,
using predicate logic (Albrecht & Westphal, 2014) or constraint
handling rules (Gall & Frühwirth, 2015). A reconceptualization of
ACT-R has been undertaken by Stewart and West (2007) and an
analysis for CLARION was made (Sun, 2007). However, formal
approaches are still rare and while each cognitive architecture

1bicasociety.org/cogarch/architectures.php

realizes assumptions and findings from psychology and neuro-
science – the common grounds, the intersection and differences of
the diverse architectures are not yet identified. In this sense each
architecture is a hypothesis by itself, but the different hypotheses
are not compared. To approach this issue, a general framework
independent of a concrete modeling approach is necessary. We
will analyze the preconditions of such a framework. At this point,
a precise distinction between cognitive models and architecture
is required. Cognitive models operate on cognitive architectures
and use the given “infrastructure” provided by the architecture.
A mental representation is localized within the architecture
of the human mind and so a cognitive model can include
domain-dependent operations on the cognitive architecture.

While the response adequacy of the model can be determined
from the given responses of a reasoner for a given task, it is impos-
sible to directly observe the operations and mental representations
a human agent applies. Cognitive models predict typical answers,
response time, and process steps. However, cognitive models are
never just simulation models that reproduce existing experimental
data. A good cognitive model is largely independent of experimen-
tal data and has general predictive qualities. At the same time each
cognitive model implemented for a specific architecture cannot
be necessarily transferred to another architecture that is built on a
different data structure. So it is possible that, if models in different
architectures model the same data, they can explain it by different
strategies depending on specifics of the respective architecture.
Consequently, a general framework is necessary that is able to
represent both models and to clarify their different assumptions.

In this paper we propose a formal model general enough to
represent different cognitive architectures, identifying and gen-
eralizing essential features of cognitive architectures. We provide
a notion of equivalence in this framework and present a method
about how ACT-R and SOAR (and models in these cognitive
architectures) can be embedded in our formal framework. Further-
more, we illustrate these embeddings by two concrete models of
the Two-High-Threshold model (2-HTM for short), one originally
realized in ACT-R and one in SOAR. While the implementations
of the 2-HTM model look very different, it is possible to compare
them in our framework and we obtain the result that they are
equivalent by employing our notion of response equivalence, i.e.,
these models generate the same response for the same input.

The remainder of the paper is structured as follows. In the next
section we briefly introduce two popular cognitive architectures.
In Section 3, we will present a general cognitive architecture
(GCA), transitions and cognitive models. In Section 4, we demon-

2321

Figure 1: ACT-Rs modules and buffers and their localization

strate some features and embeddings of the cognitive architectures
ACT-R and SOAR for the domain of memory. In Section 5 we
demonstrate the embeddings on a theory from recognition mem-
ory and compare the models. A conclusion discussing the possibil-
ities of a generalized cognitive architecture concludes the article.

2 State-of-the-Art: Cognitive Architectures
Most cognitive architectures are inspired by the General Problem
Solver (GPS), a model that uses means-end analysis as a search
heuristic (Newell & Simon, 1972). It has been reimplemented
as a production rule system, a system that realizes the physical
symbol system hypothesis. These systems are composed of (i)
production rules, consisting of a condition part and an action
part, and an (ii) interpreter that checks if conditions of existing
production rules are satisfied in a given model’s state (they can
fire). We focus on the two architectures with the most published
models: the hybrid cognitive architecture ACT-R and the AI
oriented approach SOAR.

The cognitive architecture ACT-R 7.0 (Anderson, 2007) aims
at a unified cognition approach. It is a hybrid theory, meaning
it consists of symbolic and subsymbolic parts. Its data structure is
oriented on modality specific knowledge modules for perception,
goal and sub-goal representations (goal, imaginal) and interfaces
(so-called buffers) which can be accessed by production rules.
ACT-R uses chunks as the atomic knowledge representation
format with procedural knowledge encoded in production rules
and declarative knowledge that uses the concept of activation.
Cognitive models have been developed for learning and memory,
problem solving, deductive reasoning, perception, attention
control, and human-computer interaction (HCI), many of which
can be found on the website2. Since recently, ACT-R allows even
for the prediction of task-specific brain activations, modeling
findings from fMRI research (see, Fig. 1).

SOAR3 (States, Operators, And Reasoning) is a production
rule system with reinforcement learning built upon the GPS
(Newell, 1990). SOAR separates conceptually between short term
(called working memory) and long term memory (consisting of the
three components production, semantic and the episodic memory).
Working memory contains objects which are similar to chunks in
ACT-R: they consist of a list of key-value-priorities pairs called
Working Memory Elements (WMEs), with constants or links to
other WMEs as values and a list of comparisons attributes for the

2http://act-r.psy.cmu.edu
3http://soar.eecs.umich.edu

priorities. In contrast to ACT-R, an object in SOAR may contain
more than one WME with the same key, where the priorities are
used to break a tie between these WMEs. A central aspect of the
SOAR architecture is a special object in the working memory rep-
resenting the current state. All other relevant objects in the work-
ing memory are indirectly connected (via values in WMEs) to
the current state object. Production memory contains production
rules which are similar to the productions in ACT-R. In contrast to
ACT-R, all matching productions in SOAR fire at the same time.
Declarative memory is represented as a net of objects in the se-
mantic memory. The episodic memory saves periodically (partial)
snapshots of the actions in working memory. The semantic and
episodic memory can be accessed by a retrieval mechanism which
adds the result to the working memory. A unique mechanism of
SOAR is the recursive creation of sub states to solve an unambigu-
ously operator tie. The current version SOAR 9 integrates non-
symbolic representations and other learning mechanisms (Laird,
2012). It performs a variety of problems from planning, robotic
systems, interactions with virtual humans, and an air combat
simulation for pilot training at the USAF (Tambe et al., 1995).

3 A General Cognitive Architecture (GCA)

To define the frame of a generalized cognitive architecture (GCA),
we need to capture the essential structural properties of a cognitive
architecture with respect to memory, constraints on the processes,
and interaction with the environment. As introduced above most
cognitive architectures, such as ACT-R or SOAR, have an atomic
information unit, often called a chunk, which we will use in the
following as well. Chunks are lists of key-value pairs, where the
keys and values are based on the set of symbols Σ, e.g., constants
or references to other chunks. Cognitive architectures may allow
the informations that are stored in a chunk to change over time.
Hence, a chunk is not directly identified with its knowledge. Most
architectures have modality specific modules that can contain
these chunks. Some modules can interact with others in a directed
way, shifting information from one into the other, while others
cannot. Hence, we introduce a relation F over the modules. The
implementation of subsymbolic processes in hybrid architectures
leads to two kinds of extensions: (i) the possibility of having a
probabilistic behaviour selecting the next action of the system,
modeled here as nondeterminism; and (ii) the addition of a prob-
abilistic knowledge access mechanism. The access to a chunk
depends on the point in time, events in the record of the chunk,
or on the current state. For the representation of time we differen-
tiate between T, the set of absolute time points, and D, the set of
durations. This definition of time points is relevant for the inter-
nal knowledge management in the module. Finally, we introduce
compartments, i.e., data structures that can represent the functional
analogon of modules and buffers in architectures. A compartment
m∈M may contain chunks and furthermore, some architectures
associate for some specific compartments a subsymbolic process
controlling the retrieval of chunks. An example is the activation
function in ACT-R, or modules that are implemented by a neural
net. To allow such subsymbolic processes we assign to each
compartment m a function gm depending on a time parameter and

2322

operations Om that can be performed on that compartment, e.g.,
store information etc. To model the effect of subsymbolic mech-
anisms, each compartment m provides a set of operations Om,
which are used to mark that a specific event occurred. We define
a record as set of elements from T×P(Om), where P(X) denotes
the power set of a set X. The function gm guards if a retrieval of
an information is successful for the given record, and is called the
subsymbolic guard function. Hence, we represent a compartment
m by a tuple (gm,Om). In case of declarative memory in ACT-R,
gm can be for example the base-level activation function, and the
operations are chunk retrieval and chunk storage. The definition
of compartments is general enough to capture the notion of buffers,
too. Altogether we obtain the following definition of a frame:

Definition 1 (Frame of a General Cognitive Architecture)
The frame of a general cognitive architecture A is a tuple
〈Σ,Γ,C ,M ,E,F 〉 with

• Σ, a set of internal and Γ⊆Σ, a set of input symbols

• C , a set of chunks,

• M , a finite set of modules, each a tuple (gm,Om), where
gm :C×Om×P(T×Om)→{0,1} is called a guard function,
and Om is a set of operations.

• E⊆M , set of modules interacting with the environment,

• F ⊆M ×P(O)×(M \{mE}), an information flow relation,
where O=

⋃
m∈M Om is the set of of all operations.

States in a cognitive architecture consists of chunks, an assignment
of the chunks to their content and a location of the chunks.

Definition 2 (State of a Cognitive Architecture) A state S of a
given cognitive architecture A is a triple (C,I,`), with

• C⊆C , a finite subset of the chunks of A,

• I : C→ P bag(Σ× (C] Σ)), an interpretation-function, that
assigns to every chunk in S a multiset of key-value pairs, where
the keys are symbols and each value is either a symbol or chunk,

• ` : M → P(C), a localization-function that assigns to every
module a finite set of chunks.

Each operation performed in a general cognitive architecture is
represented by a transition between two states, where a transition
consists of essential components: the source and target of the tran-
sition, the duration of the operation, and which inputs are present.
Additionally a transition specifies which operations are performed
on chunks, represented by a tuple (m1,c,o,m2). The set of all
such operation descriptions is defined as O=M×C×O×M .

Definition 3 (Transition) A transition of a cogntive architec-
ture A is a tuple (s1,u,Ω,d,s2) ∈ (S ×P(Γ)×P(O)×D×S),

graphically represented by s1 s2
u,Ω :d

.

A set of transitions will be denoted with ∆. Not every transition
is consistent with the information flow restrictions or the guard
functions of the modules formulated in Definition 1. We call
transitions that are not in conflict with the information flow and
guard functions admissible. A sequence over a set of admissible
transitions ∆ is called a trace over ∆. Furthermore, we call a

trace admissible, if all specified operations are successful, i.e. the
guard function gm evaluates to 1 in every transition of a trace.

We write R∆

A for the set of all admissible traces of A consisting
only of traces from ∆ and RA for the set of all traces of A over the
set of all admissible transitions of A. A cognitive computational
model in a given cognitive architecture specifies algorithms based
on (a subset of) operations allowed in the cognitive architecture,
to compute an input-output mapping for the task to be modeled.
While the architecture specifies the data structure, the general
information flow and processes, a model specifies concrete
operations and the given background knowledge.

Definition 4 (Cognitive Model) A cognitive model L of a
cognitive architecture A is a tuple (S,s0,∆,F,α) where
• S is a set of states, s0∈S is the initial state,

• ∆⊆(S×P(U)×P(O)×D×S) is a set of transitions.

• F⊆S is a set of final states ,i.e., where the computation stops

• α :F×R∆

A→C is an output function.

We introduce a notion of equivalence between models, based on
the ability of producing the same input-output behaviour.

Definition 5 (Response Equivalence of Models) Two cogni-
tive models L1,L2, with Li=(Si,si,∆i,Fi,αi), are called response
equivalent, if for each input string there exist a trace ρ1 for L1
that leads to a final state f1 ∈ F1 iff there exists a trace ρ2 for
L2 that leads to a final state f2 ∈ F2 such that I1(α1(f1,ρ1)) =
I2(α2(f2,ρ2)), where Ii is the interpretation function from fi.

Other forms of equivalence are, e.g., a process equivalence, i.e.,
that arbitrary partial processes of a model are isomorphic to the
processes of a corresponding model, therefore are interdefinable.

4 Embedding Architectures into GCA
In this section we demonstrate an embedding of the two (main)
cognitive architectures ACT-R and SOAR into the GCA. In the
following we restrict our embedding to the most relevant aspects
of the architectures due to space limitations.

4.1 Embedding ACT-R in GCA
Following Definition 1, it suffices to show that we can write ACT-
R as AACT-R = 〈Σ,Γ,C ,MACT-R,EACT-R,FACT-R〉. The concrete
Σ,Γ, and chunks C are model dependant. Hence, we specify the
set of modules MACT-R and the information flow relation FACT-R.
ACT-R consists of the declarative module (md), the procedural
module (mp), the goal module (mg), the imaginary module (mi),
and the input environment modules EACT-R={mv,ma}, where mv
is the perceptual modules for the visual input and ma is the module
for the auditory input. Each module m consists of specific opera-
tions Om and a guard function gm. So taking the declarative mod-
ule md as an example, we would have Omd ={retrieve, modify}.
Hence, we can set MACT-R to {md,mg,mi,mv,ma}. Note that the
production module in ACT-R contains only the production rules
which are represented by the transitions. Buffers are not explicitly
represented in our definition with the exception of the declarative
module, where ACT-R allows to have chunks as well within the
module and as possibly one chunk in the buffer. In our definition

2323

of a cognitive architecture this could be modeled if necessary
by an additional module mdb simulating the declarative buffer
and the restriction that only chunks of the declarative module can
move from and to mdb, via the information flow function FACT-R.

The production rule system of ACT-R consists of three steps:
match, select, and execute. The matching of production rules is
represented by the transitions between states, i.e., there is only a
transition if the precondition of the corresponding production rule
is satisfied. Depending on whether probabilistic processes, like
noise in the utility calculation, are activated in an ACT-R model,
the transition system is either deterministic, i.e., there is only one
outgoing transition corresponding to the production rule with
the highest utility, or non-deterministic. One transition models
the selection of one matching production rule. The execution of
production rules is visible throughout the states.

The subsymbolic activation of chunks can be modeled with the
retrievability function α of a cognitive model. Depending on the
past retrievals of a chunk c, which are accessible through a trace
ρ, it can be decided if a chunk is retrievable, i.e. if the base-level
activation B(c,ρ) (Anderson, 2007) is above a certain threshold τ.
ACT-R can use in fact up to three components for the activation
of a chunk but due to space limitation we do not outline partial
matching and spreading activity.

4.2 Embedding SOAR in GCA
We will now outline the embedding of SOAR into our GCA.
We have ASOAR = 〈Σ, Γ, C , MSOAR, ESOAR, FSOAR〉. Here
MSOAR is the fixed set of modules MSOAR = {mw,ms,me},
where mw represents the working memory, ms the semantic
memory and me the episodic memory. Since SOAR creates
new objects in the working memory for sensory inputs, it is
ESOAR = {mw}. As most information processing in SOAR is
performed in the working memory, we restrict the information
flow in that way that either the source x = (gx, Ox) or the
target module y = (gy,Oy) is the working memory: formally
FSOAR={(x,o,y)∈M 2

SOAR |o∈Ox and (x=mw or y=mw)}. A
concrete SOAR model defines then elements of Σ,Γ and C .

We use a state (C,I,`) of the GCA to represent the memory
content of the SOAR system before the input phase. C is the set
of all objects that appeared in the execution of the SOAR model.
The function I assigns to every object the values of the WMEs and
` assigns to the modules (different memory’s) contained objects.

The production rules in the production memory of a SOAR
model control the specific behaviour of the model. This is
captured by our GCA through a concrete cognitive model
L= 〈S ,s0,∆,F ,α〉. Since states capture the situation of SOAR
before the input phase an embedding of a SOAR model has a
transition (s1,d,Ω1,u,s2) between states s1 and s2 if in SOAR,
after receiving the inputs u, a production employs an operation
Ω1 that is (possibly) selected and following the changes in the
application after time d has passed and output phases leads to
the destination of the transition.

5 Empirical Example
A core motivation for proposing a general framework is to make
implicit (that is partially hidden) modelling approaches explicit.

In the following we consider the current best cognitive model
for recognition memory (Kellen, Klauer, & Bröder, 2013).

5.1 Test case: Modeling recognition memory
A recognition memory experiment consists of two phases: The
first is a learning phase where participants learn several new
items, e.g. from a word list. The second is a recognition phase in
which the participants are presented with items they have already
learned (“old”) and new items. The cognitive processes for this
specific task are modeled by the 2-HTM shown in Fig. 2.

Old
Items

Do

1−Do

”Old”

g

1−g

”Old”

”New”

New
Items

Dn

1−Dn

”New”

g

1−g

”Old”

”New”

Figure 2: The Two-High-Threshold model (2-HTM).

The cognitive model is presented as a multinomial process
tree (MPT) (Singmann & Kellen, 2012). It consists of two trees
with the word type, old or new, specified in the tree’s root. The
tree represents transition probabilities to reach specific states;
in the case that an old item is presented to the participant, she
discovers with probability D0 (state of target detection) that the
item is an already presented item, and gives the response “old”.
If a new word is presented, she discovers with probability Dn that
it is a “new” item. However, the participant can in either case
be uncertain and has to guess the answer. This is represented
by a subtree structure, where if the item is not remembered, the
word is guessed as “old” with probability g and as “new” with
probability 1− g. We model the 2-HTM both in ACT-R and
SOAR and compare them in our general framework.

5.2 Cognitive Model in ACT-R
For the following ACT-R model, we assume that the learned
words (“old items”) are already stored in declarative memory.
The recognition phase is implemented as follows: First the system
waits for a word to appear on the screen (handled by a production
rule). When a word is shown it is stored in a chunk in the imaginal
buffer. The guessing part is handled through two production rules
with the same preconditions but different answers, guess-old
and guess-new. The production rule with the higher utility is
selected. After the response is determined, it will be returned on
the screen and compared with the real answer.

An intuitive way to model the 2-HTM is to use the activation
threshold of chunks to distinguish between old and new words.
In the experiment phase the model tests if a matching chunk can
be retrieved. If not, the activation is below the threshold or it
is a new word. In this case the model guesses the answer. The
problem of this approach is that the guessing path is considered
every time the retrieval of the chunk failed. The probability of
detecting something as new is not given.

If we do not consider the subsymbolic aspects of ACT-R and
model the 2-HTM directly as in Figure 2, these limitations can be
overcome. We modify the previous model and use the chunk re-
trieval process solely as a way to distinguish between old and new

2324

words. We choose a low threshold for chunk retrieval and disable
the base-level learning parameter, meaning that the base-level is
a constant value determined by a parameter. The consequence
is that a matching chunk is always found in the presence of an
old word. If the retrieval process is successful, a specific recall
production rule is triggered, otherwise cannot-recall. Both
production rules solely switch the states to identify if there was
a new or an old word. For each of these production rules we
need more rules to handle either the direct answer or the guessing
phase. Hence, it is possible to model the probabilities of the
2-HTM with ACT-R. We can set an initial utility value for each
production rule and enable a noise parameter with a probability
distribution, which is added to the utility. We tested the ACT-R
model with 10,000 runs4 and the model fits are Dn=31.74 and
Do=47.02, resembling the results by (Bröder & Schütz, 2009).

5.3 Cognitive Model in SOAR
The subsymbolic mechanism of SOAR allows the specification
of probabilities for the breaking of ties for proposed operators.
We can use this to model a decision of the 2-HTM with the three
fixed parameters Dn,Do and g straightforward: if the system gets
an item i as input, the system queries the semantic memory if i
is already known. If the query returns with an answer, the system
proposes two operators o1,o2 and equip o1 with the probability
Dn and o2 with the probability 1 − Dn (respectively Do and
1−Do). If o1 is selected the system outputs the right result,
otherwise the system proposes in the next step two operators
equipped with the probabilities g and 1− g, and proceeds in
dependence of the selection.

5.4 Comparing the Models in GCA
Let Wo = {w1,...,wm} and Wn = {wm+1,...,wm+n} two disjunct
list of words, where Wo is the set of words that the participant
received in the learning phase and Wn the set of new items for
the recognition phase of the 2-HTM.

Embedding the ACT-R Model. We can translate the ACT-R
model into our GCA as A = (Σ,Γ,C,MACT-R,EACT-R,FACT-R)
with MACT-R,EACT-R,FACT-R described as above (cf. Section 4.1).
We have the set of chunks C = {co1,...,co10,g,cn1,...,cn10,cv}
with coi for the old words, stored in the declarative memory, g
as goal chunk, cni for the new words and cv as representative for
the word on the screen. The new words are the only inputs from
the environment, i.e. Γ={cn1,...,cn10}.

For the cognitive model LA-2HT we need the set of states S , a set
of admissibile transitions ∆, final states F and the output function
α. The model does not use the base-level activation in the declara-
tive memory which leads to a special guard function of the declar-
ative module: gmd(c,retrieve,ρ)=1 if c∈ l(mdb) and 0 otherwise.
Let S ={s0,s1,so

2...,s
o
9,s

n
2...,s

n
9} be the states with the final states

F={so
9,s

n
9}. The states and transitions can be seen in Figure 3a.

In the initial state s0=(C0,I0,l0) we describe the situation that
the participant has learned the old words, i.e. C0={co1,...,co10,g}
with I0(ci)=(word:wi) for all 1≤ i≤n and I0(g)=(state:start).
All the chunks are located in the declarative memory, so we have

4using parameter settings: (:rt -2, :bll nil, :esc t, :egs 1)

l(md)=C1 and l(m)= /0 ∀m∈MACT-R,m 6=md. s1 describes the
state that a word appeared on the screen and the participant has
to read it. Notice that in this state the word has not been read yet
and therefore is not as a chunk in the state yet. Then we change
the state, I1(g)= (state : attending-probe). After the participant
reads a word on the screen, a chunk is created in the visual buffer
and the word is stored in the imaginal buffer. At this point the
system creates a state for each word that may appear but for the
sake of clarity we combine the state of each old word in the state
s0
2 and the new words in sn

2 with

C2=C0∪{cv},l2(mv)=cv,l2(mi)=cv and I2(g)=(state:testing).

In the following we focus on the path for an old word. so
3 then

describes the successful retrieval of the word with l3(mdb)= ci,
where ci is the corresponding chunk from declarative memory, and
I3(g)=(state :handle-old-item). In the presence of an old word
the participant either gives the answer directly, so

4, or does not
know the answer, so

5, and has to guess. The guessing is handled
by the states s6 and s7 for both paths. State so

8 then describes that
the answer “old” is given leading to the state so

9 where the actual
word appears on the screen. The path of new words is analogous.
Embedding the SOAR Model. Applying the embedding from
Section 4.2 to the SOAR model 2-HTM (see Section 5.3) leads to
the following result: Let ASHTM=〈Σ,Γ,C ,MSOAR,ESOAR,FSOAR〉
with Σ \ Γ = Wo ∪ {s,r,o,n,g,on,oo}, Γ = Wn ∪ Wo
and C = {c1, ... , cm, STATE, OLD, NEW}. Note that
{s,r,o,n,g,on,oo} are symbols from the SOAR model,
that are necessary for the model to be internal self aware of the
states. Due to space reasons we only outline the definition of
the cognitive model LSHTM=(S,s0,∆,F,α): Expanding the space
of reachable states leads to the structure in Figure 3b, where for
every 1≤ i≤m a copy of the state si

r exists (the same applys to
s j
r for all m+1≤ j≤m+n). For example we obtain si

r=(C ,Ii
r,`

i
r)

for all 1 ≤ i ≤ m with Ii
r(ci) = {word : wk} for all 1 ≤ k ≤ m,

`i
r(mw) = {STATE, ci}, Ii

r(STATE) = {s : r, word : ci} and
`i

r(ms)={ci |1≤ i≤m}. The final states are F={sout
n ,sout

o }, and

we define the output function as α(sout
x ,ρ)=

{
OLD x=o
NEW x=n

with Iout
o (OLD)={result :o} and Iout

n (NEW)={result :n}.
A comparison. Our core motivation demonstrated on this exam-
ple is to have a common ground to compare different architectures
and models. As we saw for the 2-HTM in ACT-R, there are some
limitations on the implementation that do not allow for the intuitive
model to represent guessing. We were forced to use the utilities
functionality, which seems to be implausible from a cognitive sci-
ence perspective. However, if we apply the Definition 5 of equiva-
lency we see that both the SOAR model and the ACT-R model are
response equivalent, i.e., they generate the same response for the
same input. Still, the processes slightly differ as can be seen in Fig.
3. This indicates too that if modules in two different architectures
have a different specification in the GCA then these cannot be
process equivalent. Future work will investigate restrictions.

2325

s0 s1

so
2

sn
2

so
3

sn
3

so
4

so
5

sn
4

sn
5

s6

s7

so
8

sn
8

so
9

sn
9

{w},Ω1:1
/0,Ω

2:1

/0,Ω
3 :1

/0,Ω4:1

/0,Ω5:1

/0,Ω
6:
1

/0,Ω7:1

/0,Ω8:1

/0,Ω
9 :1

/0,Ω10:1

/0
,Ω

11
:1/0,Ω

12 :1

/0,Ω13:1

/0,Ω14:1

/0,Ω15 :1

/0,Ω16:1

/0,Ω17:1

/0,Ω18:1

/0,Ω19:1

(a) Embedding the ACT-R model in GCA

s0

si
r

s j
r

si

s j

sg

sout
n

sout
o

{w i},
Ω1:

1

{w
j },Ω

2 :1

/0,Ω3 :1

/0,Ω4 :1
/0,Ω

5:
1

/0,Ω
6 :1

/0,Ω7 :1

/0,Ω8 :1

/0,Ω
9:

1

/0,Ω
10 :1

(b) Embedding the SOAR model in GCA

Figure 3: Embeddings of the 2-HTM into the two architectures ACT-R and SOAR

6 Conclusion
We propose a formal framework general enough to embed dif-
ferent cognitive architectures into it, inspired by the idea that all
architectures represent to some degree insights into the cognitive
processes on the “data structure” of the human mind. The motiva-
tion of our approach is twofold. First, to lay the ground for support-
ing/rejecting, classifying, and categorizing cognitive mechanisms
provided by a cognitive architecture – something which requires a
general framework. Second, to resolve the desire to “fully explore
the space of possible computational cognitive architectures [. . .]
to further advance the state of the art in cognitive modeling” (Sun,
2007). We outlined conceptually how ACT-R and SOAR can be
translated into the GCA. Furthermore, a notion of equivalence for
cognitive models was formalized based on the GCA, demonstrated
its power on two exemplary 2-HTM models. This is a first step
towards a common ground for comparing more cognitive architec-
tures in a formal way. Future work will focus on embedding more
architectures, compare them on a broader variety of cognitive
models, and investigating the comparison of general concepts of
modeling and the impact of restrictions within this new framework.
Having more embeddings available, the general cognitive archi-
tecture will allow us to perform a comparison of the different ap-
proaches and to classify the necessary conditions that are required
to model a task. From a theoretical perspective, an analysis of the
different architectures and their implicit and explicit assumption
is possible. Furthermore, it allows a formal analysis of the limita-
tions of recent approaches, e.g., the declarative knowledge module
in ACT-R which makes the incorporation of guessing difficult.

7 Acknowledgments
This work has bee supported by DFG-Grants RA1934/3-1, 4-1,
and 5-1 to MR, KE1413/10-1 to GKI and BE 1700/9-1 to CB.

References
Albrecht, R., & Westphal, B. (2014). F-ACT-R: defining the

ACT-R architectural space. In Cognitive Processing (Vol. 15,
pp. S79–S81).

Anderson, J. R. (2007). How can the human mind occur in the
physical universe? New York: Oxford University Press.

Bröder, A., & Schütz, J. (2009). Recognition ROCs are curvi-
linear—or are they? On premature arguments against the two-

high-threshold model of recognition. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 35(3), 587.

Gall, D., & Frühwirth, T. (2015). A Refined Operational Seman-
tics for ACT-R: Investigating the Relations Between Different
ACT-R Formalizations. In Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative
Programming (pp. 114–124). New York, NY, USA: ACM. doi:
10.1145/2790449.2790517

Kellen, D., Klauer, K. C., & Bröder, A. (2013). Recognition
memory models and binary-response ROCs: A comparison by
minimum description length. Psychonomic Bulletin & Review,
20(4), 693–719.

Laird, J. E. (2012). The soar cognitive architecture. The MIT
Press.

Marr, D. (1982). Vision. a computational investigation into the
human representation and processing of visual information.
San Francisco: Freeman.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Newell, A., & Simon, H. A. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

Singmann, H., & Kellen, D. (2012). MPTinR: Analysis of
multinomial processing tree models in R. Behavioral Research
Methods, 45(2), 560–575.

Stewart, T. C., & West, R. L. (2007). Deconstructing and recon-
structing ACT-R: Exploring the architectural space. Cognitive
Systems Research, 8(3), 227 - 236.

Sun, R. (2001). Duality of the mind - a bottom-up approach
toward cognition. Lawrence Erlbaum.

Sun, R. (2007). The importance of cognitive architectures: An
analysis based on CLARION. Journal of Experimental &
Theoretical Artificial Intelligence, 19(2), 159–193.

Tambe, M., Johnson, W. L., Jones, R. M., Koss, F. V., Laird, J. E.,
Rosenbloom, P. S., & Schwamb, K. (1995). Intelligent agents
for interactive simulation environments. AI Magazine, 16(1),
15–39.

2326

