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Abstract

It is challenging to predict the docked conformations of two proteins. Current methods are 

susceptible to errors from treating proteins as rigid bodies and from an inability to compute 

relative Boltzmann populations of different docked conformations. Here, we show that by using 

the ClusPro server as a front end to generate possible protein–protein contacts, and using 

Modeling Employing Limited Data (MELD) accelerated molecular dynamics (MELD × MD) as a 

back end for atomistic simulations, we can find 16/20 native dimer structures of small proteins as 

those having the lowest free energy, starting from good–bound–backbone structures. We show that 

atomistic MD free energies can be used to identify native protein dimer structures.

Graphical Abstract
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1. INTRODUCTION

We describe a way to improve computer predictions of the structures of protein–protein 

dimers. Much work has been done in modeling protein docking. The protein docking 

community has established an event, called CAPRI (Critical Assessment of PRediction of 

Interactions), for the blind testing of docking algorithms.1–3 This has brought the challenges 

into clear focus. Proteins have so many degrees of freedom of internal and relative motion 

that simplifications are needed to tame the computational combinatorial explosion.4–11 One 

main simplification is to treat each protein as a rigid body. Another simplification is to use 

quasi-physical “scoring functions” instead of more physically accurate free energies. Both 

introduce errors into structure prediction.12,13 Recently the ProPOSE approach has been 

developed to deal with some of these limitations allowing for flexible side chains during the 

docking prediction.14 Molecular dynamics (MD) simulations with atomistic force fields in 

principle represent an approach to such limitations, but at a extremely high computational 

cost. For example, using highly specialized computational resources,15 Shaw helped to 

refine oligomeric structures using MD16 and observed several undocking–docking events of 

five protein dimers starting from the bound structure.17 To reduce the computational cost of 

MD, Hou et al. used simplified coarse grained molecular models to quite successfully 

compute the binding free energy of different docking poses.18

A recently developed method called MELD (Modeling Employing Limited Data) 

considerably accelerates physics based simulations (like MD or Monte Carlo) using generic 

or vaguely directive information to restrict the search space of the problem.19,20 We call 

MELD × MD the application of MELD to MD simulations. MELD × MD is useful in 

protein structure determination,19 computing the poses and affinities of binding a peptide to 

a protein,21,22 and the folding of small proteins in CASP, the blind native prediction event.
20,23–25 The acceleration in MELD × MD comes from a Bayesian integration of external 

information that can be probabilistic or combinatorial and not specific.

Here, we first use the ClusPro (CP) rigid-body docking server to estimate sets of protein–

protein contacts from its 15 best docked poses.11,26–29 Those contacts are input to MELD × 

MD, which then explores the internal and relative degrees of freedom of the two proteins 

with replica-exchange sampling in a physical potential function. We find that MELD × MD 

adds value in predicting dimer structures by identifying the highest computed 

conformational population (lowest free energy). Our study here is limited to situations in 

which both proteins are given to have roughly the correct backbone trace, so that we can 

learn from our modeling the value of including the flexibility that MD provides and of 

computing populations (free energies) to pick out native dimer structures among options. 

During our MELD × MD simulation the conformations of the side chains and the backbone 

are allowed to fluctuate. Future work will investigate the use of this flexibility to refine the 

monomer backbone structure during the MELD × MD docking procedure, but this was not 

done here. Such refinement is particularly important when bound state monomer structures 

are not available.
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2. EXPERIMENTAL SECTION

2.1. MELD Accelerates Conformational Exploration by Using External Information.

Because a protein has so many degrees of freedom, it is computationally expensive to 

sample them and find its equilibrium states by molecular dynamics simulations in a physical 

force field. It is even more challenging to model two proteins binding to each other. MELD 

is a recently developed method that can accelerate MD simulations of proteins when there is 

some form of target knowledge about the relevant states. Unlike traditional constraining 

methods, MELD does not require that the constraints be precise, accurate, or deterministic. 

MELD can speed up the finding and sampling of important states using external information 

that is even loose, partly wrong, corrupted, probabilistic, or incomplete. In the present 

situation, we give MELD the directive that “most of the contacts predicted from the ClusPro 

rigid-body server, in one of top 15 poses, are likely to be essentially right” and that “the 

monomers should not unfold”.

Here’s how MELD uses smart springs to direct MD simulations to focus around promising 

regions of conformational space. The springs are smart in two ways. (i) Not all springs are 

active at the same time. MELD uses Bayesian inference to parse springs into different 

subsets that are active at different times. The active ones are always the ones with the lowest 

spring energy (i.e., the ones that are least violated). Switching between different sets of 

springs happens without violating detailed balance. (ii) The springs energy functions are 

flat-bottomed. This ensures that, when they are satisfied, no energy is added to the force 

field’s Hamiltonian of the system. Relative populations of the different regions of the 

conformational space that satisfy some of the external information are consistent with the 

populations of unrestrained simulations and can therefore be used to compute proper free 

energy differences between them, based only on the force field.

The smart-springs approach focuses the computational effort around regions of the 

conformational space that are consistent with the data.19,20 For good sampling, MELD × 

MD uses the Hamiltonian and temperature replica exchange (HTRE) protocol.30,31 Higher 

temperatures correspond to moving up the replica ladder, which leads to weakening the 

springs.

2.1.1. MELD × MD Setup.—In this paper, we study protein dimers. Our conformational 

space is the relatively limited number of docking poses of the two monomeric proteins, in 

addition to some flexibility in the internal structure of each protein. We enforce these two 

conditions separately. (i) We limit the docking space using the intermolecular contacts 

proposed by CP. In the lowest energy replicas, our system is forced to explore the 

conformational space that is compatible with a fraction of the contacts predicted by CP. We 

do this by computing the intermonomer contacts of the first 15 CP poses. To avoid kinetic 

biases of our replica exchange protocol that would make simulation convergence harder to 

reach, we randomly remove contacts from poses until every pose has the same number of 

contacts as the pose with the least contacts. The contacts of each one of the poses are 

collected in different groups and our Bayesian approach allows us to have only a fraction 

(70%) of the springs of one of these groups active at the bottom of the replica ladder at any 

moment. This allows some flexibility in the final docking contacts of our poses compared to 
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the CP contacts that we use to create the smart springs in the MELD simulations. (ii) 

Monomers should not unfold during the simulation. We force the monomers to maintain the 

native secondary structure: we weakly restrain the position of the alpha-carbons of the first 

monomer around their native monomer positions, and we enforce 80% of the native 

monomer intramolecular contacts of the second monomer to be satisfied. Our approach 

allows for more flexibility in the two monomers than is currently used by other docking 

approaches. In particular, the side chains are totally free to reorient, and the structures of the 

main chains are free to fluctuate around the restraints. In this work we use the same 

approach for all 20 pairs of dimers, but in principle it is possible to tune the flexibility of 

different parts of the systems according to specific needs.

The restraints that drive the docking (the one at point i) are slowly turned on while 

descending the replica ladder (between α = 0.83 and α = 0.33); other restraints are on at all 

time. The monomers are forced at all times to sit within a sphere of radius RgR + 2.5RgL 

+ 0.5 nm, where RgR and RgL are the radius of gyration of the receptor and of the ligand, 

respectively. The temperature is geometrically increased climbing the replica ladder, from 

300 at α = 0 to 550 at α = 0.6, and after the temperature is constant. Due to the way we 

enforce the MELD restraints at the highest replica, the monomers are not docked and the 

ligand is free to rotate. This means that, in all our simulations, every system copy 

experiences several undocking and docking events in different poses while climbing and 

descending the replica ladder.

HTRE simulations are run using 30 replicas. Replicas start equally spaced in replica index 

space, but their positions are adapted during the simulation to optimize exchanges. Exchange 

between different replicas are attempted every 50, and the simulations are 2.5 long for each 

replica. The initial pair of structures is the same for all replicas, and they are structures in 

which both monomers have their native bound structure, but the two monomers are not in 

contact.

2.1.2. MD Simulation Parameters.—All our MD simulations are carried out using 

ff14SB-side force field (FF), which uses ff99SB32 parameters for the backbone and the 

recent ff14SB33 parameters for the side chains. We use the GB-neck2 implicit-solvent 

model.34 Simulations are run with steps of 4.5 using a Langevin integrator with a friction 

coefficient of 1.0 ps−1. Hydrogen masses are repartitioned to allow for the long time-steps. A 

cutoff of 1.8 is used for all interactions. MELD is a plugin to the OpenMM35 simulation 

package. Non-MELD simulations used to test the dimer stability are run using AMBER.36

2.1.3. Dimer Selection and System Flexibility.—Our aim is to show how a 

physically accurate (but also computationally expensive) approach can accurately identify 

the native state of dimers when more simple docking protocols fail to do so. Of the 49 small 
dimers we identified from the PDB37 that are stable in our simulation condition (see SI 1 for 

an in depth description of the procedure used to screen PDB dimers), vanilla CP (i.e., the CP 

run using the standard setting of the web server) is able to correctly dock 34 of them (i.e., 

the CP TOP1 structure is native-like). Our test set was comprised of the 15 dimers that CP 

failed to correctly predict, and 5 out of the 34 it correctly predicts. For 19 of these 20 

systems CP did provide at least a good structure in the first 15 CP guesses, for the twentieth 

Brini et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2020 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimer we provided MELD also native contacts. In this way we show how our free-energy-

based prediction can add value when it is needed.

Including protein flexibilities is critical for good estimates of the free energy. We enforce 

weak restraints on the receptor α carbon positions, and we enforce a fraction of the native 

contacts within the ligand. Backbone α carbon RMSDs of the receptor and the ligand go 

easily up to 2.5 Å (see SI Figure 3), and the side chains are totally free to reorient. While it 

is true that the starting conformation of the monomers are theirs bound structures, this 

structure evolves quickly to a few angstroms away in the MD protocol. CP predictions are 

the ones that are mostly influenced for using the bound structure of the monomers, but we 

use bound-complex docking as a reliable source of intermolecular contacts. In principle, we 

can use any source of information (experimental or computational) as long as we can define 

the confidence associated with such information. Also we note that we use a vanilla 

approach to CP. A more thoughtful use of CP might yield to better results, but this is outside 

the scope of this paper. Future work will explore how to use less reliable sources of 

information compared to bound docking (like template based docking or experimental data), 

and the simultaneous docking and refinement of monomer structures (e.g., starting from 

protein structure prediction or apo structures instead of holo structures). In this initial work, 

we are interested in showing how well we can predict native-like dimer structures using a 

free energy based method. The flexibility of the proteins in the simulations presented here 

goes exclusively toward the evaluation of accurate free energies of the docking poses.

3. RESULTS

The quality of our predictions is discussed in the context of the metrics used by the CAPRI 

community; the reported values in this paper are calculated using the DockQ software.38 For 

heterodimers, the ligand RMSD (LRMSD) is the ligand (i.e., the shorter chain) backbone 

RMSD computed after super-imposing the receptor (i.e., the longer chain) backbone. For 

most of our structures, which are homodimers, we consider the receptor to be the first chain 

and the ligand to be the second one in the native dimer PDB file. For the computation of the 

interface RMSD (iRMSD), an interface residue is defined as any residue that has a heavy 

atom less than 10 Å away from an heavy atom of a residue that belongs to the other 

monomer chain in the native structure. We also report the percentage of true positive (fTP) 

and false positive (fFP) contacts, where contacts are defined with a more restrictive 5 Å 

heavy-atom distance cut off. We report also the CAPRI score and the DockQ score, which 

are a combination of the RMSD and contact distance parameters.

3.1. Using Information from CP, MELD × MD Successfully Docks 16/20 Dimers.

Our predictions are obtained by clustering the trajectories of the five lowest replicas in the 

HTRE simulation. The first 250 ns of each trajectory (i.e., the first 5000 exchange attempts) 

are considered to be equilibration period for the systems and therefore are discarded from 

this analysis. We cluster the frames using the DBSCAN algorithm39 implemented in sklearn.
40 As the distance metric between structures, we use the LRMSD computed on the backbone 

alpha carbons. For a structure to be included in a cluster, it should have a maximum distance 

of 3 Å from core structures in the same cluster. A structure is considered a core structure of a 
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cluster when it has at least 200 neighbors. In SI 4 we show the small effect different 

clustering parameters and methods have on our predictions. The centroid of each cluster is 

then selected as representative structure, and our predictions are ranked according to cluster 

population, i.e. MELD × MD TOP1 (abbreviated as MELD TOP1) structure is the centroid 

of the most populated cluster. No information about the native structures or the CP poses 

enters the clustering protocol, making this effectively a prediction.

We assess the quality of our predictions by comparing the structure of the centroid of our 

most populated cluster (i.e., MELD TOP1 prediction) with the crystal structure of the native 

protein. We use this seemingly restrictive definition of success (only TOP1) because a 

correct ranking of the poses is a necessary feature of free energy based methods. In section 

3.1.3 we will investigate the origin of the four failed predictions and provide suggestions to 

fix these failures.

Figure 1 shows our results. Each box shows the native structure of the dimer in white, with 

the receptor depicted as surface and the ligand as a semitransparent cartoon. For each system 

the ligand position and structure of the MELD TOP1 prediction is represented by a blue 

cartoon. Boxes are colored in green if the CAPRI score is at least acceptable. The five 

systems on the left of the figure are the ones that CP successfully ranked (i.e., the CP TOP1 

is the best pose predicted by CP according to LRMSD metric). As it is possible to notice 

when CP is successful in predicting a close to native pose we are also successful in 

predicting the docking pose. When CP fails, we are often able (11/15 cases) to correctly 

predict a structure close to native, making our method complementary to what is in the field. 

In Table 1 we report LRMSD, iRMSD, fTP, fTN, CAPRI, and DockQscores for the MELD 

TOP1 predictions of the 20 dimers. Out of the 16 successes according to the CAPRI score: 2 

are acceptable, 13 are medium, and 1 is high quality. This suggests that, for these systems, a 

physically accurate model that allows for an accurate representation of the entropy and 

energy fluctuations of the different poses is key to obtain an accurate ranking of the 

structures. The relatively high LRMSD of 1Z09 is due to a rearrangement of a ligand α 
helix. This rearrangement happens away from the interface so it does not dramatically affect 

the quality of the docking prediction.

Two factors contribute to the quality of our MELD TOP1 prediction. (i) We use the size of 

structure population as a proxy for a free energy evaluation. Thanks to the quality of the 

force field and solvent model, we are able to use/identify the most native set of CP 

intermolecular contacts, and to successfully dock 16/20 dimers. (ii) MELD ensures that our 

system sits in the vicinity of one of the first 15 CP poses (in terms of intermolecular 

contacts). The FF is then allowed to explore the conformational space surrounding the sets 

of contacts. This allows physics to identify better poses than the (vanilla) rigid docking 

protocol we used to predict contacts in 13/16 cases. Identifying a good set of contacts and 

letting physics explore the allowed conformational space to provide a good structure is a two 

step process in all our predictions, but we will look at them separately in sections 3.1.1 and 

3.1.2. In section 3.1.3, we look at why we fail to predict the docked conformations of four 

systems correctly.
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3.1.1. MELD “Picks” Out Which ClusPro Contacts Are Native.—MD is grounded 

in physics. MELD focuses MD in order to sample only certain regions of the conformational 

space without biasing the relative probability of the allowed conformations. It is therefore 

possible to use the relative population of different structural clusters in our trajectory to 

identify the lowest free energy cluster (i.e., the most populated). Since we allow our 

simulation to explore only dimer conformations that share contacts with one of the first 15 

CP poses, we could say that we are able to rerank CP poses. However, in this work we allow 

the system some freedom to move around CP predicted contacts. So it is not straightforward 

to use our simulations as a pure CP reranking tool. In principle, by limiting the search space 

around CP docking poses it is possible to make MELD × MD an almost “pure CP poses 

reranking method”.

Figure 2 shows an example. For 2A2Y, the TOP1 CP structure (central column) has the 

dimer on the other side of the protein from the native crystal structure(left column). In the 

simulation, MELD × MD attempts to dock the two monomers according to the contacts from 

the 15 different CP poses. The fact that at the end of the simulation the centroid of the most 

populated cluster is extremely similar to the native structure (right column) shows how 

MELD was able to identify the best set of contacts to drive the monomer docking. Figure 3 

shows how we consistently pick out the best pose between the 15 ones suggested by CP. It is 

possible to track which pose in the first 15 CP poses is favored by the FF by counting how 

often a pose is active in the lowest 5 replicas during our simulations. The histogram bars in 

Figure 3 show the relative populations of the first 15 CP poses in our MELD × MD 

simulations; the red lines identify the CP TOP15 (by LRMSD) for each system. It is possible 

to see how MELD × MD is able to consistently identify the best pose. 2LYJ, 1NS1, 4QR0, 

2B87, and 1CFP have more than one good pose (LRMSD < 6.5 Å) within the first 15 

predicted structures, making the populations split between those. Due to the relative relaxed 

way we enforce the restraint, there is some uncertainty in selecting which pose is active. 

First we compute the intermolecular contacts from the CP predictions. Then we force all 

poses to have the same number of contact as the pose with the fewest contacts by randomly 

removing contacts from poses that have more contacts. This is necessary to avoid kinetic 

bias in selecting poses along the RE ladder that could make convergence harder. Finally we 

enforce 70% of the contacts as active. This allows quite some freedom to explore around the 

original CP poses, making it relatively easy for similar poses to be selected because the FF 

can explore the same conformational space starting from different poses. This is not a 

problem for the clustering protocol we use to select the MELD TOP1 pose because it does 

not use any CP information, but it makes difficult to use this MELD × MD protocol as a 

purely CP reranking method.

3.1.2. MELD × MD Often Gives Better Structures than Vanilla CP.—As noted 

above, we enforce only 70% of the intermolecular contacts of any given poses, and we do 

not add a penalty for any additional intermolecular contact formed. This means that we 

allow some freedom for the monomers to explore the space around the contacts of the CP 

poses. An interesting example of this is shown in Figure 4. In this case, the CP TOP1 

prediction is acceptable according to CAPRI metrics. MELD × MD correctly identifies that 

the set of contacts belonging to the CP TOP1 pose are closest to native and provides a 
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structure that satisfies 76% of such contacts. The force field is then able to pick up and go 

the last mile in docking the dimer into a better structure, one that has a medium CAPRI 

score, a better rank than the CP pose we use to provide this set of contacts. A similar process 

happens in all the predictions, and only in 3 of the 16 successful predictions MELD × MD 

predicts slightly worse docking poses than vanilla CP does (see Table 1). This highlights 

also the quality of the FF for studying dimers.

3.1.3. Failures.—The four failures to predict correct dimer conformations are linked 

with failures of the protocol we use, or with limitations of the physical model used to 

describe the system. The 3T0E prediction suffered a nonconverged RE simulation. Figure 5 

show that the different simulations of the RE protocol did not explore a similar set of 

conformations. 1R7H is also partially affected by a not totally converged RE simulation. 

1R7H and 3T0E are the only two systems for which the population of the MELD TOP1 

prediction is below 60% of the overall number of clustered frames. As in protein folding, 

low MELD cluster populations seem to flag systems for which the answer is uncertain. In 

2EZX and 1R7H the ligands change conformations, making docking in our simulation time 

scale impossible to converge. For example, let us say that the monomers look like two 

hands, and the dimer native structure looks like a handshake. To achieve a correct docking 

the two hands must be open when the docking is attempted. It is impossible to dock 

correctly the two monomers if when undocked the ligand closes like a fist. This is what 

happens to the 2EZX and 1R7H systems. The information that is in place fails to keep the 

hand open, since the contacts of an open hand are a subset of the contacts of a closed one 

and the FF/solvent model favors a closed conformation of the ligand. A possible way to 

recover this is to penalize the formation of too many new intramolecular contacts, or to use a 

full intramolecular distances matrix instead of only a contact matrix to limit ligand 

conformation explorations. Interestingly, Figure 2 shows how the most often active sets of 

CP information for these two systems are in both cases the ones of the CP TOP15 structures. 

It is reasonable to assume that limiting ligand conformations for these two systems will 

recover the correct predictions. We briefly note here that properly tuning the flexibility of 

receptors and ligands has an important effect on MELD × MD ability to successfully dock 

dimers. Flexibility increases the size of the search space to explore. Rigidity might hinder 

moves that can in some case be necessary to wrap monomers around each other. In this 

paper we present a uniform approach for all the 20 test cases that works for most of them, 

but some docking attempts would benefit from individualized approaches. Finally, 1H0X 
prediction fails because the FF favors a different docking pose. A small bump in the third 

panel of the LRMSD probability highlights that the systems visits a set of native-like 

conformations, but this cluster appears not be the one favored by the FF. In SI 3 we show 

how the 16 systems that MELD × MD correctly predicts are not affected by the limitation 

discussed here.

In Table 2 we look at the same quantities presented in Table 1, computed over the MELD 

TOP10 structure for the four systems where MELD × MD fails to predict native, and for 

1Z09, for which a change in the structure of the ligand affects some of the score. All the 

systems affected by a change in the ligand structure (1Z09, 1R7H, and 2EZX) have small 

population clusters of medium quality that improve on the metrics of the TOP1 prediction. 
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This means that when the system samples a correct ligand structure, MELD × MD is able to 

correctly dock the dimer. These correct ligand structures are simply sampled too rarely 

compared to incorrect ones, causing native docking poses not to be the most populated ones.

It is likely that limiting the flexibility of the ligand in our docking protocol would allow 

these three systems to be predicted correctly. It is also known that biologically relevant 

homodimers have a high degree of symmetry,42,43 and this implies that the structure of the 

two monomers needs to be similar. We can in principle use this knowledge to skim our 

predictions in order to eliminate homodimer predictions with significantly disparate 

monomer structures. We show in SI 6 that by doing so we can recover the correct predictions 

of these three dimers without affecting the prediction quality of the other successes.

1H0X and 3T0E are not dramatically affected by a structural rearrangement of the ligand, 

and they do not sample structure close to native. Failure in predicting the native state of 

these monomer is linked to issue of convergence of the REMD protocol and to limitations in 

the force field and solvent model.

3.2. We Can Apply Our Protocol to an Example CASP/CAPRI Case.

In section 3.1 we showed the success of our protocol in predicting the structure of dimers 

when we provide good information. Good information comes from the CP contacts 

prediction based on bound-complex docking and on exploring monomer conformations 

close to their bound structures (albeit some ligands are able to evolve to structures up to 10 

Å away during the simulation). This is consistent with the aim of this paper to use flexibility 

to evaluate correctly the relative stability of the different binding poses. In principle, the 

flexibility we introduce in the system can at the same time be used to refine the monomer 

structures (side chains and backbone). To test to which extent our protocol is able to handle 

monomer structural refinement, we use the CAPRI T120 target, from the joint CAPRI round 

37 - CASP 12 competition.13,44 As starting structure for the monomers we use the model # 1 

submission of the Zhang-Server group (TS479),45 based on I-TASSER46–48 for the two 

monomers (T0921 and T0922). The monomers have a RMSD to their native structure of 3.0 

and 3.4 Å, respectively. We feed these to vanilla CP and we then use the predicted contacts 

to limit the search space of our simulation. As the initial structure of our simulation we use 

the two predicted monomer structures not in contact. We run our MELD × MD simulation 

using the same protocol as described above. Table 3 shows a summary of the TOP1, TOP3, 

and TOP5MELD predictions and the TOP15 CP prediction. Our protocol is not optimized to 

handle the uncertainty of the monomer structures or in the intermonomer contacts. It is 

therefore not surprising that we fail to predict a MELD TOP1 structure close to native. 

However, we did identify some acceptable structures (2 and 3), and the first acceptable 

structure is ranked higher than the best CP structure (3). This small improvement on the CP 

prediction is promising. We recognize that, while this result is promising, future work (well 

outside the scope of this paper) is needed to fully assess the value that MELD × MD 

provides in more challenging conditions where monomers need to change their shapes to 

successfully dock. Different classes of problems fit this description: in template based 

docking monomers need refinement, in docking from monomer apo structure some 
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structural rearrangement is in order, and in unstructured protein docking a folding-like 

process is necessary upon docking.

4. CONCLUSIONS

We describe a method that gives improved protein–protein structure predictions. It starts 

with the 15 best structures produced by the ClusPro rigid-docking server. It then uses the 

interprotein contacts predicted by CP for each structure as restraints that are imposed 

probabalistically within the MELD Bayesian method. MELD-accelerated MD then gives 

improved dimer structures and produces populations (free energies) that are predictive of 

which dimer conformation is the best of the lot. The protocol we presents performs well if 

we start with the monomers having the bound backbone conformation but also demonstrates 

some improvement when the backbone conformation come from predictions as 

demonstrated in CASP/CAPRI example. In this last case, more aggressive sampling of the 

monomer structure would benefit the prediction. While the MELD × MD component is 

computationally expensive, nevertheless this approach is a promising way to compute good 

protein–protein binding structures.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correct predictions of the native structures of 16/20 dimers. (Green) Successful MELD 

TOP1 predictions. (Red) Unsuccessful. (Green, 5 left panel) Predictions are also ones that 

CP ranks correctly. The receptor of the native structure is depicted as white surface, and the 

ligand is depicted as transparent white cartoon. We only show the structure and position of 

the ligand of our prediction (solid blue cartoon).
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Figure 2. 
MELD can identify the correct set of contacts to use. The left column shows the native 

structure of the 2A2Y dimer both using a 3D view and a map of the position of native 

contact on the first monomer. Here the first monomer is approximated as a sphere and it is 

represented as a map using a Mollweide projection41 (see SI 5). In the central column we see 

the CP TOP1 prediction. In this case, CP places the second monomer on the wrong side of 

the protein. All contacts are FP and therefore are shown in red on the map representation. 

The wrong position of the dimer is reflected in the three metrics reported below the map. 

The centroid of the most populated MELD × MD cluster (right column) is strikingly similar 

to the native structure. The map shows that most of the contact are TP (shown in green). 

Comparing native and the MELD × MD contact map shows that the MELD × MD contacts 

are also in the right position. Metrics comparing the MELD × MD prediction with the native 

structure also show excellent agreement. MELD selected the best set of contacts.
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Figure 3. 
We can successfully rerank CP poses. The histograms show for each of the 20 systems how 

often one of the first 15 CP poses is active in the lowest 5 replicas of our MELD × MD 

simulations (i.e., the relative population of the first 15 CP poses). The red lines identify for 

each system the CP TOP15 (by LRMSD). In most cases, MELD × MD is able to 

consistently identify the best pose. 2LYJ, 1NS1, 4QR0, 2B87, and 1CFP have more than one 

good pose (LRMSD < 6.5 Å) within the first 15 predicted structures, so the MELD × MD 

populations tend to split between those.
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Figure 4. 
MELD × MD can provide better docking poses than CP. The left column show the native 

structure of the 2MMA dimer both using a 3D view and a map of the position of native 

contact on the first monomer. In the central column the CP TOP1 prediction is shown. In this 

case CP places the second monomer almost correctly; in fact from the map it is clear that 

this pose has 7 TP and 6 FP contacts. CAPRI ranks such pose as acceptable docking. MELD 

is able to use the contact of this pose for the docking process, but since we allow enough 

freedom to the system it predicts the final structure (right column) has 9 TP contacts and 

reducing the number of FP to 3 compared to native. The improvement of the CAPRI ranking 

from acceptable to medium reflects the benefit of this flexible approach.
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Figure 5. 
Failed predictions result from unconverged replica exchange or force field problems. We 

show several RMSD distributions for the four systems we fail to correctly predict (rows). 

The first column addresses the convergence of the RE protocol. Here are distributions of 

LRMSD for the 30 simulations of each RE run against a randomly selected structure from 

the simulation. The more similar are the traces, the more the RE simulation is converged. 

For 3TOE (and partially also for 1R7H) the traces vary extremely, implying a nonconverged 

RE simulation. The second column shows the RMSD distributions of the structure of the 

monomers of each dimer (receptor in gray and ligand in black) compared to their native 

bound structure. For 1R7H and 2EZX, the high ligand RMSD values (>4 Å to the right of 

the vertical red line) highlight important structural rearrangements of the second monomers 

during the simulations. Those rearrangements prevent the correct docking of the dimer. The 

last column shows the distribution of the LRMSD against native for the four systems. 1H0X 

visits the native conformation (<5 Å to the left of the vertical red line), but it is not the most 

populated state. In this case the FF/implicit solvent model combination favors another 

structure.
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