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ARTICLE

Comprehensive cell type decomposition
of circulating cell-free DNA with CelFiE
Christa Caggiano1,2, Barbara Celona 3, Fleur Garton4, Joel Mefford2, Brian L. Black 3,5, Robert Henderson6,

Catherine Lomen-Hoerth7, Andrew Dahl 8 & Noah Zaitlen 2,9✉

Circulating cell-free DNA (cfDNA) in the bloodstream originates from dying cells and is a

promising noninvasive biomarker for cell death. Here, we propose an algorithm, CelFiE, to

accurately estimate the relative abundances of cell types and tissues contributing to cfDNA

from epigenetic cfDNA sequencing. In contrast to previous work, CelFiE accommodates low

coverage data, does not require CpG site curation, and estimates contributions from multiple

unknown cell types that are not available in external reference data. In simulations, CelFiE

accurately estimates known and unknown cell type proportions from low coverage and noisy

cfDNA mixtures, including from cell types composing less than 1% of the total mixture. When

used in two clinically-relevant situations, CelFiE correctly estimates a large placenta com-

ponent in pregnant women, and an elevated skeletal muscle component in amyotrophic

lateral sclerosis (ALS) patients, consistent with the occurrence of muscle wasting typical in

these patients. Together, these results show how CelFiE could be a useful tool for biomarker

discovery and monitoring the progression of degenerative disease.
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Cells die at different rates as a function of disease state, age,
environmental exposure, and behavior1,2. A quantifiable
indication of cell death could facilitate disease diagnosis

and prognosis, prioritize patients for admission into clinical trials,
and improve evaluation of treatment efficacy and disease
progression3–6. Circulating cell-free DNA (cfDNA) is a promising
candidate biomarker as it is released into the bloodstream after
cell death7–9. In healthy individuals, cfDNA in the blood arises
from normal cell turnover, but in individuals with a disease,
cfDNA can come from illness-specific cell death10. As a result,
cfDNA levels have been shown to be elevated in individuals with
cancer, autoimmune diseases, transplantation responses, and
trauma11–14. CfDNA has also become the clinical standard for
noninvasive prenatal testing15, and many companies and research
groups are sequencing cfDNA to identify the presence of somatic
mutations related to tumors16–18.

To understand what drives the increased presence of cfDNA in
people with disease, this work focuses on the decomposition of
cfDNA in blood into its cell types of origin. While each germline
cell has nearly the same DNA sequence, DNA methylation is cell
type specific19, and there is a rich literature of complex tissue
decomposition approaches using DNA methylation20–23. Recent
work has attempted to use cfDNA methylation patterns to
decompose tissues of origin for cfDNA24–27. These approaches,
however, do not address some of the unique challenges of cfDNA.
Previous work was designed for reference and input data from
methylation chips, which are high coverage and have relatively low
noise. Since cfDNA is only present in the blood in small amounts,
an onerous amount of blood must be extracted from a patient to get
the required amount of input DNA for methylation chips, which
may not be practical for clinical use28. Other technologies and
methods focus on sensitive detection of specific tissues or cancer
sites29–31. While increasingly powerful, these approaches cannot
provide biomarker discovery or comprehensive decomposition of
constitutive cell types. In this work, we used whole genome bisulfite
sequencing (WGBS) to assess the methylation of cfDNA. Unlike
methylation arrays that target specific genomic locations, WGBS
covers the entire genome, typically resulting in lower coverage per
site, and increased noise relative to array data. Thus, WGBS pre-
sents computational challenges for decomposition of methylation
data as current computational methods are ill-equipped to handle
such noise in either the reference or input. Previous methods are
also limited by which DNA methylation sites (CpGs) are chosen.
Methylation arrays survey a limited number of CpGs, which may
not be maximally informative of cell type. Some approaches also
rely on selecting a set of CpGs designed for a particular
dataset24,26,32. While curated site selection is useful for specific
biological queries, it can cause bias when generalized to other set-
tings or diseases. Choosing which sites to include in decomposition
can substantially influence which cell types are predicted because
different sites are informative for different cell types. Another
important limitation of previous cfDNA decomposition methods is
that the results are restricted to the cell types included in the
reference panel. However, as there are many thousands of cell types
throughout the body, it is currently impossible to incorporate them
into a reference panel. Thus, the specific choice of reference cell
types will lead to biases in the decomposition results.

In this work, we develop an efficient expectation maximization
(EM) algorithm, CelFiE (CELl Free DNA Estimation via expec-
tation-maximization) for cfDNA decomposition that allows for
low coverage and noisy data and apply it in a range of challenging
real world scenarios. CelFiE can estimate unknown cell types not
included in a reference panel and is not dependent on curated
input methylation sites. We show in realistic simulations that
CelFiE can accurately estimate known and unknown cell types,
even at low coverage and with relatively few sites, and can detect

rare cell types that contribute to only a small fraction of the total
cfDNA. Decomposition of real WGBS complex mixtures
demonstrates that CelFiE is robust to several violations of the
model assumptions. Specifically, the real data contain correlations
across regions and between cell types, read counts with heavy-
tailed distributions, and reference samples that are heterogeneous
mixtures of many cell types. Additionally, we develop an
approach for unbiased CpG methylation site selection for use in
the decomposition algorithm.

We apply CelFiE to two cfDNA data sets. First, we examined
the positive control of cfDNA extracted from pregnant and
nonpregnant women. We observe a significant placental com-
ponent in the decomposition estimates only from pregnant
women, providing validation for CelFiE. We then applied CelFiE
to cfDNA from amyotrophic lateral sclerosis (ALS) patients and
age-matched controls. Currently, there are no established circu-
lating biomarkers for ALS. As a result, it is difficult to monitor
disease progression and efficiently evaluate treatment response33.
cfDNA provides an opportunity to measure cell death in ALS that
could fill these gaps. We find a significantly elevated skeletal
muscle component in ALS patients. This observation, along with
the successful decomposition of cfDNA from pregnant women,
demonstrates that CelFiE has the potential for broad translational
utility in understanding the biology of cell death, and in appli-
cations such as quantitative biomarker discovery, or in the non-
invasive monitoring and diagnosis of disease.

Results
CelFiE overview. CelFiE estimates the contribution of various cell
types to the cfDNA of an individual via an EM optimization
algorithm. The input to CelFiE is WGBS reference data consisting
of T total cell types and WGBS cfDNA samples for N total indi-
viduals. Its output is the proportion of the reference cell types that
make up each individual’s cfDNA, such that the proportion of all T
cell types sums to one for each individual. Notably, an arbitrary
number of cell types can be missing, which addresses potential
biases arising from estimating the proportions of cell types from a
restricted reference panel. CelFiE also estimates the methylation
values for each of the cell types included in the reference, which
accommodates the currently noisy and low-coverage reference data
sets. These developments are facilitated by CelFiE’s EM algorithm,
which is a flexible framework for parameter estimation, even when
there is missing data. Complete details on CelFiE can be found in
the “Methods” section and Supplementary Note.

Evaluation using simulated cfDNA mixtures. We began by
simulating cfDNA mixtures informed by realistic sequencing
conditions and comparing the results of CelFiE and other
decomposition tools. First, we compared CelFiE to a least-squares
regression optimization method. Least-squares regression is a
popular choice for decomposition problems, but is not guaran-
teed to produce an estimate of cell type proportions that sums to
one. To compare CelFiE to a constrained optimization method,
we implemented a second optimization method referred to here
as the “projection method”. In this approach, we computed the
projection of the cell-type proportion estimates onto the L1-
ball34, which constrained the estimates of cell-type proportions to
lie on the probability simplex and thus, sum to one. Furthermore,
in our projection approach, we optimize a binomial log-likelihood
that is parameterized by the number of methylated and unme-
thylated reads. By accounting for read data, this method is a more
direct comparison to CelFiE (see the “Methods” section for
implementation details).

We also compared CelFiE to a previously published cfDNA
decomposition tool, MethAtas25. Unlike CelFiE, which explicitly
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models WGBS reads, MethAtlas is designed to decompose
methylation array data. MethAtlas also does not model missing
data or estimate the methylation values for the reference cell
types. Briefly, it optimizes ∥Yα−β∥ using nonnegative least
squares constrained by α ≥ 0, where Y is a reference matrix of
array data, β is the observed cfDNA methylation measured on an
array, and α is the cell type proportions vector that is being solved
for. While MethAtlas is not designed for low read count data and
thus not directly analogous to CelFiE, it is, to the best of our
knowledge, the only other cfDNA decomposition algorithm that
allows the inclusion of arbitrary input sites and does not restrict
to specific cell types in the reference data.

MethAtlas provides a comprehensive reference matrix, com-
posed of 25 tissues and cell types, over ~6000 CpG loci35. To
ensure a fair comparison, we simulated data that matched the size
of this reference data with 25 cell types and 6000 CpGs. The true
methylation proportion of each CpG was drawn independently
from a uniform distribution, so that the methylation of each CpG
was between 0% and 100%. The choice of a uniform distribution
allowed for variability across cell types for a given CpG. To
characterize the decomposition performance of CelFiE across
both rare and abundant cell types, we defined the true cell type
proportion vector as (1, ..., T)/ 0:0ptT þ 12

� �
, where T= 25 is the

number of cell types truly in the mixture.
For CelFiE and projection method, the input data were the

number of methylated reads and read depth at each site. The
reference read depths were drawn independently from a Poisson
distribution centered at 10, a relatively low sequencing depth for a
WGBS experiment36. The number of methylated reads for a given
CpG in each of the 25 cell types was drawn from a binomial
distribution, where the probability of success was the true
methylation value in that cell type, and the number of trials was
the read depth at that locus. cfDNA read depths for each CpG were
simulated from a Poisson distribution centered at 10, and then the
reads for each CpG were assigned to originate from a cell type based
on the cell type proportion vector for the cfDNA mixture. A read
was determined to be either methylated or unmethylated given the
true methylation proportion in that read’s cell type of origin at that
CpG. Since MethAtlas and least-squares regression do not take read
counts as input, we calculated the methylation proportion for a
CpG by dividing the methylated reads by the depth at that locus.
While these methods were not designed for read count data, by
doing this we were able to compare MethAtlas, least-squares
regression, and CelFiE on the same data. Additionally, to compare
the least-squares regression estimates to the proportions produced
by the other methods, we divided the vector of estimates produced
by least-squares regression by its sum. In total, we performed 50
independent simulations for CelFiE and all comparison methods.
Below, we consider additional simulations from real data, which are
free from the distributional assumptions above.

CelFiE performed better than MethAtlas at these low-read
depths (Fig. 1). Per each simulation, we calculated Pearson’s
correlation between the true cell type proportion vector and the
estimated proportions vector. For MethAtlas, the mean r2 across
replicates was 0.59 ± 0.17, while CelFiE’s mean r2 was 0.96 ± 0.01.
As expected, CelFiE also performed better than linear least-
squares regression, which had a mean r2 of 0.73 ± 0.11 (Fig. S1A).
CelFiE and the projection optimization method (mean r2= 0.95
± 0.02) performed similarly under these conditions (Fig. S1B).
However, a major limitation of our projection optimization
method is that, unlike CelFiE, it is unable to estimate missing cell
types, which we discuss further below.

To further characterize the properties of CelFiE, we varied the
number of CpGs (100, 1000, and 10,000), which represented
conditions with varying amounts of information about cell type.

We then focused on a single cell type and varied its proportion
between 0% and 100%. In total, we simulated 10 cell types, where
one cell type was fixed. The remaining 9 additional cell type
proportions were drawn from an independent uniform distribu-
tion and then normalized so that all proportions sum to one. Data
were simulated for 1 individual with 50 independent simulations.

Performance was assessed by calculating the Pearson’s
correlation between the estimated cell-type proportions and the
true proportions for 50 replicates. We found that as the number
of sites increased, the ability of CelFiE to accurately decompose
the cfDNA mixtures improved (Fig. 2a), especially for less
abundant cell types. We further characterized the performance of
CelFiE by calculating the correlation between the estimated
methylation proportions of the fixed cell type with the true
methylation proportions when the reference and input data were
at 1×, 5×, 10×, or 100× coverage (Fig. 2b). At the very low depth
of 1×, the mean Pearson’s correlation was r2= 0.45 ± 0.09, which
increased substantially at 5× coverage to r2= 0.83 ± 0.03. As the
sequencing depth increased, the correlation continued to increase.

Next, we examined the performance of CelFiE when two cell
types with highly correlated methylation values were included in
the reference panel, since many real cell types share substantial
architecture with each other. We generated simulated methyla-
tion proportions for the two cell types with a Pearson’s
correlation between 0 and 1 at 100× depth and ran CelFiE for
mixtures of 1000 CpG sites. When the cell types are very
correlated, we found that CelFiE is unable to distinguish between
the two cell types. As the cell types become less related, CelFiE
improved in its ability to disambiguate the two cell types (Fig. S2).
We note, however, that CelFiE accurately estimates the sum of the
two cell types, even when they are perfectly correlated.

Detection of differences between groups. Previous work sug-
gests that a large portion of cfDNA originates from white blood
cells24. This implies that a non-hematopoietic cell type of clinical
significance may only be present in a population of interest at a
low proportion in the mixture. To assess the ability of CelFiE to
estimate rare cell types, we simulated data to resemble a small
case-control study of 10 total individuals. Five individuals with a
low proportion of a single cell type (0.1%, 0.5%, 1%, or 5%) were
simulated to represent the cases. The remaining 5 individuals
were simulated to have 0% of that cell type, representing the
controls. To understand how CelFiE’s ability to estimate rare cell
types changes as a function of sequencing depth, we simulated
input and reference reads at 5×, 10×, 100×, and 1000× coverage
for 1000 CpGs. We ran CelFiE jointly on all 10 individuals to
prevent bias and assessed whether CelFiE can meaningfully dis-
criminate between the two groups.

We plotted the CelFiE estimates for individuals whose cfDNA
mixtures do and do not have that rare cell type (Fig. 3A–D). We
found that as both the depth and the cell-type proportion
increased, CelFiE’s ability to distinguish between the two groups
improved. A grouped t-test was used to assess whether CelFiE is
estimating a significant difference between the groups. At a depth
of 5×, CelFiE was only able to distinguish between the groups of
the most abundant fixed cell type, 5%, with an average estimate of
0.041 ± 0.018 in the group with the cell type and 2.51 × 10−3 ±
4.71 × 10−3 in the group without. Despite the estimates being
slightly underestimated, this difference was significantly different
between the groups (p= 4.8 × 10−8), suggesting that CelFiE may
have utility in detecting differences between groups even at
extremely low depths. As the depth increased to 1000×, CelFiE
significantly differentiated between all four fixed percentages (p <
0.001) and the estimates became more confident. We found that
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as we continued to increase the depth, CelFiE was able to detect
arbitrarily small differences between the groups (at 10,000× and
0.01%, p= 8.32 × 10−9). In practice, however, the ability of
CelFiE to detect these minute differences is limited by biological
and technical constraints, such as the amount of cfDNA in blood
or DNA degraded by bisulfite conversion. Nonetheless, these
results demonstrate that CelFiE can accurately estimate cell types
of relatively rare abundance when the read depth is high.

Unknown cell types. We then turned to understand the behavior
of CelFiE when estimating unknown cell types. To accomplish
this, we simulated data with low read counts, creating reference
and cfDNA reads for 1000 CpGs at 10× depth, as in previous
simulations. We simulated t= 10 cell types with one unknown
cell type excluded from the reference data. We began by simu-
lating a missing component that was relatively large. Its pro-
portion, αunknown, was drawn as αunknown � N ð0:2; 0:1Þ and
truncated to be between 0 and 1. The remaining cell type pro-
portions of the known cell types were drawn from a uniform
distribution and all proportions were normalized to sum to 1. We
then simulated cfDNA reads for 10, 50, 100, 500, and 1000
individuals. Note that the problem is not identifiable when the
number of individuals is smaller than the number of unknowns.

The mean squared error (MSE) was calculated between the esti-
mated unknown proportion and the true simulated proportion.
As the number of people included in the decomposition was
increased, the performance of CelFiE improved (Fig. 4a).

We next considered mixtures with two unknown cell types, one
that was relatively large and one that was relatively small. For
each person, the first unknown proportion, αunknown1, was drawn
from αunknown1 � N ð0:2; 0:1Þ, and the second unknown was
drawn from αunknown2 � N ð0:1; 0:1Þ. The proportions of the
remaining cell types were simulated as above. Since the inferred
CelFiE labels are not identified (i.e., CelFiE’s estimated αunknown1
can correspond to either missing reference cell type 1 or 2), we
assigned the unknowns by examining the estimated methylation
fractions of each CpG. We estimated the correlation between the
true and unknown methylation fractions and assigned the
unknown to the true cell type with the highest correlation. After
assigning the unknowns, we calculated the MSE between the true
proportion and the estimated proportion. Furthermore, we
calculated the Pearson’s correlation between the true and
estimated methylation fractions for each unknown (Fig. S3).
We observed that more individuals are needed to accurately
estimate the unknown components when an additional unknown
was added (Fig. 4b). We also noted the presence of outliers in the

Fig. 1 Decomposition of simulated cfDNA mixtures by CelFiE (A) and MethAtlas (B). 50 replications for a single simulated individual were performed,
and the estimated mixing proportions were plotted (light blue and dark blue boxes, respectively). The red dots indicate the true cell type proportion for
each simulated tissue. The center line of the box indicates the mean, the outer edges of the box indicate the upper and lower quartiles, and the whiskers
indicate the maxima and minima of the distribution.

Fig. 2 The performance of CelFiE on simulated mixtures. First, a cell type is fixed at a proportion between 0% and 100%, and reads are simulated for 100
(light blue line), 1000 (dark blue line), and 10,000 (black line) CpG sites at 10× depth (a). The Pearson’s correlation between the true and estimated cell-
type proportion is plotted. Solid lines indicate the mean and the shading around the line indicates a 95% confidence interval. On (b) the average Pearson’s
correlation between the true methylation values for the fixed tissues and the CelFiE estimated methylation values for 1000 sites simulated with 1×, 5×, 10×,
and 100× depths (light blue boxes). The center of the boxplot indicates the mean of the distribution, the edges of the box indicate the upper and lower
quartiles, and the edge of the whiskers indicate the maxima and minima of the distribution. Data is shown for 50 independent simulations of one individual.
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estimates, which was likely due to differences in the simulated
data that were randomly drawn in each replicate of our
experiment.

We next examined how decomposition estimates are biased
when there is a missing cell type, but no unknown is estimated.
We generated simulated mixtures as above, for 1000 CpGs and 10
cell types truly in the reference, and for 100 people at 100× depth.
CelFiE was ran twice: once when the missing cell type was the
highest tissue in the mixture (~20%) and secondly, when the
missing cell type was approximately the average of all cell types
contained in the mixture (~10%). (Fig. S5). To measure the bias
of the estimates, we calculated the percent difference, defined as
the true cell type proportion minus the estimate, divided by the
true proportion. When the missing cell type was high, the average
percent difference across all tissues was 0.32 ± 0.86. This meant
that on average, without estimating the unknown, CelFiE
produced cell type proportion estimates that were 32% higher
than the truth. Likewise, when the missing cell type was lower, the

average percent difference decreased to 0.21 ± 0.69, likely because
there was less missing signal to be distributed across the cell types
actually estimated. When there was an unknown included in
CelFiE, the overestimate on average, decreased to −0.02 ± 0.62
and −0.11 ± 0.40, respectively. This result indicated that the
larger the missing cell type, the more biased the cfDNA
decomposition estimates will be without an unknown compo-
nent, which may demonstrate the utility of CelFiE.

CelFiE’s ability to accurately estimate unknowns contrasts with
previous cfDNA decomposition methods, which can only
estimate proportions of cell types in the reference. This creates
a bias in the decomposition that can be addressed with CelFiE.
Specifically, if we simulate cfDNA mixtures with a cell type
excluded from the reference as above and run MethAtlas, it will
produce biased estimates. On average, these estimates had an
average percent difference that was 29 ± 68% larger than the true
proportions (excluding the missing cell type, which was not
estimated). We found similar biases in our least-squares

Fig. 3 Cell type proportion estimates for n= 5 simulated individuals (dark blue boxes) with a cell type of interest and n= 5 individuals without that
cell type (light blue boxes). Cell type proportions are simulated at (a) 0.1% (two-sided grouped t-test; 5×: n.s., 10×: n.s, 100×: n.s., 1000×: p= 3.5 × 10−5),
(b) 0.5% (two-sided grouped t-test; 5×: n.s., 10×: p= 0.013, 100×: 2.1 × 10−6, 1000×: p= 5.7 × 10−11), (c) 1% (two-sided grouped t-test; 5×: n.s., 10×: p=
1.5 × 10−3, 100×: 2.8 × 10−9, 1000×: p= 4.3 × 10−12), or (d) 5% (two-sided grouped t-test; 5×: 4.8 × 10−8, 10×: p=5.4 × 10−9, 100×: 1.8 × 10−14, 1000×:
p < 2.0 × 10−16). The true fixed percentage of the cases is indicated by a red dotted line. Significant differences between the groups are indicated by *(p <
0.05), **(p < 0.01), and ***(p < 0.001). The centerline of the box indicates the mean, the outer edges of the box indicate the upper and lower quartiles, and
the whiskers indicate the maxima and minima of the distribution. Data is shown for 50 independent simulations.
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regression method, which on average, overestimated by 29 ± 20%,
and in our projection method, which on average, overestimated
by 17 ± 57% (Fig. S4). The difference in performance between
CelFiE and comparison methods is more similar at high read
depths and when all cell types are known (Fig. S6).

Performance on WGBS cfDNA mixtures. We next considered
simulated mixtures made from real WGBS data, which are sub-
stantially more complex and violate several assumptions of the
CelFiE algorithm. In particular, the reference data contain tissues
composed of multiple cell types, CpGs are correlated locally
across genomic regions and between cell types, and read counts
have heavy-tailed distributions reflecting true biological and
technical heterogeneity across sites. Therefore, to examine how
robust CelFiE is to these complications, we used biological
replicates for 10 WGBS data sets (small intestine, pancreas,
monocytes, stomach, tibial nerve, macrophages, memory B cells,
adipose, neutrophils, and CD4+ T cells), downloaded from the
ENCODE and BLUEPRINT projects37–40. In all experiments, we
chose to include tissues to see if their complex cell type mixtures
might contribute to decomposition errors. One set of WGBS
biological replicates was assigned to make up the cfDNA mix-
tures; the other was assigned to the reference matrix.

Since roughly 80% of CpG sites in the human genome do not
vary between cell types41, randomly selected CpGs will contain
mostly uninformative loci for cell-type decomposition. A
reference panel that contains too many uninformative CpGs will
reduce the performance of a decomposition algorithm. To
demonstrate this, we simulated data for 100, 1000, and 10,000
CpGs, where the true methylation values for 10 cell types were
drawn from a normal distribution centered on 0.5. The variance
across cell types was chosen to be between 0.01 and 1. The lower
the variance, the less informative a CpG would be for cell type
status. A cfDNA mixture for one individual and no missing cell
types was simulated. The results of this experiment indicated that
as the variance increased, CelFiE’s ability to decompose the
mixtures also increased (Fig. S7). Therefore, to limit uninforma-
tive CpGs included in our analysis, we developed a method for
choosing a set of unbiased informative CpGs in real data, which
we called tissue informative markers (TIMs) (see the “Methods”
section). We selected 100 TIMs per WGBS sample for use in these
simulations, excluding common variants with a minor allele
frequency >1%42. Selecting TIMs improved performance in
CelFiE decomposition (Fig. S8). Furthermore, because DNA
methylation of nearby CpGs are correlated43, we combined

information from proximal CpG sites 250bp upstream and
downstream of each TIM (see the “Methods” section). These
combined TIM regions improved the decomposition over single
CpGs (Fig. S9). We simulated cell type proportions 50 times for
100 people. The proportion of CD4+ T cells was drawn from a
normal distribution centered around 20% and the proportion of
small intestine was centered around 10%. The remaining cell
types proportions were drawn per person from a random uniform
distribution.

We first assessed CelFiE’s performance on WGBS samples
without any cell type missing from the reference panel (Fig. 5a).
Despite the complexity of the data, we found that CelFiE still
performed well. The average Pearson’s correlation between the
estimated cell type proportions and true cell type proportions was
r2= 0.83 ± 0.16. The average Pearson’s correlation of the
estimated methylation values and the true methylation values
was similarly high, with an average r2 of 0.96 ± 0.01 (Fig. S10A).
For comparison, we adapted MethAtlas for whole-genome data.
We used our selected TIMs and converted the read counts to
proportions. Pearson’s correlation between the estimated methy-
lation proportions and true proportions for MethAtlas was lower
than that of CelFiE, 0.43 ± 0.24, which further illustrated that
MethAtlas is not suitable for noisy read count data.

Next, we investigated CelFiE’s ability to estimate mixtures with
a substantial unknown component. We first masked only the
most abundant cell type from the reference, the CD4+ T cell
sample. Using the same true cell type proportions as in the
simulations with no missing samples, we performed 50 simula-
tions with 100 people (Fig. 5b). The correlation between the
estimated and true cell type proportions decreased only slightly in
the case of no missing data, r2= 0.8 ± 0.16, and we found that the
correlation to the true methylation values was still high, with an
average Pearson’s r2= 0.96 ± 0.01 across all cell types (Fig. S10B).
Subsequently, we masked two reference samples, CD4+ T cell
and small intestine, from the reference panel. The true CD4+ T
cell proportion was still centered around 20%, while the small
intestine was centered around 10%. We found that CelFiE’s
ability to successfully decompose a complex mixture decreased
when there are two missing cell types (Fig. 5c). However, the
estimated correlation to the true WGBS methylation values
remained high, with an average Pearson’s r2= 0.95 ± 0.04 (Figs. 5c
and S10C).

To further validate CelFiE’s ability to estimate missing cell
types, we assessed how similar the learned methylation propor-
tions for the missing cell types are to the true methylation

Fig. 4 Decomposition results for 50 independent simulations of cfDNA mixtures with missing cell types in the reference. We simulate cfDNA for 10,
50, 100, 500, and 1000 people, and exclude one cell type truly in the mixture at 20% (light blue) (a) or two cell types (b), one in the mixture at a mean
proportion of 20% (light blue), and the other at 10% (dark blue). We calculate the MSE between the true unknown proportion and the CelFiE estimate for
50 simulation experiments. The 95% confidence interval is indicated by the light and dark blue shading.
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proportions for CD4+ T cells and the small intestine. To do this,
we appended the methylation proportions learned by CelFiE for
the two unknown cell types to the matrix of true reference
methylation proportions, including the values for T cells and
small intestine that were originally masked. We calculated a
distance matrix for the reference matrix plus unknowns and used
this to perform hierarchical clustering. Figure 6 shows that the
unknown cell types were segregated with their true cell type. For
the case of one unknown, the unknown that was truly T cell
clusters with the reference T cell sample. Furthermore, the
average Pearson’s correlation between the learned unknown cell
type methylation proportions and the reference T cell methyla-
tion proportions was higher than all other cell types, r2= 0.95,
suggesting that CelFiE learned the correct cell type for one
unknown. For the two unknown cell types, unknown 1 remained
clustered with the reference CD4+ T cell sample and had a high
correlation with the reference CD4+ T cell methylation patterns,
r2= 0.94. Unknown 2 clustered with the reference small intestine
sample along with other gastrointestinal issues. The correlation
between the estimated and true small intestine methylation values
was the highest of all pairings, r2= 0.87. Together with the data

presented in Fig. 5b, these observations suggest that even with an
incomplete reference, CelFiE estimates both the correct cell type
proportion and cell type methylation values.

Application to pregnancy. To validate CelFiE, we first choose to
analyze cfDNA from pregnant and non-pregnant females since
these populations provide a robust example of a verifiable positive
and a control group44. Unlike the decomposition of cell types in
blood, there is no FACS or similar existing standard for cfDNA.
Nonetheless, we know a priori that non-pregnant women will not
have placenta cfDNA in their bloodstream.

To test CelFiE in pregnant and non-pregnant women, we
downloaded publicly available WGBS cfDNA of 7 pregnant and 8
non-pregnant women45. All women were between 11 and
25 weeks gestation at the time of cfDNA extraction. Next, we
subset the WGBS sites to the same TIMs we use in the previous
section and summed all reads ±250 bp around each TIM (see the
“Methods” section). Twenty WGBS datasets from the ENCODE
and BLUEPRINT projects were chosen for the reference panel,
representing tissues and cell types throughout the body and
blood, along with one unknown category. The decomposition

Fig. 5 CelFiE cell type proportion estimates for a randomly selected individual’s real WGBS cfDNA over 50 simulation experiments. The blue boxes
represent estimates of the true cell type composition (red dots) for 100 individuals in 50 simulation experiments in the scenario where there are no missing
cell types (a), when CD4+ T cells are a missing cell type (indicated by blue shading) (b) and when CD4+ T cell and small intestine are both missing (c).
The center line of the boxplot indicates the mean, the outer edges of the box indicate the upper and lower quartiles, and the whiskers indicate the maxima
and minima of the distribution.

Fig. 6 Hierarchical clustering of the CelFiE methylation proportion estimates for (a) one unknown and (b) 2 unknowns with the true WGBS
methylation proportions. The shaded blue box indicates the unknown tissue. The light blue, dark blue, and black colors indicate clusters of tissues detected
by the hierarchical clustering algorithm.
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result is the random restart with the highest log-likelihood of 10
total restarts.

CelFiE estimated a high proportion of white blood cells
(dendritic cells, eosinophils, monocytes, neutrophils, etc.), con-
sistent with previous estimates based on cfDNA and our
expectation that blood cells have high rates of cell turnover25,46.
CelFiE detected a small proportion of cfDNA coming from
gastrointestinal tissues, such as the small intestine or stomach,
which may also be due to the relatively high cell shedding in these
tissues47. We used a single unknown cell type component and we
estimated that it is large, with a mean of 0.31 ± 0.04 in non-
pregnant women and a mean of 0.25 ± 0.06 in pregnant women
(Fig. 7a). To better understand which tissues and cell types are
driving the unknown component, we performed hierarchical
clustering on the estimated methylation values for the unknown
component with the methylation values for the known cell types
contained in the reference panel (Fig. S11). We found that it
clustered most closely with endothelial cells. This suggests that as
reference panels improve, there is additional biological insight
that may be gained by using CelFiE.

To evaluate which cell types differ the most between pregnancy
states, we performed grouped two-sample t-tests of inferred cell
type proportions. As expected, placenta showed the greatest
difference, ranging from 9.3% to 29.7% (median 11.9%), and
2.9 × 10−16 to 2.1 × 10−2 (median 2.3 × 10−12) in pregnant and
non-pregnant women, respectively (two-sided grouped t-test, p=
4.5 × 10−5). We also found that CelFiE estimated a higher
placental component in the second trimester (median 11.2% in
trimester 1 and median 15.3% in trimester 2), concordant with
the growth of the placenta throughout pregnancy (Fig. 7b). This is
also consistent with previous estimates of the proportion of
placental DNA in the cfDNA of pregnant women (median 15.3%
in trimester 1/2)48. We restricted statistical tests to the relevant
tissue, in this case the placenta, but estimates are provided for all
tissues and cell types in Fig. 7.

To further validate our method, we compared CelFiE
predictions with those from our WGBS adaption of MethAtlas,
least-squares regression, and our projection method (Fig.
S12A–C). While these methods are not explicitly designed to be
ran on WGBS data, all three methods estimated a higher
proportion of placental cfDNA in pregnant women than in non-
pregnant women, as we expected (Supplementary Table S1).
Least-squares regression, however, produced negative estimates,
suggesting that this method is unsuitable for real data applica-
tions. Furthermore, all three methods estimated proportions of

blood cell types that may be inconsistent with known cell-type
proportions in whole blood. For example, all methods estimated a
large erythroblast component, on average about 24%. This was
higher than expected since nucleated red blood cells are generally
rarer than white blood cells in the blood49. Furthermore, white
blood cells, such as neutrophils, have a much higher turnover
rate, making them more likely to appear in cfDNA50. While the
high proportion of erythroblasts may indicate the presence of a
red blood cell precursor not captured by the current reference
panel, it may also be a consequence of a bias introduced by
missing tissues in the reference panel. For instance, CelFiE ran
with an unknown component on the same data estimated an
erythroblast proportion of 0.073 ± 0.052. When CelFiE was ran
without an unknown component (Fig. S12D), the erythroblast
proportion increased to 0.29 ± 0.11. This could suggest that, as
seen in Fig. S5, decomposition estimates without unknown
components may cause overestimation of other cell types in the
mixture.

Application to ALS. Lastly, we examined cfDNA in ALS patients
and age-matched controls (see the “Methods” section). ALS
patients represented a range of disease severity and onset sites.
We first examined the overall abundance of cfDNA in cases (n=
28, mean 297.72 ± 110.57 pg/ul) and controls (n= 25, mean
218.78 ± 139.17 pg/ul). We observed a significant excess in cases
(Fig. 8a, p= 5.00 × 10−3), but it was unknown what tissue or
tissues are responsible for this increase. To explore possible
overrepresented tissues in ALS cfDNA, we applied CelFiE first to
a discovery cohort composed of 8 controls and 8 cases from both
the University of Queensland and UCSF (Fig. S13A). As with the
pregnancy cfDNA, we confined the WGBS data to TIM sites and
then summed ±250 bp around the TIMs. We decomposed all
mixtures using the same reference tissues as in the pregnancy
decomposition, and one unknown. We restricted statistical tests
to two biologically relevant tissues for ALS: skeletal muscle and
tibial nerve. Notably, we found a difference in the estimated
skeletal muscle proportions, specifically finding an excess in cases
relative to controls (p= 5.02 × 10−2) (Fig. S14A).

We validated this difference with an independent replication of
8 cases and 8 controls from University of California San Francisco
(UCSF) for which WGBS was performed. As expected, we found
that the mixture was composed largely of blood cells (Fig. S13B),
with the top 5 tissues by proportion being neutrophils,
monocytes, macrophages, eosinophils, and erythroblasts. In
addition, CelFiE estimated a large unknown component, with a

Fig. 7 Decomposition estimates for cfDNA derived from pregnant women and non-pregnant controls. a CelFiE decomposition estimates for independent
samples of n= 8 non-pregnant (light blue) and n= 7 pregnant women (dark blue). b CelFiE placenta estimates for n= 3 pregnant women in the first
trimester and n= 4 women in the second trimester. In all cases, the center line of the boxplot indicates the mean, the outer edges of the box indicate the
upper and lower quartiles, and the whiskers indicate the maxima and minima of the distribution.
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mean proportion of 0.42 ± 0.11 for ALS cases and 0.30 ± 0.19 for
control samples. This large unknown component did not cluster
closely with any cell type or tissue contained in our reference
panel when we applied hierarchical clustering on the CelFiE
estimate of the unknown methylation values (Fig. S15), which
could indicate that CelFiE captured a substantial signal not
captured by other methods. Furthermore, we replicated the
significantly higher skeletal muscle component in ALS cases, with
a mean muscle proportion of 0.057 ± 0.06, while CelFiE estimated
an average proportion of 8.9 × 10−4 ± 1.3 × 10−3 in cases
(grouped t-test p= 7.8 × 10−3) (Fig. S14B). CelFie ran on the
combined data (Fig. S13C), estimated a mean proportion of
0.038 ± 0.020 in ALS samples and 1.7 × 10−3 ± 2.6 × 10−3 in
controls (grouped t-test p= 2.4 × 10−3) (Fig. 8b).

Finally, we ran least-squares regression, our projection method,
and MethAtlas on our combined ALS cfDNA data (Fig. S16). As
in Fig. S12, we found that these methods estimated higher
proportions of erythroblasts than CelFiE, and that least-squares
regression produced negative estimates. We did find, however,
that all three methods recapitulated our finding of a higher
proportion of skeletal muscle in ALS patients (Supplemen-
tary Table S2). While these differences are similar in magnitude
to those from CelFiE, they are less significant (least squares: p=
0.019; projection method: p= 0.026; MethAtlas: p= 0.012),
possibly due to the higher error in these methods.

Together, these results suggest that cfDNA is a promising
direction to identify the first quantitative biomarker for muscle
atrophy and death that is a hallmark of ALS.

Discussion
During disease or increased cell turnover, elevated levels of
cfDNA can be detected in the blood. For example, increases in the
amount of cfDNA have been detected in patients with multiple
types of cancer, autoimmune diseases, as well as acute episodes of
myocardial infarction, trauma, transplantation response, and
exercise51–53. Correspondingly, the utility of cfDNA as a diag-
nostic biomarker has been demonstrated in an increasing number
of settings, including prenatal testing54 and the detection of
tumor-specific mutations55,56. Of great interest, however, is that
assessments of cfDNA can now also provide information about
cfDNA cellular origin24–27. This type of qualitative and quanti-
tative assessment presents an individualized, unbiased approach
to understanding cellular turnover over time. However, these
technologies are nascent, noisy, and expensive.

In this work, we presented an algorithm, CelFiE, to decompose
complex cfDNA mixtures into their cell types of origin. CelFiE
can accurately decompose cfDNA mixtures with low sequencing

coverage in both the reference cell types and the patient cfDNA
samples. We also showed that CelFiE could estimate cell type
proportions using relatively few sites, and that its performance
improves as more tissue informative sites are selected. This could
indicate CelFiE’s utility in methylation capture panel develop-
ment, where highly informative sites are selected and sequenced
to high depth57. Furthermore, as cohort sizes are expanded, it can
accurately estimate multiple unknown cell types, which reduces
bias and increases confidence in the decomposition. Finally, the
EM algorithm underlying CelFiE is computationally efficient,
with iteration cost scaling linearly with the number of samples,
CpG sites, and cell types.

We began by validating CelFiE extensively in simulations. In
the context of simulated low read-count methylation data, CelFiE
outperformed linear least-squares regression, our L1-projection
method, and MethAtlas, another cfDNA decomposition method.
Since these methods are not explicitly designed for this data
regime, CelFiE’s improvements may make it a useful addition to
the tools available to cfDNA researchers. To further demonstrate
the accuracy of CelFiE, we applied it to real data from pregnant
women. Decomposition estimates of placenta from pregnant
women were significantly different from non-pregnant women.
This provided a natural validation for CelFie, illustrating that it
can correctly learn differences in cfDNA cell type of origin, even
in real data sets.

In our study of ALS patients, we found that cfDNA levels are
increased in ALS cases compared to controls. To understand what
cell types are driving this difference, we applied CelFiE to the
cfDNA samples, finding significantly higher skeletal muscle in
patients with ALS. Future work will expand on this result by
expanding the cohort size, and by testing for associations between
cell type of origin and disease progression or severity. We may
also test for associations between decomposition estimates and
disease onset site. Furthermore, as cohort sizes expand, we will
have the power to estimate multiple unknown categories. These
multiple unknown categories could be used to further subtype
ALS cases. We consider the current results, a promising step
forward, especially as ALS currently has no reliable biomarker.
These results also suggest that CelFiE might prove useful for
quantifying cell death in other complex diseases.

The accuracy of CelFiE depends on several factors including
read depth, the cell-type specificity of the sites considered, the
abundance of key cell types, and the quantity and quality of
reference data and cfDNA patient samples. Recent technologies
for digesting or capturing specific regions of cfDNA58, may allow
deeper sequencing of informative CpGs. Selecting such TIM
CpGs demonstrated marked improvement in accuracy and could
be used to select sites for capture.

Fig. 8 CfDNA concentration and decomposition estimates for ALS patients and age-matched controls. a CfDNA concentrations for n= 28 independent
cases and n= 25 independent controls and b CelFiE skeletal muscle estimates for n= 16 ALS patients (light blue) and n= 16 controls (dark blue) from both
UCSF and University of Queensland. In both panels, the center line of the boxplot indicates the mean, the outer edges of the box indicate the upper and
lower quartiles, and the whiskers indicate the maxima and minima of the distribution.
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There are a number of areas for improvement. Many of the
reference samples used here were complex mixtures of cell types
and could be modeled as such, similar to the recent approach,
FEAST59, which modeled reference mixtures of microbial com-
munities. Moreover, WGBS simulation results showed a high
degree of correlation between replicates, but we believe modeling
inter-person heterogeneity will likely improve the results further
in real cfDNA samples. We currently account for the local cor-
relation of CpG methylation by summing proximal CpG
methylation states, but nearby CpGs may not always convey
identical cell type information. Future work could also focus on
modeling the relationship between cell types and tissues. For
example, since cell types are correlated in their methylation
profiles, it could be interesting to consider a hierarchical model in
which the composition can be considered at different levels of cell
type phylogeny60. This may help us gain additional power to
identify samples, particularly highly similar cell types or tissues.
Finally, the addition of non-CpG methylation and cfDNA frag-
ment length may provide additional sources of information about
cell types of origin.

In summary, we present CelFiE, an efficient EM algorithm for
decomposing cfDNA mixtures into their cell type of origin, even
when the data are low count or noisy. CelFiE can additionally
robustly estimate both known and unknown cell types in cfDNA.
Overall, our work demonstrates that CelFiE could be a useful tool
for quantifying cell death, applicable to biomarker discovery and
disease monitoring.

Methods
CelFiE overview. We assume that we are provided with a bisulfite sequenced
reference data set, composed of T cell types indexed by t, atM CpG sites indexed by
m. Bisulfite sequencing produces read counts from specific cell types that we collect
in two T ×M matrices: Y and DY, where, Ytm and DY

tm are the number of methy-
lated and total reads at CpG m, respectively, in reference cell type t. Together, these
two matrices represent the reference cfDNA data.

We are also provided with cfDNA extracted from N individuals indexed by n.
The bisulfite sequencing read counts of the cfDNA are given in two N ×Mmatrices
X and DX, with Xnm and DX

nm giving the number of methylated and total reads at
CpG m in the cfDNA from individual n, respectively. These two matrices represent
the sample cfDNA data.

CelFiE takes as input the matrices Y, DY, Xnm, and DX
nm , and then outputs a

matrix α, where αnt is the fraction of the cfDNA in person n that originated from
cell type t.

Model. We model the cfDNA as a mixture of DNA from cell types in the reference
panel and, potentially, unknown cell types absent from the reference panel. We
assume that the individuals are independent given the true, unknown methylation
proportions of each cell type, and the individual-specific cell type proportions.

We assume that reference data are drawn from a binomial distribution:

YtmjDY
tm; βtm �iid Binomial ðDY

tm; βtmÞ ð1Þ

where βtm∈ [0, 1] is the true, unknown proportion of DNA in a cell type that is
methylated at position m. This model assumes no intra-cell type heterogeneity, in
the sense that each cell in a cell type has identical methylation probability.

Next, we model the samples in the cfDNA data. We assume each cfDNA read is
drawn from some cell type t at some marker m, and in turn that its methylation
value is drawn from a Bernoulli distribution governed solely by the methylation
proportion in the cell type of origin:

xnmcjβ;Znmc ¼ t �iid Bernoulli ðβtmÞ ð2Þ

where xnmc is the methylation status of the c-th read from sample n at position m,
and Znmc= t indicates that t is the cell type of origin for this read. For each person
and methylation site, we define the total number of methylated reads as

Xnm :¼ ∑DX
nm

c¼1 xnmc. This simply sums the methylation status over all reads for each
person at each site. In the special case where DX

nm ¼ 0, we define Xnm= 0.
Finally, we assume that the cell type of origin of each cfDNA molecule is drawn

independently from some individual-specific multinomial distribution:

Znmcjαn �iid Multinomial ðαn1; ¼ ; αnTÞ ð3Þ

where αnt is the probability that a read from person n comes from cell type t.

EM algorithm for one cfDNA sample. For simplicity, we first describe CelFiE in
the case where the cfDNA data set contains only a single person, meaning the
decomposition relies almost exclusively on the reference panel. We then explain
how CelFiE can jointly model multiple individuals in the cfDNA data, as well as
how and why this enables the estimation of unknown cell types. Full details of both
algorithm derivations are given in the Supplement.

Formally, assume there is only one sample in the cfDNA data (i.e. N= 1). We
define ztmc as a binary indicator for whether read c at CpG m for the single cfDNA
individual originates from cell type t. In relation to Z above, ztmc= 1 if Z1mc= t,
and otherwise 0. That is, Z1mc is a categorical variable, and ztmc indicates which
value Z1mc takes.

To calculate the full data likelihood, P(x, z, Y∣α, β), we first factorize it into P(x,
Y∣z, α, β) ⋅ P(z∣α, β). This then simplifies into three components:

Pðx; z;Yjα; βÞ ¼ Pðxjz; βÞPðzjαÞPðYjβÞ ð4Þ
The first component defines the probability of the cfDNA reads, given which

cell type they come from and the methylation proportions of those cell types. The
third component analogously defines the probability of drawing the reference
reads. The second component describes the probability of observing a specific cell
type in the cfDNA, which is determined by the proportion of each cell type in the
individual’s cfDNA.

We show in the supplement that the resulting log-likelihood is equivalent to:

∑
t;m;c

ztmc xmclog βtm
� �þ ð1� xmcÞlog 1� βtm

� �� �þ ∑
t;m;c

ztmclog αt

þ∑
t;m

Ytmlog βtm þ ðDY
tm � YtmÞlog ð1� βtmÞ

� � ð5Þ

For this one-sample section, we drop an index on x and write xmc instead of
x1mc. Analogously, we write Xnm= Xm as the total number of methylated reads at
position m (and DX

nm as DX
m).

To calculate the expected log-likelihood, i.e., the Q function, we must integrate
over the conditional distribution for the missing data, i.e. P(z∣x, β, α). Since ztmc is
binary and each read and site is assumed independent, this distribution is the
probability that each ztmc is 1. In other words, the probabilities that each read
comes from each cell type are sufficient statistics, and are given by

Pðztmc ¼ 1jxmc; β; αÞ ¼
βxmc
tm ð1� βtmÞ1�xmcαt

∑kβ
xmc
kt ð1� βktÞ1�xmcαk

¼: ~ptmcðα; βÞ ð6Þ

Conceptually, if read c is methylated, this indicates the read is more likely to
come from cell types with high methylation proportion, as βtm is larger (and vice
versa if the read is unmethylated). Regardless the methylation state, however, this
equation also says that the read is likelier to come from more common cell types, as
αt is larger.

This final term ~ptmcðα; βÞ, seems complex. However, it actually only depends on
the specific read c through its methylation status, and takes only two values. We
can redefine it in simpler terms, which represents the probability of each cell type
for each read depending on its methylation:

βtmαt
∑kβktαk

¼: ptm1ðα; βÞ ¼ ~ptmcðα; βÞ if xmc ¼ 1

ð1�βtmÞαt
∑ið1�βkt Þαk ¼: ptm0ðα; βÞ ¼ ~ptmcðα; βÞ if xmc ¼ 0

ð7Þ

E step. The Q function is defined at iteration i by

Qiðβ; αÞ :¼ Ezjx;αðiÞ ; β
ðiÞðlogPðx; z; yjα; βÞÞ ð8Þ

where α(i) and β(i) are the parameter estimates of the cell type proportions and
methylation proportions from the last EM step. Let pðiÞtm :¼ ptm1ðαðiÞ; βðiÞÞ, which is
the probability that a methylated read at site m comes from cell type t given the
previously estimated parameters from iteration i. Then Qi is

Qiðβ; αÞ ¼ ∑
t;m

Ytm þ pðiÞtm1Xm

� �
log βtm

� �þ DY
tm � Ytm þ pðiÞtm0ðDX

m � XmÞ
� �

log 1� βtm
� �h i

þ∑
t;m

Xmp
ðiÞ
tm1 þ ðDX

m � XmÞpðiÞtm0

� �
log αt ð9Þ

The first line in this equation captures the expected total number of methylated
reads (first term in the sum) and the total number of expected unmethylated reads
(second term) for each cell type and site. Each of these terms combines both the
reference and cfDNA contribution, e.g. the first term combines the total methylated
reads from the relevant reference cell type (Ytm) with the expected number of
methylated reads from that cell type in the cfDNA mixture (pðiÞtm1Xm).

Complementary to the first line, the second line determines the likelihood of α
and does not depend on β. It captures the likelihood of observing the expected cell
type frequencies. This is given by the sum of the expected methylated and the
expected unmethylated reads over all loci.

M step. To update the estimated cell type proportions, α, we maximize Qi under the
constraint that α is a probability vector, i.e., its entries are non-negative and sum to
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one. The maximizer is

αt ¼
∑m xmp

ðiÞ
tm1 þ ðDX

m � xmÞpðiÞtm0

� �

∑k;m xmp
ðiÞ
km1 þ ðDX

m � xmÞpðiÞkm0

� � ð10Þ

The numerator is simply the number of reads expected to originate from each
cell type, which is calculated by adding the expected contributions from the
methylated and the unmethylated reads. The proportions are then obtained by
normalizing these numerators to sum to 1.

The other M step update is for β, the proportion of reads that are methylated at
each site and in each cell type:

βtm ¼ pðiÞtm1xm þ Ytm

pðiÞtm0ðDX
m � xmÞ þ DY

tm � Ytm þ pðiÞtm1xm þ Ytm

ð11Þ

Intuitively, this is the ratio of the expected number of methylated vs. total reads
from cell type t at site m. This update is conceptually similar to the α update in the
sense that it matches an estimated proportion to an expected proportion. For αt,
this is the expected proportion of reads deriving from cell type t; for βtm, this is the
expected proportion of reads from cell type t that are methylated at site m.

EM algorithm for multiple cfDNA samples. We now return to allowing N > 1
cfDNA samples. In this setting, α is a matrix, because each cfDNA sample may
have different proportions of each cell type in their cfDNA mixture. Further, xnmc

and Znmc are now 3-dimensional arrays indexed by cfDNA individual n, methy-
lation site m, and sequencing read c, and the binary indicators znmtc are now 4-
dimensional, as they additionally index each cell type.

The conditional distribution for z at each step of the EM algorithm now
becomes:

Pðzntmc ¼ 1jxnmc; β; αÞ ¼
βxnmc
tm ð1� βtmÞ1�xnmcαt

∑kβ
xnmc
tk ð1� βtkÞ1�xnmcαk

¼: ~pntmcðαn; βÞ ð12Þ

As before, this ~p term depends on c only through xnmc, and so we simplify terms
by defining ~pntmcðαn; βÞ ¼ pntmjðαn; βÞ if xnmc= j for j= 0, 1.

To simplify the E step, we define the responsibilities by pðiÞntmj :¼ pntmjðαðiÞn ; βðiÞÞ.
For j= 0, this gives the conditional probability that an unmethylated read from
individual n as site m comes from cell type t given the current parameter estimates;
j= 1 gives the analogous probability for methylated reads. Since we assume cfDNA
individuals are independent given α and β, the E step is a simple generalization of
the one-sample E step that sums over samples and can be written:

Qiðα; βÞ ¼ ∑
n;t;m

Ytm þ pðiÞntm1Xnm

� �
log βtm

� �þ DY
tm � Ytm þ pðiÞntm0ðDX

nm � XnmÞ
� �

log 1� βtm
� �h i

þ ∑
n;t;m

Xnmp
ðiÞ
ntm1 þ ðDX

nm � XnmÞpðiÞntm0

� �
log αnt ð13Þ

This Q function can be interpreted identically to the single-sample Q function.
The only difference is that now reference reads are added with expected cfDNA
reads for multiple individuals, and the expectations (pðiÞntmj) depend on cfDNA
individual n as well as cell type t, CpG site m, and methylation status j.

Qi additively splits over row of α, therefore, the updates for each αn, are identical
to the single-sample α updates, where αnt replaces αt, Xnm replaces Xm, DX

nm

replaces DX
m , and pðiÞntmj replaces p

ðiÞ
tmj. This means that if we condition on the number

of reads coming from each cell type in person n, the estimates of that person’s cell
type proportion do not depend on anything else.

For βtm, the M-step again compares the expected number of methylated and
unmethylated reads at CpG m from cell type t, where the expectation combines
reads from reference cell type t with the expected number of cfDNA reads from cell
type t. The only difference is that now the expectation combines the expected
contributions from multiple cfDNA samples:

βtm ¼ ∑np
ðiÞ
ntm1Xnm þ Ytm

∑np
ðiÞ
ntm0ðDX

nm � XnmÞ þ DY
tm � Ytm þ∑np

ðiÞ
ntm1Xnm þ Ytm

ð14Þ

Unknown sources. It is likely that there are cell types in the cfDNA mixture not
contained in the reference data. To estimate the proportion of an unknown cell
type with CelFiE, we append a zero row to DY and Y, and then run CelFiE as usual.
This produces an EM that is mathematically similar to the STRUCTURE model of
mixtures of human populations61. Essentially, CelFiE estimates methylation pat-
terns and abundances for the unknown cell type(s) that maximize the overall
likelihood. To model more than one unknown cell types, additional rows of zeros
are added to DY and Y. Note that if the number of unknown cell types is greater
than the number of individuals, the problem is not identified.

Regularization and missing data. Missing observations are allowed in both the
reference and the input. It is represented as a 0 entered in both X/DX or Y/DY. In
practice, we add a methylated and unmethylated pseudocount to every entry of X
and Y/DX and DY to stabilize the algorithm and likelihood in case of cell type/site
combinations with very low coverage.

Computational cost. Each iteration of the EM algorithm in CelFiE involves three
calculations. First, pðiÞntmj is evaluated for each sample n, cell type t, CpG site m, and
methylation status j= 0, 1; each calculation is independent of the input data
dimensions, hence evaluating p(i) is O(NTM). Second, αnt must be evaluated, which
involves summing over M sites for each n and t, giving overall complexity O
(NTM). Finally, updating βtm requires summing over all cfDNA individuals and the
reference cell type data, again giving overall complexity O(NTM). Overall, this
means that CelFiE scales linearly in sample size, number of CpGs, and number of
cell types.

We also note that if multiple references were included, the cost would not
multiply–rather, the cost would increase to O((N+Nref)TM), where Nref is the
(maximum) number of reference samples per cell type.

Other decomposition methods. Linear least-squares regression was implemented
using the linregress package from SciPy (v 1.5.2) in Python62. We minimized
minjjXα� Yjj22 where X was the methylation proportions of the cfDNA input and
Y was the methylation proportions of the reference matrix. We estimated α, which
was the cell-type proportions of the cfDNA mixture. Since least-squares regression
does not return estimates that sum to one, we divided α by its sum.

Projection onto the L1 ball was a implemented in a custom Python script
available at https://github.com/christacaggiano/celfie. There, we optimize a
binomial log-likelihood, where the number of successes is the number of
methylated cfDNA reads, the number of trials is the cfDNA read depths, and the
probability of success is the reference methylation values multiplied by the estimate
of cell type proportions for a given iteration. Maximum-likelihood optimization
was performed using the L-BFGS algorithm in the SciPy Minimize package.

MethAtlas was run using code available at https://github.com/nloyfer/
meth_atlascommit #0223493. It was run using the following command:
deconvolve.py -a<reference path><ouput directory><samples path>.

ALS subjects. ALS patients were recruited jointly from the University of California
San Francisco ALS Center and the University of Queensland ALS clinics under
clinician supervision. All participants provided informed consent and the study
was approved both by the Human Research Ethics Committee at the University of
Queensland (IRB 2018002470) and by the UCSF Committee on Human Research
(IRB 10-05027).

12 cases and 12 controls from San Francisco and 4 cases and 4 controls from
Queensland were included in this study. Controls were from non-related family
members or caregivers. cfDNA was extracted after subjects were at rest for more
than 30 min to prevent possible confounding from exercise. We collected 20 mL of
whole blood from controls and 10 mL from cases, to allow for further analyses.

ALS cfDNA sequencing. Whole blood was collected in PAXgene Blood ccfDNA
tubes (Qiagen, Cat. No. 768115) and centrifuged at 1900×g for 10 min at RT to
isolate plasma. Plasma was centrifuged twice at 16,000×g for 10 min and stored at
−80 °C until cfDNA extraction. Circulating cfDNA was extracted from 4ml (ALS
patients) or 8 ml (controls) of plasma using the QIAamp Circulating Nucleic Acid
kit (Qiagen, Cat. No. 55114). Larger volumes of control blood were collected to
ensure equal amounts of total cfDNA (compared to patients) were analyzed.
cfDNA quality and concentration were assessed with an Agilent 2100 Bioanalyzer,
using the Agilent High Sensitivity DNA kit (Agilent, Cat. No. 5067-4626). 10 ng of
cfDNA were bisulfite-treated and purified using the EZ DNA Methylation-Direct
Kit (Zymo Research Cat. No. D5020). Libraries for whole genome bisulfite-
sequencing were generated using Accel-NGS® Methyl-Seq DNA Library Kit (Swift
Biosciences, Cat. No. 30024) and Accel-NGS Methyl-Seq Dual Indexing kit (Swift
Biosciences, Cat. No. 38096), with eight cycles of indexing PCR. Libraries were
quantified by qPCR with the Hyper Library Quantification kit (Kapa, Cat. No.
KR0405) and paired-end sequenced on a NovaSeq 6000 System (Illumina).

ALS cfDNA data processing. Our ALS case-control WGBS data (including both
the UCSF and UQ data) were processed according to the ENCODE consortium
guidelines37. Quality of the fastq files was assessed using FastQC (v 0.11.9)63. All
samples had average phred scores ≥28. Adapters were trimmed from the paired
end fastq files using TrimGalore (v 0.6.6). Four basepairs were trimmed from the 5′
direction and 12 base pairs were trimmed from the 3′ direction. Trimmed fastq files
were mapped to a bisulfite converted hg38 genome using the Bismark (v 0.23.0)
implementation of Bowtie2 (v 2.3.5.1). CpG methylation was from a Samtools (v
1.7) sorted Bismark generated bam file using MethylDackel (v 0.5.0). For this study
we were only interested in CpG methylation, which is largely symmetric. Thus, we
combined reads on each strand, using the MethylDackel "–mergeContext." option.
To standardize methylation calls across all WGBS data sources, hg38 coordinates
were reported as 0-indexed. All packages were installed using Anaconda (v 4.9.2).
For more details, see https://github.com/christacaggiano/ENCODE_WGBS.

Pregnancy cfDNA data processing. Data from pregnant women and non-
pregnant controls were taken from Jensen et al. at Raw fastq files from were
retrieved from dbGaP identifier phs000846. To ensure consistency across cfDNA
samples, data was processed identically to 1. In the original Jensen et al. study

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22901-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2717 | https://doi.org/10.1038/s41467-021-22901-x | www.nature.com/naturecommunications 11

https://github.com/christacaggiano/celfie
https://github.com/nloyfer/meth_atlas
https://github.com/nloyfer/meth_atlas
https://github.com/christacaggiano/ENCODE_WGBS
www.nature.com/naturecommunications
www.nature.com/naturecommunications


design, multiple fastq files mapped to one sample. Thus, after methylation calling,
we combined the appropriate methylation bed files into one per individual, for a
total of 15 bed files.

WGBS simulation data. Ten adult (small intestine, pancreas, monocyte, stomach,
tibial nerve, macrophage, memory B cell, adipose, neutrophil, and T cell) WGBS
bedMethyl files were obtained from the ENCODE and BLUEPRINT project37,39

(Data identifiers described in Supplementary Data 1). BLUEPRINT data was
downloaded as two bigWig files, a methylation signal bigWig and a coverage of
methylation signal bigWig. These files were combined into one bedgraph-format
file using the UCSC bigWigToBedGraph utility.

Each WGBS file had two biological replicates coming from distinct people. All
bed file coordinates were harmonized to hg38 using hgLiftOver64. For each tissue
or cell type, the file was restructured to report the number of methylated reads and
read depth for each CpG locus. Coordinates were standardized to be zero-indexed.

WGBS reference data. Reference data for the real cfDNA decomposition
experiments in 1 and 1 were retrieved from ENCODE and BLUEPRINT. Twenty
tissues and cell types were chosen to be representative of the many tissues possible
in cfDNA. To decrease noise, we combined two replicates of the tissue when
available (see Supplementary Data 1 for individual accession numbers). As
described previously, we mapped all data to hg38, and converted the coordinates to
be 0-indexed.

Site selection and summing
Tissue informative markers. Only about 20% of autosomal CpGs vary by cell type41.
Selecting sites that do vary enriches for information on tissue of origin and reduces
the EM computational burden, which scales linearly in the number of sites. We
propose selecting tissue informative markers (TIMs) without curation, an approach
inspired by ancestry informative markers in population genetics65,66.

After processing the WGBS files, one replicate per tissue was segregated into a
reference matrix. This reference matrix was used to calculate TIMs. We assess
whether a CpG is a TIM one locus at a time. For each CpG, the distance between
the percent methylation of that cell type and the median percent methylation for
that CpG was calculated. Only CpGs where the median depth was greater than 15
and had no missing data were considered. The top N (default= 100) CpGs with the
greatest distance per cell type were selected. TIMs provide increased accuracy in
decomposition, and vastly improve computation time. We reference cell types to
have overlapping TIMs (i.e., one CpG may be a TIM for both pancreas and liver).
We combine proximal CpGs (±250bp) around TIMs to increase confidence in
the methylation state for a particular CpG (see the section “Site combination”).
To test the performance of TIMs, we create a complex mixture of 10 WGBS
samples and calculate 100 TIMs per sample (for a total of 1000 CpGS). We
compared CelFiE decomposition estimates using 1000 random summed 500bp
regions, 1080 500bp regions published in Sun et al. 48, and our TIM regions.
For the data set of WGBS mixtures, TIMs perform better than random and
better than the Sun et al. regions (Fig. S8). We believe that TIMs will be especially
desirable for downstream applications, where permuting random WGBS
CpG sites is not feasible, or in the development of a capture panel (see the
“Discussion” section).

Site combination. To demonstrate whether summing sites improves CelFiE’s ability
to discriminate tissues, we create complex mixtures of WGBS samples, as in the
previous section. We either use single TIMs, or add all methylated and unme-
thylated counts for all CpGs ±250bp around a TIM. Summing CpGs ±250
improves the performance of CelFiE (Fig. S9).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed WGBS data generated for this study are available at NCBI GEO under
accession number GSE164600. Tissue and cell-type WGBS data is freely available on the
https://www.encodeproject.org/search/?type=Experiment&status=released&perturbed=false
ENCODE Project and http://dcc.blueprint-epigenome.eu/#/files BLUEPRINT Epigenome
Project data access portals. The pregnancy cfDNA data from Jensen et al45 used in this study
was obtained from dbGaP under accession number phs000846.

Code availability
Software for CelFiE and the projection method are available at https://github.com/
christacaggiano/celfie67.
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