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ABSTRACT

This final report describes an advanced traffic surveillance technique based on pattern

recognition and the use of current inductive loop technology.  The focus of the

investigation was a study of the feasibility of using inductive loop signatures for

obtaining vehicle classification information on a network-wide level.  The potential

benefits from the vehicle classification information include improvements in vehicle

reidentification algorithms, roadway maintenance, vehicle emissions management,

roadway design, traffic modeling and simulation, traffic safety, and automatic toll

collection.  The compilation of a vehicle classification database is also a valuable

resource for researchers in the areas of transportation planning and control.  This effort

complements current PATH (Partners for Advanced Transit and Highways) research in

advanced surveillance technology.  Different pattern recognition techniques for vehicle

classification such as classical decision theoretic approach and advanced neural networks

were employed in this research.  Inductive signatures from the SR-24 freeway were used

to test vehicle classification algorithms.  Classification rates of greater than 80% were

obtained using different datasets.  The results demonstrated the feasibility and the

potential of using this method for collecting vehicle classification data.

Keywords: automatic vehicle classification, vehicle detectors, traffic surveillance, neural

networks, advanced traffic management system
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EXECUTIVE SUMMARY

Vehicle classification is the process of separating vehicles according to different

predefined classes. Vehicle classification information can be used in many transportation

applications including road maintenance, vehicle reidentification, emissions/pollution

estimation, traffic modeling and simulation, traffic safety, and toll setting.  The collection

of vehicle classification data has previously been investigated using various new

surveillance technologies such as video, laser, and acoustic detectors.  One goal of this

project is to exploit the current inductive loop infrastructure.  However, this fact does not

abolish the possibility of changing the vehicle classification algorithms developed in this

research to accept other forms of detector output in the future.  In fact, detector fusion can

the wave of the future for traffic surveillance once the economics of multi-detector

surveillance become more reasonable.

This final report presents two distinct vehicle classification methods using the following

seven vehicle classes: car, SUV/pickup, van, limousine, bus, two axle trucks, and trucks

with greater than two axles.  These seven vehicle classes are interesting to study because

they cannot be determined by using axle counters, and they can be used in different

transportation applications.  Both classification methods utilize vehicle inductive

signatures collected from existing loop detector infrastructure.  One method uses a

heuristic discriminant algorithm for classification and multi-objective optimization for

training the heuristic algorithm.  Feature vectors obtained by processing inductive

signatures are used as inputs into the classification algorithm.  Three different heuristic
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algorithms were developed and yielded encouraging results of 81%-91% overall

classification rates.  The second methoid uses Self-Organizing Feature Maps (SOFM) for

classifying vehicles.  A SOFM is an Artificial Neural Network (ANN) that forms clusters

of neurons which reflect similarities in the input vector.  The inputs to the SOFM are the

processed inductive signatures. The SOFM produced similar results of over 80% overall

classification rates.  These results demonstrate the potential of collecting network-wide

vehicle classification data from inductive loops. The availability of vehicle classification

data helps to improve traffic surveillance and paints a more detailed picture of dynamic

traffic networks.
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 CHAPTER 1. INTRODUCTION

1.1 OVERVIEW MOTIVATION

As new exciting technologies are being developed for transportation applications and

new Intelligent Transportation Systems (ITS) are being tested and implemented, there is a

growing need for more detailed and more accurate transportation data.  Researchers are

exploring the use of various new forms of detectors and surveillance systems.  These

detectors include infrared, microwave, ultrasonic, acoustic, Automatic Vehicle

Identification (AVI), piezo-electric, magnetic, Global Positioning System (GPS)/cellular

modem, and video image processing.  Apart from investigating new technologies, there is

the opportunity to squeeze out more information from the current inductive loop

infrastructure.  One way this is accomplished is by using inductive signatures collected

from existing loops.  Previously, inductive loop detector cards only operated in a pulse or

a presence mode, producing a digital output.  This digital output is a step function that

has a duration of a vehicle’s loop occupancy time or a short pulse of between 100 and

150 ms actuated by a vehicle call (ITE, 1990).  However, detector manufacturers are

increasingly producing detectors that have the capability to output a vehicle inductive

signature through a serial port on the detector card.  This inductive signature is the result

of the net decrease in detector inductance when a vehicle’s metallic mass passes over the

magnetic field generated by the inductive loop.  This signature is also referred to as the

signature or the footprint of a vehicle.  Some researchers distinguish this signature output

from the standard pulse or presence outputs by calling it analog output.  By using

signatures, important transportation data such as travel time, density, partial dynamic

origin/destination demand, lane change, and vehicle classification data can be obtained.
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Vehicle classification is the process of sorting vehicles according to predefined vehicle

classes.  The Federal Highway Administration (FHWA), California Department of

Transportation (Caltrans), county transportation authorities, and even private

organizations such as tollway agencies all use vehicle classification in diverse ways.

Therefore the set of vehicle types is defined differently for each agency or organization.

Research in vehicle classification will assist public and private agencies in different areas

including road management, road maintenance, data collection, multi-modal transport,

emissions control, bus preemption, and toll assessment functions.  Thus vehicle

classification data is a valuable form of transportation data that can be used in many areas

of transportation.

One particular example of a vehicle class that is useful to be monitored is trucks.  Trucks

and other oversized vehicles have distinctly different performance characteristics than

passenger vehicles.  Trucks on the average travel at slower speeds, occupy more road

space, have longer maneuvering times, have longer braking distances and times, and are

sometimes lane restricted. In terms of traffic flow considerations, an accurate

measurement of trucks on the road will lead to more accurate modeling and simulation of

real world conditions.  The assumption of uniformity of vehicle characteristics is a

contributor to unrealistic modeling of real networks. The ability to convey and predict

traffic conditions accurately on the roadway will also lead to improved efficiency through

traffic control strategies.  Because the speed differential between trucks and cars is

usually significant, and also because trucks are much larger than vehicles, having vehicle
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classification data can help safety research and implementation.  Heavier vehicles like

trucks also contribute disproportionally to the wear and tear of pavements.  Knowing the

actual number of trucks traveled on a roadway can help estimate the life of the current

road surface and assist in the scheduling of maintenance.

Another example of a vehicle class that is useful to be detected are light vehicles

(LTV’s).  Some issues involving LTV’s include the safety characteristic of such vehicles

and car following behavior resulting from a higher driver field-of-view.  The National

Highway Traffic Safety Administration (NHTSA) reports that rollover crashes are one of

the most significant safety problems for all classes of LTV’s especially light trucks:

pickups, sport utility vehicles, and vans (Garrott et al., 1999).  NHTSA reports that

rollovers resulted in an average of approximately 9000 fatalities per year or about thirty

percent of all LTV fatalities from 1992 through 1996.  Even though LTV’s are in 68

percent as many crashes per registered vehicle as are passenger cars, LTV’s are in 127

percent as many rollover crashes per registered vehicles.

Examples of applications with other vehicles classes also abound.  Traffic signals can be

pre-empted or extended when a bus or an emergency vehicle is detected. Automatic

vehicle classification can be used for setting fees on toll roads.  Vehicle class information

can also help traffic enforcement agencies in maximizing their resources.  Obtaining an

area-wide assessment of traffic vehicle classes can help agencies estimate more

accurately the types and amounts of pollution emitted by vehicles.  Vehicle class

information also allows the analysis of the effects of the increase in certain vehicle
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classes such as the growing percentage of sports utility vehicles (SUV) in the United

States.

Previous research in this field include inductive loop, video, infrared, and acoustic

classification systems. There are also commercial classification systems such as the

IVHS2000 by Intersection Development Corporation. The existence of commercial

products should not undermine this research effort.  One problem with commercial

systems is the fact that detailed performance analysis and methodology is not published.

The development of a PATH system will allow agencies the ability to understand the

theory behind the operation of such systems, and will allow agencies to even develop

their own field software according to their needs.

One advantage of the proposed system is the utilization of current infrastructure.  Since

inductive loops are so prevalent among both city and state roadways, there exists the

possibility of a network-wide implementation of the system.  Current commercial vehicle

classification systems require the use of a multi-beam light curtain and a Doppler radar,

or treadles and loops.  Comparing with existing commercial implementations, the

proposed system is much simpler with respect to equipment needs.

There is strong evidence that a given vehicle will have similar inductive signatures at

different sites.  A site is composed of the roadway geometry, physical inductive loop

detector, lead-in cables, and detector circuitry.  Even the signature changes with vehicle

speed, vehicle offset (both horizontally and vertically), loop type, and other factors, there
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are some changes that can be eliminated.  For example, the signature can be transformed

to be speed-invariant by measuring speed (double loops, radar, single loop estimate).

Also for example, the nominal site inductance level, which is a function of the loop

geometry and detector settings, can be normalized for preserving the shape of vehicle

signatures.  In addition, the nominal site inductance level can also be calibrated for each

individual site so that the total amount of signal (power) can be meaningful.  Since the

shapes of the vehicles are preserved to some extent by different transformation and

normalization methods, a value proportional to the total power is the maximum

inductance recorded.  This maximum inductance is a easily computable value that can be

used as a feature vector.  More complex Fourier or Wavelet analysis is also used for

deriving the power spectrum.  One evidence for the assumption that vehicle signatures at

different classification sites can be similar is the work in vehicle reidentification using

inductive loop detectors (Sun et al., 1998 and 1999).  The vehicle reidentification results

show that individual vehicles can be reidentified from one site to another site with

accuracy of between 60% to 75%.  In order for this to be possible, the signature features

have to be preserved from one site to another.

1.2 STRUCTURE OF REPORT

The organization of this final report is as follows.  Chapter 1 is an introduction of vehicle

classification.  Chapter 2 discusses the background and reviews preceding work.  Chapter

3 discusses the data collection process and describes the database of vehicle signatures.

Chapter 4 presents the theoretic decision approach and heuristic vehicle classification

algorithms.  Chapter 5 describes the Self-Organizing Feature Map (SOFM), which is an
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Artificial Neural Network (ANN) employed for vehicle classification.  Chapter 6

discusses the related issue of single loop speed estimation scheme.  The use of this

estimation scheme allows the extension of the vehicle classification to single inductive

loops.  Chapter 7 concludes this report with a summary and a discussion of future

research directions.
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CHAPTER 2. BACKGROUND AND PRECEDING WORK

There has been fertile research in the analysis and use of inductive signatures for

transportation data collection both in the United States and abroad. Böhnke and

Pfannerstill (1986) discussed the use of inductive signatures and Karhunen-Loeve

transformation in reidentifying vehicle sequences. Kühne in cooperation with other

researchers has published several reports of section measure instrumentation for

obtaining inductive loop vehicle signatures.  A freeway control system using a dynamic

traffic flow model and vehicle reidentification technique was published by Kühne (1991).

Another system discussed by Kühne and Immes (1993) detailed a freeway control system

using section-related traffic variable detection.  Pursula and Pikkarainen (1994) used a

seven vehicle class scheme for classification using double inductive loop signatures and

self-organizing feature map.  Sun et al. (1998, 1999) describe a travel time and density

measurement system using inductive loop signatures.

The following are some examples of some existing classification schemes and

methodologies used by researchers and public agencies.  These examples show that

vastly different classification schemes exist among various transportation applications.

One well-known classification scheme is the one specified by the Federal Highway

Administration and is shown in Table 1 (USDOT, 1997).
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Table 1. FHWA Classification Scheme
Category Description
1 motorcycles
2 passenger cars
3 other 2 axle 4 tire singles
4 buses
5 2 axle 6 tire singles
6 3 axle singles
7 ≥ 4 axle singles
8 ≤  4 trailers
9 5 axle trailers
10 ≥ 6 axle trailers
11 ≤  multi-trailers
12 6 axle muti-trailers
13 ≥ 7 multi-trailers

Pursula and Pikkarainen (1994) used the seven vehicle class scheme in Table 2 for

classification using double inductive loop signatures.  Both loop signatures were used in

an array configuration that improved classification accuracy over single loop

configuration.  The physical inductive loops used were 3x2 meters.  A 12x12 Self-

Organizing Feature Map (SOFM) was used with analog loop signals (inductive

signatures) as inputs.  The reported percentage of success was around 80% for the

training set.  An improved algorithm using length windows, SOFM, and Learning Vector

Quantization (LVQ) resulted in a 96.2% correct classification rate with a test set size of

737 vehicles.  However, only the SOFM procedure was discussed in the paper but not the

LVQ procedure.
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Table 2. Seven Vehicle Class Scheme
Category Description
1 Car or van
2 Truck
3 Bus
4 Truck with semi-trailer
5 Truck with trailer
6 Car with trailer
7 Car with mobile home

Wei et al. (1996) used the three vehicle class scheme in Table 3 by applying video

classification.  The feature extraction process involves ground segmentation and

background subtraction.  The resulting image was quantized by using 16 windows and

three characteristics: occupation rate, horizontal image line, and vertical image line.  A

backpropagation Artificial Neural Network (ANN) with one hidden layer was used.  The

resulting recognition rates were 98.5%, 96.92%, and 91.94% for heavy vehicles, small

cars, and motorcycles using a test set of two hundred images.

Table 3. Three Vehicle Class Scheme
Category Description
1 heavy vehicles
2 small cars
3 motorcycles

Yuan et al. (1994) used the six vehicle class scheme in Table 4 by also applying video

classification.  Four vehicle extraction models were used to obtain vehicle features.  They

are: perspective projection, length measurement, width and height estimation, and profile

characters.  A two-level hierarchical classification scheme was used.  Level one separated

vehicles into three categories by using lengths and heights.  This level used the k nearest-
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neighbor rule.  The reported classification rate for level one was over 90%.  Level two

further divided vehicles by using profile characters and heuristics.

Table 4. Six Vehicle Class Scheme
Category Description
1 2 axle vehicles: car, van, pickup,

ambulance, and single-unit truck
2 buses
3 3 axle truck
4 one-unit truck, four or more axles
5 two-unit truck, four or more axles
6 three-unit truck, four or more axles

Nooralahiyan et al. (1997) used acoustic signatures to derive the four vehicle

classification scheme listed in Table 5.   Linear Predictive Coding (LPC) was utilized to

extract feature vectors through parameter conversion from autocorrelation analysis.  A

Time Delay Neural Network (TDNN) was used for classification.  The reported

classification accuracy was 82.4% for 400 test patterns.

Table 5. Four Vehicle Classification Scheme
Category Description
1 buses or lorries
2 small or large saloons
3 Motorcycles
4 light goods vehicles or vans

Lu et al. (1989) used an infrared detector with the four vehicle class scheme in Table 6.

This paper also included the possibility of user-defined vehicle categories. A modified

Sobel’s edge-sharpening method was used to accentuate (or brighten) the engine,

emission pipe, and wheels.  Features such as size, height, and location of bright clusters,
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are found through the analysis of the size and position of the bright clusters.  Similar to

Yuen et al. (1994), a k nearest neighbor method was used for classification into four

groups. The reported accuracy was 95% for a test sample of 100 vehicles.

Table 6. Four Vehicle Classification Scheme
Category Description
1 passenger cars
2 buses with new engines and trucks without

upright pipes
3 trucks with upright pipes and trailer trucks
4 unidentified

Leonard (1991) used a ten truck category classification scheme for analysis of truck

crashes including straight trucks, tractor-semitrailer combinations, and double

combinations.  The graphical examples for truck configuration and labeling are given in

Figure 1.  When developing a discriminant analysis scheme; however, the classification

uses only the vehicle length as a feature vector and is performed using two categories

only.  For example, a vehicle is classified as a large truck or not as a large truck.  Using

vehicle length cutpoints of 36.1’ (11m), 39.6’ (12m), and 42.8’ (13m) the reported

classification percentages were 94.2%, 96.5%, and 98.2%.
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Figure 1. Truck Classification Scheme

Commercial businesses in the areas of trucking, freight forwarding, and shipping often

have their own fleet classifications.  Figures 2-8 shows an example of a seven vehicle

classification of a commercial fleet in the United States.  The classes differ in pricing,

cargo capacity, and cargo versatility.  Table 7 shows some class characteristics.

Table 7. Commercial Fleet Characteristics
Class Cubic Feet Interior Dimensions Payload
Pickup N/A 8’x4’ (truck bed) 1565lbs. min.
Cargo Van 305 N/A 2000lbs.
15’ Cutaway 305 N/A 2000lbs.
15’ Box Truck 822 1’-3”x7’x7’-10” 3000lbs.
18’ Box Truck N/A N/A N/A
24’ Box Truck 1520 2’x8’x7’-10” 10,000lbs. min.
Stakebed N/A N/A N/A

1211 111 112

121 122

11111 11211

1211 12211
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Figure 2. Pickup Figure 3. Cargo Van

Figure 4. 15’ Cutaway Figure 5. 15’ Box Truck

Figure 6. 18’ Box Truck Figure 7. 24’ Box Truck

Figure 8. Stakebed
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There are also commercial products available that use infrared detector or multi-beam

vertical light curtain for vehicle classification.  Companies such as Schwartz Electro-

Optics (1998) and Transport Data Systems  (1998) use 4 and 5 category schemes with

subcategories.  Earlier classification systems often employed a treadle, therefore the

classification was based on the number of vehicle axles.
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CHAPTER 3. SIGNATURE/VIDEO DATA AND DATA PROCESSING

A discussion on the signature/video data and data processing is helpful in two respects.

First, the details of requirement for field implementation of the vehicle classification

algorithms are beneficial to agencies who seek to deploy such a system.  One objective of

this research is to enable government agencies to utilize the proposed technology in the

near future.  Second, the careful explanation of data collection and processing procedures

is provided for the use of other researchers who are interested in research in vehicle

classification.

3.1 DATA COLLECTION

The data collection effort for vehicle classification is a superset of the field

implementation in the sense that in addition to collecting the vehicle signature data, there

is the additional need to collect video ground-truthing information.  The ground-truthing

is needed for researchers to evaluate the performance of their vehicle classification

systems.  This chapter will therefore center on the development of the data collection

setup, since the field implementation is similar to data collection.

Figure 9 shows the freeway data collection site located in Lafayette, California.  This site

is composed of an upstream and a downstream station.  Having two stations instead of a

single station was necessitated by another PATH project in vehicle reidentification.

Having two stations also is useful in this PATH project since it can be used to test the

robustness of the vehicle classification system.  The upstream loop station is located near
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the Central Laayette on-ramp while the downstream loop station is before the Acalanes

Road off-ramp.

Figure 9. Freeway Data Collection Site.

The signature data were obtained from a field site on the westbound SR-24 freeway in

Lafayatte, California in December 1996.  Two data acquisition stations were

instrumented with video, loop signature dataloggers, and speed trap dataloggers.

Standard 6ftx6ft (1.82mx1.82m) loops were used at both stations.  The data set contains

the signatures of the upstream and downstream vehicles along with their speeds (double

loop), electrical length (derived from occupancy time), arrival time at stations, and the

ground truth vehicle identification number.  The data set was composed of moderate flow

traffic (1000 VPHPL) and contained approximately 2000 vehicles, many of which were

Data Logging
Computer

Scanning Detector

Upstream Station

Scanning Detector

Downstream Station

Data Logging
Computer
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CAM
CAM
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passenger vehicles.  This data set was further reduced to 300 vehicles.  The reduction was

performed in order to avoid the problem of a single vehicle class (passenger car)

dominating neural network weights or algorithm parameters.  The reduced dataset

contained a more uniform distribution of signatures across all vehicle classes.  This data

set was recorded on December 6 at approximately 12:00pm.  The data sets were divided

into training and testing data sets.  The calibration of the heuristic algorithms was

performed on the training data only, and the training of the Self-Organizing Feature Map

was performed using a even smaller data set of 26 vehicles.

The hardware interconnect of each data acquisition station is composed of four different

components:  the data processing computer, time synchronization source, physical loops,

and the detector cards.  Figure 10 illustrates the partial hardware interconnect for

instrumenting two lanes of a freeway out of four total lanes.  RS-232 serial

communications was used to connect various components.

Figure 10. Data Acquisition Setup

LOOPS

DETECTOR

DATA PROCESSING PC GPS

RS-232
RS-232

DETECTOR

RS-232
LANE 1

LANE 2
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The following paragraphs describe the signature and ground-truth video data.  The

signature data were stored in SIG files.  The unprocessed signature files and PVR (Per

Vehicle Record) files were collected in the field.  The video correlation database was

produced in the laboratory from the video footage taken during data collection.  Manual

correlation of the downstream with the upstream vehicles using video was required for

the development of the video correlation database.  Due to discrepancies in time stamping

the loop data and the video, another manual correlation was required to match the video

correlation vehicle records with the vehicle loop signatures.  The last step in the process

of creating the signature data file was to append unique identification numbers to the

signature data that could be referenced back to the video database.

A sample vehicle signature and detailed explanation follows.

# Record 3873, lane 1   1926  # 1

# Normal  12:27:12.114  0.00  1567    1             33.7    4.46        Car

3553.114  48

3553.127  136

3553.140  358

3553.153  580

3553.166  904

3553.179  1228

3553.192  1397

3553.205  1567
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3553.218  1519

3553.231  1343

3553.244  1167

3553.257  830

3553.270  492

3553.283  336

3553.296  74

3553.309  17

The meanings of each part of the SIG file will be listed first.  The number signs on the

first two lines indicate the message header portion of each record.  The remaining lines

comprise the data points which make up the vehicle signature.  On the first line, 3873 is a

sequential record number assigned by the technician's data collection software.  This

sequence is in order of the time the vehicle was last detected by the loops, not the order

that the vehicles first crossed the loops.  Lane 1 is the lane number that the vehicle was

travelling in.  The next field value 1926 is the matched vehicle ID from the video

database.  The number 1 following the number sign '#' is the vehicle class determined

from the video ground truth.  This number is checked with the result of the vehicle

classification algorithms to determine the accuracy of the algorithm. A 13 vehicle class

scheme listed in Table 8 was used for this number.
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Table 8. Vehicle Class Code
Type Code
Passenger Car 1
Minivan 2
Sports Car 3
Sports Utility Vehicle 4
Van 5
Limousine 6
Trucks, 2 axles 7
Vehicle Towing Trailer 8
Bus 9
Full-size Truck 10
Pickup 11
Station Wagon 12
Trucks, > 2 axles 13

The second line has the first field, Normal, which lists whether the vehicle is in one or

two lanes.  If the vehicle was straddling lanes, the word "DOUBLE" appears instead of

"Normal".  The next field, 12:27:12.114, is the time stamp of the vehicle when it was first

detected.  The next field is the time offset 0.00.  Following the time offset is the max

amplitude value of 1567 recorded from the loop detectors.  The lane number 1 is repeated

in the next field.  Next field is the speed, 33.7, in meters/second for the front of the

vehicle.  Next is the value 4.46, which is the length in meters.  "Car" is the value for the

field that is derived from a coarse classification using vehicle length.  The classification

uses the following lengths:

     MotorCycle <3.0m (generally)

Car 3.0m-4.7m

SmallVan 4.7m-6.0m

SmallTruck 6.0m-8.0m

RigidTruck >8.0m

For signatures with two or more peaks:
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RigidTrucks <11.0m

Artic >11.0m

The next two fields with the values 208 and 208 are proprietary fields.

The remaining lines on the signature files are the time in seconds and the magnitude.  The

time is referenced from car number 1 which receives time 0.XXX where XXX represents

the decimal fraction of a second in real time.  So if car 1 crossed the detector at

11:22:31.545, then the first time would read 0.545, and all other times would be

referenced back to 11:22:31.000.  Car # 3873 is therefore 3553.114 seconds later than the

zero time.  Magnitude was recorded every .012 to .014 seconds in most cases.  For those

vehicles that spent more than 10 seconds over the loop, the time was recorded backwards,

recording a number every 0.001 seconds.

For most vehicles a graph of magnitude vs. time can be created.  As long as the vehicle

was moving at a constant speed or at a gradual change in speed, signatures that represent

the vehicle signature can be created from the signature files.  If the vehicle stopped or

significantly changed speeds over the loops, then irregular signatures may appear.

3.2 DATA PROCESSING

Once the inductive signatures are collected from vehicles, they can be processed to

produce useful feature vectors. Feature vectors that were from the inductive signatures

are transformed signature, vehicle electronic length, inductive magnitude, energy content,

signature shape variance, signature shape skewness, signature shape kurtosis, Karhunen-
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Loeve transform coefficients, Discrete Fourier Transform, and the first and second order

derivatives of the signature.  These feature vectors are not completely independent from

each other, so that a careful choice of the vectors can lead to reduction in input data.

There are three main steps in deriving the transformed signature from the raw signature.

These steps are also illustrated in Figure 11.

Step1.  The signal magnitude is normalized with respect to its maximum amplitude to

eliminate variations between detector stations.

Step 2. In order to remove the effects of vehicle speed on the signature, we transform the

time axis into length by multiplying by the speed of the vehicle that is obtained

from each double loop speed trap configuration.

Step 3. The signature is interpolated so that consistent sample points can be obtained for

comparison between different signatures.  A spline interpolation (Shoenberg, 1946) was

used to fit the signature and provide sampled data points.  These sampled ordinates

become the values in the signature feature vector.  The spline interpolation is a piecewise

polynomial interpolation that requires the endpoints of the approximating polynomial to

equal the endpoints of the piecewise function.  In other words, given a function f(x) on an

interval a f(x) b, partitioned into subintervals a=x0<x1<...<xn=b, then g(x0)=f(x0),

g(x1)=f(x1), ..., g(xn)=f(xn) for all approximating polynomials, g(x), where g(x) should be

several times differentiable.  Spline interpolation is chosen because it generally avoids

the problem of numerical instability and is easy to implement. The derivation of

electronic length, inductive magnitude, and energy content feature vectors is

straightforward once the raw signature is transformed.
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Figure 11. Signature Transformation

The term signature shape is used to emphasize the fact that plotted signatures possess

distinguishable shapes.  The signature shape variance, signature shape skewness, and

signature shape kurtosis are respectively the second, third, and fourth moments of the

signature shape.  For any random variable X or any function g(X), moments can be

defined.  Moments are parameters of the variable or function that describe the property of

the distribution or function (Kreizig, 1993).  Even though moments are often used in the
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study of probability distributions, it is equality applicable when analyzing functions or

“shapes” such as vehicle signatures.

The first four moments describe the central location, dispersion, asymmetry, and “fatness

of the tails”.  The first two moments, mean and variance are common and are often used

when defining normal distributions. For discrete variables, the third and fourth moments

are expressed mathematically as
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If the signature has a longer tail extending to the “left side” then it is negatively skewed

and the standardized third moment is less than zero.  If the signature has a longer tail

extending to the “right” side then it is positively skewed and the standardized third

moment is greater than zero.  If the signature has thinner tails than a normal distribution,

then it has positive kurtosis and the standardized fourth moment is greater than three.  If

the signature has fatter tails than a normal distribution, then it has negative kurtosis and

the standardized fourth moment is less than three (Bollen, 1989).
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The well-known Karhunen-Loeve (KL) method, also known as principle component

analysis, has been used in many applications such as speech data compression (Chen and

Huo, 1991), neural network training (Malki and Moghaddamjoo, 1991), and image

analysis (Abbas and Fahmy, 1993). Some researchers working on vehicle reidentification

have used the Karhunen-Loeve expansion to reduce the dimensionality of the vehicle

signature vector (B}hnke and Pfannerstill, 1986).  In addition to compression, the

principle components can also be used as feature vectors of the vehicle signature.

The KL method is based on the creation of a correlation matrix from either time or

frequency domain data.  The principle components are formed from the eigenvectors and

eigenvalues of the correlation matrix.  The amount of information that is contained in the

principal components is proportional to the magnitude of the associated eigenvalue.

Therefore the size of the eigenvalue is an indication of the percent of variance explained

by the principle component.  Geometrically, the principle components represent the

selection of a new coordinate system with the axes representing the directions with

maximum variability.  In other words, the principal components are the uncorrelated

linear combinations of a vector whose variances are as large as possible (Johnson and

Wichern, 1992).

Let ρ be the autocorrelation matrix associated with the vehicle signature vector X’=[X1,

X2, …, XN].  The autocorrelation matrix can be derived using the approximate formula

(Chatfield, 1996)



26

∑

∑

=

−

=
+

−

−−
= N

t
t

kN

t
ktt

k

xx

xxxx

1

2

1

)(

))((
ρ

The variable k is the number of lag intervals.  This formula is approximate because it

does not consider the degrees of freedom and assumes that N is large.  The ith principle

component is formed by using the ith eigenvalue/eigenvector pair (λi,ei) of the correlation

matrix by Yi=ei’X, where i=1,2,…N.  If a small number of eigenvalues contain much of

the variability, then the original system can be represented by the small set of associated

principle components without significant loss of information.

Fourier analysis is a well-known technique for performing frequency domain and spectral

analysis.  Linear time-invariant (LTI) systems are systems that posses the property of

superposition and produce a time shifted output when the input is time shifted.  Fourier

analysis utilizes the properties of LTI systems since the response of an LTI system to any

input consisting of a linear combination of basic signals is the linear combination of the

individual responses to each of these basic signals (Oppenheim and Willsky, 1983).  By

using combinations of harmonically related complex exponentials, a signal can be

decomposed and the corresponding spectral coefficients can be determined.  The spectral

coefficient is a term used in spectroscopy in which the spectra is decomposed into

spectral lines or frequencies.  The intensity at any line is the fraction of the total light

energy at the frequency corresponding to the line.
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For finite duration signals, the discrete Fourier transform (DFT) is ideally suited for

performing frequency domain analysis using digital computers.  Given a signal of finite

duration with length N, x[n],  the DFT synthesis/analysis pair can be expressed as:
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where X(k) are the DFT coefficients.  If k=0, then the D.C. or constant component of

x[n] can be obtained.  This so-called “fundamental” component is the average value of

x[n].  Since this average value is already captured by other feature vectors, this first

component is not used in our graphical analysis of the vehicle waveform spectrum.

Because the Fourier coefficients are complex exponentials, graphical techniques are used

to simplify the frequency domain analysis.   Appendix A contain plots of the vehicle

waveform DFT in the complex plane for some representative vehicles.  Arrows initiating

from the origin show the magnitudes and arguments of the DFT coefficients.  For a

complex coefficient X(k)=a+bi,

22)( bakX +=

a
b1tan−=θ

Figures in Appendix A show the symmetry property of the Fourier Transform.  Since

x[n] is a real-valued sequence X(Ω)=X*(-Ω), Re{X(Ω)} is an even function of Ω, and
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Im{X(Ω)} is an odd function of Ω.  Likewise, the magnitude of X(Ω) is an even function

and the angle is an odd function (Oppenheim and Willsky, 1983).  Using this graphical

technique, it is clear that the DFT from more unique vehicles such as trucks and buses

have higher frequency components than less unique vehicles such as cars and sports

utility vehicles.

There is a direct relationship between the Karhunen-Loeve transform and the Fourier

transform.  The autocorrelation function and the spectral density function contain the

same information about intertemporal dependence (Fishman, 1969), and they form a

Fourier transform pair.  There are trade-offs in performing analysis in the frequency

versus the time domain.  The autocorrelation function emphasizes the time axis

dependencies, while the spectral density functions emphasizes the oscillations at different

frequencies.  In other words, the spectral density function can be used to describe the

relative importance of each uncorrelated frequency component, while the autocorrelation

function expresses the weighted sum of the same components.  The superposition

property makes the DFT additive and the existence of uncorrelated coefficients lends

itself to graphical methods.

The first and the second derivatives of the signature are useful in determining the number

of maxima and minima.  The usefulness of the extreme points is most easily understood

through the visual inspection of the signature plots.  Signatures of passenger cars are

almost always parabolic and contain only one maximum and no minima.  More unique
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vehicles contain multiple maxima in their signatures.  See appendix A for examples of

signature plots and the corresponding feature vectors.
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CHAPTER 4. DECISION THEORETIC VEHICLE CLASSIFICATION

The process of classifying vehicles can be divided into two phases: feature extraction and

classification.  The feature extraction portion seeks to extract the salient components of

inductive signatures that would sufficiently differentiate vehicle classes.  In order to

avoid redundancy, each vector would contain different information.  This is similar to the

process of deriving a basis in linear algebra.  In a likewise fashion, the goal here is to find

an orthogonal set of vectors that would span the pattern space of possible vehicles

signatures.  Since this classification system is developed with future real-time

implementation in mind, issues such as the cost of extraction, storage requirements, and

communications bandwidth are of importance in addition to the classification rate.

4.1 HEURISTICS

The heuristic algorithms presented in this paper use select feature vectors that were

obtained from processing the inductive signatures.  The classification phase involves the

use of a heuristic, or a combination of several discriminant functions processed

sequentially.

One advantage of this heuristic approach is the reduction of data and communication

requirements by using processed feature vectors.  A fixed number of feature vectors will

be inputs to the classification algorithm instead of entire signatures. As described in the

previous section, the feature vectors that were considered include the vehicle electronic

length, inductive magnitude, energy content, signature variance, signature skewness,
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signature kurtosis, Karhunen-Loeve transform coefficients of the signature, Discrete

Fourier Transform of the signature, and number of maxima/minima of the signature.

Only a subset of these feature vectors were used in developing the three heuristic

algorithms as some feature vectors contained redundant information.  Other feature

vectors that were not used in the three heuristic algorithms presented here can possibly be

used efficiently in other classification algorithms related to particular transportation

applications.

Another advantage of the heuristic approach is that the sequential classification stages are

explicitly defined.  Therefore problems with a particular stage can be identified and

corrected without having to rebuild a complete classification algorithm.  The sequential

aspect of the algorithm also results in efficient computation since the feature space is

reduced as the algorithm proceeds sequentially.

The following paragraphs discuss the classification portion of the heuristic algorithm.

One approach in pattern recognition algorithms is to use a nonparametric decision

theoretic approach.  In this approach, no assumptions of class distributional forms are

made.  If each signature is considered to be a pattern in the pattern space, then signatures

pertaining to different vehicle classes will fall into different regions of this pattern space.

A separating surface can then be defined to differentiate between the different classes.  In

one-dimensional space, the decision surface is a point that divides the linear pattern space

as seen in Figure 12 (Bow, 1992).
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Figure 12. One-dimensional Pattern Recognition Example

Figure 13 (a). Heuristic Algorithm 1
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Figure 13 (b). Heuristic Algorithm 2

Start

Magnitude b5

Length b2,
b3, b4Length b1

Skewness b6

4

6 7

1

2 3 5



34

Figure 13 (c). Heuristic Algorithm 3

Assume that the use of each feature vector is a one-dimensional discrimination problem,

then vehicle classification can be performed by using a single feature vector.  However,

since the feature vectors are not completely correlated or redundant, multiple feature

vectors can be combined to improve classification rate and to increase the number of

classification categories.  Conceptually, this is illustrated in Figure 13 in which heuristic

classification trees use several feature vectors to arrive at seven separate classes.  These

heuristic classification algorithms which combine multiple feature vectors is the approach

undertaken for this research.  Figure 14 shows an hierarchical structure that is similar to
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the hierarchical structure of syntactic pattern decomposition schemes and is equivalent to

a piecewise linear discriminant function.

4.2 TRAINING METHODOLOGY

The training of the heuristic algorithms involves the determination of the optimum

discriminant bounds of the discriminant functions used in the heuristic tree.  The

objective in training the heuristic algorithm is to minimize the number of

misclassifications or
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b~ is a vector of boundaries that define the decision surfaces.  Note that each training

vector derived from a single vehicle signature is composed of multiple feature vectors.  In

other words,
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and Nf is the number of feature vectors per vehicle signature.

This optimization problem can be reformulated as a hierarchical multi-objective

optimization (or lexicographic optimization) problem.  Instead of finding the components

of b~ simultaneously, a staged approach is taken to find each component of
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b~ sequentially.  At each stage, a separate feature vector is considered, and the decision

surfaces are determined.  A well-known minimization technique called golden section

search was used for each optimization stage.  The optimization is complete when Pareto

optimality is achieve.  At such an instance, it is not possible to move feasibly so as to

increase one of the objectives without decreasing at least one of the others (Steuer, 1986).

Figure 14. Example of Discrimination with Unimodal Feature Vector Distributions

Figure 15. Examples of Unimodal Objective Functions Using Vehicle Signature
Length as Feature Vector

Golden section search was used because the only critical property for applying this

method was for the objective function to be unimodal (Luenberger, 1989).  Since the

objective function is derived heuristically it has no mathematical functional form, thus
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gradient search methods can not be used.  The unimodal property is satisfied when the

distributions of the feature vectors are unimodal.  Figure 14 illustrates a simple example

of unimodal feature vector distributions for two classes.  This property needs to be

checked before a feature vector is used.  If a distribution is multi-modal, then an inferior

solution can result from searching and finding a local minimum.  Figure 15 gives

examples of the unimodal objective function from using the length feature vector which

has a unimodal distribution.

Figure 16. Graphical Illustration of Golden Section Successive Bracketing
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Golden section search is a method which brackets the minimum of an objective function

at a certain tolerance level.  A minimum is bracketed by three points (a,b,c) such that f(b)

< f(a), f(c).  Initially, the bracket is set arbitrarily, and the bracket is incrementally

reduced as new evaluations of the objective function become available.  Figure 16

illustrates this incremental bracketing of the minimum.  In Figure 16, the initial bracket is

[1,3,2].  Then the objective function is evaluated at point 4 and a new bracket becomes

[1,3,4].  This procedure continues by always keeping the center point lower than the

outside points (Numerical Recipes, 1992).  Golden Section Search derives its name from

using the optimum bracketing distances of 0.38197 and 0.61803 known as the golden

section.  This golden section is a result of scale similarity between each successive

bracket.

In practice, the initial bracketing points in this algorithm is set by first examining the

feature vectors of 26 representative signatures from different classes.  If the initial bracket

does not contain the minimum, then the search procedure will end up finding the

bracketing point as the minimum, at which time the bracket should be enlarged. This

linearly converging search method results in computation times of only a few minutes for

training the classification algorithms.

4.3 RESULTS

Three different heuristic algorithms were developed and tested.  Conceptually, the three

heuristics are illustrated in flowcharts in Figure 13.  These three algorithms differ in the

feature vectors that are used, in the order in which they are used, and in the number of
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discriminant surfaces per feature space.  As seen in Figure 13, the first level discriminants

used for the three algorithms were length, magnitude, and kurtosis.  Algorithms one and

two are more similar because they use multiple discriminant surfaces for the length

feature space, while the third algorithm only makes binary decisions.

The purpose in presenting three algorithms is to show examples of how different feature

vectors can be combined in various ways to produce classification algorithms.  This

research was not intended to promote a single algorithm nor to promote an optimum set

of feature vectors for all applications.  The three algorithms then are used to demonstrate

the feasibility of using the heuristics for vehicle classification.  For a particular ATMIS

application, the heuristic algorithms can be modified to suit that application.

Table 9. Seven Vehicle Class Scheme
Class Code 1 2 3 4 5 6 7

Description car,

minivan,

sports,

station

wagon

SUV,

pickup

van, full-

size pickup

limo 2 axle truck vehicle +

trailer, bus

> 2 axle

truck

A vehicle classification scheme using seven vehicle classes was used for testing

algorithms.  This scheme is described in detail in Table 9.  This scheme is chosen because

it yields classes that can be adapted for several applications including pollution, safety,

and traffic analysis.  This scheme is also chosen because it targets vehicle classes that are



40

not differentiable by using current techniques based on axle counting.  For any particular

application, the number of classes in the heuristic classification scheme can be decreased

or increased to suit that application.

A total number of three hundred vehicle signatures, including ground truth video, were

collected for this investigation.  The manageable size of the data set allows detailed

analysis of each vehicle signature and the examination of the causes for each individual

misclassification.  The field data were obtained from two freeway sites on the westbound

SR-24 freeway in the city of Lafayatte in Northern California.  By training and testing

using data collected from different sites,  the transferability of  the algorithms was tested.

Note that no calibration of the loops was performed between sites or within the multiple

loops at each site.  The distance between the two freeway sites was approximately 2 km

(1.2 miles) long.  At each detector station there were four lanes. Each data acquisition

station was instrumented with video, inductive signature dataloggers, and speed trap

dataloggers.  Standard 1.82mX1.82m (6’X6’) loops were used at both stations. The data

set was separated into a training set and a test set of roughly equal size. The number of

vehicles in each of the classes was not equal, thus there were more vehicles in the first

three classes than in the last four. The reduced data set contained the signatures of the

vehicles along with their speeds, arrival time at stations, lane number,  and the ground

truth video.  This dataset was composed of moderate flow traffic (~1000 VPHPL).  The

calibration of the algorithms was performed on the training data only.
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Table 10. Optimized Discriminant Bounds for Heuristic Algorithms
Algorithm b1 b2 b3 b4 b5 b6

Heuristic 1 15.94 19.97 26.37 33.01 1000 10

Heuristic 2 16.87 16.77 21.68 29.67 1019.13 2.24

Heuristic 3 21.729 983.172 15.910 1250.1 29.438 10

Table 10 shows the heuristic bounds used in each algorithm.  These bounds were

determined by using golden section search. The tolerance used in stopping the golden

section search was for the distance between the outside bracket points to be smaller than

0.0005.

Table 11. Classification Results
Algorithm/ Data Overall

Rate

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Heuristic 1/Training 84% 86% 92% 81% 100% 50% 100% 75%

Heuristic 1/ Testing 81% 87% 83% 73% 100% 50% 100 67%

Heuristic 2/ Training 91% 96% 100% 77% 100% 75% 100% 50%

Heuristic 2/ Testing 82% 87% 96% 69% 67% 75% 50% 50%

Heuristic 3/ Training 88% 93% 88% 77% 67% 88% 100% 75%

Heuristic 3/ Testing 85% 96% 72% 77% 67% 75% 100% 75%

The overall classification rates from using heuristic 1 were very similar between the

training and the test set as seen in Table 11.  Algorithm 1 is heavily dependent upon the

length feature vector, since the length is used as the top level discriminant and it is used

to differentiate five categories.  Even though length proved to be effective as a top level

discriminant, its use was not sufficient to separate class 1 from class 2 or class 6 from
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class 7.  The inductance magnitude was used to separate minivans and SUV’s of the same

length, and skewness was used to separate trucks and buses of the same length. One

advantage of using inductive signatures over length as an input to a classification system

is the ability to separate vehicle classes among vehicles of the same length.  The

performance of algorithm 1 was good for all classes except class 5.  This motivated the

development of another algorithm that would maintain the overall classification rates

while at the same time improve performance for class 5.

Heuristic 2 was developed by replacing length with magnitude as the top level

discriminant.  The basis for this decision was the fact that the inductance magnitude is

approximately inversely proportional to the square of the height of the vehicle

undercarriage from the loop.  Therefore trucks and other vehicles with high undercarriage

clearances would produce signatures with lower magnitudes.  Even though algorithms 1

and 2 used the same feature vectors, the results were different as seen in Table 11.  The

classification rate for class 5 increased but classification rates for class 6 and 7 decreased.

This was not surprising since class 5 and class 7 are closely related.

For heuristic 3, Table 11 gives the overall classification rate and rates by vehicle class.

The overall classification rate of almost 90% demonstrates the potential of using

heuristics for vehicle classification.  The performance across all categories is more

consistent than previous algorithms.  The poorest performing category is class 4,

composed of limousines.  This category is problematic because limousines have inductive

magnitudes that are similar to passenger cars while their lengths are similar to trucks.
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The results of the test set shows that the classification rate went down slightly as

compared to the training set.  The individual class rates were also consistent across the

board.  The results of the test set again point to the potential of using heuristics for

vehicle classification.

Table 12. Classification Results for Heuristic 3
Heuristic 3 Classification for Training Set

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 64 4 1 0 0 0 0

Class 2 2 22 1 0 0 0 0

Class 3 4 2 20 0 0 0 0

Class 4 0 0 0 2 1 0 0

Class 5 0 0 1 0 7 0 0

Class 6 0 0 0 0 0 2 0

Correct

Class

Class 7 0 0 0 0 1 0 3

Heuristic 3 Classification for Test Set

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 66 3 0 0 0 0 0

Class 2 1 18 6 0 0 0 0

Class 3 3 2 20 0 1 0 0

Class 4 0 0 0 2 1 0 0

Class 5 0 0 1 0 6 1 0

Class 6 0 0 0 0 0 2 0

Correct

Class

Class 7 0 0 0 0 1 0 3
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In Table 12, the results of individual classifications were tabulated.  This is useful in

analyzing both type I and type II errors in classification.  If the null hypothesis is that the

vehicle was correctly classified, then Type I error is the rejection of the null hypothesis

when it is true and Type II error is not rejecting the null hypothesis when it is false.



CHAPTER 5. SELF-ORGANIZING FEATURE MAP

5.1 NEURAL NETWORKS

A good taxonomy of neural networks for pattern classification is shown in Figure 17.

(Lippman, 1987).  Classical classification algorithms which are most similar to the neural

network is listed in parenthesis.  Although there are other taxonomies for neural

networks, Figure 17 is helpful in identifying the type or types of  neural network(s)

needed for a particular application in pattern recognition.

Figure 17. Taxo
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defined implicitly and not explicitly.  Input vectors are presented sequentially in time

without specifying the output.  Because of this fact, there is no way of predicting which

neuron will be associated with a given class of input vectors.  This mapping is

accomplished after the training by testing the network.

Figure 18. Graphical Representation of the Self-Organizing Feature Map

Figure 18 shows the architecture of SOFM graphically.  The d input vectors x are

received by the n neurons in parallel and are scaled by the weight vector w.  Thus, the

weight matrix is the size of n neurons by d inputs.  The n neurons are then entered into

competition where only one neuron wins.

SOFM employs the concept of topological neighborhoods, which are equidistant neuron

neighborhoods centered around a particular neuron.  This concept is better illustrated

graphically as in Figure 19 for a two-dimensional case.  The actual SOFM’s employed in
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the classification of vehicle signatures are only one-dimensional.  The neighborhood

distance matrix for a one-dimensional case in shown in Figure 20 for a network with four

neurons.  It can be seen in Figure 20 that the distance of a neuron from itself is 0, the

distance of a neuron from its immediate neighbor is 1, and so on.  Unlike simple

competitive learning, the weights of the neighborhood neurons are updated in addition to

the weights of the winning neuron.

 Figure 19. Topological Neighborhoods

Figure 20. Topological Neighborhood Distance Matrix

The steps in the training of the SOFM can be outlined as follows:

Step 1. Initialize weights randomly.

Step 2. Present new input.

Step 3. Compute distances between input and neuron weights.

NEIGHBORHOOD
OF DIAMETER 1

NEIGHBORHOOD
OF DIAMETER 2

CENTER NEURON

0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0
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Step 4. Competitive selection of the neuron with the minimum distance.

Step 5. Update neuron weights to winning neuron and neighborhood neurons.

Step 6. Continue iterating by going through steps 2-5.

In describing the training algorithm, it is useful to understand the weight structure of the

network.  Each neuron has the same number of weights w as the dimension of the input

vector x.   The weight structure for each neuron can then be viewed as a matched filter

competing against other neurons.  A matched filter has the impulse response tuned to

input so that it produces the maximal output signal (Oppenheim, 1983).  The overall

weight structure can be viewed as an array of matched filters with each neuron’s weights

being adjusted on the basis of current weights and the goodness-of-match of the input.

Given that the feature map is initialized with random weights w for all the neurons, a

distance measure, d(x,wi) can be used to define the goodness-of-match between a

particular weight vector wi and the input vector x.  The distance measure used can be

correlation, Euclidean, city-block or other statistical measures.  If the Euclidean distance

is used, then the winning neuron from the competition is found at each iteration k by

using the following equation

ikwkxkwkx ic ∀−<− ,)()()()(
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where Nc defines the neuron neighborhood and α(k) is the learning rate at each iteration.

The weight updating equation shows that d(x,wi) is decreased for Nc while those outside

Nc are left unchanged. The neighborhood size and the learning rate both decrease with

increase in the number of training iterations.  Typically α(k) start near 1 and go down to

0.1.  The size of Nc can start out as large as the greatest distance between weight vectors,

and decrease until the neighborhood defines only one neuron.

An interesting feature of SOFM is that the distances between neurons can be interpreted

as statistical frequency distributions.  In a fully trained network, if input vectors occur

with varying frequencies, then the feature map will also allocate neurons to an area in

proportion to the frequency of input vectors (Demuth and Beale, 1997).

Another interesting feature of SOFM is that the weights become topologically similar to

the input vectors.  In a sense, the final weights are analogous to class templates and can

be plotted for visual inspection.  Because of this feature, the SOFM is less like a black-

box and is more like an automated k-means statistical clustering algorithm.

Pursula and Pikkarainen (1994) had already used SOFM for vehicle classification using

inductive signatures.  The inputs of their system are inductive vehicle signatures with a

sampling period of 5-20ms.  The physical inductive loop dimensions are 3x2m.  The

signatures are preprocessed to a standard form in which the x-axis range is uniform

across all signatures.  In other words, the vehicle length information is removed from the

signature.  The input dimensions are reduced by considering only the portion of the
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signature that lies above the 50% level of its maximum amplitude.  Only twenty points

are used to describe this upper portion of the signature.  Individual vehicle speeds are

computed using the 50% amplitude point of the double loop signatures.  This speed is

used to derive vehicle lengths.

The classification algorithm is composed of three components.  The first component is a

12x12 2-dimensional self-organizing feature map, although other network sizes were also

used.  The second component is a Learning Vector Quantization (LVQ) algorithm that

strengthens the correct classifications by a supervised learning process.  The final

component is a vehicle length window that limits weights vectors to be in the given

length range.  For the training of the SOFM, 1400 vehicles were used.  The testing was

accomplished with a test set of 737 vehicles.

The choice of the particular SOFM configuration is not a precise science and involves

engineering judgement.  The two major design parameters are the dimension of the

network and the number of neurons.  As noted by Schalkof (1992), powerful results have

been obtained by just using 1- and 2-dimensional topologies.  In selecting the

dimensionality of the network for vehicle classification implementation, the

computational intensity and the classification rate are both important.  Pursula and

Pikkarainen (1994) employed 2-dimensional networks for vehicle classification.  They

presented encouraging results from the use of 5*5 to 12*12 feature maps.  However, a 1-

dimensional feature map can also be applied to the vehicle classification problem using

less computational intensity.  As the vehicle signatures are interpolated at fixed intervals,
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there is no need to capture the abscissa.  Therefore a 1-dimensional feature map can be

used to capture the inductance magnitude changes of the vehicle signatures.

The training parameters are the learning rate and the number of training iterations.  The

initial learning rate should be between 0 and 1, and value of 0.99 was chosen based on

experience.  Kohonen (Schalkoff, 1992) cites the use of 10,000-100,000 training

iterations as typical, and recommends that the number of training cycle should be at least

500 times the number of output neurons.  Thus, all the networks have been trained using

100,000 iterations.  By looking at the plot of the feature maps for the different networks

used for vehicle classification, one could see that the neurons are well-spaced indicating

that the training iterations were adequate.  Otherwise, the neurons would be bunched up

towards the middle of the input vector space where the training originally started.

5.2 RESULTS

All the feature maps tested had the following general characteristics.  First, the input

vector is composed of ninety-three components corresponding to the ninty-three equally

spaced interpolations of the vehicle signature.  Second, the number of training iterations

were the same for all feature maps.  Even though some trials involving 3000 iterations

were performed, the resulting feature maps did not exhibit convergent characteristics.

Therefore, based on the recommendations of other researchers and on experience, the

number of training iterations was chosen to be 100,000.  A 300Mhz personal computer

was used for implementing the SOFM, and the training took only a few minutes for each

feature map configuration.  Third, the training set is composed of only thirteen vehicles
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signatures.  The 13 vehicles chosen represented one from each of the following

categories: passenger car, station wagon, minivan, sports car, Sports Utility Vehicle

(SUV), cargo van, limousine, pickup, full-size truck, vehicle towing trailer, bus, box

truck, and truck and trailer with more than two axles.

The first implementation of the SOFM involved a 1-D feature map composed of four

neurons.  Therefore a maximum of four vehicle classes could be derived from this feature

map.  Four distinct clusters resulted from the training.  The four resulting classes

(clusters) include vehicle types listed in Table 13.

Table 13. Four Class Scheme
Class Vehicle Types Represented

1 passenger car, minivan, sports car, station wagon

2 SUV, full-size truck, pickup

3 van, limousine

4 cargo truck, vehicle with trailers, bus, and trucks with >2 axles

One advantage of using SOFM is that the weights actually represent the categorized

inputs and can be interpreted as a class template.  This makes the graphical analysis of

the SOFM possible, and gives insight to the so-called neural network blackbox.  The

weights of the four neuron SOFM are plotted in Figure 21.
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Figure 21. Plot of SOFM Weights

Figure 21 shows that inputs ~55 through 93 are unused.  This is a direct consequence of

using vehicle length as the x-axis since most vehicles do not require as many input

components as compared with a trailer-truck.  On the other hand, if the x-axis is

normalized, then all input weights would have non-zero values, but the length

information would not be captured directly with this SOFM.  In such a scheme, the length

feature can be incorporated after the SOFM classification with a discriminant function, or

with another classification neural network such as a MLF.

A test set composed of 124 vehicles was used.  The overall classification rate was 77%.

This result is auspicious in view of the small size of the SOFM and the training set. All of

the missed classifications incorrectly assigned to an adjacent category.  This is

encouraging since this implies that a shifting of the classification boundaries might

improve the classification rate.  The shifting of the classification boundaries is
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accomplished by re-training the SOFM.  This is perhaps one disadvantage of using neural

networks, since these boundaries are not specified explicitly as in statistical approaches

but are embedded in the neuron weights.  A more detailed analysis of the results show

that ~5% of the misclassifications were due to full-size trucks incorrectly classified as

class 3.

Detailed analysis of the signatures from the misclassified vehicles was performed.  The

first group of misclassifications involves cargo vans incorrectly classified as class 2. By

analyzing the signature of the training set for the vehicle type “cargo van”, it was found

that the van was an ambulance which had a signature that had features of both a van and a

truck.  Therefore, the training set was modified by replacing the ambulance with a cargo

van that was more representative of the signature of the cargo van.  Figure 22 shows

examples of vehicle signatures of the misclassified cargo vans.



55

id89   veh138 ar3469 am4.63 an0.59 ev0.46   var2.36   sv0.14   sc0.04   mph71.10 ft18.84 mag749 l2

0 2 4 6
0

200

400

600

Length (m)

M
a
g

.

0 5 10 15 20
0

0.5

1

Length (m)

N
o

rm
. M

a
g
.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Norm. Length

N
o

rm
. M

a
g
.

0 2 4 6
0

0.05

0.1

Length (m)

F
re

q
. D

is
t.

id91   veh140 ar2978 am3.77 an0.51 ev0.48   var1.90   sv0.30   sc0.11   mph70.88 ft15.84 mag790 l2

0 2 4 6
0

200

400

600

Length (m)

M
a

g
.

0 5 10 15 20
0

0.5

1

Length (m)

N
o
rm

. M
a
g

.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Norm. Length

N
o
rm

. M
a
g

.

0 2 4 6
0

0.05

0.1

Length (m)

F
re

q
. D

is
t.

id31   veh47 ar3000 am3.75 an0.58 ev0.47   var1.84   sv0.26   sc0.10   mph73.80 ft16.53 mag799 l2

0 2 4 6
0

200

400

600

Length (m)

M
a
g

.

0 5 10 15 20
0

0.5

1

Length (m)

N
o

rm
. M

a
g
.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Norm. Length

N
o

rm
. M

a
g
.

0 2 4 6
0

0.05

0.1

Length (m)

F
re

q
. D

is
t.



56

Figure 22. Examples of Misclassified Cargo Vans

Another group of misclassifications involves passenger cars being incorrectly classified

into group 2.  Figures 23 shows examples of the signatures that fall into this category.

Vehicles 98 and 168 are a passenger car and a sports car.  Looking at the signatures, one

sees that the magnitude of the signature is very low compared with a normally centered

passenger vehicle.  This indicates that the vehicles were traveling off the center of the

lane or switching lanes.  Since the inductance change is proportional to the inverse of the

distance from the loop detector, pickups and SUV’s also exhibit such low magnitude

signatures.  These two examples demonstrate one weakness of using the signatures from

the current inductive loop structure.  Namely that lateral offset causes low magnitudes in

vehicle signatures which leads to misclassifications.
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Figure 23. Examples of Misclassified Passenger Cars
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After analyzing the error from the first SOFM implementation, the training set was

changed by replace the “cargo van” signature.  The change in training set also produced a

new four category classification scheme shown in Table 14.  The weights of the trained

network is shown in Figure 24.  After changing the training set by one vehicle the

reidentification rate increase to 81%. All the misclassifications were again one class

misclassifications, meaning that the class was assigned erroneously to a neighboring

class.  The results reported are similar to Pursula and Pikkarainen (1994).  In their study,

they reported successful classifications of around 80% by using two-dimensional self-

organizing feature maps.

Table 14. New Classification Scheme
Class Vehicle Types Represented

1 cargo truck, vehicle with trailers, bus, and trucks with >2 axles

2 limousine

3 van, SUV, full-size truck, pickup

4 passenger car, minivan, sports car, station wagon
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Figure 24. Plot of SOFM Weights

The 4 neuron SOFM was also tested with a second test set composed of 137 vehicle

signatures.  The classification rate of 80% on the second data set is similar to the results

from the first test set.
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Figure 25. Plot of Neuron Weights for SOFM with 13 Neurons
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Table 15. Classification Schemes
Video Vehicle Type Vehicle Description Scheme

1

Scheme

2

SOFM Output

1 passenger car 1 1 1,2

2 minivan 1 1 1,2

3 sports car 1 1 1

4 sports utility vehicle 3 2 4,5

5 van 2 2 3

6 limousine 9 7 13

7 2-axle truck 5 3 7,8

8 vehicle with trailer 8 6 12

9 bus 7 5 11

10 full-size pickup 4 2 6

11 pickup 3 2 4,5

12 station wagon 1 1 1

13 > 2-axle truck 6 4 9,10

A second SOFM configuration with 13 neurons was also trained and tested.  The

resulting weights are plotted on Figure 25.  The thirteen outputs were mapped to two test

configurations, one with 9 vehicle classes and the other with 7 vehicle classes.  The two

schemes are listed in Table 15.  Column one is a classification based on video.  Column 3

lists the mapping for the 9 vehicle class scheme.  Column 4 lists the mapping for the 7
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vehicle scheme.  Column 5 lists the 13 neuron SOFM outputs corresponding to the video

classification.

Table 16. SOFM Results
Overall Classification Rates

9 Vehicle Classes Data Set 1 71%

7 Vehicle Classes Data Set 1 87%

7 Vehicle Classes Data Set 2 82%

The classification rate using 9 vehicles classes was 71% for the first data set.  Most of the

error is due to SOFM’s inability to distinguish between 3 vehicle classes: 2, 3, and 4.  In

other words, cargo vans, SUV’s, pickups, and full-size pickups exhibit very similar

signatures.  This is not surprising, since smaller SUV’s share platforms with pickups, and

bigger SUV’s share platforms with full-size pickups.  By expanding the SUV/pickup

cluster to include cargo vans and full-size pickups, a 7 class scheme results.  The overall

classification rate for that scheme is 87% with 100% accuracy for classes 3 and 7, and

98% accuracy for class 2.  The results of the overall classification rates are listed in Table

16.

The overall result of testing using the second data set was 82%.  The rate for individual

classes were 74% for class 1, 94% for class 2, 88% for class 3, 75% for class 4, and

100% for classes 5 through 7.  One major reason for the errors was the misclassification
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of off-center passenger cars as SUV’s or pickups.  As was mentioned before, such

vehicles produce a small inductance change and confuse the SOFM.
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CHAPTER 6. INDIVIDUAL VEHICLE SPEED ESTIMATION USING SINGLE
LOOP INDUCTIVE SIGNATURES

The computation of vehicle speed is an important component of vehicle classification systems

since speed is utilized for transforming the raw signatures.  Previously, speeds were mainly

acquired from double inductive loops configured as speed traps, since single loop speed

estimates based on assumptions of a constant vehicle length were inaccurate.  However, more

accurate measurements of speed can now be accomplished with single loops by utilizing

inductive signatures of vehicles that are outputed from newer detector cards.  An algorithm using

signal processing and statistical methods was developed to extract speeds from inductive

signatures.  The results show that the proposed algorithm performs better than conventional

single loop estimation methods. The results also show that the algorithm is robust under different

traffic conditions and is transferrable across surveillance sites without the need for recalibration.

The use of the extensive single loop surveillance infrastructure is a cost-effective way of

obtaining more accurate network-wide vehicle classification information.

6.1 REVIEW OF SPEED MEASUREMENT METHODS

There are two ways of measuring speed using inductive loop detectors.  The first way is to use a

set of double loops in a speed trap configuration.  The speed trap refers to the measurement of

the time that a vehicle requires to travel between two detection points (Woods et al., 1994).

Woods et al. also discuss other aspects of the speed trap design including optimum speed trap

spacing.  Speed is measured as
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Where:

   v  = speed

   d  = distance between detectors

t1
on = time when the first detector turns on

t2
on = time when the second detector turns on

In addition to the turn on times, the Traffic Control Systems Handbook (Wilshire et al., 1985)

recommends the use of turn off times also in order to improve the speed accuracy.   The

averaging of the turn on and off times results in the following equation:

Where:

t1
off = time when the first detector turns off

t2
off = time when the second detector turns off

t - t
d = v
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2
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The second way of measuring speed is by using a single loop detector.  In other words,

Where:

   l  = effective length, vehicle length + detector length

ton = time when the detector turns on

toff = time when the detector turns off

Since actual vehicle lengths are not known, a mean vehicle length must be assumed for this

computation.  Because lengths can vary greatly from vehicle to vehicle, the use of a mean

vehicle length can result in inaccurate measurements of speed.  For example, longer trucks will

produce underestimated speeds, and shorter passenger cars will produce overestimated speed.

Another approach of estimating average speed using single loops is by using fundamental traffic

flow considerations.  The average speed is estimated by using average lane volume and loop

occupancy.  Some publications that discuss this approach include Athol (1965), Hall et al.

(1989), and Jacobson et al. (1989).  Speed is expressed in these approaches as

t - t
l = v

onoff
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Where:

  v = space mean speed

  q = flow

  o = occupancy

  g = factor that takes into account the vehicle and detector length

Hall et al. discusses the use of a sliding value of g which changes with occupancy and is

calibrated separately for each set of geometric conditions.  This approach assumes that traffic

flow is uniform, occupancy is a constant multiple of density, and vehicle lengths are constant.

Speed inaccuracies result when the assumed conditions are invalid.  Mikhalkin et al. (1972)

shows that an estimate using this approach will produce a biased estimate of the space mean

speed.  Also, individual vehicle speeds are not estimated with this approach.

In order to produce an unbiased estimate of individual and mean speed using single loops,

Mikhalkin et al. (1972) suggests the use of the minimum mean square error estimator for speed.

This approach assumes that random vehicle arrival times are uniformly distributed.  This

approach also necessitates the estimation of the unbiased mean vehicle length during the relevant

time interval.

g * o
q = v
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The use of single loop vehicle signatures for measuring speed has many advantages over

previous approaches of speed derivation using loops.  First, it can be implemented with existing

single loop infrastructure without cutting new loops for speed traps.  Second, there is no

assumption of a mean vehicle length, so the accuracy of computing speed is not a function of the

distribution of vehicle lengths.  Third, in contrast to "traffic flow approaches", there is no

assumption of traffic uniformity, and individual vehicle speeds in addition to mean speeds can be

obtained.  Last, there is no distributional assumptions made on vehicle arrival times or vehicle

speeds.
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6.2 THE USE OF INDUCTIVE SIGNATURES

                                 (a)                                                                     (b)

                           (c)                                                                     (d)

Figure 26. Examples of  Vehicle Inductive Signatures: (a) Passenger Car; (b) Sport Utility
Vehicle; (c) Semi-Trailer Truck; (d) Minivan
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Figure 26 shows four examples of vehicle inductive signatures recorded by sampling the detector

at short time intervals.  The vertical axis represents the relative inductance change and the

horizontal axis represents time.  A continuous curve is shown instead of the actual discrete curve

in order to clearly display the shapes of the signatures.

As was shown in Figure 26, the vehicle inductive signatures contain both a leading and a trailing

edge. These edges are slew rates which represent the rate of the metallic mass of the vehicle

moving over the loop magnetic field.  The signature within these edges is produced when the

entire vehicle is covering the loop.  This portion of the signature is no longer the slew rate

because of the integration property of the loops, and produces no useful speed information.  The

estimation of vehicle speed using single inductive loop detectors involves two main procedures.

The first is the extraction of the vehicle slew rate or edges from the inductive vehicle signature.

The second is the estimation of the vehicle speed based on the slew rate.
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                           (a)                                                                     (b)

(c)

Figure 27. Slew Rate Extraction Process: (a) Sample Vehicle Signature; (b) Removal of Base
Oscillations; (c) Leading and Trailing Edge Slew Rates

0 500 1000 1500
-0.2

0

0.2

0.4

0.6

0.8

Time (ms)

In
du

ct
a

nc
e 

C
o

un
ts

Normalized Signature - Vehicle #182

0 500 1000 1500
-0.2

0

0.2

0.4

0.6

0.8

Time (ms)

In
du

ct
a

nc
e 

C
o

un
ts

Normalized Signature - Vehicle #182

0 500 1000 1500
-0.2

0

0.2

0.4

0.6

0.8

Time (ms)

In
du

ct
a

nc
e 

C
o

un
ts

Normalized Signature - Vehicle #182



72

There are several steps to extracting the slew rate information from the inductive vehicle

signature. Figure 27(a) shows one example of a  vehicle signature that will be used to illustrate

the process of slew rate extraction.  The y-axis has units of percentage change of inductance

counts, and the x-axis has units of milliseconds.  Note that the vehicle signature which results

from decreases in inductance have been inverted to facilitate analysis. The first step in extracting

slew rates is to eliminate signature oscillations that have inductance values near the baseline

inductance.  This is accomplished by using a arbitrary threshold that will eliminate all

oscillations while preserving as much signature information as possible. A value of 10%-20%

was found to be a good threshold from empirical trials with different datasets.  The oscillations

near the baseline occur because the detector card is constantly trying to adjust the base

inductance value in order to compensate for changes in absolute inductance due to environmental

and other effects.  The oscillations also occur because vehicles are composed of a complex

combination of metallic masses including the undercarriage, the engine, and axles.  Figure 27(b)

shows an example of a signature with the oscillations removed.

The next step is to extract the leading and trailing edges of the vehicle signature.  These edges

are slew rates in the sense that they represent the rate of movement of the vehicle's metallic mass

over time.  The signature edges in this case have units of % inductance change over time.  The

upper end of the signature edges is found by detecting a local maximum point in the vehicle

signature.  Therefore the termination point of the signature edge is defined as

Sx f(c),  f(x) ∈∀≤
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Where:

 c     = the time at which the local maximum occurs

 f(c) = the local maximum

 f(x) = the value of the signature or inductance change at a time x

 S    = the set of time values that include a single local maximum

Since the signature is actually a discrete signature, the termination point of the leading and

trailing edges are found by searching for a local maximum by starting from the threshold value

that is illustrated in Figure 27 (b).  The resulting leading and trailing edges are shown as solid

curves in Figure 27 (c).

There were two data collection periods used in the single loop speed investigation.  The morning

peak data was collected between approximately 8:00am and 9:30am at the downstream station.

This dataset contained 581 vehicle signature pairs.  The average flow over that time period was

612 VPH for two lanes.  Due to arterial signalization and varying traffic demand, different

speeds, acceleration profiles, and traffic flow levels were observed during the 1-1/2 hour period.

The maximum observed speed was 30.66m/s (68.68mph).  The minimum speed was 5.47m/s

(12.25mph).  The arithmetic mean speed was 20.77m/s (46.52mph).  The standard deviation of

the speed was 4.11m/s.  The longest electronic length (length of detector+vehicle) observed was

20.31m.  The shortest electronic length observed was 3.89m.  The mean electronic length was

4.83m.
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The midday data was collected between approximately 12:00pm and 1:00pm at the upstream

station.  This dataset contained 530 vehicle signature pairs. The average flow over the midday

period was 575 VPH.  The maximum observed speed was 32.52m/s.  The minimum speed was

15.16m/s.  The arithmetic mean speed was 22.13m/s.  The standard deviation of the speed was

2.61m/s.

                           (a)                                                                   (b)

Figure 28. Speed Distributions (Percent Relative Frequency): (a) AM Peak Downstream; (b)
Midday Upstream

Figure 28 shows the percent relative frequency speed distributions for the two datasets.  Both the

morning and midday datasets contained a wide range of  traffic flow conditions and vehicle

speeds. This diversity is useful for developing and testing speed computation algorithms.  The
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two datasets are collected from two different sites at different times of the day.  Therefore these

datasets can be used to test the transferability of the algorithms.

(a)                                                               (b)

Figure 29. Scatter Plot of Slew Rate and Speed: (a) AM Peak DownstreamUsing Loop1; (b)
Midday Upstream Using Loop 2

The first step in the development of the speed computation algorithms is to plot the available

data and to analyze the data graphically.  Figure 29 confirms our intuition that the slew rate is

linearly correlated with speed.  The correlation coefficient for the slew rate and speed is 0.8866

for morning peak data and 0.7762 for midday.  Furthermore, Figure 29 also shows that a linear

relationship exists between the slew rate and the speed.  The scatter plots are also used to

compare the data from loop 1 and loop 2 at each double loop station. The plots confirm our

intuition that each loop in the double loop station produces data with similar correlation between

slew rate and speed.  The plots of the morning peak downstream using loop 2 and the midday

upstream using loop 1 are not shown as they are almost identical to the plots shown in Figure 29.
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The next step is to model the relationship between slew rate and speed in order to predict and/or

compute speeds.  Given the scatter plots shown in Figure 29, the following simple linear model

is postulated for the slew rate/speed relationship of the population.

Where:

  speedi   = dependent variable

  slewi     = independent variable, slew rate

  εi          = disturbance term

In the context of linear regression,

Where:

peeds iˆ  = estimates of the speed

  slewi     = regressor, slew rate

  a,b        = parameters of regression

  ei          = residual

εβα iii  + slew  +  = speed

peeds-speed = e
slew b +a  = peeds

iii

ii

ˆ
ˆ
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The following assumptions are made in order to perform linear regression.  First, there is the

assumption that no observations on slewi convey information about the expected value of the

disturbance. In other words, the conditional expected value of the disturbance is equal to zero.

This is a reasonable assumption since only the measurement errors and the random vehicle

fluctuations contribute to the disturbance. The random vehicle fluctuations are the result of

different driving behavior and vehicle mechanics.  Second, the assumption of homoscedasticity

is made.  Last, the disturbances of the slew rates are assumed to be uncorrelated.  The last two

assumptions are also reasonable since there is nothing in the loop resonant circuit theory to

suggest that variance is not constant across slew rates and that disturbances are correlated.  These

assumptions are supported by residual tests, and test outcomes are reported in the results section.

Least square estimation, which tries to minimize the sum of square residuals, is used to

determine the parameters a and b.  The solution of the following normal equations yields the

parameters of the regression model.

speedslewslewslew

speedslew b + na 

jj

n

1=j

2
j

n

1=j
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Speed can then be computed for a vehicle by using the linear regression model and a given slew

rate for that vehicle.

An interesting experimental concern arises when the standard error of b is examined in the

following equation (Wannocott, 1990):

The above equation implies that by increasing Sslew, the standard error of b can be reduced.  This

suggests that one might want to collect the regression data by driving control vehicles over the

loops with as wide a spread of slew rates as possible.  However, this approach is a costly

approach that detracts from the ease of implementation of the proposed speed computation

system.  Consequently, only data from natural occurring traffic is used for calibrating the

proposed system.

6.3 DERIVATION OF GROUND TRUTH

The ground truth for individual vehicle speed is derived by using double loop data.  Both digital

and analog detector outputs were obtained during the vehicle signature data collection.  Double

loop speeds that are computed using digital outputs can have typical errors of between 3% and

5% for commonly observed vehicles such as cars and pickups (Woods et al. 1994).

s
1

n
 _error  standard

slew
•σ
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Pursula et al. (1989) found that the standard error of the speeds measured with analog signatures

is only one third of the error of the speeds with the traditional digital output from thresholds.

The measurement of vehicle speed is determined by using the 50% amplitude point of the

leading edge of the signatures from loop 1 and 2 (Pursula et al. 1994).  Thus, this technique is

used in deriving the ground truth.

Figure 30. Double Loop Speed Computation Using Signatures

Figure 30 illustrates the double loop speed computation process.  In this figure, the first signature

corresponds to the first loop in the speed trap, and second signature corresponds to the second

loop.  For each signature, the front edge is linearized, and the 50% point is determined and

shown as a circle in the figure. The vehicle travel time is the difference between the time

corresponding to the first circle and the second circle.  Since the distance between the double

loops is known, the speed is determined by dividing this distance by the travel time.
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An alternate method that requires less computation is to use the peak of the signatures.  Signature

peaks are shown as asterisks in Figure 30.  This method is less accurate since a signature can

have a plateau instead of a single peak.  In fact, the example in Figure 30 exhibits such

inaccuracies.

Regardless of which double loop speed computation method is used, there is some error

associated with the measured speeds.  More precise instrumentation composed of infrared beam

curtains or high precision Doppler radars could yield a more accurate ground truth, but the cost

of these devices prohibited their use for this research.  Therefore the inaccuracy of the ground

truth could have contributed to the error in the research results.

6.4 RESULTS

First the results from the linear regression will be shown.  Then comparisons will be made with

other single loop estimation methods.  The sensitivity of the regression parameter with respect to

the calibration size will be analyzed, and other model form possibilities will be discussed.  In the

results section, the term calibration is used to describe the process of estimating regression

parameters.
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Table 17. Linear Regression Results

Output

(1)

Coefficient

(2)

Standard Error

(3)

t-Statistic

(4)

a (intercept) 3.597205 0.461335 7.797389

b (slope) 1739.639 46.04257 37.78327

R2 0.8273

Standard Error of

regression

1.9028 m/s
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The downstream morning peak dataset was divided into 300 vehicles for calibration, and the

remaining 281 for testing.  Linear regression was performed by using the first 300 vehicle

signatures from the second loop only, so an additional 300 vehicle signatures from the first loop

are also available for testing.  The regression coefficient as well as several measures that are

commonly included in regression analysis are listed in Table 17.  The t-statistic shows that all

coefficients are significant.  The R2 value confirms that a large fraction of the variance of the

speed can be explained by the slew rate.  The standard error shows that about two-thirds of the

residuals will lie between -1.90m/s and +1.90m/s.  The large value for the slope is due to the fact

that the units of the independent variable is in term of % inductance change per millisecond.

Figure 31. Regression Residual Analysis
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Some analysis was performed on the regression residuals in order to validate the normality

assumptions of the error term (ε) and to verify that the error terms are not correlated.  The error

term is assumed to be distributed N(0,σε
2), which means that it is normally distributed with zero

mean and constant variance.  Figure 31 shows the histogram of the residuals along with the table

of descriptive statistics.  The histogram and the statistics both show that the distribution of the

residuals do not deviate significantly from normal, and the expected value of the distribution is

almost zero.  In order to test for heteroscedasticity, hypothesis testing is performed using the

following null and alternate hypotheses:

The application of White's heteroscedasticity test (White 1980) produced a small F-value of

0.6172, which means the null hypothesis cannot be rejected and the errors are homoscedastic.

The Durbin-Watson statistic was 1.655 which shows only small evidence for autocorrelation,

thus the model is not adjusted for time-ordered effects.
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Table 18. Single Loop Speed Computation Results Using AM DownstreamData

Errors

(1)

Signature Speed

(2)

Unbiased Speed

(3)

Biased Speed

(4)

Average Error

(%)

6.7 12.7 36.9

Standard

Deviation of

Error (%)

5.3 8.7 11.8
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Table 18 shows the results comparing three different single loop speed computation methods.

The test data is composed of 281 vehicles from the downstream morning peak data.  The first

column, labeled signature speed, is the speed computed by the approach of using inductive

signature slew rates.  The second column, labeled unbiased speed, is the speed computed in the

conventional fashion by using an unbiased estimate of the mean effective length (length of

vehicle and detector).  The estimated effective length was found to be 4.83 meters for the

downstream morning dataset.  This length is divided by the loop traversal time of the vehicle to

obtain unbiased individual vehicle speed. The third column, labeled biased speed, is the speed

computed by using a commonly assumed effective length of 6.55m (21.5ft) (Arendonk, 1996).

An assumed effective length is commonly used by transportation agencies, since it does not

require the sampling of vehicle lengths for estimating a sample mean.  The data from the second

loop of the speed trap is used for testing all three speed computation methods.

The results from Table 18 show that the signature speed algorithm performed better than other

conventional speed computation methods.  The signature speed was more accurate and shows

less variability than the other two approaches.  A value of 8.7% standard deviation for the

unbiased speed computation error is not surprising, since this standard deviation is a function of

the distribution of vehicle lengths.  In locations where the traffic is more homogeneous in term of

vehicle type for all times of the day, the unbiased speeds is expected to be much more accurate

and to exhibit less variability than the results from Table 18.  The biased speed shows a
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significant average error of 36.9%, since a biased effective length is assumed.  This result shows

that if an effective length that does not reflect the traffic characteristics of the particular location

is assumed, then significant speed computation error will result.

Table 19. Testing Transferability Using AM Downstream Data

Errors

(1)

Signature Speed Using

Second Loop

(calibrated)

(1)

Signature Speed Using

First Loop

(uncalibrated)

(2)

Average Error (%) 6.7 7.2

Standard Deviation of

Error (%)

5.3 5.9

In order to test the transferability of the calibrated algorithm and regression coefficient, speeds

are recalculated using the vehicle signatures from the first loop instead of the second loop.  In

other words, the second loop signatures are used for calibration, while the first loop signatures

are used for testing.  The results in Table 19 show the average error and the standard deviation of
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error increased only slightly when using testing data.  Table 19 presents some evidence for the

transferability of the calibrated algorithm.

Table 20. Single Loop Speed Computation Results Using Midday Upstream Data

Errors

(1)

Signature Speed

(2)

Unbiased Speed

(3)

Biased Speed

(4)

Average Error

(%)

6.7 7.24 37.1

Standard

Deviation of

Error (%)

5.7 11.73 15.9

In order to further verify the transferability of the calibrated algorithm, testing is performed using

the vehicle signatures from a different location recorded at a different time of the day.  This

dataset is recorded at the upstream site during midday.  The results in Table 20 reaffirm the

robustness of the algorithm.  The average error remained the same while the standard deviation

of error increased only slightly.  It is interesting to note that the unbiased speed, computed using
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the unbiased mean effective length of this dataset, shows less error than the morning dataset.

This result reflects the more homogeneous midday traffic that contains less truck traffic and

more lunch time passenger vehicles.

                               (a)                                                                    (b)

Figure 32. Sensitivity to Calibration Data Size: (a) Sensitivity of Regression Parameters; (b)
Sensitivity of Average Prediction Error

The sensitivity of the regression parameter with respect to the calibration size and the associated

average estimation errors are shown in Figure 32.  Figure 32 (a) shows that the regression slope

fluctuates when less data is used for calibration, but the value levels off after 300 vehicles are

used.  This is the reason for using a calibration dataset size of 300 vehicles.  Figure 32 (b) shows

the sensitivity of the average prediction error using a test data size of 231 vehicles.   In terms of

average prediction error, errors of around 7% are obtained after the calibration size is larger than

25 vehicles.  However, regression theory shows that a larger variability in the independent

variable leads to smaller standard errors in the residuals; therefore, a more conservative
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calibration size such as 300 vehicles will most likely contain more variability.  Regression can

also be accomplished by selecting a small set of vehicles that have a wide range of speeds, but

such a set is not contiguous in terms of arrival times and does not lead to real-time calibration.

Table 21. Regression Using Other Model Forms

Output

(1)

Coefficient

(2)

Standard Error

(3)

t-Statistic

(4)

(a) Quadratic Model Form: speed = a + b slew  + c slew2

a -1.838342 1.016288 -1.808879

b 3028.725 221.9280 13.64733

c -70812.11 11953.21 -5.924108

R2 0.845554

Standard Error of 1.802480 m/s
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regression

(b) Cubic Model Form: speed = a + b slew + c slew2 + d slew3

a -2.564159 2.046421 -1.252997

b 3327.396 783.6314 4.357333

c -106996.3 89315.42 -1.19960

d 1343666 3286728 0.408816

Standard Error of

regression

1.805012 m/s

R2 0.84541

Table 21 shows the regression results of using other models forms to describe the relationship

between slew rate and speed.  The t-statistic shows that some coefficients of these more

complicated model forms were not statistically significant.  The R2 values and the standard errors



91

of regression are all similar between these model forms and the linear model.  Also Figure 29

presents a strong graphical evidence for the use of linear regression.  Therefore the simpler linear

model is adequate for predicting vehicle speeds.

This chapter presents a new methodology for computing vehicle speeds using single loops.  This

allows the implementation of vehicle classification systems with only single loops.  Single loop

speed methodology involves the use of signature slew rates, and a linear regression model is used

for deriving speeds from slew rates.  Results show that this method can perform better than other

methods of computing speed.  One main advantage this method has over other methods is the

fact that the accuracy of predicting speeds is not a function of the distribution of vehicle lengths.

Another advantage, is the robustness of the method that is shown to be temporally and spatially

transferable.  This method requires very little computing power and cost to implement.  The

simplicity of the methodology leads to uncomplicated real-time implementations for traffic

management and control purposes.

The utilization of the current single loop infrastructure avoids costly road closures and

equipment associated with the cutting of double loops. In many cities and states, this

infrastructure is extensive and can produce speed and vehicle classification information for

different Intelligent Transportation System needs.  However, double loops or other detection

systems are still necessary if high accuracy in speed computation is required.
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Local accelerations can be computed by using this method if double loops are available.  The

local accelerations are simply the difference between the speed computed from the first and

second loops in a speed trap.  The local accelerations can be a valuable input for congestion

monitoring and incident detection algorithms.  No acceleration results were presented because

there was no ground truth available for validating results.
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CHAPTER 7. CONCLUSION

The vehicle classification algorithms described in this report exploit the current inductive loop

infrastructure by collecting inductive signatures.  By using these signatures, surveillance

capabilities are increased, one of which is the ability to derive vehicle classification data.  These

data can be used as inputs to various ITS strategies in order to improve the efficiency, safety,

environmental sustainability, and maintainability of transportation networks.

The decision theoretic algorithms described in this report presented three different heuristics that

combined different feature vectors in different ways to separate vehicle classes.  These

algorithms are examples from which other heuristic algorithms could be developed for particular

ITS applications.

One advantage of using heuristic classification algorithms is the reduction of data transmission

and storage requirements that results from using feature vectors instead of raw signatures.

Another advantage is the sequential discrimination of the heuristic algorithm that reduces the

feature space at each stage of discrimination.  This staged procedure also has the benefit of

allowing the fine-tuning of each stage (discriminant function) independently.  As a result of the

aforementioned advantages, these heuristic algorithms are suitable for real-time implementation.
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This report also formulated a multi-objective optimization problem for training the heuristic

algorithms.  The training involves the determination of optimum discriminant bounds using

golden section search.  The three heuristic algorithms produced encouraging results of 81%-91%

overall classification rates.  In addition, the individual classification rates were fairly uniform

particularly for the third heuristic algorithm.

Another vehicle classification algorithm described in this report involves the use of Self-

Organizing Feature Map (SOFM).  The SOFM uses the concept of self-clusterization to produce

groups of inductive signatures that are similar.  The results of this research show that the clusters

produced by the SOFM correspond to useful vehicle classes that were validated with video.  A

very significant advantage of using the SOFM is the small training set of 26 signatures that was

sufficient to produce classification rates greater than 80%.  Another advantage of using the

SOFM is the fact that the neuron weights become similar to the inputs and can be analyzed

graphically.

The results from the classification algorithms demonstrate the feasibility of deriving vehicle

classification information from inductive signatures.  The use of the current surveillance

infrastructure coupled with the vehicle classification algorithms has great potential in ITS

applications.
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Because the classification schemes used by previous researchers differ, it is difficult to compare

classification algorithms based on the classification rates alone.  In a sense, different

technologies yield classification schemes that are more suitable for the particular kind of signal

that is detected.  Consequently, it might be fruitful in the future to consider a combination of

different technologies in order to optimize the classification for a particular transportation

application.   This becomes increasingly feasible as costs of detector technologies drop in

response to demand and innovation.

In addition, a speed measurement system was devised to derive speeds from single loop

signatures.  Vehicle speed is an important component of the vehicle classification system for it

makes the signatures speed invariant.  The speed measurement system used the linear

relationship between slew rate and speed to derive single loop speeds that were more accurate

than previous single loop speed estimation methods.
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APPENDIX A

ANALYSIS OF FIFTEEN REPRESENTATIVE VEHICLES

•  Feature vectors and video ground truth
•  Plot of raw waveform
•  Plot of waveform with normalized magnitude with vehicle length
•  Plot of waveform with normalized x and y axes
•  Plot of waveform as frequency distribution
•  Video image
•  Plots of the Discrete Fourier Transform of Vehicle Waveforms in Complex Plane

•  Table 1. First 14 Sorted Magnitudes of Discrete Fourier Transform Coefficients
•  Table 2. First 12 Sorted Angles of Discrete Fourier Transform Coefficients
•  Table 3. Karhunen-Loeve Eigen values (first 9 components)
•  Plot of zeroeth, first, and second derivatives
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Table 1. First 14 Sorted Magnitudes of Discrete Fourier Transform Coefficients

Id Discrete Fourier Transform Coefficient Magnitudes
1 5.76 5.76 5.49 5.49 1.26 1.26 1.08 1.08 0.62 0.62 0.54 0.54 0.45 0.45
2 6.39 6.39 0.57 0.57 0.26 0.26 0.23 0.23 0.19 0.19 0.17 0.17 0.13 0.13
3 6.64 6.64 0.57 0.57 0.52 0.52 0.13 0.13 0.07 0.07 0.03 0.03 0.01 0.01
4 8.96 8.96 2.48 2.48 0.72 0.72 0.30 0.30 0.15 0.15 0.12 0.12 0.12 0.12
5 6.66 6.66 0.52 0.52 0.20 0.20 0.14 0.14 0.13 0.13 0.11 0.11 0.04 0.04
6 6.51 6.51 0.28 0.28 0.26 0.26 0.26 0.26 0.25 0.25 0.17 0.17 0.09 0.09
7 8.23 8.23 2.30 2.30 1.72 1.72 1.08 1.08 0.81 0.81 0.33 0.33 0.24 0.24
8 8.73 8.73 7.08 7.08 6.15 6.15 3.41 3.41 2.13 2.13 1.87 1.87 0.67 0.67
9 8.36 8.36 1.96 1.96 0.61 0.61 0.35 0.35 0.14 0.14 0.11 0.11 0.11 0.11

10 7.40 7.40 0.48 0.48 0.43 0.43 0.31 0.31 0.16 0.16 0.12 0.12 0.11 0.11
11 5.94 5.94 5.42 5.42 5.00 5.00 1.51 1.51 1.43 1.43 1.15 1.15 0.75 0.75
12 5.98 5.98 0.38 0.38 0.28 0.28 0.14 0.14 0.08 0.08 0.05 0.05 0.03 0.03
13 8.87 8.87 5.74 5.74 4.34 4.34 3.89 3.89 2.62 2.62 1.82 1.82 0.87 0.87
14 9.37 9.37 3.98 3.98 2.14 2.14 1.52 1.52 1.16 1.16 0.72 0.72 0.50 0.50
15 8.13 8.13 4.92 4.92 3.55 3.55 1.36 1.36 1.29 1.29 1.05 1.05 0.56 0.56

Table 2. First 12 Sorted Angles of Discrete Fourier Transform Coefficients

Id Discrete Fourier Transform Coefficient Angles
1 -2.51 2.51 -2.91 2.91 2.14 -2.14 2.06 -2.06 -1.22 1.22 -1.34 1.34
2 -3.05 3.05 -0.82 0.82 2.02 -2.02 1.78 -1.78 -1.96 1.96 0.51 -0.51
3 -2.77 2.77 -0.54 0.54 2.28 -2.28 1.90 -1.90 0.14 -0.14 1.64 -1.64
4 3.01 -3.01 -3.07 3.07 2.93 -2.93 -2.11 2.11 1.23 -1.23 2.78 -2.78
5 -2.77 2.77 -2.67 2.67 -1.07 1.07 1.87 -1.87 2.06 -2.06 -0.87 0.87
6 -3.02 3.02 -2.14 2.14 -0.43 0.43 1.60 -1.60 0.46 -0.46 2.59 -2.59
7 2.66 -2.66 2.94 -2.94 -2.04 2.04 2.15 -2.15 -0.53 0.53 -0.84 0.84
8 -1.46 1.46 2.91 -2.91 -2.81 2.81 -2.13 2.13 1.22 -1.22 -0.12 0.12
9 2.79 -2.79 -2.70 2.70 -1.42 1.42 0.92 -0.92 1.36 -1.36 -0.84 0.84

10 -2.80 2.80 0.80 -0.80 -2.46 2.46 1.19 -1.19 -0.41 0.41 1.46 -1.46
11 1.79 -1.79 -2.94 2.94 -3.13 3.13 -3.09 3.09 1.28 -1.28 -0.26 0.26
12 -2.90 2.90 -2.26 2.26 0.38 -0.38 -2.58 2.58 2.77 -2.77 -0.24 0.24
13 2.78 -2.78 2.85 -2.85 1.40 -1.40 2.60 -2.60 -0.99 0.99 -2.27 2.27
14 -2.87 2.87 2.85 -2.85 -2.78 2.78 -1.87 1.87 0.34 -0.34 -2.41 2.41
15 -2.88 2.88 2.93 -2.93 -2.38 2.38 0.91 -0.91 2.99 -2.99 0.37 -0.37
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Table 3. Karhunen-Loeve Eigen values (first 9 components)

ID 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

1 8.92 7.87 6.10 5.54 2.51 2.24 1.78 1.36 1.33
2 7.92 6.50 2.37 2.27 1.51 1.28 1.18 0.89 0.64
3 7.73 6.98 2.47 2.03 1.48 1.29 1.09 0.86 0.69
4 10.37 9.24 3.72 3.46 2.25 1.97 1.52 1.32 1.25
5 7.87 7.29 2.60 2.24 1.51 1.33 1.19 0.89 0.67
6 8.23 6.76 2.46 2.26 1.50 1.37 1.18 0.90 0.69
7 11.11 10.72 4.14 3.79 2.38 2.01 1.63 1.37 1.22
8 13.23 10.65 8.67 8.22 7.01 5.47 4.66 4.16 3.32
9 9.18 8.84 3.43 3.08 1.91 1.49 1.30 1.18 0.93

10 8.59 7.79 2.78 2.19 1.55 1.38 1.19 0.92 0.74
11 9.25 8.79 7.50 5.20 4.24 3.58 2.85 2.18 1.87
12 7.48 6.47 2.48 2.06 1.48 1.25 1.05 0.82 0.65
13 13.77 11.93 8.50 8.15 6.05 5.12 3.17 2.95 2.49
14 12.73 11.97 4.56 4.28 2.95 2.37 1.73 1.67 1.61
15 9.08 8.73 6.56 5.97 3.96 3.61 2.41 2.37 1.81
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