
UC San Diego
UC San Diego Previously Published Works

Title
Unbalanced non-binary tree-structured vector quantizers

Permalink
https://escholarship.org/uc/item/93k73405

Authors
Schmidl, T M
Cosman, P C
Gray, R M

Publication Date
2014-08-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/93k73405
https://escholarship.org
http://www.cdlib.org/

Unbalanced non-binary tree-structured vector quantizers

Timothy M. Schmidl Pamela C. Cosman Robert M. Gray

Information Systems Laboratory, Stanford University, Stanford, CA 94305-4055

Abstract

An established method f o r developing unbalanced bi-
nary tree-structured vector quantizers i s greedy grow-
ing followed b y optimal pruning. These algorithms can
be extended t o a hybrid binary/quaternary tree struc-
ture or t o a pure quaternary tree structure. The trade-
o f of decreased distortion f o r increased rate is exam-
ined f o r the split into two or four children at each
terminal node. The trees employing quaternary splits
have smaller memory requirements for the codebook
and provide slightly lower mean-squared-error on the
test sequence as compared t o a binary tree.

1 Growing and pruning binary trees

Tree-structured vector quantization (TSVQ) is an
image compression technique that is rapid for both the
encoder and the decoder. A variable rate code can be
implemented by an unbalanced tree, obtained either
by growing a balanced tree and then pruning it back
so that it becomes unbalanced, or by "greedily" grow-
ing an unbalanced tree directly [5]. A balanced TSVQ
is grown one level at a time using, for example, the
splitting method of the generalized Lloyd algorithm
(GLA) [3]. This results in a fixed rate code. A large
fixed rate tree can be pruned back to form a variable
rate tree, but growing a fixed rate tree is unnecessarily
constrained if the final code is to be variable rate. In-
stead, one can grow the tree one node at a time. The
algorithm is an extension of a common decision tree
design technique [l] to VQ. An "impurity function"
which measures the quality or penalty of a particu-
lar node in a tree is chosen. For VQ, the impurity
function is taken to be an average distortion,

d (j) = E [@] 5 E[d(xi Xj)ljli (1)

where d(. , .) is a distortion measure and Xj is the re-
production vector associated with node j . Typically,
the distortion measure used is the mean-squared error.

The conditional expectation is computed as a sam-
ple average based on a training set, e.g., if 3 is the set
of all training vectors xk mapping into node j , then

where 11% 11 is the number of vectors in 73. The "good-
ness'' of a node split is defined as the decrease in node
impurity:

Here, s is a binary test (a nearest neighbor selection in
a TSVQ), d (j) is the impurity (distortion) measured
at node j of the tree, p~ is the proportion of the sam-
ples in node j that go to the left child, and p~ is the
proportion that go to the right child. If p (j) , p (j t) ,
and p (j ~) are the probabilities (as estimated by rela-
tive frequency on the training sequence) of nodes j , j , ,
and j R respectively, then pr, = $# and p~ = %.

Given a tree T, let 5? stand for its leaves (or terminal
nodes). Assume that we split j E T into two new
leaves j L and j R . Let D and R stand for the distortion
and rate, respectively, measured by T, and let D' and
R' stand for the distortion and rate of the tree after j
is split. Let AD = D' - D and AR = R' - R be the
change in the distortion and rate, respectively, due to
splitting j , and let l (j) be the depth of node j . Then

(4)

(5)

1519
1058-6393/93 $03.00 Q 1993 IEEE

for that split. The GLA can be run again to determine

i e t
i # j

and the ratio of the change in distortion to the change
in rate due to splitting leaf j is

which is the goodness of split for leaf j .
As in decision tree design, we can design a TSVQ

one node at a time, always splitting the node with the
largest A. We take the binary test s to be a nearest
neighbor selection of node labels designed by the GLA,
although other tests could be used. The algorithm is
“greedy” in the sense that each node is split without
considering its later effect on the tree. This method
results in an unbalanced tree, since the node that is
split can be at any depth. There will be more code-
words available to code high distortion events; this is
where the tree will have been split the most.

The growing method optimally trades off rate and
distortion for each new node in a greedy fashion. The
resulting tree can then be pruned with the generalized
Breiman, Friedman, Olshen, and Stone (BFOS) algo-
rithm [l, 21 an extension of an idea from classification
tree design to coding. One can achieve a lower distor-
tion for a given average rate by optimally pruning the
tree with the generalized BFOS algorithm rather than
by removing the nodes in the reverse order in which
they were added. This is because the growing a lge
rithm is greedy, whereas the BFOS pruning algorithm
removes nodes optimally. Unbalanced trees are also
able to code high distortion events at a higher reso-
lution than can balanced trees which are limited by
their initial depth.

2 Extension to non-binary trees

These growing and pruning algorithms can be di-
rectly extended to m-ary trees, such as quaternary, or
to hybrid trees, such as a mixed binarylquaternary
structure. The idea of a hybrid tree is to allow the
greedy algorithm to choose the type of split that pro-
vides the best trade-off of rate and distortion at each
node. For each terminal node in the tree, we first run
the GLA to determine how that node would split into
2 children. We can calculate

(9)

for the quaternary split. For a hybrid bilquat tree, the
larger of the two ratios provides the candidate split for
that node; it is compared against the candidate splits
for all the other current terminal nodes in order to
choose the next node for splitting. The extension of
the pruning algorithm is analogous. For the pure qua-
ternary tree, the candidate split for a node is simply
taken to be A4. Because the GLA must be run twice
for each split, this algorithm for a hybrid tree requires
more time to develop a tree than does the pure bi-
nary or pure quaternary algorithm. However, this is
not considered to be a probleni since the codebook
development is performed only once, off-line.

Binary, quaternary, and hybrid binarylquaternary
trees were grown to a depth of 0.75 bpp on a train-
ing sequence of five 512 x 512 images from the USC
database blocked into 4 x 4 vectors. The trees were
pruned back to severdl different bit rates between 0
and 0.75 bpp. On each pruned subtree, the distortion
was measured on two test images (“Lena” and “LAX”)
not in the training set. The results are shown in Fig-
ures 1-2. In these figures, the results for the binary
tree are shown as a solid line, those for the hybrid tree
are shown as a dashed line, and those for the quater-
nary tree are shown as dash-dot. At the low bit rates,
the quaternary performs best, and the binary is iden-
tical to the hybrid because the hybrid tree does not
choose to make any quaternary splits. At intermedi-
ate rates, the hybrid and quaternary trees outperform
the binary tree by up to 10% on the test images. We
also examined octonary trees and hybrid bi/quat/oct
trees. The trees involving octonary splits were not
significantly different from those involving quaternary
splits, and the results are not shown.

The quaternary splits require more time for encod-
ing than the binary splits. If implemented with dis-
tortion calculations, they are equivalent: to descend
2 levels in a binary tree, one must make a total of
4 distortion calculations (2 at the first level, and 2
at the next level). To descend one level in a quater-
nary tree, one makes 4 distortion calculations. Thus
in either case, there is the same cost of 2 distortion
calculations per 1 bit output. However, encoding for
the binary split can be implemented as a hyperplane
test, which would require only half the time, since
the dot product calculation is approximately as time-
consuming as one distortion computation. Although

1520

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

with distortion computations, the binary and quater-
nary splits are equivalent, this is no longer the case
with an octonary tree, where one makes 8 calculations
in order to put out 3 bits, for a cost of 8/3 calculations
per bit. With a full search VQ, the cost per bit de-
pends on the codebook size, but one can, for example,
make 256 distortion calculations in order to put out 8
bits, for a complexity of 32 calculations per bit out-
put. So the encoding complexity increases along the
spectrum of m-ary trees as they approach full search.

An additional advantage comes from the memory
savings. Tree-structured codebooks occupy consider-
ably more memory space than do full search code-
books because all the internal nodes must be stored
as well as the terminal nodes. In this respect, qua-
ternary splits are superior to binary ones, because a
2-level balanced binary tree requires storage of the two
internal nodes in addition to the root node and the 4
terminal nodes, whereas a quaternary tree of the same
rate has only the root node and the 4 terminal nodes.
Figure 3 plots the total number of nodes (terminal +
internal) in a tree as a function of bit rate (binary:

Figure 1: Distortion (MSE) vs. bit rate (bpp) on
“Lena” test image

solid line, hybrid: dashed line, quaternary: dash-dot
line). The binary tree has about 30% more nodes over
a wide range of rates. If the binary search is imple-
mented as a hyperplane test, then the actual vectors
corresponding to the nodes do not need to be stored
at the encoder. However, the vectors would need to
be stored at the decoder, and if the system is to be
used progressively, then the vectors corresponding to
the internal nodes would need to be stored as well as
those for the terminal nodes.

Figure 2: Distortion (MSE) vs. bit rate (bpp) on
“LAX” test image

Figure 3: Total number of tree nodes vs. bit rate
(bPP).

1621

3 Initialization of quaternary splits

In the original binary greedy growing algorithm,
the Lloyd algorithm for each split was initialized by
setting one child’s codeword to be equal to the parent
centroid t7, and choosing the other child’s codeword to
be (1 + e)$, where e is some small number. The Lloyd
algorithm is then run to improve these two codewords.
By setting one child’s codeword to be equal to the par-
ent’s centroid, one ensures that the children will pro-
vide at least no worse a representation for the training
vectors than the parent node did. The choice of the
other child’s codeword as a slight perturbation of v’ in
the direction of v’was arbitrary.

Other researchers tried splitting in the principal
axis direction [4, 71, and it was found that initializ-
ing the Lloyd algorithm with a perturbation in the
principal axis direction produced better splits than
a random perturbation. Because neighboring pix-
els in a block are highly correlated, the data set of
training vectors is strongly “cigar-shaped” along the
(1,1, . . . , 1) direction for most of the early nodes of the
tree, and principal axis splitting capitalizes on that
correlation. In work that attempted to jointly opti-
mize many splits of the tree at once, it was noted that
the principal axes of the split subsets remain approxi-
mately the same for about 30 splits, for many different
types of images [6].

Thus it turned out that the original arbitrary choice
of splitting in the direction of v’ was a good one. For
the early nodes of the tree, the centroids lie nearly
along the (1,1, . . . , 1) direction, and so do the principal
axes of the clusters. So perturbing in the direction of v’
is nearly identical to perturbing in the principal axis
direction. Towards the bottom of a large tree, the
clusters are more likely to be spherical rather than
strongly cigar-shaped, so the perturbation in the v’
direction would tend not to be particularly worse or
better than any other.

How does this discussion extend to the quaternary
case, in which one needs to choose three perturba-
tion directions? We tried a method based on prin-
cipal axes, as well as several ad hoc methods which
attempt to “divide up” the (1,1,. . . , 1) or the v’ di-
rection between them. In all cases, one of the four
children nodes was initialized to equal the centroid v’
of the parent node. The other 3 children were initial-
ized to €1 + ;, €2 + 5, and €3 + $, where €1, €2, and
€3 are small vectors whose directions are given in Ta-
ble l for the 6 different methods tried. As shown in
Figure 4, when a pure quaternary tree is grown using
these different initialization methods, the difference in
performance is very slight. The last method listed,

€1 €2 €3

01 (12 a3

(1.. .l) (1 -1 ...) (-1 1 ...)

(111110 ... 0)G (0 ... 0111110 ... 0); (0 ... 0llllll)v’
(1 ... 10); (1 ... 101); (1 ... 1Oll)C
(1 ...)i? (-1. ..-l)G (1 -1 1 -l...)v’
(1 ... 1); (1 -1 ...).’ (-1 1 ...)v’

Table 1: Initialization methods: a1, u2, u3 denote the
first three principal axis directions.

better than the others by a small amount for this test
image, is shown as a dashed line.

‘58.1 0.2 0.3 0.4 0.5 0.6 0.7 I)

Figure 4: Distortion (MSE) vs. bit rate (bpp) on
“LAX” test image: comparison of initialization meth-
ods for quaternary splits

4 Using lookahead

For both the USC training set discussed above and
a training set of magnetic resonance brain scans, the
hybrid TSVQ made its first few splits binary. Qua-
ternary splits started occasionally winning out over
binary ones only after the first few tree levels. One
can speculate that binary splits are chosen over qua-
ternary ones at the low levels of the tree because of this
tendency of the subsets to be strongly “cigar-shaped”
along the principal axis direction for the early splits.
However, it is known that a full search VQ tends to
outperform a balanced TSVQ of the same rate. There-
fore, a quaternary split of the root node will often be
an improvement over 2 levels of binary splits of the
root node. One could know if it is an improvement
by using lookahead to determine the future binary

1522

splits of the initial binary split, and then comparing
the 2-level tradeoff of distortion for rate against the
quaternary case. The difficulty of imposing such a
seemingly superior quaternary split on the tree is that
the binary greedy growing algorithm, after splitting
the root node and the preferred one of its two chil-
dren, may decide never to return to the other child for
splitting. If the other child has a sufficiently low dis-
tortion, then the tradeoff might never be good
enough to cause that node to be chosen. In that case,
having started the tree with a quaternary split will
be inferior to the binary choice. The comments here
about the root node apply to all subsequent nodes as
well. One way of guaranteeing that a t each node j the
tree always has the better of the two choices (quater-
nary split or 2-level balanced binary split) would be to
run the greedy growing algorithm as discussed above,
choosing the better of the quaternary or 1-level binary
split, and then, ifthe growing algorithm at some later
point chooses to come back and split the other child
of node j, then the 2-level balanced binary tree de-
scending from node j could be compared against the
quaternary split of that node and replaced if neces-
sary. If the quaternary split did replace it, all the
splitting that occurred between the first and second
visitations of node j ’ s children would have to be re-
done. As it was felt this backtracking approach would
be too time-intensive, we implemented a simple looka-
head step instead, in which the quaternary split was
chosen over the 2-level balanced binary in those cases
where it provided a superior trade-off. The resulting
tree performed slightly better than the hybrid trees
grown without lookahead.

These remarks apply even more strongly to the
bi/quat/oct hybrid tree structure. An octonary split
is less likely to be chosen than a binary split, and it
should be compared against 3 levels of binary splits.
There is a greater need for backtracking or lookahead,
and we have not yet implemented these, nor have we
varied the octonary initialization. This perhaps ex-
plains the preliminary results that a pure octonary
tree and the bi/quat/oct hybrid tree do not outper-
form the trees involving only binary and quaternary
splits.

5 Conclusion

Greedy growing and optimal pruning algorithms for
binary tree structures can be directly extended to pro-
duce m-ary trees and hybrid trees that mix differ-
ent types of splits. The quaternary and hybrid bi-

nary/quaternary trees provide a slight decrease in dis-
tortion and a significant decrease in codebook storage
requirements, at the expense of an increase in encod-
ing time. Additional refinements to this algorithm,
including substituting quaternary splils for 2-level bal-
anced binary splits when appropriate and examining
different choices for the initialization of the quaternary
Lloyd splits provided small additional improvements.
By examining binary, quaternary and octonary trees
and hybrid mixtures of them, this study is a prelim-
inary attempt to understand the tradeoffs in perfor-
mance, storage requirements, and encoding time that
lie along the spectrum of unbalanced tree structures
from binary TSVQ to full search VQ.

6 Acknowledgments

This work was supported in part by the National
Institutes of Health under Grant CA49697-02, by
the National Science Foundation under Grant MIP-
9016974, and by a Graduate Fellowship from the Na-
tional Science Foundation.

References

[l] L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, CA, 1984.

[2] P. A. Chou, T. Lookabaugh, and R. M. Gray. Opti-
mal pruning with applications to tree-structured source
coding and modeling. IEEE Tmns. Inform. Theory,
35(2):299-315, March 1989.

[3] Y. Linde, A. BUZO, and R. M. Gray. An algorithm for
vector quantizer design. IEEE Trans. Comm., COM-

[4] M.T. Orchard and C.A. Bouman. Color quantization
of images. IEEE Tmns. Signal Process., 39:2677-2690,
Dec. 1991.

[5] E. A. Riskin and R. M. Gray. A greedy tree growing
algorithm for the design of variable rate vector quantiz-
ers. IEEE Trans. Signal Process., 39:2500-2507, Nov.
1991.

[6] X. Wu. Vector quantizer design by constrained global
optimization. In J. A. Storer and M. Cohn, editors,
Proceedings Data Compression Conference, pages 132-
141, Snowbird, Utah, March 1992. IEEE Computer So-
ciety Press.

[7] X. Wu and K. Zhang. A better tree-structured vector
quantizer. In J. A. Storer and J. H. Reif, editors, Pro-
ceedings Data Compression Conference, pages 392-401,
Snowbird, Utah, April 1991. IEEE Comput,er Society
Press.

28:84-95, Jan. 1980.

1523

