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Unbalanced non-binary tree-structured vector quantizers 

Timothy M. Schmidl Pamela C. Cosman Robert M. Gray 

Information Systems Laboratory, Stanford University, Stanford, CA 94305-4055 

Abstract 

An established method f o r  developing unbalanced bi- 
nary tree-structured vector quantizers i s  greedy grow- 
ing followed b y  optimal pruning. These algorithms can 
be extended t o  a hybrid binary/quaternary tree struc- 
ture or t o  a pure quaternary tree structure. The trade- 
o f  of decreased distortion f o r  increased rate is  exam- 
ined f o r  the split into two or four  children at each 
terminal node. The trees employing quaternary splits 
have smaller memory  requirements for the codebook 
and provide slightly lower mean-squared-error on the 
test sequence as compared t o  a binary tree. 

1 Growing and pruning binary trees 

Tree-structured vector quantization (TSVQ) is an 
image compression technique that is rapid for both the 
encoder and the decoder. A variable rate code can be 
implemented by an unbalanced tree, obtained either 
by growing a balanced tree and then pruning it back 
so that it becomes unbalanced, or by "greedily" grow- 
ing an unbalanced tree directly [5]. A balanced TSVQ 
is grown one level at a time using, for example, the 
splitting method of the generalized Lloyd algorithm 
(GLA) [3]. This results in a fixed rate code. A large 
fixed rate tree can be pruned back to form a variable 
rate tree, but growing a fixed rate tree is unnecessarily 
constrained if the final code is to be variable rate. In- 
stead, one can grow the tree one node at a time. The 
algorithm is an extension of a common decision tree 
design technique [l] to VQ. An "impurity function" 
which measures the quality or penalty of a particu- 
lar node in a tree is chosen. For VQ, the impurity 
function is taken to be an average distortion, 

d ( j )  = E [ @ ]  5 E[d(xi Xj)ljli (1) 

where d( . ,  .) is a distortion measure and Xj is the re- 
production vector associated with node j .  Typically, 
the distortion measure used is the mean-squared error. 

The conditional expectation is computed as a sam- 
ple average based on a training set, e.g., if 3 is the set 
of all training vectors xk mapping into node j ,  then 

where 11% 11 is the number of vectors in 73. The "good- 
ness'' of a node split is defined as the decrease in node 
impurity: 

Here, s is a binary test (a nearest neighbor selection in 
a TSVQ), d ( j )  is the impurity (distortion) measured 
at node j of the tree, p~ is the proportion of the sam- 
ples in node j that go to the left child, and p~ is the 
proportion that go to the right child. If p ( j ) , p ( j t ) ,  
and p ( j ~ )  are the probabilities (as estimated by rela- 
tive frequency on the training sequence) of nodes j ,  j , ,  
and j R  respectively, then pr, = $# and p~ = %. 

Given a tree T, let 5? stand for its leaves (or terminal 
nodes). Assume that we split j E T into two new 
leaves j L  and j R .  Let D and R stand for the distortion 
and rate, respectively, measured by T, and let D' and 
R' stand for the distortion and rate of the tree after j 
is split. Let AD = D' - D and AR = R' - R be the 
change in the distortion and rate, respectively, due to 
splitting j ,  and let l ( j )  be the depth of node j .  Then 

(4) 

( 5 )  
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for that split. The GLA can be run again to determine 

i e t  
i # j  

and the ratio of the change in distortion to the change 
in rate due to splitting leaf j is 

which is the goodness of split for leaf j .  
As in decision tree design, we can design a TSVQ 

one node at a time, always splitting the node with the 
largest A. We take the binary test s to be a nearest 
neighbor selection of node labels designed by the GLA, 
although other tests could be used. The algorithm is 
“greedy” in the sense that each node is split without 
considering its later effect on the tree. This method 
results in an unbalanced tree, since the node that is 
split can be at any depth. There will be more code- 
words available to code high distortion events; this is 
where the tree will have been split the most. 

The growing method optimally trades off rate and 
distortion for each new node in a greedy fashion. The 
resulting tree can then be pruned with the generalized 
Breiman, Friedman, Olshen, and Stone (BFOS) algo- 
rithm [l,  21 an extension of an idea from classification 
tree design to coding. One can achieve a lower distor- 
tion for a given average rate by optimally pruning the 
tree with the generalized BFOS algorithm rather than 
by removing the nodes in the reverse order in which 
they were added. This is because the growing a lge  
rithm is greedy, whereas the BFOS pruning algorithm 
removes nodes optimally. Unbalanced trees are also 
able to code high distortion events at a higher reso- 
lution than can balanced trees which are limited by 
their initial depth. 

2 Extension to non-binary trees 

These growing and pruning algorithms can be di- 
rectly extended to m-ary trees, such as quaternary, or 
to hybrid trees, such as a mixed binarylquaternary 
structure. The idea of a hybrid tree is to allow the 
greedy algorithm to choose the type of split that pro- 
vides the best trade-off of rate and distortion at each 
node. For each terminal node in the tree, we first run 
the GLA to determine how that node would split into 
2 children. We can calculate 

(9) 

for the quaternary split. For a hybrid bilquat tree, the 
larger of the two ratios provides the candidate split for 
that node; it is compared against the candidate splits 
for all the other current terminal nodes in order to 
choose the next node for splitting. The extension of 
the pruning algorithm is analogous. For the pure qua- 
ternary tree, the candidate split for a node is simply 
taken to be A4. Because the GLA must be run twice 
for each split, this algorithm for a hybrid tree requires 
more time to develop a tree than does the pure bi- 
nary or pure quaternary algorithm. However, this is 
not considered to be a probleni since the codebook 
development is performed only once, off-line. 

Binary, quaternary, and hybrid binarylquaternary 
trees were grown to a depth of 0.75 bpp on a train- 
ing sequence of five 512 x 512 images from the USC 
database blocked into 4 x 4 vectors. The trees were 
pruned back to severdl different bit rates between 0 
and 0.75 bpp. On each pruned subtree, the distortion 
was measured on two test images (“Lena” and “LAX”) 
not in the training set. The results are shown in Fig- 
ures 1-2. In these figures, the results for the binary 
tree are shown as a solid line, those for the hybrid tree 
are shown as a dashed line, and those for the quater- 
nary tree are shown as dash-dot. At the low bit rates, 
the quaternary performs best, and the binary is iden- 
tical to the hybrid because the hybrid tree does not 
choose to make any quaternary splits. At intermedi- 
ate rates, the hybrid and quaternary trees outperform 
the binary tree by up to 10% on the test images. We 
also examined octonary trees and hybrid bi/quat/oct 
trees. The trees involving octonary splits were not 
significantly different from those involving quaternary 
splits, and the results are not shown. 

The quaternary splits require more time for encod- 
ing than the binary splits. If implemented with dis- 
tortion calculations, they are equivalent: to descend 
2 levels in a binary tree, one must make a total of 
4 distortion calculations (2 at the first level, and 2 
at the next level). To descend one level in a quater- 
nary tree, one makes 4 distortion calculations. Thus 
in either case, there is the same cost of 2 distortion 
calculations per 1 bit output. However, encoding for 
the binary split can be implemented as a hyperplane 
test, which would require only half the time, since 
the dot product calculation is approximately as time- 
consuming as one distortion computation. Although 
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with distortion computations, the binary and quater- 
nary splits are equivalent, this is no longer the case 
with an octonary tree, where one makes 8 calculations 
in order to put out 3 bits, for a cost of 8/3 calculations 
per bit. With a full search VQ, the cost per bit de- 
pends on the codebook size, but one can, for example, 
make 256 distortion calculations in order to put out 8 
bits, for a complexity of 32 calculations per bit out- 
put. So the encoding complexity increases along the 
spectrum of m-ary trees as they approach full search. 

An additional advantage comes from the memory 
savings. Tree-structured codebooks occupy consider- 
ably more memory space than do full search code- 
books because all the internal nodes must be stored 
as well as the terminal nodes. In this respect, qua- 
ternary splits are superior to binary ones, because a 
2-level balanced binary tree requires storage of the two 
internal nodes in addition to the root node and the 4 
terminal nodes, whereas a quaternary tree of the same 
rate has only the root node and the 4 terminal nodes. 
Figure 3 plots the total number of nodes (terminal + 
internal) in a tree as a function of bit rate (binary: 

Figure 1: Distortion (MSE) vs. bit rate (bpp) on 
“Lena” test image 

solid line, hybrid: dashed line, quaternary: dash-dot 
line). The binary tree has about 30% more nodes over 
a wide range of rates. If the binary search is imple- 
mented as a hyperplane test, then the actual vectors 
corresponding to the nodes do not need to be stored 
at the encoder. However, the vectors would need to 
be stored at the decoder, and if the system is to be 
used progressively, then the vectors corresponding to 
the internal nodes would need to be stored as well as 
those for the terminal nodes. 

Figure 2: Distortion (MSE) vs. bit rate (bpp) on 
“LAX” test image 

Figure 3: Total number of tree nodes vs. bit rate 
(bPP). 
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3 Initialization of quaternary splits 

In the original binary greedy growing algorithm, 
the Lloyd algorithm for each split was initialized by 
setting one child’s codeword to be equal to the parent 
centroid t7, and choosing the other child’s codeword to 
be (1 + e)$, where e is some small number. The Lloyd 
algorithm is then run to improve these two codewords. 
By setting one child’s codeword to be equal to the par- 
ent’s centroid, one ensures that the children will pro- 
vide at least no worse a representation for the training 
vectors than the parent node did. The choice of the 
other child’s codeword as a slight perturbation of v’ in 
the direction of v’was arbitrary. 

Other researchers tried splitting in the principal 
axis direction [4, 71, and it was found that initializ- 
ing the Lloyd algorithm with a perturbation in the 
principal axis direction produced better splits than 
a random perturbation. Because neighboring pix- 
els in a block are highly correlated, the data set of 
training vectors is strongly “cigar-shaped” along the 
(1,1, . . . , 1) direction for most of the early nodes of the 
tree, and principal axis splitting capitalizes on that 
correlation. In work that attempted to jointly opti- 
mize many splits of the tree at once, it was noted that 
the principal axes of the split subsets remain approxi- 
mately the same for about 30 splits, for many different 
types of images [6]. 

Thus it turned out that the original arbitrary choice 
of splitting in the direction of v’ was a good one. For 
the early nodes of the tree, the centroids lie nearly 
along the (1,1, . . . , 1) direction, and so do the principal 
axes of the clusters. So perturbing in the direction of v’ 
is nearly identical to perturbing in the principal axis 
direction. Towards the bottom of a large tree, the 
clusters are more likely to be spherical rather than 
strongly cigar-shaped, so the perturbation in the v’ 
direction would tend not to be particularly worse or 
better than any other. 

How does this discussion extend to the quaternary 
case, in which one needs to choose three perturba- 
tion directions? We tried a method based on prin- 
cipal axes, as well as several ad hoc methods which 
attempt to “divide up” the (1,1,. . . , 1) or the v’ di- 
rection between them. In all cases, one of the four 
children nodes was initialized to equal the centroid v’ 
of the parent node. The other 3 children were initial- 
ized to €1 + ;, €2 + 5, and €3 + $, where €1, €2, and 
€3 are small vectors whose directions are given in Ta- 
ble l for the 6 different methods tried. As shown in 
Figure 4, when a pure quaternary tree is grown using 
these different initialization methods, the difference in 
performance is very slight. The last method listed, 

€1 €2 €3 

01 (12 a3 

(1.. .l) (1 -1 ...) (-1 1 ...) 

(111110 ... 0)G (0 ... 0111110 ... 0); (0 ... 0llllll)v’ 
(1 ... 10); (1 ... 101); (1 ... 1Oll)C 
(1 ...)i? (-1. ..-l)G (1 -1 1 -l...)v’ 
(1 ... 1); (1 -1 ...).’ (-1 1 ...)v’ 

Table 1: Initialization methods: a1, u2, u3 denote the 
first three principal axis directions. 

better than the others by a small amount for this test 
image, is shown as a dashed line. 

‘58.1 0.2 0.3 0.4 0.5 0.6 0.7 I) 

Figure 4: Distortion (MSE) vs. bit rate (bpp) on 
“LAX” test image: comparison of initialization meth- 
ods for quaternary splits 

4 Using lookahead 

For both the USC training set discussed above and 
a training set of magnetic resonance brain scans, the 
hybrid TSVQ made its first few splits binary. Qua- 
ternary splits started occasionally winning out over 
binary ones only after the first few tree levels. One 
can speculate that binary splits are chosen over qua- 
ternary ones at  the low levels of the tree because of this 
tendency of the subsets to be strongly “cigar-shaped” 
along the principal axis direction for the early splits. 
However, it is known that a full search VQ tends to 
outperform a balanced TSVQ of the same rate. There- 
fore, a quaternary split of the root node will often be 
an improvement over 2 levels of binary splits of the 
root node. One could know if it is an improvement 
by using lookahead to determine the future binary 
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splits of the initial binary split, and then comparing 
the 2-level tradeoff of distortion for rate against the 
quaternary case. The difficulty of imposing such a 
seemingly superior quaternary split on the tree is that 
the binary greedy growing algorithm, after splitting 
the root node and the preferred one of its two chil- 
dren, may decide never to return to the other child for 
splitting. If the other child has a sufficiently low dis- 
tortion, then the tradeoff might never be good 
enough to cause that node to be chosen. In that case, 
having started the tree with a quaternary split will 
be inferior to the binary choice. The comments here 
about the root node apply to all subsequent nodes as 
well. One way of guaranteeing that a t  each node j the 
tree always has the better of the two choices (quater- 
nary split or 2-level balanced binary split) would be to  
run the greedy growing algorithm as discussed above, 
choosing the better of the quaternary or 1-level binary 
split, and then, ifthe growing algorithm at  some later 
point chooses to come back and split the other child 
of node j, then the 2-level balanced binary tree de- 
scending from node j could be compared against the 
quaternary split of that node and replaced if neces- 
sary. If the quaternary split did replace it, all the 
splitting that occurred between the first and second 
visitations of node j ’ s  children would have to be re- 
done. As it was felt this backtracking approach would 
be too time-intensive, we implemented a simple looka- 
head step instead, in which the quaternary split was 
chosen over the 2-level balanced binary in those cases 
where it provided a superior trade-off. The resulting 
tree performed slightly better than the hybrid trees 
grown without lookahead. 

These remarks apply even more strongly to  the 
bi/quat/oct hybrid tree structure. An octonary split 
is less likely to be chosen than a binary split, and it 
should be compared against 3 levels of binary splits. 
There is a greater need for backtracking or lookahead, 
and we have not yet implemented these, nor have we 
varied the octonary initialization. This perhaps ex- 
plains the preliminary results that a pure octonary 
tree and the bi/quat/oct hybrid tree do not outper- 
form the trees involving only binary and quaternary 
splits. 

5 Conclusion 

Greedy growing and optimal pruning algorithms for 
binary tree structures can be directly extended to  pro- 
duce m-ary trees and hybrid trees that mix differ- 
ent types of splits. The quaternary and hybrid bi- 

nary/quaternary trees provide a slight decrease in dis- 
tortion and a significant decrease in codebook storage 
requirements, at the expense of an increase in encod- 
ing time. Additional refinements to this algorithm, 
including substituting quaternary splils for 2-level bal- 
anced binary splits when appropriate and examining 
different choices for the initialization of the quaternary 
Lloyd splits provided small additional improvements. 
By examining binary, quaternary and octonary trees 
and hybrid mixtures of them, this study is a prelim- 
inary attempt to understand the tradeoffs in perfor- 
mance, storage requirements, and encoding time that 
lie along the spectrum of unbalanced tree structures 
from binary TSVQ to full search VQ. 
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