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Sequence to structure to function:
computational strategies for modeling the 3D genome

Laura Gunsalus

Abstract

The spatial organization of chromosomes within the cell nucleus facilitates critical genomic processes including

transcription, replication, and repair. Understanding how DNA sequence informs genome folding and how

chromatin conformation instructs transcription remains a central challenge. This dissertation presents

computational strategies to advance our understanding of the principles governing three-dimensional chromatin

structure and their implications for gene regulation. In Chapter 2, I perform large-scale in silico mutagenesis

using a deep learning model to systematically uncover DNA sequences that encode folding patterns. Chapter 3

introduces new methods to quantify di�erences between chromatin interaction maps, revealing that integrating

simple, map-informed and feature-based strategies provides the most complete perspective on functionally

relevant organizational changes. Chapter 4 introduces and applies a non-negative matrix factorization method to

decompose single-cell heterogeneity in chromatin structure, linking patterns in cell subpopulations to average

folding principles and transcriptional consequences discerned in bulk. Together, these computational methods

revealed new biological �ndings: repetitive elements, sometimes lacking CTCF motifs, provide sequence

grammar governing chromatin interactions and the chromatin folding in only a small minority of cells often

drives populationwide signals. The work broadly highlights the potential of computational approaches,

especially machine learning, to accelerate discovery in genomics. This work provides templates for future studies

relating sequence, spatial dynamics, and gene regulation amidst widespread variability in the folded genome.
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Chapter 1: Introduction

The human genome is intricately folded within the cell nucleus, adopting a complex three-dimensional (3D)

structure that is crucial for proper gene regulation and cell function. However, understanding the fundamental

principles governing 3D genome organization has remained a central challenge in genomics. While chromosome

conformation capture techniques provide a powerful means to probe 3D chromatin interactions genome-wide,

realizing the full potential of these data requires new computational strategies tailored to the intricacies of the

chromatin folding problem. In this dissertation, I present three complementary projects that aim to advance our

understanding of 3D genome organization by probing the sequence determinants of folding, quantifying

di�erences between folding patterns, and unraveling single-molecule heterogeneity.

The sequence of the genome informs its own folding. In Chapter 2, I demonstrate how pairing convolutional

neural network models of chromatin contacts with large-scale in silico mutagenesis can systematically uncover

DNA elements governing folding. Our unbiased screen highlighted diverse sequences – including transposons,

tRNAs, and GC content shifts – that collaborate with CTCF motifs to architect genome folding. Our �ndings

nominate intriguing sequence candidates outside of known protein binding sites that may orchestrate

chromatin interactions.
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Comparing folding maps between conditions, individuals, and species has been instrumental for unraveling

principles of genome organization. Chapter 3 reveals that commonly used approaches for quantifying map

di�erences often disagree and overlook functionally relevant changes. We introduce and benchmark several new

methods against existing techniques using thousands of in silico perturbations, showing that simple,

map-informed, and feature-based strategies should be used together. The work provides guidelines, open-source

code, and a framework for selecting appropriate comparisons to address diverse research questions in chromatin

biology.

The 3D genome exhibits remarkable cell-to-cell variability, obscuring the relationship between folding and

function. In Chapter 4, I address this challenge by applying non-negative matrix factorization to decompose

single-cell chromatin structure datasets into interpretable components. The resulting templates capture salient

sources of heterogeneity, enable imputation of noisy single-cell maps, and correlate with key genomic

phenotypes like transcription. Subpopulations of cells drive the average folding patterns discerned in bulk. The

method and �ndings provide new avenues to connect 3D genome organization to gene regulation amidst

widespread single-cell variation.

Altogether, this body of work presents new computational strategies to tackle several fundamental challenges in

connecting form and function of the dynamic 3D genome. The remainder of this introduction reviews key

concepts in genome organization and situates the dissertation aims and contributions within the broader �eld of

chromatin organization.
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Background on Genome Architecture

The genome is non-randomly arranged within the cell nucleus, exhibiting hierarchical layers of folding

implicated in critical nuclear processes like transcription, replication, and repair (Dixon et al., 2015). At the

�nest scale, 3 billion DNA base pairs wrap around histone protein cores to form nucleosomes, the fundamental

repeating unit of chromatin. These “beads on a string” further condense with the assistance of architectural

protein complexes like cohesin and condensin (Dixon et al., 2012). Folding at larger scales has been intensively

investigated using chromosome conformation capture techniques (Lieberman-Aiden et al., 2009).

Several salient architectural features of genome topology have emerged from population-scale chromatin

interaction maps. Chromosomes occupy distinct “territories” dependent on gene density, size, and

transcriptional activity (Rao et al., 2014). Within chromosomes, chromatin can segregate into multi-megabase

“compartments” of open, gene-rich euchromatin and closed, gene-poor heterochromatin based on patterns of

preferential self-interaction (Lieberman-Aiden et al., 2009; Rao et al., 2014). Compartments are further

partitioned into topologically-associating domains (TADs), self-interacting regions spanning hundreds of

kilobases to a few megabases in size (Dixon et al., 2012). TAD boundaries align with binding of the zinc-�nger

protein CTCF, which stops the cohesin complex from extruding DNA loops to form insulate domains

(Fudenberg et al., 2016). Enhancer-promoter contacts, thought to potentiate transcriptional activation,

primarily occur within TADs (Jia et al., 2020). Still longer chromatin loops can link TADs and pull distal loci

into spatial proximity (Rao et al., 2014). These layers collectively shape the regulatory landscape of the genome.

Beyond average population folding maps, chromatin architecture exhibits pronounced cell-to-cell variability.

Single-cell technologies like single-cell Hi-C and DNA microscopy enable direct observation of cell-to-cell

heterogeneity in genome organization (Nagano et al., 2013; Ramani et al., 2017; Mateo et al., 2019; Su et al.,
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2020). However, these methods su�er from technical artifacts like missing data and limited genomic coverage

which complicate interpreting single-cell measurements. Additional work is needed to connect heterogeneous

chromatin folding to downstream consequences like variable gene expression.

Notably, the organizational principles described above have all been deduced from population-averaged

chromatin interaction maps. Yet, the prevalence of cell-to-cell variability raises questions about how well

population maps represent the folding of any individual cell (Krietenstein et al., 2020; Hafner et al., 2022). The

complex relationship between population ensembles and single cells highlights a need for strategies tailored to

heterogeneity in chromatin structure.

Dissertation Aims

The development of computational strategies to address key challenges in relating genome sequence and folding

to function is a common thread across these studies. This dissertation puts forth and applies new machine

learning and statistical techniques to tackle three aims:

Aim 1: Identify sequence determinants of 3D genome folding patterns.

While certain architectural proteins like CTCF are known to bind speci�c sequence motifs to orchestrate

folding, a complete accounting of the regulatory genome elements governing chromatin organization has

remained elusive. We lack an unbiased systematic approach to exhaustively mine the human genome sequence

for additional encodings of chromatin structure outside of known protein binding sites.
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Aim 2: Develop and compare methods to accurately quantify differences between 3D genome folding contact maps.

Chromatin interaction maps vary across cell types, individuals, disease states, and species. However, commonly

used scoring techniques often disagree on the most dissimilar map pairs. Improved quanti�cation strategies are

needed to reliably identify and interpret changes between chromatin folding patterns.

Aim 3: Link cell-to-cell variability in chromatin structure to average genomic patterns and function.

Single-cell genome folding data holds promise for connecting 3D architecture to gene regulation within

individual cells. However, pervasive heterogeneity obscures the origins of average folding patterns and their

in�uence on phenotypes like transcription. New approaches are required to deconvolve single-cell variability.

The subsequent sections situate these aims within the context of contemporary chromatin biology. For each

aim, I summarize relevant background, current limitations, and how the presented work puts forth

computational strategies to drive new insights.

Aim 1: Sequence Determinants of Genome Folding

Background

Chromosome conformation capture techniques like Hi-C uncover principles of chromatin folding by

comprehensively pro�ling physical DNA contacts (Lieberman-Aiden et al., 2009; Rao et al., 2014). However,

these approaches sidestep how DNA sequence encoding gives rise to observed architectural patterns. Di�erent

sequences fold uniquely, but we have only limited knowledge of the complex relationship between genome

sequence and structure. Understanding the genome’s sequence-encoded “folding code” could reveal regulators

5
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beyond characterized architectural proteins and provide clues to the molecular driving forces underpinning

folding.

Several lines of evidence indicate instructions for higher-order packing are embedded within the DNA code.

First, the genome itself can be reorganized into active and inactive topological domains in the absence of

proteins through intrinsic sequence preferences like GC content (Naumova et al., 2013; Dekker and Mirny,

2016). Second, genetic perturbations demonstrate causal links between sequence and chromatin architecture.

Structural variants disrupting TAD boundaries have been linked to developmental disorders (Lupiáñez et al.,

2015) and deletions of the Xist gene eliminate X chromosome compaction (Giorgetti et al., 2016). Finally, in

silico mutations to synthetic genomes predictably recon�gure folding, nominating candidate regulatory motifs

(Fudenberg, Kelley and Pollard, 2020). These studies revealed the importance of the zinc-�nger protein CTCF

in facilitating chromatin loop extrusion and TAD boundary formation through motif-driven DNA binding

(Fudenberg et al., 2016; Rao et al., 2017) . Several repetitive elements, such as B2 SINEs, have also been shown

to provide sequence speci�city in local chromatin folding through recruitment of structural proteins and

transcriptional regulators (Bourque et al., 2008; Schmidt et al., 2012).

Still, fundamental questions remain about how DNA sequence encodes chromatin topology. We lack

knowledge of the spectrum of regulatory elements governing folding genome-wide and the grammar underlying

their positional arrangements. A complete framework will likely involve diverse sequences acting in coordination

(Fudenberg, Kelley and Pollard, 2020). Current approaches testing targeted loci have inherently limited scope

and remain intrinsically biased. Recent advanced neural network architectures including Enformer (Avsec,

Agarwal, et al., 2021), Basenji (Kelley et al., 2018), and Basset (Kelley, Snoek and Rinn, 2016) can accurately

predict chromatin accessibility, histone marks, and transcription factor binding directly from raw DNA

6
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sequence context. Specialized models like BPNet (Avsec, Weilert, et al., 2021) and Akita (Fudenberg, Kelley and

Pollard, 2020) can predict protein binding and 3D genome folding from underlying sequence features. These

DNA sequence models open new avenues for mass in silico interrogation. Systematically searching genome

sequence could uncover underappreciated elements overlooked by studies focused on well-characterized motifs.

Limitations of Current Approaches

Small scale perturbation experiments o�er precise mechanistic insight but lack breadth (de Wit et al., 2015; Guo

et al., 2015; Morgan et al., 2017). Genome editing techniques like CRISPR permit targeted manipulation of

local folding, but are laborious and low throughput (Kubo et al., 2021). Conversely, bioinformatic algorithms

predict motifs that correlate with average folding patterns, but rely on known protein binding preferences

(Cuartero et al., 2018). Importantly, correlation does not imply causation, and motifs may simply coincide with

other folding mechanisms without directly regulating architecture. Lastly, existing mutagenesis strategies

interrogate motifs presumed relevant based on limited precedent, constraining the search space (Rao et al.,

2017). Open-ended exploration is needed to realize the full potential of the sequence-encoded folding code.

Aim 2: Comparing 3D Chromatin Folding Patterns

Background

Comparisons of Hi-C maps across conditions have been instrumental for discovering principles of chromatin

topology (Lieberman-Aiden et al., 2009; Dixon et al., 2012; Rao et al., 2014). Map di�erences highlight critical

genes, boundaries, and compartments altered across cell types, species, and disease states (Dixon et al., 2015;

Rao et al., 2017; Eres et al., 2019). Quantitative scoring of map similarities provides a means to distill
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genome-wide chromatin interaction changes into interpretable rankings. By pinpointing regions exhibiting

signi�cant reorganization, di�erential mapping focuses attention on loci that may elucidate general

organizational mechanisms.

However, commonly used quantitative approaches for scoring map di�erences often disagree in their results.

Basic metrics like Pearson or Spearman correlation summarize di�erences into a single number but collapse

complex 2D map patterns (Rao et al., 2014). Mean squared error alternately weights absolute di�erences,

causing intensity �uctuations to dominate over structural changes (Fudenberg, Kelley and Pollard, 2020).

Calling features like loops risks prioritizing noise when signal is ambiguous (Forcato et al., 2017). Multiple

strategies likely o�er complementary strengths and weaknesses.

The choice of scoring regime impacts downstream interpretation, but no consensus exists on a gold standard

quanti�cation approach. Systematically comparing methods using controlled map perturbations could provide

guidelines for selecting suitable techniques based on the folding features and di�erences of interest. However,

experimental Hi-C maps intrinsically re�ect complex composite changes that prohibit isolating variables. In

silico perturbations enable precise control over map alterations to rigorously evaluate scoring regimes.

Limitations of Current Approaches

Existing comparative studies focus on reproducibility, not identifying salient di�erences (Yang et al., 2017;

Yardımcı et al., 2019). Methods are assessed using simulated technical noise or not comprehensively

benchmarked against each other (Stans�eld et al., 2018; Galan et al., 2020). Studies ranking real maps typically

apply one approach in isolation without cross-validation (Schwarzer et al., 2017). This strategy risks prioritizing

artifacts speci�c to the chosen metric. No study o�ers explicit guidelines for method selection tailored to
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research aims. Meanwhile, thousands of Hi-C datasets now exist (Ay and Noble, 2015). Comparing maps from

distinct samples, conditions, individuals, and perturbations is crucial to extract biological insights from this

wealth of data. Systematically characterizing trade-o�s between scoring regimes would aid appropriate

application to diverse chromatin interaction datasets.

Aim 3: Connecting Single-Cell Genome Folding to Average Patterns

Background

Genome folding maps averaged across cell populations obscure widespread heterogeneity at the single-cell level

(Nagano et al., 2017). Still, bulk analyses still provide critical insights into principles of nuclear organization.

This raises a question – do ensemble folding patterns seen in bulk studies accurately represent chromatin folding

in any individual cell? Or conversely, could a small subpopulation of cells drive average trends not re�ected

within most cells (Krietenstein et al., 2020)? Single-cell techniques like DNA microscopy and single-cell Hi-C

hold unique promise for decoding links between variable chromatin structure and downstream phenotypes like

transcription (Ramani et al., 2017; Bintu et al., 2018). However, realizing this potential requires new strategies

tailored to pervasive single-cell heterogeneity.

Unraveling single-cell variability holds two key advantages over population studies. First, heterogeneity itself

may prove biologically meaningful. Distinct cell subsets could underpin processes like development and disease

(Buenrostro et al., 2018). Second, correlating chromatin and phenotypes like gene expression within the same

individual cells could help untangle their murky causal relationship. Enhancer-promoter folding may drive

transcription – or transcription machinery may conversely stabilize contacts (van Steensel and Furlong, 2019).

Teasing apart these possibilities requires connecting behavior in single cells rather than averaging their contact.

9

https://paperpile.com/c/r8r0G3/bV6b
https://paperpile.com/c/r8r0G3/GvyrU
https://paperpile.com/c/r8r0G3/0uAQ5
https://paperpile.com/c/r8r0G3/nue4+zMzYu
https://paperpile.com/c/r8r0G3/hIqK
https://paperpile.com/c/r8r0G3/6ovyi


Several obstacles currently limit biological insights from single-cell analysis. First, sparse single-cell data

exacerbates challenges in accurately identifying features like compartments, TADs, and loops (Forcato et al.,

2017). Second, heterogeneous measurements may re�ect technical noise rather than meaningful biology. Third,

the sheer scale of variation between single cells obscures how subpopulations relate to bulk patterns and

behavior. Computational strategies are urgently needed to overcome these hurdles and realize the potential of

single-cell chromatin folding data.

Limitations of Current Approaches

Early methods focus on clustering single cells but do not link groups to bulk principles (Nagano et al., 2017).

Recent machine learning techniques predict features like compartments directly from contact maps (Zhang,

Zhou and Ma, 2022a) (Zhang et al. 2022). However, this approach still analyzes each cell in isolation.

Meanwhile, averaging contact maps by phenotype to �nd di�erential patterns obscures the cells driving changes.

Another area of active development is imputing missing single-cell data by sharing information across cells

(Zhou et al., 2019). Yet, this assumes cells exhibit stereotyped folds, con�icting with known heterogeneity. We

currently lack ways to deconvolve single-cell variation into interpretable components explaining global trends.

This gap limits connectivity between variable chromatin architecture and downstream consequences.
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2

Chapter 2: In silico discovery of repetitive elements as
key sequence determinants of 3D genome folding

2.1 Abstract

Natural and experimental genetic variants can modify DNA loops and insulating boundaries to tune

transcription, but it is unknown how sequence perturbations a�ect chromatin organization genome-wide. We

developed an in silico deep-learning strategy to quantify the e�ect of any insertion, deletion, inversion, or

substitution on chromatin contacts and systematically scored millions of synthetic variants. While most genetic

manipulations have little impact, regions with CTCF motifs and active transcription are highly sensitive, as

expected. Our unbiased screen and subsequent targeted experiments also point to noncoding RNA genes and

several families of repetitive elements as CTCF motif-free DNA sequences with particularly large e�ects on

nearby chromatin interactions, sometimes exceeding the e�ects of CTCF sites and explaining interactions that

lack CTCF. We anticipate that our available disruption tracks may be of broad interest and utility as a measure

of 3D genome sensitivity and our computational strategies may serve as a template for biological inquiry with

deep learning.
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2.2 Introduction

The human genome gives rise to its own organization in the nucleus, where the folding of chromatin into

intricate and hierarchical structures can be re�ective and instructive of cell state(Misteli, 2020). Sequence itself

contains the information to create some chromatin features. Binding of CTCF proteins to DNA motifs blocks

the extrusion of DNA by motor proteins to create topologically associating domains (TADs) spanning hundreds

of megabases (Guo et al., 2015; Fudenberg et al., 2016, 2017; Rao et al., 2017). These dynamic structures permit

interaction of elements within their boundaries and limit interaction with elements outside to tune gene

expression (Nora et al., 2012; Merkenschlager and Nora, 2016). However, recent reports reveal CTCF may not

be the only factor involved, as some contacts remain after CTCF depletion, and interactions across megabases

are not a�ected (Nora et al., 2017; Barutcu et al., 2018). How exactly sequence informs structure ranging from

the highest levels of genome organization—chromosome territories and compartments—to the level of

individual enhancer-promoter interactions, still remains unclear.

Current approaches relating genome sequence to folding either leverage natural genetic variation or

experimentally manipulate particular loci to test speci�c hypotheses. Applying chromatin capture to genetically

diverse individuals revealed single nucleotide variants associated with loss or gain of chromatin contact(Gorkin

et al., 2019). Large structural variants are also rare at domain boundaries in healthy humans but not in patients

with autism or developmental delay(Fudenberg and Pollard, 2019). To understand the mechanisms underlying

these associations, experimental studies have engineered chromatin contact in cells and mice with synthetic

tethering(Deng et al., 2012) and CRISPR systems(Morgan et al., 2017; Rege et al., 2018; Kubo et al., 2021) and

measured their e�ects on genome folding and expression of genes such as Hbb and Vcan. Findings in these

individual loci may not apply genome-wide and could overlook mechanisms without known precedent. Here,

we propose combining the genome-wide power of population genetics with the precision seen in experimental
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studies. We develop a strategy which leverages deep learning to comprehensively screen the human genome for

key regulators of 3D genome folding.

Whereas previous machine learning approaches required domain experts to select the most relevant

features, deep learning allows patterns to be learned directly from the data without expert input. Deep learning

models perform well in predicting enhancer activity(de Almeida et al., 2022; Taskiran et al., 2022), transcription

factor binding(Avsec, Weilert, et al., 2021), gene expression(Avsec, Agarwal, et al., 2021), and genome folding

(Fudenberg, Kelley and Pollard, 2020; Schwessinger et al., 2020) from sequence, with newer models increasing

scale and incorporating ChIP-Seq and ATAC-Seq to provide cell type-speci�c context(Rui Yang et al., 2021; Tan

et al., 2022; Zhou, 2022). The premise for our study is that we can probe these models as computational oracles

to predict the behavior of DNA sequence at scales intractable experimentally(Yang and Ma, 2022). Models have

been applied to predict the impact of structural variants on human genome folding (Fudenberg, Kelley and

Pollard, 2020; Zhou, 2021), con�rm the importance of CTCF through computational mutagenesis(Fudenberg,

Kelley and Pollard, 2020), and resurrect the folding of Neanderthal genomes(McArthur et al., 2022). These

early reports show that many highly disruptive perturbations lack CTCF or annotated regulatory elements,

hinting that there may be sequences that encode information needed for genome folding left to uncover.

Here, we leverage Akita(Fudenberg, Kelley and Pollard, 2020), a convolutional neural network trained

to predict genome folding from sequence, to perform unbiased and targeted in silico mutagenesis experiments at

scale. Applying this approach to a human foreskin �broblast cell line (HFFc6) with high-resolution micro-C

data for model training, we discovered wide variability in how robust genome folding is to sequence

perturbations. Investigation of sensitive loci revealed both known motifs, like CTCF, and understudied

modulators of 3D genome folding, including transposon and RNA gene clusters. These �ndings replicated in a

human embryonic stem cell line (H1hESC) and were supported by experimental Hi-C in loci with
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human-speci�c repetitive elements. Thus, our genome-wide screen revealed a diverse vocabulary of DNA

elements that collaborate with CTCF to orchestrate TAD-scale chromatin organization.

2.3 Results

2.3.1 Genome-wide deletion screen reveals high variability in 3D genome folding

To measure sequence importance to chromatin organization, we developed a deep-learning scoring strategy to

computationally introduce modi�cations into the human reference genome and predict their impact on genome

folding with Akita(Fudenberg, Kelley and Pollard, 2020). Given a ~1-megabase (Mb) DNA sequence, this

model accurately produces a chromatin contact map at ~2-kilobase (kb) resolution, where TADs and DNA

loops are visible. Akita has previously been used to perform sequence mutagenesis experiments ranging from

one nucleotide to thousands of basepairs(Fudenberg, Kelley and Pollard, 2020; McArthur et al., 2022). To build

a �exible in silico screening strategy based on Akita, we wrote computationally e�cient code that quanti�es the

impact of a centered sequence variant, which we call disruption, as the log mean squared di�erence between the

predicted contact frequency map for the 1-Mb sequence with a sequence alteration compared to that of the

reference sequence. If a variant dramatically rearranges how the genome is predicted to fold, we infer that the

altered sequence could regulate chromatin contacts.

In this study, we used disruption scores to perform a variety of genome-wide screens across millions of

genetic perturbations, including targeted and unbiased deletions, insertions, and substitutions ranging from 1

base pair (bp) to 500,000 bp (Fig. 2.1a). In contrast to in vivo genetic perturbations, our approach enables

precise and �exible genome editing at scale. We �rst assessed all 5-kb deletions tiled

across the genome for their impact on folding in HFFc6 cells (n=574,187). Deletions are highly variable, and

around half produce changes to chromatin contact maps that are noticeable by eye (Fig. 2.1b). Some sequence
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deletions completely rearrange the boundary structure of contact maps, some result in small focal changes (e.g.,

gain or loss of a loop anchor), and some produce no change at all, suggesting the chromatin structure is robust

to sequence manipulation (Fig. 2.1c). As expected, regions of the genome with many CTCF motifs are

particularly sensitive while regions with no motifs are perturbation-resilient (Fig. 2.1d). In sum, 62.1% of the

most sensitive sequences (top decile of scores) fall within 5 kb of CTCF-bound distal enhancers, compared to

only 7.3% of the most robust sequences (bottom decile of scores), establishing that our approach identi�es

known genome folding mechanisms (Fig. 2.2a).

2.3.2 Perturbing euchromatin disrupts genome folding

Disruption scores are also correlated with chromatin compartment, as measured by the �rst eigenvector of the

experimental HFFc6 micro-C contact matrix (Pearson’s r = 0.522, P < 1 x 10-300, n = 11,413; Fig. 2.1e)

(Krietenstein et al., 2020). The mean disruption score within gene-rich and open A compartments is 14.6%

higher than in compact, inactive B compartments. Motivated by existing work illustrating gene-rich GC-rich

regions fall in A compartments, while GC-poor regions, like lamina-associated domains, are known to

self-interact with each other and other GC-poor regions across chromosomes, we next directly evaluated the role

of GC content in disrupting genome folding(Naughton et al., 2013). We observe that high gene density and GC

content are both associated with peaks in disruption scores (Fig. 2.1d, Fig. S2.1a-c). Using HFFc6 total

RNA-Seq (ENCODE Project Consortium et al., 2020), we quanti�ed transcription in each 5-kb window and

observed a strong correlation with disruption scores (Pearson’s r = 0.366, P < 1 x 10-300, n = 11,413). Other

genomic features associated with active chromatin are also more frequent in the most sensitive sequences,

including distal and proximal enhancers and promoters (Fig. 2.2a, S2.2). In sum, it is di�cult to perturb

inactive chromatin and easy to perturb active chromatin.
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The correlation between many of these features re�ects an inherent challenge in disentangling which are

causal and which are re�ective of genome folding (Fig. S2.1c). Indeed, regions that are in A compartments,

contain CTCF binding sites, and are actively transcribed are also the most sensitive (Fig. 2.2b). The e�ect of

CTCF holds within both A and B compartments (Fig. S2.3a-b), indicating that it is directly associated with

sensitive 5-kb bins and is not just a proxy for A compartments. However, both transcription and compartment

are more impactful individually than the presence of CTCF motifs, suggesting additional rules govern which

CTCF sites are in use and which are redundant or decommissioned in a given cell type. Overall, our �ndings

suggest that independent mechanisms at transcriptionally active sites may collaborate to coordinate genome

folding.

2.3.3 Transcriptionally active regions modulate folding alongside CTCF

Chromatin contact and transcription are correlated, but which mechanistically precedes the other is currently an

area of active investigation. While transcription is classically thought to result from enhancer-promoter

interaction constrained by chromatin structure, transcriptional machinery may help to sca�old local chromatin

structure as well(van Steensel and Furlong, 2019). CTCF binding, for example, is essential for boundary

formation and may also in�uence activity of some promoters(Nora et al., 2017), and emerging work reveals

RNA polymerase II and transcription may separately in�uence 3D genome folding(Busslinger et al., 2017;

Zhang et al., 2021). To test this hypothesis, we evaluated all single-nucleotide mutations in the 300 base pairs

(bp) on either side of the transcription start site (TSS) of the 1,789 highest expressed protein coding genes in

HFFc6(ENCODE Project Consortium et al., 2020) and compared disruption scores to expression level in

regions where CTCF motifs are present or absent (Fig. 2.2c). In regions �anking a CTCF motif, we observed a

strong peak in disruption directly upstream of the TSS (Fig. 2.2f, Fig. S2.4). The periodic pattern is more
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detailed than underlying CTCF motifs and more precise than a sum of CTCF ChIP-Seq peaks around the TSS.

Metaplots of the average change in contact reveal that mutations weaken boundaries at the TSS. Our analysis

points to a presence of CTCF at the promoters of highly expressed genes, where some CTCF motifs are

selectively bound and some are not. We note that when no CTCF is present, disruption signi�cantly lower but

still still slightly elevated upstream of the TSS of highly transcribed genes (Fig. 2.2g, Fig. S2.4). Furthermore,

disruption scales with gene expression both when CTCF is present and absent (Fig. 2.2d,e). These results are

consistent with the hypothesis that active transcription may provide an alternate means of stabilizing

DNA-DNA interactions in TSS devoid of CTCF sites through uncharacterized mechanisms, like

transcriptional machinery, nascent RNA, or recruited regulatory RNA.

2.3.4 In silico screening approach validates across cell lines

To test the robustness of our approach and �ndings, we repeated the above analyses in a second cell line. We

selected H1hESCs due to the availability of micro-C data and the opportunity to compare a pluripotent cell line

to a di�erentiated one. Furthermore, H1hESC is one of the �ve cell lines for which the Akita model predicts

chromatin contacts, enabling us to directly assess the e�ects of in silico disruptions on genome folding patterns

in H1hESC alongside HFFc6. This analysis showed that all of the above trends observed in HFFc6, including

disruptions scores being associated with CTCF motifs, transcription, A compartments, GC content, and the

deleted sequence length, are consistent in H1hESC (Fig. S2.5).
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2.3.5 Transposon clusters modulate genome folding independently of CTCF

At the chromosome scale, our unbiased genome-wide screen highlighted clusters of Alu elements and some

other repetitive elements alongside peaks in disruption scores, motivating us to explore their role in 3D genome

folding (Fig. 2.3a). DNA and RNA transposons replicate and insert themselves into DNA, and constitute over

50% of the human genome(Trigiante, Blanes Ruiz and Cerase, 2021; Nurk et al., 2022). They are rich in

transcription factor binding sites(Wang et al., 2007; Bourque et al., 2008; Kunarso et al., 2010), suggesting that

some may have been evolutionarily repurposed as regulatory elements. Growing evidence indicates they provide

a source of CTCF motifs across the genome and serve as both loop anchors and insulators(Raviram et al., 2018;

Choudhary et al., 2020; Diehl, Ouyang and Boyle, 2020). To measure the impact of di�erent families of

repetitive elements on 3D genome sensitivity, we compared disruption of 5-kb windows containing repetitive

elements to those with none. Several families exhibit greater sensitivity to perturbation than CTCF containing

regions (e.g., Alu, SVA, scRNA, srpRNA; Fig. 2.3b). Disruption scores of repetitive elements are not correlated

with mappability, indicating that poor micro-C read mapping in model training data does not bias this result

(Fig. S2.6,   Supplemental Note). As with CTCF(Kentepozidou et al., 2020), regions with higher numbers of

Alu elements are more disruptive upon deletion: the disruption score of 5-kb windows with 5 or more Alu

elements is 9.88% higher than that of windows with no elements (P < 1.54 x 10-291; Fig. 2.3c). This clustering

e�ect holds across many repetitive elements, including MIR and L2 LINE elements, as well as across most small,

non-coding RNA genes (Fig. 3c). Many families, like L1 LINE elements, show no correlation at all, and trends

are consistent across both A and B compartments, hinting that clustering is family speci�c (Fig. 2.3c, Fig.

S2.3c-d).
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To investigate the contribution of repetitive elements independently of �anking sequence, we next

individually deleted over 1 million elements in the RepeatMasker database (Fig. 2.4a). Overall, many elements

create large-scale boundary shifts, with some causing increases and others decreases in contact frequency (Fig.

2.4b). Deletions of almost all families are more disruptive than random deletions, and deletions of families such

as Alu, small RNAs, SVA, and hAT-Charlie are on par with or exceed deletions of CTCF sites across the genome

(Fig. 2.4c). Disruption is moderately correlated with size, but many highly disruptive element families are

relatively small and cause unexpectedly large disruptions given their length (Fig. S2.1d-e, Fig. 2.4c). For

example, deletion of tRNAs, scRNAs, srpRNAs, and snRNAs–all under 130 bp on average–have a propensity

to drastically alter genome folding.

In order to experimentally validate these deep-learning based predictions, we leveraged the natural

sequence di�erences between humans and chimpanzees. Speci�cally, we examined loci with human lineage

speci�c repetitive elements in Hi-C data that we previously generated in human and chimpanzee neural

progenitor cells(Keough et al., 2023). By comparing the experimental data to Akita predictions where the

human-speci�c repetitive element is inserted into the chimpanzee genome and conversely deleted from the

human genome, we �nd that Alu elements unique to humans generate consistent changes to genome folding

(Fig. S2.7). Thus, experimental data validates our in silico screening approach and supports the importance of

Alu and other repetitive elements in genome folding.

We next explored possible mechanisms through which repetitive elements might in�uence genome

folding. Causality is challenging to untangle since each repetitive element can contain features with known

associations to chromatin organization. First, the lengths of repeat clusters are roughly similar to clusters of

CTCF motifs at TAD boundaries (Fig. 2.4c). Second, several repeat families are known to harbor CTCF

motifs(Schmidt et al., 2012). Third, some repeats have a strong GC bias (e.g., Alu GC% > 50%), potentially

allowing them to establish compartments(Su et al., 2014; Lu et al., 2021). Finally, repetitive elements collectively
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account for a large amount of total nuclear transcription(Trigiante, Blanes Ruiz and Cerase, 2021). To dissect

the contributions of CTCF and active transcription versus other features of repetitive elements, we quanti�ed

overlap of these two annotations with repetitive elements that have the highest disruption scores. Only 5.86% of

the 10% most disruptive elements contain a CTCF motif while 13.55% are actively transcribed (Fig. 2.4d), so a

majority overlap neither. Disruptive repetitive element deletions are enriched at distal enhancers that are not

CTCF bound (Fig. S2.3f). These �ndings hint that repetitive elements may aid in genome folding

independently and in collaboration with CTCF and transcription.

To understand the folding phenotypes of element deletions, we next averaged the changes in contact

frequency for the top-scoring elements of each family (Fig. 2.4e). ERVK elements behaved like CTCF sites:

their deletion led to a strong and centered loss of a chromatin boundary. Other repeat families created an

o�-diagonal gain in contact, as seen with Alu and hAT-Charlie, dispersed focal disruptions, as with non-coding

RNAs, and stripes, as with SVA elements. To demonstrate that the model is internally consistent, we performed

a phenotypic rescue, where we deleted an individual hAT-Tip100 element to produce a large change in contact

and attempted to restore the original folding pattern with a di�erent sequence (Fig. 2.4f). While introducing

random DNA or a CTCF motif did not recreate the original contact, inserting a related MER91B hAT-Tip100

element did. We conclude that repetitive element families are associated with distinct chromatin contact map

features, and elements within a family are generally functionally interchangeable.

2.3.6 Insertion of repetitive elements leads to distinct folding phenotypes

Our deletion experiments do not distinguish between repetitive elements that collaborate with CTCF to weaken

or strengthen nearby TAD boundaries and those that separately create chromatin contact. To isolate the e�ects

of repetitive elements, we next designed in silico insertion experiments. We �rst engineered a “blank canvas” with
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no predicted structure by depleting a randomly generated 1 Mb DNA sequence of all CTCF-like motifs (Fig.

2.5a, Fig. S2.8). We then inserted one or more copies of any query sequence into this 1 Mb and quanti�ed

newly arising chromatin contacts. We easily recreated a division closely resembling a TAD boundary by inserting

multiple copies of the canonical CTCF motif (Fig. 2.5b), validating this approach in creating chromatin

contact phenotypes.

After introducing the 1,000 most disruptive repetitive elements in our deletion screen into a blank

canvas, we found a majority also changed contact with insertion, including 80.3% of Alu elements and 86.0% of

ERVK elements (Fig. 2.5c). Additional copies strengthened impact, and fewer copies were needed to induce a

chromatin boundary compared to the CTCF motif (Fig. 2.5e, Fig. S2.9a). Clustering the insertion maps

revealed hAT/MIR insertions produced distinct folding patterns from ERV/SVA element insertions (Fig. 2.5d).

Alu elements consistently produced focal changes at the site of insertion that appeared unlike CTCF-like

boundaries. Curiously, repetitive elements seem to produce two distinct modi�cations to 3D structure upon

insertion. Some elements create CTCF-like domain boundaries which increase in strength as more elements are

inserted (Fig. 2.5f). Other elements, like the Alu and SVA families, form a pattern resembling a cross, with

increased contact both upstream and downstream from the insertion point. This cross-like pattern increases in

size with more element insertions. Insertions of tRNA genes did not create new boundaries, suggesting that

their e�ect on 3D genome folding may be context dependent.

Some repetitive elements harbor CTCF motifs and overlap with CTCF ChIP-Seq peaks, strongly

suggesting that the Akita model predicted their importance because they contain CTCF binding sites.   To test

this hypothesis, we performed saturation mutagenesis across a number of high scoring repetitive elements (Fig.

2.5e). Screening an ERVK element, for example, revealed that the single nucleotides predicted to have the

highest importance for contacts lie directly at the center of a CTCF binding site (Fig. 2.5e). Overall, the closer a

sequence is to matching the canonical CTCF motif, the larger the predicted impact of its insertion (Fig.
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S2.10a-b). Still, most of the elements that produced contact changes had no CTCF overlap, and the 5 to 50-bp

motifs within these elements with the greatest impact did not resemble CTCF motifs (Fig. 2.5e, Fig.

S2.10c-d). Therefore, insertions support the hypothesis that repetitive elements contain sequence determinants

of 3D genome folding beyond CTCF motifs.

2.3.7 Necessary vs Sufficient: A 60 bp segment of Charlie7 is sufficient to induce a
CTCF-like boundary

Mutating individual nucleotides can be enough to disturb protein binding and profoundly impair 3D folding.

By contrast, creating a boundary, loop, or domain from scratch is more challenging, and it is fundamentally

unclear what minimum sequence is su�cient. We next extended our screening approach to explore which

subsequences can produce the de novo contact of a full element.

First, we examined CTCF motifs. Fudenberg et al. mutated all motifs in the JASPAR transcription

factor database and determined that CTCF and CTCFL are most sensitive to sequence

perturbation(Fudenberg, Kelley and Pollard, 2020). To complement this work, we inserted all motifs into a

blank map. We �nd that regardless of motif spacing CTCF and CTCFL are the transcription factor motifs best

able to induce genome folding independently of any surrounding genomic context, followed by HAND2,

Ptf1A, and YY2 (Fig. 2.6a, Fig. S2.11a). YY1 scores relatively lower, perhaps due to its less stable binding or its

binding with co-factors(Hsieh et al., 2022). Sampling and inserting motifs from the CTCF position weight

matrix, we found that the consensus sequence creates a stronger boundary than 99.50% of CTCF variants (Fig.

2.6b). However, a small minority of CTCF “super-motifs” with a T at positions 8 and 12 outperformed the

canonical motif, hinting that the most common CTCF motifs may not be the most strongly insulating ones.

The super-motif sequences also produced stronger boundaries in experimental Hi-C than do the CTCF

consensus sequence (Fig. S2.11b-c), and they are equally likely to overlap CTCF ChIP-seq peaks. These results
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illustrate that Akita can be used to interpret the function of CTCF and other transcription factor binding sites

at single nucleotide resolution.

Next, we dissected Charlie 7, a 367-bp AT-rich (29% GC) hAT-Charlie element on chromosome 11.

Deleting Charlie 7 eliminates chromatin interactions (Fig. 2.5c; Fig. 2.6c). Inserting twenty tandem copies of

Charlie 7 creates a CTCF-like boundary, despite no subsequence resembling a CTCF motif. This boundary

could not be reproduced by inserting a shu�ed Charlie7 sequence or a random sequence of the same length. We

therefore shu�ed individual 10-bp segments of Charlie 7 to destroy local sequence grammar before reinserting

the element into the blank canvas. Shu�ing the �nal 60 bp had the same e�ect as shu�ing the entire element,

revealing that this end of the element is necessary for boundary creation (Fig. 2.6d). We then created sliding

windows of 10 bp, 50 bp, and 100 bp along the element and inserted each subsequence into the blank canvas.

No individual subsequence was su�cient to reproduce the e�ect of the entire element (Fig. 2.6e). However,

shu�ing the �rst 307 bp while maintaining the last 60 bp intact did create a strong boundary. Since the GC

content of Charlie7 is unusually low, we next replaced parts of the element with random GC-matched sequence.

A length-matched sequence with a GC content below 30% and the �nal 60 bp of the Charlie7 element was

su�cient to create a boundary (Fig. 2.6f). Completely random insertions with a GC content below 30% and

above 60% are also highly impactful (Fig. S2.9c-d). Based on these in silico experiments, we conclude that GC

content along with sequence syntax could be critical for the insulating behavior of Charlie7. Looking across all

disruptive retrotransposons, we identify several families with very extreme average GC content (Fig. S2.8b),

suggesting the intriguing hypothesis that abrupt shifts in GC content resulting from repetitive element

insertions into genomic DNA contribute to genome folding.
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2.4 Discussion

In summary, we present a whole-genome, unbiased survey of the sequence determinants of 3D genome

folding using a �exible deep-learning strategy for scoring the e�ect of genetic variants on local chromatin

interactions. Our study utilized synthetic mutations ranging from large deletions tiled across hundreds of

megabases down to single-nucleotide perturbations within sequence motifs. Leveraging the high throughput of

this in silico screening strategy, we showed that sensitivity to 3D genome disruption is associated with A

compartments, extreme GC content, CTCF motif density, and active transcription. We identi�ed clusters of

retrotransposons and RNA genes important for 3D genome folding, as modulating their sequences disrupted

chromatin contacts on par with or more than modulating CTCF sites. Many of the repetitive elements with the

largest e�ects on 3D genome folding when deleted and inserted do not contain CTCF and have not previously

been implicated in chromatin architecture, but they often have di�erent GC content from the sequences into

which they are inserted.

This study contributes to a growing body of evidence showing that transposable elements modulate

genome folding(Zhang et al., 2019) and replication timing(Yang et al., 2022). It has long been hypothesized that

transposons may have been evolutionarily co-opted as regulatory elements(Bourque et al., 2008; Kunarso et al.,

2010). Most transposable elements are decommissioned by chromatin modi�cations(Slotkin and Martienssen,

2007), but functional escape can change genome conformation(Huda, Mariño-Ramírez and Jordan, 2010). We

observe both loss and gain of contact upon transposable element deletion, supporting the idea that these

elements can both establish new boundaries by installing CTCF-like motifs and inhibit ancient CTCF binding

sites to block contact(Choudhary et al., 2020). Our results are also consistent with previous �ndings that speci�c

MIR elements and tRNAs can serve as insulators (Van Bortle et al., 2014; Wang et al., 2015), while Alu and

hAT provide loop anchors(Ferrari et al., 2020; Choudhary et al., 2022), and hint that repetitive elements may
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work in tandem(Lu et al., 2021). Cao et al., for example, identi�ed that many transposable element families, but

MIR SINE elements and L2 LINE elements in particular, are enriched for binding sites and active chromatin

marks, appear in the vicinity of tissue-speci�c gene expression, and interact with each other extensively to

collaborate as enhancers or repressors(Cao et al., 2019). In future work, it would be exciting to test coordination

of transposable elements as shadow loop anchors, theorized by Choudhary et al. to act as redundant regulatory

material supporting CTCF(Choudhary et al., 2020). We anticipate that comparing disruption to element age

and species divergence will help us to understand the evolutionary mechanisms of transposable element

deprogramming and selection in gene regulation.

Although we did not focus on CTCF speci�cally, a similar targeted in silico approach could directly

address why the majority of CTCF motifs are not active(Kim et al., 2007; Chen et al., 2012), and if methylation

sensitivity of CTCF motifs containing CpGs tunes folding speci�city(Hark et al., 2000). We also anticipate

future in silico experiments and investigation of the model with activation maximization(Shrikumar, Greenside

and Kundaje, 2017) will re�ne the spacing and orientation rules of neighboring and redundant CTCF elements

and reveal how CTCF coordinates with �anking proteins and transposable elements.

It is important to emphasize that our in silico strategy, while demonstrated here and previously to be

highly accurate(Fudenberg, Kelley and Pollard, 2020), is a screening and hypothesis-generating tool. Model

predictions, especially those that implicate novel sequence elements or mechanisms, will require further

experimental validation. We view this as a strength of our approach, not a weakness. Our ability to test millions

of mutations e�ciently and in an unbiased manner enables us to develop hypotheses and prioritize genomic loci

that would not otherwise have been considered for functional characterization. It is now a high priority to apply

massively parallel reporter assays, epitope devices, and genome engineering to explore how hAT, MIR, ERV and

SVA elements function in the context of 3D genome folding. We advocate for deep learning as a powerful
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strategy for driving experimental innovation which can be used iteratively with wet lab technologies to accelerate

discovery.

Our conclusions rest heavily upon the Akita model, which only considers a limited genomic window.

Future work could apply the approach presented here with other deep-learning models to test the robustness of

our �ndings and potentially discover additional sequence features missed in our work. Our method scores the

entire 1Mb contact map and weights all regions equally, which may be too insensitive to capture small changes

to speci�c loci. Filtering or weighting regions of the predicted contact maps by overlap with functional genomic

annotations during score computations could also help to selectively test speci�c hypotheses. Our study is

further limited by the quality of the hg38 reference genome, and we anticipate that extending to the new

telomere-to-telomere human genome assembly will enable a better understanding of near-identical repetitive

elements(Nurk et al., 2022). Finally, in order to leverage the best quality data currently available, we only made

predictions across HFFc6 and H1hESC, but features of the 3D genome can be cell-type speci�c(Schmitt et al.,

2016). As very high-resolution and single-cell measurements of chromatin contacts, gene expression, and

accessibility are generated for more cell types, it will be exciting to search for sequences that are necessary and

su�cient for chromatin contacts in each cell type and to explore how variable these sequence determinants are

across cellular contexts.

In our investigation, we develop a toolkit of in silico experimental strategies, including: unbiased and

targeted deletion screens, phenotypic rescue, insertions into synthetic sequence, sampling around known

sequence motifs, and sequence contribution tracks across tens of basepairs to megabases. We hope that the

variety of experiments pro�led here may serve as a template for foundational biological research with deep

learning. We also anticipate that our released disruption tracks will provide useful annotations for genome

sensitivity and yield further insights into chromatin biology (Supplementary Data Table 2.1). In sum, our
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work highlights the potential of deep learning models as powerful tools for biological hypothesis generation and

discovery in regulatory genomics.

2.5 Methods

2.5.1 Akita model and datasets

Throughout this analysis, we use the published convolutional neural network Akita to predict

log(observed/expected) chromatin contact maps from ~1 Mb (1,048,576 bp) of real, altered, or synthetic DNA

sequence(Fudenberg, Kelley and Pollard, 2020)

(https://github.com/calico/basenji/tree/master/manuscripts/akita). All types of mutations, including deletions,

insertions, inversions and substitutions, may be scored as long as they are smaller than 1 Mb. Akita’s predictions

have been shown to mirror experimental results with deletions across scales of thousands of base pairs (bp) to

single nucleotides. Fudenberg et al. originally trained Akita across six cell-types simultaneously, and we made all

predictions in this work in the cell-type with the highest resolution of training data, human foreskin �broblasts

(HFFc6). We �nd that disruption in H1hESC is highly correlated (Fig. S2.5). The experimental Micro-C maps

from HFFc6 (Krietenstein et al., 2020) are used in visualizations. All chromatin and transcriptomic data were

generated in HFFc6 and downloaded from public repositories. The source of all public data, including Micro-C,

ATAC-Seq, RNA-Seq, ChIP-Seq, and compartment calls, can be found in the key resources table. All analyses

use the hg38 genome build. We downloaded centromere locations from UCSC Table Browser (Kent et al.,

2002).
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2.5.2 Computing 3D genome folding disruption scores and deletion screens

The location of deletions and insertions are centered such that the start position of the variant is always

introduced halfway through the 1-Mb sequence at 219 bp. For deletions, we pull additional sequence from the

right to pad the input to 220 bp. We remove sequences from our analysis which overlap centromeres (Miga et al.,

2014), ENCODE blacklisted regions (Amemiya, Kundaje and Boyle, 2019), and regions with an N content

greater than 5%. Evaluating predictions on GPU (NVIDIA GeForce GTX 1080 Ti, NVIDIA TITAN Xp,

NVIDIA GeForce RTX 2080 Ti) decreased the time per variant from 1.58 seconds to 262 ms, on average.

We score disruption as the log of the mean squared error between reference and perturbed maps. Mean

squared error captures large-scale contact map changes, and has been used previously to rank predictions

(Fudenberg, Kelley and Pollard, 2020). Pearson/Spearman correlation is also an appropriate choice (McArthur

et al., 2022).

Mass deletion screens

Along with controls, we perform the following large-scale deletion screens:

1. 5 kb, whole genome (n = 562,743).

2. 10,000 (10k) random CTCF deletions. CTCF locations are pulled from JASPAR 2022

(Castro-Mondragon et al., 2022).

3. 10k 100-bp random deletions. Start locations are randomly sampled from the genome.
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4. Randomly sized deletions, ranging from 1 bp to 100 kb (n = 41,207). Start locations are randomly

sampled from the genome.

5. RepeatMasker database deletions (n = 1,164,107) (Smit, AFA, Hubley, R &Green, P., no date).

RepeatMasker downloaded from UCSC Table Browser. We exclude ambiguous elements (containing

‘?’ in the label). We initially sample 10,000 elements per family or up to the total number of elements in

the family, whichever is less. Thereafter, we randomly sample from the database.

6. TSS deletions. (n = 1,073,329 mutations across 1,789 genes).

A full summary as well as the location of these results can be found in Supplementary Data Table 2.1.

Genomic tracks

We smoothed the disruption scores of 5-kb deletions with a rolling average of 50 bp to create disruption tracks

(Fig. 2.1d, Fig. 2.3a). We additionally visualize the density of the following elements at 5-kb resolution:

1. Reference genes, hg38, GENCODE v39 (Frankish et al., 2021), downloaded from UCSC Table

Browser.

2. ENCODE hg38 v3 candidate cCREs, ENCODE Project (ENCODE Project Consortium et al., 2020) ,

downloaded from UCSC Table Browser.

3. CTCF motifs (MA0139.1), JASPAR 2022 (Castro-Mondragon et al., 2022), downloaded from

http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/hg38/.

4. ATAC-Seq peaks in HFFc6 (Akgol Oksuz et al., 2021).

5. Alu, L1, and L2 elements, RepeatMasker database, v. 4.1.2 (Smit, AFA, Hubley, R & Green, P., no

date), downloaded from UCSC Table Browser.
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Overlap with genomic annotations

We used pre-computed compartment scores generated from the HFFc6 Micro-C dataset originally employed for

training Akita (Krietenstein et al., 2020). To calculate the overlap between disruption scores for 5-kb deletions

and compartment scores generated at 50-kb resolution, we merged both measures by genomic location, �lled

missing disruption values with linear interpolation, and calculated the overlap across A compartments with a

compartment score greater than 0 and B compartments with a compartment score less than 0.

We intersected deleted windows and transposable elements with ENCODE cCREs using bioframe

(Open2C, Abdennur, Fudenberg, et al., 2022) to calculate the percentage overlap. We use the same strategy to

calculate overlap with JASPAR CTCF motifs, ATAC-Seq peaks, and transcribed elements. When quantifying

transcription of repetitive elements unannotated as genes, we calculated overlap with RNA-seq BigWigs,

summed across both strands.

Mappability

Per nucleotide mappability was measured using 24-kmer multi-read mappability, where mappability is the

probability that a randomly selected read of length k in a given region is uniquely mappable (Karimzadeh et al.,

2018). Mappability tracks were downloaded from the Ho�man lab (https://bismap.ho�manlab.org). In this

study, mappability averaged across 5 kb deletions, repetitive element families, and Alu element types in a 100 Mb

subset of chromosome 1 from 100 Mb to 200 Mb.
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In silico mutagenesis at the TSS

We examined behavior at the TSS using in silico mutagenesis. We individually randomly mutated each

nucleotide 300 bp upstream to 300 bp downstream of the top 1,789 highest expressed protein coding genes via

total RNA-Seq and quanti�ed the MSE between mutated and reference predicted maps. We observed that 1,015

genes fell in A compartments, while 63 fell in B compartments. To produce tracks in Fig. 2.2f-g, we averaged

the disruption of each nucleotide by position and smoothed using a rolling average of 20 bp. We used the same

strategy across select repetitive elements to identify which nucleotides most contribute to entire-element

disruption scores (Fig. 2.5e). To create metaplots, we selected the highest scoring nucleotide change for each

gene, and �ltered all genes with a maximum disruption score above -7. We then averaged the di�erence between

reference and perturbed maps for these genes.

Repetitive elements

Repetitive element density was calculated as the number of elements across the entire RepeatMasker database

overlapping each 5-kb genomic bin. We quanti�ed enrichment as the log fold change of the mean disruption

across 10% of genomic windows per family compared to all windows. To create metaplots, we average the

di�erence between maps for the top 100 repetitive element deletions per family, along with CTCF deletions.

Phenotypic Rescue

We pro�led the following elements in our proof-of-concept phenotype rescue screen:

1. A MER91B hAT-Tip100 element at position chr2:98412915-98413053.

SWA score: 392, Divergence: 27%. Disruption from reference = -2.65.

2. A size-matched 138-bp random DNA sequence.
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Disruption from deletion = -2.55.

3. The canonical CTCF motif (TGGCCACCAGGGGGCGCTA).

Disruption = -2.68.

4. A MER91B element at position chr12:51824097-51824219.

SWA score: 245, Divergence: 20.9%. Disruption = -5.28.

2.5.3 Insertion screens

CTCF depletion: We created a simulated Hi-C contact map without structure as a blank canvas for insertion

experiments. We �rst generated a random DNA sequence of length 220 bp. By chance, predicted maps from

random sequence will contain some above background contact frequencies. To remove all structure, we

incremented across this sequence one nucleotide at a time with a 12-bp sliding window. For each position, we

computed the edit distance to the consensus CTCF motif. If the edit distance fell below a set threshold, we

inserted a random DNA sequence of length 12 until the subsequence was su�ciently di�erent from CTCF.

Experimenting with edit distances, we found that a distance of 7 produces predicted maps which lack structure

but do not result in arti�cial model predictions (Fig. S2.8). We call this a “blank canvas” 1-Mb sequence.

CTCF insertion: We inserted the CTCF motif into the blank canvas and predicted expected contact

frequencies with Akita. We quantify insertion impact as the log mean squared error between the predicted maps

of the blank canvas and the insertion. If more than one motif was added, the insertions were centered and

separated by an arbitrary 100 bp. To sample the CTCF motif, we drew frequencies from the CTCF position

weight matrix (Castro-Mondragon et al., 2022). To create a baseline, we inserted 5,000 CTCF motifs drawn

from locations in the genome. Sequence motifs were visualized with a python port of the seqLogo

package(Bembom, no date; Sherman, no date).
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Repetitive element insertions: We selected the top 1,000 most disruptive repetitive elements per family by the

deletion screen to insert back into the blank canvas sequence. We inserted both the forward and reverse

complement of each sequence, and selected the direction with the highest score. For an initial screen, we inserted

all elements 100x with 100-bp spacing. As an additional baseline, we inserted 1,000 201-bp randomly generated

sequences, as the median repetitive element size in our insertion screen was 201 bp. To perform clustering with

t-SNE, we decreased the resolution of the 448x448 pixel maps to 100x100 pixels and �atten them to 1D vectors

before clustering.

Additional genomic tracks: In Fig. 2.5e, we visualized CTCF ChIP-Seq and CTCF motif locations in the

element’s original genomic context. Along with deleting the entire element, we performed mutagenesis to a

random nucleotide across the length of the element to create a ‘disruption track’ of nucleotides most sensitive to

perturbation. We highlight the most sensitive bases.

JASPAR Insertions: We inserted the forward and reverse complement of each JASPAR

motif(Castro-Mondragon et al., 2022) into CTCF-depleted sequence with 100-bp spacing (n = 842). JASPAR

motifs were pulled and coordinated with pyJASPAR (Khan, 2021).

2.5.4 Quantification and statistical analysis

Disruption score signi�cance

Pearson correlation coe�cient of disruption scores compared to several other genomic annotations was

calculated using scipy.stats.linregress (Fig 2.1e, 2.1d, Supplemental Fig. 2.1c) (Virtanen et al., 2020). To assess
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if the relationship between disruption and additional annotations was signi�cant, we performed a two-sided

Mann-Whitney-Wilcoxon test with compartment annotations (Results, Fig. 2.1e) and transcription level using

HFFc6 total RNA-Seq (Results) in 5-kb genome windows genome-wide using scipy.stats. The number of bins

considered (n) and p-values are provided in the Results section. A two-sided test was performed because no

directionality was assumed. A two-sided Mann-Whitney-Wilcoxon test was also used to assess the signi�cance of

disruption between genomic windows containing no Alu elements and windows with 5 or more (Results, Fig.

2.3c).

Motif signi�cance

We evaluated the presence of CTCF in deleted and inserted transposable elements with overlap of CTCF

ChIP-Seq, overlap of annotated CTCF motifs, and hamming distance to the canonical CTCF motif.

Signi�cance of a CTCF match was evaluated using FIMO from the MEME suite (Bailey et al., 2015).
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2.6 Figures

Figure 2.1: In silico deletion screen indicates the impact of sequence perturbation on 3D genome folding is highly
variable.

a. We quantify how important DNA sequence is to genome folding by introducing whole-genome and targeted deletions, insertions,
and point mutations and comparing the predicted Hi-C contact maps to maps predicted from the reference sequence. We score
disruption as the log mean squared di�erence of the perturbed map relative to the reference map (MSE). Variants with high disruption
scores are inferred to contribute to 3D genome folding. b. A genome-wide tiled 5-kb deletion screen produces a distribution of
sequence importance with log(MSE) between -10 and -1 for the HFFc6 cell type. c. Genome-wide screens capture a range of
disruption scores; some sequences do not change predicted genome folding (left panel), some produce small focal changes (middle
panel), and others dramatically rearrange boundaries (right panel). d. The rolling average of disruption and compartment score
across a 60-Mb region of chromosome 4. Peaks correspond to regions sensitive to perturbation, while valleys indicate regions robust to
perturbation. Yellow shading highlights genomic regions with relatively few CTCF motifs. These regions have low disruption scores,
suggesting that their perturbation has little e�ect on genome folding. e. Sensitivity to disruption correlates strongly with
compartment score, as measured by the �rst eigenvector of HFFc6 micro-C.
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Figure 2.2: Transcription and CTCF are key modulators of 3D genome folding.

a. Overlap between top 1% (most disruptive; dark blue) or bottom 1% (least disruptive; light blue) 5-kb sequence deletions and
ENCODE candidate cis-regulatory elements, quanti�ed as the proportion of deletions with overlap. Each deletion may overlap with
more than one regulatory element. b. Average disruption score across genomic regions overlapping with CTCF ChIP-seq peaks, A
compartments, and/or actively transcribed sequences. c. Single base-pair mutagenesis screen of a 600-bp segment surrounding the
transcription start site (TSS) of the most highly transcribed genes in HFFc6 (n=1,789). d-e. Mean disruption score of transcribed genes,
strati�ed by expression level decile (colors), and separated into those whose TSS region overlaps (d) versus does not overlap (e) with
CTCF sites. The �gures have di�erent scales. f-g. Average disruption score of each base at TSS regions with (f) and without (g) a CTCF
motif overlap, strati�ed by expression decile (colors), along with average CTCF motif density and CTCF ChIP-seq. Metaplots (upper
right) show the average change in contact for the 100 TSSs with the most signi�cant disruption scores.
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Figure 2.3: Regions with repetitive elements are sensitive to sequence perturbation.

a. Mean disruption scores of tiled 5-kb deletions across a 100-Mb region of chromosome 7. Tracks below the plot illustrate the density of
CTCF motifs, genes, and Alu elements. b. Mean di�erence in disruption scores between windows containing at least one repetitive
element and windows containing none, strati�ed by family. c. Disruption scores of 5-kb deletions strati�ed by the number of Alu
elements, tRNAs, L1 LINE elements, and CTCF motifs they contain.
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Figure 2.4: Repetitive element deletions impact genome folding.

a. Strategy to individually delete over 1 million elements from the RepeatMasker database. b. Representative examples from chromosome
2 showing how the deletion of a hAT-Tip100 element, an ERV1 element and an Alu element in silico signi�cantly alter contact maps.
Single elements are predicted to disrupt genome folding. c. Distribution of disruption scores across each repetitive element family (n =
1,164,108). The distribution of disruptions from 100,000 CTCF deletions (positive control) and 100,000 100-bp random deletions
(negative control) are shown in yellow. The median size in base pairs of deleted elements for each family is shown on the right. d. The top
10% most disruptive elements across the screen by repetitive element family. Most elements do not overlap a CTCF motif or a region
actively transcribed in the HFFc6 cell line. e. Average changes in contact maps for the top 100 elements per family. f. Phenotypic rescue.
We showcase a 138-bp MER91B hAT-Tip100 element whose deletion produces a loss of a boundary. Inserting a random size-matched
sequence and a CTCF motif does not change the disturbed contact map, but introducing an MER91B element from the same family
restores the original genome folding.
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Figure 2.5: In silico insertion screen reveals repetitive elements can induce di�erent boundary types.

a. Insertion screen strategy. For each of the 1,000 most disruptive elements, up to 100 individual copies (green) are inserted 100 bp
apart centered in a 1-Mb random DNA sequence depleted of CTCF sites. b. The map predicted from the CTCF-depleted random
sequence (left panel) provides a blank canvas against which we can measure the impact of insertions. A CTCF site insertion into the
middle of the sequence produces boundaries in the predicted maps (right panel). Disruption is measured as the mean squared
di�erence between the blank map and the predicted post-insertion map. c. Distribution of disruption scores across repetitive element
insertions (n = 14,514). The score distributions of 10,000 100-bp random insertions (negative control) and of 10,000 CTCF motif
insertions (positive control) are shown. d. t-SNE visualization of all predicted maps from repetitive element insertions with an
disruption score above -5.5. Predicted maps are colored by element family. e. We highlight three repetitive elements which are highly
disruptive both when deleted and inserted. We overlay overlapping annotated CTCF motifs and CTCF sites con�rmed by ChIP-Seq
in HFFc6 cells. We also show the disruption score of each nucleotide across the element following single base pair in silico
mutagenesis, highlighting the motif within the repetitive element responsible for the element’s high disruption score. f. We observe
two primary classes of insertions: CTCF-like boundary insertions are common across ERVK and ERV1 elements and star-like
insertions are common across SVA and Alu elements.
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Figure 2.6: In silico investigation of sequence features necessary and su�cient for repetitive element Charlie7 to create a
boundary.

a. We insert every JASPAR motif into a CTCF-depleted random sequence, as well as 14,514 repetitive elements, and rank them
according to their disruption score. 85% of the most impactful insertions (score > -5.5) do not overlap a CTCF motif. b. We generate
CTCF motif variants with frequencies sampled from the CTCF motif position weight matrix (PWM) and insert them into the
random reference sequence (n = 326,177), �nding that 0.50% of motifs produce stronger predicted boundaries when inserted than the
CTCF consensus sequence. These ‘super motifs’ share Ts at positions 8 and 12. c. We investigate a 367-bp disruptive Charlie7
hAT-Charlie element which does not overlap a CTCF motif or ChIP-Seq peak. Shown in the top row are the experimental micro-C
contact map around the locus of the Charlie7 insertion, the map of the locus predicted by Akita, and the predicted map following the
deletion of the entire element. Shown in the bottom row are the predicted maps after insertion into the reference, CTCF-depleted
sequence of the Charlie7 element (left), a version of the element with a shu�ed sequence (middle) and a random sequence of equal
length (right). d. We shu�e each 10-bp subsequence along the element to determine which one is necessary to produce the boundary
seen from introducing the whole element. e. We introduce 100-bp segments scanning the entire element into the reference sequence
and �nd that none is su�cient to produce a strong boundary. f. A DNA sequence matching the GC content of Charlie7’s �rst 307
bp combined with the last 60 bp is su�cient to recreate a boundary. Right panel: The �rst 307 bp of Charlie7 was replaced with
randomly generated sequence across a range of GC content.
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2.7 Supplemental Note

One concern is sequence mappability potentially confounding model training. Repetitive elements are, by

nature, highly conserved and present inherent di�culties assigning multi-mapped reads. Before training the

model, large gaps were excluded from the training dataset and missing Hi-C bins were linearly interpolated. If

repetitive elements were systematically removed or imputed, the model may behave unreliably when predicting

unseen repetitive element sequences.

To investigate this confounder, we examined how sequence mappability compares to disruption score

(Fig. S 2.6). In general, we observe no correlation between deletions of 5-kb windows and mappability,

indicating that poorly mappable sequences do not have unusually high or low disruption scores. Mappability of

individual elements is also uncorrelated with disruption.

We do �nd that Alu elements have particularly low sequence mappability and particularly high

predicted importance. Many Alu elements are still active and recently inserted into DNA, and therefore have

high sequence similarly, presenting a challenge in mapping. It is also possible that the highly conserved nature of

recent Alu elements contributes to their utility in shaping the 3D genome. The correlation with mappability is

expected and may or may not indicate a bias; it is di�cult to disentangle these two possibilities easily. Relatively

low negative correlation between disruption score and mappability for individual elements within the Alu class

suggests that many of the highly disruptive Alus are not in regions of low mappability.
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2.8 Supplemental Figures

Supplemental Figure 2.1. Disruption is correlated with GC content and deletion size.

a. Disruption scores across the 5 kb whole-genome deletion screen compared to compartment score, as de�ned as the �rst eigenvector of
the experimental micro-C contact matrix in HFFc6. b. GC Content across the 5-kb screen compared to disruption score. c. Disruption
scores across a deletion screen of random sized genomic segments ranging from 1 bp to 1,000 bp across chromosome 17 (n = 2,000). d.
Disruption scores across a deletion screen of random sizes ranging from 1 bp to 100,000 bp across chromosome 1 (n = 39,207).
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Supplemental Figure 2.2. Enhancer deletions.

a-b. Predicted impact of deletion of 177,049 ENCODE regulatory elements, ranging from 150 to 350 bp, along with size-matched
genomic fragments randomly selected from the same chromosome. Regulatory element deletions are signi�cantly more disruptive than
deletions of their random counterparts by a two-sided Mann-Whitney-Wilcoxon test.
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Supplemental Figure 2.3. Disruption across compartment and regulatory region.

CTCF Enrichment in A and B Compartments. CTCF-bound regions are enriched within the top 1% most disruptive 5 kb regions
compared to the bottom 1% in both A compartments (a) and B compartments (b). c-d. Disruption by repetitive element count within 5
kb genomic windows, by compartment. e. Percent of each sampled repetitive element family found within the A compartment, as
de�ned by the �rst eigenvector of experimental micro-C in HFFc6. f. Overlap of top 10% most disruptive repetitive elements by the
deletion screen strati�ed by overlap with ENCODE candidate regulatory elements (cCREs).
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Supplemental Figure 2.4. Transcription tracks.

Individual single-nucleotide disruption tracks around the TSS of highly expressed genes which overlap CTCF (top) and do not overlap
CTCF (bottom). The location of the TSS is marked in red.
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Supplemental Figure 2.5. Disruption score comparison across HFFc6 and hESC.

a. Disruption scores for whole-genome tiled 5kb deletions and a subset of repetitive element deletions are strongly correlated in HFF and
hESC (Spearman’s correlation of 0.962 for 5kb deletions and 0.967 for repetitive element deletions). b. 5kb deletion overlapping A
compartments produce higher disruption scores than fragments overlapping B compartments in HFF and hESC. c. 5kb deletions
overlapping distal-enhancers produce the strongest disruption scores in HFF and hESC. d. Deletion of All elements, SVA elements, and
snRNA elements produce the largest disruption scores upon deletion in HFF and hESC. Other small RNAs were not included, as they
were not sampled at a high enough frequency in hESC. e. Volcano plot of di�erentially expressed genes in HFF and hESC given 8 total
RNA-Seq experiments. f. Regions ranging from 300 bp upstream to 300 bp downstream the TSS were deleted across all genes in HFF
and hESC. Di�erentially expressed genes produced higher disruption scores than lowly expressed genes as well as genes that were not
transcribed in either cell type.
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Supplemental Figure 2.6. Disruption and Mappability.

Comparison of multi-read mappability at chr1:100Mb-200Mb and disruption scores. a. Average mappability by repetitive element
family. b. Average mappability by repetitive element type. c. Average mappability of 5-kb deleted genome windows. d-f. Average
mappability of repetitive element types within the Alu, tRNA, and L1 LINE families.
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Supplemental Figure 2.7. Investigation of recent human-speci�c transposable elements.

862 human-speci�c mobile elements were mapped to the chimp panTro6 genome to investigate the impact of genome folding with and
without transposable elements. The vast majority of these elements were Alu elements (813 elements), although several SVA, L1 LINE,
and LTR elements were included. We compared the di�erences in experimental Hi-C at these regions, as well as predicting the folding of
the human genome with the element deleted and the chimp genome with the element inserted. a. The predicted e�ect of element
insertions into the chimp genome correlates with the predicted e�ect of element deletions in the human genome, indicating that certain
elements are more disruptive when both inserted and deleted and their impact is consistent (Spearman’s correlation = 0.456). b.
Comparing the most disruptive elements upon deletion to the least disruptive elements upon deletion (top decile, disruption > -4.48 and
bottom decile, disruption < -7.01, respectively), we �nd that the predicted most disruptive elements produce signi�cantly higher
di�erences between experimental human and chimp Hi-C than the least disruptive elements (two-sided Mann-Whitney-Wilcoxon test,
p-value =6.160e-05). c. Examples of Alu elements that produce a weakening of boundaries (left) and additional stripes (right). Elements
produce consistent di�erences in contact when present vs absent, as seen when comparing human to chimp experimental Hi-C,
predicted human reference to a deletion in human, and predicted chimp reference to an insertion in chimp.
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Supplemental Figure 2.8. Edit distance thresholds for blank canvas map creation.

We create a blank map to insert elements by predicting genome folding of random DNA sequence. The original map, by chance, contains
spurious structure, so we deplete the sequence of any subsequence within a given edit distance of CTCF. An aggressive threshold (e.g. 4)
does not produce a biologically plausible sequence, while a permissive threshold (e.g. 9) leaves structure. We select a threshold of 7.
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Supplemental Figure 2.9. Motif insertion strength and GC content.

a. Impact of increasing the number of CTCF and random 12-bp sequence insertions into a blank map. Insertions are separated by 100 bp
randomly generated DNA sequence. b. GC content of disruptive repetitive elements with a MSE greater than -5 upon insertion into a
blank map. c. Disruption caused by insertion of randomly generated 5-kb DNA sequences with GC percentages ranging from 0% to
100%. d. Disruption produced by random insertions into a blank map ranging from GC percentages from 0% to 100% and lengths from
1 bp to 5 kb.
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Supplemental Figure 2.10. Insertion strength and CTCF.

a. Number of nucleotides of inserted repetitive elements matching the consensus CTCF motif versus element disruption score. b.
Elements were scanned one nucleotide at a time to calculate the edit distance of all 12-bp subsequences to CTCF. 12 indicates that the
element contains a perfect CTCF motif match. 1 indicates the element contains no subsequences matching the CTCF motif. Motifs
more similar to CTCF are higher scoring. Number of nucleotides of inserted repetitive elements matching the CTCF motif, by family
(bottom). Only elements with a disruption score above -7 (red threshold) are shown below. c-d. Disruption scores across all repetitive
element insertions into a blank, CTCF-depleted map, striated by overlap of the original element with an annotated JASPAR CTCF
motif.
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Supplemental Figure 2.11.Transcription factor motif insertions.

a. The top 20 highest scoring motifs, along with YY1, inserted with a randomized spacing between motifs between 1bp and 100bp across
50 trials. A randomly generated 12bp sequence is included as a control. b-c. To experimentally support CTCF super-motifs, we searched
the 761,299 annotated CTCF motif locations in the JASPAR 2022 database for the 12-bp core CTCF consensus sequence
(CCACCAGGGGGC) and the two core sequences found in the top ten highest-scoring synthetic CTCF sequences
(CCACTAGATGGC, CCACTAGGTGGC), resulting in 866 consensus matches and 1,202 synthetic “super-motif” matches.
Comparing centered, averaged Micro-C contact frequencies (log observed/expected) in HFFc6 at super-motif locations compared to
consensus motif locations, we observe that super-motifs produce a stronger boundary with greater insulation than consensus sites and
randomly selected CTCF sites. d. Super-motif sites are as likely to overlap CTCF ChIP-Seq as consensus sites. Sites that do overlap
CTCF ChIP-Seq have an equally strong peak strength under super-motif sites and consensus sites.
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Supplementary Table 2.1: Data table

Filename n Type Context Description

5kb_deletions.csv 562,744 deletion original Tiled 5kb deletions across the genome.

random_sized_deletions_100kb.csv 39,207 deletion original Random deletions between 1 and 100kb from chromosome 1.

random_sized_deletions_1kb.csv 2,000 deletion original Random deletions between 1 and 1kb from chromosome 17.

RepeatMasker_deletions.csv 1,164,108 deletion original Deletions from the RepeatMasker database.

CTCF_motif_insertions.csv 991 insertion blank Sampled CTCF JASPAR motifs inserted into blank map.

CTCF_PWM_sampling_insertions.csv 326,177 insertion blank Sampled CTCF PWM inserted into blank map.

random_20bp_insertions.csv 236,119 insertion blank Random 20bp sequences inserted into blank map.

CTCF_consensus_motif_insertions.csv 1000 insertion blank CTCF consensus sequence inserted into blank map (di�erent
random sequence spacing).

random_201bp_insertions.csv 1000 insertion blank Random DNA sequence inserted into blank map.

all_motif_insertions.csv 842 insertion blank JASPAR motif insertions into blank map.

RepeatMasker_insertions.csv 14514 insertion blank RepeatMasker element insertions into blank map.

tss_mutagenesis.csv 1,073,334 mutagenesis original Random single nucleotide mutagenesis around the TSS.
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3

Chapter 3:Comparing chromatin contact maps at
scale: methods and insights

3.1 Abstract

Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome

organization shapes development, evolution, and disease. However, no gold standard exists for comparing

contact maps, and even simple methods often disagree. In this study, we propose novel comparison methods and

evaluate them alongside existing approaches using genome-wide Hi-C data and 22,500 in silico predicted contact

maps. We also quantify the robustness of methods to common sources of biological and technical variation,

such as boundary size and noise. We �nd that simple di�erence-based methods such as mean squared error are

suitable for initial screening, but biologically informed methods are necessary to identify why maps diverge and

propose speci�c functional hypotheses. We provide a reference guide, codebase, and benchmark for rapidly

comparing chromatin contact maps at scale to enable biological insights into the 3D organization of the

genome.

3.2 Introduction

The same genomic locus can adopt di�erent three-dimensional (3D) conformations in di�erent cells, species,

and disease states, which can impact gene regulation, cell identity, and replication timing (Fig. 3.1A),(Yang et

al., 2017; Kragesteen et al., 2018; Spielmann, Lupiáñez and Mundlos, 2018; Eres et al., 2019; Gorkin et al.,
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2019; Galan et al., 2020; Hoencamp et al., 2021). Chromosome-conformation capture methods (3C, 4C, 5C,

Hi-C, Micro-C)(Dekker et al., 2002; Lieberman-Aiden et al., 2009; Dixon, Gorkin and Ren, 2016; Hsieh et al.,

2020; Krietenstein et al., 2020) measure how the genome folds across scales, including chromosomal territories,

topologically associating domains (TADs), enhancer-promoter loops, and architectural stripes (Dixon, Gorkin

and Ren, 2016; Fudenberg et al., 2016; Vian et al., 2018; Kraft et al., 2019). In recent years, single-cell and deep

learning techniques accelerated the study of chromatin conformation across an expanding range of biological

contexts (Nagano et al., 2013, 2017; Tan et al., 2018, 2021; Fudenberg, Kelley and Pollard, 2020; Schwessinger et

al., 2020; Zhang, Zhou and Ma, 2022a).

There are many ways to compare chromatin conformation maps, but no gold standard exists. Existing

approaches rank di�erences between pairs of maps(Yan et al., 2017; Yang et al., 2017; Stans�eld et al., 2018;

Yardımcı et al., 2019; Galan et al., 2020; Yang, Chung and Kim, 2022), test reproducibility between replicates

and modalities (Yan et al., 2017; Yang et al., 2017; Yardımcı et al., 2019; Boninsegna et al., 2022), identify tissue

speci�c contacts(Yang, Chung and Kim, 2022), and highlight di�erential chromatin interactions(Stans�eld et

al., 2018; Galan et al., 2020). Some scores are designed to identify global di�erences like boundaries and contact

intensities (Fig. 3.1B, left and center), while others target focal changes like enhancer stripes (Fig. 3.1B,

right). To rank thousands of loci with diverse folding patterns, one must consider how scoring metrics prioritize

di�erent map features and respond to technical artifacts.

Here, we develop a unifying framework to guide strategies for comparing contact maps for new use

cases. We introduce three novel methods—eigenvector di�erence, contact decay probability di�erence, and

triangle track comparison—and benchmark these along with representative methods from the literature to

evaluate 11 total approaches (Fig. 3.1C). We quantify how methods di�erentially rank pairs of contact maps

across experimental Hi-C data, 22,500 in silico sequence insertions and deletions, and simulated contact maps

that capture both biological and technical variation. Our analyses identify when methods diverge and when they
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are consistent, which methods are redundant or complementary, and where methods commonly fail. The new

methods we introduce have relatively high concordance with existing metrics while providing rich information

about biological mechanisms. We summarize our recommendations and release a library of open-source code for

scoring di�erences between contact frequency maps to enable scientists to choose and apply the right method

for their research question.

3.3 Results

3.3.1 Diverse strategies for scoring pairs of contact maps

When scoring di�erences between pairs of contact maps, it is common to apply basic methods that

consider entire 2D contact matrices (e.g., mean squared error (Yang et al., 2017; Fudenberg, Kelley and Pollard,

2020; Galan et al., 2020)) or feature-informed methods that sum di�erences in speci�c structures (e.g.,

loops(Rao et al., 2014)). These methods represent two extremes. Basic methods are global summary statistics

that can overlook small di�erences that are most biologically interesting. In contrast, feature-informed

algorithms speci�cally target elements such as TADs, stripes, and loops, but are agnostic to overall contact

change and may emphasize artifactual di�erences. As a compromise between these extremes, we extend statistics

previously developed to quantify compartments (eigenvectors/PCA(Nichols and Corces, 2021)), boundaries

(directionality index(Dixon et al., 2012), insulation(Crane et al., 2015)), and contact decay(Lieberman-Aiden et

al., 2009) in individual maps to instead score di�erences between pairs of maps. We also propose a new method,

called triangle score, which calculates average contact frequencies across all submatrices in a larger contact

matrix. These new map-informed methods (Supplemental Text) transform 2D contact matrices into 1D tracks
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that capture features relevant to genome folding, and then score them using Spearman’s correlation or mean

squared error (MSE). The intermediate 1D track allows for the interpretation of which regions contribute most.

To comprehensively characterize the behavior of the basic, map-informed, and feature-informed scoring

approaches, we implemented 11 representative methods in open-source code (Fig. 3.1C, Supplementary

Table 3.1, Supplemental Text): MSE, Spearman's rank correlation coe�cient (ρ), structural similarity (SSIM),

stratum-adjusted correlation coe�cient (SCC), eigenvector di�erence, directionality di�erence, insulation

di�erence, contact probability decay di�erence, triangle score, the HiCCUPS loop caller(Rao et al., 2014), and

the cooltools TAD caller(Crane et al., 2015; Open2C, Abdennur, Abraham, et al., 2022). We evaluated how

these methods perform across diverse settings. We �rst applied the methods to

Micro-C from human foreskin �broblasts (HFF) and embryonic stem cells (ESC) to develop biological intuition

about the type of map di�erences each method captures. We then evaluated their performance using a mass

screen of in silico genetic perturbations. Finally, simulations isolated the e�ects of speci�c kinds of technical and

biological variation. This three-part benchmark focuses on how methods rank map pairs, rather than the

statistical signi�cance of speci�c di�erences; stricter or looser signi�cance thresholds can be applied to any score.

In sum, we explored and quanti�ed the behavior of scoring methods to learn when they are discordant with each

other.

3.3.2 Beware! Map comparison methods produce discordant rankings

Spearman’s correlation, Pearson’s correlation, and mean squared error are most commonly used to score two

maps(Imakaev et al., 2012; Rao et al., 2014; Dixon et al., 2015), as they are computationally e�cient and require
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no feature selection. We compared their behavior using Micro-C contact maps from HFF and ESC cells across

all 7,840 1-Mb windows of the human genome (Methods). These basic methods prioritized markedly di�erent

regions (Fig. 3.2, r2 = 0.0002, Supplemental Fig. 3.1)(Krietenstein et al., 2020), often for reasons unrelated

to underlying biology. For example, a pair of maps with visible structural rearrangements but a low range of

contact frequencies was prioritized by correlation, but not by MSE, as the absolute di�erence between them is

small (Fig. 3.2A). Conversely, two maps with similar overall structure but di�erent contact frequency ranges

produce a large MSE even though they are very strongly correlated with each other (Fig. 3.2D). These

inconsistencies occur because Spearman’s correlation is agnostic to intensity changes, while MSE is sensitive to

intensity. Basic methods were not designed to identify speci�c chromatin features, and therefore may not always

be biologically interpretable on their own. They often disagree.

3.3.3Map-informed methods highlight changes in genome structure

The map-informed methods we created or extended have never been benchmarked. To gain intuition about

their behavior, we used our comparison across experimental Micro-C maps in HFF and ESCs to evaluate how

these methods behave on contact maps containing three common changes linked to disruption in gene

regulation: a boundary change, a stripe change, and a loop change (Fig. 3.3A i, red boxes). Triangle score,

directionality index, insulation di�erence, and eigenvector di�erence all correctly identi�ed large contact changes

across the three examples (Fig. 3.3A ii-v). Eigenvector di�erence in particular showed a strong separation

between tracks at the emergence of a new boundary and the strengthening of an existing boundary (Fig. 3.3A

iii). Compared to other approaches, directionality index performed best in identifying focal changes, like the

loss of loops (Fig. 3.3A iv), while eigenvector di�erence and insulation di�erence instead prioritized global

changes in contact. Finally, eigenvector di�erence and contact decay were sensitive to overall contrast di�erence.
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We observed a divergence in the contact decay tracks across the �rst pair where a map gains distal contact (Fig.

3.3 vi). In sum, the design of these methods highlight di�erent features in the tracks, from overall structural

di�erences and average contact, to sharp changes in contrast.

3.3.4 Feature-informed methods prioritize changes to interacting chromatin regions

To evaluate comparison approaches based on TAD and loop calling methods, we chose two regions with

di�erential structure between ESC and HFF maps (Fig. 3.3B i) and tuned the parameters of the cooltools TAD

caller (Crane et al., 2015; Open2C, Abdennur, Abraham, et al., 2022) and the HiCCUPS loop caller (Rao et al.,

2014) (Supplemental Fig. 3.2) (Forcato et al., 2017; Zu�erey et al., 2018). As expected, the TAD caller

correctly identi�ed all three TAD boundaries visible in ESCs, including one that is lacking in HFF (Fig. 3.3B

ii). Similarly, the loop caller identi�ed a loop that is unique to ESCs (Fig. 3.3B iii). While these

feature-informed approaches are biologically interpretable, they tend to be slower, address only one element at a

time, and require additional parameter selection (Table 3.1, Supplemental Table 3.1). These methods also

require a signi�cance cuto� for initial feature calls, which may result in missed features of low signal.

Additionally, most maps contain fewer than ten called features in a 1-Mb window, creating a small range of

possible scores. Therefore, caution should be exercised when using these scores at a large scale, especially in maps

without strong TADs or loops, where they can produce arti�cial results.

3.3.5 In silico perturbation enables evaluation of contact map comparison methods at scale

Although di�erences between cell-types exist, 3D genome organization is often highly conserved(Dixon et al.,

2012; Yang et al., 2017; McArthur and Capra, 2021). To evaluate the performance of map comparison methods

across a wider variety of possible changes in chromatin structure, we used an in silico approach to generate pairs
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of 1-Mb maps across the genome with a variety of perturbations. We applied Akita (Fudenberg, Kelley and

Pollard, 2020), a convolutional neural network that predicts genome folding from sequence alone, to generate

contact frequency maps from sequences with and without a genetic perturbation likely to disrupt genome

folding (Fig. 3.4A). We designed three types of perturbations: CTCF canonical motif insertions

(Castro-Mondragon et al., 2022), endogenous CTCF motif deletions, and random 100 base pair deletions

(Methods). In total, we produced 22,500 unique contact frequency map pairs on which to test all three types of

methods. To enable large-scale evaluation, we applied the 11 methods and transformed their scores such that

higher values indicate greater disruption of 3D organization and smaller values indicate more similar

organization (Methods, Supplemental Fig. 3.3).

We quanti�ed the similarities and di�erences between methods by comparing the scores for all 22,500

in silico perturbations across all possible pairs of methods. We found that TAD- and loop-based scores are most

di�erent from the rest, as they only detect a speci�c type of change (Fig. 3.4B). Correlation-based measures (i.e.,

Spearman's correlation, SSIM, and correlation of contact decay) cluster together distinct from MSE-based

methods (i.e., MSE, triangle (MSE), insulation (MSE)). This result aligns with our initial observation that

Spearman’s correlation and MSE often do not agree, especially across their top-scoring variants (Fig. 3.2,

Supplemental Fig. 3.4, Supplemental Fig. 3.5). Principal component analysis (PCA) on the disruption

scores shows similar clustering (Fig. 3.4C).

We next simultaneously clustered the perturbed map pairs and scores across methods to identify groups

of perturbations that di�erentiate them (Fig. 3.4D). While all correlation-based methods exhibit similar

behavior, insulation (corr), SSIM, and DI (corr) produce scores which are more uniformly distributed and less

extreme across perturbations, highlighting the necessity of appropriate normalization when comparing across

methods (Fig. 3.4E i and vi). We also �nd that perturbations created by CTCF insertion group together, as

they are often the most disruptive of 3D organization. However, we observed substantial sub-structure within
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the cluster, re�ecting di�erences in the behavior of scores on these maps. For example, cluster i is highly scored

by all methods, and a representative perturbation example shows a variety of changes: gained loops, lost stripes,

and boundary changes. The magnitude of changes in this set likely contributes to the universally high scores.

Clusters iv and v are primarily composed of CTCF insertions, where scores are similar across most methods, but

higher only for MSE-based methods. Pro�le v is the most dissimilar. Here, the representative map pair has

minimal structural di�erences but extreme contrast, suggesting that this cluster is de�ned by examples of high

dynamic range that are over-prioritized by MSE-based methods (Fig. 3.4E v).

We further compared methods by quantifying how well the top-ranked maps agree across methods.

Some methods have high overlap (Supplemental Fig. 3.5, Supplemental Fig. 3.6). For example, 85% of map

pairs are ranked in the top 5th percentile for both SCC and Spearman’s correlation, indicating some general

agreement in the methods. However, many methods have minimal overlap, suggesting they prioritize di�erent

features. For example, only 32% of the top 5th percentile of maps ranked by insulation (MSE) and SSIM are

shared. Finally, we applied methods to map pairs selected to represent a range of e�ect sizes and con�rmed all

methods are sensitive to large changes and insensitive to small changes (Supplemental Fig. 3.7).

3.3.6 Simulation studies quantify method sensitivity

Our in silico screen produced a diversity of structural alterations, often a�ecting multiple aspects of the map. For

instance, a CTCF site insertion can both create a new TAD boundary and alter overall contact intensity. To

disentangle how each method responds to changes in particular map features, we generated simulated maps and

synthetically altered a single variable at a time. We then measured the sensitivity of each score to each speci�c

change. As a template, we created a contact frequency map with two CTCF motifs forming a TAD and used

this canvas to simulate both biologically meaningful changes (e.g., change in TAD size, substructure, or
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intensity) and technical artifacts (e.g., change in noise or resolution) (Methods). For each change, we gradually

increased the strength of the perturbation across 100 maps and subsequently applied scoring methods

(Supplemental Fig. 3.8).

Each method responded di�erently across the simulated changes (Fig. 3.5). Steeper curves represent

high sensitivity to the perturbation, while �atter curves represent less sensitivity. We �nd that basic methods are

most sensitive to technical variations, such as increased noise and decreased resolution, while map-informed

methods are most robust (Fig. 3.5A-B). As expected, correlation-based methods are una�ected by changes in

contrast and intensity, while MSE-based methods are highly sensitive (Fig. 3.5C-D). All methods except

eigenvector di�erence identify TAD size and sub-structure changes. However, some prioritize certain types of

organizational changes over others (Fig. 3.5E-F). For example, insulation di�erence and triangle pro�le are

sensitive to boundary changes, while directionality index highlights new boundaries but is less e�ective in

identifying changes to existing boundaries. We synthesized these results along with �ndings from in silico

perturbations in the Guidelines to provide recommendations based on the intended application.

3.3.7 Guidelines

Our study assessed the e�ectiveness of 11 existing and new methods for comparing 3D genome contact maps

(Supplementary Table 3.1). Although there were similarities between the top-scoring variants of most

methods, our results indicate that they di�er substantially in their sensitivity to biological and technical variation

(Supplemental Fig. 3.6). We summarize these �ndings and guidelines in Table 3.1.

All of the methods can identify structural changes, such as changes to domain size or the addition of

substructure, but to varying degrees. Of the basic methods, MSE and SCC more readily identify subtle

organizational changes. Among the map-informed methods, insulation di�erence and triangle di�erence are the
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most e�ective at identifying changes in both existing and new domain boundaries. Directionality index

highlights new boundaries or substructures but less readily identi�es changes in existing boundaries. Eigenvector

di�erence and contact probability decay are the least sensitive to small-scale organizational changes, but

prioritize larger-scale changes in the overall structure of the map. These statistics have been deployed primarily

for identifying di�erences at the scale of compartments and whole chromosomes, so it is not surprising that they

are not sensitive to map di�erences within 1-Mb windows.

In general, the new map-informed methods we proposed are concordant with basic methods and each

other, especially when comparing the top 5% of scores genome-wide (30%-80% of examples are shared;

Supplemental Fig. 3.6). Triangle di�erence stands out among our newly implemented methods as highly

concordant with other methods and able to detect a variety of map di�erences, but it is also the slowest

(Supplementary Table 3.1). Insulation di�erence is faster and also fairly concordant with other methods. Most

top 5% map pairs called by other methods are also high-scoring with loop calling, but not TAD calling. Loop

calling also identi�es many additional map pairs that are not in the top 5% of other methods.

Correlation-based methods are insensitive to changes in contrast and intensity, while MSE-based

methods are highly sensitive to these changes. In contrast, map-informed methods summarize maps across a

feature track and are therefore more robust to these changes. One notable exception is insulation di�erence,

which is more sensitive to resolution changes that obscure domain boundaries. Some map changes, such as

contrast or intensity, may either be biologically meaningful or a consequence of technical variability, depending

on the scenario. The basic methods, especially MSE, SCC, and SSIM, are particularly sensitive to technical

variation such as increased noise and decreased resolution. SSIM falls in between. We also note that MSE is by far

the fastest approach (Supplementary Table 3.1). All others require less than 10 seconds per thousand calls,

aside from eigenvector di�erence and triangle track, which can be accelerated by decreasing the resolution of the

maps prior to comparison.
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We recommend using multiple methods in tandem. We �nd that there is no “one size �ts all” metric

that best identi�es every feature of interest in a chromatin contact map. Researchers should consider the

intended application and the types of changes that are meaningful when selecting the most e�ective and relevant

metrics. We recommend �rst applying basic methods as an initial screen to identify the most disrupted maps,

especially when evaluating large datasets. Using both correlation- and MSE-based scores will help mitigate biases

of each. We next suggest applying a map-informed method, such as triangle or insulation di�erence, to a subset

of disruptive perturbations to gain insight into the types of changes present. Finally, feature-informed methods

can be used to explore TAD and loop gains/losses and to develop mechanistic hypotheses.

3.3.8 Code

Our codebase is publicly available to enable researchers to easily test and apply all 11 approaches to their own

research questions. The code is written in Python and is accompanied by documentation and tutorials to help

users get started. The methods have �exible hyperparameters and can be run simultaneously on one dataset,

making it easier to compare the results of di�erent approaches and select the most appropriate methods. To aid

in interpretation of the methods, we also provide guidance on how to visualize map-informed and

feature-informed approaches across contact matrices. Overall, our codebase provides a valuable resource for

researchers who wish to apply multiple methods to their own datasets and rank pairs of maps based on their

di�erences.

3.4 Discussion

In this study, we evaluated and compared the behavior of 11 methods for quantifying di�erences between pairs

of 3D contact maps, including many methods that have not been previously used for this application. We
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introduced insulation di�erence, eigenvector di�erence, and contact decay di�erence, as well as the new triangle

comparison method, which is robust to noise while capturing structural di�erences between maps. We found

that the choice of scoring function can have a signi�cant impact on the conclusions drawn from the data, and

therefore suggest that multiple comparison metrics should be used when seeking biological insights into the

function of the 3D genome.

Several limitations should be considered when evaluating our results. While we consider a range of

experimental, predicted, and simulated maps, our �ndings may not apply to other experimental conditions, such

as single-cell contact matrices or other scenarios in which maps have a high level of noise and/or sparsity.

Additionally, some of the methods we evaluated have variables that can be tuned to optimize performance in a

given context (Supplementary Text, Supplementary Table 3.1). We only tested one TAD caller and one loop

caller to examine their general utility (Forcato et al., 2017; Zu�erey et al., 2018). Finally, we did not directly

address the problem of identifying a threshold beyond which the di�erences should be considered biologically or

statistically signi�cant. One could apply previously proposed (Xu et al., 2016; Stans�eld et al., 2018; Galan et al.,

2020) and novel thresholding methods to the ranks computed with scoring methods to de�ne a signi�cant set of

map pairs.

Our work provides useful guidelines for scoring contact maps that will enable further discovery into the

mechanisms of the 3D genome. We provide a codebase of methods for �exible and fast scoring across contact

maps under a uni�ed framework. The experiments we performed as a part of this study, such as the in silico

deletion and insertion of thousands of CTCF motifs genome-wide, provide a useful dataset for evaluating

diverse biological questions or utility as controls for the level of 3D genome variation expected based on CTCF

and random perturbations. We anticipate that incorporating methods with stronger biological interpretability,

like those evaluated here, may further improve machine learning methods for predicting contact maps. Overall,
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by developing novel and more robust scoring functions, our study provides a foundation for analyzing contact

maps at scale.

3.5 Methods

3.5.1 Datasets

Experimental maps

Maps of 3D chromatin contact are represented as 2D matrices of pairwise interaction frequencies. Regions of

maps with high values indicate genomic loci with a high frequency of interaction in physical space, on average.

Following experimental Hi-C, maps begin as raw read counts, which are subsequently balanced and normalized

to re�ect log(observed/expected) contact frequencies (Lyu, Liu and Wu, 2020).

Experimental data considered in this study from HFF and ESCs were preprocessed as training datasets

for the Akita model(Fudenberg, Kelley and Pollard, 2020; Krietenstein et al., 2020). Speci�cally, these

high-quality Micro-C datasets were normalized with genome-wide iterative correction (ICE), adaptively

coarse-grained, normalized for distance-dependent decrease in contact frequency, log clipped to (-2,2), linearly

interpolated to �ll missing bins, and convolved with a 2D Gaussian �lter for smoothing. Processing maps

ensures consistency across the experimental data and computational predictions since we do not evaluate raw

experimental read counts.

Predicted maps

To e�ectively compare contact maps at scale, we generated a dataset of thousands of maps predicted from in

silico CTCF motive insertions, CTCF motif deletions, random 100 bp sequence insertions, and random 100 bp
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sequence deletions. These alterations were passed into Akita(Fudenberg, Kelley and Pollard, 2020), a model

predicting genome folding from sequence, to generate pairs of maps with structural rearrangements. We �rst

curated sequences for insertion. CTCF motif sequences were randomly selected from annotated CTCF sites in

the reference genome from the hg38 build of the JASPAR database(Castro-Mondragon et al., 2022). Random

100 bp fragments were also selected from chromosome 1 for insertion. Both the CTCF and random sequences

were inserted into the center of 1-Mb of DNA with start locations randomly selected from chromosome 1.

Akita requires a �xed input of 220 bp. Additional sequence was trimmed from the 3’ end, such that the �nal

sequence remained 1-Mb. To curate deletions, we again selected random CTCF sites from JASPAR, pulled the

surrounding 1-Mb of DNA, removed the motif sequence, and pulled in additional sequence from the 3’ end

such that the entire sequence remained 1-Mb in length. The same strategy was applied to randomly selected 100

bp fragments for deletion. All generated 1-Mb genomic query sequences were �ltered to exclude overlap with

ENCODE blacklisted regions(Amemiya, Kundaje and Boyle, 2019). For each perturbation, both the original

genomic sequence and the perturbed sequence were provided to Akita, resulting in two predicted 448x448

contact maps where the resolution of each pixel is 2048 bp representing a total length of ~1 Mb (220) of DNA

sequence (Fudenberg, Kelley and Pollard, 2020). This dataset consists of 7,500 matched contact maps for each

category of perturbation for 30,000 total map pairs. Random 100 bp insertions were generally excluded from

analysis, as they had almost no e�ect.

Simulated maps

To generate simulated maps, we initially generated predicted maps with Akita from random DNA sequence.

Predicted maps still showed minimal structure from randomly occurring CTCF-like motifs. Sequence matches

to the forward and reverse canonical CTCF motif(Castro-Mondragon et al., 2022) were therefore shu�ed to

67

https://paperpile.com/c/r8r0G3/F2LKX
https://paperpile.com/c/r8r0G3/TWQUc
https://paperpile.com/c/r8r0G3/ntGza
https://paperpile.com/c/r8r0G3/F2LKX
https://paperpile.com/c/r8r0G3/TWQUc


produce a predicted blank canvas map devoid of all higher-order folding patterns. Structure was reintroduced to

simulated maps by inserting forward and reverse CTCF motifs ¼ and ¾ through the random DNA sequence,

producing TAD-like boundaries. We tuned simulated parameters as described below.

● Noise: Gaussian noise was added to the maps with a standard deviation ranging from 0 (no added noise)

to 0.2.

● Resolution: The original 448x448 map was downsampled ranging from a resolution of 2,048 bp

(original resolution) to 50,972 bp.

● Contrast: Pixel intensities of the contact map were multiplied by a scalar ranging from 1 (no increase in

contrast) to 2.

● Intensity: A scalar value ranging from 0 (no addition) to 0.2 was added to all pixels in the contact map.

● Size: The size of the substructure within the map was increased by resizing the original map by a scalar

and trimming the matrix back down to the original dimensions. Map sizes were increased by a factor of

1 (no resize) to 1.1.

● Substructure: An additional map was created by introducing CTCF halfway into the random sequence

to produce an additional boundary. The original map was combined with the substructure map with a

multiplier ranging from 0 (no added structure) to 1 (total added structure).

Visualizations of these changes can be found in Supplemental Fig. 3.8.
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3.5.1 BenchmarkingMethods

Adapting new methods

Triangle pro�le is a novel scoring method. Directionality index(Dixon et al., 2012), PCA(Nichols and Corces,

2021), insulation(Crane et al., 2015), and contact decay(Lieberman-Aiden et al., 2009) are established methods

for analysis on individual Hi-C maps, but have not previously been used to to score pairs of maps. For

map-motivated and feature-motivated methods, it is possible to plot the scoring method results along the length

of the map, or on the map itself, as seen in Figure 3.3. The common behavior across maps with a small change,

a large change, and no change is illustrated in Supplemental Fig. 3.7.

Comparing contact maps

We applied all comparison metrics to pairs of experimental, predicted, and synthetic maps. For details regarding

how each metric is computed, see Supplemental Text. Any missing values were masked prior to evaluation and

not considered by the comparison metrics. Scoring method implementations can be found within scoring.py in

the codebase. MSE, Spearman's rank correlation coe�cient, and Pearson correlation coe�cient were applied to

map-informed methods to collapse two 2D tracks into a scalar value. Pearson correlation behaved almost

identically to Spearman’s rank correlation, and therefore was excluded from analysis (Supplemental Fig. 3.1).

For computationally intensive methods, we reduced the resolution of the input from 2kb to 10kb to speed

evaluation time across thousands of comparisons.

To ensure that scores across approaches are comparable, we �ip some methods such that higher values

indicate greater disruption and smaller values indicate more similar maps. For methods like correlations, we use

1 - correlation such that a perfect correlation (1) is �ipped to mean no di�erence (0). For all the results, we

provide raw scores and normalized scores so that it is easier to interpret how a raw score for one method
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compares to a raw score of another method. We additionally scale all values by the mean score of all random 100

bp deletions using Akita, which we �nd to have minimal impact (Supplemental Fig. 3.3). For example, a raw

MSE of 0.0065 and a raw 1 - pearson correlation of 0.036 both correspond to the same normalized score of 2.

That is, a disruption of that magnitude corresponds to 2 times the average disruption of a 100 bp deletion.

For loop and TAD callers, we quantify the ratio of changed (e.g. added or lost) features (TADs or loops)

to extend these approaches and generate a single score for each pair of maps.

Method parameters

The following methods required no adjustable input parameters: mean squared error, Spearman's rank

correlation coe�cient, and pearson correlation coe�cient, SSIM, SCC, contact decay, eigenvector, and triangle

correlation. We describe tunable parameters choices for the remaining methods below. We did not optimize

tunable parameter choices but instead selected default choices from existing approaches. Results from

alternative parameter selection are demonstrated in Supplemental Fig. 3.2 and Supplemental Fig. 3.9.

Insulation:

window_size=10: size of the diamond-shaped window considered

Directionality index:

window_resolution=10000: resolution of sliding window in bp

replace_ends: replaces ends of DI track with 0s

buffer=50: how far from the track ends to replace with 0

Loop di�erence:

p=2: the width of the interaction region surrounding the peak
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width=5: the size to get the donut �lter

ther=1.1: the threshold for the ratio of center windows to the donut �lter and lower left �lter

ther_H=1.1: the threshold for the ratio of center windows to the horizontal �lter

ther_V=1.1: the threshold for the ratio of center windows to the vertical �lter

radius=5: the upper bound of distance of two loop points considered as same

TAD di�erence:

window_size=5: size of the diamond-shaped window

ther=0.2: the threshold for TAD boundaries

radius=5: the upper bound of distance of two TADs considered as same
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3.6 Figures

Figure 3.1. Approaches for comparing 3D chromatin contact maps.

(A) 3D genome comparisons drive insights into many domains of chromatin biology. Di�erences observed between maps may re�ect
consequences of mutations, cell type di�erences, species di�erences, or technical biases. (B) 3D contact maps exhibit a range of
functionally meaningful di�erences, e.g., in global folding patterns, contact intensity, or small, focal changes to part of the map. (C)
We de�ne three categories of comparison methods and evaluate 11 representative methods. Basic methods (left) compare the contact
intensities at each contact bin across two maps with simple measures such as mean squared error or correlations. Map-informed
methods (middle) transform the 2D contact maps into 1D tracks that describe qualities like the directionality index or insulation
score. These tracks were compared to obtain a score. Feature-informed methods (right) are designed to identify relevant elements (e.g.,
from functional genomics data) or structures (e.g., TADs or loops).
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Figure 3.2. Basic methods to compare contact frequency maps rank map pairs di�erently.

Mean squared error (MSE) and Spearman’s correlation (ρ) were calculated across the genome on experimental contact maps from
embryonic stem cell (ESC) and human foreskin �broblast (HFF) (n = 7840). Each point represents a comparison score between a pair
of contact maps. We highlight examples where (A) only correlation ranks highly, (B) both methods agree the maps are similar, (C)
both methods agree the maps are di�erent, and (D) only MSE ranks highly.
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Figure 3.3: Map-informed and feature-informed methods capture di�erences in TAD boundaries, stripes, and loops.

A. i. Examples of regions where contact frequency maps di�er between HFF and ESCs across three structural changes: a lost TAD
boundary (left panel), a lost stripe (middle panel), and lost loops (right panel), as marked by red boxes. ii-vi. Tracks corresponding to
each map-informed disruption score method are shown below for ESCs (blue) and HFF (gray). Tracks for methods in (ii. - v.)
correspond to the coordinates of the contact maps, while contact decay in (v.) is plotted across genomic distance. B. i. Two loci in
HFF and ESC with a boundary and loop change (GRCh38 chr3:137129984-138178560 and GRCh38 chr3:138702848-139751424,
respectively). ii. Applying a TAD boundary caller identi�es a boundary change between cell types iii. Comparing chromatin loops
identi�es a genomic region with di�erential looping.
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Figure 3.4. Comparison of disruption score methods.

(A) Schematic describing the strategy for comparing in silico perturbed contact maps. Random ~1 Mb windows of the human
genome (GRCh38) are selected and input into Akita to predict chromatin contacts (left). The same window is also perturbed with a
CTCF motif insertion, deletion, or random 100 base pair deletion. The resulting sequence is also input into Akita to predict
chromatin contacts of this perturbed reference sequence (right). The perturbed and unperturbed maps were compared by applying
the 11 basic, map-informed, and feature-informed methods. (B) Correlation matrix of the methods tested, where cells are shaded
according to how well their scores correlated across perturbations. Concordance of the top-scoring perturbations (Supp. Fig. 3.6)
also shows agreement between corr and SSIM, while highlighting that loops and triangle (corr) are quite concordant with other
methods when considering only the top scores. Colors across the top of the heatmap identify the individual methods. (C) Principal
component analysis of disruption scores of each method from perturbed map pairs. (D) Heatmap of normalized disruption scores
across all methods and perturbations. The colored key along the top of the heatmap indicates whether the perturbation was a random
deletion (pink), a CTCF insertion (navy), or a CTCF deletion (light blue). Method colors are the same as in (C). Four broad trends in
disruption score patterns across methods are marked with brackets. (E) Representative example map pairs chosen from the groups
identi�ed in D: i. high scores across 5 methods; ii. low across all methods except for eigenvector (corr); iii. low scores across all
methods; iv. low scores across methods but higher for MSE-based scores; v. high scores only for MSE-based scores; vi. high scores for
correlation-based scores: triangle (corr), corr, and SCC.
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Figure 3.5. Simulated contact frequency maps with controlled perturbations estimate disruption score method
sensitivities.

Normalized disruption scores are plotted for a simulated contact frequency map containing a TAD across 6 types of perturbations,
plotted on the x-axis. Each perturbation was added at 100 di�erent degrees. The images shown correspond to the �nal degree–the
maximum perturbation added. Line plots show disruption scores from comparing the original map (top left corner) to each perturbed
map. Maps corresponding to the incremental increases in perturbation are shown alongside the changed scores in Supp. Fig. 3.8. (A)
Noise is added by introducing random values drawn from a Gaussian distribution to the maps; (B) Resolution is lowered by
increasing bin size; (C) Contrast is applied by increasing the range of the signal; (D) Intensity is increased globally by adding a
constant to all values; (E) Size is increased by slightly enlarging the domain width; (E) A sub-structure is added by gradually
incorporating a new boundary at the center of the existing TAD.
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Table 3.1: Strengths, weaknesses, and suggested applications of disruption score methods.

Trends and patterns across disruption scores summarized from statistical comparisons (Fig. 3.4), simulations (Fig. 3.5), and manual
parsing of the most highly disruptive perturbations for each method (Supp. Fig. 3.5). While this summary is not exhaustive of all
possible outcomes, it provides qualitative guidelines for users to make informed decisions when selecting a comparison method based on
the scale and application of their research. We use green checks to indicate advantages and red X's to indicate disadvantages for each
method category: basic methods (blue), map-informed methods (orange), and feature-informed methods (green). Double signs represent
strong patterns, while no sign indicates no pattern, and NA denotes that the method was not tested.

3.7 Supplemental Notes

3.71 Basic methods

Mean Squared Error

The mean squared error (MSE) measures the average squared di�erence between two �attened contact matrices,

such that
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Because MSE is a measure of absolute di�erence, it consistently prioritizes the greatest changes in

intensity between contact maps. MSE has been widely adopted across machine learning as a loss function for

consistent performance and ease of use (Fudenberg, Kelley and Pollard, 2020; Schwessinger et al., 2020; R. Yang

et al., 2021; Tan et al., 2023) . Large changes between maps score highly, while visually smaller or localized

changes produce lower MSE values. However, maps with di�erences in read count or normalization intensity

will produce high MSE, despite little change in structure. For this reason, technical artifacts may dominate top

map rankings scored by MSE. MSE will also deprioritize maps with large structural changes and low overall

contact intensity. 2D map features will not be individually captured since the matrices are collapsed to 1D

vectors.

Spearman’s Rank Correlation Coe�cient

The Spearman's rank correlation coe�cient (ρ) assesses the correlation between the intensity of corresponding

pixels in two maps by quantifying how well the relationship between the corresponding pixels can be described

using a monotonic function. If the rank of intensity of all pixels in two contact maps are the same, the

correlation is 1. If there is no relationship between the rank of pixel intensity between maps, the correlation is 0.

Spearman’s Rank Correlation coe�cient can be described as:

,ρ =  1 −  
6Σ𝑑2

𝑖

𝑛(𝑛2−1)

where the number of points in the data set is represented by 𝑛, and d2 is the squared di�erence in the ranks of a

single coordinate yi between the two maps, which is summed over all points.
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Correlation coe�cients have been used extensively to compare contact maps(Lieberman-Aiden et al.,

2009; Dixon et al., 2015; Fudenberg, Kelley and Pollard, 2020; Tan et al., 2023). Large-scale structural changes

have high scores with correlation, because the ranks of each pixel in the maps are very di�erent. This approach

works well even when the contact intensity is low because magnitude of the values is not considered when

converting to rank. However, Spearman’s correlation is low even when the contact intensity is negligible (e.g. at

an extreme, random noise will generate a very low correlation). The method does not pick up on small or focal

changes in intensity, nor does it prioritize large-scale changes in intensity that do not change the map structure–

the rank will stay the same even if the magnitude of the values change. Because matrices are �attened before

calculating correlation, correlation also ignores the physical relationships between pixels of the map.

Stratum-adjusted Correlation Coe�cient (SCC)

Contact frequency in Hi-C maps is known to exhibit a distance-dependent decay. The high similarity of the

dependence pattern might bias the correlation between Hi-C maps, thus causing high, spurious correlations.

SCC addresses this distance-dependence e�ect by stratifying Hi-C data based on genomic distance, calculating a

Pearson correlation coe�cient for each stratum and aggregating the weighted stratum-speci�c correlation

coe�cients with weights derived from the generalized Cochran–Mantel–Haenszel (CMH) statistic(Yang et al.,

2017). SCC values range from -1 to 1 and share a similar interpretation as standard correlations. The equation to

calculate SCC can be written as:

ρ
𝑠

=  
𝑘
∑ 𝑤

𝑘
𝑝

𝑘

SCC was �rst implemented for Hi-C map comparison by Yang et al. in the R package HiCRep (Yang et al.,

2017). By including distance-aware weights, SCC is able to measure the overall reproducibility of the Hi-C
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matrices better than standard correlations and is resistant to decreased resolution. However, SCC is less likely to

identify small changes in TAD substructures compared to some other methods surveyed here (see Table 1).

Structural similarity index measure (SSIM)

Structural similarity index quanti�es the perceived change in structural information of two images by

incorporating three terms:

Luminescence: Contrast: Structure:

Where the integrated SSIM score is equal to:

SSIM is well-suited for identifying structural changes, and unlike correlation and MSE measures, is not biased by

map contrast values. For this reason it has been incorporated into Hi-C map comparison methods

previously(Galan et al., 2020). However, SSIM is sometimes very sensitive to small changes relative to larger-scale

changes that may appear more pronounced to the human eye. SSIM is also sensitive to the order of the input. It

should be applied to the matrix as a whole (not vector-by-vector) as it is designed to account for neighboring

values. NaN values must be interpolated or masked to zero.
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3.7.2Map-informed methods

Eigenvector di�erence

This method is inspired by genomic compartments, which are called by calculating the �rst eigenvector from

Hi-C contact maps and assigning each genomic region to its sign (Lieberman-Aiden et al., 2009). Similarly,

eigenvector di�erence is calculated from the �rst eigenvector that corresponds to each contact frequency map,

creating a vector annotated at each bin for both maps. These vectors are then compared using spearman’s rank

correlation. Because the components can have di�erent signs that are arbitrarily assigned, MSE is not used for

this method as it is sensitive to these signs and would result in falsely high scores when the maps are assigned

opposite signs.

Directionality Index (DI)

The Directionality Index (DI) is a measure of contact frequency bias towards either upstream sequence or

downstream sequence at some DNA locus. An in�ection of DI values from negative to positive and vice versa

indicates a potential chromatin boundary, where DI can be calculated by:

𝐷𝐼 =  𝐵−𝐴
|𝐵−𝐴| *  ( (𝐴−𝐸)2

𝐸 + (𝐵−𝐸)2

𝐸 )

Where A is the number of reads (or average normalized frequency value) that map from a given locus to

upstream bins, B is that value for downstream bins, and E is the expectation under the null hypothesis, equal to

. (𝐴+𝐵)
2
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DI was �rst proposed by Dixon et al. in 2012 (Dixon et al., 2012). It depends on two parameters: the size of the

focal bin whose relative upstream and downstream contact frequency is being compared, and the size of the

upstream and downstream bins (40 kb and 2 Mb in the original publication). To create a composite DI

disruption score for a variant, DI is calculated for each locus in the region of both maps and compared using

MSE or correlation. This composite score is subject to the caveats of the chosen comparison method.

Insulation score

Also known as the ratio score or boundary score, this method seeks to identify TAD boundary-like regions by

comparing the frequency of within-region contacts upstream (A) and downstream (B) of some point X to the

inter-region contacts between regions A and B (Crane et al., 2015; Gong et al., 2018). The higher the ratio is in a

given region, the more likely this region is to be a TAD boundary. The metric is calculated as follows:

,𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑚𝑎𝑥(𝑚𝑒𝑎𝑛(𝐴), 𝑚𝑒𝑎𝑛(𝐵))
𝑚𝑒𝑎𝑛(𝑋)

where X quanti�es the frequency of local contacts within the central region spanning 20 kilobases, and A and B

represent contact frequency in the regions upstream and downstream of X, respectively, spanning 200 kilobases

each.

Correlation or MSE can be applied to the insulation tracks of two conditions for a scalar disruption score. The

magnitude of the insulation score is dependent on di�erences in contact intensity between the two maps at each

bin, and therefore is sensitive to global change in contact frequency. Variants in regions of DNA with wider

ranges of contact intensity (high contrast) may have in�ated insulation scores relative to other regions. This
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method can potentially be improved by adjusting the following parameters: the size of central window X, i.e. the

region for which the insulation score is being calculated (default: 20kb), and the size of upstream/downstream

windows A and B (default: 200kb)

Contact probability decay

Contact decay, or the P(S) curve, measures chromatin interaction as a function of genomic distance (Nagano et

al., 2017; Zhou et al., 2019). Interaction frequency across the contact map is ranked by genomic distance

between all pairs of contact, resulting in a track of distance vs interaction frequency. As distance increases, the

probability of contact between loci decreases. Decay curves may be calculated at a given resolution such that the

chromosome is divided into n = L/r bins, where L is the chromosome length and r is resolution. Across an n x n

contact map, the contact frequency of each entry Ai,j is ordered by the distance between loci, i-j. A steeper decay

in contact frequency indicates a greater distance between further loci, while a shallow contact decay suggests

more interaction between distant loci. Contact decay measures a global signal of relative interaction increase or

decrease, but will not be sensitive to local structural changes to contact matrices.

Triangle Method

Basic methods (correlations, MSE) all ignore the physical relationships between pixels of the map when they are

�attened into vectors. They are therefore over-simpli�ed characterizations of the relationships between maps.

This method tries to leverage our understanding that contacts are represented by di�erent subsets of triangles

within the larger map to address this gap. The triangle-based method compares the average contact intensity

within all sub-triangles of two contact maps. In comparison to MSE and correlations, the �attened

representation of the map is the average contact intensity of all sub-triangles instead of just each pixel on its own.

The �attened representations can then be compared with either MSE or a correlation method.
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The performance of this method depends on the correlation or MSE used over the sub-triangles (see their

individual pros and cons). The advantage over those basic methods is that triangle comparison is more

feature-informed to capture relevant contact relationships. Because there are so many more smaller triangles

than larger triangles, this method likely prioritizes more local changes; however, one could weight the triangles or

subset to only the larger or smaller sub-triangles to prioritize only larger or smaller scale interactions. One caveat

is that this method is signi�cantly slower than other methods, but speed can be improved by creating lower

resolution maps before computing.

3.7.3 Feature-informed methods

TADs

TAD boundaries are called by �nding the local minima of the insulation pro�le, which is calculated using a

diamond-shaped window-based method proposed by Crane et al. (Crane et al., 2015). Speci�cally, a square (a W

x W diamond-shaped window) is slid along each diagonal bin of the matrix and the averaged contact frequency

within each window is calculated and called as insulation score. Bins with a low insulation score indicate a high

insulatory e�ect, thus the bins reaching the local minima are identi�ed as candidate TAD boundaries. The

boundary strength is calculated for each local minima using peak prominence and candidates with strength

above a threshold are referred to as TAD boundaries. The scores for the bins at the end of the diagonal and

within the window size are not calculated. The overlap, gain, and loss of TAD boundaries between two Hi-C

matrices are reported to show their consistency and changes. The boundary locations within a set resolution r

are considered the same. This method could be further improved by changing the following parameters: window

size (w), threshold of boundary strength, and upper bound of distance when two TAD boundaries are

considered the one.
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Loops

Chromatin loops are the positions where a pair of loci showing closer proximity compared to loci lying between

them, corresponding to pixels with higher contact frequency than the ones in their neighborhood. We identify

loops by comparing regions with their local background, as in HiCCUPS(Rao et al., 2014). Speci�cally, for each

bin in the upper triangle window of the matrix, we �rst check whether it is a local maximum (across

neighborhood window size w) and then calculate the mean signal of center window (window size p)

surrounding the bin as well as the mean signal in a donut-shape neighborhood, a lower-left neighborhood,

vertical and horizontal neighborhoods around the pixel. The bins enriched above its neighborhood with ratios

of mean signals of the center window to the neighborhoods higher than certain thresholds are considered as

candidate loops. The bins at the corners are not considered. Loops that are the same, gained, lost between two

Hi-C matrices are identi�ed. The loops that are located within a window of size r of one another are treated as

the same. This method can potentially be improved by adjusting the following parameters: the center window

size (p), window size (w), threshold of the ratio of center window to donut and lower-left �lter, threshold of the

ratio of center window to vertical �lter, threshold of the ratio of center window to horizontal �lter, and the

upper bound of bin distance where two loops are considered as same one.
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3.8 Supplemental Figures

Supplemental Figure 3.1. Pearson correlation versus mean squared error comparisons of contact maps.

Mean squared error (MSE) and Pearson correlation coe�cient calculated across the genome on experimental contact maps from
embryonic stem cell (ESC) and human foreskin �broblast (HFF). Each point represents a comparison between maps from HFF and ESC
cell types (n = 7840 windows). There is a weak relationship between the Pearson correlation and MSE (r^2 = 0.0005, P = 0.05)
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Supplemental Figure 3.2. Sensitivity of TAD and loop caller on parameter shifts.

(A) TAD boundaries (highlighted with black bar) called with di�erent sizes of diamond-shaped window (w) and thresholds of insulation
scores (th). (B) Chromatin loops (highlighted with black circle) identi�ed using di�erent sizes of center window (p) and donut �lter (w).
Example maps used here are the same as in Fig. 3.3Bi.
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Supplemental Figure 3.3. Score distributions of random deletions, CTCF deletions, and CTCF insertions.

Each disruption score method (rows) produces a di�erent range and mean (red line) across scores produced. Histograms show the raw
scores comparing maps produced by 7500 random 100 bp deletions (left), 7500 CTCF insertions (middle), and 7500 CTCF deletions
(right). To enable comparisons between the di�erent scores, the main text �gures report scores standardized to the mean disruption
produced by a random 100 bp deletion. Thus, both an MSE-based disruption score and correlation-based disruption score describe that
the maps are twice as di�erent as the average 100 bp deletion.

88



Supplemental Figure 3.4. Basic methods to compare contact frequency maps rank maps di�erently on in silico perturbations.

Mean squared error (MSE) vs Spearman’s correlation (ρ) scores across an in silico screen of 7,500 map pairs with and without CTCF
insertions (A-B), CTCF deletions (C-D) and random 100 bp deletions (E-F), similar to Fig. 3.2. We plot 1 - ρ such that higher values for
both methods re�ect increasing di�erences between maps. MSE versus Spearman’s correlation are plotted where each point represents a
comparison between a reference and perturbed map (Fig. 3.4a). Normalized scores are divided by the mean of the distribution of
random deletions. Across all three perturbations, there is a weak relationship between the two disruption scores (r^2 = 0.29, 0.19, and
0.07 for CTCF insertions, CTCF deletions and random deletions, respectively). The relationship is strongest for CTCF insertions, for
which scores are highest, followed by CTCF deletions, which have the next highest scores. Yet perturbations with at least one high score
are not always concordantly scored. Examples of extreme scores for each perturbation are shown in B, D, and F in panels i through iv,
illustrating that perturbations with high MSE and low 1 - ρ are consistently maps with high contrast, while low MSE and high 1 - ρ
perturbations are maps with overall low contrast.
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Supplemental Figure 3.5. The three most disruptive map pairs of each scoring method.

For each example row, the unperturbed map is shown on the left, the perturbed map is shown in the middle, and the di�erence between
the two maps is shown on the right. The top three disruptive maps were chosen across the in silico screen.

90



Supplemental Figure 3.6. Overlap of the most disruptive map pairs identi�ed by each scoring method.

Each cell in the heatmap represents the percentage of map pairs that are above the 5% cuto� for the method in row and above the 5%
cuto� for the method in the column. Darker colors indicate higher concordance for the top scoring loci. The heatmap is symmetric
except for Loops and TADs. The imbalance of these two methods is caused by multiple map pairs that have scores equal to the 5th
percentile, which results from methods producing low counts of discrete values.
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Supplemental Figure 3.7.   Scoring metrics on contact map pairs with large, small, and minimal changes.

(A) Basic method scoring results across three example loci with a large, small, and minimal change upon CTCF motif insertion. (B)
Map-motivated scoring results across three example loci. Raw tracks are shown for each measurement and the MSE and Spearman’s
correlation between the tracks are shown below. (C) Feature-informed scoring examples across three example loci with a no change, a
minimal change, and a large change to folding.
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Supplemental Figure 3.8. Changes of disruption scores with gradual increases in perturbations.

Each subpanel shows the changes of disruption scores (top row) and contact maps (bottom row) against the incremental changes in a
technical or biological variation. The colors of the scoring metric are the same as seen in Fig. 3.5.
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Supplemental Figure 3.9. Sensitivity of directionality index and insulation tracks on parameter shifts.

Directionality index (A) and insulation (B) tracks across a range of input window size choices, as well as the resulting Spearman’s
correlation between the two tracks. A window size of 10 Mb was used for both approaches to produce the in silico scoring results in the
Results section.
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Supplementary Table 3.1: Method summary table
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4

Chapter 4: ChromaFactor: deconvolution of single-molecule
chromatin organization with non-negative matrix

factorization

4.1 Abstract

The investigation of chromatin organization in single cells holds great promise for identifying causal

relationships between genome structure and function. However, analysis of single-molecule data is hampered by

extreme yet inherent heterogeneity, making it challenging to determine the contributions of individual

chromatin �bers to bulk trends. To address this challenge, we propose ChromaFactor, a novel computational

approach based on non-negative matrix factorization that deconvolves single-molecule chromatin organization

datasets into their most salient primary components. ChromaFactor provides the ability to identify trends

accounting for the maximum variance in the dataset while simultaneously describing the contribution of

individual molecules to each component. Applying our approach to two single-molecule imaging datasets across

di�erent genomic scales, we �nd that these primary components demonstrate signi�cant correlation with key

functional phenotypes, including active transcription, enhancer-promoter distance, and genomic compartment.

ChromaFactor o�ers a robust tool for understanding the complex interplay between chromatin structure and

function on individual DNA molecules, pinpointing which subpopulations drive functional changes and

fostering new insights into cellular heterogeneity and its implications for bulk genomic phenomena.
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4.2 Introduction

Chromatin is intrinsically dynamic, and its behavior across time restricts and permits the precise regulatory

landscape controlling gene expression (Misteli, 2020; Hafner and Boettiger, 2022). Recent single-cell

technologies such as single-cell Hi-C (Nagano et al., 2017; Ramani et al., 2017) and chromatin microscopy

techniques (Cardozo Gizzi et al., 2019; Mateo et al., 2019; Liu et al., 2020; Su et al., 2020; Takei et al., 2021)

now o�er unique insight into genome folding, allowing us to directly observe chromatin folding as well as

functional readouts in individual cells to disentangle their mechanistic relationship.

Linking chromatin conformation to function in single cells presents several key challenges: 1) Single

cell data is extremely sparse (Zhou, Zhang and Ma, 2021). Current single-cell technology often yields incomplete

information, such as missing values or misallocated genomic coordinates. 2) Single-cell measurements capture

snapshots, whereas chromatin function may result from a dynamic behavior as it moves across time. Phenomena

observed in bulk experiments, such as Hi-C, may be artifacts of averaging across cell populations and patterns

seen in bulk may not exist in single cells (Hafner et al., 2022). 3) Capturing chromatin folding and phenotypic

measurements like nascent transcription in the same cells has only recently become possible, but temporal o�sets

between folding and function could introduce uncertainty. 4) The bulk trends we observe in aggregate may be

driven by a small fraction of cells, and identifying this subset amidst heterogeneous single-cell chromatin

measurements presents a complex challenge. Connecting chromatin behavior to function in individual cells

remains intractable given these technical barriers.

Several computational methods have been developed in response to emerging single-cell imaging and

high-throughput sequencing techniques to measure chromatin conformation. Topic modeling(Kim et al.,
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2020), random-walk methods(Zhou et al., 2019) and recent deep learning approaches(Zhang, Zhou and Ma,

2022a; Zheng, Shen and Keleş, 2022) e�ectively cluster cells into subpopulations. Recent methods also o�er rich

annotations in single cells, including A/B compartments (Zhang, Zhou and Ma, 2022a, 2022b),

subcompartments(Xiong, Zhang and Ma, 2023), topologically associating domains (TADs)(Zhang, Zhou and

Ma, 2022a, 2022b), and chromatin loops(Yu et al., 2021). Rajpurkar et al. �rst applied a convolutional neural

network to directly predict nascent transcription from chromatin folding(Rajpurkar et al., 2021) and Zhan et

al.(Zhan et al., 2023) propose an e�ective deep-learning-based dimensionality reduction method to cluster

conformations. However, these works did not yet connect the behavior of individual cells to populations of

similar conformations that are transcriptionally on or o�. We build on these works to relate the behavior of

individual cells to bulk trends as well as mechanistically link chromatin behavior to transcription.

We introduce ChromaFactor, a non-negative matrix factorization (NMF) technique to decompose

single-cell datasets into interpretable components and identify key subpopulations driving cellular phenotypes.

Non-negative matrix factorization (NMF) o�ers an ideal approach to analyze such complex data due to its

inherent capacity to reduce high-dimensional data into a lower-dimensional, interpretable format(Lee and

Seung, 1999). NMF has a robust legacy in genomics as it allows for the deconvolution of composite signals into

a set of additive components and can therefore discern patterns and structures in noisy, large-scale data. Notably,

it has been used on bulk Hi-C data for TAD calling(Lee and Roy, 2021) and has found applications in other

emergent single-cell modalities, including single-cell RNA-Seq(Kotliar et al., 2019) and spatial transcriptomics

datasets(Townes and Engelhardt, 2023). By applying NMF to single-cell genome folding datasets, we can

identify signi�cant components or 'templates' that account for the majority of cellular variation. Linking these

templates to matched functional readouts describes how di�erences in cell populations correspond to

di�erences in phenotypes. ChromaFactor deconvolves single-cell chromatin organization datasets into their
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most meaningful primary components, providing new insights into the interplay between chromatin structure

and function. Here, we apply ChromaFactor to two single-cell imaging datasets and link templates to nascent

transcription. This tool may also be applied to any set of ordered matrices in single cells.

4.3 Results

NMF to decompose single-cell genome conformation datasets

We were motivated to develop ChromaFactor by the disconnect between meaningful signal observed bulk cell

populations and the extreme heterogeneity of single-molecule examples. One such dataset, Mateo et al.

2019(Mateo et al., 2019), pro�les local chromatin conformation at the bithorax complex (BX-C) in Drosophila

embryos and additionally includes matched nascent transcription in the same cells (n = 19,103). To discover

how cell populations vary, we often take the di�erence between the average contact maps under two conditions.

We observed a pronounced boundary in cells within the 30 kb region actively transcribing the Abd-A gene, as

compared to non-transcribing cells (Fig. 4.1a). However, these patterns are nearly impossible to discern in

individual cells (Fig. 4.1b). Given the heterogeneity and dynamic behavior of chromatin in single cells,

identifying which cells contribute to overall trends is complex. Are these contact patterns visible at the single-cell

level, or are they composite e�ects resulting from population-wide averaging? To bridge the gap between

single-cells and bulk averages and identify which cells contribute most, we propose applying NMF to

single-molecule chromatin conformation datasets with ChromaFactor.
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In this approach, NMF decomposes a non-negative distance matrix into two lower-rank non-negative

matrices, such that their product approximates the original matrix. ChromaFactor decomposes an n by n by m

count matrix, where n is the number of genomic loci pro�led and m is the number of cells, into an n by n by k

component matrix W, where k is a speci�ed number of components, and a k by m weight matrix, H (Fig. 4.1c).

The matrix W represents the basis vectors, which we call templates, as they resemble patterns observed across the

cell population. The method accepts both distance matrices from single-molecule imaging experiments and

contact matrices from single-cell Hi-C. Here, the number of components (k) was selected to balance template

interpretability and reconstruction error. The matrix H represents the weight matrix, signifying contributions of

cells to components such that the data for each molecule is approximated as the weighted average of the

components plus noise. To estimate W and H, matrices are randomly initialized and updated to minimize the

reconstruction error between their product and the single-cell dataset.

Relating single cells to bulk trends with ChromaFactor

When ChromaFactor is applied to the Mateo et al. dataset with twenty components, we �nd that

several templates resemble chromatin boundaries (Methods, Fig. 4.1d, Supp. Fig. 4.1, Supp. Fig. 4.2). To

visualize the relationships within the single-cell dataset, we apply UMAP on the weight matrix, H (Fig. 4.2a),

and label cells by the component with the largest weight. Investigating individual examples, we �nd that single

cells can resemble these template patterns. To illustrate, we show the 3D coordinates and distance maps of three

cells, along with their component contributions from weight matrix H (Fig. 4.2b-d). Since every cell is an

additive combination of the templates, we can multiply each cell’s weights by the component matrix to

reconstruct single-cell examples, which are less noisy than the original cell measurements (Fig. 4.2e). Notably,

these cells closely resemble the component with the highest contribution, indicating that templates can be
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representative of cell subpopulations (Fig. 4.2f). Indeed, considering all cells in the same group, we �nd that

median contact resembles the closest template (Fig. 4.2g)

Templates are signi�cantly correlated with active transcription

Templates may capture subsets of cells and cellular patterns. Which components, if any, correspond to biological

phenotypes? To investigate if templates are correlated with downstream biological function, we train a random

forest model to predict nascent transcription of nearby genes from the weight matrix H alone (Methods, Fig.

4.3a). In the Mateo et al. dataset, three genes were pro�led in the same cells that were imaged, producing

matched chromatin organization and transcription data(Mateo et al., 2019). Predictive performance would

indicate that the components capture salient information about transcriptional state and may serve as a proxy

for the raw input distance matrices themselves.

Di�erent random forest models were separately trained to predict transcription in the 17 measured gene

isoforms. We �nd that the weight matrix can modestly predict transcription across several genes, including

Abd-a, Ubx, and Abd-b on balanced datasets of transcribing and non-transcribing cells (Fig. 4.3b). Indeed, the

performance of the random forest parallels the performance of a random forest trained directly on the distance

matrices, achieving an accuracy of 67.4% and 65.3%, respectively. Examining the feature importance of the

Abd-a trained model, we �nd that components 0, 1, 5, and 14 are particularly in�uential for the model’s

prediction (Fig. 4.3c).
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We can alternatively address which components are preferentially upweighted by transcribed cells by

evaluating component weights separately for transcribing and non-transcribing cells. Twelve of the twenty

components have signi�cantly di�erent weights between Abd-A transcribing and non-transcribing cells

(two-sided Mann Whitney U, p-value < 0.001, Fig. 4.3d). This e�ect is most extreme in components 0, 1, 5, and

14, the same components identi�ed as salient by the random forest models. Visually, these components show a

separation of chromatin into two distinct compartments across three separate points across the locus

(components 0, 1, 5), as well as a sharp decrease in contact at the center of the locus (component 14). Signi�cant

templates suggest how contact di�ers upon active transcription to favor stricter subcompartmentalization

within the genomic locus.

Subpopulations of transcribing cells drive contact patterns observed in aggregate

Our aim is to understand not just how contact di�ers, but which subpopulations of cells drive the changes we

observe in bulk (Fig. 4.1a). We consider transcribing cells with the top 50% of weights in components 0, 1, 5,

and 14, which we call ‘high contribution’ cells, and contrast them with non-transcribing cells in the bottom 50%

of component contributions (‘low contribution’ cells). These cells make up only 12.7% of the total cell

population, but their component weights are the most predictive of transcriptional state. These high and low

contribution cells occupy di�erent areas of the UMAP plot seen previously– low contribution cells are more

likely to be mixes of components and high contribution cells are more likely to favor one component, suggesting

that biologically consequential cells resemble templates (Fig. 4.3e).

These subpopulations of cells di�er not just in chromatin conformation and transcriptional state, but

also in their local behavior of regulatory elements. The distance between Abd-A and all proximate enhancers at
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the same locus is notably smaller in high contribution cells as compared to low contribution cells (Fig. 4.3f).

Enhancers are closer to the gene promoter in the subset of active cells identi�ed by ChromaFactor. Moreover,

examining the median contact of high and low contribution cells, we observe contact patterns far more

pronounced than those observed in bulk (Fig. 4.3g). Cells with high component weights possess stronger

boundary separation as well as a stripe of contact centered at the location of Abd-A, which is absent in

low-contribution, transcriptionally-o� cells. In this case, the cell population identi�ed by ChromaFactor

exhibits a more potent and uni�ed pro�le of compartmentalized chromatin driving smaller enhancer-promoter

distances when compared with all transcribing cells.

In sum, template analysis at this locus paints a holistic portrait of higher genomic sequestration between

loci, reducing the distance between enhancers and promoters, thereby increasing the likelihood of transcription.

This trend, although suggested at the level of the bulk population, is strongly driven by a small subpopulation of

single cells. The remaining population is extremely heterogeneous across transcribing and non-transcribing cells

such that their contact e�ectively cancels out.

Application of ChromaFactor to holocarboxylase synthetase (HLCS) locus highlights local and

compartment-level chromatin shifts upon transcription

To demonstrate the e�cacy of ChromaFactor across genomic scales, we next apply NMF to a 10 Mb locus in

human IMR90 cells with 40 kb resolution(Su et al., 2020). We pro�le a population of 7,590 cells derived from

genome-wide pro�ling of chromatin conformation and nascent transcription with microscopy. The median

genomic distance between cells actively transcribing and not transcribing the HLCS gene reveals no visually

discernible change in contact (Fig. 4.4a). However, after subtracting one contact matrix from the other to
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examine the di�erence in contact between populations, we observe a weakened boundary directly upstream of

the HLCS locus.

We decompose the single-cell imaging dataset into twenty components with ChromaFactor and

identify components with signi�cantly di�erent weights in transcribing cells (Fig. 4.4b, Supp. Fig. 4.3). Of the

twenty components, �ve are signi�cantly di�erent in transcribed cells (two-sided Mann-Whitney-U, p-value <

0.05), exhibiting a diverse range in contact di�erences across templates. Component weights are elevated in

transcribing cells in all components but component 11, where a decrease in contact is observed at the precise

location of the boundary loss observed in bulk. Curiously, component 14 highlights a sharp change in contact at

two particular genomic loci, one of which is the location of the HLCS gene itself. The method has no

knowledge of transcriptional state nor gene location, indicating that change in contact at this locus may

nonetheless contribute to a signi�cant amount of variation across the cell population.

We �nd that two signi�cant components, 0 and 11, correspond to a steep shift in the directionality

index, a measure of contact frequency bias towards either upstream sequence or downstream sequence, at the

location of the HLCS locus (Fig. 4.4c). Components 3 and 13 display a sharp increase in insulation at the

location of a compartment switch from A to B in IMR90 cells (Fig. 4.4d-e). In sum, template analysis at this

locus suggests that the change of transcription correlates with a reorganization of chromatin directly at the site

of active transcription, at boundary shifts directly upstream of the locus, and within broader compartments

downstream of the locus.
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4.4 Discussion

This study presented ChromaFactor, a novel application leveraging Non-negative Matrix Factorization (NMF)

for dissecting single-cell chromatin conformation datasets. ChromaFactor uncovers nuanced layers of genome

conformation dynamics and their correlation with transcriptional states, which would otherwise be obscured in

bulk analyses. Correlations between template patterns and active transcription suggest that these templates are

not merely re�ections of cellular heterogeneity, but could be mechanistically linked to transcriptional regulation.

Our application of ChromaFactor to the Mateo et al. and Su et al. datasets leads us to two intriguing biological

interpretations: 1) bulk behavior can sometimes be observed in individual cells, and 2) only a small minority of

cells in the population drive population-wide signal. This reasoning is not possible at the bulk level, where

trends may be artifacts of averaging, nor at the single-cell level, where it is unknown which snapshots capture

relevant signal.

Looking ahead, the application of ChromaFactor to a wider array of cell types, genomic phenomena,

and sc-HiC will help us to understand if these conclusions hold across biological contexts. ChromaFactor’s

ability to isolate functional portions of single-cell chromatin datasets could clarify the structural dynamics

underpinning cell-type-speci�c gene regulation and the development of cellular heterogeneity. Additionally,

integrating ChromaFactor with multi-omics approaches, such as single-cell RNA-Seq, ATAC-Seq, or

CUT&Tag, could help resolve the interplay between chromatin structure, epigenetic modi�cations, and gene

expression. ChromaFactor's application to pathological states or CTCF degradation experiments presents

another exciting area of future exploration.
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While the application of ChromaFactor is promising, it is important to note its current limitations. The

number of templates, k, is manually selected. The approach also relies heavily on the quality of the single-cell

chromatin datasets and the resolution at which they are produced. The inherent noise and technical artifacts

present in these datasets can in�uence the deconvolution process and the interpretation of the resulting

components. Extremely noisy datasets with consistent dropout locations will produce templates capturing

dropout. Further improvements in single-cell chromatin imaging and sequencing technologies will likely

enhance the accuracy and interpretability of ChromaFactor's outputs.

Finally, a deeper investigation of the biological interpretation of components is warranted. While we

have shown that these components correlate with transcription and other genomic features, the exact

mechanisms through which these templates in�uence cellular behaviors remain largely unknown. Additional

studies are needed to mechanistically link these structural templates with speci�c functional outputs and to

explore their potential role in modulating regulatory response. In sum, this study introduces ChromaFactor as a

promising tool for decoding single-cell chromatin conformation data. It provides a more granular view of the

dynamic nature of genome architecture and its role in gene regulation, thereby broadening our perspective on

the intricate interplay of genome organization and function.

Code Availability

This package as well as notebooks to reconstruct the �gures can be found at the following repository:

https://github.com/lgunsalus/ChromaFactor.
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4.5 Methods

Datasets and processing

Mateo et al. dataset

The Mateo et al. microscopy dataset contains 3D genomic coordinates and transcriptional activity for single

molecules spanning the Drosophila Bithorax complex (BX-C) locus(Mateo et al., 2019), which can be found at

the following repository: https://zenodo.org/records/4741214. We employed the data preprocessing procedure

from Rajpurkar et al.(Rajpurkar et al., 2021) to handle missing values, which can be found at the following

repository:

https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/DataPreprocessing.

Cells with over 80% of coordinates missing were excluded from our analysis. For the remaining cells, missing

coordinates were imputed by linear interpolation between adjacent loci using the scipy.interpolate.interp1d

function(Virtanen et al., 2020). Maps were normalized by dividing by the maximum distance observed as

followed prior to NMF.

Su. et al. dataset

The Su et al. dataset(Su et al., 2020) comprises genome-wide chromatin folding data from single molecules in

human IMR90 �broblasts imaged using DNA FISH. Data can be downloaded from the following repository:

https://zenodo.org/record/3928890. In particular, we analyze paired coordinate and transcription data in

‘genomic-scale-with transcription and nuclear bodies.tsv’. Custom Python code was written to extract speci�c

genomic regions from the raw dataset, transform coordinate data into distance matrices, and identify cells

transcribing the HLCS (ENSG00000159267) gene for downstream analysis, and can be found in the provided
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repo with an example of processing. Maps were considered with a 40k resolution. Cells with more than 25%

missing coordinates within the 10 Mb HLCS genomic locus were excluded. Any remaining missing values were

imputed by linear interpolation using numpy.interp(Harris et al., 2020).

Non-negative matrix factorization (NMF) and ChromaFactor application

We applied non-negative matrix factorization (NMF) using the ChannelReducer wrapper in the Lucid NMF

library(lucid: A collection of infrastructure and tools for research in neural network interpretability, no date) built

on top of the scikit-learn implementation(Pedregosa et al., 2011), which unravels the 3D input matrices into 2D

vectors suitable for NMF. We set the number of components to k=20 to balance interpretability of templates

and reconstruction error (Supplementary Figure 4.1). Default scikit-learn NMF parameters were used:

NNDSVD initialization, a coordinate descent solver, Frobenius loss, tolerance of 1e-4, maximum 200 iterations,

and an element-wise L2 regularization penalty. Additional code is provided to process both datasets and plot 2D

distance matrices and 3D coordinates.

Random forest

We trained random forest classi�ers using RandomForestClassi�er in scikit-learn(Pedregosa et al., 2011) to

predict transcriptional activity from NMF component weights. Models were trained separately for each gene

with binary on/o� transcription labels. Balanced datasets were created for each gene with equal transcribing and

non-transcribing cells. Data was split 70/30 into train and test sets. All other random forest parameters were left

as scikit-learn defaults.
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Genomic features annotations

Gene annotations and enhancer locations were derived from the original publications for each dataset. Enhancer

and gene locations were provided from Mateo et al(Mateo et al., 2019). Compartment annotations were used

from Rao et al.(Rao et al., 2014) (4DNFIHM89EGL). Directionality index and insulation tracks were produced

from scoring code provided in Gunsalus et al(Gunsalus et al., 2023). UMAP dimensionality reduction for

visualization used the scikit-learn implementation with n_neighbors=5 and remaining default parameters.

Statistical Analysis

Di�erences in contact patterns and NMF component weights between transcribing and non-transcribing cells

were evaluated using the non-parametric two-sided Mann-Whitney U statistical test. P-values less than 0.05 were

considered statistically signi�cant.
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4.6 Figures

Figure 4.1. NMF provides interpretable decomposition of single-molecule chromatin conformation datasets.
a. Matrices representing the median all-by-all Euclidean di�erence (nm) between genomic loci in single molecules at a 30 kb locus in
Drosophila melanogaster actively transcribing (left) and not transcribing (middle) the Abd-A gene from Mateo et al. (n = 16,320
molecules). The rightmost panel shows the di�erence in distance matrices, indicating two domains with elevated local interactions and
reduced distal interactions in populations transcribing Abd-A. b. Bulk trends in contact change are challenging to observe in single
cells actively transcribing (left) and not transcribing (right) Abd-A. c. Non-negative matrix factorization (NMF) decomposes a dataset
of single-cell distance matrices into a template matrix with interpretable chromatin domain boundaries and a contribution matrix
describing the weight of each template to each cell. d. Three templates produced when NMF is applied to distance matrices at the
Abd-A locus.
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Figure 4.2. Visualization of NMF outputs and their relationship to single-cell behavior.
a. UMAP visualization of contribution matrix, colored by the template with the predominant contribution in each cell. b. Depiction
of cell coordinates from selected individual cells. c. Component contributions for each cell, emphasizing high weight for templates 5,
1, and 0. d. Distance matrices corresponding to each cell. e. Denoised reconstructions of the distance matrices, created by multiplying
the template contribution of a cell shown in (c) by the template matrix. f. NMF templates 5, 1, and 0, which had the highest weight
contributions for the three individual cells in (c). g. Median contact distance across all cells in the dataset with the highest weight
contributions to templates 5, 1, and 0, respectively.
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Figure 4.3. NMF templates are signi�cantly correlated with transcription.
a. Application of random forest models to predict cell transcription from the contribution matrix alone. b. A random forest can
modestly predict transcription in abd-A, Abd-B, and Ubx, demonstrating that the components capture salient information for
transcription. c. Random forest feature importance highlights templates 0, 1, and 5 as most important for predicting transcription. d.
Several components, including 0, 1, 5, and 14, have signi�cantly di�erent component contribution weights in transcribing and not
transcribing cells. e. UMAP visualization of component contribution matrix, colored by cells with a high contribution of components
0, 1, 5, and 14 (blue) and a low contribution of these components (red). f. Mean distance between abd-A and nearby enhancers at the
same locus across the subset of cells with high and low component contributions. g. Median contact of cells with high and low
component contributions, encompassing the subset of cells which may be responsible for changes in contact observed in bulk.
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Figure 4.4. Interpretable templates at the HCLS locus in IMR-90 cells.
a. Average chromatin contacts in cells actively transcribing (left) and non-transcribing (middle) the HCLS gene within the
surrounding 10 Mb region. The right panel highlights the contrast in contact patterns, emphasizing a stronger boundary in actively
transcribing cells. b. Templates generated using Non-Negative Matrix Factorization (NMF) on this cell population. Among the 20
components, �ve exhibit signi�cant di�erences between cells transcribing and not transcribing the HCLS gene. c. Directionality index
of templates 0 and 11 correspond with the location of the transcribed HLCS gene. d-e. Insulation scores of templates 3 and 4 align
with a shift in compartment in IMR-90 cells.
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4.7 Supplementary Figures

Supplemental Figure 4.1. Reconstruction error across number of components, k.
Reconstruction error, measured by the di�erence between the original single-cell chromatin folding dataset and the NMF reconstructed
approximation, across di�erent values of k components. Adding more components reduces the reconstruction error as NMF can better
capture patterns in the data at the expense of interpretability. An elbow is visible around k=15-20 where adding additional components
leads to diminishing returns in error reduction. We selected k=20 components for our analysis to balance reconstruction accuracy and
interpretability.
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Supplemental Figure 4.2. Components at BX-C locus.
All 20 components generated by applying NMF across the cells at this locus from the Mateo et al. dataset.

Supplemental Figure 4.3. Components at HLCS locus.
All 20 components generated by applying NMF across the cells at this locus from the Su et al. dataset.
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5

Chapter 5: Conclusions and Outlook

Conclusions and Future Outlook

This dissertation puts forth computational strategies to advance our understanding of the principles governing

three-dimensional chromatin structure and their implications for gene regulation. In Chapter 2, I performed

large-scale in silico mutagenesis to systematically identify DNA sequences that encode the folding of the human

genome. Chapter 3 tackled challenges in quantitatively comparing di�erences between Hi-C maps by

benchmarking methods using thousands of perturbations. Finally, Chapter 4 introduced a technique to

deconvolve single-cell heterogeneity in chromatin folding and link cell subsets to average genomic patterns.

Together, these aims provide new computational approaches to gain fundamental insights into the form and

function of the dynamically folded genome. In this concluding chapter, I re�ect on key lessons, limitations, and

opportunities for future work related to the presented studies.

Broader Impacts and Future Directions

Stepping back, this dissertation makes contributions on a speci�c technical level as well as a broader conceptual

level. The presented studies introduce novel computational techniques directly advancing capabilities in several

domains: identifying DNA sequence elements governing folding, quantifying di�erences in chromatin maps,

and unraveling single-cell heterogeneity. The particular methods put forth in each chapter address limitations of

existing approaches to make progress on longstanding questions in decoding the grammar of genome topology.
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However, the reach of these contributions also extends beyond the speci�c aims targeted. This work broadly

highlights the potential of emerging computational methods, especially machine learning, to accelerate discovery

in genomics. Powerful deep learning models can now predict diverse molecular phenotypes directly from raw

DNA sequence, including transcription factor binding, gene expression, epigenetic state, and 3D chromatin

structure (Kelley, Snoek and Rinn, 2016; Fudenberg, Kelley and Pollard, 2020; Avsec, Agarwal, et al., 2021;

Avsec, Weilert, et al., 2021). As we demonstrate in Chapter 2, these models enable completely new experimental

paradigms. Rather than costly and time-consuming in vivo assays, we can computationally test millions of in

silico sequence perturbations at will. The creative application of machine learning for biological hypothesis

generation is an area open for future development.

Looking forward, several promising directions emerge. Here I highlight a few key opportunities motivated by

this dissertation at the frontiers of deciphering principles of genome folding, connecting chromatin architecture

to function, and further leveraging the potential of machine learning.

Relating Heterogeneous Chromatin Structure to Gene Regulation in Single Cells

Chapter 4 developed an approach to link single-cell variability in chromatin folding to average principles and

phenotypes. However, signi�cant future work remains to unravel the complex relationship between 3D

architecture and transcription at the single-cell level. One avenue is applying unsupervised techniques like graph

neural networks to segment single-cell chromatin folding measurements and then correlate communities with

expression states. Alternatively, multi-modal neural networks could explicitly predict gene regulation from

heterogeneous chromatin structure annotations (Rajpurkar et al., 2021).
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Capturing paired measurements of conformation and transcription in individual cells is an ongoing

experimental challenge. Emerging combinatorial barcoding schemes enable parallel capture of spatial

transcriptomics and DNA contacts (Wang et al., 2018). Expanding these approaches to additional modalities

like enhancer contacts could provide ideal training data. We anticipate joint pro�ling and modeling will enable

new traction in disentangling mechanisms linking form and function within single cells.

Inference of CausalModels from Population and Single-Cell Data

Critically, correlation does not imply causation. Observing links between chromatin folding and transcription

provides circumstantial evidence but cannot conclusively determine that structure drives expression or vice

versa. Recent work to infer causality from population chromatin data shows promise in nominating putative

drivers of compartmentalization and domain formation (Gayoso et al., 2023). Extending causal network models

to single-cell measurements could help resolve longstanding questions about the sequence of events potentiating

gene activation. Do enhancer-promoter contacts induce transcription, or does recruitment of polymerases

stabilize looping? Do shifts in compartmentalization alter folding, or does altered folding drive compartment

changes? To address these questions with computational techniques, we will require large-scale single-cell

chromatin perturbation experiments as training data. Nonetheless, I am especially excited for the future of

molecular biology technology development, which may be the only conclusive avenue to understand causality in

chromatin biology. The ability to image chromatin in live cells over time may �nally resolve long-standing

unknowns about how enhancers and promoters interact to facilitate transcription.

Designing Novel Regulatory Sequences with GenerativeModels

Chapter 2 nominated DNA elements governing folding, but further work is needed to re�ne and expand this

vocabulary. Recently, generative machine learning models have shown promise in designing novel sequences
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optimized for desired molecular functions. These models learn patterns from training data and can sample new

examples adhering to the implicit rules.

Applying similar generative strategies could enable designing synthetic DNA sequences to precisely shape

chromatin architecture. For instance, variational autoencoders trained on TF binding motifs can generate new

motifs with tuned strengths. Adapting this concept, we envision creating sequences optimized to recapitulate

speci�c folding behavior. Reinforcement learning presents another avenue to iteratively re�ne sequences to

match target conformations. Generative modeling could provide a rapid design cycle complementing in vivo

testing.

In summary, future studies integrating diverse data modalities, capitalizing on single-cell approaches, and

inferring causal mechanisms will help re�ne our understanding of the sequence encoding, dynamics, and

consequences of higher-order genome topology. Complementary computational and experimental techniques

should be combined iteratively to unravel multi-scale organizational principles. The work presented in this

dissertation provides both speci�c methods and a conceptual template to advance the next stage of insights into

the form, function, and variability underpinning the folded genome.
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