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ABSTRACT
We present a means of studying rare reactive pathways in open quantum systems using transition path theory and ensembles of quantum jump
trajectories. This approach allows for the elucidation of reactive paths for dissipative, nonadiabatic dynamics when the system is embedded
in a Markovian environment. We detail the dominant pathways and rates of thermally activated processes and the relaxation pathways and
photoyields following vertical excitation in a minimal model of a conical intersection. We find that the geometry of the conical intersection
affects the electronic character of the transition state as defined through a generalization of a committor function for a thermal barrier crossing
event. Similarly, the geometry changes the mechanism of relaxation following a vertical excitation. Relaxation in models resulting from
small diabatic coupling proceeds through pathways dominated by pure dephasing, while those with large diabatic coupling proceed through
pathways limited by dissipation. The perspective introduced here for the nonadiabatic dynamics of open quantum systems generalizes classical
notions of reactive paths to fundamentally quantum mechanical processes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0102891

INTRODUCTION

Chemical reactions are largely understood through the iden-
tification and enumeration of reactive paths that evolve on poten-
tial energy surfaces and over transition states. Such a classical
description of reactivity is valid when motion of heavy parti-
cles proceeds adiabatically with respect to the electronic degrees
of freedom.1,2 However, if the nuclear and electronic degrees of
freedom become correlated and the resultant dynamics are nona-
diabatic, classical notions of reactive paths and spatially localized
transition states break down.3–6 Finding an appropriate frame-
work for understanding reaction mechanisms when the dynam-
ics are quantum mechanical remains an outstanding challenge.7
Here, we provide such a framework in the limit that the quantum
dynamics are mediated by a Markovian bath that acts to dephase
superpositions and dissipate energy. To accomplish this, we gen-
eralize transition path theory8 developed in the context of classical
Markov processes to study a system evolving through its Hilbert
space with transitions mediated by a thermal bath. This construction

provides a means of defining reactive paths, calculating rates,
and determining yields of photochemical processes when the cou-
pling between the system and the bath is weak and the dynamics
are nonadiabatic.

Nonadiabatic dynamics occur in photochemical reactions
when excitation supplies reactants sufficient energy to access higher
lying electronic states.9 Molecular configurations where multiple
adiabatic potential surfaces meet, such as conical intersections or
conical seams,10 necessarily result in a breakdown of the adiabatic
or Born–Oppenheimer approximation, yielding a dynamics that
convolve nuclear and electronic motion.11,12 Conical intersections
especially play important roles in natural and synthetic systems
as they mediate ultrafast nonradiative relaxation.13–15 In nucleotides,
they dissipate dangerous excitations,16 and in photoswitches, they
funnel excitation energy into directed conformational changes.17

Rates and yields of nonadiabatic reactions are sensitive to changes
in the environment.9,18,19 For example, different solvents can
strongly influence the photoyields and mechanisms of azoben-
zene isomerization as inferred from pump–probe experiments.20
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When nonadiabatic dynamics occur in condensed phases, the
dual importance of nonadiabatic and dissipative effects renders
the description of their reactive dynamics necessarily a statistical
one.21–23 This requires a theoretical framework capable of describing
the ensemble of reactive paths analogously to that developed within a
classical context.

Understanding reaction dynamics in the nonadiabatic limit and
in the presence of many interacting degrees of freedom is difficult as
many tools for analyzing reaction paths and transition states depend
on classical views of the system or the Born–Oppenheimer approx-
imation. Nevertheless, attempts to understand reactive dynamics of
open quantum systems have resulted in the development of rigor-
ous, quantum mechanical transition state theories based on time
correlation function formalisms.4,24–26 Such theories can account for
low temperature, deep tunneling effects,6,27–33 and rate expressions
can be formulated within an instanton approximation to the real
or imaginary time path integral.6,30,34 These theories, however, are
typically focused on a single potential energy surface and not neces-
sarily applicable to studying the complex behaviors around conical
intersections. Notable exceptions are so-called nonadiabatic tran-
sition state rate expressions, which use Fermi’s golden rule with
analytical continuation or nonadiabatic extensions to ring polymer
instanton theory.33,35–47 Instanton and lowest order perturbation
theories admit the description of only one dominant transition
pathway; however, at elevated temperatures or for relaxation fol-
lowing photoexcitation, a broad ensemble of paths is expected to
contribute. Some recent work on path-integral based corrections to
quantum transition state theory allows for the inclusion of multiple
pathways.46,48–50

In classical systems, trajectory-based approaches have been suc-
cessful at distilling reactive dynamics in condensed phase systems
through the introduction of transition path ensembles and associ-
ated ensembles of transition states.51,52 Analogous approaches can
be adapted to treat quantum systems when the uncertainty is only
in the initial condition.53,54 More generally, uncertainty results from
both initial conditions and quantum superpositions, and develop-
ing an analogous trajectory ensemble based approach to address
both is complicated by the inability to generally define a quantum
trajectory under conditions demanding that real, positive probabili-
ties are assigned to each trajectory in order to guarantee equivalent
interpretation with a classical ensemble.55

A quantum trajectory conveying information of the state of the
system at every time is analogous to repeated measurements of the
system and, as such, will enforce an evolution which is incoherent.56

In the limit of weak system–bath coupling, however, quantum jump
trajectories can be defined as a time record of wavefunction evolu-
tion conditioned on a choice of measurement with different methods
of experimental observation corresponding to different stochas-
tic unravelings of a reduced density matrix dynamics.57 Quantum
jumps have been witnessed and manipulated in the lab with their
counting statistics observed and even controlled.57–60 Applications
of trajectory-based quantum control, such as randomly resetting the
state of propagating trajectories or interfering to rotate away from
dark states in Hilbert space, have gained interest, lending credence
to quantum jump trajectories as a realizable process which provides
insights into quantum phenomena.57,58,61 However, multiple unrav-
elings of the density matrix exist, and in the absence of the direct
invocation of explicit experimental design, the use of any specific

stochastic unraveling to aid in the interpretation of the behavior of a
quantum system is subjective. Nevertheless, extensions of quantum
jumps to chemical dynamics problems have recently been devel-
oped62 allowing the framework of transition path sampling63 to
be brought to bear on questions of proton-coupled electron trans-
fer and thermal barrier crossings and utility derived within that
perspective.

Expanding on these previous approaches we generalize the
Transition Path Theory (TPT)8 of classical Markov models to
nonadiabatic dynamics employing quantum jump trajectories as
the generator of the underlying stochastic process. TPT supplies
a number of formal results, allowing for the evaluation of typi-
cal reaction paths and locations of dynamical bottlenecks and rate
constants.64,65 It has been used extensively in protein folding to
reveal the structure of the folding landscape.65–68 Here, we use TPT
to characterize the behavior of dynamics in the vicinity of a con-
ical intersection. We use quantum jump dynamics to generate a
Markov process between energy eigenstates in a linear vibronic
coupling model69 and describe rare reactive dynamics.70 The exper-
imental equivalent to the jump unraveling employed would involve
the measurement of phonons entering and exiting the surround-
ing bath or the continuous monitoring of the system’s energy.71

From probabilities to react and equilibrium populations of the sys-
tem, we calculate reactive fluxes between each eigenstate, and from
the resulting graph of reactive fluxes we calculate reaction rates,
quantum yields, and principally important reaction pathways. We
consider thermally activated dynamics and vertical excitations for a
variety of conical intersection geometries. We observe an increase
of the thermal barrier crossing rate with the increasing diabatic
coupling strength and identify a change in mechanism from tun-
neling at low diabatic coupling to traversing around the conical
intersection at high diabatic coupling. The destination of relaxing
trajectories following vertical excitation at low diabatic coupling was
determined by dephasing effects with the trajectory’s fate sealed at
high energies, whereas the destination of relaxing trajectories at high
diabatic coupling was decided at energies comparable to the bar-
rier, with a larger photoyield and a greater variety of relaxation
pathways.

NONADIABATIC REACTIONS IN OPEN QUANTUM
SYSTEMS

In order to apply the framework of TPT, we require a dynamics
that is dissipative and Markovian. For a quantum system in contact
with an infinite heat bath, we focus on the dissipative evolution of a
reduced density matrix evaluated by integrating out the bath degrees
of freedom. We consider models defined through separable Hamil-
tonians written as the sum of an operator acting only on the system,
Hs, an operator acting only on the bath, Hb, and an interaction term,
V , which couples the two.2 The full Hamiltonian, H, is

H = Hs +Hb + V , (1)

where the coupling term is taken as bilinear in the system and bath
operators,

V = QtFt +QcFc, (2)
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where Qt/c acts within the system’s Hilbert space and Ft/c acts in the
bath’s.72 In the model of a conical intersection we study, we repre-
sent two vibrational modes explicitly, the tuning mode Qt and the
coupling mode Qc. All other vibrational modes are incorporated
in the harmonic bath to which the system is coupled through the
explicit modes.

Quantum jump dynamics

In the limit that the system and the bath are weakly coupled,
the dynamics of the reduced density matrix is Markovian and is well
described by a quantum master equation.73 The specific dynamics
we consider are those that result from the Lindblad master equation.
The Lindblad master equation derives from second order perturba-
tion theory applied to the system–bath coupling operator followed
by the Markovian and secular approximations.56 The time evolu-
tion of a reduced density matrix spanning the system Hilbert’s space,
ρ(t), is given by a linear operator D,

∂ρ(t)
∂t

= D[ρ(t)], (3)

which is decomposable into two types of terms,

D[ρ(t)] = − i
h̵
[Hs, ρ(t)]

+ ∑
a,i,j
Γa

ij(La
ijρ(t)(La

ij)† −
1
2
{(La

ij)†La
ij, ρ(t)}), (4)

where the sum over i, j is over all the eigenstates of the system, a sums
over the independent baths to which the system is coupled, and h is
Planck’s constant. The first term is a coherent portion of the dynam-
ics determined by Hs, which generates a time evolution, provided
that the density matrix is not in an energy eigenstate. The second
term is an incoherent hopping process that reflects the influence of
the bath and leads to irreversible relaxation of the system. The dissi-
pative dynamics are determined by Γa

ij, the jump rates between states
i and j associated with a jump operator La

ij with Hermitian conjugate
(La

ij)†. Within the energy eigenbasis, the Lindblad equations repre-
sent a set of linearly coupled equations for the diagonal elements of
the density matrix in the energy eigenstate representation.

Each jump operator, La
ij, is constructed from a projection matrix

onto energy eigenvector subspaces in the energy eigenbasis, {∣ϕ⟩},
and each Lindblad operator is determined from the system–bath
coupling such that62,74

La
ij = (Qa)ij∣ϕi⟩⟨ϕj∣ (5)

for i ≠ j, where (Qa)ij = ⟨ϕi∣Qa∣ϕj⟩. For i = j, a single operator

La
ii =∑

j
(Qa)jj∣ϕj⟩⟨ϕj∣ (6)

results in pure dephasing. The Lindblad equation is equivalent to
secular Redfield theory56,74 when the jump rates, Γa

ij, associated
with each operator are obtained from equilibrium bath correlation
functions of the form

Γa
ij = ∫

∞

0
e−iωijt⟨Fa(t)Fa(0)⟩ dt, (7)

where ωij = (Ei − Ej)/h is determined by the energy eigenvalues of
the isolated system and ⟨. . .⟩ is the averaging operation. Hopping
rates evaluated in this way obey detailed balance and ensure the
proper thermalization within the system Hilbert space.75

The Lindblad master equation can be viewed as the average
evolution associated with a stochastic Schrödinger equation. The
unraveled Lindblad equations describe the progression of individ-
ual wavefunction trajectories under a Poisson jump process in which
wavefunctions transition instantaneously between eigenstates.76 The
stochastic formulation allows for the investigation of reaction path-
ways and mechanisms of individual trajectories rather than mere
inspection of the average behavior of a trajectory ensemble through
density matrix evolution.62 The Lindblad equation may be disassem-
bled into a stochastic equation of motion describing the evolution of
a single wavefunction, Ψ(t), as

d∣Ψ(t)⟩ = − i
h̵

H̃s∣Ψ(t)⟩dt

+∑
a,i,j

⎛
⎜
⎝

√
Γa

ijL
a
ij

⟨Ψ(t)∣Γa
ij(La

ij)†La
ij∣Ψ(t)⟩

− 1
⎞
⎟
⎠
∣Ψ(t)⟩dNa

ij , (8)

where dNa
ij = 0, 1 and (dNa

ij)2 = dNa
ij characterize the Poisson noise

associated with the stochastic process. The effective Hamiltonian of
the unraveled formulation

H̃s = Hs −
i
2∑i,j

Γa
ij(La

ij)†La
ij (9)

includes an additional, anti-Hermitian summation due to the effects
of the jump operators. While the deterministic evolution does not
preserve norm, the stochastic evolution restores it on average. The
evolution of the reduced density matrix, ρ(t) = ⟨∣Ψ(t)⟩⟨Ψ(t)∣⟩, can
be recovered by averaging over a sufficient number of Lindblad
trajectories. The unraveling of the Lindblad equation clarifies that
within the eigenstate representation of the system, the evolution
of the system is analogous to a classical, continuous time Markov
process, and as such, the formal results of TPT can be applied.

Transition path theory

With a stochastic process description of the quantum dynam-
ics afforded by the unraveled Lindblad equation, we will use TPT
to resolve the salient features of the resultant reactive dynamics.
TPT presents a framework for characterizing the reactive dynami-
cal events of a system described by a Markov process. The central
quantity in TPT is the transition matrix, which is the integrated
infinitesimal generator.77,78 The transition matrix has entries Ti,j that
indicate the probability for state i to transition to state j during time
τ.65 We consider a Markov model spanned by the energy eigenbasis
with transition probabilities informed by Lindblad population calcu-
lations. Specifically, we calculated Ti,j from density matrix propaga-
tion beginning from the reduced density matrix ρii(0) = ⟨∣ϕi⟩⟨ϕi∣⟩,
propagated over a short time τ as

Ti,j = [eτD ρii(0)]jj ≈ {1 + τD[ρii(0)]}jj, (10)

where D is the superoperator defined in Eq. (4). For the systems we
consider, τ can be taken arbitrarily small, provided that errors due to
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numerical precision are not encountered, and it should not be taken
much larger than the characteristic hopping time between energy
adjacent states. The dependence of inferred properties on the choice
of τ is explored in Appendix A.

TPT offers a set of relations to evaluate the commitment prob-
ability for transitions between an initial set of states, A, referred to
here as the reactant state, and a final set of states, B, referred to here
as the product state. The commitment probability, or committor, is
denoted as PB∣A(i), indicating the probability for a system currently
in state i to visit the product subset of states B before visiting the reac-
tant subset of states A. Similarly, the probability, PA∣B(i), indicates
the probability to visit A before visiting B. The reverse committor,
P∗A∣B(i), is defined as an analogous conditional probability to PA∣B(i)
but under a time reversed dynamics. In a detailed balance system, the
reverse committor P∗A∣B(i) is P∗A∣B(i) = PA∣B(i) = 1 − PB∣A(i) due to
microscopic reversibility. The committor functions as an ideal reac-
tion coordinate as it conveys exactly the progress of a transition from
the reactant state to the product state.79,80 The collection of states for
which PB∣A = 1/2 is then identifiable as a transition state ensemble as
those states have equal likelihood of proceeding to the product state
or returning to the reactant state.

When the full matrix of transition rates is computable, the TPT
approach is fast and efficient and rigorously assigns the committor
probabilities while simplifying the description of the reaction path-
ways. From the transition matrix, committor probabilities satisfy a
backward Kolmogorov equation,8

PB∣A(i) −∑
j∈I

Ti,jPB∣A( j) =∑
j∈B

Ti,j, (11)

with boundary conditions PB∣A(i) = 0 for i ∈ A and PB∣A(i) = 1 for
i ∈ B, where I is the set of all states not in A or B.

Once committors have been calculated, the average flux,
f A,B

i,j , between states i and j conditioned on arriving from A and
proceeding to B can be found from

f A,B
i,j = πiP∗A∣B(i)Ti,jPB∣A( j), i ≠ j, (12)

where by construction f A,B
i,i = 0 and πi is the steady-state probability

of state i.65 To find the total reactive flux, F, between A and B,

F = ∑
a∈A,j∉A

f A,B
a,j = ∑

j∉B,b∈B
f A,B

j,b , (13)

the reactive flux leaving A along all possible connections or the reac-
tive flux arriving in B along all possible connections is summed. The
thermal reaction rate in the long time limit is found in TPT from
F divided by time, τ,

kA,B =
F
τπA

, (14)

taking into account a factor of πA, where πA = ∑iπiP∗A∣B(i) is the
probability that a system in state i is moving from A to B. In the
following, each state in the Markov model will be either an eigen-
state of the system or any generic superposition yet to collapse to an
eigenstate. In analyzing conical intersection dynamics in the thermal
cases, the reactants, A, and products, B, will comprise only a sin-
gle eigenstate. For relaxation following vertical excitation, we will be

interested in the resultant branching dynamics, necessitating further
generalization.

The resultant Markov dynamics can be thought of as a graph
with the eigenstates as vertices and edge weights given by the reactive
flux, f +i,j,65

f +i,j = max[0, f A,B
i,j − f A,B

j,i ], (15)

which encodes the net traffic over time τ between states i and j. An
ensemble of reactive pathways through this graph may be selected
by first choosing a pathway along edges from A to B and subtracting
from each edge in the pathway the flux, fi, assigned to this pathway,
where fi is equal to the minimum f +i,j of any i, j transition in the
pathway. Another pathway may, then, be assembled from the mod-
ified graph in the same manner. Infinitely many ensembles could
be assembled in this way. An ensemble of particular interest is the
max–min flux ensemble as it repeatedly locates the bottleneck of
the graph and incorporates this edge into the next pathway.8,65 In
this scheme, a pathway with the largest possible flux is chosen at
each step. A modified Dijkstra’s algorithm, employed repeatedly, can
locate these pathways.81

Since we define reactants and products based on energy eigen-
states, the current method requires that the system has low energy
eigenstates that are localized in each well. Such definitions would not
work for a symmetric system that results in the lowest energy eigen-
state or eigenstates being delocalized nor for the case in which the
energy barrier is so low that significant mixing of diabatic character
occurs in the very lowest eigenstates. In the former case, for large
barriers and small couplings, the reactive flux would be insensitive
to a small perturbation that would break the symmetry, providing a
potential generalization. In the latter case, a steady-state thermal rate
would not likely be definable.

LINEAR VIBRONIC COUPLING MODEL

In order to test the utility of TPT for nonadiabatic dynamics, we
have studied a linear vibronic coupling model of a conical intersec-
tion. The linear vibronic model is a multistate, multimode harmonic
oscillator model. Here, we focus on two modes, a tuning mode,
Qt , and a coupling mode, Qc, which define a conical intersection.
The system Hamiltonian is69 given by

Hs = ∑
k=1,2
∣ψk⟩hk⟨ψk∣ + (∣ψ1⟩⟨ψ2∣ + ∣ψ2⟩⟨ψ1∣)λQc, (16)

where ψk denotes the kth diabatic state. The diabatic states are cou-
pled through Qc with strength determined by the diabatic coupling
λ. Each diabatic Hamiltonian, hk, is given by

hk =
1
2∑j=c,t

h̵ωj{P2
j +Q2

j } + Ek + κkQt , (17)

where Pj and Qj are the momentum and position operators of the
coordinate j and Ek is a constant energy added to each diabatic
potential. The oscillator frequencies are given by ωj, and tuning
oscillator position displacements are given by κk. Examples of the
resultant adiabatic potential energy surfaces, as well as the energies
of lower lying eigenstates, are shown in Fig. 1 for the case of large
diabatic coupling. We consider a sufficiently small range of λ such
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FIG. 1. (a) Adiabatic surfaces for λ = 1.3λ0 with the color indicating energy. (b)
Slice through the conical intersection along Qc/Q0 = 0 with adiabatic energy sur-
faces in red and blue and eigenstate energies in gray. (c) Slice through the conical
intersection along Qt/Q0 = −0.09 denoted as in (b).

that there is a barrier in the lower adiabatic potential energy surface
that supports localized energy eigenstates within each basin.

The baths coupled to Qc and Qt consist of an infinite number of
harmonic oscillators,

HB =∑
α
∑
j=c,t

1
2

h̵ωα,j(p2
α,j + q2

α,j), (18)

where pα,j and qα,j refer to the momentum and coordinate of the
αth harmonic oscillator in the bath coupled to the jth mode in the
system. The system–bath coupling is bilinear such that

V = (∣ψ1⟩⟨ψ1∣ + ∣ψ2⟩⟨ψ2∣)∑
α
∑
j=c,t

cα,jqα,jQj, (19)

where cα,j is the coupling strength of each oscillator. The coupling
of the system to the bath is summarized by a spectral density of the
Debye form,

Jj(ω) =∑
α

c2
α,jδ(ω − ωα,j)

= 2η
ωωb

ω2 + ω2
b

, (20)

where ωb is the cutoff frequency and η is the reorganization energy,
which is taken to be small.

The specific parameters we have employed for this model are
reminiscent of a parameterization for the photoisomerization of
pyrazine.82 However, in order to produce a metastable, double-well
structure in the ground adiabatic state, we increased the displace-
ment of both oscillators relative to the parameters previously used
and adjusted the relative energies of the diabatic electronic states. See
Table I for specific parameters employed. Of particular importance

TABLE I. Simulation parameters for the linear vibronic coupling model.

Parameter Value (eV)

Tuning mode frequency ωt 0.074
Coupling mode frequency ωc 0.118
State 1 displacement κ1 0.358
State 2 displacement κ2 −0.315
State 1 energy shift E1 4.21
State 2 energy shift E2 3.94
Reference diabatic coupling λ0 0.262
Characteristic bath frequency ωb 0.013 16
Reorganization energy η 2.628 ×10−4

will be the impact of the diabatic coupling strength λ on the reactive
dynamics in the vicinity of the conical intersection. The magnitude
of λ has a dramatic impact on the conical intersection geometry,
particularly on the adiabatic potential energy barrier height. The
value of λ is frequently changed by a multiple throughout this work
with λ0 being the value found in the unaltered pyrazine model,
λ0 = 0.262 eV. To simplify figures, we define Q0 as the average of
∣Qt ∣ of the lowest eigenstates, respectively, localized in each diabatic
state in the λ = 1.3λ0 system.

THERMAL BARRIER CROSSINGS

We first consider the transition paths and reactive rates asso-
ciated with a thermal barrier crossing in the vicinity of a conical
intersection. Employing TPT within a Markov model spanned by
the energy eigenstates, we abstract away complications associated
with defining reactive paths in the presence of both nuclear quantum
effects and nonadiabatic effects. Rather than consider reactive paths
localized in position space, the paths are defined through a sequence
of states localized in energy. In the limit of a high barrier, we expect
to recover results from quantum instanton theory.33,35

For a thermal transition, the system evolves with a detailed bal-
ance dynamics with an incoherent initial condition. In this case,
TPT can be used straightforwardly. For concreteness, we consider
transitions between the lowest energy eigenstates localized in each
diabatic state and designate them as L and R, with R being the low-
est energy eigenstate in the system. The specific states depend on λ.
Microscopic reversibility guarantees that reactive pathways from L
to R are direct inverses of reactive pathways from R to L, making the
direction of barrier crossing under study irrelevant.

Typical behavior

Figure 2(a) shows the population in R where
ρR(t) = ⟨∣ϕR⟩⟨ϕR∣⟩, following initialization of the system in L
under density matrix evolution. Two different λ values are dis-
played, and although ρR increases more quickly with time for the
larger λ = 1.3λ0 case, over 1 ps a negligible population has accumu-
lated in R. For the lower coupling, λ = 0.3λ0, the accumulation of
population is many orders of magnitude smaller. This slow rise in
population reflects the large adiabatic barrier separating R and L
with a concurrent small rate constant. The barrier height sensitively
depends on the size of λ, decreasing rapidly as λ increases. Apart
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FIG. 2. (a) Population in state R, ρR, as a function of time from density matrix
dynamics initialized in L for low and high λ systems. (b) Rates of population
transfer between L and R, kL,R, as a function of λ.

from this slow increase in population, there are no other discernible
features in the average dynamics.

The rate constant kL,R for the barrier crossing event from L to
R calculated using Eq. (14) is shown in Fig. 2(b). The rate constant
increases monotonically with the increasing coupling strength. For
very small coupling, the rate constant grows in proportion to λ2 as
expected from perturbation theory, but the domain of that scaling
relationship is small λ/λ0 ≪ 1. For larger λ, the rate increases rapidly
with a mechanism that from the mean wave packet propagation is
not easily discernible.

Transition path ensemble

Each pathway in the TPT max–min flux decomposition of
pathways from R to L carries flux fi. These paths represent the transi-
tion path ensemble. The diversity of paths, and their corresponding
weights, can be understood by rank ordering the paths based on their
flux. The cumulative flux fraction accounted for by the first n highest
flux pathways in the decomposition

Fn =
1
F

n

∑
i=1

f i (21)

FIG. 3. The number of thermally calculated pathways, n, required to account for a
given fraction, Fn, of the overall thermal flux between R and L for several values
of λ.

is a direct measure of the number of relevant pathways in the transi-
tion path ensemble.65 Figure 3 shows Fn for several different λ values.
In this system, likely as a result of the large barrier in the lower adia-
batic potential, the majority of the reactive flux, regardless of diabatic
coupling strength, is accounted for by the first few pathways. This
manifests the approach of the instantonic limit as the barrier height
is large compared to both thermal energy and the zero point energy
in the tuning mode. As the barrier becomes large, only few paths
contribute significant weight to the reactive path ensemble. Because
in this thermally activated process there are clearly a few dominant
pathways, these can be inspected more closely to discover the most
prevalent transition mechanisms at different coupling strengths.

Dominant transition paths

We inspected some of the prominent transition pathways for
mechanistic information. We considered the transition path from
L to R with maximum fi at several λ values. Figure 4 shows the
committor, PL∣R(i), for each step in the pathways, meaning the prob-
ability at each step for the system to return to eigenstate L. The
principle paths are the most likely sequences of states along a reactive
quantum jump trajectory but do not retain direct temporal infor-
mation. To recover a typical timeseries, these paths would need to
be convoluted with the appropriate waiting time distributions at
each step. Nevertheless, the sequence of states retains significant
mechanistic information.

At low λ, the transition pathways involved more quantum
jumps with the dominant pathway at λ/λ0 = 0.3 requiring 16 jumps
compared to 9 for λ/λ0 = 1.3. As λ increased, the transition eigen-
states, the states just prior to and just after commitment defined at
PL∣R = 1/2, became closer to PL∣R = 1/2, more mixed in terms of dia-
batic character and less localized in either well. This behavior can
be understood as the states near the conical intersection are nearly
degenerate and more susceptible to delocalization with increasing
λ. In all cases, a single quantum jump, interpretable as a barrier
crossing event, resulted in a large change in the average committor
value. The abrupt transitions reflect tunneling contributions to the
reaction paths as quantum mechanically the system need not actu-
ally pass through intermediate states to move from one side of the
barrier to another.

FIG. 4. Dominant thermal barrier crossing pathways showing the probability to
commit to L, PL∣R, for several λ. Filled symbols denote the transition wavefunctions
just prior to and after committing.
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We inspected the wavefunctions along the barrier crossing
pathways and found that low and high λ resulted in significantly dif-
ferent behaviors. Figures 5 and 6 show the energy, E, as a function
of step along the dominant reaction pathways for different λ val-
ues and the transition eigenstate wavefunctions projected onto each
of the diabatic electronic states. In the low λ limit in Fig. 5, both
transition eigenstate wavefunctions are similar to harmonic oscilla-
tor wavefunctions. They show negligible overlap in density, and their
energies are well below the barrier height, which is ∼0.7 eV, although
the energies of the transition eigenstates are still quite high. This
indicates a deep tunneling barrier crossing mechanism and is con-
sistent with sharp changes in position and diabatic character at the
transition.

In the high λ limit in Fig. 6, the transition pathway was rela-
tively short, passed through eigenstates with energies nearly equal to
the height of the barrier at ∼0.24 eV, and involved transition eigen-
state wavefunctions, which did not resemble harmonic oscillator
wavefunctions but rather showed significant mixing of both diabatic
states. Transition wavefunctions are far less localized in either well
with the significant density at the barrier of the conical intersection.
This indicates that barrier crossing takes place by going around the
conical intersection rather than by tunneling through it. These path-
ways are representative of the behavior of the ensemble although
some prominent tunneling pathways remain.

The dominant paths found here are conceptually similar to
the dominant pathways produced by the path integral instanton
method.33,83 Previous work of Ranya and Ananth and also Cao and
Voth using nonadiabatic instanton theory to analyze the reactive
behavior in an avoided crossing and spin-boson model noted that,
at smaller diabatic coupling, sharper transitions between diabatic
states are observed.33,83 Cao and Voth also observed an increase in
the electron transfer rate with increasing diabatic coupling strength

FIG. 5. (top) The energy at each eigenstate along the highest fi thermal transi-
tion pathway between L and R with λ = 0.3λ0. (bottom) Transition wavefunction
densities for the state before PR∣L exceeds 1/2 (a) and after PR∣L exceeds 1/2
(b) plotted on a logscale. Red indicates the density in diabatic state 2, and blue
indicates the density in diabatic state 1. Superimposed on the transition wave-
functions are the lower adiabatic potentials with contours placed at intervals of
0.136 eV.

FIG. 6. (top) The energy at each eigenstate along the highest fi thermal transi-
tion pathway between L and R with λ = 1.3λ0. (bottom) Transition wavefunction
densities for the state before PR∣L exceeds 1/2 (a) and after PR∣L exceeds 1/2
(b) plotted on a logscale. Red indicates the density in diabatic state 2, and blue
indicates the density in diabatic state 1. Superimposed on the transition wave-
functions are the lower adiabatic potentials with contours placed at intervals of
0.136 eV.

and noted two regimes, a golden rule regime and an adiabatic limit
regime, the latter of which results in a much stronger dependence
of rate upon diabatic coupling strength. These trends are consistent
with our observations.83

The trend observed in the representative pathways suggests that
tunneling is the main barrier crossing mechanism at low λ, and
traversing around the conical intersection is the main barrier cross-
ing mechanism at high λ. This interpretation is evident in Fig. 7,
which displays the energy of the transition eigenstates vs λ relative to
the height of the bare lower adiabatic potential barrier. Note that all
thermal data were generated from exact density matrix propagation,
so there are no statistical errors. The sharp features in Fig. 7 arise
from accidental degeneracies between low-lying energy eigenvalues.

At low coupling, the average energy has little dependence on
λ and is found far below the barrier. These eigenstates below the
barrier display little mixing between electronic states and are highly
localized in one well or the other. Deep tunneling is the only feasi-
ble reaction pathway when the barrier is so high. This is a very slow
mechanism, as demonstrated in Fig. 2, where low coupling results
in slow population transfer between L and R and a low kL,R. As
λ increases, the average energy of transition eigenstates for the
ensemble approaches that of the barrier, leading to more delocaliza-
tion and shallower tunneling mechanisms. The transition eigenstate
energies surpass the barrier at the highest coupling strengths only.
The barrier crossing proceeds in this case by going around the coni-
cal intersection, a significantly faster mechanism that results in more
mixing of electronic character in the transition eigenstates.

The transition between the small and large λ limits corre-
sponds to an end of the golden rule regime where the rate scales like
λ2. Such a regime approximately requires that λ is small relative to
the frequency of the coupling coordinate though a full accounting
on the non-Condon effects at finite temperature complicates a sim-
ple analytical picture.35,84 By constructing transition matrix elements
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FIG. 7. Average energy relative to E0, the energy of the lowest eigenstate for the
given system, of the transition eigenstates, post-jump and pre-jump, and barrier
height during the thermal barrier crossing as a function of λ/λ0 averaged over the
transition path ensemble.

directly from the eigenstate wavefunctions, we maintain any relevant
phase relationships upon transitions around the conical intersection
such as those due to the generation of a geometric phase.85 Employ-
ing the procedure in Ref. 86, we find that geometric phase effects in
the large λ case are small, suppressing the rate by only around 1% for
the λ = 1.3λ0 case.

RELAXATION FOLLOWING VERTICAL EXCITATIONS

Although the equilibrium behavior of a conical intersection
system is relevant to thermal isomerizations of photoswitches, it is
typically the relaxation following vertical excitation that is of more
interest as the energy for spontaneous isomerization is large and
much more readily accessed through photoexcitation than thermal
fluctuation. Upon photoexcitation, a barrier crossing is no longer
rare though during relaxation unlikely events may cause trajectories
to favor one potential product state over another. The commitment
of a relaxing trajectory to one well or another of the conical intersec-
tion can, thus, be a non-equilibrium rare event. While the bulk of the
machinery of TPT is not applicable, some ideas for trajectory anal-
ysis can be applied to distill the complicated system dynamics. The
committors are independent of the initialization of the system, but
density matrix propagation information alone is no longer sufficient
to analyze relaxation from a vertical excitation because the initial
distribution is not stationary. Because the dynamics are Markovian,
the transition matrix still provides complete information about the
subsequent relaxation, but the uncollapsed wavefunction following
vertical excitation requires special consideration.

To study relaxation from a vertical excitation, we consider
an initial condition generated from a projection of the lowest
energy vibrational eigenstate of a harmonic oscillator located at
Qi/Q0 = 0 for i = c, t with the same frequencies as employed in
Eq. (17) into diabatic state ∣ϕ1⟩. Such a condition has been studied
previously in the context of the pyrazine model we have adapted82

and is meant to approximate the excitation from the ground state
into a manifold of excited states. Through the application of suitably

generalized TPT methods to the vertical relaxation case, we are able
to determine how relaxing trajectories subsequently commit to one
well or another, employing our previous definitions of the R and L
states.

Typical behavior

We observe the typical behavior of the system in Fig. 8(b)
which displays the average relaxation from direct density matrix
propagation following vertical excitation for two λ values. The
population in diabatic electronic state 2, ρ2 = ⟨∣ψ2⟩⟨ψ2∣⟩, shows com-
paratively quick relaxation toward its equilibrium population with
the fast oscillations indicative of Qt vibrations. Significantly larger
but more quickly damped oscillations are seen for the relaxation at
higher coupling strength, λ = 1.3λ0. The higher coupling strength
also results in a larger proportion of population relaxing into dia-
batic well 2. Both the increase in speed of relaxation and the increase
in proportion of trajectories which change diabatic state during
relaxation with increasing λ are expected from perturbation theory.

We also study the average photoyield, computed using a first
passage procedure, whereby states R and L are fixed as absorbing
boundary conditions. In practice, this was computed using 10 000
Lindblad jump trajectories initialized in the vertically excited state
shown for λ = 1.3λ0 in Fig. 8(a). The slight asymmetry in the initial
wavepacket is a consequence of basis truncation. The photoyield,
ρR(t = t f ), where t f is the time at which a trajectory first reaches
either R or L, is the fraction of trajectories that end in R with-
out visiting L. Figure 8(c) displays the photoyield as a function of
λ. Generally, we find that the photoyield increases with increasing
λ although the trend is noisy. Standard deviations estimated from

FIG. 8. (a) Initial, vertically excited wavepacket density on a log scale with all den-
sity being found in diabatic state 1 depicted in blue. (b) Average diabatic state 2
population, ρ2, for two extreme coupling strengths following vertical excitation into
diabatic state 1. (c) Photoyield of state R, ρR(t = t f), following vertical excitation
into diabatic state 1 at various λ.
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block averaging are on the order of 0.005. Non-monotonic behavior
arises from accidental degeneracies and the change of mechanistic
regimes. The plateaus of ρ2 in Fig. 8(b) and the ρR values for the same
λ in Fig. 8(c) are not exactly the same. Not only do these values repre-
sent different projections of the wavefunction, but ρ2 as a function of
time from density matrix calculations can include recrossing events
between eigenstates R and L and the contribution of uncollapsed
wavefunctions. As in the thermal case, little detail of the underly-
ing dynamics is forthcoming from the density matrix propagation
alone.

Generalization of TPT

In order to apply TPT to a vertically excited initial condition
and to study the subsequent branching of the relaxing trajectories,
we generalize the TPT framework previously presented. To study
the branching of a relaxing stochastic process into distinct basins
we define committor functions slightly more generally. Rather than
define forward and backward committors as complements of each
other, we consider trajectory ensembles in which the system relaxes
from some initial state C into a specific product state L or R without
visiting the opposing product state. This implies that the forward
committor for product state R is defined as the probability of reach-
ing R from state j before returning to C or reaching L, denoted as
PR∣CL( j). The corresponding backward committor is defined as the
probability in the time reversed dynamics of reaching the initial state
C before states R or L, denoted for state i as P∗C∣RL(i). Under such
conditioning, the reactive flux into state R is given by

f C,R
i,j = P∗C∣RL(i)πiTi,jPR∣CL( j), (22)

where an equivalent formulation can be made for trajectories bound
for L.

In addition, the initial condition upon vertical excitation is, in
general, a coherent superposition that is irreversibly decohered by
the action of the bath. Prior to decoherence, there is not a simple
classical means of describing the state of the system from which
to evaluate a transition probability using Eq. (10). The state of
the system is uncertain with delicate phase relationships between
the energy eigenstates. Determining the likelihood of any member
of the superposition would require a projective measurement and,
thus, loss of the superposition. However, immediately after the state
has spontaneously decohered, the system can be described by a clas-
sical probability distribution on the energy eigenstates albeit one
that is not Boltzmann distributed and, thus, not stationary under the
Lindblad operator.

In order to apply TPT, we thus restrict our attention to the
Markovian jump dynamics following decoherence and employ an
empirical initial distribution generated by evaluating the collapse
probabilities into each eigenstate from the initial coherent state
conditioned on the final destination of the trajectory. Since the wave-
function collapse is statistical, with significant collapse probabilities
into several different eigenstates, it is necessary to scale the reactive
flux f C,R

i,j by its contribution to the total reactive path ensemble. The
contribution of the flux from a specific initial collapsed state C is
proportional to the probability for the wavefunction to collapse into
eigenstate C, denoted as Π(C), and normalized by the total reactive

flux FC,R = ∑j≠C,L f C,R
C,j for eigenstate C. With this weight, the reactive

flux is given by

f R
i,j =∑

C
f C,R

i,j
Π(C)
FC,R (23)

in the conditioned ensemble bound for R. The probability for the
wavefunction to collapse into C could be calculated from a con-
ditioned ensemble of Lindblad trajectories. Then, TPT could be
performed for each eigenstate C as detailed above to determine
f R

i,j. Due to the exponential factors in πi, solving for f C,R
i,j is very

numerically unstable. Instead of evaluating them and then con-
structing the conditioned fluxes directly, we sampled trajectories in
conditioned ensembles and estimated f R

i,j by counting how many
jumps are made between each pair of eigenstates i and j. The same
trajectory ensemble used to compute the photoyields was used for
this purpose.

Transition path ensemble

We trace dominant pathways to R through a graph assembled
from the ensemble of trajectories ending in R with the edge weights
given by f R+

i,j = max[0, f R
i,j − f R

j,i] and then perform the same proce-
dure for trajectories ending in L. Note that the rare case in which
the first eigenstate on the pathway is also the destination eigenstate
is handled in exactly the same way as all other cases and results in a
path consisting of a single jump. Generally, the ensemble of reactive
trajectories is much broader than that observed in the thermal reac-
tion. Figure 9 shows the cumulative flux accounted for by the first
n highest flux pathways in the conditioned ensemble. As the diabatic
coupling strength increases, Fn as a function of n flattens out, mean-
ing that more pathways are required to account for a given total flux.
Ten trajectories are sufficient to account for half of the total flux
for the weakest coupling, compared to 100 for the strongest cou-
pling. This indicates that at lower coupling strength, the variety of
pathways available for relaxation is more limited.

The larger number of pathways at higher coupling is manifested
in the much higher number of jumps typically observed during
relaxation. The number of inter-eigenstate jumps per trajectory is
broader with a higher average for higher λ, with a typical number
of jumps of 70 for λ = 1.3λ0 compared to 10 for λ = 0.3λ0. As the

FIG. 9. The number of vertical relaxation pathways, n, required to account for a
given fraction, Fn, of the overall flux into L for several values of λ.
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coupling to the bath is the same, the larger number of jumps reflects
the denser energy eigenstate structure for large λ, where far more
favorably sized energy gaps are accessible.

Characteristic transition pathways

While the distribution of reactive trajectories upon verti-
cal excitation is broad, we can, nevertheless, glean information
about the mechanism of branching by considering typical tran-
sition paths. Figure 10(a) shows PR∣L along dominant relaxation
pathways to eigenstate R following vertical excitation for several
λ values. Figure 10(b) shows the compliment PL∣R along dominant
relaxation pathways to eigenstate L. Immediately upon dephasing to
an eigenstate, low λ trajectories have committors above 1/2. Low
λ trajectories bound for L have PL∣R approaching 1.0, indicating that
dephasing prior to collapse plays a critical role in determining the
outcome of these trajectories even though the state to which they
initially collapse is still very high in energy. In the case of higher
λ, collapse to a moderate PL∣R or PR∣L eigenstate is followed by jumps
that do not alter the committor value and then an abrupt ascent
toward a committor value of 1.0. For the strongest coupling case,
this is instantonic, superficially similar to the equilibrium case. For
high λ, dephasing seems to be far less important and a set of critical
jumps much later decides a trajectory’s outcome. More insight into
the nature of these jumps can be extracted from a closer inspection
of the energies and wavefunctions along the relaxation pathways.

FIG. 10. Dominant vertical relaxation pathways ending in R and L along with their
respective committors, PR∣L (a) and PL∣R (b).

Figures 11 and 12 show the relaxation pathways to L and R fol-
lowing vertical excitation for weak and strong coupling strengths.
In each, we show the energy of the eigenstates along the most likely
pathway and the wavefunctions projected onto each of the diabatic
electronic states for wavefunctions at collapse and after some relax-
ation, save in the sole case where committor eigenstates can be
defined, in which case these states are shown.

Consider the example trajectories from λ = 0.3λ0. The deci-
sion to commit to R or L is made during dephasing with the
trajectory committed when it collapses into a single well. This
is evident in Fig. 11 from the harmonic oscillator-like wavefunc-
tion centered in well 1 for the trajectory ending in state L. The
trajectory bound for R is likewise committed and mostly local-
ized to a single well upon collapse although it does have a small
amount of diabatic state 1 character, which quickly disappears as
relaxation progresses.

At large coupling, λ = 1.3λ0, collapses to eigenstates of high
energy relative to the barrier are common. As most high energy
eigenstates are committed to R in this system, most trajectories,
including the examples of trajectories relaxing into L and R, col-
lapse into eigenstates for which PR∣L(i) exceeds 1/2. The states into
which these pathways collapse are highly delocalized, as evident in
Fig. 12. It is only after much energy loss through many quantum
jumps that the wavefunctions settle into one well or another. At
large λ, commitment to L occurs only after the eigenstate energy
becomes comparable to the barrier height. The transition eigen-
states in the left panels of Fig. 12 have comparable energy to the
barrier and have significant density in both diabatic states, but the
state for which PL∣R surpasses 1/2 has less density in the vicinity of
the barrier and is more localized in the metastable well to which it
has committed.

Because the wavefunction pre-committor jump may be uncol-
lapsed, statistics about the energy of the state just before the com-
mittor surpasses 1/2 could not be reliably collected. However, the
post-committor jump eigenstate was available for inspection and its
energy for trajectories bound for state L compared with the barrier
height at various λ is displayed in Fig. 13. The largest standard devia-
tions estimated from block averaging are on the order of one percent
of the average. Accidental degeneracies and the complex interplay
of different relaxation pathways lead to the non-monotonic behav-
ior. As in the thermal case, there are two characteristic regimes,
with a smooth crossover between them. At low coupling, the post-
committor eigenstate has energy significantly above the barrier
on average. At higher coupling, the post-committor eigenstate has
energy comparable to the barrier, supporting the trend shown in the
example trajectories where low λ systems commit during dephas-
ing and at high energies, whereas high λ systems commit following
dephasing and dissipation until the wavefunction’s energy is compa-
rable to that of the barrier. Comparing Fig. 13 with the photoyields
in Fig. 8(b), a lower photoyield is associated with commitment
by dephasing, with an apparent regime change at approximately
λ/λ0 = 0.6. Dephasing commitment provides fewer opportunities to
change diabatic states compared to dissipative commitment, a trend
reinforced by the larger variety of relaxation pathways observed for
higher λ in Fig. 10.

Lindblad dynamics naturally separates out the effects of the
dephasing operator from dissipative operators. Pure dephasing
effects have been studied extensively87–92 with studies exploring
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FIG. 11. (top) The energy at each eigenstate along the dominant relaxation pathway into L (left) and R (right) when λ = 0.3λ0. (bottom) The wavefunction density just after
collapse into an eigenstate (a) and the wavefunction density following some relaxation (b) plotted on a log scale. All wavefunctions are committed. Blue indicates the density
in diabatic state 1, and red indicates the density in diabatic state 2. Superimposed on the wavefunctions are the lower adiabatic potentials with contours placed at intervals
of 0.136 eV.

FIG. 12. (top) The energy at each eigenstate along the dominant relaxation pathway into L (left) and R (right) when λ = 1.3λ0. (bottom) Transition wavefunction densities for
the state before PL∣R exceeds 1/2 (a) (left) and after PL∣R exceeds 1/2 (b) (left) plotted on a log scale. The wavefunction just after collapse into an eigenstate (a) (right) and
the wavefunction density following some relaxation (b) (right). Blue indicates the density in diabatic state 1, and red indicates the density in diabatic state 2. Superimposed
on the wavefunctions are the lower adiabatic potentials with contours placed at intervals of 0.136 eV.

dephasing and decoherence effects in many different systems.93–98

The importance of dephasing and decoherence to dynamics in
more complicated systems such as excitons and conical intersections
has been demonstrated.99,100 By inspecting the dominant relaxation
pathways following vertical excitation, we observe the effects from
dephasing separately from dissipation and determine that the action
of the dephasing operator decides the fates of trajectories when
λ is small. The importance of dephasing effects is not surprising as
Heller et al. recently studied fewest switches surface hopping tra-
jectories through a conical intersection with various decoherence
corrections and determined that the method of correction employed
could have a dramatic and not easily predictable impact on the
population dynamics of individual trajectories.100

Previous work investigating the effect of modifying λ on behav-
ior at conical intersections has uncovered similar trends as observed

here.101,102 Lan and co-workers, employing multi-level Redfield the-
ory with most of the molecules’ internal modes comprising the
bath, found λ to be a limiting parameter on the rate of inter-
nal conversion following vertical excitation of the pyrrole–pyridine
complex. Doubling λ, doubled the rate of internal conversion.101

This limiting behavior of λ is consistent with our results, which show
λ’s striking influence on the quantum yield. Manthe and Kop-
pel investigated the closed system wavepacket dynamics of several
different molecules with accessible conical intersections, including
C6H+6 and NO2 following vertical excitation. Classes of behav-
ior based on λ were assigned with the small λ regime showing
largely diabatic behavior, the large λ regime showing largely adi-
abatic behavior, and an intermediate regime sometimes resulting
in complicated interplays of adiabatic and diabatic effects.102 These
results are more difficult to compare to this work; however, a striking
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FIG. 13. Energy relative to the lowest energy eigenstate immediately following the
jump at which the trajectory in the ensemble conditioned to end in L first visits an
eigenstate for which PL∣R ≥ 1/2 and the barrier height for comparison.

change in the regime between small and large λ is visible in this
investigation and that of Manthe and Koppel.102

CONCLUSIONS

By generalizing TPT to Lindblad dynamics as a means of
characterizing committor probabilities of eigenstates and typical
quantum transition pathway hopping through energy space, we have
elucidated the effect of diabatic coupling strength on dynamics at
conical intersections. In a thermal barrier crossing, a larger λ results
in a higher rate of population transfer between the metastable and
stable well. The committors for each eigenstate of the system and
principle paths to analyze for mechanistic information provided
by TPT reveal that the energy of the conical intersection itself is
never reached during barrier crossing events. Rather, we find that
when λ is small deep tunneling is principally responsible for popula-
tion transfer between the stable and metastable well, whereas when
λ is large traversing around the conical intersection is principally
responsible.

By applying a modified TPT approach to treat relaxation
following a vertical excitation, we find that increasing λ greatly
increases the diversity of the relaxation pathways available to the sys-
tem and results in many quantum jumps whose purpose is merely
to dissipate energy prior to commitment to one well or another.
Analysis of pathways of principal importance at several λ values
reveals that the fate of low λ trajectories is largely determined during
dephasing, meaning that a trajectory bound for eigenstate L typically
has committed upon the collapse of the wavefunction to an eigen-
state, whereas at higher λ trajectories typically relax and lose energy
until comparable with the adiabatic potential energy barrier before
committing.

These fundamental differences in behavior between low and
high λ systems imply a trade-off. High λ systems have a high pho-
toyield, but experience a fast thermal barrier crossing by going
around the conical intersection. Low λ systems have low photoyields,
but must cross the barrier by slow, deep tunneling mechanisms.

Although limited by the weak coupling assumption, we have, nev-
ertheless, provided a means of studying reactions in highly nona-
diabatic regimes. This work opens avenues of exploration into the
dynamics of conical intersections and other systems. This gener-
alization of transition path theory to quantum dynamics shows
promise for elucidating mechanisms in a variety of circumstances
and contributes a useful view of quantum transition pathways.
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APPENDIX A: MODEL DETAILS

The modified conical intersection based on a pyrazine param-
eterization82 is specified in Table I. The Qc basis includes 40
unshifted harmonic oscillator basis functions, and the Qt basis
includes 110 unshifted harmonic oscillator basis functions, save
in the case of density matrix propagation initialized in an
eigenstate, which employs 30 and 80, respectively. Thermal equi-
librium calculations include a truncated basis of 700 energy eigen-
states, save in the case of density matrix propagation initialized in
an eigenstate, which uses a truncated basis of 240 energy eigen-
states. Vertical excitation calculations employ a truncated basis of
700 energy eigenstates, save in the case of vertical density matrix
propagation, which employs a truncated basis of 800 energy eigen-
states. A total of 10 000 vertical relaxation trajectories are simu-
lated at each coupling strength. The temperature for all simulations
is 300 K.

J. Chem. Phys. 157, 164105 (2022); doi: 10.1063/5.0102891 157, 164105-12

Published under an exclusive license by AIP Publishing

 12 February 2024 19:26:52

https://scitation.org/journal/jcp
http://doi.org/10.5281/zenodo.6950371v2


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 14. Thermal barrier crossing as a function of τ for the highest coupling,
λ = 1.5λ0 case.

APPENDIX B: TRANSITION MATRIX DETAILS

Markov state models for TPT in the thermal case are assem-
bled from τ = 250 au (6.047 fs) density matrix calculations initial-
ized in each eigenstate following Eq. (10). Max–min flux paths are
determined with repeated applications of Dijkstra’s algorithm.81 A
timescale (τ) that is too large risks incorporating large numbers of
double jumps into the Markov model, thereby skipping over eigen-
states in the reactive pathways. For the largest λ, the principal path
length began to decrease, indicating double jumps becoming domi-
nant, at approximately τ = 100 fs. For the smallest λ, a change in the
dominant path length did not occur until τ = 1000 fs. A timescale
that is too small leads to numerical problems due to off-diagonal
entries in the transition matrix becoming negligible and diagonal
entries becoming 1 to machine precision.

Figures 14 and 15 show the thermal barrier crossing rate as
a function of τ for the largest and smallest λ in the study, respec-
tively. Over many orders of magnitude in τ the rates remain stable.
At very small τ, numerical issues result in instability, whereas the
largest τ at high λ leads to instability by skipping steps along the reac-
tive pathway. The chosen value of τ = 6.047 fs is unlikely to result
in the incorporation of double jumps while also avoiding potential
numerical problems. The τ chosen was also verified by recalculating

FIG. 15. Thermal barrier crossing rate as a function of τ for the lowest coupling,
λ = 0.05λ0 case.

the Markov models at timescales an order of magnitude larger and
smaller for the largest and smallest λ values and confirming that
the thermal reaction rates, committors, and principal pathways were
insensitive to the change.
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