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RESEARCH ARTICLE
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Abstract
Heart failure (HF) patients show brain injury in autonomic, affective, and cognitive sites,

which can change resting-state functional connectivity (FC), potentially altering overall func-

tional brain network organization. However, the status of such connectivity or functional

organization is unknown in HF. Determination of that status was the aim here, and we

examined region-to-region FC and brain network topological properties across the whole-

brain in 27 HF patients compared to 53 controls with resting-state functional MRI proce-

dures. Decreased FC in HF appeared between the caudate and cerebellar regions, olfac-

tory and cerebellar sites, vermis and medial frontal regions, and precentral gyri and

cerebellar areas. However, increased FC emerged between the middle frontal gyrus and

sensorimotor areas, superior parietal gyrus and orbito/medial frontal regions, inferior tempo-

ral gyrus and lingual gyrus/cerebellar lobe/pallidum, fusiform gyrus and superior orbitofron-

tal gyrus and cerebellar sites, and within vermis and cerebellar areas; these connections

were largely in the right hemisphere (p<0.005; 10,000 permutations). The topology of func-

tional integration and specialized characteristics in HF are significantly changed in regions

showing altered FC, an outcome which would interfere with brain network organization

(p<0.05; 10,000 permutations). Brain dysfunction in HF extends to resting conditions, and

autonomic, cognitive, and affective deficits may stem from altered FC and brain network

organization that may contribute to higher morbidity and mortality in the condition. Our find-

ings likely result from the prominent axonal and nuclear structural changes reported earlier

in HF; protecting neural tissue may improve FC integrity, and thus, increase quality of life

and reduce morbidity and mortality.
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Introduction
Heart failure (HF) patients show multiple autonomic, sensorimotor, mood, and cognitive defi-
cits [1–4], which may originate from hypoxia/ischemia-induced brain injury by low cardiac
output and sleep-disordered breathing, subsequent to cerebral hypo-perfusion in the condition
[5–7]. Short-term memory loss is one of the most common cognitive changes reported in HF,
with an incidence of ranging from 23–80% of HF cases (a risk of nearly twice that of healthy/
non-HF patients) [8]. Also, executive decision making function is another serious cognitive
deficit, affecting ~24% HF patients [9]. Persons with short-term memory loss and executive
function deficit have impaired ability to learn and carry out important self-management strate-
gies, such as to accurately and appropriately follow dietary and medication regimens, recognize
symptoms associated with deteriorating health, and when to communicate with their health
care provider [10, 11]. With the loss of memory and ability to learn how to self-manage their
HF and decide upon needed communication with health care provider, there is increased risk
for HF exacerbations and associated increased morbidity and mortality in this serious medical
condition [1, 10, 11]. Similarly, high incidence of mood issues, including depression (40–60%)
and anxiety (up to 45%) [2, 12] in HF patients may interfere with day-to-day self-management
activity, and contribute to increased morbidity and mortality.

Brain structural injury appears in multiple brain regions serving autonomic, sensorimotor,
mood, and cognitive functions based on various magnetic resonance imaging (MRI) proce-
dures, including high-resolution T1-weighted imaging, T2-relaxometry, and diffusion tensor
imaging (DTI) [13–16]. The structural impairments lead to aberrant functional MRI responses
to autonomic challenges, including the Valsalva maneuver and cold pressor stimuli [3, 4, 17],
and may also alter overall spontaneous functional organization, labeled “resting-state func-
tional connectivity” (FC). It is reasonable to assume that impaired resting-state functional
organization contributes to momentary neuropsychologic and physiologic pathology in HF,
and may exacerbate the potential for further injury. However, whole-brain structural interac-
tions during resting states (termed connection “weights” among brain regions) and coordina-
tion of these interactions (i.e., brain network organization) remain unclear in HF.

Resting-state functional MRI (rs-fMRI) procedures have been used to investigate region-to-
region FC, a term which refers to temporal statistical dependency between neuronal activities
of anatomically-distinct brain regions [18]. The procedure identifies synchronized spontane-
ous low-frequency (<0.1 Hz) fluctuation of blood-oxygen-level-dependent (BOLD) signals
across the brain in the resting-state [19–21], which appear as consistent patterns across healthy
subjects [22–25]. Resting-state FC procedures have been applied widely in various functional
brain network studies, ranging from psychiatric to neurological conditions [26], and as well
as in evaluation of human brain functions [27–29]. Since rs-fMRI FC procedures are used to
discriminate healthy controls from patients (e.g., with stroke) [30], FC can be a potential bio-
marker and may be useful in assessing interactions of functional brain networks and coordina-
tion of these interactions in HF population.

Network-level approaches, based on graph theory, can describe the organizational proper-
ties of functional brain networks [31, 32]. A brain network can be modeled graphically, often
called a “brain graph”, which consists of a set of nodes (brain regions) and edges (connectivity
between nodes) [31, 33, 34]. Network-level approaches suggest that human brain networks are
organized into modular systems, which are characterized by efficient integration of segregated
brain regions through short paths, with low wiring costs, consisting of a few densely-connected
core regions in the whole-brain [31, 32, 35]. These organizational brain attributes have been
found in both anatomical, using DTI or cortical thickness assessments [36–40], and functional
networks, using MEG, EEG, or fMRI [41–45]. It has been suggested that cognitive processing is
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based on high global efficiency in brain networks to efficiently integrate neural information
across whole-brain sites [34], where some hubs (e.g., brain regions concentrated by a large
number of connections with the rest of whole-brain) play a pivotal role showing high cost for
conveying neural information and are especially vulnerable to aberrant disease conditions [46].
Various disease conditions, including Schizophrenia, Alzheimer’s disease, and Parkinson’s dis-
ease [46], show that pathological brain areas are significantly concentrated in such hub sites
playing critical role in normal functional brain network, although cortical hubs are differently
lesioned in each disorder. Thus, network-level approaches may also yield important macro-
scopic or topological alterations on functional brain network in HF patients as well.

Our aim was to investigate functional interactions and organizational properties across the
whole-brain in HF patients over age- and gender-comparable controls using FC and basic net-
work-level approaches. We hypothesized that HF patients would show intrinsically-abnormal
brain FC and functional coordination among the regions serving multiple autonomic, sensori-
motor, mood, and cognitive roles in HF.

Materials and Methods

Subjects
We investigated 27 hemodynamically-optimized (drug dosages were titrated to reach targeted
hemodynamic goals) HF patients and 53 age- and gender-comparable healthy controls. Demo-
graphic and clinical data of all HF patients and controls are summarized in Table 1. All HF
patients were recruited from the Ahmanson-University of California at Los Angeles (UCLA)
Cardiomyopathy Center. The diagnosis of HF was based on national diagnostic criteria [47],
and all subjects included in this study were with NYHA Functional Class II at the time of MRI
[48]. All HF patients enrolled here were between 30–66 years of age. Lower age was chosen to
minimize developmental process and higher age was chosen to reduce aging effect. All HF
patients were without any history of drug abuse, valvular congenital heart defects, pregnancy
induced cardiomyopathy, no previous history of stroke or carotid vascular disease, and head
injury. All HF patients were treated with guideline-directed medical therapy, including angio-
tensin receptor blockers or angiotensin-converting enzyme inhibitors, beta blockers, and
diuretics, and were stabilized for hemodynamics and body-weight for at least six months prior
to participation in MRI studies.

Control subjects were recruited through advertisements at the UCLA campus and Los
Angeles area. All control subjects were in good health, without any clinical history of cardio-
vascular, stroke, respiratory, neurological, or psychiatric disorders that may introduce brain
changes.

Both HF patients and controls were excluded from the study if they were claustrophobic,
carrying non-removable metal, such as embolic coils, pacemakers/implantable cardioverter-
defibrillators, stents, or with body weight more than 125 kg (the last, a scanner limitation). All
subjects gave written and informed consent before data acquisition and study protocol was
approved by the Institutional Review Board at the UCLA.

Mood and sleep examination
Beck Depression Inventory II (BDI-II) was used to assess depressive symptoms, and Beck Anx-
iety Inventory (BAI) was used to examine anxiety symptoms in HF patients and controls [49,
50]. Both BDI-II and BAI are self-administered questionnaires (21 questions; each score ranged
from 0–3) with total scores ranging from 0–63, based on mood or anxiety symptoms.
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Sleep quality and daytime sleepiness were evaluated in HF patients and controls. We used
the Pittsburgh Sleep Quality Index (PSQI) [51]and Epworth Sleepiness Scale (ESS) [52] to
examine sleep quality and day time sleepiness, respectively.

Cognition assessment
The Montreal Cognitive Assessment (MoCA) test was used for cognitive assessment. The test
contains various cognitive domains, including attention, executive functions, memory, lan-
guage, visuo-constructional skills, conceptual thinking, calculations, and orientation [53].

Magnetic resonance imaging
Brain imaging of HF patients and controls was performed using a 3.0-Tesla MRI scanner (Sie-
mens, Magnetom Tim-Trio, Erlangen, Germany). Foam pads were used on either side of the
head to reduce head motion-related artifacts during scanning. Rs-fMRI data were acquired with
an echo planar imaging based BOLD sequence in the axial plan [repetition time (TR) = 2000
ms; echo time (TE) = 30 ms; flip angle (FA) = 90°; field-of-view (FOV) = 230×230 mm2; matrix
size = 64×64; voxel size = 3.59×3.59×4.5 mm3; volumes = 59], while participants lay resting with

Table 1. Demographic, clinical, and sleep variables of HF and control subjects.

Variables HF (n = 27) Controls (n = 53) P-value

Age range (y) 40–66 42–66 −

Age (mean ± SD, yrs) 55.3 ± 7.9 52.7 ± 6.2 0.11

Sex (Male:Female) 20:7 36:17 0.57

BMI (mean ± SD, kg/m2) 27.9 ± 5.5 25.4 ± 3.5 0.01

Handedness 2 Left; 24 Right; 1 Ambidextrous 10 Left; 42 Right; 1 Ambidextrous −

Ethnicity 1 Asian; 17 White; 2 Hispanic; 6 African-
American; 1 Armenian

14 Asian; 25 White; 8 Hispanic; 3 African-American; 1 White-Asian; 1
Hispanic-White; 1 El Salvador-Hispanic

−

PSQI (mean ± SD) 7.2 ± 3.9 4.0 ± 2.6 <0.001

ESS (mean ± SD) 5.4 ± 3.2 (n = 26) 8.0 ± 4.2 0.0027

BDI-II (mean ± SD) 10.3 ± 7.1 3.9 ± 4.1 <0.001

BAI (mean ± SD) 9.5 ± 8.0 3.7 ± 4.7 <0.001

LVEF (mean ± SD) 28.0 ± 9.2 − −

Global MoCA scores
(mean ± SD)

24.9 ± 3.4 (n = 10) 27.7 ± 1.9 (n = 16) 0.01

MoCA: Visuospatial
(mean ± SD)

3.3 ± 1.4 (n = 10) 4.4 ± 0.6 (n = 16) 0.04

MoCA: Naming
(mean ± SD)

3.0 ± 0.0 (n = 10) 2.8 ± 0.6 (n = 16) 0.10

MoCA: Attention
(mean ± SD)

5.5 ± 0.8 (n = 10) 5.6 ± 0.6 (n = 16) 0.83

MoCA: Language
(mean ± SD)

2.2 ± 0.8 (n = 10) 2.7 ± 0.8 (n = 16) 0.14

MoCA: Abstraction
(mean ± SD)

2.0 ± 0.0 (n = 10) 2.0 ± 0.0 (n = 16) 1.0

MoCA: Delayed recall
(mean ± SD)

2.9 ± 1.8 (n = 10) 4.3 ± 0.9 (n = 16) 0.04

MoCA: Orientation
(mean ± SD)

6.0 ± 0.0 (n = 10) 6.0 ± 0.0 (n = 16) 1.0

BMI, Body mass index; ESS, Epworth sleepiness scale; PSQI, Pittsburgh sleep quality index; BDI-II, Beck depression inventory II; BAI, Beck anxiety

inventory; LVEF, Left ventricular ejection fraction; MoCA, Montreal Cognitive Assessment; SD, Standard deviation.

doi:10.1371/journal.pone.0155894.t001
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eyes open, without focusing on specific thoughts, and no sleeping during about 2 minutes.
High resolution T1-weighted images were collected from each subject using a magnetization
prepared rapid acquisition gradient-echo pulse sequence (TR = 2200 ms; TE = 2.2, 2.34 ms;
FA = 9°; FOV = 230×230 mm2; matrix size = 256×256, 320×320; voxel size = 0.9×0.9×1.0 mm3,
0.72×0.72×0.9 mm3). Proton-density (PD) and T2-weighted images were acquired in the axial
plane, using a dual-echo turbo spin-echo pulse sequence (TR = 10,000 ms; TE1, 2 = 17, 134 ms;
FA = 130°; matrix size = 256×256; FOV = 230×230 mm2; voxel size = 0.9×0.9×4.0 mm3).

Data preprocessing
We used the statistical parametric mapping (SPM8, Wellcome Department of Cognitive Neu-
rology, London, UK) [54] and MRIcroN software [55] for evaluation of images and rs-fMRI
data preprocessing. High-resolution T1-weighted, PD-, and T2-weighted images of HF patients
and controls were examined for any gross brain pathology, such as tumors, cysts, or major
infarcts. Rs-fMRI data were also assessed for imaging or head motion-related artifacts before
data processing. No subjects included in this study showed any serious visible brain pathology,
head motion-related, or other imaging artifacts.

Resting-state fMRI data preprocessing steps included realignment of EPI brain volumes for
removal of any potential head-motion, co-registration to T1-weighted images, and spatial nor-
malization to a standard common space template using nonlinear transformation procedures.
For rs-fMRI data analysis, we discarded the initial 3 brain volumes to avoid signal saturation
issues, and used the remaining 56 volumes for remaining analysis. No spatial smoothing was
performed on the rs-fMRI data to avoid inflation of local connectivity and clustering [56].

Construction and analysis of functional network
Individual whole-brain FC was determined from regional mean fMRI time series, extracted
from 116 distinct regions, as defined by automated anatomical labeling [57], that consists of 90
cerebral brain regions (45 sites in each hemisphere) and 26 cerebellar areas (9 regions in each
hemisphere and 8 vermis sites), as described in Table 2. We applied the canonical signal pro-
cessing procedures for calculating the rs-FC for each regional mean fMRI time series [58].
Each time series was band-pass filtered (0.009–0.08 Hz), and effects of six rigid motions, their
first derivatives, and global signal changes in white matter, cerebrospinal fluid, and whole-
brain were removed by regression. The first derivatives of the motion parameters were added
in the statistical model to minimize signal changes from head-motion [59], which is often an
issue in any rs-FC study [59–61]. We defined FC (edge) as an inter-regional correlation map
among 116 preprocessed regional time series. We converted individual correlation maps into
z-scored maps with Fisher’s r-to-z transformation to improve normality. We compared the
z-scored maps edge-by-edge between HF patients and controls using analysis of covariance
(ANCOVA), with age and gender included as covariates. We also examined relationships
between each variable (BMI, LVEF, PSQI, ESS, BAI, or BDI-II) and functional connectivity. All
rs-FC analyses were performed using MATLAB-based custom software.

Brain network analysis
Organizational characteristics on functional networks of HF patients and controls were
assessed with graph-theoretical analyses [62], using the Brain Connectivity Toolbox (http://
www.brain-connectivity-toolbox.net/). We consider brain networks as a graph, G = (N, E),
which consists a set of nodes N (brain regions) and connections E (functional connectivity)
[31]. Using a threshold of false discovery rate (FDR)< 0.05 [63], we constructed individual
brain networks. We considered connected edge weights, if the values were statistically
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significant, and otherwise set those values to zero and considered not connected. Brain net-
works were examined for network centrality (degree, strength, and betweenness), network seg-
regation (clustering coefficient and local efficiency), and network integration (nodal efficiency
and global efficiency) [31, 32, 62].

Nodal (or regional) degree is defined as the number of connections linking the node to rest
of the networks [62], and a brain region showing larger degree values plays a functional core
role to highly integrate the multiple specialized functions at different brain regions. Nodal
strength, as the weighted degree, is defined as the sum of connection strengths linking the node
to rest of the network, and serves as the total level of connection weight information in the
node [62]. A larger strength value represents a region that exerts greater connection strength in
the communication, and involves a high level of integration in whole-brain communication.
Betweenness for a node is measured as the fractional shortest path between any other node
pair in the network passing through the node [62]. A brain region showing a higher between-
ness value implies that a large number of the shortest path lengths pass through the region, and

Table 2. Sites with abbreviations corresponding to 116 brain regions.

Regions Abbreviation Regions Abbreviation

Precental gyrus PrCG Supramarginal gyrus SMG

Superior frontal gyrus (dorsolateral part) SFGdor Angular gyrus ANG

Orbitofrontal gyrus (superior part) OFGsup Precuneus PRCU

Middle frontal gyrus MFG Paracentral lobule PCL

Orbitofrontal gyrus (middle part) OFGmid Caudate CAU

Inferior frontal gyrus (opercular part) IFGop Putamen PUT

Inferior frontal gyrus (triangular part) IFGtr Pallidum PAL

Orbitofrontal gyrus (inferior part) OFGinf Thalamus THL

Rolandic operculum ROL Heschl gyrus HES

Supplementary motor area SMA Superior temporal gyrus STG

Olfactory cortex OLF Temporal pole (superior part) TPsup

Superior frontal gyrus (medial part) SFGmed Middle temporal gyrus MTG

Orbitofrontal gyrus (medial part) OFGmed Temporal pole (middle part) TPmid

Rectus REC Inferior temporal gyrus ITG

Insula INS Cerebellar crus I CRcr-I

Anterior cingulate cortex ACC Cerebellar crus II CRcr-II

Middle cingulate cortex MCC Cerebellum III CR-III

Posterior cingulate cortex PCC Cerebellum IV-V CR-IV

Hippocampus HP Cerebellum VI CR-VI

Parahippocampal gyrus PHG Cerebellum VIIb CR-VIIb

Amygdala AMYG Cerebellum VIII CR-VIII

Calcarine CAL Cerebellum IX CR-IX

Cuneus CUN Cerebellum X CR-X

Lingual gyrus LING Vermis I-II VM-I

Superior occipital gyrus SOG Vermis III VM-III

Middle occipital gyrus MOG Vermis IV-V VM-IV

Inferior occipital gyrus IOG Vermis VI VM-VI

Fusiform gyrus FFG Vermis VII VM-VII

Postcentral gyrus PoCG Vermis VIII VM-VIII

Superior parietal gyrus SPG Vermis IX VM-IX

Inferior parietal lobule IPL Vermis X VM-X

doi:10.1371/journal.pone.0155894.t002
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that the region exerts a high influence in the network communication. The level of functional
communication efficiency between any two brain regions can be assumed to be the inverse of
the weighted shortest path length, which is the weight sum of connections that must be tra-
versed to travel from one node to another [64]. Weighted nodal efficiency is expressed as the
averaged inverse weighed shortest path length to the rest of the network, and global efficiency
is defined as the average of all nodal efficiencies [64, 65]. Larger efficiency or shorter path
lengths of a region might thus represent that the area communicates more efficiently with the
rest of the brain. The level at which a network is organized into densely clustered nodes can be
assessed using the clustering coefficient [35]. Weighted clustering coefficient for a region quan-
tifies the number of actual connections existing among the region’s neighbors, proportional to
the number of all their possible connections, and a brain region showing a higher weighted
clustering coefficient value implies densely linked local structures among the neighboring sites.
The segregation index, which is a weighted cluster coefficient, is considered as the weighted
shortest path length within the neighbors [62].

Statistical analyses
The IBM Statistical Package for the Social Sciences (IBM SPSS, v 22, Armonk, NY) software
was used to assess demographic, biophysical, and other clinical variables. Demographic, sleep,
and other clinical variables were assessed by Chi-square and independent samples t-tests. A
threshold value of p<0.05 was considered statistical significance.

We examined FC and graph-theoretical measures between groups using the random per-
mutation test in a nonparametric fashion (p<0.005 for FC, p<0.05 for graph-theoretical
measures, 10,000 permutations) [66]. We created a null distribution of t-statistics for each
measurement from analysis of covariance (ANCOVA; covariates, age and gender), using group
labels randomly-shuffled 10,000 times, with assumption of no significant differences between
HF patients and controls. We compared original t-statistic values from ANCOVA with the
null distribution, and considered those values significant if they exceeded the distribution
threshold. Also, relationships between each variable (BMI, LVEF, PSQI, ESS, BAI, or BDI-II)
and FC were examined with partial correlation procedures, with age and gender as covariates
(Correlation of BMI, LVEF, PSQI, ESS, BAI, or BDI-II with FC, S1 Fig).

Results

Demographic and clinical characteristics
HF patients did not differ in age (p = 0.11) or gender (p = 0.57) compared to controls (Table 1).
However, BMI values in HF patients were significantly larger, compared to controls (p = 0.014).
Other measurements, including the sleep scores (PSQI, p<0.001; ESS, p = 0.0027), mood values
(BDI-II, p<0.001; BAI, p<0.001), and cognitive scores (MoCA, p = 0.01) also showed signifi-
cant differences between groups (Table 1).

Whole-brain FC
Significantly altered FC appeared in various brain sites across whole-brain areas in HF, com-
pared to healthy controls (p<0.005, 10,000 permutations), these sites are shown in Figs 1–3,
and areas listed in Tables 3 and 4. Decreased FC in HF (Figs 1b and 2), emerged principally
between the caudate and cerebellar regions, olfactory and cerebellar sites, vermis and medial
frontal regions, and precentral gyri and cerebellar areas. However, increased FC in HF (Figs 1b
and 3) appeared between the middle frontal gyrus and sensorimotor regions, superior parietal
gyrus and orbito/medial frontal regions, inferior temporal gyrus and lingual gyrus/cerebellar
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lobe/pallidum, fusiform gyrus and superior orbitofrontal gyrus and cerebellar sites, and within
vermis and cerebellar areas, and these connections are largely lateralized to the right hemi-
sphere. Associations between BMI, LVEF, PSQI, ESS, BAI, and BDI-II and functional connec-
tions weakly increased or decreased in HF with lower significant level of P<0.05 (r = 0.38,
correlation coefficient) (Correlation of BMI, LVEF, PSQI, ESS, BAI, or BDI-II with FC, S1 Fig).

Decreased FC in HF. Both the left and right precentral gyrus showed decreased FC in HF
with regions in the right hemisphere, i.e., the right cerebellar lobe VIIb/VIII and fusiform gyrus
connected with the left precentral gyrus and the right pallidum, fusiform gyrus, and inferior
occipital gyrus connected with the right precentral gyrus. Connectivity between the left post-
central gyrus and left cerebellar lobe VIII was also diminished in HF. The right paracentral lob-
ule showed decreased connections with the bilateral cuneus, and the right olfactory with the

Fig 1. FCmatrices for HF and control subjects and group comparison. (a) group-averaging FCmatrices for HF and controls. Color bar indicates z-
transformed correlation coefficient and red or blue color represents positive or negative FC, respectively. (b) group-comparison FC matrix representing
the–log10 (p-values) corresponding to significantly changed FC among all brain site pairs (p<0.005, 10,000 permutations). Red or blue color represents
significantly increased or decreased FC in HF, respectively. L and R indicate left and right regions and CRB and VM represent the cerebellum and vermis,
respectively. Brain sites with abbreviations are same as listed in Table 2.

doi:10.1371/journal.pone.0155894.g001
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cerebellar regions, including the right crus I, right lobe VI, and vermis VI. The right rectus
showed reduced FC with the left rectus and right Rolandic operculum, and with right middle
and superior orbitofrontal gyri. The vermis X showed decreased FC with the bilateral medial
superior frontal and right medial orbitofrontal gyri. The right caudate remarkably showed

Fig 2. Decreased FC in HF over control subjects. Significantly decreased FC appeared in multiple areas between brain sites in HF patients. Thicker
edge lines represent more significant differences, with a scale of–log10 (P-value) from a minimum value to 6, surviving a threshold of p<0.005 (10,000
permutations). Bigger nodal sphere size represents a larger number of significant edges. Bold yellow labels indicate sites with at least 3 functional
connections. Brain sites with abbreviations are same as listed in Table 2.

doi:10.1371/journal.pone.0155894.g002
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decreased FC with the cerebellar sites, including the right crus I, bilateral lobe VI, and vermis
VI. However, the left caudate showed reduced FC with the left pallidum only. Also, decreased
FC emerged between the cerebellar and posterior parietal regions, including the posterior cin-
gulate cortex, precuneus, inferior parietal lobule, and supramarginal gyrus.

Fig 3. Increased FC in HF over control subjects. Significantly increased FC in areas between brain regions in HF patients. Thicker edge lines
represent more significant differences, with a scale of–log10 (P-value) from a minimum value to 6, surviving a threshold of p<0.005 (10,000
permutations). Larger nodal sphere size represents a bigger number of significant edges. Bold yellow labels indicate sites with at least 3 functional
connections. Brain sites with abbreviations are same as listed in Table 2.

doi:10.1371/journal.pone.0155894.g003
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Table 3. Significantly decreased FC between brain areas in patients with HF (P<0.005, 10,000 permutations).

Regions Regions P-value Regions Regions P-value

Right CAU Right CRcr-I 0.0021 Right REC Left REC 0.0017

Right CAU Left CR-VI 0.0002 Right REC Right ROL 0.001

Right CAU Right CR-VI 0.004 VM-X Left SFGmed 0.0023

Right CAU VM-VI 0.0008 VM-X Right SFGmed 0.0038

Left CAU Left PAL 0.003 VM-X Right OFGmed 0.0034

Right PUT Left HP 0.0014 Left PRCU Right CR-IV 0.0029

Left PrCG Right FFG 0.0035 Left PRCU Left CR-X 0.0024

Left PrCG Right CR-VIIb 0.0004 Left PCC Right SMG 0.0004

Left PrCG Right CR-VIII 0.0031 Left PCC Right CR-XI 0.0003

Right PrCG Right PAL 0.0029 Right IPL VM-VII 0.0037

Right PrCG Right FFG 0.0008 Right ANG Left HES 0.002

Right PrCG Right IOG 0.0024 Left SPG Left CR-VI 0.0039

Left PoCG Left CR-VIII 0.0012 Left ROL Left CRcr-II 0.0026

Right PCL Left CUN 0.0007 Right ROL Right CR-VIIb 0.0038

Right PCL Right CUN 0.0038 Right OFGmid Right OFGsup 0.0045

Right OLF Right CRcr-I 0.0018 Left IFGop Right MOG 0.004

Right OLF Right CR-VI 0.0005 Right SFGmed Right Tpmid 0.0024

Right OLF VM-VI 0.0001 Left SMA Right STG 0.0027

Brain sites with abbreviations are same as listed in Table 2.

doi:10.1371/journal.pone.0155894.t003

Table 4. Significantly increased FC between brain sites in patients with HF (P<0.005, 10,000 permutations).

Regions Regions P-value Regions Regions P-value

Right MFG Right PrCG 0.0044 Left PRCU Left SPG 0.0004

Right MFG Left PoCG 0.0015 Right PRCU Right MOG 0.0024

Right MFG Right PoCG 0.0033 Right ROL Right CAL 0.0046

Right MFG Right PCL 0.0036 Right ROL Left HES 0.0043

Right SPG Right OFGmed 0.0038 Right MCC Left SOG 0.0049

Right SPG Left REC 0.0049 Left PCC Right IOG 0.0038

Right SPG Right REC 0.0002 Right AMYG Left CR-X 0.0037

Right SPG Left ACC 0.0007 Left AMYG Left MTG 0.0036

Right FFG Right OFGsup 0.0029 Right HP VM-III 0.0043

Right FFG VM6 0.0004 VM-III Left THL 0.0019

Right FFG Left CRcr-II 0.0044 Left CRcr-II Right MOG 0.0045

Right FFG VM-VII 0.0033 VM-I Right SFGdor 0.0006

Right ITG Right LING 0.0048 Right CR-VI Left CR-III 0.0028

Right ITG Left CR-VI 0.0006 Right CR-VI VM-X 0.0039

Right PAL Right ITG 0.0026 Left CR-IV VM-VI 0.0009

Right PAL Left MTG 0.0045 Left CR-IV VM-VIII 0.0027

Left PAL Right Tpmid 0.004 Left CR-IV VM-X 0.0005

Right INS Left Tpmid 0.0022 VM-IV Left CR-VIII 0.0032

Right INS Right CR-III 0.0017 VM-IV VM-VI 0.0022

Left INS Right CAL 0.0017 VM-VIII Left CR-VI 0.0025

Brain sites with abbreviations are same as listed in Table 2.

doi:10.1371/journal.pone.0155894.t004
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Increased FC in HF. The right middle frontal gyrus showed increased FC with the bilateral
postcentral gyri, right precentral gyrus, and right paracentral lobule. Several sites within-cerebel-
lar areas emerged with increased FC between the vermis VI and the vermis IV, and between left
cerebellar lobe IV-VI and the vermis VIII-X. The right superior parietal gyrus showed increased
FC with the bilateral rectus, right medial orbitofrontal gyrus, and left anterior cingulate cortex.
The right insula showed increased FC with the left middle temporal pole and right cerebellar
lobe III, while the left insula with the right calcarine. Connections between the right amygdala
and left cerebellar lobe X, the left amygdala and the left middle temporal gyrus, the right hippo-
campus and vermis III, and the left thalamus and vermis III appeared with increased FC. In
addition, the right fusiform gyrus showed enhanced FC with the right superior orbitofrontal
gyrus, left cerebellar crus II, and vermis VI-VII. However, the right inferior temporal gyrus
showed increased FC with the right lingual gyrus, left cerebellar lobe VI, and right pallidum.

Topological measures
Nodal topological measures in HF showed altered values in widespread brain regions (Fig 4,
Table 5; p<0.05, 10,000 permutations). Network centrality measures in HF appeared with

Fig 4. Graph-theoretical measures in HF subjects. Significantly decreased (a) or increased (b) graph-theoretical measures in HF subjects (p<0.05,
10,000 permutations). Each circle represents significantly changed regional (or nodal) properties, with various color representing strength, degree,
weighted clustering coefficient, betweenness centrality, and nodal efficiency, respectively. Brain sites with abbreviations are same as listed in Table 2.

doi:10.1371/journal.pone.0155894.g004
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decreased betweenness centrality at the left para-hippocampal gyrus, left and right supramargi-
nal gyrus, and vermis VI, and decreased degree at the right thalamus. Increased betweenness
centrality emerged at the right medial orbitofrontal gyrus, right rectus, left olfactory, bilateral
middle temporal pole, left inferior occipital gyrus, and right cerebellar lobule X. However,
increased degree appeared at the left middle temporal pole, right angular gyrus, right inferior
occipital gyrus, and vermis III, and increased strength at the right angular gyrus and right infe-
rior occipital gyrus. HF subjects showed increased weighted clustering coefficient at the left
precentral gyrus, left Rolandic, right cerebellar lobule IV-V, and vermis VI, and increased
nodal efficiency at the left precentral, left Rolandic, left heschl, right angular gyrus, and cerebel-
lar lobule IV-V. Both weighted clustering coefficient and nodal efficiency did not show any site
with decreased value in HF. Also, global network properties, including global and local effi-
ciency, did not show any significant difference.

Discussion
We examined whole-brain FC and their network organizational properties in HF patients com-
pared to controls using rs-fMRI procedures. A core question was how brain dysfunction in HF
condition affects individual functional interactions and coordination among sites across the
whole-brain. Our data suggest that HF patients have aberrant spontaneous functional connec-
tions in various brain areas, especially lateralized to the right hemisphere. These aberrant con-
nections are related to sensorimotor, autonomic, mood, and cognitive regulation, sites which
have been reported as having structural injury or being deficient in function when challenged
in previous HF studies. Moreover, functional interactions altered in HF contribute to aberrant
brain network organization in the condition.

Table 5. Significantly different nodal properties in HF patients (P<0.05, 10,000 permutations). Negative and positive p values correspond to decreased
and increased value in HF, respectively.

Regions Hemisphere Betweenness Degree Strength Weighted clustering coefficient Efficiency

OFGmed Right 0.0271 − − − −

REC Right 0.0139 − − − −

OLF Left 0.0079 − − − −

SMG Left -0.0004 − − − −

SMG Right -0.0238 − − − −

PrCG Left − − − 0.0264 0.0351

Tpmid Left 0.0165 0.0495 − − −

Tpmid Right 0.0277 − − − −

ROL Left − − − 0.0015 0.001

HES Left − − − − 0.0421

ANG Right − 0.0163 0.0096 − 0.0493

IOG Left 0.0481 − − − −

IOG Right − 0.0099 0.0113 − −

THL Right − -0.0358 − − −

PHG Left -0.0018 − − −

CR-IV Right − − − 0.0439 0.0439

CR-X Right 0.012 − − − −

VM-III − − 0.0295 − − −

VM-VI − -0.0215 − − 0.0204 −

Brain sites with abbreviations are same as listed in Table 2.

doi:10.1371/journal.pone.0155894.t005
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Functional reorganization in autonomic, respiratory, and sensorimotor
networks
Autonomic dysfunction, including increased sympathetic tone, aberrant heart rate, and blood
pressure responses to cardiovascular challenges, is a core characteristic in HF [3, 4, 67, 68].
Damaged brain structures in HF include the insular, cingulate, orbitofrontal, hypothalamus,
and cerebellar regions [13–16].

The right and left insular cortices exert influences on sympathetic and parasympathetic ner-
vous system activity [69–71] and both receive visceral sensory input from, and project to, the
hypothalamus, participating significantly in autonomic regulation [71]. In addition, the insular
cortices play significant roles in pain mediation [72], and in dyspnea [73], both issues of con-
cern in HF. The cingulate cortex, which receives axons from and projects to insular cortices,
mediates both autonomic sympathetic and parasympathetic branches, and damage to this
structure can impact cardiac regulation [3, 15, 74, 75]. The orbitofrontal cortex exerts promi-
nent influences on somatomotor inhibition of autonomic responses, and coordination of
behavioral responses during adaptation [76] and shows a substantial role in initiation of blood
pressure responses [77]. The cerebellar cortices and vermis play autonomic and respiratory
motor regulation [78, 79], and are one of the heavily damaged regions in HF [13–16], and also
show altered autonomic responses to cardiovascular challenges [3, 4].

Over the regional FC changes, our findings show that the injury in these autonomic and
respiratory control sites further leads to decreased functional interactions among these regions
and/or with other cognitive control regions (e.g., the bilateral medial superior frontal gyri).
Notably, such declines in FC are primarily localized in the right hemisphere, and the right
olfactory and vermis X were sites to play key roles. The functional lateralization in HF may
couple with lateralized tissue damage in the condition, which consistently appeared in the
previous studies [13, 15, 16]. Increased functional interactions with the bilateral insula and
increased within-cerebellar regions in HF may correspond to enhanced local plasticity of fibers,
such that additional regions are recruited for the diverse functional compensatory processes.
Such processes are necessary to protect against abnormalities that appear in HF, consequences
of vulnerable regulation by exaggerated sympathetic outflow or metabolic stress [80].

Reorganization of FC in autonomic and respiratory systems in HF subjects may also under-
lie deficient sensorimotor processes, reflecting distorted sensory input from the upper airway,
and contributing to the atonia in upper airway muscles during inspiratory efforts of obstructed
breathing in HF. Here, distorted sensorimotor integration appeared as decreased FC largely
involved in the bilateral precentral gyri, as well as in the right paracentral lobule and left post-
central gyrus. Moreover, these decreased connections are largely lateralized in the right hemi-
sphere, similar to the declines found in autonomic regulatory sites.

Functional reorganization in neurocognitive networks
HF patients show many cognitive issues, including affective, executive, memory, attention,
behavioral, and learning functions [81]. One of the remarkable outcomes that emerged was the
appearance of several lateralized abnormal connections anchored at the right caudate and mid-
dle frontal gyrus, which presumably contribute to executive deficits in the condition. We
speculate that injury in autonomic and respiratory regulatory cerebellar regions may serve
decreased functional connections with the right caudate, eventually leading to executive,
behavioral, and learning deficits in HF, and reducing the well-known contributions of the
basal-ganglia to autonomic regulation [82]. Similarly, damaged sensorimotor regions may also
contribute to such functional deficits by abnormally increased (compensatory) interactions
with the right middle frontal gyrus.
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Other symptoms in HF include an increased incidence of mood disorders [12], which pre-
sumably result from regional injury in the prefrontal cortex, para-hippocampal gyrus, cingulate,
insula, hippocampus, and cerebellum [15]. In this study, the right amygdala, right hippocampus,
and left thalamus (as well as the bilateral insula) in HF showed increased FC with cerebellar
sites. These regions reveal exaggerated sympathetic outflow or high metabolic demand, which
presumably result from a compensatory mechanism by engaging additional regions with
enhanced functional connections. Thus, it may be the case that injury in autonomic and respira-
tory regulatory cerebellar regions might contribute to increased connections with brain sites
serving as high level of mood control in HF. Meanwhile, increased FC between the right hippo-
campus and vermis III may also contribute to memory loss in HF [15, 83]. The fusiform gyrus is
connected with several cerebellar regions, and may affect processing of imaginative fearful
objects of anxiety aspects in HF [84].

Deficient processing in attention is common in HF [81], and may be associated with the
abnormal network coordination from the posterior parietal cortex (e.g., the posterior cingulate
cortex, precuneus, and superior/inferior parietal regions), as observed in our study [85, 86].
Also, the right superior parietal gyrus was observed as a core region, collecting increased con-
nectivity with anterior brain sites within autonomic and respiratory regulatory circuitry.
The posterior cingulate cortex and precuneus showed decreased FC with the cerebellum, but
showed increased FC with the occipital areas. These findings may suggest mechanisms for the
impaired attention and visual processing in HF through abnormal connections with the poste-
rior parietal cortex in the condition [85–87]. Moreover, abnormal FC from the posterior cingu-
late cortex could contribute to depressive symptoms in the condition [88].

Alterations in topological attributes
Human brain functions are represented by various configurations between local specialization
and global integration among brain regional activities [31, 32]. Examining brain network orga-
nizational abnormalities can thus provide new insights in exploring disease pathology [89].
Declined regional metabolism within brain tissues and synaptic injury in a disease group may
result in disrupted anatomical projections, alter FC, and eventually give rise to an abnormal
functional brain network pattern emerging as less effective and reduced regional centrality in
core brain areas (with a compensatory increase in other regional central sites), as shown in Alz-
heimer's disease [90, 91], Parkinson’s disease [92], and Stroke [93]. Network-level analyses
using graph theory in a disease group serve a research framework to explore brain network
organization with topological properties [31, 32].

In this study, HF patients showed, across broad regions, predominantly increased topological
properties that may result from increased metabolic activity in HF. Increased regional centrality
was localized in autonomic and respiratory regions, and bilateral middle temporal pole, inferior
occipital gyrus, and right angular gyrus, which may underlie known cognitive issues in the con-
dition. The weighted clustering coefficients (e.g., a measure of regional segregation) and regional
efficiency (e.g., an integration measure between two sites in neural information delivery) in HF
patients were significantly increased in the precentral, temporal, cerebellar, and right angular
regions. Increased regional centrality, segregation, and efficiency of brain networks in HF indi-
cate brain areas unexpectedly engaged by compensatory coordination in the condition, which
may represent an exaggerated hub or integrative role for the flow of brain information. Reduced
regional centrality in the left para-hippocampal gyrus, bilateral supramarginal gyrus, right thala-
mus, and vermis VI could contribute to cognitive deficits in HF. Both the para-hippocampal
and supramarginal regions are involved in higher-order cognitive/behavioral functions [94],
and in integration and interactions involving visual, auditory, and somato-sensory functions
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with adjoining sensory regions [95], respectively. Reduced regional centrality of brain networks
in HF shows a diminished hub role for the flow of brain information.

Potential pathological processes
Our findings show that HF brain is not simply affected by localized injury, but also accompa-
nied by abnormal functional network coordination among such damaged areas that serve
many of the autonomic, sensorimotor, and cognitive functions deficient in the condition. Sev-
eral pathological processes may contribute to abnormal functional network properties, includ-
ing low cardiac output [3] and hypoxia/ischemia processes from sleep disordered breathing
issues [96], leading to cerebral perfusion issues. Both processes may result to localized cortical
changes, mainly at cortical hub regions. Also, injury to autonomic regions may alter vascular
supply to other cortical sites that may induce secondary damage to other brain areas across the
brain, and eventually may result in abnormal functional brain network in the condition.

Limitations
Several limitations of this study should be acknowledged. We evaluated individual brain net-
works by splitting the whole-brain into 116 regions, as a widely used parcellation scheme in
brain network studies. Further studies are required to compare the current findings using dif-
ferent parcellation schemes, since their uses could exhibit different graph-theoretical results,
based on variable regions of interest [97–100]. Also, all subjects were instructed not to focus on
any specific thoughts during scanning, we could not ensure about this issue, and could be con-
sidered as potential limitation. However, heart rate was carefully monitored in all subjects dur-
ing the resting-state functional MRI, and none of subjects included here showed significant
heart rate fluctuation, indicating that subjects followed our instruction for not focusing on spe-
cific thoughts during the resting-state functional MRI.

Conclusions
Heart failure patients show resting-state spontaneous brain dysfunction between multiple
sites, and autonomic, cognitive, and affective deficits may stem from the altered FC and brain
network organization. The altered FC in HF is largely lateralized to the right hemisphere,
which may result from previously-identified lateralized tissue changes in the condition. These
increased and decreased FC deficits may contribute to higher morbidity and mortality in the
condition. The adverse clinical outcomes likely result from the prominent structural changes
in both axons and nuclear structures reported earlier in HF; protecting neural tissue may
improve functional network integrity, and thus, reduce morbidity and mortality and increase
quality of life in the condition.

Supporting Information
S1 Fig. Correlation of BMI, LVEF, PSQI, ESS, BAI, or BDI-II with FC.Weak relationship
trend between each variables and functional connections. Blue and red color represents nega-
tive and positive relationships, respectively. Other figure conventions are same as in Figs 2
and 3.
(DOCX)

Whole-Brain Functional Networks in HF

PLOSONE | DOI:10.1371/journal.pone.0155894 May 20, 2016 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155894.s001


Acknowledgments
We thank Mrs. Rebecca K. Harper and Mrs. Karen Harada for assistance with data collection.
This research was supported by National Institutes of Health R01 NR-013625 and R01 NR-
014669.

Author Contributions
Conceived and designed the experiments: RK MW BP. Performed the experiments: RK MW
BP JP BR. Analyzed the data: BP. Contributed reagents/materials/analysis tools: BP RK. Wrote
the paper: BP, RK, RH, GF, BR.

References
1. Almeida OP, Flicker L. The mind of a failing heart: a systematic review of the association between

congestive heart failure and cognitive functioning. Intern Med J. 2001; 31: 290–295. PMID: 11512600

2. JiangW, Kuchibhatla M, Clary GL, Cuffe MS, Christopher EJ, Alexander JD, et al. Relationship
between depressive symptoms and long-term mortality in patients with heart failure. Am Heart J.
2007; 154: 102–108. PMID: 17584561

3. WooMA, Macey PM, Keens PT, Kumar R, Fonarow GC, Hamilton MA, et al. Functional abnormalities
in brain areas that mediate autonomic nervous system control in advanced heart failure. J Card Fail.
2005; 11: 437–446. PMID: 16105635

4. WooMA, Macey PM, Keens PT, Kumar R, Fonarow GC, Hamilton MA, et al. Aberrant central nervous
system responses to the Valsalva maneuver in heart failure. Congest Heart Fail. 2007; 13: 29–35.
PMID: 17272960

5. Mann D. Pathophysiology of heart failure. In: Libby P B R, Mann DL, Zipes DP, editor. Braunwald's
heart disease: a textbook of cardiology. Burlington, MA: Saunders Elsevier; 2008. p. 541–560.

6. Redeker NS, Muench U, Zucker MJ, Walsleben J, Gilbert M, Freudenberger R, et al. Sleep disordered
breathing, daytime symptoms, and functional performance in stable heart failure. Sleep. 2010; 33:
551–560. PMID: 20394325

7. WooMA, Fonarow GC. Sleep-disordered Breathing in Heart Failure. Curr Treat Options Cardiovasc
Med. 2003; 5: 459–467. PMID: 14575623

8. Petrucci RJ, Truesdell KC, Carter A, Goldstein NE, Russell MM, Dilkes D, et al. Cognitive dysfunction
in advanced heart failure and prospective cardiac assist device patients. Ann Thorac Surg. 2006; 81:
1738–1744. PMID: 16631665

9. Pressler SJ, Kim J, Riley P, Ronis DL, Gradus-Pizlo I. Memory dysfunction, psychomotor slowing,
and decreased executive function predict mortality in patients with heart failure and low ejection frac-
tion. J Card Fail. 2010; 16: 750–760. doi: 10.1016/j.cardfail.2010.04.007 PMID: 20797599

10. Riegel B, Bennett JA, Davis A, Carlson B, Montague J, Robin H, et al. Cognitive impairment in heart
failure: issues of measurement and etiology. Am J Crit Care. 2002; 11: 520–528. PMID: 12425402

11. Trojano L, Antonelli Incalzi R, Acanfora D, Picone C, Mecocci P, Rengo F, et al. Cognitive impairment:
a key feature of congestive heart failure in the elderly. J Neurol. 2003; 250: 1456–1463. PMID:
14673579

12. Rumsfeld JS, Havranek E, Masoudi FA, Peterson ED, Jones P, Tooley JF, et al. Depressive symp-
toms are the strongest predictors of short-term declines in health status in patients with heart failure. J
Am Coll Cardiol. 2003; 42: 1811–1817. PMID: 14642693

13. Kumar R, Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM. Brain axonal and myelin eval-
uation in heart failure. J Neurol Sci. 2011; 307: 106–113. doi: 10.1016/j.jns.2011.04.028 PMID:
21612797

14. WooMA, Palomares JA, Macey PM, Fonarow GC, Harper RM, Kumar R. Global and regional brain
mean diffusivity changes in patients with heart failure. J Neurosci Res. 2015; 93: 678–685. doi: 10.
1002/jnr.23525 PMID: 25502071

15. WooMA, Kumar R, Macey PM, Fonarow GC, Harper RM. Brain injury in autonomic, emotional, and
cognitive regulatory areas in patients with heart failure. J Card Fail. 2009; 15: 214–223. doi: 10.1016/j.
cardfail.2008.10.020 PMID: 19327623

16. WooMA, Macey PM, Fonarow GC, Hamilton MA, Harper RM. Regional brain gray matter loss in heart
failure. J Appl Physiol (1985). 2003; 95: 677–684.

Whole-Brain Functional Networks in HF

PLOSONE | DOI:10.1371/journal.pone.0155894 May 20, 2016 17 / 21

http://www.ncbi.nlm.nih.gov/pubmed/11512600
http://www.ncbi.nlm.nih.gov/pubmed/17584561
http://www.ncbi.nlm.nih.gov/pubmed/16105635
http://www.ncbi.nlm.nih.gov/pubmed/17272960
http://www.ncbi.nlm.nih.gov/pubmed/20394325
http://www.ncbi.nlm.nih.gov/pubmed/14575623
http://www.ncbi.nlm.nih.gov/pubmed/16631665
http://dx.doi.org/10.1016/j.cardfail.2010.04.007
http://www.ncbi.nlm.nih.gov/pubmed/20797599
http://www.ncbi.nlm.nih.gov/pubmed/12425402
http://www.ncbi.nlm.nih.gov/pubmed/14673579
http://www.ncbi.nlm.nih.gov/pubmed/14642693
http://dx.doi.org/10.1016/j.jns.2011.04.028
http://www.ncbi.nlm.nih.gov/pubmed/21612797
http://dx.doi.org/10.1002/jnr.23525
http://dx.doi.org/10.1002/jnr.23525
http://www.ncbi.nlm.nih.gov/pubmed/25502071
http://dx.doi.org/10.1016/j.cardfail.2008.10.020
http://dx.doi.org/10.1016/j.cardfail.2008.10.020
http://www.ncbi.nlm.nih.gov/pubmed/19327623


17. Ogren JA, Macey PM, Kumar R, Fonarow GC, Hamilton MA, Harper RM, et al. Impaired cerebellar
and limbic responses to the valsalva maneuver in heart failure. Cerebellum. 2012; 11: 931–938. doi:
10.1007/s12311-012-0361-y PMID: 22370874

18. Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp.
1994; 2: 56–78.

19. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. Mapping functionally
related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol. 2000; 21:
1636–1644. PMID: 11039342

20. Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging
using resting-state fluctuations. Neuroimage. 1998; 7: 119–132. PMID: 9558644

21. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting
human brain using echo-planar MRI. Magn Reson Med. 1995; 34: 537–541. PMID: 8524021

22. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic
resonance imaging. Nat Rev Neurosci. 2007; 8: 700–711. PMID: 17704812

23. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks
define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006; 29: 1359–
1367. PMID: 16260155

24. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent rest-
ing-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006; 103: 13848–13853.
PMID: 16945915

25. Beckmann CF, Smith SM. Tensorial extensions of independent component analysis for multisubject
FMRI analysis. Neuroimage. 2005; 25: 294–311. PMID: 15734364

26. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci.
2010; 4: 19. doi: 10.3389/fnsys.2010.00019 PMID: 20592951

27. Sadaghiani S, Kleinschmidt A. Functional interactions between intrinsic brain activity and behavior.
Neuroimage. 2013; 80: 379–386. doi: 10.1016/j.neuroimage.2013.04.100 PMID: 23643921

28. Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT. Networks of task co-activations. Neuro-
image. 2013; 80: 505–514. doi: 10.1016/j.neuroimage.2013.04.073 PMID: 23631994

29. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain's
functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009; 106: 13040–13045.
doi: 10.1073/pnas.0905267106 PMID: 19620724

30. Inman CS, James GA, Hamann S, Rajendra JK, Pagnoni G, Butler AJ. Altered resting-state effective
connectivity of fronto-parietal motor control systems on the primary motor network following stroke.
Neuroimage. 2012; 59: 227–237. doi: 10.1016/j.neuroimage.2011.07.083 PMID: 21839174

31. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional
systems. Nat Rev Neurosci. 2009; 10: 186–198. doi: 10.1038/nrn2575 PMID: 19190637

32. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012; 13: 336–
349. doi: 10.1038/nrn3214 PMID: 22498897

33. Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy: relating anatomical and functional
connectivity in graphs and cortical connection matrices. Cereb Cortex. 2000; 10: 127–141. PMID:
10667981

34. Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics. 2004; 2: 145–162. PMID:
15319512

35. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998; 393: 440–442.
PMID: 9623998

36. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchi-
cal organization of human cortical networks in health and schizophrenia. J Neurosci. 2008; 28: 9239–
9248. doi: 10.1523/JNEUROSCI.1929-08.2008 PMID: 18784304

37. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC. Age- and gender-related differences
in the cortical anatomical network. J Neurosci. 2009; 29: 15684–15693. doi: 10.1523/JNEUROSCI.
2308-09.2009 PMID: 20016083

38. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, et al. Mapping human whole-brain
structural networks with diffusion MRI. PLOSOne. 2007; 2: e597. PMID: 17611629

39. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical
thickness fromMRI. Cereb Cortex. 2007; 17: 2407–2419. PMID: 17204824

40. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcia L. Studying the
human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage. 2008;
40: 1064–1076. doi: 10.1016/j.neuroimage.2007.10.060 PMID: 18272400

Whole-Brain Functional Networks in HF

PLOSONE | DOI:10.1371/journal.pone.0155894 May 20, 2016 18 / 21

http://dx.doi.org/10.1007/s12311-012-0361-y
http://www.ncbi.nlm.nih.gov/pubmed/22370874
http://www.ncbi.nlm.nih.gov/pubmed/11039342
http://www.ncbi.nlm.nih.gov/pubmed/9558644
http://www.ncbi.nlm.nih.gov/pubmed/8524021
http://www.ncbi.nlm.nih.gov/pubmed/17704812
http://www.ncbi.nlm.nih.gov/pubmed/16260155
http://www.ncbi.nlm.nih.gov/pubmed/16945915
http://www.ncbi.nlm.nih.gov/pubmed/15734364
http://dx.doi.org/10.3389/fnsys.2010.00019
http://www.ncbi.nlm.nih.gov/pubmed/20592951
http://dx.doi.org/10.1016/j.neuroimage.2013.04.100
http://www.ncbi.nlm.nih.gov/pubmed/23643921
http://dx.doi.org/10.1016/j.neuroimage.2013.04.073
http://www.ncbi.nlm.nih.gov/pubmed/23631994
http://dx.doi.org/10.1073/pnas.0905267106
http://www.ncbi.nlm.nih.gov/pubmed/19620724
http://dx.doi.org/10.1016/j.neuroimage.2011.07.083
http://www.ncbi.nlm.nih.gov/pubmed/21839174
http://dx.doi.org/10.1038/nrn2575
http://www.ncbi.nlm.nih.gov/pubmed/19190637
http://dx.doi.org/10.1038/nrn3214
http://www.ncbi.nlm.nih.gov/pubmed/22498897
http://www.ncbi.nlm.nih.gov/pubmed/10667981
http://www.ncbi.nlm.nih.gov/pubmed/15319512
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1523/JNEUROSCI.1929-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18784304
http://dx.doi.org/10.1523/JNEUROSCI.2308-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.2308-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20016083
http://www.ncbi.nlm.nih.gov/pubmed/17611629
http://www.ncbi.nlm.nih.gov/pubmed/17204824
http://dx.doi.org/10.1016/j.neuroimage.2007.10.060
http://www.ncbi.nlm.nih.gov/pubmed/18272400


41. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world
human brain functional network with highly connected association cortical hubs. J Neurosci. 2006; 26:
63–72. PMID: 16399673

42. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. Scale-free brain functional networks.
Phys Rev Lett. 2005; 94: 018102. PMID: 15698136

43. Salvador R, Suckling J, ColemanMR, Pickard JD, Menon D, Bullmore E. Neurophysiological architec-
ture of functional magnetic resonance images of human brain. Cereb Cortex. 2005; 15: 1332–1342.
PMID: 15635061

44. Stam CJ. Functional connectivity patterns of humanmagnetoencephalographic recordings: a 'small-
world' network? Neurosci Lett. 2004; 355: 25–28. PMID: 14729226

45. Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear
Biomed Phys. 2007; 1: 3. PMID: 17908336

46. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, et al. The hubs of the human connec-
tome are generally implicated in the anatomy of brain disorders. Brain. 2014; 137: 2382–2395. doi:
10.1093/brain/awu132 PMID: 25057133

47. Jessup M, AbrahamWT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused
update: ACCF/AHAGuidelines for the Diagnosis and Management of Heart Failure in Adults: a report
of the American College of Cardiology Foundation/American Heart Association Task Force on Prac-
tice Guidelines: developed in collaboration with the International Society for Heart and Lung Trans-
plantation. Circulation. 2009; 119: 1977–2016. doi: 10.1161/CIRCULATIONAHA.109.192064 PMID:
19324967

48. Radford MJ, Arnold JM, Bennett SJ, Cinquegrani MP, Cleland JG, Havranek EP, et al. ACC/AHA key
data elements and definitions for measuring the clinical management and outcomes of patients with
chronic heart failure: a report of the American College of Cardiology/American Heart Association Task
Force on Clinical Data Standards (Writing Committee to Develop Heart Failure Clinical Data Stan-
dards): developed in collaboration with the American College of Chest Physicians and the Interna-
tional Society for Heart and Lung Transplantation: endorsed by the Heart Failure Society of America.
Circulation. 2005; 112: 1888–1916. PMID: 16162914

49. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric
properties. J Consult Clin Psychol. 1988; 56: 893–897. PMID: 3204199

50. Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck Depression Inventories -IA and -II in psy-
chiatric outpatients. J Pers Assess. 1996; 67: 588–597. PMID: 8991972

51. Carpenter JS, Andrykowski MA. Psychometric evaluation of the Pittsburgh Sleep Quality Index. J Psy-
chosom Res. 1998; 45: 5–13. PMID: 9720850

52. Johns MW. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep. 1992; 15: 376–
381. PMID: 1519015

53. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal
Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc.
2005; 53: 695–699. PMID: 15817019

54. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS. Statistical parametric maps
in functional imaging: a general linear approach. Hum Brain Mapp. 1994; 2: 189–210.

55. Rorden C, Karnath HO, Bonilha L. Improving lesion-symptommapping. J Cogn Neurosci. 2007; 19:
1081–1088. PMID: 17583985

56. van den Heuvel MP, Stam CJ, BoersmaM, Hulshoff Pol HE. Small-world and scale-free organization
of voxel-based resting-state functional connectivity in the human brain. Neuroimage. 2008; 43: 528–
539. doi: 10.1016/j.neuroimage.2008.08.010 PMID: 18786642

57. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated
anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI
MRI single-subject brain. Neuroimage. 2002; 15: 273–289. PMID: 11771995

58. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C. Correlations
and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of prepro-
cessing strategies. Neuroimage. 2009; 47: 1408–1416. doi: 10.1016/j.neuroimage.2009.05.005
PMID: 19442749

59. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, charac-
terize, and remove motion artifact in resting state fMRI. Neuroimage. 2014; 84: 320–341. doi: 10.
1016/j.neuroimage.2013.08.048 PMID: 23994314

60. Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, et al. A comprehensive
assessment of regional variation in the impact of head micromovements on functional connectomics.
Neuroimage. 2013; 76: 183–201. doi: 10.1016/j.neuroimage.2013.03.004 PMID: 23499792

Whole-Brain Functional Networks in HF

PLOSONE | DOI:10.1371/journal.pone.0155894 May 20, 2016 19 / 21

http://www.ncbi.nlm.nih.gov/pubmed/16399673
http://www.ncbi.nlm.nih.gov/pubmed/15698136
http://www.ncbi.nlm.nih.gov/pubmed/15635061
http://www.ncbi.nlm.nih.gov/pubmed/14729226
http://www.ncbi.nlm.nih.gov/pubmed/17908336
http://dx.doi.org/10.1093/brain/awu132
http://www.ncbi.nlm.nih.gov/pubmed/25057133
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192064
http://www.ncbi.nlm.nih.gov/pubmed/19324967
http://www.ncbi.nlm.nih.gov/pubmed/16162914
http://www.ncbi.nlm.nih.gov/pubmed/3204199
http://www.ncbi.nlm.nih.gov/pubmed/8991972
http://www.ncbi.nlm.nih.gov/pubmed/9720850
http://www.ncbi.nlm.nih.gov/pubmed/1519015
http://www.ncbi.nlm.nih.gov/pubmed/15817019
http://www.ncbi.nlm.nih.gov/pubmed/17583985
http://dx.doi.org/10.1016/j.neuroimage.2008.08.010
http://www.ncbi.nlm.nih.gov/pubmed/18786642
http://www.ncbi.nlm.nih.gov/pubmed/11771995
http://dx.doi.org/10.1016/j.neuroimage.2009.05.005
http://www.ncbi.nlm.nih.gov/pubmed/19442749
http://dx.doi.org/10.1016/j.neuroimage.2013.08.048
http://dx.doi.org/10.1016/j.neuroimage.2013.08.048
http://www.ncbi.nlm.nih.gov/pubmed/23994314
http://dx.doi.org/10.1016/j.neuroimage.2013.03.004
http://www.ncbi.nlm.nih.gov/pubmed/23499792


61. Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connec-
tivity MRI. Neuroimage. 2012; 59: 431–438. doi: 10.1016/j.neuroimage.2011.07.044 PMID: 21810475

62. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations.
Neuroimage. 2010; 52: 1059–1069. doi: 10.1016/j.neuroimage.2009.10.003 PMID: 19819337

63. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using
the false discovery rate. Neuroimage. 2002; 15: 870–878. PMID: 11906227

64. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001; 87: 198701.
PMID: 11690461

65. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLOS Comput
Biol. 2007; 3: e17. PMID: 17274684

66. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with
examples. Hum Brain Mapp. 2002; 15: 1–25. PMID: 11747097

67. Floras JS. Sympathetic activation in human heart failure: diverse mechanisms, therapeutic opportuni-
ties. Acta Physiol Scand. 2003; 177: 391–398. PMID: 12609011

68. Notarius CF, Spaak J, Morris BL, Floras JS. Comparison of muscle sympathetic activity in ischemic
and nonischemic heart failure. J Card Fail. 2007; 13: 470–475. PMID: 17675061

69. Cechetto DF, Chen SJ. Subcortical sites mediating sympathetic responses from insular cortex in rats.
Am J Physiol. 1990; 258: R245–255. PMID: 2301638

70. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex
stimulation. Neurology. 1992; 42: 1727–1732. PMID: 1513461

71. Oppenheimer SM, KedemG, Martin WM. Left-insular cortex lesions perturb cardiac autonomic tone in
humans. Clin Auton Res. 1996; 6: 131–140. PMID: 8832121

72. Henderson LA, Richard CA, Macey PM, Runquist ML, Yu PL, Galons JP, et al. Functional magnetic
resonance signal changes in neural structures to baroreceptor reflex activation. J Appl Physiol (1985).
2004; 96: 693–703.

73. Banzett RB, Mulnier HE, Murphy K, Rosen SD, Wise RJ, Adams L. Breathlessness in humans acti-
vates insular cortex. Neuroreport. 2000; 11: 2117–2120. PMID: 10923655

74. Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol.
2005; 493: 154–166. PMID: 16254997

75. Critchley HD, Mathias CJ, Josephs O, O'Doherty J, Zanini S, Dewar BK, et al. Human cingulate cortex
and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003; 126: 2139–2152.
PMID: 12821513

76. Reekie YL, Braesicke K, Man MS, Roberts AC. Uncoupling of behavioral and autonomic responses
after lesions of the primate orbitofrontal cortex. Proc Natl Acad Sci U S A. 2008; 105: 9787–9792. doi:
10.1073/pnas.0800417105 PMID: 18621690

77. Wong SW, Masse N, Kimmerly DS, Menon RS, Shoemaker JK. Ventral medial prefrontal cortex and
cardiovagal control in conscious humans. Neuroimage. 2007; 35: 698–708. PMID: 17291781

78. Holmes MJ, Cotter LA, Arendt HE, Cass SP, Yates BJ. Effects of lesions of the caudal cerebellar ver-
mis on cardiovascular regulation in awake cats. Brain Res. 2002; 938: 62–72. PMID: 12031536

79. Lutherer LO, Williams JL. Stimulating fastigial nucleus pressor region elicits patterned respiratory
responses. Am J Physiol. 1986; 250: R418–426. PMID: 2869699

80. WooMA, Yadav SK, Macey PM, Fonarow GC, Harper RM, Kumar R. Brain metabolites in autonomic
regulatory insular sites in heart failure. J Neurol Sci. 2014; 346: 271–275. doi: 10.1016/j.jns.2014.09.
006 PMID: 25248953

81. Ogren JA, Fonarow GC,Woo MA. Cerebral impairment in heart failure. Curr Heart Fail Rep. 2014; 11:
321–329. doi: 10.1007/s11897-014-0211-y PMID: 25001614

82. Pazo JH, Belforte JE. Basal ganglia and functions of the autonomic nervous system. Cell Mol Neuro-
biol. 2002; 22: 645–654. PMID: 12585684

83. WooMA, Ogren JA, Abouzeid CM, Macey PM, Sairafian KG, Saharan PS, et al. Regional hippocam-
pal damage in heart failure. Eur J Heart Fail. 2015; 17: 494–500. doi: 10.1002/ejhf.241 PMID:
25704495

84. Frick A, Howner K, Fischer H, Kristiansson M, Furmark T. Altered fusiform connectivity during pro-
cessing of fearful faces in social anxiety disorder. Transl Psychiatry. 2013; 3: e312. doi: 10.1038/tp.
2013.85 PMID: 24105443

85. Chan RC, Shum D, Toulopoulou T, Chen EY. Assessment of executive functions: review of instru-
ments and identification of critical issues. Arch Clin Neuropsychol. 2008; 23: 201–216. PMID:
18096360

Whole-Brain Functional Networks in HF

PLOSONE | DOI:10.1371/journal.pone.0155894 May 20, 2016 20 / 21

http://dx.doi.org/10.1016/j.neuroimage.2011.07.044
http://www.ncbi.nlm.nih.gov/pubmed/21810475
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
http://www.ncbi.nlm.nih.gov/pubmed/11906227
http://www.ncbi.nlm.nih.gov/pubmed/11690461
http://www.ncbi.nlm.nih.gov/pubmed/17274684
http://www.ncbi.nlm.nih.gov/pubmed/11747097
http://www.ncbi.nlm.nih.gov/pubmed/12609011
http://www.ncbi.nlm.nih.gov/pubmed/17675061
http://www.ncbi.nlm.nih.gov/pubmed/2301638
http://www.ncbi.nlm.nih.gov/pubmed/1513461
http://www.ncbi.nlm.nih.gov/pubmed/8832121
http://www.ncbi.nlm.nih.gov/pubmed/10923655
http://www.ncbi.nlm.nih.gov/pubmed/16254997
http://www.ncbi.nlm.nih.gov/pubmed/12821513
http://dx.doi.org/10.1073/pnas.0800417105
http://www.ncbi.nlm.nih.gov/pubmed/18621690
http://www.ncbi.nlm.nih.gov/pubmed/17291781
http://www.ncbi.nlm.nih.gov/pubmed/12031536
http://www.ncbi.nlm.nih.gov/pubmed/2869699
http://dx.doi.org/10.1016/j.jns.2014.09.006
http://dx.doi.org/10.1016/j.jns.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25248953
http://dx.doi.org/10.1007/s11897-014-0211-y
http://www.ncbi.nlm.nih.gov/pubmed/25001614
http://www.ncbi.nlm.nih.gov/pubmed/12585684
http://dx.doi.org/10.1002/ejhf.241
http://www.ncbi.nlm.nih.gov/pubmed/25704495
http://dx.doi.org/10.1038/tp.2013.85
http://dx.doi.org/10.1038/tp.2013.85
http://www.ncbi.nlm.nih.gov/pubmed/24105443
http://www.ncbi.nlm.nih.gov/pubmed/18096360


86. Cohen R, Salloway S, Sweet L. Neuropsychiatric aspects of disorders of attention. In: Yudofsky SC,
Hales RE, eds Textbook of Neuropsychiatry Washington, DC: American Psychiatric Press. 2008: 405–
444.

87. Utevsky AV, Smith DV, Huettel SA. Precuneus is a functional core of the default-mode network. J
Neurosci. 2014; 34: 932–940. doi: 10.1523/JNEUROSCI.4227-13.2014 PMID: 24431451

88. Monti RP, Hellyer P, Sharp D, Leech R, Anagnostopoulos C, Montana G. Estimating time-varying
brain connectivity networks from functional MRI time series. Neuroimage. 2014; 103: 427–443. doi:
10.1016/j.neuroimage.2014.07.033 PMID: 25107854

89. Bassett DS, Bullmore ET. Human brain networks in health and disease. Curr Opin Neurol. 2009; 22:
340–347. doi: 10.1097/WCO.0b013e32832d93dd PMID: 19494774

90. Wang J, Wang X, He Y, Yu X, Wang H, He Y. Apolipoprotein E epsilon4 modulates functional brain
connectome in Alzheimer's disease. Hum Brain Mapp. 2015; 36: 1828–1846. doi: 10.1002/hbm.
22740 PMID: 25619771

91. Liu Y, Yu C, Zhang X, Liu J, Duan Y, Alexander-Bloch AF, et al. Impaired long distance functional con-
nectivity and weighted network architecture in Alzheimer's disease. Cereb Cortex. 2014; 24: 1422–
1435. doi: 10.1093/cercor/bhs410 PMID: 23314940

92. Olde Dubbelink KT, Hillebrand A, Stoffers D, Deijen JB, Twisk JW, Stam CJ, et al. Disrupted brain net-
work topology in Parkinson's disease: a longitudinal magnetoencephalography study. Brain. 2014;
137: 197–207. doi: 10.1093/brain/awt316 PMID: 24271324

93. Yin D, Song F, Xu D, Sun L, MenW, Zang L, et al. Altered topological properties of the cortical motor-
related network in patients with subcortical stroke revealed by graph theoretical analysis. Hum Brain
Mapp. 2014; 35: 3343–3359. doi: 10.1002/hbm.22406 PMID: 24222337

94. Aggleton JP, Vann SD, Saunders RC. Projections from the hippocampal region to the mammillary
bodies in macaque monkeys. Eur J Neurosci. 2005; 22: 2519–2530. PMID: 16307594

95. Stoeckel C, Gough PM, Watkins KE, Devlin JT. Supramarginal gyrus involvement in visual word rec-
ognition. Cortex. 2009; 45: 1091–1096. doi: 10.1016/j.cortex.2008.12.004 PMID: 19232583

96. Ferrier K, Campbell A, Yee B, Richards M, O'Meeghan T, Weatherall M, et al. Sleep-disordered
breathing occurs frequently in stable outpatients with congestive heart failure. Chest. 2005; 128:
2116–2122. PMID: 16236863

97. Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph analytic studies of human resting-
state FMRI data. Front Syst Neurosci. 2010; 4: 22. doi: 10.3389/fnsys.2010.00022 PMID: 20592949

98. Telesford QK, Morgan AR, Hayasaka S, Simpson SL, Barret W, Kraft RA, et al. Reproducibility of
graph metrics in FMRI networks. Front Neuroinform. 2010; 4: 117. doi: 10.3389/fninf.2010.00117
PMID: 21165174

99. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, et al. Parcellation-dependent small-world brain
functional networks: a resting-state fMRI study. Hum Brain Mapp. 2009; 30: 1511–1523. doi: 10.1002/
hbm.20623 PMID: 18649353

100. Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al. Whole-brain anatomical net-
works: does the choice of nodes matter? Neuroimage. 2010; 50: 970–983. doi: 10.1016/j.neuroimage.
2009.12.027 PMID: 20035887

Whole-Brain Functional Networks in HF

PLOSONE | DOI:10.1371/journal.pone.0155894 May 20, 2016 21 / 21

http://dx.doi.org/10.1523/JNEUROSCI.4227-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24431451
http://dx.doi.org/10.1016/j.neuroimage.2014.07.033
http://www.ncbi.nlm.nih.gov/pubmed/25107854
http://dx.doi.org/10.1097/WCO.0b013e32832d93dd
http://www.ncbi.nlm.nih.gov/pubmed/19494774
http://dx.doi.org/10.1002/hbm.22740
http://dx.doi.org/10.1002/hbm.22740
http://www.ncbi.nlm.nih.gov/pubmed/25619771
http://dx.doi.org/10.1093/cercor/bhs410
http://www.ncbi.nlm.nih.gov/pubmed/23314940
http://dx.doi.org/10.1093/brain/awt316
http://www.ncbi.nlm.nih.gov/pubmed/24271324
http://dx.doi.org/10.1002/hbm.22406
http://www.ncbi.nlm.nih.gov/pubmed/24222337
http://www.ncbi.nlm.nih.gov/pubmed/16307594
http://dx.doi.org/10.1016/j.cortex.2008.12.004
http://www.ncbi.nlm.nih.gov/pubmed/19232583
http://www.ncbi.nlm.nih.gov/pubmed/16236863
http://dx.doi.org/10.3389/fnsys.2010.00022
http://www.ncbi.nlm.nih.gov/pubmed/20592949
http://dx.doi.org/10.3389/fninf.2010.00117
http://www.ncbi.nlm.nih.gov/pubmed/21165174
http://dx.doi.org/10.1002/hbm.20623
http://dx.doi.org/10.1002/hbm.20623
http://www.ncbi.nlm.nih.gov/pubmed/18649353
http://dx.doi.org/10.1016/j.neuroimage.2009.12.027
http://dx.doi.org/10.1016/j.neuroimage.2009.12.027
http://www.ncbi.nlm.nih.gov/pubmed/20035887



