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ViNG: Learning Open-World Navigation with Visual Goals
Dhruv Shah1, Benjamin Eysenbach2, Gregory Kahn1, Nicholas Rhinehart1, Sergey Levine1

1UC Berkeley, 2Carnegie Mellon University

Abstract—We propose a learning-based navigation system for

reaching visually indicated goals and demonstrate this system

on a real mobile robot platform. Learning provides an appeal-

ing alternative to conventional methods for robotic navigation:

instead of reasoning about environments in terms of geometry

and maps, learning can enable a robot to learn about nav-

igational affordances, understand what types of obstacles are

traversable (e.g., tall grass) or not (e.g., walls), and generalize

over patterns in the environment. However, unlike conventional

planning algorithms, it is harder to change the goal for a learned

policy during deployment. We propose a method for learning to

navigate towards a goal image of the desired destination. By

combining a learned policy with a topological graph constructed

out of previously observed data, our system can determine how to

reach this visually indicated goal even in the presence of variable

appearance and lighting. Three key insights, waypoint proposal,

graph pruning and negative mining, enable our method to learn

to navigate in real-world environments using only offline data, a

setting where prior methods struggle. We instantiate our method

on a real outdoor ground robot and show that our system, which

we call ViNG, outperforms previously-proposed methods for goal-

conditioned reinforcement learning, including other methods that

incorporate reinforcement learning and search. We also study

how ViNG generalizes to unseen environments and evaluate its

ability to adapt to such an environment with growing experience.

Finally, we demonstrate ViNG on a number of real-world

applications, such as last-mile delivery and warehouse inspection.

We encourage the reader to visit the project website for videos

of our experiments and demonstrations
1
.

I. INTRODUCTION

Visual navigation in complex environments poses several
challenges: (i) difficulty in faithfully modeling the complex
dynamics and nuanced environmental interactions; (ii) reacting
to high-dimensional observations; (iii) cost and safety con-
straints on collecting data, requiring learning from previously
collected (i.e., “offline”) experience; and (iv) generalizing
effecticely across different settings and environments. Plan-
ning algorithms achieve many of these desiderata, but their
efficacy depends on having the right representation of the task;
it remains unclear how to apply many planning algorithms
to tasks with image-based observations. On the other hand,
humans seemingly have little difficulty navigating complex
environments from first-person observations, without GPS or
maps, if they have seen the environment before. Humans
and animals are known to use “mental maps” that rely on
landmarks and other cues [1–3], and rely heavily on learning.
Further, in the absence of spatial positional information (e.g.,
GPS or maps), specification of a navigational goal itself
becomes challenging, since locational goals require the robot
to be able to compare its location to the target.

1Project website: https://sites.google.com/view/ving-robot

Fig. 1: ViNG builds and plans over a learned topological graph consisting of
previously seen egocentric images, and uses a learned controller to execute
the path to a visually indicated goal. Unlike prior work, our method uses
purely offline experience and does not require a simulator or online data
collection. Note that the graph constructed by our algorithm is not geometric
and nodes are not associated with coordinates in the world, but only with
image observations – the top-down satellite image is provided only for
visualization and is not available to our method.

In this paper, we study learning-based methods for naviga-
tion that can similarly utilize graph-structured “mental maps”
that are non-geometric in nature, and can enable a robot to
navigate in the real-world. To specify goals, the user provides
the robot with a picture of the desired destination (see Fig. 1.).
The user does not need to provide any information about the
geometry of the scene.

Towards satisfying these requirements, we present a fully
autonomous, self-supervised mobile robot platform for visual
goal-reaching in outdoor, unstructured environments which
we call ViNG – visual navigation with goals. Our approach
combines the strengths of dynamical distance learning and
graph search. We first learn a function that predicts the
dynamical distance between pairs of observations, estimating
how many time steps are needed to transition between them.
We then use this learned dynamical distance to embed past
observations into a topological graph, and plan over this
graph. This process makes no geometric assumptions about the
environment: reachability is determined entirely by learning
from data. Unlike pure planning-based approaches, our method
scales to high-dimensional observations and hard-to-model
dynamics, and does not assume access to any ground-truth
spatial information. Unlike pure learning-based approaches,
our method effectively learns from offline experience and
reasons over long horizons. Unlike prior methods that combine
planning and learning, ViNG learns from offline, real-world
data, and does not require a simulator or online data collection.

The primary contribution of this work is a self-supervised
robotic system, ViNG, that can efficiently learn goal-directed



navigation behaviors in open-world environments without ac-
cess to spatial maps from an offline pool of data, including
randomly collected trajectories. Three key ideas, waypoint
proposal, graph pruning and negative mining, differentiate our
method from prior work and are critical to the success of our
method in this offline setting. ViNG can learn to navigate to an
arbitrary user-specified visual goal in a variety of open-world
settings, including urban, grassy, and rocky terrain, learning
only from offline data. Our experiments show that ViNG learns
goal-conditioned behaviors that can effectively plan over long
horizons. We show that ViNG outperforms several competitive
offline RL and geometric baselines. Further, ViNG learns
behaviors that transfer to novel environments using as little as
20 minutes of data from the environment and that ViNG can
adapt in such novel environments as it gathers more data,
resulting in an autonomous, self-improving system. Lastly, we
demonstrate two real-world applications enabled by ViNG in
dense, urban neighborhoods – last-mile delivery of food or
mail, and autonomous inspection of warehouses.

II. RELATED WORK

Prior work has studied vision-based mobile robot navigation
in many real-world settings, including indoor and outdoor
navigation [4–6], autonomous driving [7, 8], and navigation
in extra-terrestrial and underwater environments [9, 10]. The
combination of mapping [11] and path planning [12] has been
a cornerstone for a number of effective systems [13–15] and
underlies several state-of-the-art navigation systems [16, 17].
Methods that assume access to LIDAR or accurate localiza-
tion can be challenging to deploy in unstructured environ-
ments [18]. Further, prior work often assumes that geometric
traversability is faithfully indicated through observations and
not misled by (say) non-obstacles such as tall grass [19].
Learning-based systems lift some of these assumptions and
can use learned models to perform perception [20, 21], plan-
ning [22–24], or both [25]. In practice, learning temporally
extended long-horizon skills with either reinforcement learning
(RL) or imitation learning (IL) remains difficult [26, 27].

Recent methods address limitations of the above approaches
by combining planning and learning [28–33]. These methods
use learning (i.e., approximate dynamic programming) to solve
short-horizon tasks and plan (i.e., use exact dynamic program-
ming) over non-metric topological graphs [34, 35] to reason
over longer horizons. This general approach simultaneously
avoids the need for (1) high-fidelity map building and (2)
learning temporally-extended behaviors from scratch. How-
ever, prior instantiations of this recipe make assumptions that
limit their applicability to real-world settings: assuming access
to an exact simulation replica of the environment [33, 36],
assuming simplified action spaces [28–30], or requiring online
data collection [28, 30]. Our experiments in Sec. V demon-
strate that prior methods fail when they are not allowed to
collect new experience in a simulator or the real-world.

Our method, ViNG, builds on these prior approaches by
adding two key ideas: graph pruning and negative sampling.
These additional ingredients allow ViNG to lift assumptions

made by prior methods: it does not assume access to a simula-
tor, and does not require interactive access to an environment;
it is trained using offline, real-world data; and it operates
directly on high-dimensional images and predicts continuous
actions for the robot. To the best of our knowledge, ViNG is
the first system demonstrated on a real-world ground robot
that can learn from offline data to reach visually indicated
navigational goals over long time horizons without simulated
training or hand-designed localization and mapping systems.

III. PROBLEM STATEMENT AND SYSTEM OVERVIEW

We consider the problem of goal-directed visual navigation:
a robot is tasked with navigating to a goal location G given
an image observation oG taken at G. In addition to navigating
to the goal, the robot also needs to recognize when it has
reached the goal, signaling that the task has been completed.
The robot does not have a spatial map of the environment,
but we assume that it has access to a small number of
trajectories that it has collected previously. This data will be
used to construct a graph over the environment using a learned
distance and reachability function. We make no assumptions
on the nature of the trajectories: they may be obtained by
human teleoperation, self-exploration, or a result of a random
walk. Each trajectory is a dense sequence of observations
o1, o2, . . . , on recorded by the robot’s on-board camera. Since
the robot only observes the world from a single on-board
camera and does not run any state estimation, our system
operates in a partially observed setting. Our system commands
continuous linear and angular velocities.

A. Mobile Robot Platform

We implement ViNG on a Clearpath Jackal UGV platform
(see Fig. 1). The default sensor suite consists of a 6-DoF
IMU, a GPS unit for approximate global position estimates,
and wheel encoders to estimate local odometry. In addition,
we added a forward-facing 170� field-of-view camera and an
RPLIDAR 2D laser scanner. Inside the Jackal is an NVIDIA
Jetson TX2 computer. While the robot carries a GPS and laser
scanner, we use these sensors solely as a safety mechanism
during data collection. Our method solely operates using
images taken from the onboard camera.

B. Data Collection & Labeling

ViNG can learn navigational behaviors from previously-
collected, off-policy data – a desideratum of real-world robots.
To demonstrate this capability, we run our core experiments
using data exclusively from prior work [37]; we also collect
a limited amount of additional data for our environment
generalization experiments using the same self-supervised data
collection strategy. The prior data was collected more than
10 months prior to the experiments in this paper (see project
website), and exhibits significant differences in appearance,
lighting, time of year, and time of day as compared to the
evaluation setting. This underscores the ability of ViNG to
utilize offline data from diverse sources.



IV. VISUAL NAVIGATION WITH GOALS

We approach the problem of visual goal-conditioned nav-
igation by combining non-metric maps and learned, image-
based, goal-conditioned policies. We describe our method in
two stages: (i) training two learned functions and (ii) deploying
the system, which entails using the learned functions together
with past experience to execute goal-directed behavior.

During training, we use previously collected experience to
learn an environment-independent traversability function T ,
as well as a relative pose predictor, P . During deployment,
the robot builds a topological graph of its environment: a di-
rected graph with vertices as observations and edges encoding
traversability and proximity. At time t, the robot localizes its
current and goal observations (ot, oG) in the graph and uses
graph search to determine the next waypoint observation. A
(learned) goal-conditioned controller then takes the current and
waypoint observations and outputs an action a.

While the general recipe of ViNG is similar to prior
work [28, 29, 33], our experiments demonstrate that two key
technical insights contribute to significantly improved perfor-
mance in the real-world setting: negative mining (Sec. IV-A1)
and graph pruning (Sec. IV-B2). Our comparisons to prior
methods in Sec. V and ablation studies in Sec. V-D demon-
strate these novel improvements enable ViNG to learn goal-
conditioned policies entirely from offline data, avoiding the
need for simulation or interaction, while prior methods strug-
gle to attain good performance, particularly for distant goals.

A. Learning Dynamical Distances

We aim to learn a traversability function T (oi, oj) 2 +

that reflects whether any controller can successfully navigate
between observations oi and oj . More precisely, we will
learn to predict the estimated number of time steps required
by a controller to navigate from one observation to another.
This function must encapsulate knowledge of physics beyond
just geometry. For example, tall grass and bushes might
appear visually similar, but grass is compliant and traversable
whereas bushes are not. We explored two methods for learning
this traversability function: (1) supervised learning and (2)
temporal difference learning [38, 39]. To learn the distance
function via supervised learning, we create a dataset D+ of
observation pairs (oi, oj) taken from the same trajectory and
regress to the number of timesteps dij = j�i elapsed between
these observations. The distance predicted by this approach
corresponds to the estimated number of time steps required by
the behavior policy (that which collected the experience) when
navigating between two observations. Thus, this approach is
simple but may overestimate the true shortest path distances.

The second approach to learning the distance function is via
temporal difference learning [39]. This approach uses the same
experience as before. While this approach adds additional
complexity, in theory it converges to the shortest path distance.
In our experiments, we found little difference between these
two approaches (see Table II), but expect that the temporal
difference learning approach would be important when moving

to settings where the shortest path distance is much shorter
than a random walk distance.

1) Negative Mining (Key Idea 1): In our experiments, we
found that training the distance function using only obser-
vation pairs from the same trajectory performed poorly. We
hypothesize that the root cause was distribution shift: when
building the topological graph we must evaluate the distance
function on observation pairs collected from different trajec-
tories, possible from different times of day. To mitigate this
problem, we augment the dataset by adding a new dataset D�
obtained by sampling observations from different trajectories,
labeled as dmax. We find this augmentation, hereby referred to
as negative sampling, to be critical in the successful training
and evaluation of T in our experiments, offering significant
improvements over prior methods.

B. The Topological Graph
We build a topological graph M using the learned distance

function together with a collection of previously-observed
observations {ot}. Each node in the graph corresponds to one
of these observations. We add weighted edges between every
node, using weights predicted by the distance function T .

1) Graph Pruning (Key Idea 2): As the robot gathers more
experience, maintaining a dense graph of traversability across
all observation nodes becomes redundant and infeasible, as the
graph size grows quadratically. For our experiments, we spar-
sify trajectories by thresholding the edges that get added to the
graph: edges that are easily traversable (T (oi, oj) < �sparsify)
are not added to the graph, since the controller can traverse
those edges with high probability.

2) Planning with the Graph: We localize the current obser-
vation ot and goal observation oG in the graph, adding direct
edges (weighed by their traversability) to their corresponding
“most-traversable” neighbors. We use the weighted Dijkstra
algorithm to compute the shortest path to goal, and the
immediate next node in the planned path is then handed over
to the controller.

C. Designing the Controller
After the planner predicts a waypoint observation, the con-

troller must output an action that takes the agent towards that
waypoint. The main challenge in navigating to this waypoint
is that both the current state and waypoint are represented as
high-dimensional observations (e.g., images). To address this
challenge, we learn a relative position predictor P that takes as
input two observations and predicts the relative pose between
these observations. We learn this relative pose predictor via
supervised learning: for pairs of observations (oi, oj) that
occur nearby within the collected trajectories, we estimate
the relative pose �pij using onboard odometry and use this
relative pose as the label for learning.

The complete controller works as follows. Given the current
observation and waypoint observation, we use the relative pose
predictor to estimate the relative pose of the waypoint relative
to the robot’s current position. The robot then uses odometry
and a simple PD controller to steer toward this waypoint. We
compare against alternative controllers in Sec. V-D.



Fig. 2: Qualitative Results in the urban Environment: Each approach was
directed to a visual goal ⇠ 50m away (marked by checkerboard circle) – with
3 runs per approach. ViNG is the only approach that is consistently able to
reach the goal while avoiding collisions or getting stuck.

D. Implementation Details

Inputs to the traversability function T and relative pose
predictor P are pairs of observations of the environment, rep-
resented by a stack of two consecutive RGB images obtained
from the onboard camera at a resolution of 160⇥120 pixels. T
comprises a MobileNet encoder [40] followed by three densely
connected layers to project the 1024�dimensional latents to
50 class labels. P has a similar architecture as T , comprising
of a MobileNet encoder followed by three densely connected
layers projecting the 1024�dimensional latents to 3 outputs for
waypoints: {�x,�y}. Both T and P use the same encoder.

We train the traversability function on D+[D�, discretizing
the timesteps dij into bins {1, · · · , dmax = 50} and minimizing
the cross entropy loss. The relative pose predictor P is trained
on D+ to minimize the `2 regression loss. We use a batch
size of 128 and perform gradient updates using the Adam
optimizer [41] with learning rate � = 10�4.

V. EXPERIMENTS

We designed our experiments to answer three questions:
Q1. How does ViNG compare to prior methods for the task

of goal-conditioned visual navigation from offline data?
Q2. Does ViNG generalize to novel environments? Can it

adapt by interacting with a new environment?
Q3. What are the alternate design choices for the controller

and how do they compare against our choice?

A. Goal-Conditioned Visual Navigation from Offline Data

We perform our evaluation in a real-world outdoor envi-
ronment consisting of urban and off-road terrain. We train
on 40 hours of data gathered 10 months prior for prior
work [37]. Since the data contains significant variation in
appearance due to seasonal changes, our method must establish
correspondence across seasons and times of day.

Since this evaluation takes place in the real world, we do
not have the luxury of training online RL policies or transfer
from simulation. We evaluate ViNG against four baselines:

- SPTM: a dense topological graph combined with a con-
troller that maps observation pairs to motor commands,
trained via supervised learning [29]

- off-SoRB: an offline variant of SoRB that uses a topo-
logical graph and offline RL to learn a distributional Q-
function [28]

- State Estimation: a naı̈ve baseline that uses a state es-
timator network that regresses observations to ground-
truth state (x, y, ✓), followed by a position controller; note
that this baseline has access to true position (from GPS),
which is not available to our method

- Random: a random walk, as described in Sec. IV-C
While there have been other successful instantiations of meth-
ods combining planning and learning, they make some limiting
assumptions that make them difficult to apply to our problem
setting. LSTN [33] uses a photorealistic simulator to train its
distance and action models, using ⇠ 1.5M samples, while
PRM-RL [36] uses a 3D kinematic simulator simulation replica
to train a reactive controller, coupled with physical rollouts in
the real world to build a PRM. ViNG does not assume access
to any simulator, and learns directly from offline real data.

Towards answering Q1, we evaluate the goal-reaching per-
formance of ViNG. We select 6 (start, goal) image pairs in
the original urban environment and compare the goal reaching
performance of each method (avg. of 3 trials). We report
the success metric as the average over portion of the expert
trajectory to goal that each run successfully completes.

As shown in Fig. 3, ViNG performs well on all tasks,
achieving a success rate of 86% on even the most challenging
tasks. As expected, the random baseline, which ignores the
goal, fails to reach most goals. The state estimator baseline
performs a bit better, but struggles to reach more distant goals
because it is not reactive, and hence cannot take actions to
avoid collisions. Off-SoRB performs well on nearby goals, but
as the goals get increasingly difficult to reach, it is unable to
follow the planned trajectory. Visualizing the topological graph
built by SoRB uncovers many disconnected components, re-
sulting in no path to goal. We hypothesize that this is attributed
to the difficulty in training Q-functions from offline data.
SPTM, which uses supervised learning instead of Q-learning,
is effective at solving the task on shorter horizons and out-
performs off-SoRB on longer horizons. However, ViNG still
performs substantially better on all goal distances, especially
those over 30 meters. We attribute these improvements to the
additional negative sampling and graph pruning techniques
discussed in Sec. IV. We visualize trajectories in Fig. 2.

B. Generalization and Adaptation
The experiments in the previous section evaluate navigation

to new goals in a previously seen environment. In this section,
we additionally evaluate how quickly ViNG can adapt to an
entirely new, unseen environment, by constructing a new graph
and finetuning the models. We use the four settings shown
in Fig. 4, all of which are distinct from the setting used in
our main experiments (Sec. V-A). In each new environment,
a human controlled the robot to provide initial exploration



Fig. 3: Real-World Navigation: While all non-random methods successfully
reach nearby goals, only ViNG reaches goals over 40 meters away. Here,
success rate is defined as the average over portion of the expert trajectory to
goal that each run successfully completes.

data. After this initial data collection, the robot collected
experience autonomously: it randomly sampled a previously-
observed image as thegoal and used ViNG to attempt to reach
this goal. After each episode, we used all experience from
the new environment (both the expert trajectories and the self-
collected trajectories) to finetune T and P . We refer to this
approach to generalization as ViNG -Finetune.

In Fig. 4 we visualize trajectories after 60 min of data
collection in the new environment and observe that the robot
successfully reaches the goal in most cases. We emphasize that
these environments are considerably different from those used
in Sec. V-A, on which our models were initially trained. To
illustrate the learning dynamics in this generalization setting,
we plot self-collected rollouts after 0 minutes, 20 minutes, and
60 minutes of practice in the new environments. As shown
in Fig. 5, the robot’s performance in the new domain gets
progressively better with more (autonomous) practice; after 60
minutes it succeeds in reaching the goal in all three attempts.

Table I summarizes the success rate on the generalization
task of our method and two alternative versions of ViNG.
ViNG-Source directly uses the traversability function and
relative pose function trained in the source domain (Sec. V-A),
without incorporating any experience from the new envi-
ronment. In contrast ViNG-Target learns these same models
using only experience from the new “target” domain, without
leveraging any of the previously-collected experience. ViNG-
Finetune outperforms these baselines, highlighting the impor-
tance of combining old and new experience. As an additional
baseline, we take the SPTM model from Sec. V-A and finetune
it on experience from the new domain. We observe that ViNG -
Finetune also generalizes better than SPTM-Finetune, We
hypothesize that ViNG generalizes better than SPTM because
of the additional hierarchical structure of ViNG.

C. Comparisons to Online Methods

While Sec. V-A establishes that ViNG outperforms compet-
itive offline methods for the task of goal-conditioned naviga-
tion, here we also investigate the performance of our method in
comparison to popular online RL algorithms. Since the sample
complexity of online RL algorithms forbids us from testing

Fig. 4: Generalization Experiments: We evaluate ViNG in four new outdoor
environments. For each, we collect a few dozen minutes of experience to
adapt the distance function and relative pose predictor. Then, given a goal
image (last column, checkerboard location in aerial view), the robot attempts
to navigate to the goal. Columns 4 � 7 indicate that the robot succeeds in
reaching the goal image. Cyan lines indicate the actions taken by ViNG.

Environment ViNG ViNG ViNG SPTM
Source Target Finetune Finetune

barracks 0.27 0.42 0.96 0.74
industrial 0.13 0.44 0.84 0.68
park 0.04 0.32 0.82 0.71
tall grass 0 0.38 0.79 0.56

TABLE I: Generalization Results: Our approach to generalization (“ViNG -
Finetune”) successfully navigates learns to navigate in four new environments
(shown in Fig. 4) using just 60 minutes of experience in the new environment.
Applying our finetuning approach on top of SPTM shows some generalization,
but is outperformed by ViNG-Finetune.

this in the real world, we compare to two competitive online
baselines in a photo-realistic simulator for outdoor navigation:

- PPO: a popular reactive controller for indoor visual
navigation algorithms [42, 43]

- SoRB: online version of the “off-SoRB” baseline [28]
We observe that PPO performs poorly and is outperformed

by ViNG, suggesting that a single image-based reactive policy
is insufficient for solving long-horizon goal-reaching tasks,
even with online interactions (see Fig. 6). SoRB outperforms
other baselines and performs on par with ViNG. However,
whereas ViNG requires 40 hours of offline data, SoRB requires
5⇥ online data, and must recollect this data for every task.

Fig. 5: Fast Adaptation to a New Environment: After training ViNG in
one environment, we deploy the system in a novel environment, shown above.
ViNG is able to quickly gain competence at reaching distance goals in this new
environment using just 60 minutes of experience. Example rollouts towards
a goal 35m away (marked by checkerboard circle) demonstrate ViNG self-
improving from interactions in the barracks environment.



Fig. 6: Results from Simulated Navigation: ViNG is substantially more suc-
cessful at reaching distance goals than all offline baselines, while performing
competitively with SoRB, a popular online baseline combining Q-learning and
topological graphs. We emphasize that SoRB and PPO require 5⇥ online data
collection, making them prohibitively expensive to apply in the real-world.

Success Rate @ Distance d (m)
Controller d=10 d=20 d=30 d=40 d=50

Direct Actions (Discrete) 0.87 0.81 0.74 0.65 0.45
Direct Actions 0.98 0.89 0.74 0.73 0.4
Waypoint, Discrete 1.0 0.95 0.91 0.82 0.7
Waypoint 1.0 1.0 0.95 0.88 0.81
TD Waypoint 1.0 1.0 0.96 0.87 0.87

Waypoint, No Pruning 1.0 0.88 0.81 0.79 0.52
Waypoint, Only Positives 1.0 0.91 0.75 0.76 0.43

TABLE II: Ablation Experiments: We investigate design choices for the
parametrization of the controller. Using waypoints as a mid-level action space
is key to the performance of ViNG, which is particularly emphasized for
distant goals. While training the models, we show that ViNG can be trained
with either supervised or TD learning and report similar performance. We also
show that the two key ideas presented – graph pruning and negative sampling
– are indeed essential for the performance of ViNG in the real-world.

D. Ablation Experiments
A key design decision for ViNG that differentiates it from

prior methods (e.g., [28, 33]) is how the controller generates
actions to reach the next waypoint. We evaluate variants of
ViNG that use alternative controllers and present results in
Table II. Two simple baselines, “direct actions” and “direct
actions (discrete)”, use the goal-conditioned behavior cloning
method of [29, 44] to directly predict (discrete) actions from
the current and goal observations, without utilizing the topo-
logical map. Recall that our method uses the planner to com-
mand waypoints and then uses the relative pose together with
a PD controller to reach each waypoint. We compared against
a baseline that uses a different low-level controllers to reach
these same waypoints: “Waypoint, Discrete” takes actions
using the “direction actions (discrete)” controller described
above. As an alternative training scheme, “TD Waypoint” is
a variant of our method that learns the traversability function
via TD learning instead of supervised learning. Finally, we
compare to two ablations of our method that skip the graph
pruning and negative sampling stages of ViNG.

E. Applications and Qualitative Results
ViNG’s ability to navigate using perception and landmarks,

without access to maps or localization, can enable a number

Fig. 7: Contactless Last-Mile Delivery Demo: Given a set of visually-
indicated goals (a), ViNG can perform contactless delivery in the urban
neighborhood successfully, as shown in the filmstrip (c). An overhead view (b)
with starting position marked in yellow and respective goals marked in orange
and magenta shows the trajectory of the robot (cyan). Note: The satellite view
(b) is solely for visualization and is not available to the robot.

of intuitive applications, which we illustrate through qualita-
tive results in this section. We demonstrate contactless last-
mile delivery in a residential complex by using ViNG to
autonomously deliver mail and food to visually-indicated
delivery locations. In this setting, users specify delivery desti-
nations for the robot simply by taking a photograph of the
desired destination, and the robot autonomously navigates
to this destination to deliver a package. Figures 7 shows
ViNG successfully performing this tasks in the urban en-
vironment. Videos and details of more such real-world appli-
cations can be found in an unabridged version of this paper
(sites.google.com/view/ving-robot).

VI. CONCLUSION

In this paper, we proposed ViNG: a system for goal-
directed navigation using visual observations and goals on
an outdoor ground robot. While conceptually similar to prior
methods, we demonstrate that a few key design choices, such
as pruning the topological graph, parametrizing the controller
in terms of a relative pose predictor and sampling negatives
while training to minimize distribution shift, allow ViNG to
learn to successfully navigate using only offline experience,
a setting in which many prior methods fail. We demonstrate
that ViNG can quickly adapt to navigate in new environments.
Further, we have demonstrated ViNG on a number of real-
world applications in dense, urban environments that may
be unmapped or GPS-denied, and specifying visual goals is
convenient – contactless last-mile delivery and autonomous
inspection. Our method requires a static, offline dataset of
observations over which we can plan. In future work, we aim
to incorporate representations of observations and goals that
are robust to such distributional shifts, which would expand
the generalization capabilities of our method.
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