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A UNIFIED APPROACH TO FINITE DEFORMATION
ELASTOPLASTIC ANALYSIS BASED ON THE USE OF
HYPERELASTIC CONSTITUTIVE EQUATIONS

J. C. Simo and M. Ortiz :

Department of Civil Engineering,uUnivers'ity of California,
Berkeley, CA 94720.
Division of Engineering, Brown University, Providence, RI 02912.

1. Introduction.

In the finite deformation literature it is often found that the elastic response of the
material is spatially formulated in rate form, i. e., as an incremental relation between objective
rates of stress and spatial deformation. If special care is not exercised, such incremental rela-
tions may not be integrable and thus inconsistent. with the notion ‘of -hyperelasticity, in’ the
sense that a stored energy potential does not exist. This situation may result in aberrant
_behavior such as hysteretic dissipation inappropriate for an elastic model [1,2]. A familiar
example is furnished by the assumption frequently made for computational purposes that the
~ spatial tangent elasticity tensor is constant and isotropic. It has been shown in [3] that this
widely employed constitutive model is not only incompatible with the notion of hyperelasticity
but even fails to define an elastic (non-dissipative) material in the nonlinear range.

From _an_algorithmic_standpoint, the integration of spatial rate constitutive equations
requires elaborate schemes that add significantly to the computational cost of the analyses
14,5,6]. One of the aims of the present paper is to show that this added expense is entirely
superfluous. The key fact to be realized is that, even for an inelastic material, the elastic
- response can. be spatially formulated in primitive or non-rate form as a functional relation
‘between stresses and suitable strain measures. - This point appears to have passed largely unno-
ticed in the computational literature. As a result of this formulation,. the need for integration of
spatial rate constitutive equations is entirely bypassed, even in the inelastic case. Furthermore, truly
hyperelastic behavior is obtained and the principle of objectivity is trivially satisfied.

To emphasize the applicability of the method to problems involving inelastic behavior,
finite deformation elastoplasticity is considered in detail. In this case, stresses are updated in
two steps: the spatial elastic stress-strain relations are first evaluated to produce an elastic stress
~ predictor, which is subsequently mapped onto a suitably updated yield surface. Following the
pioneering work of Wilkins [7], similar return-mapping notions have been extensively used: in
the past [8,9,10,11,12] although the scope of such formulations has been by and large restricted
‘to simple plasticity models such as linearly hardening von Mises and to constant elastic- moduli.
The problem of extending these schemes to the case of nonlinear elasticity with non-constant
tangent elasticity tensors is not a trivial oné and has not been heretofore considered in the
literature. It is shown in Section 3 how the operator splitting methodology can be used to define
computationally efficient return mapping algorithms which are applicable to very general materi-

als exhibiting non-associated plasticity, arbitrary yield criteria and ‘hardening laws and varjable
elastic moduli. This latter aspect is of particular relevance since, as mentioned above, a formu-
lation of the elastic response consistent with the principles of hyperelasticity cannot possibly

result in a constant tangent elasticity tensor. _ .

Finally, in Section 4 a numerical examples are presented which demonstrate the excellent
performance of the method for very large values of the time step. VFur,‘ther numerical examples
are given in [38]. ‘ S
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2. Summary of Constitutive Theory for Finite Deformation Plasticity. o

The proper formulation of elastoplastic constitutive laws in the finite deformation range
has been the subject of considerable conjecture. Differences of opinion have been voiced con-
cerning elastoplastic kinematics and the formulation of flow rules.” Lee [13,14] and others, for
instance, have proposed a theory based on a multiplicative decomposition of. the deformation
gradient :

F=FF, | @1

where the elastic part of the deformation F¢ is obtained by unloading all infinitesimal neighbor-
hoods of the body. This has the effect of introducing a new configuration into the formulation,
commonly termed the intermediate configuration, defined as the collection of all unloaded local
neighborhoods. This situation is graphically shown in Fig. 1. A complete account of the
geometric concepts underlying the multiplicative decomposition can be found in [15]. . For
polycrystalline solids, such as metals, multiplicative theories are amenable to an elegant physical
interpretation based on dislocation mechanics [16].

The multiplicative relation (2.1)» does :not exhaust, however, all the possibilities concern-

_ing an elastic-plastic decomposition of deformation. Green and Naghdi [17]1 have advocated an -
additive decomposition of Lagrangian strain

S E=E°+E” (2.2)

_in terms of elastic and plastic components E€ and E”, respectively. - Such an additive decompo-
sition rule has been conclusively shown to enjoy a solid thermodynamic foundation [18,19].
On the other hand, in the computational literature an additive decomposition of the spatial rate

- of deformation tensor

d=d°+4d’ ' ' Q3)

has been frequently postulated le.g.,20,21,22,23,24] o
In view of this lack of a standard and generally accepted theoretical framework, this sec-
tion is devoted to a brief account of a constitutive theory for finite deformation elastoplasticity
which will. be taken as a basis for subsequent discussions. - The multiplicative decomposition
(2.1) is adopted as the basic kinematic assumption. However, as recently noted in [15], purely
- geometric arguments together with the concept of covariance = show that within the multiplica-
tive framework material and spatial formulations can be derived in which strains decompose
additively into elastic and plastic parts. The main geometric relations involved are summarized.
in Box 4. Although in a different context, the correspondence between additive and multiplica-
tive theories has also been investigated by Green and Naghdi ‘[27]1 and Nemat-Nasser [28],
among others. '

For simplicity, attention is confined throughout to the isothermal case. Boxes 1,2 and 3
summarize the relevant relations pertaining to the constitutive framework adopted herein. It
- should be emphasized, however, that the numerical techniques proposed in this paper are not
dependent upon this particular set of constitutive assumptions and can be extended to other

models without conceptual changes.

‘ The notion of covariance expresses the idea of of form invariance of the basic field equations with respect
to arbitrary diffeomorphisms (se¢ [29] and {31, Sec. 2.41). This notion central to other branches of mechan-
ics such as general relativity, also playss an important role in continuum mechanics (see 125,26]). '
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Material Formulation.

In the material description, Box 1, the local plastic state of the material is assumed to be
haractetized by the Lagrangiaht strain tehsot E, the plastic Lagtangian strain E? = H(C? =1
and the plastic internal variables Q. Hete, C? is the plastic right Cauchy-Green tensor defined
as C? = _F:”TG F?, and G is the metric tensor in the intermediate configuration. Typically, one
chooses G = 1. it the present context, the eldstic Lagrangian strain E° is formally defined as
the difference E¢ = E — E?. The nature of the plastic variables depends on the particular plas-
tic model under consideration. For instance, for isotropic hardening von Mises Q reduces to

the yield stress. For isotropic-kinematic hardening Q includes both the yield stress and the
back-stress tensor defining the location of the elastic domain. ' .

BOX 1: Material Formulation of Elastoplastic Constitutive Relations.

L] Eléstic-plastic decomposition of Lagrangian strain
‘ E¢=E—E?
® Stress-strain relations

s 3y
S E¢, E?,Q
T )

® Flow rule _
 EP=yR(6,CQ
. Hardening laws »
Q=7yH(S,CQ
® Yield criterion..
| ®(S,C,Q) =0

The stress-strain “relations méy be expressed in terms of a free-energy potentia-i
V(E¢, E?, Q). It should be noted that this form of free-energy potential coincides with the one
first proposed by Green and Naghdi [171. ‘

General non-associated flow rules and hardening laws governing the evolution of E? and
Q can be formulated in terms of a plastic flow direction R(S,C,Q) and plastic moduli
H(S, C,Q). Yielding of the material is expressed in terms of a yield function ®(S,C, Q). For
instance, in the particular case of an associated flow rule one has R= d®/0S. Note that the
dependence on C of R, H and ® need to be included to account for effects such as pressure
independence of the plastic response.

Multiplicative Theory. ,

Relative to the intermediate configuration, Box 2, the'loc_gl plastic state is characterized by
the Lagrangian strain tensors E¢ = % (C* — G) and E? = 15 (G — b”™)), and some suitable set
of plastic internal variables Q. Here, C¢ = FTgF¢ is the elastic right Cauchy-Green relative to
the intermediate configuration and b~ = FP-TFP~! s the plastic Finger deformation tensor.
Finally, g denotes the spatial metric tensor. Note that the tensors C¢, G, E? and E° defined on
the intermediate configuration, are covariantly related through pull-back/ push-forward opera-
tions to the material tensors C C?, E” and E¢, respectively, as indicated in Box 4. They. play
identical role in different configurations. o ‘

The relation between E¢ and the second Piola-Kirchhoff stress tensor relative to the inter-
mediate configuration S, ‘can be expressed with the aid of a free energy potential
¥ (E¢, E?,Q,F?). Note that this choice of arguments is entirely consistent with the the one
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BOX 2. Multiplicative Formulation of Elastoplastic ConstitutiVé Relations.

® Elastic-plastic decomposition of deformation gradient

F = F°F?
® Stress-strain relations
oV =
S =p,—=(E%E” QF?"
POLFe Q

® Flow rule
' ' L? E? =D”=yR(,CQ)

e Hardening laws

® Yield criterion

made in the material formul’étion, and simply follows from the latter by push-forward with F”. h
This accounts for including F”-in the list of arguments of V.
“The plastic response in the intermediate configuration may be characterized by_means of a
plastic flow direction R(S,C*, Q), plastic moduli H(S, C¢, Q) and a yield function ®(S, C*,Q).
Consistent with the dependence in_the material description of the plastic response functions on
C, the dependence of R, H, and @ on the elastic right Cauchy-Green tensor C° needs to be
included to obtain a fully covariant formulation.
It may be noted from Box 2 that rates of tensors defined in the intermediate configuration
are taken relative to the plastic flow, which immediately leads to the notion of plastic Lie deriva-

tive. For example, the plastic Lie derivative of C°is computed by first pulling C* back to the -~

material configuration to obtain C, taking the time derivative C and finally pushing it forward
into the intermediate configuration according to the expression LyC®= F~TCF”"!. Similar
_deﬁnitions apply to any other tensorial object, in particular. to the internal variables Q as
recorded in Box 2.

Spatial Formulation.

By way of background, it may be recalled that in the context of elasticity the stored energy
potential in the spatial description is an objective function of the form ¢(g, F) [25,29,31],
where g is the spatial metric tensor. The tensorial dependence gf Y on g was first pointed out
by Doyle and Ericksen [30] who derived the formula 7 = 2pody/dg, where 7 is the Kirchhoff
stress tensor. Since the Almansi strain tensor e is given by e= b (g—b~"), with b™'=
F-TF! we have the equivalent form i (e,F) of the stored energy potential, which in turn leads
to the alternative expression T = pody/de for the Doyle-Ericksen formula. ‘

In the present context, similar arguments lead to a spatial elastic potential of the form
yle® e’ qF), where e°=1'(g— bcY) is the elastic Almansi strain tensor, ~and
pe = FeTGFe ! is the elastic Finger deformation tensor. As in the material formulation,
plastic strains are defined by means of the difference e? = e —e°. It should be emphasized
that, contrary to common practice in the computational literature, the elastic response of the
material is thus formulated as a non-rate functional relation between spatial stresses and elastic
strains. ' C ' _ S -

By covariance, the flow rule, hardening laws and yield criterion take the form expressed in
Box 3, in terms of 7, the spatial plastic variables q and g. This latter quantity is the spatial
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counterpart of C and is needed in general to obtain scalars from 7 and q and formulate tensori-
ally meaningful plastic relations. ~ S . ’

BOX 3. Spatial Formulation of Elastopiastic Constitutive Relations.

® Elastic-plastic decomposition of Almansi strain
e/=e—e’
® Stress-strain relations

Y

T =po 5e7(e”, e”,q,F)

® Flow rule
L,e? = d? = yr(r,2,q9
® Hardening laws ' » ,
Lyq=yh(r,29
® Yield criterion
’ q}(f,g,Q) =0

Finally, the Lie derivative Ly is defined as the. push-forward into the current
configuration of E?, which takes the form L,e? = F-TE?F~!. Similarly, L,q is defined as the
push-forward of Q into the current configuration. The specific component form of L.q depends
on the tensorial nature of the plastic variables ¢ under consideration. The reader unfamiliar
with geometric notions such as the push-forward and pull-back operations and the Lie deriva-
tive may wish to consult reference [31, Chap.1] excellent reviews.

Remark 2.1. In the context of elasticity, one also. have three possible alternative descrip-
tions. The material and spatial ‘descriptions - and the rotated description [25,26]. The latter is
obtained from the spatial description by pull-back with the rotation tensor arising from the polar
decomposition of deformation gradient. Equivalently, the rotated and material descriptions are
related by pull-back/push-forward with the stretching tensor. In plasticity, the description rela-
tive to the intermediate configuration is the counterpart of the rotated description.

Remark 2.2. The multiplicative decomposition (2.1), as it stands, is only defined modulo
rigid body motions superimposed on F?. Attempts to uniquely orient the intermediate
configuration have been made by Mandel le.g.,32,33] and others. In view of the indeterminacy
underlying (2.1) some authors have advocated flow rules for the plastic spin in the intermediate
configuration [34] or for ¥7 [16]. It has been recently shown in [15] that there exists a canoni-
cal choice of F? which preserves the material symmetry group and which renders- (2.1) a partic-
ular case of the polar decomposition. It would then appear that equations of -evolution for the
plastic spin are indeed unnecessary and that only flow rules of the type expressed in Box 3 need
be formulated.

Model Problem. v :

Specific examples of simple constitutive: models of the form summarized in Box 3 are the
following. _ C

‘Hyperelastz"c response.. An examble describing a class of hyperelastic cdnstitutive models
considered in [3] which proves convenient in numerical applications. In a spatial description,
the model is defined by :

=AU +Yul®— ulogl*

= Je—d%](—{f)-g“'+u(be—g_l) . e
Jef =2\ J¢ d‘]je [Je dU(-])]g—l®g—l+ [[L")\Je'd_(]"(,{_)]lg

dJ¢ d.
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BOX 4. Basic Definition of Kinematical and Stress'-VVVariables

e e o

Configurations

By = material B, = intermediate B, = spatial

Basic Kinematic Tensors

C=FTgF; C°=F"" GF” Ce=F"gF¢ |
E="%(C~1) E=4% (C—F F) e=% (g—F F)
EP=1%(CP=1) Er=th G-F"F") | eP=1 (F'GF —F TF
E°=1% (C—C?) Ee=1 (TG e¢=1 (g—F 'GF*)
E=E°+E’ - E=E°+E’ e=e’+e’

Rates of Deformation Tensors

E D= LE d=Le
E’ D’ = LIE’ d’ = L’
) D¢ = LIE® d° = Lye°
E=E°+E’ D=D¢+ D’ d=d° + d”
Basic Stress Tensors
s | 8-ms¥’ r=FSF’

where J¢ = det(F¢), J = det(F), I¢ is the first invariant of b¢, and Iy is the fourth order unit
tensor with components % [(g7) * (g™ + (g™ (g™)*]. The fourth order tensor ¢ is the
spatial elasticity tensor of the material which is often defined indirectly by push-forward of the
material elasticity tensor p OS/9E¢ (e.g., see [2] p.131, eq (45.2)). The parameters A and u
are Lame-type material constants.

The form of the stored energy function (2.4a) corresponds to a Neo-Hookean material
“which is extended into the compressible range by adding the extra function ' U(J¢). This is in
fact a particular case of a Hadamard material. A simple choice of U(J°) is given by

UJ®) = (logl®)?, .9

which has proven effective in the context of the penalty method applied to incompressible
materials such as Mooney-Rivlin [35]. Model (2.4) defines the simplest possible hyperelastic
material whose tangent elasticity tensor is isotropic. Further motivation is provided by the fact
that the Mooney-Rivlin model is a first approximation to the constitutive behavior of any non-
linear incompressible elastic isotropic material. , : T

Plastic response model. An example of a plasticity model widely used in computation is
furnished by the von Mises yield criterion with isotropic hardening. To illustrate the role
played by the spatial metric tensor g and the right Cauchy-Green tensor C in a covariant formu-
lation of plasticity, material and spatial versions of the von Mises model are given next. In a
spatial setting, the von Mises yield function reads : ) L
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C plr,g k) = ATl - kK2=Vor'lie' M g, g',,r——kZ ' (2.6a)
where the compbnents of the deviatoric Kirchhoff stress tensor t' are given by
T'U = 'r':’ - %‘(T w gk,) (g_l) U, ‘ .. o e ’ i (26b)

and « is the shear yield stress. An alternative material formulation involves the yield function
(S, C, k) =" SV SKL Cy Cpp, — &2, - (2.7a)

where the stress deviator consistent with (2.6b) is defined as

S = §¥ = L(SKE Cy) (CTHY. e

Note that the hydrostatic pressure p is given by the equivalent expressions
3Jp=1lg; = S¥ C,; which are utilized in spatial and material definitions (2.6b) and (2.7b)
of the stress deviator. Thus, it is apparent that g and C need to be included in the formulation
of the plastic response. Note further that an identical role is played by C¢ in the intermediate
configuration. '

3. Numerical Formulation. : .

In this section, a number of numerical techniques are proposed that allow a systematic
treatment of constitutive models of the general type discussed above within the context of finite
element analysis. The stress update algorithm herein proposed falls within the category of elas-
tic predictor-return mapping algorithms widely used in computational plasticity. However, our
formulation departs from currently employed procedures in that:

i) The need for integration algorithms: for elastic rate constitutive relations is entirely
bypassed by formulating the elastic relations in non-rate form.

ii) General hyperelastic models are considered and the definition of the return mapping is -
capable of accommodating non-constant elastic. moduli.

iii) The algorithm is applicable to completely general plasticity models including non-
associated flow rules and arbitrary yield criteria. o

iv) Although the spatial formulation is herein emphasized, the prpposed algorithm equally
applies in a material setting. o

In particular, our formulation of the elastic response is truly hyperelastic and does not
involve objective stress rates. Thus, the elastic predictor is reduced to a mere function evalua-
tion. Algorithmic requirements pertaining to integration of spatial rate constitutive equations
such as incremental objectivity [4,5] are no longer an issue owing to the inherently objective
nature of the hyperelastic constitutive relations. In addition, the elastic predictor is infinitely
accurate since no algorithmic approximations are involved. ) :

3.1. Elastic-Plastic Operator Split.

In any numerical scheme employed for the analysis of elastoplastic problems it eventually
becomes necessary to update state variables such as stresses; strains and plastic parameters. In
the context of finite element analysis using isoparametric elements, stress ‘updates take place at
the Gauss points and the incremental deformation is given. The problem to be addressed,
therefore, is that. of updating the known state variables F,, F/, g, and 7, associated with a con-
verged configuration B, into their corresponding updated values F 415 Fli1, @u41 and 7,45 ON
the wupdated configuration B, in a manner consistent with the constitutive assumptions
expressed in Box 3. In this process, the incremental displacements u defining the geometry
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update B, — B,4 are assumed given, }

A number of authors have advocated the use of so-called retu[n mapping -algorithms for *

. integration -of elastoplastic constitutive relations [7,8,9,10,11,12]. The applicability of such

. algorithms has been by and large restricted to simple plasticity mode_ls:s,uch as linearly harden-
ing von Mises with constant elastic moduli. However, many ‘materials of engineering interest
such as concrete and soils exhibit nonlinear elastic response, non-associated plasticity and com-
plex yield criteria, flow rules and hardening laws. -Furthermore, it has been shown ‘in [3] that
an elastic material cannot possibly have constant and isotropic tangent elasticities in the. finite
~deformation range. Therefore, an integration scheme for elastoplastic constitutive - relations
must be able to accommodate general non—constant tangent stiffness compliances to be of
value in the context of finite deformation analysis. '

We show next how an operator splitting methodology proposed in [36, Chap. 3] in the
context of linearized kinematics can be conveniently extended to define efficient return map-
ping procedures which are capable of dealing with fully nonlinear elastic response and complex
plastic models. '

Spatial Formulation. For the purpose of this diScussion, the deformation gradients are
taken to be prescribed functions of time :

F=F() S (3.1

7 For simplicity, in iwhat follows ‘we shall ignore the possibility of a dependence of the
,_potentialv ¥ on the plastic variables q. Let us start by rephrasing the spatial constitutive rela--
~ tions in Box 3 as a set of equations of evolution of the. following form S

A=d+d=d0)
La=Jeo:d°+ Je”:d?
Le?=d’=vyr(r,8,q@
La=1vyh(r,gq

(3.2)

~ where (1) = (F(») i‘f’(t))s is given. The elastic constitutive equations have been formulated
‘in rate form simply by taking the Lie derivative of stress-strain relations 7 = pod¢/de. To this
end, one defines IR v .
9% b 0% |
el = R : 3.3)
de‘oe’ p de‘de’

=p

where ¢ is the spatial tangent elasticity tensor. In addition the fact has been used that
Le‘=d¢, Lel=4d". (3.4)

The plastic rate parameter vy is determined from the requirement that the yield condition
$(r,8,0 =0 - G

be identically satisfied during plastic loading. Note that any other objective stress rate can be
used in (3.2b) by suitably adjusting the right hand side. In particular, if an "elastic" Lie deriva-
tive relative to the intermediate configuration is employed, the term in (3.2b) involving. d” no
longer. appears explicitly. :

Elastic-Plastic Operator Split. As first noted in [36], return mapping algorithms are a
natural.consequence. of the fact that constitutive relations (3.2) can be "split" into elastic and
plastic parts. The former is deformation driven and is given by

d=d°+d”=d(
La=Jcc:d '
Le’=d"=0
Laga=20

(3.6)
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‘On the other vhand, the plastic part of the constitutive relations reduces to
d=d°+d’=0
9

9 _ . e _ aP)-ar
at'r J@¢—¢”):d

9 e
57¢ yrir,g,q

3.1

9 .

s = h 9 2

51~ 7 (N A |

It should be noted that egs. (3.6) and (3.7) do indeed add up to the total rate constitutive rela-
tions (3.2), consistent with the notion of operator split.

The decoupled egs:. (3.6) and (3.7) are amenable to the following mterpretauon

Elastic part of the constitutive equations. In elastic equations (3.6), the plastic response of
the material is "frozen", so that plastic strains and plastic variables are merely pushed forward
into subsequent configurations. Furthermore, since d?=0= Fr-TCPFr! , it follows that
C? = 0 and hence F? = 0. Consequently, the evolution of the state variables introduced by the
elastic equations takes place for a fixed intermediate configuration, and all of the prescribed defor- :
matlon d() goes into elastically straining the material: Thus, the elastic deformation gradients
Fe = F(¢) F7! = F°(¢) become themselves given functions of time. Finally, since our formu-
lation is hyperelastic, the elastic’ equatlons (3 6) are directly integrable and stresses are simply -
glven by the elastic relatlons ' » :

r = o2 L (3.9)
(0

6e

Plastic part of the constitutive equations. In the plastic equations, on the other hand, one
has d = 0 and hence the spatial configuration remains fixed. Under these conditions, the Lie
~derivative simply reduces to partial differentiation with respect to time and, in particular,
Be”/at = d" Thus, the plastlc equations (3.7) may be recast as

8. __ _ap
v_GtT 'yJ(c c) r(r,8,q)

R W
atq—yh(r,g,q)

(3.9

or, dividing through by y

9T J(cf =) xlr, g Q)
(3.10)

These equations define a relaxation of the stresses T towards a suitably updated elastnc domain.
Such a plastic relaxation process is completed as soon as the yield condition (3 5) is satisfied.

Material Formulation. The elastic-plastic splitting - methodology deﬁned above can be
alternatively formulated in a material setting. In this case, entlrely analogous arguments point
to the following choice of decoupled equations:

Elastic - Equations o Plastlc Equatlons
E=E(& | E=0

§=A°E%E” : E §=— [C°(E°,E”) — AP(E, EDI:E? , (3.1D
E?=0 ' E? = yR(S,C, Q)

Q=0 Q=4yH(S,C,Q



Simo/Ortiz Finite Deformation Plasticity e 10

where E(1) is again a-given function of time, A° = poaz‘I’/GE‘BE‘ is the material tangent elas-
ticity tensor, and A? = pod*¥/9EQE?. As before, the elastic part of the constitutive relations
defines a process of elastic straining in which the plastic deformations E? remain unchanged
while the stresses S are evaluated through the elastic relations from the known elastic strains
E¢(p) = E(t) — E’. . On the other hand, the plastic equations define a relaxation process for
stresses and plastic variables which continues until the yield criterion’ ' :

®(S,C,Q) =0 : 61

is satisfied.

Remark 3.1. The material tensors A€ and A? defined above are related to the spatial ten-
sors. Je and Je¢? given by (3.3), through push-forward with F.  As an example, for the
hyperelastic constitutive model (2.4), ¢¢ is given by (2.4);, whereas ¢’ has the expression
dU (J) I,

dJe¢

~ Note that for the choice of U(J®) given by (2.5) one obtains J (¢® — ¢”) = rg®g + 2u L,

—-AJE

3.2. Stress Update: General Return Mappmg Algorithm.

Based on the elastic-plastic split (3.6-7), a return algorithm can be conveniently defined
by first solving the elastic equations . (3.6) to obtain an elastic predictor, which is then taken as
an initial condition for the plastic relaxatlon equations (3.7). The resulting procedure is graphi-
cally shown in Fig. 4. For assocnated perfect plasticity, for instance, it is seen that the plastic
equations define a return path for the stresses which runs along the steepest descents of the
yield function, Fig. 2. It should be noted, however, that the steepest descent dlrectton in stress
space is determined based on the tensor (c¢—c?). »

For the perfectly plastic von Mises model with infinitesimal isotropic elasticity, the return
path for stresses is clearly radlal In general, however, the return path defined by (3.7) is not
known in advance nor can it be determined analytically. - It becomes therefore necessary to
compute the return path for the stresses numerically. An efficient algorithm for this purpose is
listed in Box 5, together with the remaining steps in the update procedure. As may be seen,
the return mapping is defined 1terat1vely At every iteration the yield function ¢ is linearized
about the current values 7 ,(,+1 q,, ), and ¢,,+1 Such a linearized yleld function defines a straight
intersection or "cut" on the plane ¢ .= 0 onto which 7 Q) and ql?; are projected to obtain the
next iteration 7, (i) and q,(,l;*ll) It should be noted that such projection involves the current
elastic moduli ¢ ’} The initial conditions for the return procedure 1',(3.)1 and q(O)l are taken to
coincide with the elastic predictor.

Geometric Interpretation. A geometric interpretation of the proposed algonthm is given
in Fig. 3.  As we may see, the elastic predictor is returned to the yield surface in successive
steps. FEach one of these steps involves a projection of the stresses onto a straight (linear)
approximation to the yield surface or "cut". In the limit; such cuts become tangent to the yield
surface and plastic consistency is restored at a quadratic convergence rate. For an associated
flow rule; the computed-return path is indeed an approxxmatton to the steepest descent path as
defined by the tensor (c®—c?). : : :

~ Stability and Consistency. From general results concerning the operator splitting metho-
dology (e.g., see [36, Chapter 3] for a review) it immediately follows that the proposed algo-
rithm is consistent with the constitutive relations in Box. 3. Furthermore, unconditional stabil-
ity follows automatically prov1ded that both the elastic predictor and the plastic corrector are
separately unconditionally stable. As for the former, unconditional stability is trivially achieved
due to the exact nature of the algorithm. On the other hand, the equations (3.10) defining the
return path are clearly dissipative and the corresponding trajectories contractive provided the
yield function is convex and the plastic flow direction r derives from a convex potential or load-
ing function [36, Chap. 3]. Under these c¢onditions, the return algorithm  is unconditionally -
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BOX 5. Stress Update Algorithm: .

i) Geometric update

v 1= ¢n +u
F,=1+Vu
Fon= F,F,

ii) Elastic predictor
o Foi =¥}

Frf =FuFp
e
. _ . 9Y¢
T 41 = PO ” l"’(m
ae n+l

q% = push— forward of a. by :F.. '
iii) Check for yielding v
| ¢ =¢GN <07
YES  FZu=F29; aqui=ais rm = + &5 EXIT
NO ' i=0

iv) Plastic correctors

B ¢ i

—--—-A}' = 96 W ' 6]

T v N B i (c"—c”) (!4).121’(.{;).1— _— ‘h(fz| :
v o ‘ a’Tv ] n+l g " . ! 3([ n+l "

7 D = 7 ) — Ay Sy (=) By iy
qii = qih + Ay h i
v) Convergence check
el < TOL 2
YES Compute ¥4y from 7 (see Remark 3.3. on isotropy)
Flu=FiFid, au= q,(;fifll), T =1, EXIT

NO i+~ i+l1; GO TO (iv)

stable and so is the overall update procedure.

Remark 3.2. It should be noted that the proposed return algorithm does not require
explicit knowledge of the derivatives of the. elasticity tensor c¢, the plastic flow direction r or
the plastic_hardening moduli h, in spite of which quadratic convergence of the stress iterates
towards the elastic domain is achieved. : ' :

Remark 3.3. If the elastic response is isotropic a standard-argument reveals that the elas-
tic potential ¥ in the spatial description depends on F¢ through the elastic left Cauchy-Green
tensor b®. “Thus, knowledge of 7 at a given configuration only determines_uniquely b° or,
equivalently, the left stretch tensor Ve = b in an unloading process. However, F¢ and thus
F? can be uniquely determined from the condition that_the multiplicative decomposition
F=F¢F? be a polar decomposition of F with metric C¢ in the intermediate (rotated)
configuration. Setting F = RU, where R7gR = 1, this condition implies that [381
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Fe=V°R, FP=FF-l. (3.13)

This is the procedure herein adopted in.the finite element implementation of the isotropic elas-
tic finite deformation model (2.4). Further computational details may be found in [38}. '

Remark 3.4. The. stress update algorithm proposed above is amenable to an entirely
equivalent formulation in the material setting, based on the elastic-plastic split (3.11). Some
features of such material implementation are noteworthy. For instance, the plastic strains E’
are seen to remain constant during the elastic predictor and thus play the role of fixed parame-
ters in the computation of the elastic tangent moduli C°(E¢, E?). On the other hand, the plas-
tic relaxation takes places under constant deformations C which thus behave as fixed parame-
ters in the definition of the plastic flow direction R(S,C; Q), plastic moduli H(S,C,Q) and

yield function ®(S, C, Q).

3.3. Extension to Viscoplasticity.

The formulation heretofore presented readily extends to the case of ' viscoplasticity.
Assuming for simplicity linear viscosity, the flow rule and hardening laws take the same form as
in'Box 3 with A being replaced by ¢/m, where n is the viscosity coefficient.. Accordingly, an
analogous operator split now applies in which eq. (3.6) remains unaltered and the plastic relaxa-
tion equations (3.9) are replaced by

: i)_, =>_Y%—J(c"v—- ¢”):r(r, g, @

o1 <3 14)
O by e
947 h(r,g, @

"Whe_lje plastic loading (¢ > Oi)byis,a,ssu‘med. The rate of change of ¢ is governed by the follow-
ing equation = SR R '

_9 97 90 da __ o |0, e.,n{.__f’i’.. . (3.15
$=%r a: " oq 9t m|or. (ct—ehir = gt 3.15)

@l

t
which is the visvcous(counterpvavrt of the cvo'nsistency condition of inviscid plasticity. Defining an
instantaneous relaxation time by the expression '

= (3.16)
@i. e aly ﬁ‘ﬁ ' ‘
| | o :J (e?—cP):r 5a h
eq. (3.15) may rephrased as
| 9 & BENCRY)
ot t '

In view of equations (3.14) and (3.17) the following conclusions may be drawn:
() The return path defined by (3.14) coincides with-the return path corresponding to inviscid
plasticity. - : . 7
(i) As the plastic relaxation proceeds, the location of the stress point in the return path
_ defined by (3.14) is governed by eq. 3.17. '

These results enable one to formulate an algorithm for the nurherical integration of the
elasto-viscoplastic constitutive relations based upon the following notions. The elastic predictor
and return path are computed as in the inviscid case. In particular the return path comprises a
sequenice of straight segments: in- stress - space directed - towards the yield  surface. The
difference, however, is that only partial relaxation now takes place; thus the stress point does
not reach the yield surface. To compute the final location of the stress point in the return.path,
one may proceed as follows. ‘ N =
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(a) Within a-generic straight segment (i) in the return path, the relaxation iime is taken
to be constant and _equal to a value ¢ 2 computed according to (3.16) from the initial conditions
for the segment 7 (01, and g 1. : '

(b) Thus, within atypical straight segment the variation of the yield function value s
given by the exponential relation o

¢ = ¢ iexp(— Ay ' R (3.18)

where At is the time elapséd since the entrance of the stress point into segment ).
(c) The total time A ¢” spent by the stress point in segment (/) is therefore given by

¢ N

At(i) = 7(i)log G D (3.19)
n+1

(d) The end of the relaxation process is characterized by the condition that zAt(’) = h,
P

where 4 is the time step size and the sum extends to all traversed segments.

7 The resulting algorithm is summarized in° Box 6. The simplicity and generality of the
“algorithm should be noted. The same general results mentioned aboved regarding consistency
and stability of the algorithm apply in the present context. We finally note that as n — 0 the
integration scheme for inviscid plasticity is recovered. This is consistent with well-known
results concerning the inviscid limit of viscoplasticity (e.g, see [36, Chap. 3] for a review).

3.4, Boundary Value Problem: Consistent Tangent Operator.

“In order to formulate a well-defined problem, in addition to the constitutive relations we
need to consider the momentum balance equation and suitable boundary and initial conditions.
A weak formulation of the resulting boundary value problem can be given as follows. Let b(x)
be the body force, a(x) the spatial acceleration field and t(x) the traction vector specified on
the Neumann boundary 8B, Furthermore, let the deformation mapping ¢ be prescribed on
the Dirichlet boundary 8,8y as ¢ |au30= é. As usual we require that 8,8, (" d,B, =@ and
8,B,\J 9,B, = 0By, where one has 9,8, = ¢(d,Bo. Then, the weak form of the momen- -
tum balance equation at time ¢, reads :

Gom=[,pandB+ fB';q' .V dB foonas~f, ,Tnds=0, (320)

for any admissible vaﬁation n such that |3u3n= 0. Since the treatment of the. transient
dynamic problem plays no role in the present discussion, we shall ignore inertia effects. and-
confine our attention to the static case. :

Within the context of finite element analysis, the solu'tion of problem (3.20) is accom-
plished by an iterative scheme such as Newton’s method. Typically, one solves a sequence of
linearized problems defined as. :

DG(p muld = fB [—5— r (VnrVuw + Vq: (c,(,QI:Vuf,Ql)] dB = — »G(d: (L3210

until the residual G(¢ (), m) vanishes to within a prescribed tolerance.

- The convergence rate of iterative scheme (3.4) is by and large governed by the choice of
tangent moduli c {9, which, as recently noted in [37], depends in turn on the iteration scheme
adopted. In a typical iteration i+1 within a time step [#, 2,411, the variables ( o) St may be

obtained by means of the algorithm in Box 5 and from either
(a) the values ( o) i corresponding to the previous non— converged iteration, or
(b) the converged values ( o), from the previous time step.
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BOX 6. Stress Update Algorithm: Viscoplasticity

i) Geometric update
ii) Elastic predictor
iii) Check for yielding
| =g Dady <07
YES  F2=F29; qui=a%i; 7o =105 EXIT
NO i=0, ©@=0

iv) Plastic correctors

=

a¢ ) 1 8¢ )
09 - J (ce___cp) () Il'(i) _19¢ ,h(i)
[ a_r l"+lv n+l ntle In+l aq " n+l

.5
bt t
Ay = Fntl®

0
+1 i , D G
0 =11 = Ay (e c”) Qi

gl = afh+ Ay
A =110 2/ ")
o | (D (D A gD
v) Check for end of relaxation process
. o v t(i+1) > h
YES A= h— .
ot
Ay = ——
T |
T oa1 = T 501 — By Sy (e€=¢f) Qe
Q1 = q + Ay h{

Compute ¥ 7 (D) (see Remark 3.3. on isotropy)

[1 = exp(=A M

Fin= F11+1Fr£1’-:11 , EXIT
NO i+~ i+1; GO TO (i)

Both procedures define algorithms which are consistent with the field equations.. However,
scheme (a) introduces a “history dependence"” of the converged values on intermediate
non— converged iterates. This may pose difficulties due to the strong path dependence of plasti-
city models. Spurious unloadings at some Gauss points may also occur as a result of this pro-
cedure. By contrast, history dependence on intermediate non— converged values is eliminated
with the use of scheme (b), and "fictitious” numerical unloading is therefore prevented.

By virtue of an stress update algorithm such as the one proposed in Section 3.1, the
G+1) ) . : ; : R !

updated stresses 7 ,+1 become a function of the incremental displacements Vu, as well as of

suitable initial conditions consistent -with the update strategy (@) or (b). The essential point

emphasized in [37] is that the tangent moduli appearing in (3.4) must be derived by consistent

linearization of the update procedure, in order to achieve the asymptotic rate of quadratic
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convergence characteristic of Newton’s method. If scheme (a) is adopted, the consistent
- tangent moduli coincide with the classical elastoplastic ones. For the spatial constitutive equa-
tions in Box 3 such elastoplastic moduli take the form : :
[(ef=¢?) :rl® let: —3%1
ce” = ¢f — : o 3.22
i)iﬁl:('c"-—c"’)'r———LQQ—-B 0.2
or ) J8q

If, on the other hand the update scheme (b) is adopted, the consistent tangent moduli are no
longer given by expression (3.22). In fact, use of the elastoplastic moduli (3.22) may result in
a dramatic loss of the quadratic rate of asymptotic convergence, as shown in [371. .

In the context of return mapping algorithms and for linearized kinematics, explicit expres-
sions for the tangent moduli consistent with the update strategy (b) and associated with several
widely used plastic models are given in [37]. For simple yield conditions such as von Mises,
and nonlinear isotropic and kinematic hardening rules, the results in [37] may be extended to
the present setting. We refer to [38] for further details. In general, however, the task of
evaluating the consistent tangent moduli in closed form may prove exceedingly laborious. It
would appear, therefore, that a general purpose implementation of the physically more compel-
ling algorithm based on the updating . procedure (b), may require the use of quasi-Newton or
secant-Newton methods [39] for the solution of resulting nonlinear algebraic problem.

4. A Numerical Example. ,

~ There are a number of important issues involved in the finite element implementation of
the formulations and corresponding stress update algorithms discussed in the previous sections.
Among them should be mentioned:
(i) The treatment of constraints in the finite deformation range such as incompressibility of
~ the plastic flow. In the context of the linear theory, the importance of a proper treatment
" of this constraint was first recognized by Nagtegaal, Parks and Rice [40]. :

(ii) The use of consistent linearization procedures, as discussed in [31, Chap. 4], to obtain ‘
elastoplastic - tangent moduli consistent  with the stress update algorithm for specific
models. C : : v .

~ These and related computational issues are treated in [38] together with the discussion of
several numerical experiments. .

. Our intention here is simply to illustrate the formulation heretofore discussed by means
of a classical example: the thick wall cylinder under internal pressure. For this purpose we con-
sider perfect plastic behavior with-a von Mises yield condition, and elastic response governed by
the hyperelastic constitutive equations (2.4-5). Co :

, The results of the numerical experiment are shown in Fig. § and Fig. 6, together with the

exact solution for the case of a rigid plastic material. ‘In this figure, a designates the inner

radius in the current configuration. The following features pertaining to these results -are
noteworthy: ‘ ' T '

(0 The final configuration of the cylinder, with inner radius a = 85.10 and an outer radius of
88.8, is attained in 15 time steps. Note that the initial values of the inner and.-outer
radius are 10 and 20, respectively. : ’

(ii) Within each time step, convergence with the classical Newton’s method, in the energy
norm and to a tolerance ‘of TOL = 10718 is achieved in'4-5 iterations.

(i) .For the purpose of comparison with the rigid plastic solution the material properties are

chosen as to obtain infinitesimal elastic deformations. In spite Qf the extremely large load-
~ing step employed, excellent agreement between the asymptotically exact analytic solution
and the computed results is found. '
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The reason for the excellent rate of convergence exhibited by the solution process may be
found in the use of tangent moduli consistent with the stress update algorithm. These tangent
moduli are not given by (3.19), but obtained from the stress update algorithm by a consistent
linearization procedure. : : :

5. Summary and Conclusions.

A unified approach to finite deformation elastoplasticity which embodies both additive and
multiplicative theories has been presented. Taking the multiplicative decomposition of the -
deformation gradient as a point of departure, an additive decomposition of Lagrangian and
Almansi strains follows. Such an additive decomposition carries’ over to the corresponding
material and spatial rates of deformation. :

From a numerical standpoint, the proposed formulation has several far-reaching conse-
quences. First, the use of hyperelastic constitutive models entirely avoids the need for integra-
tion of rate constitutive relations. In particular, so called incrementally objective integration
algorithms. are no longer needed, even in the context of rate-dependent viscoplastic models.
Second, an operator-splitting methodology can be used to exploit the additive decomposition of
the deformation rates. On this basis, a general class of return-mapping algorithms capable of
accommodating arbitrary yield criteria; flow rules, hardening laws and variable tangent elastic
compliances has been derived. It should be emphasized that the elastic predictor in the stress
update procedure reduces to a mere function evaluation. The return mapping takes an iterative
form -whereby stresses converge towards a suitably updated yield surface at a quadratic rate.
Accuracy and unconditional stability are guaranteed .by general results pertaining to the
operator-splitting methodology. The proposed numerical schemes apply to both rate-dependent
and rate-independent plastic models. '

Owing to the covariant character of the theoretical framework and of the proposed algo-
rithms adopted, selection of the material, intermediate or -spatial descriptions as a basis for
R numerical computations is a simple matter of choice. In fact, the results obtained from any one

‘of the descriptions are identical.

The high accuracy of the method, even for very large time steps has been illustrated by
means of numerical experiment. It is also noted that use of consistent tangent moduli results
in excellent rates of convergence. '
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FIGURE LEGENDS

Figure 1. Schematic representation of material, intermediate and spatial configurations.

Figure 2. Geometric interpretation for the case of perfect plasticity of a general return
mapping algorithm based on an elastic-plastic split of the constitutive equations. The elastic
relations define an elastic predictor &,.; which is subsequently returned to the yield surface
along the steepest descent path of the yield function ¢. The steepest direction is determined in
terms of the local metric defined by the elastic tangent moduli.

Figure 3. Numerical implementation of the return mapping algorithm shown in Fig. 2.
- The elastic predictor &, is returned to the yield surface in successive steps. At every step,
the updated stresses o{;; are computed by projecting the previous iteration a ), onto the
trace on the plane ¢ = 0 of a linear approximation to the yield function at oD or "cut". In the
limit, such cuts become tangent to the. yield surface and plastic consistency is recovered at a

quadratic convergence rate.

Figure 4. Geometric aspects of. the elastic-plastic splitting methodology. (a) The elastic -
predictor takes place under constant intermediate configuration and the incremental deforma-
tions F, strain the body elastically. (b) The plastic corrector leaves the -updated. spatial
configuration invariant while the intermediate configuration relaxes plastically.

Figure 5. Thick wall cylinder subjected to internal pressure. Stress component o, VErsus
inner radius a in current configuration. : :

Figure 6. Thick wall cylinder. Distribution of the radial stress component o, over thick-
ness in current configuration. ‘
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Figure 2. Geometric interpretation for the case of perfect plasticity of a general return
mapping algorithm based on an elastic-plastic split of the constitutive equations. The elastic
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terms of the local metric defined by the elastic tangent moduli.
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Figure 3. Numerical implementation of the return mapping algorithm shown in Fig. 2.
The elastic predictor &, is returned to the yield surface in successive steps. At every step,
the updated stresses a,f’fl” are computed by projecting the previous iteration a,f’;,)l onto the
trace on the plane ¢ = 0 of a linear approximation to the yield function at o !, or "cut". Inthe
limit, such cuts become tangent to the yield surface and plastic consistency is recovered at a

quadratic convergence rate.



(b) Plastic corrector \

Figure 4. Geometric aspects of the elastic-plastic splitting methodology. (a) The elastic
predictor takes place under constant intermediate configuration and the incremental deforma-
tions F, strain the body elastically. (b) The plastic corrector leaves the updated spatial
configuration invariant while the intermediate configuration relaxes plastically.
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