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Abstract

An essential step toward reconstructing pathogen transmission and answering epidemiologically relevant questions from genomic data is
obtaining pairwise genetic distance between infections. For recombining organisms such as malaria parasites, relatedness measures quantify-
ing recent shared ancestry would provide a meaningful distance, suggesting methods based on identity by descent (IBD). While the concept
of relatedness and consequently an IBD approach is fairly straightforward for individual parasites, the distance between polyclonal infections,
which are prevalent in malaria, presents specific challenges, and awaits a general solution that could be applied to infections of any clonality
and accommodate multiallelic (e.g. microsatellite or microhaplotype) and biallelic [single nucleotide polymorphism (SNP)] data. Filling this
methodological gap, we present Dcifer (Distance for complex infections: fast estimation of relatedness), a method for calculating genetic dis-
tance between polyclonal infections, which is designed for unphased data, explicitly accounts for population allele frequencies and complex-
ity of infection, and provides reliable inference. Dcifer’s IBD-based framework allows us to define model parameters that represent interhost
relatedness and to propose corresponding estimators with attractive statistical properties. By using combinatorics to account for unobserved
phased haplotypes, Dcifer is able to quickly process large datasets and estimate pairwise relatedness along with measures of uncertainty. We
show that Dcifer delivers accurate and interpretable results and detects related infections with statistical power that is 2–4 times greater than
that of approaches based on identity by state. Applications to real data indicate that relatedness structure aligns with geographic locations.
Dcifer is implemented in a comprehensive publicly available software package.
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Introduction
Monitoring, effective control, and ultimately elimination of ma-
laria can be accelerated by understanding the dynamics of ma-
laria transmission including evaluation of interventions,
identification of sources and sinks, and determining the drivers
of sustained transmission. Given the substantial genetic diversity
of malaria parasites, genomic data have the potential to illumi-
nate important aspects of epidemiology (World Health
Organization 2019). Compared to viruses where mutations are
the main source of variation and can be used directly to make
temporal inferences, reconstructing transmission for recombin-
ing organisms with lower mutation rates requires a different ap-
proach. Since genetic recombination between malaria parasites
occurs in the mosquito during person-to-person transmission,
genetic relatedness can provide information on their shared an-
cestry and therefore transmission epidemiology at relevant time-
scales. Consequently, pairwise genetic distance as a measure of
relatedness between infections may be more useful and detailed
for answering epidemiologic questions than metrics based on
comparison between populations (Taylor et al. 2017; Wesolowski
et al. 2018; Chang et al. 2019; Tessema et al. 2019). By assessing
how closely related individual infections are, pairwise distance

can also provide answers to questions such as whether particular
infections were more likely to have been acquired locally or
imported.

Due to coinfection and super-infection, individuals in endemic
areas are often infected with multiple genetically distinct clones
simultaneously. These polyclonal infections are the rule rather
than the exception for Plasmodium falciparum in many endemic
areas, even in relatively low transmission settings of sub-
Saharan Africa (Roh et al. 2019); polyclonality may be even more
common for Plasmodium vivax (Koepfli et al. 2011; White et al.
2018). Assessing genetic relatedness between polyclonal infec-
tions is more complicated both conceptually and methodologi-
cally than doing so for individual parasites. Obtaining phased
genotypes of individual parasites from polyclonal infections
would present a potential solution, but outside of single-cell se-
quencing this currently requires the use of statistical methods
which are computationally intensive and may have limited accu-
racy in the absence of informative reference genomes, particu-
larly when more than 2 clones are present (Zhu et al. 2019). Even
with phased genotypes, a unified summary of relatedness might
be useful as a distance measure, so that it could be compared
across pairs of infections that may be either monoclonal or have
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a higher complexity of infection (COI). Incorporating multiallelic
genetic data, i.e. diverse loci with more than 2 variants, can im-
prove the estimation of relatedness between monoclonal infec-
tions (Taylor et al. 2019) and may offer an even greater
improvement over biallelic loci for polyclonal infections
(Tessema et al. 2022). Fortunately, current technologies make it
feasible to efficiently amplify and sequence multiple diverse
regions of the Plasmodium genome, generating multiallelic data
for this purpose (Lerch et al. 2017; Aydemir et al. 2018; Tessema
et al. 2022; LaVerriere et al. 2022).

Much of the epidemiologically useful information contained
in relatedness measures lies in detecting shared ancestry; there
is therefore interest in estimating the proportion of genomes that
are identical due to descent. Currently available methods based
on identity by descent (IBD) for Plasmodia are developed for mono-
clonal infections or are adapted from human genetics: hmmIBD
is designed for monoclonal infections and can incorporate multi-
allelic as well as biallelic loci (Schaffner et al. 2018); isoRelate is
able to accommodate polyclonal infections (Henden et al. 2018),
but is limited to biallelic loci and has unclear applicability to
infections with COI >2 since it is based on the diploid model.
With no existing IBD-based methods to infer a degree of shared
ancestry from polyclonal infections using multiallelic data, vari-
ous suboptimal workarounds are generally employed. For exam-
ple, some studies have attempted to infer a “dominant strain”
from polyclonal infections using within host allele frequencies,
while others have excluded polyclonal infections from the analy-
sis altogether. Depending on the proportion of infections that are
polyclonal, such procedures may grossly underutilize data or in-
troduce bias to the analysis due to informative missingness.
Alternatively, a simple identity by state (IBS) approach has been
used (Pringle et al. 2019; Tessema et al. 2019; Atuh et al. 2021); it is
convenient and fast but has extensive drawbacks as it produces
similarity measures that are not easy to interpret and address re-
latedness only indirectly (Taylor et al. 2019).

To fill the methodological gap, we introduce Dcifer (distance
for complex infections: fast estimation of relatedness), a method
employing IBD to estimate the level of common ancestry between
polyclonal samples. It allows for unphased multiallelic data such
as microsatellites or microhaplotypes as well as SNPs, explicitly
takes into account COI and population allele frequencies, and
does not require densely spaced or linked markers. Focusing on
interhost relatedness, we developed a working model that
allowed us to define an estimator with desirable statistical prop-
erties and formal inference. As the method provides a probabilis-
tic solution to the multitude of possible underlying phased
genomes, we used a unified mixed radix incrementing combina-
torial algorithm for its implementation as a comprehensive R
software package (Gerlovina 2022): github.com/EPPIcenter/dcifer
(accessed 2022 Aug 25). Finally, we assessed the performance of
Dcifer for estimating relatedness between P. falciparum infections
using simulations and empirical data.

Methods
The working model we developed is designed to address interhost
relatedness and includes assumptions that reduce a complex re-
alistic dependence structure to a simpler model that still allows
us to formally define and estimate the quantity of interest with-
out introducing significant bias. The main assumptions can be
summarized as the absence of linkage disequilibrium and intra-
host relatedness. As the observed data are several levels removed
from the random variables we are interested in, the likelihood for

the model accounts for various possible unobserved combina-
tions (phased haplotypes) with multinomial-based probabilities
and the use of combinatorics; consequently, numerical methods
are used to find a maximum likelihood estimate. The likelihood
incorporates population allele frequencies and COI of both sam-
ples, and the estimation process explicitly accounts for the fact
that alleles present in both infections may match by chance (i.e.
be identical by state but not by descent).

Consider 2 infections with COI of nx, ny, and a panel of T multi-
allelic markers. At each locus t, t ¼ 1; . . . ;T, there is a set At ¼
fat;1; . . . ; at;Ktg of possible alleles. For convenience, we can
arbitrarily order the alleles and map them to the corresponding
population allele frequencies p ¼ ððp1Þ; . . . ; ðpTÞÞ ¼ ððpt;kÞKt

k¼1Þ
T
t¼1.

We assume that the underlying population allele frequencies are
the same for both infections.

IBD model for 2 haplotypes
To build up a model for relatedness between polyclonal infec-
tions, we first consider 2 haplotypes. Let sequences of random
variables X ¼ ðX1; . . . ;XTÞ; Y ¼ ðY1; . . . ;YTÞ represent these haplo-
types, and let ðIBD1;. . .;IBDTÞ be a sequence of independent identi-
cally distributed random variables, where IBDt �BernoulliðrÞ and
parameter r describes the level of relatedness of the 2 haplotypes
(Taylor et al. 2019). Let Xt � Pt, where Pt is a categorical distribu-
tion with values in At and corresponding probabilities
pt;1; . . . ; pt;Kt ; Xt ? IBDt; let Yt be a random variable such that

Yt ¼ Xt if IBDt ¼ 1
Yt � Pt if IBDt ¼ 0:

�

Note that Xt and Yt are interchangeable in this setup, and the
joint distribution of Xt and Yt (marginal and conditional on IBDt)
would not change if they were switched. While IBDt are i.i.d., (Xt, Yt)
are marginally independent but not identically distributed since Pt

is different for each t.
We can also define a random variable IBSt � 1ðXt ¼ YtÞ, with

PðIBSt ¼ 1Þ ¼ PðIBDt ¼ 1Þ þ PðXt ¼ Yt; IBDt ¼ 0Þ. In this model,
realizations of X and Y could be observed (e.g. if they represent
monoclonal infections and there is no genotyping error) but IBD’s
are unobservable. In contrast, IBSt are directly observed if X and Y
are observed.

Working model for polyclonal infections
Let an nx � T matrix X and ny � T matrix Y represent 2 polyclonal
infections with COI of nx and ny, with rows of the matrices refer-
ring to haplotypes and columns to loci. Thus, Xi ¼ ðXi;1; . . . ;Xi;TÞ,
is an i’th haplotype of the first infection, and a column
X1;t; . . . ;Xnx ;t is a sequence of random variables with values in At

representing alleles for all the haplotypes at a locus t. Let Sx;t ¼
fX1;t; . . . ;Xnx ;tg denote a multiset (a collection of elements that are
not necessarily distinct) of unordered elements of a t’th column
of X and let Ux;t ¼ SuppðSx;tÞ ¼ fak : ak 2 Sx;tg be a set of unique ele-
ments in that column; Sy;t; Uy;t are defined similarly. For realiza-
tions of Sx;t and Ux;t we will use notation sx;t and ux;t (sx;t and sy;t

are not observed, but ux;t and uy;t are). The model assumes no
genotyping error, and the sequences of sets ux ¼ ðux;1; . . . ;ux;TÞ
and uy ¼ ðuy;1; . . . ;uy;TÞ are observed data, for which Dcifer is
designed.

There are
nx þ ny

2

� �
pairs of malaria strains that can be

related. To differentiate IBDt and parameters of their distribu-

tions for different pairs, let IBDxi ;xj ;t; IBDyi ;yj ;t, and IBDxi ;yj ;t refer to a

pair within first infection, a pair within second infection, and a
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between-host pair, respectively, and, similarly, let rxi ;xj ; ryi ;yj , and

rxi ;yj denote corresponding relatedness parameters. If we are only

interested in between-host relatedness (which may be the case

for many practical applications), we might formulate the goal as

“estimating interhost relatedness adjusted for intrahost

relatedness,” which would condense
nx þ ny

2

� �
parameters into

some lower-dimensional summary. Usefulness of adjusting for

intrahost relatedness can be illustrated by considering a case

where an extra haplotype Xnxþ1, very closely related to an existing

one (say, X1, with rx1 ;xnxþ1 ¼ 0:99), is added to one of the infections.

That would result in essentially doubling X1’s contributionPny

j¼1 rx1 ;yj to the sum
Pnx

i¼1

Pny

j¼1 rxi ;yj of all interhost relatedness

parameters, as well as increasing COI (recall that nx is defined as a

number of distinct haplotypes). With such goal as our scientific

question, we introduce a simplifying assumption of no intrahost

relatedness, which projects a realistic model of unconstrained

intrahost and interhost relatedness parameters onto a much

smaller model space and allows us to make the problem tractable

while aiming to arrive at the same summary estimate as we would

if we were able to estimate all the parameters in a bigger model.
For each pair of strains in 2 infections, e.g. i’th strain in the

first sample and j’th in the second, let Xi;t; Yj;t, and IBDxi ;yj ;t be the
random variables as defined in IBD Model for 2 Haplotypes. Then,
for the working model for polyclonal infections, we introduce the
following assumptions:

1) rxi ;xj ¼ 0 for all i; j ¼ 1; . . . ; nx; i 6¼ j, ryi ;yj ¼ 0 for all i; j ¼
1; . . . ; ny; i 6¼ j (no intrahost relatedness) and

2) IBDxi ;yj ;t ? IBDxk ;yl ;t if i 6¼ k or j 6¼ l for all t ¼ 1; . . . ;T (all inter-
host IBD variables are independent at a given locus).

An important implication of these two assumptions is that
any strain in one sample can be related to at most one strain in

another:
Pny

j¼1 1ðrxi ;yj > 0Þ � 1 8i ¼ 1; . . . ; nx and
Pnx

i¼1 1ðrxi ;yj > 0Þ �
1 8j ¼ 1; . . . ; ny. This can be proven by contradiction: since
IBDx1 ;y1 ;t ? IBDx2 ;y1 ;t; PðIBDx1 ;x2 ;t ¼ 1Þ � PðIBDx1 ;y1 ;t ¼ 1; IBDx2 ;y1 ;t ¼ 1Þ
¼ rx1 ;y1 rx2 ;y1 . If rx1 ;y1 > 0 and rx2 ;y1 > 0, then rx1 ;x2 > 0, which
contradicts assumption 1. For further discussion on the model
assumptions, see Supplementary Section 1 in File_1.

Since we can order strains within an infection arbitrarily, and
in light of the constraints of the model, we order the haplotypes
in 2 infections in such a way that X1 can only be related to Y1, X2

to Y2, and so on (Fig. 1). In addition, we introduce M—the number
of strain pairs that can be related, M ¼ 1; . . . ;minðnx; nyÞ. Then,
for brevity, we suppress some of the subscripts and use r1; . . . ; rM

for rx1 ;y1 ; . . . ; rxM ;yM and IBD1;t; . . . ; IBDM;t for IBDx1 ;y1 ;t; . . . IBDxM ;yM ;t

(note that parameters for all the other IBD variables are zero).
The goal of Dcifer is to estimate parameters of the joint distribu-
tion of IBD1;t; . . . ; IBDM;t. Let r ¼ ðr1; . . . ; rMÞ denote an estimand,
and r̂ ¼ ð̂r1; . . . ; r̂MÞ—its maximum likelihood estimator (MLE):

r̂ ¼ arg max
r2½0;1�M

Lðr; ux;uy;nx;ny; pÞ: (1)

At each locus t, the likelihood Lðr; ux;uy; nx; ny; pÞ needs to ac-
count for all the possible combinations of nonunique alleles in
both samples (multiple haplotypes will have the same allele if
COI is greater than the number of unique alleles). For one sample,
this is done by considering a set of all multisets with given sup-
port and cardinality (all the Sx;t that could have produced Ux;t, see
Fig. 1); we denote a set of all multisets sx;t such that Suppðsx;tÞ ¼
ux;t and jsx;tj ¼ nx by Qx;t. PðSx;t ¼ sx;tÞ can be calculated using a
probability mass function of a multinomial distribution: the
number of permutations of sx;t is equal to a multinomial coeffi-
cient (“assigning” alleles in sx to strains, or going from Sx;t to
ðX1;t; . . . ;Xnx ;tÞ), and allele frequencies correspond to event proba-
bilities. Multiplicities of the multiset’s elements at;k 2 At, or the
numbers of strains having the same allele, are multinomial ran-
dom variables. Adopting a short notation for this key component

Fig. 1. Working model presented at a single locus t: an example featuring nx ¼ 4, ny ¼ 3, and M¼ 3. Colors of the circles represent alleles; 2 clones in
each infection have the same allele. Sxy;t ¼ Sx;t \ Sy;t is a multiset of shared (nonunique) alleles at a locus t.
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of the likelihood, let gðsðnÞ; n; ðpÞÞ denote a probability mass func-
tion for a multinomial distribution Multinomðn; p1; . . . ; pKÞ, where
sðnÞ is a multiset of cardinality n (jsðnÞj ¼ n) with elements from K
categories, and ðpÞ ¼ ðp1; . . . ; pKÞ are probabilities for these catego-
ries; set gð1; 0; ðpÞÞ ¼ 1. Next, for given sx;t and sy;t, we divide their
elements into 3 groups: shared alleles that are identical by de-
scent (say sðmÞ), remaining alleles in sx;t (sx;tnsðmÞ), and remaining
alleles in sy;t (sy;tnsðmÞ). The probability of each of these multisets
is similarly calculated using multinomial distributions.
Supplementary Section 2 in File_1 provides more details and
builds up the likelihood from M¼ 1 and M ¼ 2. For a general case,

Lðr; ux;uy; nx; ny; pÞ ¼
YT
t¼1

X
sx2Qx;t

X
sy2Qy;t

X1

IBD1;t¼0

� � �
X1

IBDM;t¼0

Y
fi:IBDi;t¼1g

ri

" #

Y
fj:IBDj;t¼0g

ð1	 rjÞ
" #

P Sx;t ¼ sx; Sy;t ¼ sy j
XM
l¼1

IBDl;t

 !
;

(2)

where

P Sx;t ¼ sx; Sy;t ¼ sy j
XM
l¼1

IBDl;t ¼ m

 !

¼

0 if m > jsxyjX
sðmÞ
sxy

gðsðmÞ; m; ðptÞÞ

�gðsxnsðmÞ; nx 	m; ðptÞÞ
�gðsynsðmÞ; ny 	m; ðptÞÞ otherwise

8>>>>><
>>>>>:

and sxy ¼ sx \ sy.
When r1 ¼ r2 ¼ � � � ¼ rM ¼ r, the likelihood reduces to

Lðr; ux;uy; nx; ny; pÞ ¼
YT
t¼1

X
sx2Qx;t

X
sy2Qy;t

XM
m¼0

PBinomðm; M; rÞ

P Sx;t ¼ sx; Sy;t ¼ sy j
XM
l¼1

IBDl;t ¼ m

 !
;

(3)

where PBinomðm; M; rÞ ¼ M
m

� �
rm ð1	 rÞðM	mÞ.

While IBD1;t; . . . ; IBDM;t are independent, r̂1; . . . ; r̂M are not. This
dependence stems from the fact that we do not observe ordered
alleles at each locus (or, in other words, phased haplotypes). That
also provides intuition for why rtotal ¼

PM
i¼1 ri is estimated more

accurately than individual ri’s : estimating
PM

i¼1 IBDi;t at a locus t
is easier than estimating an actual binary sequence
ðIBD1;t; . . . ; IBDM;tÞ. Another useful observation is that the order of
parameter values in r does not affect the value of
Lðr; ux;uy; nx; ny; pÞ, which can be taken into account when the
likelihood is evaluated over a grid of r 2 ½0; 1�M.

Implementation
Calculating the likelihood in (2) requires solving a number of
combinatorial problems: finding all the collections of nonunique
alleles at a locus that are concordant with observed alleles and
COI, finding all the multisets included in a given multiset of
shared nonunique alleles, and finding all the possible binary
sequences with given constraints for IBD variables. These prob-
lems are solved with a unified mixed radix incrementing algo-
rithm (https://github.com/innager/mirsa/tree/v1.0.0; accessed
2022 Aug 25) (Supplementary File_2), which is an extension of
an algorithm to generate all n-tuples in (Knuth 2011). As the cal-
culation traverses the combinations described above, multiple

r ¼ ðr1; . . . ; rMÞ sequences can be processed at each step, and thus
the likelihood for a range of parameter values can be calculated
in a single pass. With bounded parameter space, this allows for
an efficient way to find MLE by simply calculating the likelihood
for an M-dimensional grid of a desired coarseness. The resulting
log-likelihood curve or surface can also be useful for inference,
especially for procedures based on a likelihood ratio approach,
such as testing various hypotheses or determining confidence
regions. For a special case of M¼ 1, the log-likelihood can be cal-
culated using Supplementary Equation (2) in File_1, which also
admits fast calculation of the score and consequently numerical
methods of solving the likelihood equation (Newton’s method
adapted for bounded parameter space is used in the package).

Inference
Along with an estimate of r, Dcifer provides a log-likelihood func-
tion, which can serve as a basis for various inferential procedures
(for some intuition on the shape of that log-likelihood function,
the effect of COI and population allele frequencies on it, and
implications for the inference, see Supplementary Section 3 in
File_1). In our model, sample size is T, but different loci do not
provide the same amount of information (recall that ðXi;t;Yj;tÞ; t ¼
1; . . . ;T are independent but not identically distributed); their
contribution can be associated with different measures, e.g. het-
erozygosity. Given these measures and the complexity of the esti-
mator, methods relying on asymptotic approximations should be
approached cautiously; still, as the sample size increases, preci-
sion of estimation increases as well.

For hypothesis testing and confidence intervals (CI)/regions,
we consider common inferential approaches as applied to Dcifer:
asymptotic normality, likelihood-ratio statistics, and resampling
methods. There are common challenges that affect all 3
approaches: bounded parameter space ½0; 1�M with edge cases not
only included but conceptually important, such as a null hypoth-
esis H0 : r1 ¼ � � � ¼ rM ¼ 0 of infections being unrelated; for other
cases, sampling distributions for different (even neighboring) pa-
rameter values on the interior of the support could be quite dif-
ferent for panels with even fairly large T. Still, some approaches
might be better suited for Dcifer, and some may be chosen on the
basis of convenience and computational efficiency. For Wald-
type CI, observed Fisher information can be easily calculated nu-
merically (and arguably preferred to expected Fisher information;
Efron and Hinkley 1978); likelihood-ratio-based CI, while asymp-
totically equivalent to Wald’s (1943), are more robust as they are
invariant to parameter transformation that could be used to
make the log-likelihood function approximately quadratic at MLE
(Beale 1960; Cox and Hinkley 1979, pp. 342–343; Cook and
Weisberg 1990; Vander Wiel and Meeker 1990; Meeker and
Escobar 1995). Resampling methods include bootstrap and gener-
ating a null distribution for hypothesis testing. While there are
many advantages this approach provides for finite sampling dis-
tributions not yet approaching normality, there is a caveat: if a
centered sampling distribution at MLE is not close enough to that
at the true value, the inference will be problematic. In addition,
inverting quantiles of a bootstrap distribution for CI endpoints
can lead to violating the bounds of the parameter space (see
Supplementary Section 4 in File_1), as can Wald CI. Simulated
null distributions do not suffer from this problem but still rely on
various assumptions and might be sensitive to misspecifications
as demonstrated in the Results. In contrast, likelihood-ratio confi-
dence regions respect parameter bounds and do not require any
additional model assumptions for hypothesis testing.
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Likelihood-ratio-based inference is based on Wilks’ theorem
(Wilks 1938) and uses the likelihood ratio test statistic, which in the
context of Dcifer hypothesis testing with H0 : r ¼ r0 can be written
as 2 logðLðr̂; ux;uy; nx; ny; pÞ=Lðr0; ux;uy; nx; ny; pÞÞ ¼ 2ð‘ðr̂Þ 	 ‘ðr0ÞÞ,
where ‘ðrÞ ¼ logðLðr; �ÞÞ, and is approximated by chi-squared distri-
bution v2ðMÞ with M degrees of freedom. The approximate 1	 a

confidence region consists of the values

f~r : ‘ð~rÞ � ‘ðr̂Þ 	 1=2 qM;1	ag;

where qM;1	a is a ð1	 aÞ’th quantile of v2ðMÞ. As the Wilk’s theo-
rem does not apply to border cases, we specifically address these
important cases (for which the likelihood-ratio test is still the
most powerful; Neyman and Pearson 1933) and compare the cor-
responding distribution of the likelihood ratio statistic with v2ðMÞ
that no longer approximates it. First, the test at the boundaries is
1-sided while the chi-squared distribution implies 2-sided tests.
Accounting for that would mean dividing a P-value obtained
from the chi-squared distribution by 2 or finding a corresponding
critical value for the significance level a. Second, it turns out that
even with this adjustment, the resulting P-value is still somewhat
conservative, and, as shown in the Results, the method has excel-
lent error rate control.

Estimating the number of related strain pairs and
rtotal

Parameters of the working model include nx, ny, and p. M, the
length of r, can be considered a nuisance parameter. In addition,
let M0 ¼

PM
i¼1 1ðri > 0Þ be a number of positively related strain

pairs; unlike M, M0 can be a quantity of interest. The estimator r̂
in Equation (1) assumes that the model is constrained by given
values of nx, ny, p, and M; the likelihood is calculated using these
values. However, while nx, ny, and p are “external” to r and are
provided or obtained through other processes, M is inherent to re-
latedness between 2 infections. Thus, here, we consider a less
constrained model where M is not given. In this case, a trivial so-
lution to estimating r would be to set M ¼minðnx; nyÞ since r’s as-
sociated with different M0 � M � minðnx; nyÞ will only differ in
the number of zeros (ri ¼ 0). If we want to estimate M0 or
rtotal ¼

PM
i¼1 ri, which are functions of r, they can be similarly

obtained from r̂ as M̂
0 ¼

PM
i¼1 1ð̂ri > 0Þ and r̂total ¼

PM
i¼1 r̂ i.

In practical applications, this trivial solution can incur high-
computational cost for higher minðnx; nyÞ, and therefore we pro-
pose alternative estimators ~M

0
, ~r, and ~rtotal that use an iterative

procedure with underlying calculation of r̂ at each step. The first
step is to set M ¼ 1 and calculate r̂, then at each consecutive step
increment M and recalculate r̂ until it contains one zero
(
PM

i¼1 1ð̂ri ¼ 0Þ ¼ 1) or until M ¼minðnx; nyÞ. Accept r̂ obtained at
the final step as ~r, with ~rtotal ¼

PM
i¼1 ~ri and ~M

0 ¼
PM

i¼1 1ð~ri > 0Þ. If
rtotal, rather than ðr1; . . . ; rMÞ, is of main interest, the computation
time can be cut even further by assuming r1 ¼ � � � ¼ rM ¼ r and
using Equation (3) to calculate the likelihood. In this case, we
propose yet another set of estimators ~M0 eq and ~rtotal;eq, where r̂ is
calculated for all M ¼ 1; . . . ;minðnx; nyÞ, and ~M0 eq is the value of M
that produced the highest maximum likelihood. Then
~rtotal;eq ¼ ~M0 eqr̂ 0, where r̂ 0 is an MLE at ~M0 eq.

Simulations and comparison with an IBS metric
Our simulations are based on previously published SNP and
microhaplotype panels (Daniels et al. 2008; Tessema et al. 2022;
Jacob et al. 2021); allele frequencies for these panels were
obtained from previously analyzed empiric datasets. The SNP
panels have 23 and 101 loci with 2 alleles per locus, and the

microhaplotype panel has 91 loci with the number of alleles at
each locus ranging between 3 and 95. To assess the performance
of Dcifer with varying number of multiallelic loci, we used allele
frequencies for the 91-loci panel and repeated them for
consistency (thus creating synthetic 182-loci, 273-loci panels, and
so on).

To include genotyping errors in simulations, we devised a
“miss-and-split” model with parameters � and k:

1) False negatives: one of k present alleles (drawn with proba-
bilities 1=k) has zero probability of being missed; the
remaining k	 1 alleles can be missed with probability �. Let
K be a number of alleles remaining present after this step;
then EðKÞ ¼ 1þ ðk	 1Þð1	 eÞ.

2) False positives: draw a number Nadd � PoisðkÞ of added
alleles (“splitting” event) for each nonmissing allele; subse-
quently draw Nadd alleles from K	 1 alleles with replace-
ment. In the final “observed” data, an allele is considered
present if selected by at least one of the splitting events.

Note that PðNadd � 2Þ is very small for reasonably small k’s.
For analysis procedures that involve estimating COI and popu-

lation allele frequencies prior to Dcifer, we used naı̈ve COI esti-
mation with a locus rank c that depended on the number of loci
(COI determined by a locus with c’th greatest number of detected
alleles) for multiallelic panels, and THE REAL McCOIL method for
biallelic SNP panels (Chang et al. 2017). Population allele frequen-
cies were estimated from simulated datasets of 400 samples,
where relatedness was induced in 10% of the pairs and COI for
the rest of the samples was generated with truncated Poisson dis-
tribution with parameter k¼ 3. We used COI-adjusted estimation
(see Supplementary Section 5 in File_1), which is important for
polyclonal infections; failure to adjust for COI can lead to overes-
timating heterozygosity and, consequently, relatedness parame-
ters. Most simulations consisted of 10,000 pairs of related
infections for a given COI and r combination.

To compare Dcifer performance with an IBS approach, we
used the Jaccard similarity coefficient (Jaccard 1912) as an exam-
ple since it is a commonly used statistic, which is conceptually
simple and fast, and which performs similarly to the other IBS
measures we have considered. For this calculation, loci data for a
sample (each locus represented by a binary sequence with ele-
ments indicating if an allele has been detected or not) were
concatenated into a single binary sequence of length j ¼

PT
t¼1 Kt,

where Kt is the number of possible alleles at a locus t. Then
Jaccard similarity Jðv;wÞ between 2 sequences v ¼ ðv1; . . . ; vjÞ and
w ¼ ðw1; . . . ;wjÞ that represent 2 infections was calculated as

Jðv;wÞ ¼
Pj

i¼1 1ðvi þwi ¼ 2ÞPj
i¼1 1ðvi þwi > 0Þ :

Results
The main goal of Dcifer is to estimate parameters describing re-
latedness between infections, and this estimation requires values
of the other parameters in the model. These external parameters
represent COI (nx, ny) and population allele frequencies (p), which
can be known (e.g. in simulations), estimated from data, or other-
wise specified. Dcifer is implemented in a software package that
takes raw data on the alleles detected at each locus (biallelic or
multiallelic) in Plasmodium infections, allowing for missing data,
along with COI and population allele frequencies. In simulations,
we assess the performance of Dcifer when data have no
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genotyping error and COI and p are known, as well as in the pres-
ence of genotyping error with COI and p estimated from these
data. We also evaluate how sensitive Dcifer is to misspecification
of these external quantities and to assumption violations. We
start with a case when only one pair of strains can be related
(M¼ 1), since it can be used to quickly identify related infections
in a large dataset, and later proceed to the general case. Finally,
we apply Dcifer to analysis of real data, where COI and allele fre-
quencies are estimated from the data.

Dcifer produces accurate and interpretable
estimates of relatedness
Unlike IBS metrics that simply measure similarity between
infections comparing detected alleles, Dcifer aims to produce
more interpretable results by estimating parameters that rep-
resent IBD and thus separating shared ancestry and chance as
underlying reasons for alleles matching between 2 infections.
To evaluate the performance of this method in comparison to
IBS approach (we used Jaccard similarity coefficient as an ex-
ample), we simulated genetic data for infection pairs with dif-
ferent degrees of relatedness (induced on a single pair of
strains between 2 infections) and COI, based on previously

published SNP and microhaplotype panels (Daniels et al. 2008;
Tessema et al. 2022; Jacob et al. 2021). Across various values of
COI, Dcifer estimates were concentrated around the true val-
ues of the parameter while IBS results were not (Fig. 2, shown
for a panel of 91 microhaplotypes with no genotyping error and
known COI and allele frequencies). As COI increased, Dcifer
estimates became more variable but remained centered
around the true values and maintained some degree of separa-
tion, whereas IBS results shifted and overlapped considerably
more. For these simulations, separation between results for
completely unrelated (r¼ 0) and related infections, quantified
in receiver operating characteristic (ROC) curves, indicated
considerable gain in accuracy by Dcifer compared to the IBS
metric across the range of COI, especially for lower degrees of
relatedness (Supplementary Fig. 1 in File_1). For example,
Dcifer estimates of sibling-level relatedness (r¼ 0.5) remained
readily distinguishable from those of unrelated infections even
for fairly high COI.

When the task of detecting related infections is approached in
practice, there are additional issues to be considered because nei-
ther COI nor population allele frequencies are known, genetic
data often contain genotyping errors, and the extent of these

Fig. 2. Densities of Dcifer relatedness estimator r̂ and IBS similarity metric results obtained from data simulated using a panel of 91 microhaplotypes
(Tessema et al. 2022). Simulations were performed for 5 values of r and for COI combinations ranging between 1 and 5; true values of COI and
population allele frequencies were used for Dcifer. Upward arrows indicate highly concentrated distributions with density values extending above the
plot range (note: y-axis scales are different for the 2 methods).
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errors is unknown. Supplementary Fig. 2 in File_1 illustrates how
results changed when genotyping error was included in the simu-
lations, and estimates of COI and population allele frequencies,
and not their true values, were used as inputs to Dcifer. IBS
results shifted to the left more or less uniformly; since distribu-
tions for different values of r were so tightly concentrated and
close together, apparently small shifts were significant compared
to the differences between these distributions. Dcifer estimates
also shifted to the left, but, relative to differences in sampling dis-
tributions, the shifts were smaller than those for IBS. The fact
that the shifts were more pronounced for larger values of r is
explained by genotyping errors breaking up some of the related-
ness between infections.

Greater power of hypothesis tests using Dcifer vs.
IBS
One way of detecting related infections along with a measure of
uncertainty (e.g. P-value) is to compare Dcifer relatedness esti-
mates or IBS similarity results with their corresponding null dis-
tributions (H0 : r ¼ 0), which can in theory be obtained by
simulating a large number of unrelated infections. To evaluate
the performances of Dcifer and the IBS metric, we calculated
false-positive rates (FPR) and power of tests with significance
level a ¼ 0:05 for different types of genetic data across a range of
COI. Genetic data were simulated with genotyping errors; they
were incorporated into simulated “null” distributions as well.
Distributions for r¼ 0 are different for different COI and therefore
a separate null distribution was generated for each COI pair com-
bination; the effect of COI on such distributions was substantial
for IBS (Supplementary Fig. 3 in File_1). Relatedness estimates for
each pair of infections were then compared to a rejection cut-off
determined by a null distribution corresponding to their esti-
mated COI, and FPR and statistical power were subsequently cal-
culated. In addition to the complexity and computational costs
associated with generating a null distribution, this approach
relies on a number of assumptions such as COI, allele frequen-
cies, and the error model and its parameters, which are all sub-
ject to misspecification.

As a welcome alternative, Dcifer offers another inferential ap-
proach based on the likelihood ratio, which does not require any
additional information (i.e. does not require generating a null dis-
tribution) and has essentially no computational overhead.
Figure 3 compares hypothesis testing results for IBS, using simu-
lated reference distributions, and Dcifer, using likelihood-ratio P-
values adjusted for 1-sided tests. For both methods, FPR was
mostly at or below the nominal significance level a across differ-
ent simulations of COI and genotyping panels, with Dcifer close
to a. Statistical power, however, varied considerably. As expected,
higher values of relatedness were detected with greater power,
increasing the number or diversity of loci increased power, and
higher COI led to lower power. Across all simulations, Dcifer con-
sistently demonstrated greater power to detect related infections
than the IBS metric, with differences particularly notable for
polyclonal infections. For example, with a 91 microhaplotype
panel, the power to detect half-siblings (r¼ 0.25) in a pair of
infections with COI of 2 was 0.81 for Dcifer and 0.43 for the IBS
metric; with 455 microhaplotypes and COI of 5 that power was
0.88 and 0.22, respectively. Results for an alternative scenario
when a is a function of COI, which might be useful if error rate
control on the scale of parasite strain pairs rather than infection
pairs is desired, are presented in Supplementary Fig. 4 in File_1.
While Supplementary Figs. 1 and 2 in File_1 would suggest that
there is still some separation between distributions for different

values of r for the IBS metric results, which would be expected
to improve with increasing the number of loci, its performance
was remarkably poor, having very low power for larger COI and
r< 0.5 even with highly informative panels. This reflects the fact
that for tightly concentrated distributions of IBS results, the dif-
ference between cut-offs associated with different assumed null
distributions is critical, and consequently, misspecification of
COI or an error process had a deleterious effect on either FPR
or power (Supplementary Fig. 3 in File_1). The likelihood-ratio-
based approach performed very similarly to the one based on
null distributions for Dcifer, evidencing this as a preferred
approach for the reasons described above (Supplementary Fig. 5
in File_1).

Dcifer provides likelihood-ratio-based CI
The Dcifer likelihood-ratio-based approach allows for calculating
M-dimensional confidence regions (where M is the number of re-
lated pairs)—or, in a case when only one pair of strains is as-
sumed to be related between 2 infections, CI. Figure 4 shows CI’s
for a range of true r values and COI. Infections were simulated us-
ing microhaplotype panels with various number of loci. As
expected, CI’s were narrower for panels with more loci. In gen-
eral, the intervals were narrower near endpoints (r¼ 0 and r¼ 1)
and wider in the midrange. Interestingly, the least COI in the pair
(minðnx; nyÞ) had a greater effect on the CI than the sum of COI
(nx þ ny); this can be seen in more rapid widening of the intervals
from left to right than from top to bottom of the figure. With large
numbers of diverse loci, CI stayed narrow even for higher COI.
Coverage for these CI was around 1	 a ¼ 0:95, and consistently
higher for endpoints, indicating that CI for these endpoints were
conservative, even taking into account the 1-sided nature of such
intervals (Supplementary Fig. 6 in File_1; also demonstrated by
FPR in Fig. 3).

Allowing for multiple pairs of strains to be related
So far we have only presented results for a single related pair of
strains between 2 infections (M¼ 1) regardless of COI. When we
allow that multiple pairs of strains may be related, Dcifer produ-
ces a corresponding number of estimates—one for each pair. To
accurately estimate multiple relatedness parameters without
any additional assumptions, a large number of diverse loci is
needed; otherwise, there is a lot of variation in the individual esti-
mates (see an example in Supplementary Fig. 7 in File_1).
However, while the estimation of individual relatedness parame-
ters was challenging, their sum rtotal was estimated more accu-
rately even with a lower number of loci (which can be seen in the
contour plots of Supplementary Fig. 7 in File_1). Supplementary
Fig. 8 in File_1 shows likelihood surfaces for 2-dimensional
parameters (M ¼ 2), where we can clearly see the ridge along
r̂1 þ r̂2; that value is close to the true sum even when the individ-
ual estimates are further away from (r1, r2).

If the goal is to estimate overall relatedness between 2 infec-
tions, we suggest rtotal as a more identifiable and useful quantity
than ðr1; . . . ; rMÞ. To estimate rtotal and the number of positively
related strain pairs M0, we used the procedure described in
Estimating the Number of Related Strain Pairs and rtotal and compared
the estimates obtained from 2 approaches: (1) with “equality
assumption” r1 ¼ � � � ¼ rM (estimators ~M0 eq; ~rtotal;eq) and (2) without
it (estimators ~M0 ; ~rtotal). First, we validated the stopping rule for
the second approach (when ri are not assumed to be equal), con-
firming that incrementing M past the iteration that estimates one
of ri’s to be 0 only appended additional 0’s to MLE in most cases.
Next, we compared the 2 approaches and assessed the accuracy
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of the corresponding estimators. For each simulated pair of infec-
tions, we first randomly generated r1; . . . ; rM0 ;

PM0
i¼1 ri ¼ rtotal for

given rtotal and M0. The estimates were compared across a grid of
COI, rtotal, and M0. Figure 5 shows illustrative examples of these
comparisons: in 5(a), M0 is changed while COI and rtotal are fixed,
in 5(b) rtotal is changed, and in 5(c) COI is changed. Distributions
of ~rtotal and ~rtotal;eq were quite similar, so the equality constraint
had a very limited effect on the overall relatedness estimates.
There was more difference between ~M0 and ~M0 eq, but, impor-
tantly, these differences did not significantly affect rtotal esti-
mates. An effect of varying M0 on the distributions of ~rtotal and
~rtotal;eq was small, while lower COI resulted in more accurate esti-
mates. Higher rtotal made for more accurate estimation of M0, as it
eliminated lower values incompatible with rtotal estimates. It is
worth noting that simply increasing dimensionality of the grid of
relatedness values to evaluate over can become unfeasible for
larger M, so the grid would have to be coarsened to accommo-
date, which in turn would affect precision. No such limitation
exists for the fast “equal ri” approach as it estimates a single
parameter.

Misspecifications and assumption violations
In data analysis, COI and population allele frequencies are usu-
ally unknown and need to be estimated from data. Allele fre-
quencies can often be estimated from sufficiently large datasets
(e.g. over 100 samples) and as such, their estimates are often
fairly stable; some implications of their misspecifications are dis-
cussed in Supplementary Section 3 in File_1. COI estimation,
however, relies on a smaller amount of information, resulting in
greater variability of the estimates and more frequent misspecifi-
cations. Fortunately, Dcifer appeared to be relatively robust to
COI misspecifications, especially for less complex infections
(Supplementary Fig. 9 in File_1). Even for higher COI, relatedness
estimates were fairly close to the true value in the neighborhood
of the correct COI.

Next, we address our working model and its defining assump-
tion of no intrahost relatedness. To assess how violating this as-
sumption affects interhost relatedness estimation, we compared
5 scenarios: one with no intrahost relatedness and 4 where differ-
ent strains within the samples are siblings (r¼ 0.5)—see the dia-
grams in Supplementary Fig. 10 in File_1. Note that in scenario 2

Fig. 3. Detecting related infections. FPR and statistical power of a test H0 : r ¼ 0 at significance level a ¼ 0:05 are shown. Simulations included
genotyping error with fixed error model parameters; COIs were estimated from these data. For simulated null distributions, we varied error model
parameters since they would not be normally known. SNP and microhaplotype (MH) panels were used as a basis for simulations.
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(Supplementary Fig. 10b), there are 2 interhost pairs that are re-
lated (strains X1-Y1 and X2-Y1) but that “extra” relatedness is only
a consequence of the induced X1-X2 sibship and does not add
anything to our quantity of interest. The same is true for more
complex scenarios 4 (Supplementary Fig. 10d, with related inter-
host pairs X1-Y1, X2-Y1, X1-Y2, and X2-Y2) and 5 (Supplementary
Fig. 10e, with related interhost pairs X1-Y1, X2-Y1, and X3-Y1). All
simulations included genotyping error, and processing involved
estimating COI and population allele frequencies. Relatedness
estimates for all 3 scenarios were very similar (Supplementary
Figs. 11 and 12 in File_1), confirming that in many common cases
of intrahost relatedness, the working model estimates interhost
relatedness without significant biases.

Applications to empirical data
We applied Dcifer to a small dataset that has 87 microhaplotypes
and consists of samples obtained from patients presenting with
malaria from 2 health facilities in Maputo and Inhambane prov-
inces of Mozambique (Tessema et al. 2022). There were 52 sam-
ples overall with 26 from each clinic; only samples with data for
at least 75 loci were considered for the analysis (Supplementary
Data_1). From these samples, naı̈ve COI estimates (60% poly-
clonal samples with maximum COI of 6) and subsequently esti-
mates of population allele frequencies adjusted for COI were
calculated (Supplementary Data_2). We initially set M¼ 1 and

used likelihood-ratio statistics to test a null hypothesis H0 : r ¼ 0
at significance level a ¼ 0:05 (with the procedure adjusted for a 1-
sided test). For comparison, Jaccard similarity was used as an IBS
metric; Fig. 6 displays results from both methods. Dcifer results
indicated that the majority of samples were unrelated and that
related samples were mostly from the same clinic. Note that sig-
nificant pairs with relatively low relatedness estimates usually
shared a rare allele at one or two loci. The IBS metric also picked
up very highly related pairs, but, apart from those, it was more
difficult to distinguish related samples from background. Some
samples appeared to be less related to all the other ones in IBS
results, and some—more (stripe-like patterns in the lower trian-
gle); these single-sample relatedness levels correlated with esti-
mated COI (e.g. all the lighter “stripes” corresponded to
monoclonal samples) highlighting the fact that IBS similarity is
strongly influenced by COI, which obscures contribution of de-
scent. For related samples, we also estimated M0 (the number of
related strain pairs) and rtotal (overall relatedness). For these sam-
ples, r̂total ranged between 0.105 and 1.97 and there were 4 pairs
of samples (all in Maputo), for which r̂total exceeded 1, with esti-
mated COI of 2 in all samples in these pairs and ~M

0 ¼ 2 for all
such pairs.

We also reevaluated microsatellite data from a previously
published dataset, which contained 2,585 samples from 29
clinics in 4 districts in Namibia (Tessema et al. 2019), using

Fig. 4. 95% CI for relatedness estimates using the likelihood ratio produced by Dcifer.
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Dcifer to estimate relatedness (Supplementary Data_3 contains
estimated allele frequencies). These data had 26 loci, and 77%
of the samples were polyclonal. The average of relatedness
estimates between monoclonal samples (which can be taken to
represent relatedness between individual parasites) was simi-
lar to the average overall relatedness (r̂total) between polyclonal
infections scaled by the minimum COI for each pair. Minimum
COI represents the number of interhost strain pairs in 2 infec-
tions that can be related within the Dcifer working model, so
scaled r̂total can be viewed as an average estimate of related-
ness between individual strains belonging to 2 different infec-
tions. We assessed the proportion of related pairs of samples
within and between clinics (a ¼ 0:05), then performed a permu-
tation test to determine which clinic combinations had more
related samples than expected by chance. Most of the within-
clinic entries had significantly large numbers of related sam-
ples (Fig. 7). In addition, clinics with geographical proximity
had significantly more related between-clinic infections, as il-
lustrated by clusters of darker circles along the diagonal.
Rundu DH is a large referral hospital, which could explain rela-
tive genetic closeness between samples from this and more
geographically distant clinics. Rundu, Nyanganna, and Andara
districts are adjacent to each other and Zambezi district is dis-
tant from them, which is reflected in the relative lack of relat-
edness between Zambezi and other districts.

Computational efficiency
Because of various simplifications of the likelihood expression for
important special cases, there are 3 main versions of the estima-
tion procedure (in the order of increasing computational com-
plexity): (1) M¼ 1, using Newton’s method adapted for a bounded
parameter space to find MLE or calculating likelihood for a 1-di-
mensional grid of parameter values if a CI is requested, (2) M> 1
with r1 ¼ � � � ¼ rM assumption involving likelihood calculation for
a 1-dimensional grid, and (3) M> 1 without r1 ¼ � � � ¼ rM assump-
tion involving likelihood calculation for an M-dimensional grid.
Since we expect that most sample pairs in a typical dataset will
be unrelated, an initial analysis step will likely attempt to identify
significantly related (or unrelated) ones by evaluating all pairs as-
suming M ¼ 1. Therefore, execution times for this special case
are the most important ones. Times for “grid” versions depend
heavily on the resolution of the grid, while the Newton-based
procedure usually converges in 3–4 iterations even with low toler-
ance. Table 1 shows execution times for calculating r̂ for 1,000
sample pairs (100 loci, each with 2–20 alleles) with M¼ 1 and vari-
ous COI combinations for both Newton’s method and a grid;
times for all but the highest COI combinations (COIx þ COIy � 15
for Newton’s method and � 14 for the grid) were <5 s. Simple
vectorized computation of the IBS metric does not depend on COI
and averages 0.055 s for the same data (1,000 pairs). Calculation
times are essentially linear in the number of loci, so times for

(a) (b)

(c)

Fig. 5. Estimation of rtotal and M0 with and without equality assumption r1 ¼ � � � ¼ rM. Densities of ~rtotal (no assumption) and ~rtotal;eq (with assumption) are
shown on the left, and probabilities for the values of ~M0 and ~M0 eq are shown on the right. Quantities highlighted in red indicate those varied between the
top and bottom simulations within each panel. Simulations were performed using a panel of 91 microhaplotypes. a) Varying M’. b) Varying rtotal. c)
Varying COI.
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larger panels can easily be estimated. When M > 1, calculation

times are roughly exponential in M for when ri equality is not as-

sumed and increase only slightly with M when it is; these times

are shown in Table 2.
For data analysis presented in Applications to empirical data,

Dcifer execution times were 2.7 s for Mozambique (pairwise dis-

tances for 52 samples, or 1,326 comparisons) and 32 min for

Namibia (2,585 samples, 3,339,820 comparisons). Consequently,

we can estimate that it would take approximately 17 min to cal-

culate all pairwise distances for 1,000 samples of Mozambique-

type data (87 microhaplotypes). Calculations were performed on

MacBook Pro, 2019, 2.3 GHz Intel Core i9 and were not parallel-

ized.

Discussion
The ability to infer genetic distance between infections is a criti-

cal step in translating pathogen genetic data into insight regard-

ing transmission. Despite this, there is a lack of established

methods available to infer genetic distance between malaria

infections containing multiple parasites, which are the majority

in many endemic areas. Options are even more limited when

using multiallelic loci, which offer more resolution than biallelic

SNPs. The lack of any formal approach has left the community

with only ad hoc calculations such as IBS, which yield ambiguous

results and require extensive efforts to guide any attempt at

meaningful inference. In contrast, Dcifer provides relatedness

estimates that are based on IBD, interpretable quantities with

consistent meaning across studies—regardless of genotyping

methods used—with clear implications for ancestry. Importantly,

we also show that Dcifer’s statistical power to detect related

infections consistently surpasses that of IBS. The method produ-

ces reliable measures of uncertainty, and inference obtained

from Dcifer vs IBS is more robust to misspecifications of esti-

mated quantities such as COI or population allele frequencies.

The R software package implementing Dcifer provides a fast, con-

venient, and flexible tool that can be easily incorporated into the

analysis stream of a wide range of genotyping data to understand

transmission.
While Dcifer is designed to work with many types of genotyp-

ing data, e.g. biallelic SNPs, multiallelic loci such as microsatel-

lites and microhaplotypes, and any combination thereof, we

show that including multiallelic loci results in substantial gains

in power to detect related infections. These benefits become

Fig. 6. Relatedness between samples from 2 clinics: one from Inhambane province and one from Maputo province of Mozambique. Lower triangular
matrix displays IBS metric results and upper triangular matrix—Dcifer estimates. The color of each matrix entry represents an estimate for 2
corresponding samples; pairs for which H0 has been rejected using the Dcifer likelihood ratio test are outlined in red. Estimated COIs are displayed on
the margins.
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more dramatic as COI increases. The result makes intuitive
sense, as multiallelic panels provide more within-host strain dif-
ferentiation and consequently can allow information pertaining
to descent to be more easily detected, benefiting relatedness esti-
mation. For example, where 2 infections with high COI may look
similar with biallelic genotyping panels regardless of their level
of relatedness (both alleles present at most loci with some diver-
sity), having multiallelic data provides the opportunity to com-
pare these infections more meaningfully. Fortunately, the greater
availability of methods to obtain multiallelic data from across
the genome makes it feasible to generate these data efficiently
and in a high-throughput manner (Aydemir et al. 2018; Tessema
et al. 2022; LaVerriere et al. 2022).

The concept of relatedness for individual parasites does not
extend trivially to polyclonal infections, where strains within and
between infections can be related. Dcifer offers an approach that
focuses on relatedness between infections as this information is
very relevant to transmission. Simulations with imposed intra-
host relatedness indicate that the working model achieves its
stated goal of capturing interhost relatedness by implicitly

downweighting the independent contribution of related strains
within a host to comparisons between hosts. When multiple pairs
of strains are related between 2 infections, degrees of relatedness
between these strains could potentially provide an insight into
more nuanced aspects of transmission. However, these strain-
level comparisons may be difficult to estimate without accurate
phasing, which remains a challenging problem. Here, we pro-
posed a more easily identifiable summary, rtotal, which provides a
single measure of the overall degree of relatedness between 2
infections. This summary reliably encapsulates information
encoded by the number of related strains and degree of related-
ness between them even when individual r values are difficult to
identify from realistic data—which was the case in our analyses
except in situations when a large number of highly informative
loci were used. For example, an rtotal of 1.5 could indicate,
amongst other scenarios, that 3 pairs of siblings or one clonal
pair and one sibling pair are present between 2 infections. Either
way, multiple closely related parasites exist between these 2
infections and they are likely to be closely linked by transmission
events, e.g. via a single cotransmission event or multiple

Fig. 7. Namibia clinic-level relatedness and permutation test results. Each circle represents a single clinic (on a diagonal) or a 2-clinic combination (off-
diagonal), with clinics ordered geographically and divided into districts. The color of the circle corresponds to the permutation test’s P-value, and the
diameter—to the proportion of related samples within or between the clinics. Permutation distributions for clinics with smaller numbers of samples
have larger variance leading to larger P-values—e.g. Chinchimani and Kanono with only 9 samples each have relatively high proportions of related
infections but their P-values are not small.
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independent transmissions. We anticipate that the interpretation
of this summary and its potential derivatives, as well as its incor-
poration into downstream analyses, will evolve as it is evaluated
in more sophisticated population-level simulations and esti-
mates from empirical data sets. Another conceptual issue con-
cerns population allele frequencies, which can affect Dcifer
estimates. The foremost question is what constitutes the relevant
source population in regards to relatedness between samples and
consequently from which data the frequencies should be esti-
mated. If 2 infections are from communities with different
within-community allele frequencies, what are the implications
for descent? Dcifer currently assumes the same allele frequen-
cies for both samples but further exploration might be warranted
depending on the question of interest. Questions concerning pop-
ulation and scope of the analysis might also arise in regards to
potential multiple testing procedures when many pairwise relat-
edness hypotheses are tested simultaneously. The fact that these
hypotheses are not independent should be taken into account
when such procedures are considered.

The Dcifer model does not account for linkage disequilibrium
and assumes independence of loci. As the malaria genome has
relatively short linkage disequilibrium segments, loci indepen-
dence can be assumed up to a reasonably large number of loci for
a correspondingly designed genotyping panel. If, however, the
panel has loci that are likely to be linked, e.g. those selected to be
in close proximity or for a large number of loci, the independence
assumption would no longer hold, which could result in

anticonservative inference. Another limitation is that the model

currently does not account for genotyping errors. Future modifi-

cation could explicitly incorporate the error process via an appro-

priate model or assess how a specific error process affects the

estimates and inference beyond the explorations we have per-

formed here. Another potential venue for further work is devel-

oping an MLE estimator for rtotal directly as this might become a

commonly used summary. A direct estimator might be more effi-

cient, would have the properties of MLE, and would require less

processing time. In addition, scaling rtotal by some function of COI

could provide a useful way of comparing all pairwise relatedness

estimates with standardized values in a [0,1] interval. Other fu-

ture directions could explore alternative inferential approaches,

including a nonparametric bootstrap, where loci data would be

sampled with replacement. In that case, the fact that variables

associated with different loci are not identically distributed, and

therefore loci might not be equally informative, would need to be

addressed.
With potential to facilitate understanding of relatedness

structure from unphased genetic data, including multiallelic loci,

Dcifer can provide a vital link in the analytical process leading to

better understanding of malaria transmission dynamics. While

we have demonstrated the utility of this method for Plasmodium

infections here, Dcifer may be useful in analyses of other organ-

isms that undergo sexual recombination and where polyclonal

infections are encountered, such as shistosomiasis, filarial dis-

ease, and soil transmitted helminths (Brouwer et al. 2001;

Churcher et al. 2008). With the ability to incorporate most types

of genetic data, rapid computation, and readily available infer-

ence, Dcifer may prove to be an important tool in the analytical

toolbox for obtaining epidemiologic insight from pathogen genet-

ics.

Data availability
Supplementary Data_1 contain microhaplotype data from

Mozambique. Microsatellite data from Namibia are publicly

available at https://elifesciences.org/articles/43510/figures#

supp1 (accessed 2022 Aug 25). Supplementary Data_2 and Data_3

contain population allele frequencies estimated from

Mozambique and Namibia datasets, respectively.
Supplemental material is available at GENETICS online.
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Table 1. Execution times (in seconds) for Dcifer processing 1,000
pairs of samples with COI combinations ranging between 1 and
10.

1 2.24
3.16

2 2.31 2.42
3.24 3.24

3 2.31 2.35 2.39
3.29 3.30 3.29

4 2.20 2.30 2.43 2.43
3.47 3.44 3.40 3.32

5 2.21 2.26 2.28 2.35 2.36
3.41 3.55 3.51 3.53 3.66

6 2.26 2.34 2.32 2.36 2.48 2.58
3.38 3.47 3.47 3.57 3.69 3.79

7 2.26 2.32 2.37 2.49 2.61 2.86 3.46
3.52 3.51 3.65 3.68 3.90 4.07 4.60

8 2.30 2.40 2.47 2.60 2.85 3.38 4.46 6.53
3.51 3.68 3.65 3.82 4.09 4.68 5.70 7.99

9 2.40 2.52 2.61 2.88 3.37 4.38 6.50 10.81 19.31
3.75 3.61 3.78 4.01 4.62 5.60 7.78 12.18 21.03

10 2.67 2.77 2.95 3.45 4.43 6.65 11.28 20.03 37.02 72.40
3.87 3.98 4.15 4.61 5.72 7.69 12.16 21.04 38.43 72.37

COI 1 2 3 4 5 6 7 8 9 10

The data were simulated from 100 multiallelic loci (the number of alleles at
each locus distributed uniformly between 2 and 20). M¼1, each COI
combination displays times for using Newton’s method (unshaded) and
calculating likelihood for a grid (shaded). Precision was set at 0.001 for both
methods.

Table 2. Execution times (in seconds) for a pair of infections with
COI of 6 and 9.

M 1 2 3 4 5 6

r1 ¼ � � � ¼ rM constraint 0.01 0.67 0.79 0.86 0.89 0.92
No constraint 0.01 1.32 2.17 3.72 6.65 11.54

M ranges between 1 and 6, and the likelihood is calculated over a grid of 1,000
r1; . . . ; rM combinations (or 1,000 r values when r1 ¼ � � � ¼ rM ¼ r is assumed).
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