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Abstract

Optimal Transport for High Energy Physics

by

Tianji Cai

High energy physics, like many other scientific disciplines, has entered an exciting new

era of big data, where both particle accelerators at the energy frontier and astrophysical

surveys at the cosmic frontier are producing an enormous amount of data which may

hold the very key to the most fundamental questions about nature. Mining such gold

inevitably calls for revolutionary designs of ever more powerful and efficient statistical

analysis frameworks, while at the same time scientific rigorousness places an additional

requirement on the interpretability of any novel model proposed. Among a plethora of

available modern machine learning techniques, the theory of optimal transport stands out

as a distinct approach that is both high performing and mathematically well grounded.

By equipping the space of data represented as distributions with a suitable metric, opti-

mal transport replaces ad hoc notions of similarity with a well-defined distance, opening

up a range of new applications with profound theoretical implications.

This thesis introduces the theory of optimal transport with an eye towards its usage

in physics. Special emphasis is put on two particular optimal transport distances which

enjoy unique geometric properties. Utilizing their geometric structure, we develop a

computationally efficient linearization framework for the two distances and highlight their

approximations for discrete distributions encountered in practice. We then showcase the

power of this linearized optimal transport framework by applying it to two use cases—one

in collider physics at the energy frontier and the other in dark matter astrophysics at the

cosmic frontier. As the adoption of optimal transport in high energy physics is still in its

viii



early stage, the present thesis invites the readers to think of other potential applications

for their own research.
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Chapter 1

Introduction

Recent advances in artificial intelligence (AI) have revolutionized the way we approach

fundamental sciences. In high energy physics (HEP), AI has been applied to a wide

range of problems, such as hardware design, lattice quantum chromodynamics (QCD)

calculations, collider phenomenology, astrophysics, cosmology, and even string theory [1].

In addition to more traditional machine learning (ML) methods such as boosted decision

trees that have been in use in HEP for decades [2, 3], a variety of newly designed deep

neural network (NN) architectures are increasingly proving their immense potential to

help tackle previously intractable problems in today’s big-data era.

Yet approaches employing AI methods, especially neural networks, oftentimes suffer

from two main drawbacks: they are hard to interpret and expensive to train. From a

theoretical point of view, the former interpretability issue is more concerning, as in science

we cannot simply be satisfied with better performances but are obliged to comprehend

the underlying reasons. This imperative has triggered another surge of research interests

in finding the so-called middle path, that is, to design equally powerful machine learning

frameworks which are instead physics-inspired, theoretically-grounded, and thus more

amenable to human understanding.

1



Introduction Chapter 1

Among such middle paths emerges a distinct approach based on the mathematical

theory of optimal transport (OT). Despite its very recent introduction to collider physics

in 2019 [4], optimal transport has already witnessed many interesting applications be-

yond the collider context, stretching itself into fields as far as quantum field theory and

dark matter astrophysics. A fast-growing number of high energy physicists, both in the

theory community and the experimental community, are getting interested in learning

and applying this powerful mathematical tool to diverse physics scenarios.

This thesis is written for such a physics audience. The goal is to present a self-

contained, mini-review of the key mathematical concepts in optimal transport theory, so

that readers with no prior knowledge can (hopefully) start implementing OT for their

own problems after reading the present work and the two illustrative applications therein.

More importantly, we wish to convey our enthusiasm for this exciting research program,

which has just gained its momentum and beginning to show its fruitfulness.

Indeed in the realm of image analysis, optimal transport has long proven its impor-

tance [5, 6, 7, 8, 9, 10]. Naturally, an image can be viewed as a discrete distribution

composed of thousands of pixels, with the intensity of each pixel indicating the quantity

of “stuff” contained at its particular location. Usually, pixels are not just thrown ran-

domly onto an image of some meaning. Instead, the relative locations and the intensities

of individual pixels carry critical information about the content of an image.

More broadly, data in many scientific applications can also be represented in the for-

mat of distributions, which, just like images, often contain rich substructure that encodes

their very essence. The question then becomes how to best extract such substructure

information. By defining a way to move “stuff” around to morph one distribution into

another with the least amount of effort, optimal transport provides a mathematically

well-grounded distance that can reflect the geometry underlying the data distributions.

Let us take a closer look at this statement.

2



Introduction Chapter 1

1.1 Euclidean Distance vs. Optimal Transport Dis-

tances

One may very well wonder why it is necessary to introduce optimal transport in

the first place. Why can’t we just use the good old Euclidean distance to measure the

difference between two data distributions? What is missing in such a näıve Euclidean

definition?

Let us consider a very simple example. Imagine our two distributions are nothing but

two single Dirac masses. That is, each consists of a single dot with unit mass 1, located

at two different positions. We denote them as

E = δx, Ẽ = δx̃. (1.1)

Let us further set up a coordinate system and put the two Dirac masses on the coordinate

grid with N bins. For instance, we can specify the locations to be

x = (2, 6), x̃ = (5, 4). (1.2)

This step is called “binning” and is illustrated in Figure 1.1, where E is represented by

the blue dot and Ẽ by the red one.

To use the standard image-based approach, one should represent the mass at each

grid location, i.e., in each bin, by a vector v (or ṽ) ∈ RN , where again N is the total

1Here “mass” loosely refers to the amount of “stuff” at a given location. For example, it can be
“probability mass” in a probability distribution. Later, we will define it more rigorously in terms of
measures.

3
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Figure 1.1: Two distributions (blue for E and red for Ẽ) of single Dirac with unit
mass. The right subplot places a coordinate grid on the underlying space.

number of bins. In our case, we have

v = (0, · · · , 0, 1at bin (2,6), 0, · · · , 0, 0, · · · , 0),

ṽ = (0, · · · , 0, 0, · · · , 0, 1at bin (5,4), 0, · · · , 0), (1.3)

where the locations of the 1’s in the vectors are determined by the locations of the bins

where the masses reside. All other entries are simply zero, as there is no mass in those

bins.

The image-based distance between the two distributions E and Ẽ is then given by the

Euclidean distance between v and ṽ, i.e.,

dℓ2(RN )(E , Ẽ) :=
(

N∑
i=1

|vi − ṽi|2
)1/2

= (1 + 1)1/2 =
√
2. (1.4)

The above equation holds no matter how we move the two Dirac masses around, as long

as x ̸= x̃. The distance between E , Ẽ will always be
√
2. In the case where x = x̃, the

distance degenerates to 0, as now vi = ṽi for all the ith bins.

Such a distance is obviously not what we want. What we want is something that can

at least vary according to the actual locations of the Dirac masses. In other words, we

want the new distance defined on the distributions to faithfully reflect the underlying

4
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geometry of the space where the distributions themselves live in, which is called the

ground space. As we have seen, the usual image-based approach is blind to the ground

space and fails to provide a satisfying distance.

Now if we think more carefully, there is actually some very familiar concept in physics

that we can borrow to define such a distance. If we modify the “force” in the original

definition of work to be mass, then in our current case the work-like distance between E

and Ẽ becomes

dwork-like(E , Ẽ) := m · dℓ2(R2)(x, x̃) = 1 ·
√

(2− 5)2 + (6− 4)2 =
√
13, (1.5)

where dℓ2(R2)(x, x̃) is the distance between x, x̃ in the ground space R2, denoted as the

ground metric. Clearly, this work-like distance depends as desired on the location of

the Dirac masses in each distribution and therefore is more suitable than the previous

image-based approach.

Optimal Transport generalizes the concept of work above to a family of distances that

lift the ground metric on the ground space to the set of probability distributions on that

space. As we will see later, the ability to preserve spatial information encoded in the

ground space is critical to the success of OT distances in a variety of statistical tasks.

The classical Euclidean ℓ2 norm in the image-based approach neglects the geometry of

the ground space and is simply not rich enough to handle more sophisticated situations.

1.2 Earth Mover’s Distance and Its Modification

Intuitively speaking, optimal transport quantifies the least amount of “work” required

to rearrange one distribution to look like the other, be them discrete (such as described

above) or continuous. In other words, among all possible rearrangements, it searches for

5



Introduction Chapter 1

the optimal way to transport one distribution into another; and thus its name. This least

effort principle is ubiquitous in physics, sciences, and life in general. Therefore it should

not come as a surprise to see optimal transport appearing in widely different problem

settings.

In this section, we introduce our very first OT distance, the Earth Mover’s Distance

(EMD), popularized in the image analysis community [11, 12] and first brought into

collider physics [4] to define a distance between collider events. Simply put, the EMD is

the minimum cost between two distributions of equal mass, where cost is defined to be

the amount of mass moved times the distance by which it is moved.

Let us assume the simple case of two discrete distributions E =
∑

iEiδxi and Ẽ =∑
j Ẽjδx̃j . That is, each distribution is composed of a bunch of Dirac masses at the given

locations. Adopting collider physics language, let’s call these Dirac masses particles. We

further assume that the total masses of the two distributions are the same, i.e.,
∑

iEi =∑
j Ẽj, in which case we say the distributions are normalized and the corresponding

optimal transport problem is called balanced.

The Earth Mover’s Distance is then given by

EMD(E , Ẽ) := min
γij∈ΓEMD

(E,Ẽ)

∑
ij

dijγij (1.6)

ΓEMD
(E,Ẽ) :=

{
γij : γij ≥ 0,

∑
j

γij = Ei,
∑
i

γij = Ẽj

}
.

Here dij is the pre-specified ground metric between particle i in E and particle j in Ẽ .

In other words, the user needs to input these ground distances herself, usually in the

form of a cost matrix. Then γij represents how much mass is moved from particle i to

particle j and
∑

ij dijγij gives the total required effort to transport the distribution E

to Ẽ . Notice the three conditions that γij needs to satisfy: the mass moved must be

6
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nonnegative; the mass moved out of a certain location in E must be equal to the amount

it originally contains; and the mass moved into a given location in Ẽ must also be the

same as the amount it originally has. Later, we will rephrase these conditions using the

standard optimal transport terminology.

The EMD considers all such rearrangements and outputs the least amount of cost.

The corresponding optimal rearrangements can also be obtained, though in general there

may be more than one that output the minimum distance. To give a more intuitive

illustration of the EMD, we generate two arbitrary discrete distributions on the ground

space Ω = [−1, 1]× [−1, 1] ∈ R2; see the orange and blue dots in Figure 1.2. More general

than the previous Figure 1.1, here the mass of every individual dot is usually different

from each other and the total masses of the two distributions are set to be unequal.

Specifically, the orange distribution has total mass
∑
Ei = 1.8, whereas the total mass

of the blue distribution is
∑
Ẽj = 1.

Now in order use the EMD as defined in Equation (1.6), we need to first normalize

the two distributions and only afterwards can we calculate the Earth Mover’s Distance.

The resulting EMD and the corresponding optimal mass rearrangement is presented in

the left plot in Figure 1.2. Here the gray lines indicate how much mass is moved from

one location to the other with its darkness proportional to the amount of mass moved.

In order not to throw away the potential information encoded in the total mass

discrepancy, a simple way is to add to the standard EMD a term that penalizes the

corresponding difference. For example, one can define a modified Earth Mover’s Distance

7
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Figure 1.2: Two randomly generated discrete distributions (orange and blue) on the
ground space Ω = [−1, 1] × [−1, 1] ∈ R2, with the size of the dots indicating how
much mass there is at a certain location. The total mass of the blue distribution is
1, whereas that for the orange distribution is 1.8. Left : The Earth Mover’s Distance
and the corresponding optimal rearrangement plan between the two distributions as
defined in Equation (1.6). Right: The modified Earth Mover’s Distance and the
corresponding optimal rearrangement plan between the two distributions as defined
in Equation (1.7).

8
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as

EMD∗(E , Ẽ) := min
γij∈ΓEMD∗

(E,Ẽ)

∑
ij

dijγij + α

∣∣∣∣∣∑
i

Ei −
∑
j

Ẽj

∣∣∣∣∣ (1.7)

ΓEMD∗

(E,Ẽ) :=

{
γij : γij ≥ 0,

∑
j

γij ≤ Ei,
∑
i

γij ≤ Ẽj,
∑
ij

γij = Emin

}
,

where Emin := min
(∑

iEi,
∑

j Ẽj

)
and α is a free parameter that controls the relative

importance between the standard EMD term and the total mass difference term. The

modified EMD, denoted as EMD∗, is sometimes also called Earth Mover’s Distance, or

else Energy Mover’s Distance in the literature. Here we simply put an adjective in front

to avoid any potential confusion.

Notice that the legitimate rearrangements in this case satisfy a different set of con-

straints than in the standard EMD case in Equation (1.6). This will be explained in

more detail later. The resulting optimal rearrangement and the corresponding distance

for EMD∗ is illustrated in the right plot in Figure 1.2, where α is set to 1 for simplic-

ity. As can be seen, the rearrangement plans are rather different for EMD and EMD∗.

Additionally, the difference between the two distances is around 0.76, which is about the

same as the total mass difference of 0.8, as should be the case.

1.3 Related Works

The above EMD and its modified version were first introduced to collider physics in

[4], as an attempt to provide the space of collider events with a suitable metric. It is

then further developed in [13], where the simple geometric language of EMD is shown to

elegantly unify diverse concepts in jet physics and quantum field theory. Among other

things, EMD allows for a novel definition of infrared and collinear safety; provides a new

9
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perspective on a number of existing collider observables as the minimum distance to a

certain manifold; implies inequalities satisfied nonperturbatively by jet variables; casts

common jet definitions as a problem of finding the closest N -particle approximation;

gives new expressions to various pileup mitigation strategies; and may even enable a

precise definition of a distance between theories. The two groundbreaking works lay the

foundation for the adoption of optimal transport based techniques in collider physics.

Since then, the EMD and its many variants have flourished along multiple directions.

It has been applied to distance-based analysis of jets in CMS Open Data [14], to the

definition of a new “event isotropy” shape variable [15], (with suitable generalization)

to discrimination at the full event level [16], to data embedding into lower-dimensional

spaces with simple metrics [17], to the calibration of stochastic simulations [18], to specific

new physics searches such as CP violation [19], to the generalization of the notion of event

and jet shape observables and their efficient computation [20], and to the introduction

of continuous jet grooming for noise removal [21]. Recent work [22] has also modified

the input ground space of the EMD to be one-dimensional spectral functions with basic

symmetries of collider data built-in and has accordingly defined a novel 1D spectral EMD,

which enjoys enhanced analytical calculability from first-principles.

Another promising avenue being pursued is to use the EMD—or in general, other

optimal transport distances—as a more sophisticated and physics-inspired loss function of

various neural network architectures. For example, such OT-based metrics are employed

in autoencoders for anomalous jet tagging [23, 24], for the construction of a metrized

latent space of collider events [25], and for fast simulators that directly link experimental

data with the underlying theoretical models [26]. It has also been used as the cost

function of a self-supervised graph neural network with attention mechanisms to identify

particles of the primary collision event from large pileup contaminiation [27]. A number

of other metrics for collider events have also been explored in [28]. Broadly speaking, the

10
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many applications of the EMD highlight the potential relevance of tools from the theory

of optimal transport for collider physics.

Beyond collider phenomenology, optimal transport has also found surprising and pro-

found connections with various formal studies of quantum field theories, gravity, and

string theory. In specific, [29] has reformulated exact renormalization group flow in

the language of optimal transport gradient flow, providing a novel viewpoint for further

works on an information theoretic approach to renormalization [30, 31]. In [32], it has

been demonstrated using optimal transport that the Einstein equations are equivalent

to a simple concavity property of an entropy in the Wasserstein space. An extension for

gravity compactification has also been provided, where a newly developed framework of

optimal transport in space with negative dimensions is considered. For the latter, the

tools of OT subsequently prove useful in deriving general bounds on the masses of the

Kaluza-Klein particles [33].

1.4 Thesis Outline

Hopefully, the above discussions have offered an intuitive idea of what optimal trans-

port is, as well as some motivations for its introduction to high energy physics. The rest

of the thesis is then devoted to the discussions of two specific HEP fields where optimal

transport has proven or is expected to show great potential. But first, we need to better

understand the theory of optimal transport itself and develop the necessary analytical

tools customized to our later physics applications.

This is what Chapter 2 is all about. The focus here is always to maintain a clear

flow of the narrative for ease of understanding, and therefore intuitive arguments are

preferred over mathematically rigorous proofs. Whenever possible, we refer the readers

to the original articles for complete expositions. As the field of optimal transport is rich

11
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with many active research happening at the time of writing, it is not possible to do justice

to such a vast mathematical field in one short chapter. Fortunately, many good review

articles and textbooks exist, which will be pointed out in due time. While a certain part

of it deals with standard textbook materials, the main body of Chapter 2 consists of new

results mostly derived from our own published papers, especially [34].

We then begin our voyage into the two physics applications of optimal transport.

Chapter 3 focuses on collider physics, where optimal transport is used to define a phys-

ically meaningful metric on the space of collider events. This chapter combines the

results from our three publications [34, 35, 36] and additionally discusses our several cur-

rent endeavors to upgrade the methodological framework of optimal transport for collider

physics applications.

Chapter 4 marches into the still uncharted territory of applying optimal transport to

dark matter astroparticle physics, in specific, the study of dark matter halos. Although

the physics use case is on a more speculative front, the statistical framework itself is full-

fledged and awaits diverse applications. We will explain our novel framework in full detail

and present the preliminary results. A discussion of problems observed in our study is

also included, paving the way for further developments which will hopefully resolve these

issues. Notice that none of the results in Chapter 4 has yet made its way to publication

and everything is still under active research at the time of writing. Therefore, major

revisions to the presented results are possible and we invite the readers to also think

about other potential usages of the framework developed here.

Finally, Chapter 5 concludes the thesis by giving some final thoughts on the future of

this promising research direction. As a young, burgeoning field full of promises, we look

forward to seeing many more studies of optimal transport for high energy physics in the

near future, both from the perspective of offering a fresh theoretical understanding and

from the practical side of upgrading our data analysis toolbox. Hopefully, this present
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Introduction Chapter 1

thesis can be of some use to the interested readers by offering an accessible mathematical

treatment, by presenting two compelling physics applications, and by pointing out a

wealth of valuable references for further reading.

13



Chapter 2

Optimal Transport Theory in a

Nutshell

First proposed by French mathematician Gaspard Monge (1746–1818), optimal transport

theory (OT) emerged as an engineering problem where the concern was about how to

move a pile of sand to another of the same volume with the least amount of work. This

defines the fundamental question of optimal transport, which, despite its apparent sim-

plicity, is surprisingly hard to formulate—let alone solve—in a mathematically rigorous

way. It wasn’t until the mid 20th century that a group of mathematicians revisited the

problem and firmly rooted it in optimization theory. Among them was the Soviet math-

ematician Leonid Kantorovich, who rephrased OT in the language of general measure

theory.

Simply put, OT associates a “global” cost to each possible way of morphing, or trans-

porting, one distribution into the second by considering how much it costs to “locally”

move an infinitesimal amount from one location to another. In addition to defining a

proper distance between distributions, the smallest cost also gives rise to rich geometric

structures on the space of distributions by inheriting the key properties of the underlying
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ground space—this advantage of OT is already highlighted in the Introduction.

Recent years have again witnessed a surge of interest in optimal transport, thanks

to its connection to and usefulness in many statistical machine learning problems. Con-

tributing to this rapid spread of OT is the emergence of approximate OT solvers which

can be more easily upscaled to large problem dimensions. At the time of writing, the

field of optimal transport remains highly active—new extensions to the framework are

being devised, which further empower this incredible mathematical tool on the practical

front.

In Chapter 1, we have had our first encounter with optimal transport via the intro-

duction of the Earth Mover’s Distance (EMD) and its modification. Properly speaking,

EMD is only one example of a family of balanced optimal transport distances defined

between equally normalized distributions, known as the p-Wasserstein distances. The p-

Wasserstein may be modified to accommodate distributions with different total masses.

One way is to incorporate an additional term to account for differences in the total mass,

as adopted in the modified EMD definition.

Yet this extension is far from unique. There are many possible approaches to the

unbalanced optimal transport problem. Of course, at the end of the day, the “best”

OT distance depends on many relevant criteria for a given application. Practical con-

siderations include simplicity, robustness, and computational speed, while theoretical

considerations favor geometric interpretability.

Despite the richness of the subject, in this chapter we simply group optimal transport

into two broad categories, balanced OT and unbalanced OT. Section 2.1 focuses on a

special balanced optimal transport distance, the 2-Wasserstein (W2) distance, whereas

Section 2.2 examines its unbalanced counterpart, the Hellinger-Kantorovich (HK) dis-

tance, whose structure is more complex yet, in a way, parallel to that of the W2 distance.

Then in Section 2.3, we discuss the practical challenge of calculating optimal trans-
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port metrics. Despite the acceleration provided by many approximate solvers, the high

computational cost of OT still poses a serious limitation to its real-world adoption. For-

tunately, both the W2 and the HK distances enjoy a special geometrical structure that

lends themselves easily to linearization. The following two sections 2.4 and 2.5 expound

the idea of linearization for the two particular distances and develop the essential frame-

work for their later applications to discrete distributions, especially under the collider

physics context in Chapter 3. Finally, Section 2.6 presents a simple example to illustrate

the above mathematical concepts from a practical point of view. It serves as a sandbox to

test the linearized optimal transport framework before trying it out on more complicated

datasets.

The present chapter lays the mathematical groundwork necessary for the understand-

ing and application of optimal transport for the rest of the thesis. Mainly based on the au-

thor’s three publications [35, 34, 36], the current presentation avoids detailed proofs and

makes certain modifications to our previous notations. As any rich and well-developed

theory, optimal transport certainly is in no shortage of excellent learning resources. We

refer the reader to the textbooks by Peyré and Cuturi [37] (the author’s primary source

of reference), Ambrogio, Gigli, and Savaré [38], Santambrogio [39], and Villani [40, 41]

for further background materials and detailed expositions. Also see [42] for an overview

of the recent application of optimal transport in image and signal analysis, and [43] for

a survey of optimal transport applications in machine learning.

Before we start, let us first briefly outline some preliminaries for optimal transport

theory and establish the key notations used throughout this chapter and beyond.
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2.0.1 Preliminaries and Notations

Since optimal transport distances are defined on distributions, we first need a math-

ematically rigorous way to describe distributions themselves. This is given by measure

theory. Roughly speaking, all the distributions we have been talking about can be seen

as measures on Rd. For example, a 1D distribution with unit total mass is called a prob-

ability measure on R1. Here we review some basic concepts and notations in measure

theory relevant to the later setup of optimal transport. For a complete treatment on

measure theory, please refer to any standard mathematical textbook.

Let Ω denote a convex, closed, bounded subset of Rd with non-empty interior. For

a compact metric space X, C(X) denotes the space of continuous real-valued functions

over X, and similarly C(X)n denotes the space of continuous Rn-valued functions. In

most applications, X is the metric space Rd itself (or the metric space of a subset of Rd).

We use M(X) for the space of signed Radon measures over X, M+(X) for the space of

non-negative Radon measures, M1(X) for the set of probability measures (also denoted

as P(X)), and M(X)n for the space of Rn-valued measures. We identify M(X) and

M(X)n with the dual spaces of C(X) and C(X)n.

The Lebesgue measure on various domains is denoted by L, where a subscript is added

when the domain is not clear from the context. The set of Lebesgue-absolutely continuous

measures is denoted by ML(X), and we further define M1,L(X) := ML(X) ∩M1(X).

In general, measures can be continuous or discrete and optimal transport theory is

flexible enough to deal with both types of measures simultaneously within the same

framework. As numerical applications almost always deal with discrete measures only,

we treat the special case of discrete measures separately and in much more detail. In this

case, we use upper case curly English letters, for instance, E and Ẽ , alluding to the later

collider events they stand for. Such discrete measures are composed of a set of Diracs,

17



Optimal Transport Theory in a Nutshell Chapter 2

each with a certain amount of mass located at a given position in the underlying space

X. We therefore write E =
∑

iEiδxi and Ẽ =
∑

j Ẽjδx̃j , where the Ei, Ẽj are the masses

of the individual Diracs located at xi, x̃j, respectively. Again borrowing collider physics

language, we oftentimes call these individual Diracs as particles in a given event. In the

case where
∑

iEi = 1, we say the event (measure) E is normalized. Finally, the letter R

is usually reserved for a discrete reference measure, i.e., R =
∑

iRiδyi .

If instead we are concerned about general measures (discrete and continuous), we

resort to lower case greek letters such as µ, ν. We usually add a subscript for different

measures and often reserve µ0 for a continuous reference measure. Now given two prob-

ability measures µ, ν ∈ P(Rd), a measurable function t : Rd → Rd transports µ onto ν

if ν(B) = µ(t−1(B)) for all measureable sets B ⊆ Rd. We call ν the push-forward of

µ under t and write ν = t#µ. For historical reasons, it is conventional in the field of

optimal transport to think of the amount of measure µ gives to a measurable set B as

the mass of B with respect to µ and to interpret a measurable function t as a transport

map that rearranges the mass in µ to look like ν.

Given a probability measure on a product space, for example γ ∈ P(Rd × Rd), its

marginals are given by the pushforward of the measure through the projections on each

component of the product. For example, if π2 : Rd ×Rd → Rd is the projection onto the

second component of Rd × Rd, then π2
#γ is the second marginal of γ.

As always, the Euclidean norm and inner product on Rd are denoted by ∥ · ∥ and ⟨·, ·⟩

respectively. We will also use ∥ · ∥ as the norm on C and the total variation norm on

measures. For positive measures µ ∈ M+(Ω), we just have ∥µ∥ = µ(Ω).
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2.1 Balanced OT: The 2-Wasserstein Distance

First we consider the case of balanced optimal transport, where the total masses of

the two distributions under comparison are the same. Without loss of generality, one can

always normalize each distribution so that its total mass becomes one.

Below we first introduce the p-Wasserstein metrics in the simpler setting of discrete

measures most suitable for the later physics applications in Chapter 3 and Chapter 4. We

then present two equivalent formulations of the special 2-Wasserstein (W2) distance for

general measures in more mathematical detail. An example calculation of W2 between

Dirac measures is given, after which the geodesics for W2 is generalized.

2.1.1 p-Wasserstein Distance for Discrete Measures

Assume we have two discrete measures E =
∑

iEiδxi and Ẽ =
∑

j Ẽjδx̃j , possibly with

different total number of particles. Without loss of generality, one may assume that both

measures are normalized, i.e.,
∑

iEi =
∑

j Ẽj = 1, and we always have Ei, Ẽj ≥ 0. In

the context of collider physics, for example, E may represent an event or a jet consisting

of n particles at locations xi in a rectangular domain Ω on the unfolded detector plane.

1 The mass Ei then denotes the energy (or the transverse momentum in the case of a

hadron collider) of the ith particle in the event.

Given two such measures, the p-Wasserstein distance with p ≥ 1 between them is

1While the detector on which the collision data is recorded is a cylinder, due to the fact that we will
later translate jets clustered with unit radius parameter to be centered at the origin, we may neglect
the periodic boundary conditions in the azimuthal angle and consider the underlying domain to be a
rectangle.

19



Optimal Transport Theory in a Nutshell Chapter 2

defined by

Wp(E , Ẽ) = min
gij∈Γ(E,Ẽ)

(∑
ij

gij∥xi − x̃j∥p
)1/p

, (2.1)

Γ(E , Ẽ) =
{
gij : gij ≥ 0,

∑
j

gij = Ei,
∑
i

gij = Ẽj

}
,

where ∥xi− x̃j∥ denotes the distance on the underlying space Ω, which will be refered to

as the ground metric on the ground space. When p = 1, the above definition reduces to

the Earth Mover’s Distance. When p = 2, we have the special case of the 2-Wasserstein

(W2) distance, also known as the Monge-Kantorovich distance.

One interpretation of the p-Wasserstein distance is that it represents the minimal

amount of “effort” required to rearrange the distribution of mass in E to match Ẽ . In

this case, gij represents the amount of mass moved from particle i in E to particle j in

Ẽ , and ∥xi− x̃j∥p represents the “cost” of moving mass between the two locations in the

ground space.

With this interpretation, Γ(E , Ẽ) is the set of possible ways to rearrange E to look

like Ẽ , known as the set of transport plans. The viable transport plans must satisfy the

following conditions: any rearrangement gij can only move nonnegative amounts of mass;

the total amount of mass moved from a fixed particle i in E to all of the particles in Ẽ

must coincide with the original mass Ei; and, symmetrically, the total amount of mass

moved from all of the particles in E to any fixed particle j in Ẽ must coincide with Ẽj.

In other words, Γ(E , Ẽ) must marginalize to E and Ẽ , respectively.

This gives the “original” static Kantorovich formulation of W2 for the case of discrete

measures.
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2.1.2 W2 Distance: Kantorovich Formulation

More generally, for continuous probability measures µ0, µ1 ∈ M1(Ω), the 2-Wasserstein

distance is given by

W2(µ0, µ1)
2 = inf


∫
Ω2

∥x0 − x1∥2 dπ(x0, x1) +
∑
i∈{0,1}

ι{µi}(Pi♯π)

∣∣∣∣∣∣ π ∈ M1(Ω
2)

 (2.2)

where ι{µi} denotes the indicator function of {µi}, i.e.,

ι{µi}(ν) :=


0 if ν = µi,

+∞ else.

One can check that it returns the same definition as Equation (2.1) in the case of discrete

measures. Here Pi : Ω×Ω → Ω, (x0, x1) 7→ xi are the projections from the product space

onto the marginals. The set Π(µ0, µ1) = {π ∈ M1(Ω
2) |Pi♯π = µi for i = 0, 1} is the set

of transport plans or couplings between µ0 and µ1, which plays the same role as Γ(E , Ẽ)

in the discrete case with gij now replaced by dπ(x0, x1) for infinitesimal amount of mass.

It is well known that W2 is a metric on M1(Ω) and minimal π in Equation (2.2)

exist but is not unique in general. We denote the set of all π ∈ M1(Ω
2) that minimize

Equation (2.2) for W2(µ0, µ1) by Πopt(µ0, µ1) called the optimal transport plans. Further-

more, we say that a plan π ∈ Π(µ0, µ1) is induced by a transport map if there exists a

measurable function t : Ω → Ω so that π = (id× t)♯µ0, where id(x) = x is the identity

mapping.

We devote particular attention to the case that one of the measure, say µ0, is

Lebesgue-absolutely continuous, i.e., µ0 ≪ L. As Ω ∈ R, this means that µ0 does

not give mass to sets of (d− 1)-dimensional Hausdorff measure; in other words, the mea-
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sure does not concentrate on small sets. In this case, the minimizer π becomes unique

for any µ1 and is induced by a transport map [44]. This transport map is unique (up to

sets of µ1 measure zero), and we refer to it as the optimal transport map from µ0 to µ1,

denoted tµ1µ0 [45].

The function x 7→ tµ1µ0(x) represents where mass starting at location x in the source

measure µ0 is sent in the target measure µ1, in order to rearrange the mass from µ0 into

µ1 with the least amount of effort. Note that a necessary condition for such an optimal

transport map to exist is that an optimal rearrangement of µ0 to µ1 does not split mass ;

that is, all mass starting at a specific location in µ0 must be sent to the same location in

µ1.

2.1.3 W2 Distance: Benamou–Brenier Formulation

There is another dynamic formulation of the 2-Wasserstein distance by Benamou and

Brenier [46]. Equivalence between the static and the dynamic formulations for W2 is a

classical result in optimal transport theory. Proofs can be found, for instance, in [40,

Theorem 8.1] and [39, Theorem 5.28], whereas existence, uniqueness and Monge-map

structure of minimizers are also treated in [40, 39, 47].

In the dynamic formulation, W2 is computed by minimizing an action functional over

solutions to the continuity equation. Let CE(µ0, µ1) denote the set of solutions for the

continuity equation on [0, 1] × Ω. That is, CE(µ0, µ1) contains the pairs of measures

(ρ, ω) ∈ M([0, 1]× Ω)1+d, where ρ interpolates between µ0 and µ1 and that solve

∂tρ+∇ω = 0 (2.3)
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in a distributional sense. More precisely, we require for all ϕ ∈ C1([0, 1]× Ω) that

∫
[0,1]×Ω

∂tϕ dρ+

∫
[0,1]×Ω

∇ϕ · dω =

∫
Ω

ϕ(1, ·) dµ1 −
∫
Ω

ϕ(0, ·) dµ0. (2.4)

The action functional JW : M([0, 1]× Ω)1+d → R ∪ {∞} is then given by

JW(ρ, ω) :=


∫
[0,1]×Ω

∥dω
dρ
∥2dρ if ρ ≥ 0, ω ≪ ρ

+∞ else.

(2.5)

We can now define the W2 distance as

W2(µ0, µ1)
2 := inf {JW(ρ, ω)|(ρ, ω) ∈ CE(µ0, µ1)} , (2.6)

where the minimizers (ρ, ω) are referred to as constant speed geodesics between µ0 and

µ1 with respect to W2.

It is often convenient to describe the measures (ρ, ω) via their disintegration with

respect to time, as their time-marginals are Lebesgue-absolutely continuous when JW <

∞. For instance, we can define a ρt ∈ M(Ω) with t ∈ [0, 1] via

∫
[0,1]×Ω

ϕ dρ :=

∫
[0,1]

∫
Ω

ϕ(t, ·) dρt dt (2.7)

for all ϕ ∈ C([0, 1] × Ω). We thus write ρ ≡ ρt ⊗ dt. We will proceed for ω and other

measures in a similar way.

2.1.4 Geodesics for W2

Let us illuminate the above formalism with a simple example. We consider two Dirac

measures E = δx0 and Ẽ = δx1 . That is, both consist of a single unit-mass particle located
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either at x0 for E or x1 for Ẽ .

Using the static formulation, it is straightforward to see that the 2-Wasserstein dis-

tance between them is

W2(E , Ẽ)2 = W2(δx0 , δx1)
2 = ∥x0 − x1∥2. (2.8)

We simply move the particle from x0 to x1. This gives the only and the optimal transport

plan from E to Ẽ .

Now let

X(x0, x1; t) = (1− t)x0 + t x1 , (2.9)

which gives a line between x0 and x1 parametrized by a time parameter t ∈ [0, 1] for

fixed x0, x1 ∈ Ω.

One can now obtain the unique constant speed geodesic between E and Ẽ for the W2

metric, i.e.,

ρt = δX(x0,x1;t) ωt = δX(x0,x1;t) · ∂tX(x0, x1; t) . (2.10)

Obvious to see, ρt gives the moving measure at time t and ωt gives its speed which is

constant. Therefore, a Dirac-to-Dirac geodesic in W2 consists of a single Dirac traveling

along the constant speed line X(x0, x1; ·) in Ω. See Figure 2.1 for an illustration.

For general measures µ0, µ1, we can compute the constant speed geodesics for W2

from the transport plans π by a superposition of Dirac-to-Dirac geodesics. The intuition

behind this is as follows.

If π(x0, x1) > 0 for a pair (x0, x1) ∈ Ω2, a certain amount of mass indicated by π is

moved from position x0 to position x1. Breaking it into infinitesimal parts, each is then
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Figure 2.1: An illustration for the Dirac-to-Dirac geodesic in W2.

the same as the above Dirac case and thus travels along a Dirac-to-Dirac geodesic from

x0 to x1. Therefore, the geodesic between µ0 and µ1 is just the superposition of all these

Dirac-to-Dirac geodesics.

A precise formula for (ρ, ω) can be obtained. Let µ0, µ1 ∈ M1(Ω) and let π ∈

M+(Ω×Ω) be a corresponding minimizer of Equation (2.2), i.e., the optimal couplings.

Again define X by Equation (2.9). Then a constant speed geodesic between µ0 and µ1

is given by

ρt :=

∫
Ω2

δX(x0,x1;t) dπ(x0, x1) = X(·, ·; t)♯π (2.11)

where X(·, ·; t)♯π denotes the push-forward of π under X with the t-argument fixed, and

ωt :=

∫
Ω2

[
δX(x0,x1;t) · ∂tX(x0, x1; t)

]
dπ(x0, x1) = X(·, ·; t)♯ (∂tX(·, ·; t) · π) . (2.12)

It is not hard to see that these formulas are a superposition of formulas for the Dirac

measures. For more details on the W2 geodesics, please refer to [39, Theorem 5.27].
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2.2 Unbalanced OT: The Hellinger-Kantorovich Dis-

tance

The p-Wasserstein distances are only meaningfully defined for measures of equal mass,

that is, the mass distributions must be matched exactly. In addition to the obvious

limitation it puts on the measures, this requirement also makes the optimal coupling

susceptible to noise in the form of small but non-local mass fluctuations. Consequently,

small perturbations can suppress and wash away more relevant features, making the

optimal transport distances less effective in reflecting the key features of the underlying

data measures.

In the past few years, there has been substantial interest in generalizing the balanced

optimal transport metrics to measures with unequal total mass, known as the unbalanced

optimal transport problem [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. In particular, the

recently proposed Hellinger–Kantorovich (HK) distance [52, 59, 53, 55] defines a metric

by allowing for the creation and destruction of mass within the OT framework. This

HK distance enjoys many similar geometric properties as the W2 distance and can be

formulated in a way parallel to the development of the W2 distance in the previous

section.

Of course, the Hellinger–Kantorovich distance is only a particular variant of the

unbalanced transport problem and many other models to combine transport and cre-

ation/destruction are conceivable. See, for instance, [60, 58, 49, 61]. Some discussion is

also provided in [53].

We begin this section by recalling the notion of partial optimal transport, already

briefly introduced in Chapter 1. We then extend it to a full class of unbalanced op-

timal transport using the dynamic formulation, with a special focus on the Hellinger–

Kantorovich distance.
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Thereafter, we dive into the HK distance and present the two equivalent formalisms,

this time first the Benamou–Brenier-type formulation and then the Kantorovich-type

formulation. We then emphasizes the global mass rescaling behavior of the HK distance,

pointing out the importance of local mass discrepancy for unbalanced optimal transport.

Finally, we again present an example of Dirac masses and work out the geodesics of HK

for general measures.

As the mathematics for HK is much more involved, we do not attempt to give rigorous

proofs and only results relevant to later usages are presented. For full mathematical

details, please consult [34] and the references therein.

2.2.1 Partial Optimal Transport

The first unbalanced optimal transport metric considered in collider physics is the

modified Earth Mover’s Distance for discrete measures studied in [4] and explained in

Chapter 1. In this case, for fixed R ≥ maxij dij/2, the distance between two discrete

measures E , Ẽ is

EMD∗,R(E , Ẽ) = min
γij∈ΓEMD∗

≤(E,Ẽ)

1

R

∑
ij

dijγij +

∣∣∣∣∣∑
i

Ei −
∑
j

Ẽj

∣∣∣∣∣ , (2.13)

where a transport plan γij belongs to the set ΓEMD∗

≤(E,Ẽ) in case it satisfies the following four

criteria:

1. γij ≥ 0,

2.
∑

j γij ≤ Ei,

3.
∑

i γij ≤ Ẽj, and

4.
∑

ij γij = min
(∑

iEi,
∑

j Ẽj

)
.
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These criteria ensure that (1) the amount of mass moved between any two particles is

always nonnegative; (2) the maximum amount of mass that can be moved from location

i in E to any location in Ẽ is Ei; (3) the maximum amount of mass that can be moved

to location j in Ẽ from any location in E is Ẽj; and (4) the total mass that is moved

equals the total mass of whichever event has smaller mass. If strict inequality holds in

constraint 2, we will say Ei−
∑

j γij mass has been destroyed at xi, and if strict inequality

holds in constraint 3, we will say Ẽj −
∑

i γij mass has been created at x̃j.

Note that in the above definition, when the measures E and Ẽ have equal total mass,

EMD∗,R(E , Ẽ) = 1
R
W1(E , Ẽ), i.e., we recover the standard balanced EMD (with an extra

factor of 1/R).

In fact, this modified EMD is a special case of the partial transport distance studied

by Georgiou, Karlsson, and Takyar [62], Caffarelli and McCann [58], Figalli [48], and

Piccoli and Rossi [49, 50]. For κ > 0, p ≥ 1, define

T κp (E , Ẽ) (2.14)

= min
γij∈Γ≤(E,Ẽ)

(
Σijd

p
ijγij

)1/p
+
κ

2
(|ΣiEi − Σijγij|+

∣∣∣ΣjẼj − Σijγij

∣∣∣),
where a transport plan γij belongs to the set Γ≤(E,Ẽ) in case it satisfies criteria (1, 2, 3)

above.

The two main differences between EMD∗,R and T κp are that, first, the partial transport

distances allow p ≥ 1 and, second, they permit the amount of mass that is rearranged

from E to Ẽ to differ from the total mass of whichever event has smaller mass. To see this,

assume without loss of generality that E has smaller total mass,
∑

iEi ≤
∑

j Ẽj. The

distance EMD∗,R requires that all of the mass in E be rearranged: exactly
∑

j Ẽj−
∑

iEi

mass is created in Ẽ , and no mass is destroyed. On the other hand, T κp allows for∑
ij γij ∈ (0,min(

∑
iEi,

∑
j Ẽj)) mass to be rearranged:

∑
iEi−

∑
ij γij mass is destroyed
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in E , and ∑j Ẽj −
∑

ij γij mass is created in Ẽ .

Next we show why, for κ = 2R ≥ maxij dij, EMD∗,R coincides with (a constant

multiple of) T κ1 . First, note that the EMD∗ constraint set is a subset of the Piccoli-Rossi

constraint set, ΓEMD∗
≤(E,Ẽ) ⊆ Γ≤(E,Ẽ). Furthermore, if γij ∈ ΓEMD∗

≤(E,Ẽ), then the values

of the objective function in each minimization problem coincide (as p = 1 now), up to

a factor of κ = 2R. Thus, if we can show that κ = 2R ≥ maxij dij ensures that the

optimizer γ∗ij of T κ1 belongs to the stricter constraint set ΓEMD∗
≤(E,Ẽ), we can conclude

that

T κ1 (E , Ẽ) = T 2R
1 (E , Ẽ) = R EMD∗,R(E , Ẽ). (2.15)

Observe that, using properties (2, 3) of the constraint set Γ≤(E,Ẽ), we may remove the

absolute value signs in the definition of T κ1 and express it equivalently as

T κ1 (E , Ẽ) =

min
γij∈Γ≤(E,Ẽ)

∑
ij

(dij − κ) γij +
κ

2

(
ΣiEi + ΣjẼj

)
(2.16)

Thus, if κ ≥ maxij dij, the coefficient on γij is always negative, so the optimal γ∗ij for the

T κ1 distance will be as large as possible, subject to the constraints (2, 3). In particular,

the optimal γ∗ij will satisfy constraint (4) and belong to ΓEMD∗
≤(E,Ẽ).

The above argument not only establishes the equivalence between T κ1 and EMD∗,R

for κ = 2R ≥ maxij dij, but also sheds light on the role of the parameter κ > 0. From

Equation (2.14), we observe that smaller κ makes creation and destruction cheaper and

transport comparatively more expensive. In fact, using Equation (2.16), we can make

this quantitative: if γ∗ij is the optimizer, then for any i, j such that dij > κ, we must have

γ∗ij = 0. If not, we could find a strictly better choice of γ in Γ≤(E,Ẽ) by setting γij = 0,

29



Optimal Transport Theory in a Nutshell Chapter 2

contradicting that γ∗ij was the optimizer.

In other words, energy will never be transported over a distance greater than κ. This

κ parameter sets an intrinsic length scale to any unbalanced optimal transport distance

formulated in the above way.

2.2.2 From Partial Optimal Transport to Unbalanced Optimal

Transport

One of the key contributions of Piccoli and Rossi’s work on the partial optimal trans-

port distance T κp is a dynamic, Benamou–Brenier-type formulation of the distance [50].

This dynamic perspective is most clear when T κp is stated in full generality, as a distance

on the space of general measures M(Ω).

For µ0, µ1 ∈ M(Ω), κ > 0, and p ≥ 1, we have

T κp (µ0, µ1)

= inf
γ∈Γ≤(µ0,µ1)

(∫∫
|x0 − x1|pdγ(x0, x1)

)1/p

+
κ

2

(∣∣∣∣∫ µ0 −
∫∫

γ

∣∣∣∣+ ∣∣∣∣∫ µ1 −
∫∫

γ

∣∣∣∣) ,
(2.17)

where we say γ ∈ Γ≤(µ0,µ1) in case γ ∈ M(Ω×Ω) satisfies γ(B ×Ω) ≤ µ0(B) and γ(Ω×

B) ≤ µ1(B) for any Borel set B. Note that Equation (2.17) reduces to Equation (2.14)

in the discrete case when µ0 = E =
∑

i∈I δxiEi and µ1 = Ẽ =
∑

j∈J δx̃j Ẽj.

Piccoli and Rossi [53, 50] showed that T κ has the following equivalent dynamic for-
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mulation,

T κp (µ0, µ1) = inf
ρ,v,ψ∈CES(µ0,µ1)

(Aκp [ρ, v, ψ])
1/p, (2.18)

Aκp [ρ, v, ψ] =

∫ 1

0

∫
Ω

(|v(x, t)|p + (κ/2)|ψ(x, t)|)ρ(x, t)dxdt,

CES(µ0, µ1) =

{ρ ∈ C([0, 1],M(Ω)), v ∈ L2(dρtdt), ψ ∈ L1(dρtdt) :

∂tρ+∇ · (ρv) = ψρ, ρ(·, 0) = µ0, ρ(·, 1) = µ1} .

In other words, one can find the T κp distance from µ0 to µ1 by considering all curves ρ

connecting µ0 to µ1 with velocity v and reaction rate ψ and finding the curve with least

action Aκp [ρ, v, ψ].

This dynamic perspective reveals a general framework for unbalanced optimal trans-

port problems, in terms of minimizing different notions of action. In particular, as ob-

served in [53], for any κ > 0, p ≥ 1, and q ≥ 1, one may consider

Aκp,q[ρ, v, ψ] =

∫ 1

0

∫
Ω

(|v(x, t)|p + (κ/2)q|ψ(x, t)|q)ρ(x, t)dxdt. (2.19)

As before, large values of κ > 0 penalize creation and destruction. In particular,

sending κ→ +∞ [52, Theorem 7.24],

lim
κ→+∞

inf
ρ,v,ψ∈CES(µ0,µ1)

(
Aκp,q[ρ, v, ψ]

)1/p
=


Wp(µ0, µ1) if

∫
µ0 =

∫
µ1

+∞ otherwise.

(2.20)

While minimizing the action Aκp,q[ρ, v, ψ] with q = 1 yields the partial transport
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distance T κp described in the previous section, minimizing it for p = q = 2 yields the

Hellinger–Kantorovich distance,

HKκ(µ0, µ1) = inf
ρ,v,ψ∈CES(µ0,µ1)

(Aκ2,2[ρ, v, ψ])
1/2. (2.21)

This case is distinguished among all p, q ≥ 1, since it is the only choice that directly

gives rise to an infinite dimensional Riemannian manifold [53, 55], although as of now

this structure is still much less understood than the W2 case. We now describe this

Hellinger-Kantorovich distance in more details.

2.2.3 HK Distance: Benamou–Brenier-type Formulation

To make the parallelism between HK and W2 more manifest, we now rewrite Equa-

tion (2.18) in the specific case of the HK distance using the same terminology as the

corresponding W2 descriptions.

Essentially, one adds an additional source term on [0, 1]×Ω to the continuity equation,

whose solutions are now denoted by the set CES(µ0, µ1) which composes of triplets of

measures (ρ, ω, ζ) ∈ M([0, 1]×Ω)1+d+1 where ρ interpolates between µ0 and µ1 and that

solve

∂tρ+∇ω = ζ (2.22)

in a distributional sense. Here we redefine ω := ρv and ζ := ρψ for brevity and consis-

tency of notation. More precisely, we require for all ϕ ∈ C1([0, 1]× Ω) that

∫
[0,1]×Ω

∂tϕ dρ+

∫
[0,1]×Ω

∇ϕ · dω +

∫
[0,1]×Ω

ϕ dζ =

∫
Ω

ϕ(1, ·) dµ1 −
∫
Ω

ϕ(0, ·) dµ0. (2.23)
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As in the case of W2, let JHK : M([0, 1]× Ω)1+d+1 → R ∪ {∞} be given by

JHK,κ(ρ, ω, ζ) :=


∫
[0,1]×Ω

(∥∥∥dω
dρ

∥∥∥2 + κ2

4

(
dζ
dρ

)2)
dρ if ρ ≥ 0, ω, ζ ≪ ρ,

+∞ else.

(2.24a)

Then for µ0, µ1 ∈ M+(Ω) we set

HKκ(µ0, µ1)
2 := inf {JHK,κ(ρ, ω, ζ)|(ρ, ω, ζ) ∈ CES(µ0, µ1)} . (2.24b)

The similarity between HK and W2 is now obvious from this reformulation.

Again, the parameter κ > 0 controls the relative importance of the transport part of

the cost—the first term
∫
[0,1]×Ω

∥dω
dρ
∥2dρ, and the destruction/creation part—the second

term
∫
[0,1]×Ω

(dζ
dρ
)2dρ. As in the general case of T κp,q, the HK metric admits a well defined

limit as κ → +∞ whenever µ0 and µ1 have equal mass, i.e., limκ→+∞ HKκ(µ0, µ1) =

W2(µ0, µ1).

On the other hand, the κ→ 0 limit is also well defined for arbitrary µ0, µ1,

lim
κ→0

1

κ
HKκ(µ0, µ1) =

∫ ∣∣∣∣∣
√

dµ0

dx
−
√

dµ1

dx

∣∣∣∣∣
2

dx

1/2

, (2.25)

which is known as the Hellinger distance [52, Theorems 7.22 and 7.24].

Seen from a different angle, setting the parameter κ is equivalent to re-scaling the

set Ω to Ω/κ (and all measures accordingly), then computing HK1 on Ω/κ and finally

multiplying the result by κ again. Transport in HK1 is bounded by π
2
, in the sense that

mass at location x0 will never be transported outside of the ball B(x0, π/2). Therefore

the transport in HKκ is bounded by κπ
2
.

This observation is useful in applications as it allows one to prescribe how far mass
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should be transported and provides a good intuition for the choice of κ. Usually, as we

will later confirm, statistical performance with respect to κ is relatively robust around

the optimal value. Therefore, a coarse cross validation search for an acceptable value is

oftentimes sufficient.

It can be proven [53, Theorems 2.1 and 2.2] that HK is a well-defined metric on

M+(Ω). Minimizers of (2.24b) exist and will again be referred to as constant speed

geodesics between µ0 and µ1 with respect to HK.

2.2.4 HK Distance: Kantorovich-type Formulation

Similar to the classical W2 distance, there are also (multiple) static, Kantorovich-type

formulations [52] of HK in terms of measures on the product space Ω × Ω, which lends

itself to familiar numerical approximations, such as via entropic regularization. Unlike

in the classical balanced case, here transport can no longer be described by a coupling

π ∈ Π(µ0, µ1), since particles may change their mass during transport and µ0 and µ1

may have different total mass.

In the static formulation for the Hellinger–Kantorovich given in [52], the effect of mass

changes is captured by choosing a particular cost function and by relaxing the marginal

constraints Pi♯π = µi and penalizing the difference with the Kullback–Leibler divergence

instead. The Kullback–Leibler divergence of µ ∈ M(Ω) with respect to ν ∈ M(Ω) is

defined to be

KL(µ|ν) =


∫
φ(dµ

dν
) dν if µ, ν ≥ 0, µ≪ ν,

+∞ else

(2.26)

with φ(s) = s log(s) − s + 1 for s > 0 and φ(0) = 1, which is is strictly convex and

continuous on R+. Note that the KL divergence is in general not symmetric with respect
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to µ↔ ν.

The Kantorovich formulation of HK can now be expressed via a particular “soft-

marginal” Kantorovich-type transport problem [52, Theorem 8.18]. Let

c(x0, x1) :=


−2 log(cos(∥x0 − x1∥)) if ∥x0 − x1∥ < π

2

+∞ else.

(2.27a)

JSM(π) :=

∫
Ω2

c dπ +
∑
i∈{0,1}

KL(Pi♯π|µi). (2.27b)

Then

HK(µ0, µ1)
2 = inf

{
JSM(π)

∣∣ π ∈ M+(Ω
2)
}

(2.27c)

and minimal π in (2.27c) exist. Here we set κ = 1 for simplicity.

As in the Wasserstein case, there are conditions under which a unique optimal trans-

port map exist for HK. Let µ0 ∈ M+,L(Ω), µ1 ∈ M+(Ω). Then the minimizer π for

HK(µ0, µ1)
2 in (2.27) is unique and induced by a Monge map. This is the same as in the

W2 case.

The Special Case of Discrete Measures

For ease of use in latter physics applications, we now rephrase the above static min-

imization problem of the HK distance in the special case of fully discrete measures and

highlight the intuition behind the mathematical formulation.

For two discrete measures, E =
∑

i∈I δxiEi and Ẽ =
∑

j∈J δx̃j Ẽj, the HK distance is
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given by

HKκ(E , Ẽ) (2.28)

= min
γij≥0

∑
ij

(
ℓκ(dij)γij + κ2KL(G, E) + κ2KL(G̃, Ẽ)

)1/2
,

where G and G̃ are auxiliary discrete measures, with G assigning mass Gi =
∑

j γij to

location xi and G̃ assigning mass G̃j =
∑

i γij to x̃j. In addition, we define

ℓκ(s) =


−2κ2 log(cos2(s/κ)) if s < π

2
κ,

+∞, otherwise,

(2.29)

KL(G, E) =
∑
i

Eiφ

(
Gi

Ei

)
, φ(s) = s log(s)− s+ 1.

The equivalence between Equation (2.21) and Equation (2.28), i.e., the dynamic and

static formulations, is a significant mathematical result, due to Liero, Mielke, and Savaré,

based on a surprising connection with cone geometry [51, 52].

The optimizer γij of Equation (2.28) represents how much mass is transported from

xi in G to x̃j in G̃. That is, γij is the optimal transport plan from G to G̃. In general,

Gi ̸= Ei and G̃j ̸= Ẽj, and the mass that is not transported can be thought of as having

been created or destroyed. In particular,

1. if Gi > Ei, we say energy was created at xi;

2. if Gi < Ei, we say energy was destroyed at xi;

3. if Gj > Ẽj, we say energy was destroyed at x̃j;

4. if Gj < Ẽj, we say energy was created at x̃j.

Note that the first and third options did not arise for the T κp distance, due to requirements
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(2, 3) for the set of transport plans Γ≤(E,Ẽ). While until now we have always assumed

that our discrete measures have strictly positive energy at every location, Ei, Ẽj > 0,

observe that now it is possible for Gi or G̃j to be zero.

Again, the first term in the minimization problem in Equation (2.28) penalizes trans-

porting energy over long distances. As with T κp , small values of κ penalize transport.

The second two terms penalize the difference between G and E and between G̃ and Ẽ , in

terms of the Kullback-Liebler divergence.

As we all know, the major difference between the Hellinger–Kantorovich metric and

the 2-Wasserstein metric is that HK allows for the comparison of events with unequal

total energy. However, even when the total energy of events E and Ẽ coincide, HKκ(E , Ẽ)

is in general not equal to W2(E , Ẽ). This can be seen, for example, from Equation (2.28)

and Equation (2.29): mass will never be transported more than distance κπ
2
. Interestingly,

the converse is also true. If mass is not transported from xi to x̃j, i.e., if γij = 0, then

we must have dij = ∥xi − x̃j∥ ≥ κπ
2

[34, Lemma 3.13].

2.2.5 Global Mass Rescaling Behavior of HK

The introduction of unbalanced optimal transport, specifically the HK distance, has

originally been to accommodate cases where the two measures being compared have

unequal total masses. From the formulation of HK above, we see that HK accomplishes

this extension by allowing mass to be created and destroyed locally at each location. The

question now arises: is the global mass difference between two measures more important,

or is it the local mass discrepancy that distinguishes HK from W2?

The answer favors the latter. Specifically, let µ0, µ1 ∈ M1(Ω), i.e., both with total

mass equal to unity, and let m0,m1 ∈ R+ represent the respective scaling factor for the
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total mass of each measure. It was shown in [63, Theorem 3.3] that

HK(m0 · µ0,m1 · µ1)
2 =

√
m0 ·m1 · HK(µ0, µ1)

2 + (
√
m0 −

√
m1)

2 (2.30)

and if π is optimal in Equation (2.27) for HK(µ0, µ1)
2, then

√
m0 ·m1 · π is optimal for

HK(m0 · µ0,m1 · µ1)
2.

This is a significant result. What it implies is that the “unbalanced” effects of the HK

distance are already fully encoded in its behavior on probability measures, i.e., balanced

measures with unit total mass. Extension to measures of arbitrary mass can then be done

via the simple formula above. Consequently, the benefit for data analysis applications

that we expect from using HK instead of W2 is not so much the ability to deal with differ-

ences in the total mass of measures, but its ability to deal with local mass discrepancies,

i.e., creating mass in one part of the distribution while reducing it in another part, if this

seems more likely than a long range transport.

Therefore, for numerical purposes we always normalize our samples before compar-

ison, as will be done for all our later applications. In the case where the total mass of

samples is deemed relevant for the subsequent analysis, its effect can be easily recovered

via Equation (2.30). Or the total masses can also be kept as separate features, though

this later option has not been pursued in our current study.

2.2.6 Geodesics for HK

Again, we consider the HK distance between two Dirac measures, where the general

idea is outlined without proofs. For more details, please refer to Section 3 in [34].

Let x0, x1 ∈ Ω, m0,m1 ∈ R+, producing the two Dirac measures with different total

masses, i.e., E0 = δx0 ·m0 and E1 = δx1 ·m1. The HK distance between them are given
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Figure 2.2: Local isometry between Dirac measures δxi · mi, i = 0, 1, with respect
to the HK metric and points in C with respect to the Euclidean distance. When
∥x0−x1∥ ≤ π

2 , the geodesic between the two measures is described by the correspond-
ing straight line in C. Figure copied from [34].

by [52, 53]

HK(δx0 ·m0, δx1 ·m1)
2 = m0 +m1 − 2

√
m0m1cos(∥x0 − x1∥) (2.31)

where cos(s) = cos
(
min{s, π

2
}
)
.

An intuitive visualization for Equation (2.31) is given in Figure 2.2. For ∥x0−x1∥ ≤ π
2
,

the HK distance equals the distance between two points in C in polar coordinates, where

the radii of the two vectors are given by
√
mi respectively and the angle between them

is ∥x0 − x1∥. That is, one can write

HK(δx0 ·m0, δx1 ·m1) = ∥√m0 −
√
m1 exp(i∥x0 − x1∥)∥ (2.32)

From this local isometry, one can deduce the structure of geodesics between Dirac

measures. If ∥x0 − x1∥ < π
2
, the geodesic is given by a single “travelling” Dirac of the
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form

ρt = δX(t) ·M(t) (2.33)

where X : [0, 1] → Ω describes the movement from x0 to x1 and M : [0, 1] → R+ the

evolution of the mass. For W2, one would of course have that X(t) parametrizes the

constant speed straight line from x0 to x1 and M(t) would be fixed to 1. On the other

hand, for the HK metric, X and M essentially describe the straight line between the

two embedded points
√
m0 and

√
m1 exp(i∥x0 − x1∥) in C in polar coordinates, with the

angle given by X and the squared radius given by M .

When ∥x0 − x1∥ > π
2
, the geodesic between the two measures is equal to the geodesic

in the Hellinger distance: the mass at x0 is decreased from m0 to 0, the mass at x1 is

increased from 0 to m1 and no transport occurs. The geodesic will be of the form

ρt = δx0 ·M0(t) + δx1 ·M1(t) . (2.34)

Explicit formulas for X and M , for M0 and M1, and for (ρ, ω, ζ), are given in [34,

Proposition 3.7]. A similar illustration of the Dirac-to-Dirac geodesics as in the W2

distance is presented in Figure 2.3.

As in the 2-Wasserstein distance, constant speed geodesics of HK(µ0, µ1) for general

measures can also be constructed via the superposition of Dirac-to-Dirac geodesics. The

formula is more complicated here; see Section 3.3 in [34] for more details.

2.3 Computational Hurdle of Optimal Transport

In the previous two sections, we have seen the theoretical benefits of optimal transport

metrics, in particular, the balanced W2 distance and the unbalanced HK distance. Both
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Figure 2.3: An illustration for the Dirac-to-Dirac geodesic in HK.

come with a rich geometric structure, such as geodesics, barycenters [64], and a weak

Riemannian structure to be explained later. On the practical side, as discussed in Chap-

ter 1, the OT distances often better capture variations in signals and images comparing

to “pointwise” similarity measures such as Euclidean ℓp-norms or the Kullback–Leibler

divergence.

However, the wider adoption of OT in image analysis, and more broadly in any applied

science, has been slowed by two main obstacles: high computational cost and limited

choice of downstream statistical analysis models. In terms of computational efficiency,

despite recent numerical advances (see [65] for an overview), it is still relatively expensive

to compute OT distances, particularly for large and high dimensional data sets. For

example, computing the balanced p-Wasserstein distance between two discrete measures,

each with n Dirac masses, requires O(n3) operations via Bertsekas’ auction algorithm

and O(n2 log(n)) operations via entropic regularization and the Sinkhorn algorithm [66,

67, 68, 69, 37]. This is in stark contrast to the classical ℓ2 norm, which is naively O(n),

when the number of bins is chosen proportional to the number of Diracs.

The high cost of the OT metrics is compounded by the fact that one needs to compute

the pairwise distances between the entire collection of N data points, requiring O(N2)

computations of the OT distance itself. In the particular case of classifying collider jets
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considered in Chapter 3, the number of particles per jet is relatively small, i.e., n ≈ 102.

It is therefore the latter need to compute pairwise distances between a large number of

jets, N ≈ 105, which is the main computational expense.

To give a sense of time scale we are talking about, computing the W2 distance between

two jets, each with O(100) particles, takes fractions of a second, whereas the normal

Euclidean calculation only takes milliseconds. This quickly puts the calculation of W2

distances for a typical dataset with O(105) jets beyond the reach of desktop computers.

The generalization to the unbalanced case only makes things worse. This computational

hurdle poses a serious challenge to the usability of optimal transport distances for our

physics analyses.

Furthermore, existing work using classical optimal transport metrics must also cope

with the significant computational demands of storing the matrix of pairwise distances,

which is itself oftentimes unsuitable for use with downstream machine learning methods

that require more structure than just the pairwise distances. Therefore, when attempting

to perform a given statistical task on an input dataset, we encounter the second issue of

having fewer models available for analyzing the OT distances themselves.

Fortunately, we can kill two birds with one stone. Below, we introduce the Linearized

Optimal Transport (LOT) approximation to the exact OT distances. We first give the

general principle for the LOT framework and highlight some high-level properties. The

following two sections then expound the idea specifically for the 2-Wasserstein distance

and the Hellinger-Kantorovich distance and work out the necessary mathematical details.

Note that the development of the LOT framework is one of the main contributions of the

three publications by the author and the collaborators [35, 34, 36].
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2.3.1 Linearized Optimal Transport

Thanks to their weak Riemannian structure, it is possible to linearize the two special

OT distances, W2 and HK, which is why we have been focusing on them in the first

place. Formally, this means that the W2/HK manifold can be approximated locally by

a tangent space at a reference point. One then apply a logarithmic map, which brings

the data samples on the original OT manifold down to the tangent space. Later we will

see that the tangent space is a Hilbert space equipped with an inner product, where the

norm of each embedded sample equals its W2/HK distance to the reference measure.

The good news is that the Hilbertian distance between two embedded samples is also

approximately equal to the W2/HK distance between the two original samples.

In other words, the LOT approximation to the exact OT distance amounts to pro-

jecting everything onto the tangent plane at a chosen reference event and computing

simpler ℓ2 distances on that plane. This makes the computational advantage of the

LOT approach very obvious. Now instead of calculating O(N2) computationally inten-

sive OT distances between each pair of data samples (with a total of N samples), one

only needs to solve N optimal transport problems in order to embed N samples into the

tangent space at the reference point. The pairwise LOT distances are then obtained by

O(N2) computationally efficient ℓ2 distances. In practice, this linear version reduces the

computational effort from a computer cluster to a single PC.

Another advantage of LOT lies in the linear structure itself on the space of embed-

dings, in comparison to the non-linear metric structure of the original W2/HK space.

Such a Euclidean embedding allows for the application of methods from data analysis

that have been primarily developed for linear settings such as principal component anal-

ysis (PCA), opening the door for a wide range of machine learning algorithms. On the

other hand, since the obtained embedding is (at least locally) approximating the origi-
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nal W2/HK distance, we expect the tangent linear structure to still enjoy many of the

properties of the W2/HK distance such as the cost of translations, as opposed to other

naive linear structures on the space of measures.

The linearization of the 2-Wasserstein distance was proposed in [70] and recent work

by Delalande and Mérigot [71] has quantified the relationship between the original 2-

Wasserstein distance and its linearization. Applications in relatively simple settings have

emerged over the past decade. In [70], linearized W2 was employed as a method for

visualizing variation in sets of images. [72] used the linear setting to generate new images

by first clustering in the linear W2 space, then learning the principal directions in the

tangent planes for each cluster. Hence, new images were generated using Euclidean data

analysis techniques, such as k-means and PCA, whilst keeping the Wasserstein flavor.

Other applications of the linear 2-Wasserstein space have included a PCA based approach

for super resolution on faces [73], and classification, using a Fisher linear discriminant

analysis technique, on images of nuclei [74].

Comparing to the case of the linearized W2 where a tangent vector is represented

by a velocity field (see Section 2.4 for more details), when linearizing the HK distance,

one obtains an additional scalar mass creation/destruction field (see Section 2.5). This

field can become singular in the case where mass is created from nothing, leading to a

third, measure-valued, tangent component. This third component may be considered

undesirable in some applications and sufficient conditions can be imposed to ensure that

it remains zero. This way, one obtains the desired embedding into a Hilbert space.

Although the formalism of the linearized HK distance may seem considerably more

complex compared to the W2 case, from a numerical perspective the local linearization

via HK is not much harder to perform than for W2. The involved transport problems

can be solved in a Kantorovich-type formulation, for instance with an adapted Sinkhorn

algorithm, just like for W2. Then an approximate logarithmic map can be extracted
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from the optimal coupling with explicit formulas, leading to an embedding into the

Hilbert space, which becomes finite-dimensional after discretization. Similar numerical

approximations as in the case of W2 apply. The only new challenge is to fix the intrinsic

length-scale κ of the HK metric appropriately, which can be determined by standard

validation procedures.

We now describe in detail the Riemannian structure of the two special optimal trans-

port distances, leading to their linearization on the space of general measures. A proper

choice of a reference measure is critical and ensures the resulting LOT distances are gen-

uine metrics themselves. In practice, however, one usually has only discrete measures,

both for the input data and for the reference. Therefore, this discrete case is treated sep-

arately, where the linearized W2 and HK are sometimes referred to as pseudo-distances

to highlight the fact that they are themselves approximation to the LOT distances in the

continuous setting.

2.4 Linearized 2-Wasserstein Metric

In this section, we describe the procedure to linearize the 2-Wasserstein distance, with

the resulting distance shorthanded as “LinW2”. We first briefly explain the Riemannian

structure of the W2 distance and work out the corresponding logarithmic and exponential

maps. The logarithmic map in specific gives us the linearization scheme, which under

certain condition of the reference measure outputs a true metric on the space of general

measures.

We then zoom in to the setting of discrete measures more relevant for practical use.

It is this formalism that will be adopted in our physics analysis. As now the reference

measure no longer satisfies the required condition, the resulting linearization in general

does not give a metric, but an approximation to the true LinW2 metric. We denote
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this pseudo-distance as “LinW2,R”, with the added subscript R emphasizing the discrete

nature of the reference measure. Finally, we include a simple example of two Dirac

distributions (also called “artificial jets” alluding to the latter collider application) to

illustrate the actual implementation of the LinW2,R framework.

2.4.1 Riemannian structure of W2

As pointed out earlier, the 2-Wasserstein metric is special among all balanced p-

Wasserstein metrics because only it enjoys a Riemannian structure. Here we give an

intuitive explanation that will facilitate the latter linearization of the distance. A more

complete picture with rigorous proofs can be found, for instance, in [75, Sections 2.3.2

and 7.2].

Equations (2.5) (2.6), at the formal level, look like a functional to find constant speed

geodesics on a Riemannian manifold. Here the manifold is M1(Ω), the curve is given

by t 7→ ρt, and the tangent vectors are encoded by the velocity field vt := dωt

dρt
. The

Riemannian inner product between tangent vectors v and w at ρt is then given by

gW2(ρt; v, w) :=

∫
Ω

⟨v, w⟩ dρt. (2.35)

The relation between tangent vectors vt and the curve ρt is encoded in the continuity

equation.

Now assume additionally that µ0 ∈ M1,L(Ω), i.e. µ0 ≪ L. In this case, we know

there exists a unique optimal coupling π ∈ Π(µ0, µ1) for W2(µ0, µ1). Let (ρ, ω) be the

corresponding geodesics constructed via Equations (2.11) (2.12). One then finds that

W2(µ0, µ1)
2 =

∫ 1

0

∫
Ω

∥vt∥2 dρt dt with vt :=
dωt
dρt

. (2.36)
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Thanks to the assumption on µ0, the unique optimal plan π is induced by a Monge

map t : Ω → Ω, i.e., π = (id, t)♯µ0. In this particular case, we have

ρt = X(·, ·; t)♯(id, t)♯µ0 =
(
(1− t) · id+ t · t

)
♯
µ0, (2.37)

ωt = X(·, ·; t)♯ (∂tX(·, ·; t) · (id, t)♯µ0) =
(
(1− t) · id+ t · t

)
♯

(
(t− id) · µ0

)
(2.38)

and thus vt
(
(1− t)x0 + t t(x0)

)
= t(x0)− x0. In particular,

v0(x0) = t(x0)− x0. (2.39)

Consequently, for all t ∈ [0, 1]

∫
Ω

∥∥∥∥dωtdρt

∥∥∥∥2 dρt =

∫
Ω

∥vt∥2 d
(
(1− t) · id+ t · t

)
♯
µ0

=

∫
Ω

∥∥vt ◦ ((1− t) · id+ t · t
)∥∥2 dµ0

=

∫
Ω

∥v0∥2 dµ0. (2.40)

Finally,

W2(µ0, µ1)
2 =

∫
Ω

∥v0∥2 dµ0 = gW2(µ0; v0, v0), (2.41)

where we use Equation (2.35) in the last step.

We interpret the map t 7→ v0 implied by Equation (2.39) such that it takes µ1 to the

tangent vector at t = 0 of the constant-speed geodesic from µ0 to µ1. Thus, it is formally

the logarithmic map at µ0 and we will denote it in the following as LogW2
(µ0; ·).
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With this, Equation (2.41) becomes

W2(µ0, µ1)
2 = gW2

(
µ0; LogW2

(µ0;µ1),LogW2
(µ0;µ1)

)
. (2.42)

This is analogous to the classical result in (finite-dimensional) Riemannian geometry.

As is well known, the corresponding exponential map is given by ExpW2
(µ0, v0) := (id+

v0)♯µ0. One finds that ExpW2
(µ0, v0) = t♯µ0 = µ1, as expected.

2.4.2 LinW2 Metric on the Space of Probability Measures

Let’s work out the LinW2 metric on the space of general probability measures. Let

µ1, µ2 ∈ M1(Ω), which can in principle take on a discrete form. We specifically pick the

reference measure µ0 ∈ M1,L(Ω), i.e., µ0 is a Lebesgue-absolutely continuous probability

measure. As proposed in [70] for applications in the geometric analysis of ensembles of

images, we can use Equation (2.42) to linearize W2 around the support point µ0. That

is, we define the LinW2 distance as

LinW2(µ0;µ1, µ2)
2 := gW2

(
µ0; LogW2

(µ0;µ1)− LogW2
(µ0;µ2),

LogW2
(µ0;µ1)− LogW2

(µ0;µ2)
)

=

∫
Ω

∥∥LogW2
(µ0;µ1)− LogW2

(µ0;µ2)
∥∥2 dµ0,

(2.43)

where in the last step we again use Equation (2.35). We have now written LinW2(µ0;µ1, µ2)

as the ℓ2(µ0) distance on Ω between LogW2
(µ0;µ1) and LogW2

(µ0;µ2) and can prove that

LinW2(µ0;µ1, µ2) is indeed a metric.

When the Monge map t, used in the definition of the logarithmic map, does not exist,

one instead uses the shortest generalized geodesic (see also [76, Definition 9.2.2]). That
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is, we let

γ ∈ M1(Ω
3) with Pi♯γ = µi, P01♯γ ∈ Πopt(µ0, µ1) and P02♯γ ∈ Πopt(µ0, µ2) (2.44)

(such a γ exists by [76, Lemma 5.3.2]) and define the linearized W2 distance by

LinW2(µ0;µ1, µ2)
2 := min

γ satisfying (2.44)

∫
Ω3

∥x1 − x2∥2 dγ(x0, x1, x2). (2.45)

In the case when the Monge map exists, Πopt(µ0, µ1) and Πopt(µ0, µ2) then contain a

single transport plan, each of which can be written as π01 = (id, t10)♯µ0 ∈ Πopt(µ0, µ1),

π02 = (id, t20)♯µ0 ∈ Πopt(µ0, µ2). Furthermore, the γ that satisfies (2.44) is unique and

given by γ = (id, t10, t
2
0)♯µ0. In this case, Equation (2.43) and Equation (2.45) coincide,

as wished.

If the Monge map does not exist, then the minimization in Equation (2.45) is no longer

necessarily over a singleton, even though optimal plans π01 and π02 might still be unique.

To remove the minimization in Equation (2.45) in the general case (without Monge maps),

following [70], one approximates optimal plans π01 ∈ Πopt(µ0, µ1), π02 ∈ Πopt(µ0, µ2) by

a plan induced by a map through barycentric projection, namely

π01 ≈ (id, t10)♯µ0, t10(x0) :=

∫
Ω

x1 dπ01,x0(x1), (2.46)

π02 ≈ (id, t20)♯µ0, t20(x0) :=

∫
Ω

x2 dπ02,x0(x2) (2.47)

where {π01,x0}x0∈Ω ⊂ M1(Ω), {π02,x0}x0∈Ω ⊂ M1(Ω) are the disintegrations of π01, π02
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with respect to µ0, i.e.

∫
Ω2

ϕ(x0, x1) dπ01(x0, x1) =

∫
Ω

(∫
Ω

ϕ(x0, x1) dπ01,x0(x1)

)
dµ0(x0), (2.48)∫

Ω2

ϕ(x0, x2) dπ02(x0, x2) =

∫
Ω

(∫
Ω

ϕ(x0, x2) dπ02,x0(x2)

)
dµ0(x0) (2.49)

for any measurable function ϕ : Ω2 → [0,∞] (see [76, Theorem 5.3.1]). The approximate

Monge maps t10 and t20 are then used in (2.43).

When the optimal plans are not unique, one must choose among the set of optimal

plans. In practice, this is determined by the algorithm used to solve the Kantorovich

optimization problem Equation (2.2).

2.4.3 LinW2,R Pseudo-distance in the Discrete Setting

In practice, it’s rarely possible to have a reference measure µ0 ∈ M1,L(Ω). Instead,

one usually generates something discrete, i.e., a collection of particles at locations yi with

mass Ri. Denote it as the measure R =
∑
Riδyi .

Now for any input data measure E which is itself discrete, let rij denote an optimal

transport plan from R to E . Note that there may be more than one optimal transport

plans between two given events. In general, a transport plan rij may send mass from

particle i in the referenceR to many different particles in E . Consider the average of these

locations, weighted by how much mass is sent to each and normalized by the amount of

mass starting at particle i,

zi :=
1

Ri

∑
j

rijxj (2.50)

This provides a map from an event E to a vector zi in the n-dimensional Euclidean space,

Rn, where n is the number of particles in the reference R.
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The LOT approximation of the 2-Wasserstein metric then measures the distance

between two events E and Ẽ by considering the Euclidean distances between all pairs

(zi, z̃i), weighted by the mass starting at particle i,

LinW2,R(E , Ẽ)|r,r̃ =
(∑

i

Ri∥zi − z̃i∥2
)1/2

. (2.51)

Note that this approximation explicitly depends on the choice of transport plans rij, r̃ij

from the reference to the two measures respectively. This implies that the LinW2,R

approximation does not always give the same value, due to the choice of different optimal

transport plans.

As can be expected, such a LinW2,R approximation is not in general a metric on

the space of measures. For instance, if the reference R consists of a single particle at

location y1, then z1 =
∑

j xjEj is the “center of mass” of E . And any two events E , Ẽ

with equal center of mass satisfy LinW2,R(E , Ẽ)|r,r̃ = 0. Consequently, it is clear that

a necessary condition for the LinW2,R approximation to capture finer properties of the

input measures is that the reference cannot be too concentrated.

In fact, this condition is also sufficient. When the reference does not concentrate on

lower dimensional sets, the LinW2,R pseudo-distance obtained via the above procedure

coincides with the well-defined LinW2 metric introduced in the previous subsection. For

a proof, see the Appendix of [35].

There we further proved that, if the referenceR is given by a collection ofN2 particles,

uniformly distributed on a rectangle Ω, with equally weighted masses RN
i = 1/N2, then,

as N → +∞, the LinW2,R pseudo-distance converges to the true LinW2 metric, where

the reference R = µ0 is now the probability measure uniformly distributed on Ω,

lim
N→+∞

LinW2,R(E , Ẽ)|rN ,r̃N = LinW2(E , Ẽ). (2.52)
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This justifies our latter use of a uniformly distributed discrete measure as the reference

for our physics applications.

For such choice of R = µ0 and any events E , Ẽ on Ω, the transport metric is bounded

above and below by the original 2-Wasserstein distance [77],

W2(E , Ẽ) ≤ LinW2(E , Ẽ) ≤ CW2(E , Ẽ)2/15, (2.53)

where the constant C > 0 depends on Ω. In this way, LinW2,R not only converges

to a well-defined transport metric LinW2, but that transport metric also captures the

behavior of the original 2-Wasserstein metric at large and small distances.

An Example Calculation of the LinW2,R Pseudo-distance

Finally let us illustrate the LinW2,R pseudo-distance and its relationship to the stan-

dard 2-Wasserstein metric with a simple example; see Figure 2.4. The two discrete

measures, both consisting of two Dirac masses, are highlighted in blue and in red, re-

spectively. The blue measure (denoted as “Jet 1” in the plot) has its two composite

particles located at (−1.0, 0.0) and (−0.5, 0.0), whereas the particles of the red measure

(“Jet 2”) are at (−1.0, 0.0) and (1.0, 0.0). The reference measure (green; “Reference Jet”)

contains 9× 9 = 81 particles uniformly distributed on Ω = [−1.0, 1.0]2.

The top row of Figure 2.4 shows the optimal transport plans that rearrange the

Reference Jet into Jet 1 and Jet 2, respectively, according to the exact 2-Wasserstein

metric (denoted as OT-W2 in the plot). Here, grey lines indicate how mass from particle

yi in the reference is sent to particle xj in Jet 1 or particle x̃j in Jet 2. Note that, as

there are multiple optimal ways to perform this rearrangement, the rearrangement is not

guaranteed to be symmetric: in the top left figure, compare the fifth particle from the

left on the bottom row (which splits mass between both blue particles) to the top row

52



Optimal Transport Theory in a Nutshell Chapter 2

(which sends all mass to the right particle).

In the bottom left subplot, we illustrate z̃i − zi, to visualize the difference in how

the reference is rearranged for Jet 1 and Jet 2. Predictably, we observe that the main

difference is mass going further to the right in the case of Jet 2. The LOT approximation

of the 2-Wasserstein distance (denoted as LOT-W2 in the plot) is computed by taking

the sum of the lengths of the gray vectors squared, weighted by the mass of the reference

measure Ri = 1/81, so that LinW2,R(E , Ẽ)|r,r̃ ≈ 1.07.

Finally, in the lower right subplot, we illustrate the exact W2 distance directly between

Jet 1 and Jet 2, which corresponds to moving half of the mass in the Jet 1 a distance 1.5

as one would expect. So W2(E , Ẽ) = (1.52/2)
1/2 ≈ 1.06. It is satisfying to observe that

LinW2,R(E , Ẽ)|r,r̃ ≈ W2(E , Ẽ): the LinW2,R pseudodistance in this case is very close to

the actual W2 distance between the two discrete measures.

To summarize, we have learnt that the linearized W2 metric between two measures

can be obtained through the Euclidean distance between their logarithmic maps with

respect to a Lebesgue-absolutely continuous measure. In actual numerical applications,

one has to discretize the reference measure and the corollaries proven in the Appendix of

[35] guarantees that such a LinW2,R pseudo-distance converges to the LinW2 distance,

which in turn well approximates the exact W2 distance.

2.5 Linearized Hellinger-Kantorovich Metric

We now describe the linearization of the Hellinger-Kantorovich metric, shorthanded

as “LinHK” (or sometimes “LinHKκ” to emphasize the hyper-parameter κ). As before,

we begin by exploring the Riemmanian structure of the HK distance. After defining the

LinHK distance on the space of general probability measures, we focus on the special

case of discrete measures, where following the notation in the case of W2 we denote the
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Figure 2.4: Upper left: An optimal movement using the exact W2 metric to rearrange
a uniform reference jet of 9× 9 = 81 constituent particles (green) into the sample Jet
1 (blue). Upper right: An optimal movement using the exact W2 metric to rearrange
the same uniform reference jet (green) into another sample Jet 2 (red). Lower left: An
optimal movement to rearrange the sample Jet 1 into the sample Jet 2 using LinW2

approximation. Lower right: An optimal movement to rearrange the two sample jets
directly using exact W2.
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corresponding LinHK approximation as LinHKκ,R.

Most statements here are presented without proofs. Additionally, when the results

themselves are too complicated and cluttered with long expressions irrelevant for our

current usage, we choose to not write them down explicitly and instead refer the readers

to the original paper [34] and the references therein for a full mathematical exposition.

2.5.1 Riemmanian Structure of HK

In the previous section on the 2-Wasserstein distance, we showed its Riemannian

structure explicitly via Equation (2.41). Here, we seek an equivalent expression for the

HK distance. In other words, we want to express HK(µ0, µ1) in terms of the particles’

initial tangent direction at t = 0. Since the HK distance allows transport as well as mass

changes, the tangent space will now consist of a velocity field and a mass growth field.

Special care must be applied to the regions where “teleport” occurs, in particular where

mass is created from nothing.

Let µ0 ∈ M+,L(Ω), µ1 ∈ M+(Ω) be our two general probability measures. Notice

the additional requirement of Lebesgue-absolutely continuousness on µ0. By now, you

should already be very familiar about the functionality of this condition.

Let π be a corresponding minimizer for HK(µ0, µ1) in Equation (2.27), which—thanks

to the above condition on µ0—is unique and can be written as π = (id, t)♯σ for some

measurable t : Ω → Ω and σ ∈ M+(Ω). And let (ρ, ω, ζ) be the corresponding minimizers

of Equation (2.24) (and let (ρ̃, ζ̃) be the corresponding parts of (ρ, ζ) as given by [34,

Proposition 3.14]). Then one has

HK(µ0, µ1)
2 =

∫ 1

0

∫
Ω

[∥∥∥∥dωtdρt

∥∥∥∥2 + 1
4

(
dζt
dρt

)2
]
dρt dt, (2.54)

where we set κ = 1 for simplicity.
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A subtle difference between Equation (2.54) and Equation (2.36) is that here the

integrand

∫
Ω

[∥∥∥∥dωtdρt

∥∥∥∥2 + 1
4

(
dζt
dρt

)2
]
dρt

must be handled with particular care for t ∈ {0, 1}, as one may have that dζt
dρt

diverges in

some locations as t→ 0 and 1 where ρt vanishes in the limit t = {0, 1}. Thus, we cannot

simply rewrite Equation (2.54) in terms of this integrand at t = 0, as we have done for

W2 in deriving Equation (2.41) from Equation (2.36).

The subtleties can be handled by Lebesgue decomposing µ0 and µ1 with respect to

the marginals of π. That is,

µ0 = u0 · σ + µ⊥
0 , µ1 = u1 · t♯σ + µ⊥

1 . (2.55)

Set further for t ∈ [0, 1):

vt :=
dωt
dρt

, αt :=
dζ̃t
dρt

− 2(1− t)
dµ⊥

0

dρt
. (2.56)

Then, we have

v0(x) =


t(x)−x

∥t(x)−x∥ ·
√

u1(t(x))
u0(x)

· sin(∥t(x)− x∥) σ-a.e.,

0 µ⊥
0 -a.e.,

(2.57a)

α0(x) =


2
(√

u1(t(x))
u0(x)

· cos(∥t(x)− x∥)− 1
)

σ-a.e.,

−2 µ⊥
0 -a.e..

(2.57b)
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with the convention that v0(x) = 0 if t(x) = x, and

HK(µ0, µ1)
2 =

∫
Ω

[
∥v0∥2 + 1

4
(α0)

2
]
dµ0 + ∥µ⊥

1 ∥ . (2.58)

Intuitively, vt describes the spatial movement of mass particles, αt describes the

change of mass of moving particles and of those that disappear entirely at t = 1. And

µ⊥
1 describes the mass particles that are created from nothing.

The third singular term may be undesirable from a practical point of view. Fortu-

nately, under certain assumptions on the relative distributions of µ1 with respect to µ0

(which can easily be achieved by a reasonable choice of µ0; more to come later), we can

simply drop the ∥µ⊥
1 ∥ term as µ⊥

1 = 0, and write instead

HK(µ0, µ1)
2 =

∫
Ω

[
∥v0∥2 +

1

4
(α0)

2

]
dµ0.

This holds, in particular, when for a dataset of samples {µ1, . . . , µn}, µ0 is chosen as

linear mean or HK-barycenter (see [78] for details).

2.5.2 LinHK Distance on the Space of Probability Measures

We now identify a candidate for the logarithmic map, given as an explicit function

from an optimal Kantorovich-type transport plan. Let µ0 ∈ M+,L(Ω), µ1 ∈ M+(Ω) and

let (vt, αt, µ
⊥
1 ) be given as above. We define the Logarithmic map for HK at support

point µ0 for the measure µ1 as

LogHK(µ0;µ1) := (v0, α0,
√
µ⊥
1 ). (2.59)

Now given another measure µ̃1 ∈ M+(Ω) with LogHK(µ0; µ̃1) := (ṽ0, α̃0,
√
µ̃⊥
1 ) (we
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use tilde “µ̃1” instead of subscript “µ2” to avoid potential conflict with, for example, v0),

we define the corresponding inner product as

gHK

(
µ0; (v0, α0,

√
µ⊥
1 ), (ṽ0, α̃0,

√
µ̃⊥
1 )
)
:=

∫
Ω

[
⟨v0, ṽ0⟩+ 1

4
α0 α̃0

]
dµ0 +

∫
Ω

√
dµ⊥

1

dλ

dµ̃⊥
1

dλ
dλ

(2.60)

where λ is some measure in M+(Ω) with µ
⊥
1 , µ̃

⊥
1 ≪ λ.

Uniqueness of (v0, α0,
√
µ⊥
1 ) is implied by the uniqueness of the optimal coupling π

from which they are constructed. Hence, LogHK(µ0; ·) is well-defined. Of course, referring

to Equation (2.59) and Equation (2.60) as logarithmic map and inner product is a slight

abuse of notation, since the third component of the inner product is merely defined on

the cone of non-negative measures and thus lacks the full vector space structure.

Now, analogous to Equation (2.42), we have

HK(µ0, µ1)
2 = gHK(µ0; LogHK(µ0;µ1),LogHK(µ0;µ1)). (2.61)

And so, in analogy to Equation (2.43), we use this to linearize HK around the support

point µ0:

LinHK(µ0;µ1, µ2)
2 := gHK (µ0; LogHK(µ0;µ1)− LogHK(µ0;µ2),LogHK(µ0;µ1)− LogHK(µ0;µ2)) .

(2.62)

As in the 2-Wasserstein case, we can view the linear HK distance as a distance between
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the formal logarithmic maps in an (almost) Euclidean space. Indeed,

LinHK(µ0;µ1, µ2)
2 = ∥LogHK(µ0;µ1)1 − LogHK(µ0;µ2)1∥2ℓ2(µ0)

+
1

4
∥LogHK(µ0;µ1)2 − LogHK(µ0;µ2)2∥2ℓ2(µ0) + ∥LogHK(µ0;µ1)3 − LogHK(µ0;µ2)3∥2Hell ,

(2.63)

where by ∥ · ∥Hell we denote the Hellinger distance over measure square roots. And thus

the linear HK distance can be embedded in the space ℓ2(µ0;Rd)× ℓ2(µ0;R)×
√
M+(Ω)

where the third component is the cone of square roots of non-negative measures, equipped

with the Hellinger metric.

As hoped, when µ0 has sufficiently wide support on Ω, the third component is always

zero and the embedding can be made into the Euclidean space ℓ2(µ0;Rd)×ℓ2(µ0;R) where

gHK(µ0; ·, ·) is an inner product. Still, a more careful look at this singular measure-valued

component is needed in the future to better understand its behavior.

From a practical perspective, the additional complexity of LinHK distance relative

to the LinW2 distance is relatively low. Loosely speaking, one must apply an unbal-

anced version of the Sinkhorn algorithm, adjust the formula for the initial velocity field,

accommodate an additional scalar mass change field, and finally fix a single real-valued

length-scale parameter κ by validation on the data. All these steps only introduce a small

amount of computational overhead, in comparison to the exact OT calculation itself.

As the Hellinger-Kantorovich space is much less understood than the Wasserstein

space, there still remain many open questions left for future mathematical study. For

example, we know that the linearization in the 2-Wasserstein space is closed under convex

combinations. In other words, if {vi}ni=1 are a set of W2 linear embeddings, then any ṽ

in the convex hull of {vi}ni=1 is in the domain of the exponential map and hence one

can generate a new measure via µ̃ = ExpW2
(ṽ) (see Section 3.3 for applications to data
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augmentation for jets). Identifying similar operations under which the HK linearization

is closed is definitely worth pursuing.

Another important open problem is to quantitatively bound the accuracy of the linear

approximation of the HK distance, which requires an estimation of the curvature of the

HK manifold. This would hopefully enable us to obtain an upper and lower bound similar

to Equation (2.53).

2.5.3 LinHKκ,R Pseudo-distance in the Discrete Setting

We now focus on the case of discrete measures. Let R be a discrete reference measure,

consisting of particles at locations {xi}i∈I with positive masses {Ri}i∈I . For any discrete

measure E , let γij denote an optimizer of Equation (2.28), which represents an optimal

transport plan from the auxiliary measures G to G̃. Note that more than one optimizer

may exist.

In general, the transport plan γij may send mass from xi in G to many different

locations in G̃. In order to linearize the HK metric, we first consider the average of

these locations, weighted by how much mass is sent to each place and normalized by the

amount of mass starting at xi in G,

zi =


1
Gi

∑
j γijx̃j if Gi > 0

xi if Gi = 0

(2.64)

Next, we consider the average amount that mass starting at location xi needs to be

rescaled, via creation or destruction, in order for R to become Ẽ : For each x̃j, consider

the ratio Ẽj/G̃j, between the amount of mass that must end up at location x̃j and the

amount of mass transported by γij to x̃j. If Ẽj/G̃j > 1, mass needs to be created

at xj, and if Ẽj/G̃j < 1, mass needs to be destroyed at xj. Note that this quantity
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is well-defined only for G̃j =
∑

i γij > 0. In fact, this is a necessary assumption for

the Hellinger-Kantorovich metric to be linearized in a manner that admits a Euclidean

embedding [34, p18].

Recall that a sufficient condition for γij > 0 is dij = ∥xi− x̃j∥ < κπ
2
. Consequently, in

what follows, we will suppose that κ is sufficiently large so that, for each x̃j, there exists

xi so that

∥xi − x̃j∥ <
κπ

2
. (2.65)

This will ensure G̃j > 0 for all j.

With this assumption in hand, we now consider, for each fixed xi, the weighted

average of this ratio, representing how much mass needs to be created/destroyed at xj,

with respect to how much mass γij transports to each x̃j, normalized by the amount of

mass Gi originally starting at xi:

ui =


1
Gi

∑
j

(
Ẽj

G̃j

)
γij if Gi > 0,

0 if Gi = 0.

(2.66)

Intuitively, while the coordinate zi, defined in Equation (2.64), represents the average

location that mass starting at xi is transported to in Ẽ, the coordinate ui represents the

average amount of creation/destruction that will happen to mass that started at xi, after

it is transported.

With these quantities in hand, we may now state the formula for the linearized

Hellinger-Kantorovich approximation with respect to a discrete measure. In the original

paper [36], LinHK in the discrete case is given the acronym pluOT (particle linearized

unbalanced Optimal Transport), in order to emphasize that it is a discrete particle ap-
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proximation of the continuum linearization of the Hellinger-Kantorovich metric. Here,

to avoid overuse of terminology, we refrain from introducing pluOT and instead keep the

notation LinHKκ,R to maintain the parallelism with the LinW2,R case.

We now define the LinHKκ,R distance as

LinHKκ,R(E , Ẽ) (2.67)

=

(∑
i

Ri∥vi − ṽi∥2 +
κ2

4
Ri|αi − α̃i|2

)1/2

,

vi = κ sgn(zi − xi)
√
uiGi/Ri sin(∥zi − xi∥/κ),

αi = 2
(√

uiGi/Ri cos(∥zi − xi∥/κ)− 1
)
.

Note that this approximation depends on the choice of the optimal transport plans γij, γ̃ij

via their dependence on xi, zi, x̃i, z̃i; see Equations (2.64) and (2.66).

As in the definition of HK, the unusual expressions for vi and αi in LinHKκ,R derive

from the surprising connection to cone geometry [51, 52, 53]. In particular, when com-

paring the locations and masses of particles (xi, Ei), the cone structure is used to identify

all points with mass zero as the same point. For example, in one spatial dimension (and

under assumption (2.65)), (xi, Ei) corresponds to the point (Ei cos(xi/κ), Ei sin(xi/κ))

in the plane.

To see the connection with Equation (2.67), consider the original location and mass

of the ith particle, (xi, Ri), along with the average location to which its mass is sent and

the average mass at that location after creation/destruction, (zi, uiGi). The constant

speed geodesic in the cone metric between these two points represents how the location

xi is optimally transported to zi, while simultaneously mass is created and destroyed to

convert Ri into uiGi [52]. In one spatial dimension, this is just the line connecting the

two points in the plane.
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The coordinate vi represents the velocity of the spatial trajectory at time zero, while

Riαi represents the rate of change of the mass at time zero. From this perspective,

LinHKκ,R measures the difference between two events E and Ẽ in terms of how a reference

event R deforms into E and Ẽ , by comparing the velocities by which particles in the

reference event move and the rates at which their masses change.

In analogy with LinW2,R, a key benefit of the linear approximation of the Hellinger-

Kantorovich metric is that it provides a natural embedding

E 7→ (vi, αi)i∈I ∈ Rdn × Rn, (2.68)

where d is the dimension of the underlying domain Ω in which particles are located and

n is the number of particles in the discrete reference measure, n = |I|. This vector may

be interpreted geometrically as an approximation of the tangent vector from R to E

with respect to the Hellinger-Kantorovich geometry, an interpretation that may be made

precise when R is a finite Borel measure that is absolutely continuous with respect to

Lebesgue mesaure, as explained above [34, Definition 4.5]. In this way, it is natural to

compare two discrete measures E and Ẽ by computing the distance between the vectors

(vi, αi) and (ṽi, α̃i) as elements of the tangent space at R, as in Equation (2.67) above.

When later we use LinHKκ,R as a tool for data analysis, we will investigate the effects

of creation/destruction in the HK metric separately from the fact that it allows for the

comparison of measures with unequal total masses. We do this by separately analyzing

the statistical performance of the linearization of LinHKκ,R(E , Ẽ) with the performance

of LinHKκ,R

(
E/∑iEi, Ẽ/

∑
j Ẽj

)
, where E/(∑iEi) denotes the normalized measure, in

which the mass Ei of each particle in E is replaced by Ei/(
∑

iEi).

The HK metric exhibits a simple scaling under the above transformation [63, Theorem
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3.3]: Denoting m =
∑

iEi,

(Ẽj)
norm = m−1/2Ẽj, γnormij = m−1/2γij, (2.69)

Gnorm
i = m−1/2Gi, (G̃j)

norm = m−1/2G̃j,

znormi = zi, unormi = m−1/2ui,

vnormi = m−1/2vi, αnorm
i = m−1/2αi + 2(m−1/2 − 1).

For future study, one would like to better understand the stability of the Hellinger-

Kantorovich maps with respect to discretization and therefore the stability of the linear

HK distance with respect to discretization. The corresponding stability study for the

2-Wasserstein distance was established in [79].

2.6 Optimal Transport in Action: A Numerical Ex-

ample

To help digest the rich mathematics developed in this chapter, here we present a

numerical example on synthetic images as an illustration. First, we apply both linearized

W2 and linearized HK embeddings on ellipses with various sizes and elongations. We

then analyze the resulting LOT manifolds using a simple Principal Component Analysis

(PCA), which clearly demonstrates the advantage of the LinHKκ,R over the LinW2,R

metric, at least for the present example.

This section serves as a prelude to the following two chapters, where LOT embeddings

will be applied to much more complicated datasets in collider physics and astrophysics.

The statistical analysis frameworks will also be more advanced and tailored for the partic-

ular physics use case. Hopefully, the current example of ellipses can illuminate some key
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aspects of the linearization of the two OT metrics, transforming the mathematical jargons

throughout the chapter into useful intuitive understanding for practical applications.

2.6.1 Synthetic Data: Deforming and Resizing Ellipses

We generate a synthetic dataset with each set of samples consisting of the images of

two ellipses on a 64×64 pixel grid. The mass density is set to be 1 within the ellipses and

zero outside. At the boundaries, the density is non-binary and between 0 and 1 due to

rasterization effects. Ellipses are first rendered at a higher resolution and then reduced

to the standard 64× 64 pixels.

Each image of ellipse is characterized by two parameters p1, p2 ∈ [−1, 1]2. Here p1

specifies the elongation of the ellipses. When p1 = 0, both ellipses are reduced to circles.

For p1 > 0, one becomes elongated horizontally, the other one vertically. For p1 < 0, the

roles are reversed.

The other parameter p2 controls the resizing of the two ellipses, and therefore their

relative masses. When p2 = 0, the sizes of two ellipses are equal. For p2 > 0, one

ellipse expands and the other shrinks, whereas the role is again reversed for p2 < 0. The

maximal change in the ellipse diameter between p2 = −1 and p2 = +1 is approximately

0.5 pixels, with the corresponding relative change in mass being approximately 10%.

Examples for different pairs of (p1, p2) are shown in Figure 2.5 (a,b). They are gener-

ated by sampling both parameters on 8 equidistant points from [−1, 1], yielding a total

of n = 64 input images. The resizing in Figure 2.5 (b) is not very noticeable, due to the

minute pixel variation (0.5 as quoted above). Note that prior to any analysis, all images

are normalized to have a total mass of one.

We can regard each sample as a sum of Dirac measure at pixel locations, i.e., (Ei)ni=1

with n being the total number of samples. Obviously, each Ei is a measure on the image
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π
2 · κ

(a) samples for different elongations p1 (sizes p2 fixed)

(b) samples for different sizes p2 (elongations p1 fixed)

(c) HK barycenter

(d) W2 barycenter

Figure 2.5: Some representative samples from the ellipses dataset and the correspond-
ing barycenters in the HK and W2 distances. The red line in the top left sample has
length π

2 · κ, representing the maximal transport distance under HK. Figure copied
from [34].

domain Ω, which is a rectangle in R2.

2.6.2 The LOT Embeddings

To apply the LOT formalism, we first need to choose a reference measure R, against

which the exact W2 or HK distances are computed for all the images. This choice is im-

portant for a successful analysis. As both metric spaces are (weakly) curved Riemannian

manifold, we expect the local linearization to be a poor approximation if the reference

point R is very far from the samples (Ei)ni=1. Similarly, another failure mode occurs when

the samples themselves are too far from each other.

A natural candidate for R is the barycenter of the samples. The W2 barycenter was

analyzed in [64] and here we use the algorithm described in [80]. The corresponding

HK barycenter was recently studied in [81, 78], which, in principle, can be approximated

numerically with the methods from [54, 82]. However, for large numbers of samples

n or when samples live on large grids, computing the barycenter could be numerically
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prohibitive. Thus it is worthwhile to consider alternative choices.

In [70], it was proposed to use the linear average of the samples, and one could simi-

larly consider the Hellinger mean. In [35], a uniform measure on a Cartesian background-

grid was used. The later two will be employed in the more complicated physics applica-

tions considered in the following chapters. In all three cases, it is ensured that E⊥
i = 0

so that we can safely ignore this singular component for the HK distance.

When applying the exponential map at a discrete reference measure R, the result

will be a discrete measure where the points of R are moved to new locations with their

masses re-scaled. Often, it is desirable to visualize the new measure on a fixed reference

grid, e.g., the same grid that the input samples live on. For rasterization, we use bilinear

interpolation coefficients to distribute mass to nearby grid points.

We now analyze this dataset with LinW2,R and LinHKκ,R. For HK, we set the

length-scale parameter κ to 5, so that the maximal transport distance is sufficient to

track the deformation of the ellipses induced by p1 while still separating well the two

ellipses from each other (cf. Figure 2.5). In more realistic applications such as those in

the later chapters, a range of values for the κ parameter are tested over several orders of

magnitude to pick the optimal κ, which is then validated to give stable performance in

its vicinity.

Given the simplicity of our current example, we can afford calculating the (approx-

imate) W2 or HK barycenter of the samples. We thus use them as the reference point

R, visualized in Figure 2.5 (c,d). Note that due to the difference of the masses of the

two ellipses caused by p2 variation, the W2 barycenter has some mass located in between

the two disks, where the discrete pattern stems from the fact that we used only a finite

number of values for p2. The HK barycenter exhibits no such artifacts and is thus more

desirable.

Once the reference point is fixed, we obtain the linear embeddings via the logarithmic
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maps, where we set wi,0 := LogW2
(R; Ei) and (vi,0, αi,0) := LogHK(R; Ei) for i = 1, . . . , n.

2.6.3 PCA on the LOT Manifolds

We now apply a simple Principal Component Analysis (PCA) to the LOT manifolds

resulting from both linear embeddings. Intuitively, if we pick the barycenter as support

point for the linearization, the embeddings should already be centered in the tangent

space. For the W2 metric, this is known to be true [64, Equation (3.10)]. For the HK

metric, we are not aware of such a result, but numerically it seems to be satisfied. If any

other reference measure is picked, we then need to center the samples before applying

PCA.

The coordinates of the (centered) linear embeddings with respect to the two dominant

PCA modes are shown in Figure 2.6. For the HK metric, we recover a two-dimensional

grid structure that corresponds precisely to the two underlying parameters of the dataset.

In addition, the first two PCA modes capture 95% of the dataset variance.

On the other hand, for the W2 metric, the first two principal modes only explain 78%

of the total variance. The coordinates with respect to the first two principal components

are dominated by the size variation. The samples lie approximately on a one-dimensional

curve, according to their size variation parameter p2. The elongation variations only

cause small perturbations near this curve. Extracting information about the elongation

will thus be decidedly more difficult from the W2 embedding, in comparison to the HK

embedding.

Furthermore, in Figure 2.7 the first two principal components for both linearizations

are visualized as (colored) quiver plots and as curves of measures generated via the

exponential map. In agreement with the previous observations, for W2 the first two

modes seem to be concerned mostly with moving mass between the two disks. For HK,
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Figure 2.6: Coordinates of ellipse samples in PCA basis (two most dominant modes,
axis scaling given in terms of standard deviation along each mode) for linearized W2

and HK embeddings. Samples with identical size parameter p2 are connected by lines.
For HK, a two-dimensional grid structure emerges, one mode corresponding to elon-
gation and the other to size. For W2, the size variation dominates the embedding.
Samples are roughly located on a one-dimensional curve, according to their size vari-
ation parameter p2. Along this line, the samples are grouped into small clusters, each
corresponding to one ‘pass’ through the elongation parameter p1 for fixed p2. Figure
copied from [34].

the first mode clearly encodes variations in the disks elongation and the second mode

encodes variations in their size.

Now consider picking a different reference measure, either being the ℓ2 or Hellinger

mean of the samples, or a uniform measure on Ω. For the linearized W2 embedding,

the picture is qualitatively very similar: the size variation shadows the elongation varia-

tion. For linearized HK, the situation remains essentially unchanged with ℓ2 or Hellinger

mean. For the uniform measure, the mass variation is too subtle and is shadowed by

the elongation variation. However, with larger size variations, a similar picture as above

re-emerges.

Of course, for more realistic datasets it cannot be expected that PCA will yield as

transparent and simple results as for this toy example. We will therefore consider more

sophisticated statistical models later. But the present simple example already shows us

the clear advantage of HK relative to W2. We may still hope that the ability to locally
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W2 - mode 1

−σ −σ/2 0 +σ/2 +σ

W2 - mode 2

HK - mode 1

HK - mode 2

Figure 2.7: Visualizations of the two dominant PCA modes for linearized W2 and HK
embeddings of the ellipse dataset. For each mode, the quiver plot on the left shows
the initial velocity field v0, for HK the color of the arrows encodes α0 (blue means
decrease, red increase of mass). The five images on the right visualize the exponential
map evaluated between −σ and σ where σ denotes the standard deviation along
the considered mode. HK accurately captures the two-dimensional structure of the
dataset, W2 is dominated by the size variations. Figure copied from [34].

vary masses will make the linear embeddings via LogHK more robust to mass fluctuations

and consequently simplify any subsequent analysis task, such as classification.
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Chapter 3

Optimal Transport for Collider

Physics

The first full-scale application of optimal transport in high energy physics focuses on

collider phenomenology. The present chapter summarizes a series of projects the au-

thor has been working on—in particular, the three publications [35, 34, 36] and some

current work-in-progress. After reviewing the necessary collider physics background in

Section 3.1, the following Section 3.2 develops our physics-inspired framework of machine

learning with linearized optimal transport, building up the entire analysis pipeline for

later statistical tasks such as jet tagging.

The next three sections 3.3, 3.4, 3.5 consist of the main body of our results, where

we examine the performance of different optimal transport distances on a variety of

jet tagging tasks. Section 3.6 studies the effect of pileup on optimal transport based

framework. The presentation here follows closely that of our own papers, with a slight

change of notations in order to maintain consistency within the thesis.

Finally, Section 3.7 concludes the chapter with a brief summary of our ongoing efforts

to augment the OT framework, with the ultimate goal being full event-level classification.
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It serves as a short-term roadmap for the author’s projects along this line of research.

3.1 Jet Physics at the Large Hadron Collider

The Large Hadron Collider (LHC) at CERN currently provides the most stringent

test on the Standard Model (SM) of particle physics at the TeV scale and represents our

best hope in search of new physics beyond the Standard Model (BSM). Being a proton-

proton-collision machine, the LHC at its heart produces copious high-energy quarks and

gluons. Though themselves unobservable, these partons subsequently fragment into final-

state hadrons recorded by the detectors and giving the experimental outputs. Hadrons

deriving from the same mother parton tend to travel along the same direction within a

narrow cone, resulting in a collimated spray of particles. This is called a jet, an easily

identifiable structure when looking at an event display.

Over the last decades, the study of jets has emerged as a vital aspect of the LHC

research program. The rich substructure of a jet becomes a window through which one

can hopefully take a glimpse at the hard collisions otherwise inaccessible to observation.

A plethora of jet substructure observables have since been handcrafted to probe different

aspects of the underlying physics. For example, some observables are particularly sensi-

tive to the number of prongs within a single jet and therefore serve as an excellent tool to

distinguish boosted heavy particles from QCD background. Such theoretically motivated

observables calculable from first-principles remain essential to deepen our understanding

of the physics processes at the hadron collider and has a broader impact on QCD and

beyond.

With the recent advent of machine learning, we have at out disposal a new set of

powerful tools specialized at analyzing data with rich and complex patterns. As jets

are naturally amenable to ML analyses, it is no surprise that this field has pioneered
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the adoption of ML techniques in HEP. Jet physics has now become the archetypical

playground where novel statistical frameworks are developed and tested.

3.1.1 Jet Definitions

Before any analysis, a precise definition of a jet is first required in order to utilize

it as a quantitative tool for collider physics. Clearly, a visual identification is far from

enough. One needs a set of well-defined rules to map experimental observables—be it

final-state particles or calorimeter towers—to a jet, such that its behavior is understood

and reproducible. Such a set of rules is called a jet definition, or a jet algorithm. In its

essence, a jet definition is nothing but a clustering algorithm, which is an example of

unsupervised machine learning. In some sense, a jet itself is only defined in the context

of machine learning, though the requirement that a jet needs to be physically meaningful

puts stringent constraints on the validity of proposed clustering algorithms.

Usually, a jet definition involves two steps. First, it decides which particles are to

be grouped together depending on some free parameters set by the user. It then assigns

a momentum and/or other properties to the resulting jet. The latter step is called a

recombination scheme. Various jet definitions differ in their particular choices of the

particle grouping scheme and the recombination scheme. In general, they fall into one of

the two general categories—cone algorithms and sequential recombination algorithms.

The very first jet finding algorithm, proposed by Sterman and Weinberg in 1977 for

e+e− collisions [83], is a cone algorithm. Essentially, it classifies a collision event as, for

example, containing two jets if all but a fraction ϵ of the total energy of the event falls

within two cones of half angle δ. Here, we have two free parameters ϵ and δ, where ϵ gets

rid of radiation noises and δ indicates how close two particles must be for them to be in

the same jet. This top-down approach matches well with our intuition and is based on
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the idea that hadronization leaves the bulk features of a parton’s energy flow essentially

unchanged.

Most modern jet algorithms belong to the sequential recombination class. Starting

from bottom-up, these algorithms compute the distance between a pair of particles, merge

the closest ones, and repeat the procedure until a pre-defined stopping criterion is met.

Central to such algorithms is the distance measure between particles, which needs to be

physically motivated and reflect the structure of divergences in perturbative QCD. Here

we give three widely used examples of sequential recombination algorithms.

First, the kT algorithm defines its distance measure between a pair of particles i and

j as

dij = dji = min(p2T i, p
2
Tj)

∆R2
ij

R2
, (3.1)

with pT i being the transverse momentum of particle i with respect to the beam direction

(the z axis) and ∆Rij being the Euclidean distance on the pseudo-rapidity and azimuthal

angle (y−ϕ) plane, i.e., ∆R2
ij = (yi−yj)2+(ϕi−ϕj)2. Later, we will see that this physical

y−ϕ plane is also a suitable ground space in the definition of optimal transport distances.

Here the free parameter of the algorithm is the jet radius R which sets the angular

reach of the jet. Usually, R is chosen to be 0.4 or 0.6 for small-radius jets, and 1.0 for

fat jets if one would like to include as many decay products of a boosted heavy particle

as possible.

The kT algorithm also defines a similar distance between every particle i and the

beam z-axis via

diB = p2T i. (3.2)
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In the case where dij is smaller than diB, we merge the two particles i and j into one

object called a “pseudojet”, where its momentum is simply defined to be pi + pj. This

so-called E-scheme is the default recombination scheme implemented in FastJet [84]

and is also currently used at the LHC. Other recombination schemes also exist and are

to some extend weighted versions of the E-scheme.

On the other hand, when diB is the smaller one, we simply declare particle i to be a

final jet and remove it from the list. The whole procedure is repeated until a stopping

criteria is reached. For the exclusive kT algorithm, it stops when the smallest of dij or

diB is above the threshold dcut and all pseudojets left are then declared to be the jets of

the event. For the inclusive version, no dcut is necessary and the procedure terminates

naturally when there are no more particles. Then among the final jets, only those with

transverse momentum above a certain value are retained as the event’s jets.

The anti-kT algorithm works very similar as the kT algorithm, except now the distance

measures are

dij = min(1/p2Ti, 1/p
2
Tj)

∆R2
ij

R2
,

diB = 1/p2T i. (3.3)

Defined through 1/p2T , the anti-kT algorithm begins clustering from the hardest par-

ticles and thus has the desirable property that its hard jets are precisely circular on the

y − ϕ plane. This is the default jet algorithm (with the E-scheme) used at all LHC

experiments and is also our choice in the following study.

Finally, the Cambridge/Aachen (C/A) algorithm is even simpler, as the distances are
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now defined without reference to the particle pT , i.e.,

dij =
∆R2

ij

R2
,

diB = 1. (3.4)

The above three algorithms can be unified via

dij = min(p2pT i, p
2p
Tj)

∆R2
ij

R2
,

diB = p2pT i, (3.5)

where p = 1 gives the kT algorithm, p = 0 gives the C/A algorithm, and p = −1 gives

the anti-kT algorithm. Other p values output generalized kT algorithms.

3.1.2 Jet Substructure Observables

Jet substructure utilizes the internal radiation pattern of a jet in order to better

understand its partonic origin. The distribution of energy is referred to as the energy

flow defined as

E =
N∑
i=1

Eiδ(n̂− n̂i), (3.6)

where Ei is the energy of the ith particle in a jet with N particles and n̂i is its angular

direction. In the context of a hadron collider, Ei is usually replaced by the transverse

momentum pT i of the particle. Note that the energy flow only utilizes the experimentally

measurable kinematic information and is not sensitive to, for example, particle charge

and flavor.

Oftentimes, one is interested in distinguishing jets coming from different underlying
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hard processes, for example, whether a jet has a QCD origin or is the decay products

of a boosted massive particles. This task is termed as jet tagging and is key to our

understanding of the collider processes. A good jet substructure observable therefore

must be able to capture the subtle difference of the radiation pattern between signals

and backgrounds and should be amenable to first-principle calculations. The theory

group has long paid particular attention to a property called infrared and collinear (IRC)

safety, which guarantees calculability in the perturbation theory of QCD using both

fixed-order calculations and resummation.

Intuitively speaking, IRC safety requires an observable O to be unchanged after the

addition of an arbitrary number of infinitely soft partons (infrared safety) or/and an

arbitrary number of collinear splittings (collinear safety). A common statement of (near)

IRC safety reads

O(p1, p2, ..., pN) = lim
ϵ→0

O(ϵp0, p1, p2, ..., pN), (3.7)

O(p1, p2, ..., pN) = lim
p0→p1

O(λp0, (1− λ)p1, p2, ..., pN), (3.8)

where pi is a particle’s four-momentum, ϵ is a number close to 0, and λ ∈ [0, 1] is the

collinear splitting fraction. Although a central notion in collider physics, this defini-

tion of IRC safety—and similarly many other attempts of a mathematically rigorous

formulations—suffer from various pathologies such as the inability to include multiple

soft or collinear splittings. It is conjectured that optimal transport may provide a new

geometric definition of IRC safety free from such pathologies; see [13] for more details.

There are many existing IRC safe observables both at the full event-level and at the jet

substructure level. Here we focus on one specific well-known jet substructure observable

which is particularly pertinent to our later discussions—N -subjettiness τN [85]. Roughly

speaking, N -subjettiness counts how many subjets a given jet contains. The intuition

77



Optimal Transport for Collider Physics Chapter 3

behind it is that a QCD jet (oftentimes serving as the background) usually displays a

one-prong structure, while the decay products of boosted W, Z, and Higgs bosons have

two prongs and a jet resulting from the decay of a boosted top quark is more likely to

have three prongs.

Formally, N -subjettiness for a jet with M particles is defined as

τβN = min
n̂1,...n̂N

M∑
i=1

Eimin(θβi1, θ
β
i2, ..., θ

β
iN), (3.9)

where again Ei is replaced by pT i for a hadron collider. Here, θi1 to θiN are the angular

distances defined between the ith particle and the proposed subjet axes n̂1 through n̂N ,

which in the usual case is the Euclidean distance on the y − ϕ plane, i.e., θi1 = ∆Ri1 =√
(∆y)2 + (∆ϕ)2. The weight β is usually set to 1, but can also be changed.

The inner minimization in Equation (3.9) penalizes particles far away from any pro-

posed axis, whereas the outer minimization searches for the optimal location of the N

axes. If a jet has τN ≈ 0, then its particles are closely aligned with the candidate subjets,

which means that it has N or fewer subjets. On the other hand, a τN ≫ 0 indicates that

the jet has more of its energy away from the subjets and thus should have at least N +1

subjets.

In practice, it is often the ratio τN/τN−1 that is most effective at identifyingN -pronged

jets. For example, τ2/τ1 is very successful at discriminating two-pronged objects against

one-pronged QCD background. Therefore, we usually use τN/τN−1 as a benchmark to

gauge the performance of our newly proposed framework. In [13], a reformulation of

N -subjettiness is given based on the geometric language of optimal transport, as well as

for a variety of other substructure observables.
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3.1.3 Jet Tagging with Machine Learning

Machine learning provides a data-driven alternative approach which complements the

above theory-centered, first-principles understanding of jet substructure. In the language

of ML, jet tagging is a typical binary classification task, where a plethora of models exist

using low-level inputs. For example, one can represent a jet naturally as an image using

the raw data of detector hits with finite cell granularity, in which case the most suitable

architecture is a convolutional neural network. This is indeed the first neural network

application in jet physics [86].

Other NN architectures that have been tried over the years include recurrent neural

network for jets represented as sequences, graph neural networks for jets represented as

graphs, and deep sets for jets represented as point clouds such as the Energy Flow Net-

work (EFN) and Particle Flow Network (PFN) [87]. Please refer to [88] for an overview

and [89] for a more detailed exposition.

As can be seen, the central question here is how to represent jets in a suitable way

that retains as much information as possible. The traditional jet substructure observ-

ables can be seen as one (or low) dimensional representations of a jet based on physical

considerations. The usage of neural networks allows one to explore more complex hidden

structures inside a jet and therefore unsurprisingly offers a significant improvement on

classification performance.

However, deep neural networks usually function as a black-box and it is hard to

understand why they work so well, which hinders further performance improvement and

the ultimate extraction of physics insights. This concern has led people to design more

physics-inspired learning models which may enjoy both the high performance of NNs and

the theoretical interpretability of traditional observables.

One particular example is the Energy Flow Polynomials (EFP) introduced in [90].
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EFPs are a complete set of observables that can be proved to linearly span the space of

IRC-safe observables. As such, they can serve as inputs to simple linear regression models

to learn the best set of basis functions for a particular tagging task. Physics-inspired

representations like the EFPs can vastly simplify the subsequent machine learning model,

while still achieving surprisingly good performance on the same par with NNs.

It is with this spirit that we introduce optimal transport for the analysis of collider

events. In the following, we will see how equipping the space of jets with a well-defined

notion of distance can offer a novel and physically meaningful representation, setting

another distinct path to further our understanding of jets and QCD in general.

3.2 Physics-Inspired Framework of Linearized Op-

timal Transport with Simple Machine Learning

Models

The question of defining a distance between collider events is notoriously difficult

to answer. Identical events at parton level can appear to differ upon reconstruction

due to soft or collinear emission, while topologically distinct events at parton level can

appear identical upon reconstruction, depending on the degree of coarse graining. On the

other hand, as a perturbatively well-defined quantity [91], the energy flow of a jet with

massless particles can be viewed as a measure, that is, a distribution of some “mass”. In

this case, “mass” can be either the energy or the transverse momentum of the particle.

In Chapter 2, we have seen that optimal transport defines a mathematically rigorous

distance between measures. It is therefore natural to test if optimal transport is up to

this trying task of equipping the space of collider events with a suitable metric.

One simple OT distance—the EMD introduced in Chapter 1—has already proven
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valuable in numerous applications to collider physics; please refer back to Section 1.3 for a

brief review. Of course, we have learnt from Chapter 2 that the EMD is but one example

among a whole family of OT distances. Here we demonstrate how to apply optimal

transport (including but not limited to the EMD) to collider data—more specifically, to

the energy flow of an event or a jet.

In particular, we focus on the two special OT distances, W2 and HK, and explain in

full details how the LOT framework is to be coupled with simple machine learning models

for the downstream classification task. However, we would also like to emphasize that

the OT distances and correspondingly the LOT embeddings themselves are independent

of the downstream ML models, as they simply provide the inputs. Indeed, later in

Chapter 4, we will see another novel application of OT distances coupled with other

statistical frameworks under an entirely different context.

3.2.1 Optimal Transport on Collider Event Energy Flow

The essential prerequisite for optimal transport computation is a ground space equipped

with a ground metric, which is then lifted to a new distance defined on the space of mea-

sures. If the input ground space is not chosen wisely, then there is no reason to expect

OT to output any meaningful distance between measures. Since a jet is given in the

terms of its energy flow, it is natural as a first choice to pick the ground space to be

the y − ϕ plane on the collider cylinder with an Euclidean distance same as in the jet

definitions, i.e., dground =
√

∆y2 +∆ϕ2.

Given that a jet consists of a finite number of constituent particles, the distributions

are always sums of Dirac masses, where the “mass” of an individual particle is weighted

according to its transverse momentum pT . Furthermore, we have seen in Chapter 2 that

only normalized distributions are needed in the computation of both the W2 and the HK
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distances. So we always normalize all jets to have pT = 1 before the OT computation.

Figure 3.1 displays the energy flows of two QCD jets as colored (one red; one blue)

discrete distributions in the chosen y − ϕ ground space, where each point represents one

constituent particle with its size proportional to its pT (normalized by the jet’s total pT ).

Here we demonstrate an optimal transport plan of the W2 distance between two jets.

The darkness of the lines connecting the respective points in the two jets indicates how

much pT is moved from one particle to another.

It is important to note here that one can also consider other ground spaces. However,

given the nice physical interpretation of the energy flow, we expect that a ground space

built on top of it would generate a meaningful OT metric that can effectively capture the

differences among a variety of jet types, as will be shown momentarily. A more general

framework incorporating additional measurable quantities other than the kinematic in-

formation, such as charges and flavors, are under our current research and will be briefly

mentioned in the last section of this chapter.

3.2.2 The LOT Framework for Jet Tagging

As explained in Chapter 2, for both W2 and HK distances, one can assign a LOT

coordinate to each data point once a reference point is chosen. The choice of a reference

measure is not critical in practice, as long as it covers the underlying ground space in

a reasonably uniform fashion. On the other hand, it is an interesting open question to

consider multiple reference measures anchored on the OT manifold and see whether it

brings additional information.

In our present study, we only include one reference measure, which, for the most of

the times, is a discrete uniform distribution on the y− ϕ plane. We then use the Python

Optimal Transport library [92] and our own custom codes to compute the OT distances
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Figure 3.1: Optimal transport on the energy flows of two QCD jets (one red and
the other blue) in the ground space of the y − ϕ plane. The OT distance used is the
2-Wasserstein distance, and the black lines show the transport plan.
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between each jet in the dataset and the reference which is similarly normalized to have

unit total pT . Once we have this OT distance in hand, we proceed to calculate the linear

embedding for each jet using the methods in Chapter 2. We then recover the approximate

LOT pseudo-distance between any two jets from the weighted ℓ2 distance between their

LOT coordinates. In the case when our reference has all its particles with equal mass, the

weighted ℓ2 norm reduces to a classical ℓ2 norm. This enables us to store only the jet LOT

coordinates and move the actual distance computation to the downstream ML models,

since now it is just the standard Euclidean distance which is implemented natively in

most algorithms. To re-emphasize, the LOT coordinate is our novel representation of a

collider event and constitutes the main innovation of our approach.

Now depending on our applications, we can couple a large pool of simple ML al-

gorithms to the LOT coordinates. As our current task is jet tagging, we will mainly

focus on supervised classification methods, among which k-nearest neighbor (kNN) and

support vector machine (SVM) are two simple examples. But even before proceeding to

classification, one would like to first take a look at the data—more specifically the LOT

embedding—to gain some intuition about the OT manifold. Here, various dimensionality

reduction techniques such as Principal Component Analysis (PCA) and Linear Discrim-

inate Analysis (LDA) can aid data visualization. Further, we can also try unsupervised

clustering, where we leave the model itself to assign a label for each jet. We consider the

simple example of k-medoids clustering.

Although relatively limited in performance, all the aforementioned traditional ML

models have important advantages over large neural networks. They are more com-

putationally economic, have fewer hyper-parameters to tune, and offer better human

interpretability. Most of them are also off-the-shelf functions implemented in the python

package scikit-learn [93], making their adoption easier in practice. We now include a

brief general description for each model. A more detailed discussion will be given when

84



Optimal Transport for Collider Physics Chapter 3

the respective performances of the models are analyzed on the actual jet tagging tasks.

Dimensionality Reduction and Data Visualization

Already in Section 2.6, we have used Principal Component Analysis (PCA) to perform

a first quick look at the LOT embedding of the data. Essentially, PCA is a simple dimen-

sionality reduction tool that finds the most important features (aka principal components)

which maximally contribute to the overall variability of the data. This is achieved by

calculating the covariance matrix of the standardized input data and finding the first few

eigenvectors that correspond to the largest eigenvalues of the covariance matrix. There-

fore, the first principal component, i.e., the eigenvector of the biggest eigenvalue, captures

the largest amount of variability in the data, the second one captures the second largest,

and so on. If the first few principal components already account for a large percentage

of data variation (as is the case for the ellipses in Section 2.6), we say the data can be

reduced to a much lower dimension and use the principal components to summarize and

visualize the original dataset.

Closely related to PCA is another powerful and equally simple-to-implement method,

Linear Discriminate Analysis (LDA) [94], which also enjoys closed-form solutions with

no hyper-parameter. With the assumptions that the input data is Gaussian and the

Gaussian for each class shares the same covariance matrix, LDA projects the input

high-dimensional data onto a direction that is most discriminative, denoted as the LDA

direction, by minimizing the data variability within each class while at the same time

maximizing the separation between different classes. Of course, just like PCA, more LDA

directions (i.e., discriminants) can be retained. Since here we are exclusively concerned

about the binary classification problem, we only need one LDA direction to separate data

into the signal class and the background class. Later we will use LDA both as a tool for

visualization and as a classifier.
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Supervised Classification

The classifier k-nearest neighbor (kNN) [95] relies on a simple majority vote of one’s

closest k neighbors in the training set to determine the class membership of the new

data point. Here k is a model hyper-parameter to be tuned. Since kNN relies only

on a notion of pairwise distances, it serves as a good probe to check whether our LOT

approximation sufficiently captures the difference among various jet types while at the

same time adequately reflecting the similarity within one specific type. The simplicity in

understanding kNN and its reliance only on pairwise distances between events contribute

to its adoption in the original EMD paper [4] and our own studies.

The support vector machine (SVM) [96] is slightly more sophisticated. Essentially,

SVM lifts the inputs into a high-dimensional space and finds an optimal hyperplane

to best separate the data. Key to SVM is the choice of a kernel function. We use

the common rbf kernel, i.e., exp[−γd(x, x′)2] where d(x, x′) is the LOT pseudo-distance

between the two data points. Here γ is a tunable hyper-parameter controlling how much

influence a single training example has. A high γ suggests that only nearby points are

considered. The other hyper-parameter C regulates the strength of the penalty term

when a sample is misclassified, with a high C implying that nearly all training examples

need to be classified correctly.

Unsupervised Clustering

For unsupervised learning, we choose as a first try k-medoids clustering [97] imple-

mented in the python package pyclustering [98]. The goal of k-medoids clustering is to

partition the dataset so that the distance between points labeled to be in a cluster and

the point designated as the center of that cluster is minimized. Note that the centers,

called medoids, are chosen from actual data points. For our application, the model is
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asked to group the unlabeled data into k = 2 clusters. Afterwards, the true labels are

uncovered. The cluster with a higher percentage of signal jets is denoted as the signal

cluster, whereas the other is designated as the background cluster.

We also retrieve the true labels of the two picked medoids. Ideally, the true label

of the medoid should be the same as the label of its own cluster. If not, we prefer the

cluster’s label. We then assign all jets in the signal cluster as signals, and those in the

background cluster as background jets. This assignment is compared with the ground

truth to assess the performance of our clustering model. Strictly speaking, the model is

semi-supervised, for we need the true labels to decide which cluster is the signal cluster.

3.3 Jet Tagging with Balanced Optimal Transport

Here we focus on the task of jet tagging using the balanced 2-Wasserstein distance

and its linearization scheme. The results presented are based on [35]. We consider in

total five types of jets: single-pronged QCD (quark and gluon) jets, two-pronged boosted

W boson jets, three-pronged boosted top quark jets, two-pronged boosted Higgs boson

jets, and two-pronged boosted jets from a hypothetical new particle ϕ. This new BSM

particle ϕ is taken to be a scalar transforming in the 6 representation of SU(3)C and

carrying electromagnetic charge +1
3
; we consider a benchmark mass of mϕ = 100 GeV

with a width of Γϕ = 2 GeV. It couples equally to all quark pairs that respect charge

conservation. We calculate the Feynman rules for this BSM particle ϕ using FeynRules

[99].

Instead of examining all possible pairwise combinations, we narrow our analysis to

the following seven pairs: W vs QCD, t vs QCD, t vs W, H vs QCD, H vs W, BSM

vs QCD, and BSM vs W. For the most part, these comparisons could be thought of as

treating both QCD and W boson jets as backgrounds, whereas top, Higgs boson, and
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BSM jets are treated as signals. The W vs QCD pair is introduced as a benchmark for

the performance of the other six tagging tasks, as well as for a meaningful comparison

with the results obtained in [4].

We generate proton-proton collision events using madgraph 2.6.7 [99] at
√
s = 14

TeV, where the two-pronged boosted Higgs boson jets are generated via qq̄ → Z(→

νν̄) + H(→ bb̄), and the BSM jets through qq̄ → ϕϕ̄; all other SM jets are created via

pair production. The BSM (anti)particle subsequently decays to two quarks. The matrix

elements are then fed into Pythia 8.243 [100], with hadronization and multiple particle

interactions switched on using default tuning and showering parameters. No detector

simulation is included. Afterwards, we cluster the jets in FastJet 3.3.2 [84] using the

anti-kT algorithm with a jet radius of R = 1.0, where at most two jets with pT ∈ [500, 550]

GeV and |y| < 1.7 are kept.

To remove any artificial difference in the energy flows of the produced jets, every jet

is preprocessed by boosting and rotating to center the jet four-momentum and vertically

align the principal component of the constituent pT flow in the rapidity-azimuth plane

using the EnergyFlow package [90, 87, 101, 4, 14]. This preprocessing step is essen-

tial to make sure that the difference between two jets’ energy flows depends on their

internal substructural distinction, not on some overall transformation irrelevant to the

underlying physics. However, it should be noted that the jet preprocessing scheme is not

uniquely defined or physically well-grounded. Further, there exists no general consensus

on how to preprocess an entire collider event. The hope is that an upgraded version of

the OT framework can circumvent such ambiguities arising from different preprocessing

procedures; see Section 3.7.
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3.3.1 Linearized W2 Embedding for Jets

Though not necessary, we work with a single choice of the reference measure in order

to have a unified framework for the seven comparison tasks. Our reference jet has a total

pT of 525 GeV and 225 constituent particles, each with the same amount of pT evenly

distributed on a 15×15 grid with |y| ≤ 1.7 and |ϕ| ≤ π
2
. This corresponds to an isotropic

distribution on the cylinder; note that related reference distributions were explored in

[15] for the purposes of defining the event isotropy variable. We have also tried other

reference jets and the resulting LOT approximation does not show any material difference

compared to what is obtained from the uniform reference jet. Furthermore, as we justify

rigorously in Chapter 2, the LinW2,R approximation with a uniform reference measure

R can be seen as an approximation of the actual LinW2 metric, which approximates the

original 2-Wasserstein metric at large and small distances; see Equation (2.53).

Figure 3.2 shows the optimal energy movements between two sample QCD jets and

between QCD and W jets using the exact W2 distance and its linear approximation,

respectively. In visualizing the LinW2,R pseudo-distance, vectors located at each particle

in the reference jet indicate the difference between movement of pT from that particle in

the reference jet to particles in the respective sample jets. In each case, the total distance

between the two jets is also shown.

These examples illustrate the qualitative properties of both distances applied to simu-

lated events: in the case of W2, large OT distances correspond to the movement of signif-

icant amounts of energy between particles widely separated in the ground metric, while

large LinW2,R pseudo-distances correspond to very different transport plans between the

reference jet and the respective particles. We observe that the LinW2,R pseudo-distance

is numerically close to the exact W2 distance, consistent with our expectation.

In principle, the LinW2,R pseudo-distance, the LinW2 metric, and the W2 metric do
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Figure 3.2: Upper left: The optimal movement to rearrange one QCD jet (red) into
another (blue) using the exact W2 metric (denoted as OT-W2). Upper right: The
optimal movement to rearrange the same two QCD jets using LinW2,R (denoted as
LOT-W2). Lower left: The optimal movement to rearrange a W jet (orange) into a
QCD jet (blue) using the exact W2 metric. Lower right: The optimal movement to
rearrange the same QCD and W jets using LinW2,R.
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not need to attain similar values in order for LOT to offer good discrimination power

in classification and clustering tasks. However, as an illustration of the similarity of

LinW2,R and the W2 metric in practice, we plot in Figure 3.3 a histogram of the differ-

ence between the LinW2,R approximation and the exact W2 metric when computing the

pairwise distances between a sample of 500 mixed W and QCD jets. We observe that

the LinW2,R is on average slightly larger than W2 (mean 0.67%), and they are generally

of comparable size (standard deviation = 5.82%).

3.3.2 Tagging Results

For every comparison task, we create two balanced datasets, each with about 50%

signal jets. The smaller one, named the sample dataset, consists a total of 10,000 jets

and is mainly used for picking the best hyper-parameters, though it also constitutes a

complete analysis in its own right. The full dataset has 140,000 jets in total, and is used

to assess the model performance and draw the final conclusions.

For the two classifiers kNN and SVM, the sample dataset is further divided into a

training sample of 5000 jets, a validation sample of 2500 jets used to decide the best

hyper-parameters, and a test sample of 2500 jets. The full dataset is split into a training

set of 100k jets and a test set of 40k jets for these two models. For kNN, we test the

hyper-parameter k in the range from 10 to 1000 with an increment of 10, whereas for

SVM the hyper-parameters C and γ both run from 10−5 to 105 again with an increment

of 10. Thus, SVM needs to be run for 11× 11 = 121 times to determine the best choice

of the (C, γ) pair.

For LDA, thanks to its high efficiency, we train and test on both the sample dataset

(training sample size = 8000, test sample size = 2000; validation sample is not needed

since there’s no hyper-parameter for LDA) and the full dataset (training set size = 100k,
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Figure 3.3: Distribution of percentage differences between the LinW2,R pseudo-dis-
tance and the W2 distance for pairs of events in a sample of 500 mixed W and QCD
jets.
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test set size = 40k), which amounts to two separate, identical analyses with different

sizes. The k-medoids algorithm has only been applied to the sample dataset due to its

computational intensity, and in this case, all 10,000 jets are fed into the model at once

for clustering.

Figure 3.4 displays the receiver operating characteristic (ROC) curves of the three

classifiers kNN, SVM and LDA for each of the seven comparison tasks. Also included is

the Area Under the ROC Curve (AUC) which encapsulates the model performance in a

single number between 0 and 1. An AUC close to 1 is most desirable, whereas a value

around 0.5 suggests a random classifier, the worst-case scenario. All results are obtained

on the full test datasets consisting of 40k jets, using the models trained on 100k jets with

hyper-parameters, if present, picked by the sample datasets.

To get a better sense of the model performance, we compare the AUCs of our LOT-

coupled ML models for the W vs. QCD classification task with other common classifiers

built in [4] where the training set, though different, also contains 100k balanced W and

QCD jets, and the test set contains 20k such jets. The model most akin to our k=20NN-

LOT is k=32NN-EMD built upon the EMD proposed in [4], which is an interpolation

between the exact W1 distance and total variation norm. 1 The other benchmarks include

the N -subjettiness ratio τβ=1
2 / τβ=1

1 , the Energy Flow Network (EFN) and Particle

Flow Network (PFN) neural networks [87], and a linear classier trained on Energy Flow

Polynomials (EFPs) [90]; please refer to the original papers for more details.

1Although our samples are not identical to those in [4], we apply the same prescription for simulating
and preparing the samples, and our W/QCD jet samples yield results for k=32NN-EMD compatible with
[4].
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Figure 3.4: ROC curves for the seven jet tagging tasks evaluated on the full test
datasets of 40k jets. The x coordinate shows the signal efficiency rate and the y
coordinate gives the background rejection rate.
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Datasets Model AUC

Our Datasets
k=20NN-LinW2,R 0.845
SVM-LinW2,R 0.869
LDA-LinW2,R 0.704

Datasets in [4]

k=32NN-EMD 0.887

τβ=1
2 / τβ=1

1 0.776
PFN 0.919
EFPs 0.917
EFN 0.904

Not surprisingly, the neural networks obtain the best performance. But the four

optimal transport inspired models (three with LinW2,R and one with EMD) are on a

par with these state-of-the-art complex classifiers, and they significantly outperform the

N -subjettiness observable (with the single exception of the exceptionally simplistic LDA).

More pertinent to our current investigation is the observation that models coupled

with the LinW2,R approximation perform as well as those using the exact EMD metric.

The AUCs of kNN-LinW2,R and SVM-LinW2,R are close to the AUC of kNN-EMD,

suggesting that it does not make much difference for jet tagging whether we use the

exact OT metric or its linearized version.

Yet on the practical level, the LinW2,R approximation has a significant advantage

over the exact EMD metric. The computation of the LinW2,R coordinates for 140k jets

only takes about 10 minutes on a desktop computer, whereas it is infeasible to compute

the full exact EMD matrix of pairwise distances on the same computer and still requires

significant time on a cluster.

Table 3.1 summarizes the results obtained for all seven comparison tasks, with com-

plete, independent analyses done both on the sample datasets and the full datasets. In

addition to AUC, we also report the True Positive Rate (TPR) and False Positive Rate

(FPR), where the TPR is the same as the signal efficiency, and the FPR equals to one

minus the background rejection. A TPR near 1 and a FPR close to 0 are preferable.

For SVM and kNN, we also include the hyper-parameters chosen by the sample datasets.
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The results for k-medoids are harder to interpret, so we defer a full discussion to a later

section.

Also included in the table is the approximate run time for each task, performed on an

iMac with 3.6 GHz 8-Core Intel Core i9 and 16 GB memory. The longest analysis takes

no more than 10 hours, which, when combined with the extra few minutes for calculating

the LinW2,R coordinates, is quite manageable. LDA in particular only takes seconds

to process the full datasets and in this light its classification results are surprisingly

good. In addition, models performed on the sample datasets require as few as 2 hours

for a full scan of hundreds of possible combinations of hyper-parameters. Competitive

classification performance coupled with efficient computational time suggests that our

LOT framework plays an effective role in jet tagging alongside the exact OT metric,

complex neural networks, and traditional handpicked observables.

Given that the sample datasets constitute complete analyses in their own rights,

we can compare their results with those obtained using the full datasets. In general,

model performance naturally gets better with more training data, but we observe that

the increase in performance going from 10k jets to 140k jets is perhaps not significant

enough to justify the extra computational resources needed. Since the numbers quoted

for AUC, TPR and FPR are only intended as general performance evaluations rather

than precise measures, the fluctuations in these numbers can be safely ignored and we

therefore conclude that a dataset of 10,000 jets (with as few as five thousands for training)

is already enough to assess the overall quality of the model and the underlying metric.
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3.3.3 Discussions

Some general features can be immediately read off from Table 3.1. Whichever jets we

compare, SVM always gives the best classification performance with AUCs around 0.9,

approaching the performance of neural networks. This suggests that jets represented in

their LinW2,R coordinates are indeed very well separated by a hyperplane in some high-

dimensional feature space, which in turn demonstrates the fitness of the approximate

metric itself. Except for t vs. W jets classification, the hyper-parameters chosen for

SVM via the validation process are all the same, with C = 1 and γ = 100. It means that

the model uses only a reasonable amount of regularization and thus a relatively smooth

decision surface is drawn. On the other hand, a γ of 100 is considered large, indicating

that only nearby samples can have an influence on the classification of a new point.

This latter observation is consistent with what is suggested by the hyper-parameter

k picked by kNN. All seven comparison tasks prefer small k values less than 50, which

means that to determine the type of an unknown jet we need to look no further than its

closest 50 neighbors. If W2 does not place same-type jets near each other as desired, then

models with hyper-parameters preferring locality won’t be able to achieve such satisfying

classification performances. Therefore, the hyper-parameters picked by SVM and kNN

provide an indirect evidence for the suitability of the optimal transport metric—it indeed

groups jets of the same type near each other and separates those of different types. We

will later turn this speculation into more convincing and intuitive visualization.

Among the seven jet tagging tasks, kNN and SVM both have the best performance

in distinguishing Higgs boson jets from W boson jets and are least capable of separating

BSM jets from QCD jets. This is mainly caused by a relatively high false positive rate,

meaning that the models have a tendency to wrongly classify QCD jets as BSM jets.

The same reason applies to LDA when it performs poorly on W vs. QCD classification
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relative to other tasks. For each type of signal jets (t, H, or BSM), all three classification

models perform better when the background is W jet rather than QCD jet.

Unsupervised Clustering for Jets

We now focus on the k-medoids clustering algorithm, which is only analyzed on the

sample datasets due to computational limitations. Given that unsupervised learning is

inherently more difficult than supervised learning, it’s not surprising to see the perfor-

mance of k-medoids algorithm to be inferior to that of kNN or SVM. But even then,

except for the W vs. QCD and BSM vs. W tasks, the AUCs of k-medoids are all above

0.75, on a par with the supervised learning models analyzed on the sample datasets.

The clustering algorithm even shows superior performance compared to LDA for most

tagging tasks. This remarkable achievement again points to the merit of the underlying

2-Wasserstein distance and is encouraging for the further exploration of optimal transport

applications to unsupervised learning algorithms.

It should be noted that AUC is not the only gauge of model performance. Especially

in the case of k-medoids clustering, we also need to take a look at other indicators to

map a more complete picture. Beside examining the TPR and FPR, we also like to

know more about the properties of the two clusters outputted by the algorithm. If the

model is perfect, then each cluster should contain only signal jets or only background

jets. The purity of the two clusters is given in the second row of k-medoids clustering in

Table 3.1, where we record the signal percentage (defined as the number of signals in the

cluster divided by the total number of jets in that cluster) in the signal cluster and the

background cluster, respectively.

By definition, the signal cluster is the group with a majority of signal jets, which,

if pure, should have a signal percentage of 100%. Similarly, a pure background cluster

should have 0% signal percentage. Notice that the sum of the signal percentage of the
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two clusters does not necessarily equal to 1 (but in the ideal case it is). The worst-case

scenario is to have the signal percentage of both clusters close to 50%. A quick look

at the second row at least qualitatively confirms that the AUC of the task is indeed

higher whenever we have two purer clusters, with the best AUC obtained for t vs. QCD

clustering which has a signal percentage of 74.70% for the signal cluster and only 9.27%

for the background cluster.

The size of the clusters also reveals how well the model performs. Ideally, the result

would be two clusters with equal size, that is, each with about 5000 jets, since the data

itself is balanced. Here the best result we have is for H vs. QCD task, where the Higgs

cluster has 5682 jets and the QCD cluster has a total of 4318 jets. But in general, the

two clusters are not well balanced. In the worst case, the W cluster has 81.77% more

jets than the BSM cluster, and it does correspond to the lowest AUC score.

In theory, the two medoids should be the most representative jet for the clusters they

respectively belong. Since the medoids are actual data points, we can uncover their true

labels and check whether they agree with the type of the cluster they are assigned to.

Only the two tasks, t vs. QCD and H vs. W, give conflicting answers. For the t vs. QCD

clustering, the two chosen medoids are both background QCD jets. Thus the signal top

cluster acquires a QCD jet as its representative. The situation is reversed for the H vs.

W task where now the background W cluster elects a signal Higgs jet as its exemplar.

Nevertheless, both tasks enjoy high AUC scores, which suggests that the true labels of

the medoids might not have a direct influence on model performance.

The general message here is that AUC, though powerful and straightforward, is not

enough to assess the performance of an algorithm. Other indicators are required to gain

a fuller appreciation of the strength and weakness of the model, both for clustering and

for classification.
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Visualization of the LOT Manifold

We use LDA to visualize and aid understanding of the LOT approximation of the W2

metric and its associated Euclidean embedding. Given the 225× 2 linearized coordinate

for each jet, we first stack the list of the second coordinate ϕ at the end of the list of

the first coordinate y and reshape the coordinate to be 450× 1, which is then fed into a

LDA model for the projection of the 450 coordinates onto one single most discriminative

direction (denoted as the LDA direction). This allows us to represent every jet as one

single point on the LDA direction for easy visualization.

Figure 3.5 shows such projection for the 10000 jets in the t vs. W sample dataset,

which enjoys the highest AUC among the seven tasks with the LDA classifier. A clear

separation between W and top jets can be seen, with the majority of W boson jets

grouped towards the left end of the LDA direction and most top jets towards the right

end, explaining the good performance of the LDA classifier for this task.

It is enlightening to see how jets vary along the chosen LDA direction. To this end,

we first select the jet whose 1-dimensional projected LDA coordinate has a value closest

to the mean of all LDA coordinates in the dataset and denote it as the mean jet. We

then compute the standard deviation of the dataset. Now jets whose LDA coordinates

are up to 3 sigmas away from the mean jet are displayed in Figure 3.5. We observe a

clear tendency of particles spreading more on the y − ϕ plane as we move from the left

end of the LDA direction to the right end, i.e., from negative sigmas to positive sigmas,

corresponding well to our intuition that top jets are more smeared and tend to have a

three-pronged structure.

As another illustration, we examine more closely how the W2 metric rearranges the

pT of one jet to make it look like another, as shown in Figure 3.6. Here we first select the

rightmost top jet t1 and the leftmost W boson jetW 1 in the bottom plot of Figure 3.5. We
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Figure 3.5: Bottom: Projection of the LinW2,R coordinates of 10,000 jets in the sample
dataset onto the LDA direction chosen by the model. Blue dots represent W boson
jets and red dots refer to top jets. The seven larger dots represent jets whose LDA
coordinates are −3,−2,−1, 0, 1, 2, 3 sigma away from the mean jet (starting from the
left). Top: The energy flow in the rapidity-azimuthal plane of the seven jets chosen in
the bottom plot respectively. The intersection of the dashed lines shows the location
of the origin in the y-ϕ plane.

then compute the exact 2-Wasserstein optimal transportation matrix γij, which instructs

how much of pT is moved from particle i in jet W 1 (denoted as W 1
i ) to particle j in jet

t1 (denoted as t1j). To interpolate between the two extreme jets, we create a new jet that

depends on an interpolation parameter α ∈ [0, 1], where α = 0 outputs a jet identical to

W 1 and α = 1 recovers the t1 jet. This new artificial jetα contains i × j particles, each

with

pαT = γij,

yα = (1− α)× y(W 1
i ) + α× y(t1j), (3.10)

ϕα = (1− α)× ϕ(W 1
i ) + α× ϕ(t1j),

where y(W 1
i ) is the y coordinate of the ith particle in jet W 1, and likewise for the others.

From the perspective of optimal transport theory, this artificial jet is precisely the 2-

Wasserstein geodesic between the jets. Several values of α are picked in Figure 3.6 so as

to show a few representatives of the interpolated jets and help us to understand intuitively
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Figure 3.6: The W2 movement of pT to rearrange the leftmost W boson jet W 1 (blue)
into the rightmost top jet t1 (red) in the sample dataset. The intermediate green plots
show artificial jets created via the interpolation parameter α. When α = 0 and 1, the
jets are respectively identical to W 1 and t1 up to visualization. Again the intersection
of the dashed lines shows the location of the origin.

the pT movement by the W2 metric. This interpolation technique may prove relevant

to the fast simulation of collider events, insofar as it allows interpolation between real

events.

3.4 Jet Tagging with Unbalanced Optimal Transport

We now extend to the unbalanced Hellinger-Kantorovich metrics, where we use the

same simulated dataset as in the previous section but focus exclusively on the W vs.

QCD tagging task with 10k jets in total. The same analysis has been extended to other

pairwise tagging tasks with qualitatively similar results obtained. We therefore omit a

repetitive discussion. All the results presented below are based on Section 5.4 in [34].

The analysis pipeline for LinHKκ,R embedding pretty much parallels that of LinW2,R

embedding. The reference measure is again chosen as a regular Cartesian grid of 15 ×

15 points covering the rectangle [−1.7, 1.7] × [−π/2, π/2] with uniform pT distribution.
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There is, however, one key distinction. As we have seen in Chapter 2, when using HK,

the choice of the length scale parameter κ is crucial for the success of the analysis.

This hyperparameter κ complicates the HK analysis and cannot be determined a priori.

Therefore, we scan values over several orders of magnitude, i.e. κ ∈ [0.01, 100] ∪ {+∞},

where the W2 distance is denoted by κ = +∞.

Figure 3.7 displays the various optimal transport distances, including W2 and HK,

from the uniform reference measure to a QCD and a W jet, respectively. Considering

the intrinsic length scale of the sample and reference measures themselves, we expect

that κ = 100 is very close to balanced W2 and κ = 0.01 essentially behaves like the

Hellinger distance. In particular, for the latter, the maximal transport distance is sub-

stantially smaller than the grid spacing of the reference jet (≈ 0.2). Therefore, virtually

no transport happens and almost all mass is being created and destroyed, which is why

κ = 0.01 was excluded from Figure 3.7 as it looks identical to the κ = 0.1 case to naked

eyes. Consequently, one would expect the classification performance to deteriorate for

κ = 0.01, which will be confirmed later. Our hope is to observe boosted performance

in the regime where both transport and mass creation/destruction are relevant, i.e., κ

roughly between 0.1 and 1, which would then justify the introduction of this more com-

plicated HK distances.

3.4.1 Visualization of the OT Manifolds

To gain more intuition about the various OT distances, we first apply the dimension-

ality reduction techniques to visualize the different OT manifolds under consideration.

We start with a principal component analysis. The jet dataset exhibits a high intrinsic

dimensionality. Approximately 30 modes are needed to capture at least 90% of the

dataset variance (W2: 27; HKκ=10: 28; HKκ=1: 38; HKκ=0.1: 26). Moreover, for all κ
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Figure 3.7: Optimal transports between the uniform reference measure (blue) and a
typical QCD jet (green, first row), or a W jet (red, second row), using W2 and HK
with κ = 100, 10, 1, 0.1 (from left to right with κ = +∞ denoting balanced W2). The
darkness of the lines indicates how much pT is moved from one particle to another.
For HK, the thickness of the circles around the points represents how much pT is
destroyed for that particular particle. Shown at the bottom of the plots are the total
OT distances between the jets, which are similar for κ = +∞, 100, 10, the transport
regime. Figure copied from [34].

(including κ = +∞), the mean of the sample point cloud is far from any sample, which

indicates that the samples lie on a submanifold of the tangent space with non-trivial

shape and topology. Therefore we do not find it surprising that applying the exponential

map to individual dominant modes relative to the mean, or projecting samples to very

few modes, do not yield artificial jet images useful for physical interpretation.

Figure 3.8 plots the the distribution of the dataset in the tangent space with respect to

the first two dominant modes for the case when κ = 1. We observe that the two classes are

discernible as distinct clusters with relatively little overlap and that the two coordinate

values are highly dependent. In addition, for several points in the PCA coefficient space

we show the actual jets in the dataset that are closest to those coefficients, as well as

the approximated jet generated by the exponential map at a chosen simulated jet (jet

2 in the plot). This indicates that variations of the PCA coefficients correspond to
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Figure 3.8: Left : Distribution of 10k W (red) and QCD (green) jets in the tangent
space with respect to the first two dominant PCA modes for HK with κ = 1 with
some positions in coefficient space marked. Middle: Jets in (y − ϕ)-plane with first
two PCA coefficients closest to the marks, color indicating jet type. From mark 1-3
the lower prong is moving and becoming weaker, while background noise increases.
Mark 4 shows a single prong with strong noise. At mark 6 there is a distinct cluster of
W jets with a single, strongly focused prong. Right : Approximating jets 1 and 3 (red)
by the exponential map (blue) from jet 2, using the difference of the first two PCA
coefficients as tangential direction. While this cannot account for the considerable
variation that lies orthogonal to this 2D plane, it correctly describes the movement of
the lower prong and the increase in peripheral noise. Figure copied from [34].

physically meaningful changes of the jets that can locally be approximated linearly via

the exponential map. For other values of κ ∈ [0.1,∞], PCA yields qualitatively similar

results.

Next, we apply linear discriminant analysis (LDA). Again, LDA assumes that samples

from both classes are drawn from two Gaussian distributions with different means but

identical covariance matrices. One then infers the hyperplane that optimally separates

the two classes in a Bayesian sense. Let the hyperplane be parametrized by a unit normal

vector t and a point z in the plane. On the one hand, LDA serves as a simple linear

classifier where samples are labeled according to which side of the hyperplane they lie

in, i.e., the predicted class of sample xi depends on the sign of ⟨xi − z, t⟩. On the other

hand, we can analyze whether the direction t has a physical meaning and use LDA as a

visualization tool.
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The first row in Figure 3.9 shows the distribution of the projection coordinate ⟨xi−z, t⟩

for W2 and HK with various κ. We find that for κ = 0.1, HK best separates the two

classes, which is later confirmed by the superior performance of the LDA classifier; see

Table 3.2. Similar to PCA, applying the exponential map to the discriminating direction

t relative to the sample mean do not yield physically valid results, presumably for the

same reasons. Instead, we visualize the direction in another way: for some λ ∈ R we find

the sample xi such that ⟨xi − z, t⟩ is closest to λ, i.e., among all samples xi is closest to

the hyperplane given by {x|⟨x− z, t⟩ = λ}. We vary λ on the order −3σ to 3σ, where σ

denotes the standard variation of the samples along the direction t. This is shown in the

lower two rows of Figure 3.9 for W2 and HKκ=0.1, where we also record how many QCD

and W jets there are in each λ bin.

For both W2 and HKκ=0.1, the chosen jets transition from having a single mode to

having two modes as λ increases, suggesting that the direction t successfully encodes the

major topological difference between two-pronged W jets and more diffuse single-pronged

QCD jets. A clearer separation is obtained for HKκ=0.1, whose class purity is slightly

higher than W2 in each λ bin.

3.4.2 Tagging Results and Discussions

We now consider kNN and SVM for the jet classification task. For kNN, we test k in

[10, 200] with an increment of 10, whereas for SVM we again test 11× 11 = 121 pairs of

C and γ both in [10−5, 105]. A training set of 5000 jets, a validation set of 2500 jets and

a test set of 2500 jets are used for both kNN and SVM to tune their hyperparameter(s).

For LDA, the training and validation sets are instead merged.

Table 3.2 summarizes the results, including true positive rate (TPR) and false positive

rate (FPR), for various κ values. The approximate run time on Google Colab is also given
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Figure 3.9: Upper : Histograms of the distribution of the LDA projection coordinate
⟨xi − z, t⟩ with various OT distances. Lower two rows: Displays in the y − ϕ plane
(−1 ≤ y ≤ 1,−1 ≤ ϕ ≤ 1) of jets xi such that ⟨xi − z, t⟩ is closest to λ where λ = −3
to 3σ. In all plots, red denotes W jets and green is for QCD jets. Figure copied from
[34].

to demonstrate the practicality of the linear framework. We see that AUC peaks when

κ = 0.1 for LDA and 0.5 for both kNN and SVM, with a relative increase in performance

of 10.2% for LDA, 3.4% for kNN, and 1.7% for SVM, with respect to the linear W2

baseline. To gain a rough feeling of the performance gain, the AUC increase of using a

large neural network over the optimal transport approach is only about 2%.

In addition, the gain of HK over W2 is stronger on the relatively simplistic classifiers

kNN and LDA and not as pronounced on the more sophisticated SVM classifier. This

suggest that the W2 representation does contain almost as much information about the

jet class as the HK representations and sufficiently complex classifiers can extract it.

In light of interpretability of classification results it may still be preferable to choose a

representation where also simpler methods work well.

Compared to W2, the HK distance requires the tuning of the parameter κ. The

additional (computational) complexity of this step is however manageable, as a rough
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estimate for κ can be obtained from physical intuition. Usually, κ should be on a par

with the length scale present in the dataset. In our case, it is the typical separation

between particles in a jet, which is on the order of 0.1. This matches nicely with our

observation of the optimal κ values for the present classification task.

The first-pass estimate of κ can subsequently be refined by cross validation. Table 3.2

indicates that the classification behavior is relatively robust with respect to κ over almost

one order of magnitude. Therefore, a coarse cross validation parameter search is sufficient

and too much fine-tuning is unnecessary.

In order to understand the fluctuation of AUC quantitatively, we repeat the analysis

(without κ = 0.7, 0.3) on two additional datasets, each again containing 10k W and QCD

jets simulated in the same way. As hoped, we observe that the deviation in AUC is no

larger than 10% and the general trend is the same for all datasets; see Figure 3.10.

Moreover, we investigate the impact of the reference measure on classification per-

formance. We include a different reference which is the linear mean of all QCD jets in

the dataset after rasterization to a grid, shown in the upper row of Figure 3.10. We call

these new measures the QCD references. The three datasets are then analyzed using

their respective QCD references.

The AUC curves are shown in Figure 3.10. We observe that in general an adapted

choice of the reference measure slightly improves model performance in the best κ range,

yet the performance deteriorates faster when κ→ 0.01 compared to the uniform measure.

On the whole, the classification performance using either reference measure is comparable

to each other.

109



Optimal Transport for Collider Physics Chapter 3

T
ab

le
3.
2:

R
es
u
lt
s
fo
r
th
e
W

vs
.
Q
C
D

je
t
ta
gg

in
g
ta
sk

u
si
n
g
L
D
A
,
k
N
N

an
d
S
V
M

o
n

th
e
L
O
T
em

b
ed

d
in
gs

fo
r
va
ri
ou

s
le
n
gt
h
sc
al
e
p
ar
am

et
er
s
κ
(κ

=
+
∞

d
en

ot
es

b
al
an

ce
d

W
2
).

le
n
gt
h
sc
al
e
κ

+
∞

10
0

10
5

1
0.
7

0.
5

0.
3

0.
1

0.
05

0.
01

L
D
A

A
U
C

0
.6
9
4

0
.7
3
3

0
.7
4
6

0
.7
4
7

0
.7
5
2

0
.7
5
1

0
.7
4
8

0
.7
6
0

0
.7
6
5

0
.7
6
3

0
.6
4
2

T
P
R

0.
68
4

0.
68
4

0.
70
3

0.
72
1

0.
72
4

0.
74
0

0.
73
6

0.
69
2

0.
70
4

0.
73
1

0.
77
0

F
P
R

0.
29
6

0.
21
8

0.
21
1

0.
22
6

0.
22
0

0.
23
9

0.
23
9

0.
17
1

0.
17
4

0.
20
5

0.
48
6

ru
n
ti
m
e

se
ve
ra
l
se
co
n
d
s

k
N
N

A
U
C

0
.8
2
1

0
.8
1
8

0
.8
1
9

0
.8
1
8

0
.8
2
9

0
.8
4
1

0
.8
4
9

0
.8
4
7

0
.8
2
1

0
.7
7
2

0
.6
7
1

T
P
R

0.
77
1

0.
76
3

0.
76
8

0.
76
3

0.
76
0

0.
79
1

0.
79
8

0.
80
9

0.
82
1

0.
78
3

0.
73
3

F
P
R

0.
12
8

0.
12
7

0.
13
0

0.
12
6

0.
10
2

0.
11
0

0.
10
0

0.
11
4

0.
18
1

0.
23
8

0.
39
0

h
y
p
er
p
ar
.
k

30
20

30
20

10
20

10
20

10
10

30
ru
n
ti
m
e

1.
5
h
ou

rs

S
V
M

A
U
C

0
.8
4
2

0
.8
4
2

0
.8
4
2

0
.8
4
1

0
.8
4
9

0
.8
5
1

0
.8
5
6

0
.8
5
3

0
.8
4
5

0
.8
0
6

0
.6
9
4

T
P
R

0.
81
7

0.
81
9

0.
81
7

0.
81
9

0.
82
3

0.
82
9

0.
83
2

0.
82
9

0.
78
8

0.
74
1

0.
78
7

F
P
R

0.
13
3

0.
13
4

0.
13
4

0.
13
7

0.
12
6

0.
12
7

0.
12
0

0.
12
4

0.
09
9

0.
12
8

0.
40
1

h
y
p
er
p
ar
.
C

1
1

1
1

1
1

1
1

1
10

10
h
y
p
er
p
ar
.
γ

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
00

10
00

10
00
00

ru
n
ti
m
e

5
h
ou

rs

110



Optimal Transport for Collider Physics Chapter 3

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

WQCD1

Jet pt: 200.9 GeV

1.0 0.5 0.0 0.5 1.0

WQCD2

Jet pt: 216.1 GeV

1.0 0.5 0.0 0.5 1.0

WQCD3

Jet pt: 219.2 GeV

y

0.01 0.1 0.5 1 5 10 100 +

0.55

0.60

0.65

0.70

0.75

LDA

0.01 0.1 0.5 1 5 10 100 +
0.55

0.60

0.65

0.70

0.75

0.80

0.85 kNN

0.01 0.1 0.5 1 5 10 100 +

0.60

0.65

0.70

0.75

0.80

0.85
SVM

WQCD1_uniref
WQCD2_uniref
WQCD3_uniref
WQCD1_QCDref
WQCD2_QCDref
WQCD2_QCDref

length scale 

AU
C

Figure 3.10: Upper : QCD reference jets in the y − ϕ plane for the three W vs. QCD
datasets, obtained by averaging all QCD jets in the respective dataset. Note that
WQCD1 is the same dataset used in Table 3.2. Lower : AUC scores for LDA, kNN
and SVM on the three datasets with W2 and HK metrics of various κ’s. Red solid
lines show the results using the uniform reference measure, whereas blue dashed lines
are obtained using the QCD reference measures. Figure copied from [34].

In conclusion, our study suggests that allowing mass to be generated and annihilated

rather than only transported have a positive effect on picking out W jets from QCD

background. In the next section, we present a more detailed analysis on the comparison

of the balanced W2 and unbalanced HK distances for jet tagging, especially for jets with

wider total pT differences.
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3.5 Balanced vs. Unbalanced OT: Which Metric to

Use?

We now tackle the next question—which is the best metric for the space of collider

events? In this section, we study the performance of the W2 and HK distances as a

function of the scale parameter κ, jet pT range, and the choice of reference measure.

Note again that we use a slightly different notation than the original paper [36]. Here

LOT includes both linearized W2 and linearized HK approximations. The use of the

original acronym PLUOT is discontinued, in favor of the new name LinHK for increased

clarity and consistency within the thesis.

As before, we focus on the task of distinguishing boosted W jets and QCD background

jets. We consider simulated data consisting of 200k W jets and QCD jets, generated as in

Section 3.3. Proton-proton collision events at
√
s = 14 TeV are simulated in madgraph

2.9.2 [99] with W bosons being pair produced, gluons generated via qq → Z → ννg, and

quarks via qg → Z → ννq. The particles are then hadronized and decayed in Pythia

8.302 [100], where default tuning and showering parameters are used. Afterwards, we

cluster the events into jets using FastJet 3.3.4 [84] with anti-kT algorithm (jet radius

R = 1), where at most two jets are kept with |y| ≤ 1.7 and |ϕ| ≤ π
2
.

Before calculating their LOT embedding, we boost and rotate the jets to center the

jet 4-momentum and vertically align the principal component of the constituent pT flow

in the y−ϕ plane using the EnergyFlow package, and normalize all jets to have unit total

pT ; the pre-processing is the same as in Section 3.3. For LinHKκ, we consider values of

κ ranging over several orders of magnitude, i.e., κ ∈ [0.01, 100].

Once the Euclidean embedding for each jet is acquired via the linearization scheme,

we again employ kNN and SVM for classification. We consider the datasets consisting of

either 10k or 200k W and QCD jets. For datasets with 10k jets, we use 5000 jets to train
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kNN and SVM, 2500 for validation in order to pick the best model hyper-parameter(s),

and the remaining 2500 jets as the test dataset to obtain the model performance. We try

k ∈ [10, 100] with an increment of 10 for kNN, and C, γ ∈ [10−2, 105] for SVM where only

powers of 10 are considered (the ranges are smaller than before based on our enhanced

experience with the possible best values). When dealing with the full 200k dataset, we

use 150k jets to train the models and 50k to evaluate the performance, where the model

hyper-parameter(s) are already picked by smaller runs with the 10k datasets.

We compare the tagging performance of kNN based on the the LOT framework to that

of N -subjettiness ratio τ21 = τ2/τ1, where τN is determined using the Nsubjettiness

plug-in package in FastJet [85, 102]. Another benchmark is the pairwise EMD distance

matrix [4] coupled with the same machine learning models. We test the EMD both on

normalized jets, where the jets are first rescaled to have pT = 1, as well as on unnormalized

jets using the modified EMD∗. The ability to compare both normalized and unnormalized

jets is implemented by a built-in function in the EnergyFlow package, with the parameters

R, β = 1 and the normalization parameter norm set respectively to True or False.

In a similar manner, the LinHK framework also presents us with two options to

calculate the Euclidean embedding. One way is to compute the unbalanced HK distances

directly between jets with different total pT . Alternatively, we can again normalize the

jets so that each has pT = 1 and then compute the unbalanced HKκ distance between

the normalized jets. We emphasize that, even when two jets have equal total pT , as in

the case of balanced OT, the HK distance still allows for local mass to be created and

destroyed.

As the normalized and unnormalized approaches to HK are related by simple scaling

transformations, in practice we begin by computing the Euclidean embedding of nor-

malized jets and then recover the embedding of the unnormalized jets. Hereafter, we

abbreviate the distances calculated on normalized jets with a subscript of N and those
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obtained for unnormalized jets with subscript unN.

3.5.1 Widen the pT Range

Our previous studies of jet classification based on OT have been relatively insensi-

tive to differences in total jet pT , typically considering events drawn from narrow (50

GeV) pT bins. Indeed, in Section 3.3, it was observed that classification based on bal-

anced optimal transport distances between normalized jets drawn from a 50 GeV pT bin

modestly outperformed unbalanced optimal transport distances using the modified EMD

formulation.

To better assess the effects of unbalanced samples, we explore jets drawn from a

broader range of total pT , extending from [500, 550] GeV to [500, 1500] GeV. This is

achieved by stacking 20 datasets, each containing 10k jets with a pT bin of 50 GeV, i.e.,

pT ∈ [500, 550] GeV for the first dataset, pT ∈ [550, 600] GeV for the second, and so

forth. In this way, in addition to the 20 datasets each with 50 GeV pT bin width, we

have a combined dataset of 200k jets in which the total jet pT is approximately uniformly

distributed between 500 and 1500 GeV. We can now study the classification performance

as a function of the pT range of the simulated events, comparing the tagging performance

of W vs. QCD jets whose total pT ∈ [500, 550] GeV or [500, 1500] GeV.

The three OT distances examined here include: 1) the EMD distance on normalized

jets (EMDN) and its modified version on unnormalized jets (EMD∗
unN); 2) the balanced

W2 distance on normalized jets; and 3) the HK distance on both normalized and unnor-

malized jets (denoted as HKκ
N or HKκ

unN). The N -subjettiness ratio τ21 is also computed

for each jet as a benchmark. For the HKκ distance, we consider the κ values +∞, 100, 10,

1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.07, 0.05, 0.03, 0.01, with κ = +∞ denoting the W2 distance.

Here the reference measure is taken to be a uniform jet with a total pT = 750 GeV
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Figure 3.11: AUC scores for classifying W vs. QCD jets using kNN and SVM models
coupled to linear W2/HK

κ embedding with κ ∈ [0.01,+∞]. Jet pT ranges from 500
to 550 (1500) GeV in the first (second, third) column. The datasets for Column 1 and
Column 2 (Column 3) have 10k (200k) jets. Solid (dashed) blue lines show the results
calculated on normalized (unnormalized) jets; horizontal gray solid (dashed) lines use
the EMD metrics on normalized (unnormalized) jets; and grey dash-dotted lines give
the performance using τ21 as the discriminator.

and 15 × 15 = 225 particles. Since it is impossible to calculate and store the entire

distance matrix for 200k jets using the EMD approach with reasonable computational

resources, we only compute EMD distances on the 10k datasets, whereas the linear W2

and HK embedding can be calculated efficiently for the full 200k datasets.

Figure 3.11 shows the tagging performance in terms of the AUC score. A discussion of

the general trends of the tagging performance not specific to the present task is deferred

to the later Discussions section, as well as a more detailed table where results from other

tasks are also included.

As can be seen in Figure 3.11, for jets drawn from a 50 GeV-wide pT bin (column

1), classification performance on either normalized or unnormalized jets is almost indis-
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tinguishable for LinHK with small κ values (κ ≤ 1). The EMD approach also produces

similar AUC scores regardless of whether or not the jets are normalized, with kNN

slightly preferring the normalized approach and SVM favoring the unnormalized version.

The percentage differences in the AUC are within 1.5%, consistent with statistical fluc-

tuations. Such behavior is to be expected since normalization should not make a big

difference when the total pT difference among jets is small. Additionally, the tagging

performance of the LOT approximation, including W2 and HK (with the exception of

HKκ
unN for large κ) approaches the same (or better, in the case of SVM) level of accuracy

of the EMD method, with far less computational expense.

However, the effect of normalization becomes significant when the pT bin width is

broadened. For jets with pT ∈ [500, 1500] GeV (10k for column 2 and 200k for column

3), the HK distance with κ in its optimal range calculated directly on the unnormalized

jets (dashed blue lines) gives superior performance to the normalized jets (solid blue

lines), whether we use kNN or SVM as the coupled model. The increase in AUC reaches

about 5% at its peak when κ ∼ 0.2. There the AUC from the HK distance, whether

normalized or not, is noticeably higher than when using the EMD distance.

Interestingly, such performance gain is not observed in the EMD approach. Here

it makes no notable difference whether we use EMDN (solid gray line) or EMD∗
unN

(dashed gray line). This implies that though the difference in total jet pT has potential

discriminating power, not all approaches to unbalanced optimal transport take advantage

of it. A simple difference term like |pT (jet 1) − pT (jet 2)|, as included in the modified

EMD formulation, does not lead to improved discrimination for samples drawn from a

larger pT range. In contrast, unbalanced HK, especially HKunN, appears to take better

advantage of this information by allowing local mass to be created and destroyed in

addition to being transported.

Note that, while the original formulation of the EMD in the particle physics literature
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considered a fixed scale parameter R = κ
2
≥ maxij dij/2 coinciding with the jet clustering

radius, one could perform a similar analysis by using the more general partial transport

distance, investigating how different choices of R = κ
2
lead to different amounts of creation

and destruction and, potentially, improved AUC in certain regimes. However, due to the

fact that such metrics lack a Riemannian structure amenable to linearization, the analysis

of finding the optimal parameter R = 2κ would be extremely computationally intensive.

3.5.2 Vary the Reference Measures

In the LOT framework, we are in principle free to pick any reasonable measure as

our reference jet. Ideally, the choice of a reference measure should not exert too large

an impact on the calculated linear W2/HK embedding and the downstream tagging

performance. As a first study, we examine the effect of varying the resolution of the

reference measures on classification.

We choose five uniform reference jets consisting of 4× 4, 8× 8, 15× 15 (the default),

30 × 30, and 60 × 60 particles, respectively denoted as “uniref4”, “uniref8”, “uniref15”,

“uniref30” and “uniref60”. All reference jets have a total pT = 750 GeV, distributed

uniformly on the y − ϕ rectangle [−1.7, 1.7] × [−π/2, π/2]. The default “uniref15” has

about the same number of particles as in a typical W or QCD jet in our sample of

simulated events. The inter-particle spacing l of these reference jets differs widely, ranging

from roughly 0.05 to 0.85. This defines yet another length scale in addition to the HK

scale parameter κ, the jet clustering radius R, and the characteristic angular separation

of the partonic decay products of a boosted particle of mass m, which is proportional to

m/pT . It is natural to consider the interplay between all these length scales in determining

what constitutes a reasonable measure in practice.

In Figure 3.12, we show the distribution of the Euclidean norms of the LOT coor-
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Figure 3.12: Distribution of the LOT norm, i.e., the distance from each jet’s LOT
coordinate to the origin, for the HK distance with κ = 100, 1, 0.5, 0.1, 0.05, 0.01. The
uniform reference measures used include “uniref15” with 15 × 15 particles, and sim-
ilarly “uniref30” and “uniref60”. The y coordinate of the rightmost plot follows the
scale on the right, while the other plots follow the scale on the left.

dinates of 10k jets (pT ∈ [500, 550] GeV) with HKκ using “uniref15”, “uniref30”, and

“uniref60”. 2 As κ is decreased from large values κ ∼ 100 the distribution of the norms

using the HKκ distance becomes more and more similar for different reference measures.

The closest agreement occurs for κ ∼ 0.1, which we will see later is the κ value that gives

the optimal tagging performance. As κ is decreased below κ ∼ 0.1 and we enter a scaled

Euclidean image difference regime, the discrepancy of the norms using different reference

measures becomes noticeable again. We will see that this instability with respect to the

chosen reference measure translates to deterioration of the tagging performance for small

κ values.

Figure 3.13 shows the tagging performance on 10k jets with total pT ∈ [500, 550]

GeV (first row) and [500, 1500] GeV (second row) using EMDN, EMD∗
unN; HKN, HKunN;

and the N -subjettiness ratio τ21. Tagging performance is plotted in terms of AUC as a

function of κ for the HK distances.

Apart from similar behaviors already discussed above, we observe here that the peak

tagging performance is roughly the same for all reference measures except “uniref4”,

which does not attain tagging performance comparable to any EMD distance for any

2As we will see, the “uniref4” and “uniref8” reference measures are too coarse to capture the relevant
structure of the jets for any value of κ, and the distribution of Euclidean norms for these measures are
correspondingly omitted from Figure 3.12.

118



Optimal Transport for Collider Physics Chapter 3

Figure 3.13: AUC scores for classifying 10k W vs. QCD jets using different reference
measures, with “uniref4”, “uniref8”, “uniref15”, “uniref30”, and “uniref60” (from left
to right). The machine learning model used here is kNN. Jet pT is in between 500
and 550 (1500) GeV in the first (second) row. Solid (dashed) blue lines show the
results calculated on normalized (unnormalized) jets for W2/HK distance; horizontal
grey solid (dashed) lines use the EMD metrics on normalized (unnormalized) jets; and
grey dash-dotted lines give the tagging performance of τ21.

value of κ. Although “uniref8” yields tagging performance comparable to EMD∗
unN

for jets with total pT ∈ [500, 550] GeV, it does not reach the tagging performance of

EMDN. In contrast, the tagging performance of LinHK using “uniref15”, “uniref30”,

and “uniref60” meets or exceeds the tagging performance of the EMD distances for

optimized values of κ. This suggests that the classification performance of the linear

W2/HK distance is rather robust to the choice of the reference for “uniref15” and finer

measures. Considering that the finest reference measure under consideration (“uniref60”)

incurs a relatively high computational cost without significant improvement in tagging

performance, in what follows we largely favor the default 15× 15 reference jet, reserving

some comparisons with “uniref30” for the table in the later Discussions.

Table 3.3 lists the κ value that produces the best AUC score for each task using

HKN and HKunN metrics. Ignoring “uniref4”, the optimal value κbest lies between 0.2

and 0.5 for all others, regardless of the inter-particle spacing l. No obvious relationship

is observed between l and κbest.
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Table 3.3: Optimal κ values and their corresponding AUC scores for kNN classification
of W vs. QCD jets using different reference measures.

Jet pT (GeV) [500, 550] [500, 1500]
Reference HKN HKunN HKN HKunN

uniref4 κbest 10 1 10 1
(4×4) AUC 0.835 0.832 0.786 0.807
uniref8 κbest 0.3 0.3 0.5 0.4

AUC 0.852 0.849 0.813 0.847
uniref15 κbest 0.3 0.3 0.2 0.2

AUC 0.859 0.854 0.821 0.863
uniref30 κbest 0.5 0.2 0.2 0.2

AUC 0.860 0.859 0.826 0.862
uniref60 κbest 0.2 0.4 0.3 0.3

AUC 0.862 0.858 0.828 0.863

3.5.3 Discussions

Table 3.4 presents the detailed results for selected tasks considered above using the

kNN model. On average, only about an hour is needed to calculate the LOT distance for

10k jets on a laptop, with further speedup in the LinHK embedding for smaller κ values.

In contrast, computing EMD for 10k jets takes approximately 15 hours for jets drawn

from a 50 GeV-wide pT bin, and 30-40 hours for jets drawn from a 1 TeV-wide pT bin.

The tagging performance of HK as shown in Figures 3.11 and 3.13 exhibits three

distinct regimes as a function of κ. In the regime where mass-creation/destruction dom-

inates (κ ≲ 0.1), the AUC scores for both HKN and HKunN are comparable and decrease

with decreasing κ. Since no mass is allowed to be moved a distance more than π
2
κ,

when κ becomes so small such that π
2
κ < l (where l is the inter-particle spacing of the

reference jet), mass transportation is largely forbidden when computing the distance be-

tween a jet and the reference measure. Furthermore, in this regime the assumption that,

for each particle x̃j in the jet, there exists a particle xi in the reference measure so that

∥xi− x̃j∥ < κπ
2
is often violated, causing the linearization itself to break down. While this
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breakdown could be avoided in a continuum formulation of the linearization, one would

still have to contend with the fact that, as κ → 0, the rescaled Hellinger-Kantorovich

metric converges to the Hellinger metric, in which all information on the spatial distribu-

tion of the jets is discarded and their distance is based purely on the difference between

their energies at each location. We observe this breakdown at the level of the AUCs in

Figure 3.12, considering the value κ = 0.01.

At the other end, at large κ, the tagging performance using HKN stabilizes for κ ≳ 1,

whereas the AUC score deteriorates significantly using HKunN. As κ grows sufficiently

large, it becomes increasingly expensive to create or destroy mass. Once we enter this

transport-only regime, κ no longer plays any role for HKN. On the other hand, whenever

the total energies of the events are unequal, HKunN diverges to +∞ as κ→ +∞.

In between these two extremes, 0.1 ≲ κ ≲ 1, the tagging performance of both HKN

and HKunN is optimized, matching or exceeding the EMD approach. In this regime both

mass transportation and creation/destruction are relevant. Unfortunately, we have not

observed any strong correlations between the optimal value κbest, reference spacing l,

the jet clustering radius R, and the typical angular separation of boosted partonic decay

products ∝ m/pT , and no definite conclusion can be drawn at this stage regarding the

dependence of κbest on various jet length scales. We leave this question to future studies.

3.6 Pileup Robustness of the OT Framework

Radiation emitted from secondary collisions, commonly known as pileup (PU), may

overlap with that of the primary interaction of interest, posing a significant challenge

to the extraction of valuable insights from data collected at hadron colliders. A rough

estimation states that each pileup vertex typically adds about 600 MeV of energy per unit

rapidity per unit azimuth [103, 104], making up as high as 30% of energy density coming
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Table 3.4: AUC scores for kNN classification of W vs. QCD jets.

Ref Jet κ Normalization
pT

[500, 550] GeV, 10k jets [500, 1500] GeV, 10k jets [500, 1500] GeV, 200k jets

uniref15

+∞ N 0.838 0.791 0.817

100
N 0.836 0.789 0.817

unN 0.786 0.632 0.790

10
N 0.837 0.790 0.817

unN 0.821 0.774 0.827

1
N 0.844 0.803 0.825

unN 0.842 0.823 0.861

0.5
N 0.850 0.812 0.836

unN 0.850 0.843 0.874

0.2
N 0.856 0.821 0.842

unN 0.853 0.863 0.879

0.1
N 0.825 0.767 0.791

unN 0.825 0.799 0.827

0.05
N 0.779 0.642 0.683

unN 0.773 0.669 0.708

0.01
N 0.685 0.641 0.669

unN 0.683 0.624 0.644

uniref30

+∞ N 0.838 0.786 0.815

100
N 0.836 0.789 0.815

unN 0.785 0.633 0.791

10
N 0.839 0.789 0.815

unN 0.821 0.776 0.827

1
N 0.846 0.801 0.827

unN 0.847 0.822 0.860

0.5
N 0.860 0.813 0.839

unN 0.856 0.844 0.874

0.2
N 0.857 0.826 0.842

unN 0.859 0.862 0.880

0.1
N 0.851 0.806 0.827

unN 0.849 0.837 0.861

0.05
N 0.823 0.775 0.802

unN 0.830 0.797 0.825

0.01
N 0.549 0.577 0.566

unN 0.552 0.492 0.567

EMD
N 0.859 0.812

N/A
unN 0.846 0.802

τ21 0.810 0.766 0.765
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from the primary collision event. The previous data taken by the ATLAS and CMS

collaborations at the LHC contain on average 20 pileup events per bunch crossing, i.e.,

⟨NPU⟩ ∼ 20, which has now increased to ⟨NPU⟩ ∼ 80 in the current Run 3 experiments.

The planned upgrades to future High Luminosity LHC (HL-LHC) will only make things

worse, as it is expected to have as high as ⟨NPU⟩ ∼ 200 for Run 4-5.

Such radiation contamination from pileup significantly reduces the efficacy of many

commonly used jet physics observables [105, 106, 107], such as jet mass and dijet mass,

where in [108] the impact of different levels of pileup on dijet mass is studied. This

in turn motivates the invention of various pileup mitigation techniques [109, 110, 111,

112, 113, 114]. Pileup mitigation has recently been recast in the language of optimal

transport [13], but the robustness of OT-based approaches to jet classification has yet to

be studied. Here we present a first study of the robustness of OT-based approaches in

the presence of pileup (or any other form of uniform noise).

Again we use the same W and QCD dataset with pT ∈ [500, 550] GeV and jet ra-

dius R = 1 as before. We now need to add in contamination, where we generate the

so-called pileup templates in Pythia. The actual number of pileup events per bunch

crossing follows a Poisson distribution around ⟨NPU⟩. We consider three different pileup

templates with ⟨NPU⟩ = 20, 80, 140, according to the experimental benchmarks. These

pileup templates are then added to each event and FastJet is used to group the pileup-

contaminated events into jets. We then follow the same procedure as before, applying

the LOT framework to the pileup-contaminated jets.

We include three reference measures: the default 15×15 uniform reference; the 30×30

uniform reference; and an additional “pileup” reference jet (termed as “PUref”) picked

from one of the pileup templates for each value of ⟨NPU⟩. For example, when examining

jets contaminated by pileup with ⟨NPU⟩ = 80, the reference measure is taken to be

another Poisson distribution with ⟨NPU⟩ = 80. The motivation behind the choice of
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“uniref30” is that since the number of particles in the reference is close to that of the jets

contaminated by pileup with ⟨NPU⟩ = 80, 140, “uniref30” should better capture the true

underlying differences between W vs. QCD jets not obscured by the superficial pileup

addition.

Again, the N -subjettiness ratio τ21 serves as a benchmark, where τ21 is computed both

on the datasets with and without pileup. The one without pileup is generated by pruning

the contaminated datasets, accomplished in FastJet by a pruner that reclusters the jets

with Cambridge-Aachen algorithm and removes constituent particles that are soft or at

large angles with other particles [115, 116].

Figure 3.14 displays the resulting AUC vs. κ curves, where we use kNN coupled with

LinW2 or LinHK with κ = +∞, 10, 1, 0.5, 0.2, 0.1, and 0.05 on both normalized and

unnormalized jets. It is clear from the figure that comparing to τ21 (horizontal lines),

the tagging performance of LOT behaves rather well and does not decay significantly as

pileup increases. Especially for high pileup scenarios, the AUC scores of kNN+W2/HK

distances on un-pruned jet samples using any of the three references are far better than

the corresponding AUCs of kNN+τ21. For ⟨NPU⟩ = 140, τ21 on pruned jets behaves

much worse than that on un-pruned jets, corroborating the observation in [117] that

N -subjettiness on groomed jets is less discriminant than being computed on ungroomed

jets. Table 3.5 summarizes the AUC results for the LOT framework using the three

different reference jets, as well as those for τ21.

More studies need to be performed in order to examine in detail the influence of back-

ground contamination such as pileup on OT-based metrics, but its potential advantage

over traditional methods is already clear from our preliminary study.
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Table 3.5: AUC scores for kNN classification of W vs. QCD jets with different levels
of pileup.

Ref Jet κ Normalization ⟨NPU⟩ = 20 ⟨NPU⟩ = 80 ⟨NPU⟩ = 140

uniref15

+∞ N 0.801 0.768 0.754

10
N 0.802 0.770 0.750

unN 0.777 0.752 0.736

1
N 0.820 0.790 0.767

unN 0.818 0.794 0.767

0.5
N 0.821 0.796 0.773

unN 0.831 0.796 0.774

0.2
N 0.830 0.787 0.766

unN 0.829 0.787 0.767

0.1
N 0.812 0.775 0.739

unN 0.812 0.779 0.743

0.05
N 0.740 0.714 0.686

unN 0.739 0.714 0.682

uniref30

+∞ N 0.799 0.772 0.757

10
N 0.799 0.775 0.759

unN 0.775 0.756 0.743

1
N 0.819 0.786 0.765

unN 0.819 0.792 0.761

0.5
N 0.824 0.794 0.770

unN 0.819 0.795 0.768

0.2
N 0.835 0.796 0.766

unN 0.830 0.798 0.765

0.1
N 0.832 0.798 0.752

unN 0.832 0.800 0.757

0.05
N 0.808 0.771 0.730

unN 0.813 0.769 0.727

PUref

+∞ N 0.797 0.777 0.753

10
N 0.795 0.776 0.752

unN 0.779 0.758 0.734

1
N 0.805 0.785 0.756

unN 0.801 0.788 0.754

0.5
N 0.823 0.792 0.770

unN 0.822 0.790 0.770

0.2
N 0.838 0.800 0.769

unN 0.832 0.799 0.770

0.1
N 0.825 0.795 0.756

unN 0.822 0.795 0.754

0.05
N 0.787 0.768 0.725

unN 0.781 0.772 0.720

τ21 0.761 0.697 0.657
pruned τ21 0.784 0.708 0.585
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Figure 3.14: AUC scores for using kNN to classify 10k W vs. QCD jets with different
amount of pileup where the average numbers of pileup particles in each event are
⟨NPU ⟩ = 20 (red), 80 (blue), and 140 (green). From left to right, the reference
measures used are the 15×15 uniform reference, the 30×30 uniform reference, and a jet
drawn from the pileup template corresponding to each NPU . As usual, solid (dashed)
lines show the AUC scores using the LinW2 or LinHK on normalized (unnormalized)
jets, and solid horizontal lines give the tagging performance of τ21 on unpruned jets
whereas the dash-dotted lines are the results using τ21 on pruned jets (denoted by
τpr21 ).

3.7 Upgrading the Optimal Transport Framework

Up until now, we have focused exclusively on the task of jet tagging. To this end, we

have introduced and adopted the tools of balanced and unbalanced optimal transport,

as well as developing their linearization scheme to improve practical utility. Of course,

there is much more in collider physics than just jet tagging. One obvious next step is to

move to the full LHC event level and consider event classification.

As a first try, one may treat an entire LHC event as if it were a single jet and directly

apply the above OT methods on events without modification to the framework. We have

attempted such a näıve implementation on a test dataset of W vs. QCD dijet events

and observed that the classification performance suffers as the AUC drops below 0.65.

A more careful examination suggests that there are at least three major complications

arising in the case of event classification.
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Event preprocessing is ambiguous: OT with Invariances

First, even before optimal transport can be applied, we need a way to preprocess

the raw data so as to get rid of any superfluous difference in the energy flows, such

as translations and rotations which are the invariances of the collider system. In the

case of jets, preprocessing is not a large concern, as there is a well-defined procedure

to center and rotate jets which has also been used throughout the previous sections.

However, no such consensus exists for events and every developer needs to propose their

own preprocessing scheme suitable to the particular framework they use. This makes it

difficult to efficiently compare different frameworks, partially explaining the low number

of event classification studies relative to jet tagging.

More importantly, there is no intrinsic preference of one preprocessing scheme over

another. It is dubious how to rotate a full event on the y−ϕ plane; such a rotation even

lacks physical meaning. Every preprocessing scheme is therefore equally ad-hoc and only

serves the purpose of the particular statistical framework under consideration.

One way to bypass the preprocessing issue is if the framework itself is invariant

under certain transformations of the energy flow. For example, people having been using

techniques in geometric deep learning which preserve certain symmetries and invariances

of the underlying data. In the case of optimal transport, ideally we would also want to

make the distance itself invariant under the symmetries of the system. We term this new

framework “OT with Invariance”.

The key idea here is to devise an appropriate reference measure which is invariant

under the desired symmetries. Currently, we are focusing only on the 1D rotational sym-

metry in the y − ϕ plane. In this case, obviously, the discrete reference would consist of

concentric rings with equally-angular-spaced dots. One then computes the LOT coordi-

nate of each event with respect to this rotationally symmetric reference, which by design
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would give the same coordinate even if we rotate the original event (since it is equivalent

to counter-rotating the reference).

Of course, there is still the possibility of an angular offset when comparing the LOT

coordinates of two different events and calculating their Euclidean distance. But this

can be resolved by scanning over all possible rotational angles (given by the angular

resolution of the discrete reference) and picking the minimum distance. At least for the

simple 1D rotation, the later step is straightforward and rather efficient computationally,

since for each angle only the Euclidean distance calculation is required between each pair

of the LOT coordinates.

We have implemented the above method and verified that it works as intended on toy

data; see Figure 3.15. Here, the referenceR consists of 10 concentric rings with an angular

resolution of 6 degrees. The distributions being compared are two randomly sampled

letter “S” in the normal upright position, which gives a LinW2,R = 0.174 between them

without any rotation. We then rotate one S by 43o, resulting in the green distribution S′.

The LinW2,R pseudo-distance between S and S′ is then calculated every 6 degrees and

correspondingly plotted on the right as a function of the rotational angle θ. Two valleys

are clearly visible, with the lowest one giving a minimum distance of 0.166 obtained when

θ = 42o, which is the closest angle to the actual 43o given the resolution of the reference.

It is not surprising that the minimum distance obtained through the new method of OT

with Invariance may be even lower than that of two upright S’s (0.166 < 0.174), since the

two S distributions are not exactly the same. Furthermore, the second minimum occurs

when θ = 222o = 42o+180o, exactly reflecting the 180o rotational symmetry of the letter

“S”.

Of course, this simple method would not work as well for high-dimensional rotations.

One would then need a gradient descent or other optimization methods than the cur-

rent brute-force exhaustive search over all possible values of the discrete 1D rotational
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Figure 3.15: Left : Two randomly sampled discrete distributions of the letter “S”. The
green distribution S′ is rotated 43o relative to the upright orange distribution S. The
gray reference consists of 10 concentric rings with an angular resolution of 6o. Right :
The LinW2,R pseudo-distance between S and S′ at every 6o. The minimum distance
is obtained when θ = 42o (gray vertical dashed line), giving an OT value of 0.166
lower than 0.174—the LinW2,R pseudo-distance between the two upright S’s (gray
horizontal line).
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angle. More generally, we would like to include other types of symmetries as well such

as reflections, in which case the present OT framework may need further upgrades.

Events have multiple scales: OT for Multi-Scaled Distributions

The second complication for event-level analysis is that, unlike a single jet, an event

has manifestly multiple scales. In other words, an event consists of several jets (and most

likely other objects as well) located at potentially distant parts of the detector, whereas

each jet itself may contain hundreds of particles all clustered within a small region. If

an optimal transport distance is to be defined directly on an event as a collection of all

its constituent particles, then the large separation between jets would wash away any

finer substructure within a jet, rendering the overall distance less informative. Similarly,

the same loss of information arises if an event is represented only by its jets, i.e., if only

jet-level information is used.

What we need here is a more general OT-based distance that can handle multi-scaled

distributions, such that both jet substructure and the relative locations of the jets can

be incorporated into the distance definition on an (relatively) equal footing. We can

accomplish this by modifying the ground metric, or rather the resulting cost matrix

between each pair of particles in the ground space. In specific, given two events with n

and m jets, respectively, we compute an n×m morphology distance matrix and another

n×m location distance matrix, where each entry in both matrices is the corresponding

distance between every pair of jets in the two events.

To be more specific, every entry of the morphology distance matrix records the usual

OT distance between two jets in each event. Essentially, it looks at the individual jets

with their constituent particles after the usual centering and rotating, and then computes

the OT distance between all pairs of jets in the two events as before. This tells us how

different every jet of one event is from all the jets of the other event, in terms of their

130



Optimal Transport for Collider Physics Chapter 3

morphology, i.e., the internal substructure of the jets.

On the other hand, the location distance matrix discards the particle information

and is concerned solely at the jet level. Its entry is defined to be the Euclidean distance

between a pair of the jet axes in two events on the collider y − ϕ plane. That is, the

(i, j)-th entry of the location distance matrix is the Euclidean distance between the i-th

jet axis in the first event and the j-th jet axis in second event. Here the issue of event

preprocessing strikes back. One would need to make sure that the same event, when

rotated with respect to itself, do not give rise to a non-zero location distance matrix.

Now assuming that we have obtained both matrices, the next step is to define a way

to combine them into one single distance matrix. For simplicity, our first try is to do

an element-wise linear combination of the two matrices, with a tunable weight factor for

each. At the end of this step, we would have one single n ×m distance matrix for the

two events that incorporates both the morphological information between every pair of

jets and the spatial information of how far the jets are located relative to each other.

The final step is to reduce the above matrix to one single number, a scalar that

represents the “distance” between the two events. Many methods can be conceived,

including using the above distance matrix as the ground cost matrix for an additional

optimal transport computation. Of course, in the end, the “best” way to perform the

reduction, as well as the method for combining the two matrices in the previous step,

are all subject to the judgement of the final performance of the specific task under

consideration. Our hope is that these choices would not be too task-specific, and would

reveal some generic physics for all collider events.

Events have more than energy flow information: Multi-Species OT

The third point, though perhaps most relevant to full events, also applies to jets.

In our current formalism, only kinematics as represented by energy flows are considered
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in the definition of the optimal transport distance. Charge or flavor information is ex-

cluded, even though they can be determined by the experiments. Ideally, one would

like to incorporate as many observables as possible. This would require the development

of a mathematical framework called multi-species optimal transport, where particles of

different charges or flavors are treated as different species associated with an additional

cost of converting object of one species to another.

As a first try, we are currently focusing on jets in order to avoid the complications of

events as mentioned above. The immediate goal is to include particle charge information

in addition to energy flows and see whether and by how much it boosts jet tagging

performance. Ultimately, we would like to develop a framework that can handle events

consisting of a variety of objects, such as a multiple of jets, a few muon hits, some

electrons, and etc. This would necessitate crafting a multi-species OT on multi-scaled

distributions with invariances, that is, combining all the aforementioned upgrades into a

grand OT distance for the study of collider events.

Once such a grand distance is available, we can accomplish many tasks with ever

increasing power. Potential applications include anomaly detection, detector unfolding,

as well as inference of the underlying theory parameter(s) by quantifying how close two

theories are in a precise way. This last possible use case leads us naturally to the following

chapter, where a different physics scenario is considered for the application of optimal

transport. Yet, the underlying statistical problem is essentially the same, allowing one

to carry over all the analysis tools developed in one context to another.
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Optimal Transport for Dark Matter

Astrophysics

One of the most pressing issues in fundamental particle physics is the identity of some

85% of the matter in the universe. The existence of this dark matter (DM) has long

been inferred from its gravitational interactions with normal Standard Model particles.

However, its fundamental nature and interactions remain unknown to date. While the

LHC continues to hunt for DM—mainly through the inverse process where SM particles

collide to produce dark matter, a growing abundance of astrophysical studies have proven

critical to the study of dark matter. At this cosmic frontier, DM search is unfolding across

a variety of experiments.

Direct detection experiments look for nuclear recoils due to rare interactions of SM

particles with DM in the local halo. One example is the LZ Dark Matter experiment [118]

deep underground in South Dakota, which primarily hunts for cosmic Weakly Interacting

Massive Particles (WIMPs)—the most common hypothesized dark matter particles that

make up our galactic halo. At its heart, LZ consists of a large liquid xenon time projection

chamber sensitive enough to detect low energy nuclear recoils. LZ and similar direct
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detection experiments have put stringent constraints on the cross section and mass of

WIMPs and other potential dark matter candidates [119, 120].

In contrast, indirect detection experiments search for the annihilation of DM into

SM particles by looking into the Milky Way and other galaxy halos. These stable prod-

ucts, presumably from dark matter annihilation or decay, can be tracked by a multiple

of “messengers”, including neutrinos, charged cosmic rays, gamma rays, X-rays, micro

waves, and radio waves. Virtually any astrophysical observation, be it ground-based

telescope or balloon-borne detector, can be turned into a dark matter indirect detection

search, as they hunt for regions in the sky with excess SM particles. For recent reviews,

see [121, 122].

All the above mentioned experimental probes hinge on the assumption that DM also

interacts with normal matter through forces besides gravity. However, we currently only

have concrete evidence for its gravitational interactions. Another possibility therefore

is to directly exploit the DM gravitational interactions at the galaxy scale to infer its

properties at the microscopic scale. Such macro-to-micro connection is possible thanks

to the fact that small perturbations of the DM distribution in the early universe still

manifest themselves in the dark matter halos surrounding today’s galaxies. Therefore, a

close examination of galactic halos is a peak at this mysterious matter.

To achieve the goal of inferring DM microscopic nature through halo properties, we

need to compare astrophysical observations with most intricate numerical simulations of

galaxy formation. Such N -body simulations can trace structure formation all the way

from the birth of the universe to the formation of halos and galaxies in the current cosmo-

logical era. They generate predictions for dark matter density and velocity distributions

within galaxies, based on the underlying DM properties specified as inputs. One can

then compare these simulations with actual observations to infer which values for the

DM properties best match the reality.
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Chapter 4 is organized as follows. Section 4.1 motivates the examination of halos

as a probe of the microscopic properties of dark matter, especially its self-interaction,

and suggests optimal transport as a suitable tool for comparing dark matter halos with

rich substructure. In Section 4.2, we rephrase the physics problem in statistical lan-

guage, introducing the general framework of simulation-based inference (SBI), also called

Likelihood-free Inference. Here we point out an alternative route different from the cur-

rent mainstream neural-network approach to SBI, laying special emphasis on a particu-

lar upgraded version called Bayesian Optimization of Likelihood-free Inference (BOLFI).

Details of the BOLFI framework are expounded, where we show how to naturally in-

corporate optimal transport into the BOLFI framework so as to circumvent the issue of

handpicking summary statistics.

Section 4.3 and Section 4.4 give a first demonstration of the proposed statistical

framework, focusing on the inference of the disc mass fraction and the halo mass of

Milky Way (MW) like halos. Both positive and negative preliminary results are shown

and we do not shy away from discussing observed issues. This paves the way for future

investigations both of the physics of halo simulation and of the statistical framework of

BOLFI+OT. As this project is still ongoing at the moment of writing, the results here

represent only our current state of knowledge and major modifications are possible after

further research.

The present work, to the best of our knowledge, offers the first systematic application

of optimal transport in comparing dark matter halos with rich substructure. We would

also like to point out that the novel statistical framework of BOLFI+OT may enjoy much

wider applications, both within and beyond the context of dark matter astrophysics.

We look forward to further refining the framework and exploring its potential usages

elsewhere, including collider physics.
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4.1 Probing Dark Matter Nature via Halo Proper-

ties

Similar to the Standard Model of particle physics, cosmology has its own standard

paradigm consisting of the known SM particles, a cold, collisionless dark matter (CDM)

participating only in gravitational interaction, and a cosmological constant Λ associated

with dark energy, all encompassed within the theoretical framework of general relativity.

This phenomenological ΛCDM paradigm is exceptionally successful at predicting the

large scale structure of the universe on distance greater than O(Mpc), as well as its

evolution with time.

In the ΛCDM paradigm, dark matter halo—a clump of dark matter bound by gravity—

plays an essential role in the formation of cosmic structures. Seeded by primordial fluc-

tuations, initial matter overdensities collapse under gravitational instability, giving rise

to clusters of baryonic and dark matter. As cold dark matter is similar to a pressureless

fluid, it collapses faster than baryonic matter and is thus more dominant. Therefore,

dark matter halos, as they merge with each other and grow in size, provide the gravita-

tional potential that attract and capture ordinary matter such as gas and dust, leading

eventually to the birth of galaxies, galaxy clusters, and other cosmological structures. At

the same time, a large dark matter halo may draw many smaller halos (called subhalos)

into its own potential well. Those subhalos in turn host their own satellite galaxies, and

the entire subsystem orbits around the central halo and its host galaxy. This hierarchical

nature of structure formation suggests an incredibly rich substructure of dark matter

halos, indicating the possible applicability of optimal transport as a tool to mine such

substructure; more to come later.

Typically, a current dark matter halo is confined within at most several Mpc. On

such smaller scales below ∼ 1 Mpc, the cosmological structure is highly non-linear and
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N -body simulations with the standard ΛCDM halos becomes, unfortunately, inconsistent

with astrophysical observations. Among the most well-studied challenges to ΛCDM are

the core/cusp problem, the missing satellites problem, and the too-big-to-fail problem

(TBTF).

The core/cusp problem [123, 124] is concerned about the dark matter density profile

in the center of the halo. Whereas ΛCDM predicts a steeply rising central density profile

(a “cusp”) of ρ ∝ r−1, astrophysical observations of dwarf galaxies and low surface

brightness galaxies, on the contrary, almost universally suggest a constant density core

ρ ∝ r0. The core/cusp problem persists to date: indeed we are now observing increasingly

diverse density profiles, both on galaxy scales and even on cluster scales [125, 126, 127].

The missing satellites problem [128, 129] points out sharply that the number of ob-

served satellite galaxies of the Milky Way is far less than what is forcasted by the ΛCDM

model. The paradigm predicts a halo mass function scaling roughly as dN/dM ∝M−1.9

[130, 131, 132], all the way down to a minimum mass possibly around the mass of the

Earth. This indication of a much bigger population of low-mass halos than large-mass

ones is clearly at odds with observation. For example, whereas ΛCDM expects thou-

sands of subhalos that could potentially host galaxies within 300 kpc of the Milky Way,

only ∼ 50 satellite galaxies are confirmed by observation. Of course, with the advent

of increasingly advanced wide-field digital sky surveys, more and more ultra-faint dwarf

galaxies have been identified as MW satellites, and it becomes hopeful that the missing

satellites problem may even be resolved within the framework of ΛCDM itself.

Finally, the too-big-to-fail problem (TBTF) [133] questions the lack of galaxy forma-

tion in the most massive subhalos, despite the normal formation of galaxies in smaller

subhalos. In other words, those giant subhalos should be “too big (massive) to fail” to

incubate stars and the fact that their luminous counterparts are missing is a puzzle for

the ΛCDM model.
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The above problems have ignited decades of research looking for remedies to the oth-

erwise highly successful ΛCDM model. One hope is that incorporating realistic baryonic

feedbacks into the standard N -body simulations may alleviate some of the aforemen-

tioned issues. For example, one would expect supernova bursts to noticably modify the

density profile of a halo. However, baryonic processes in astrophysics are not only elusive

to precise quantitative understanding; their computational implementation also proves

to be highly nontrivial. An entire community is dedicated to the research of such hy-

drodynamic simulations, which consume exceedingly large computational resources. A

single hydrodynamic simulation can takes months to complete! It remains to be seen

whether baryonic process alone is enough to account for all the observed discrepancies,

if we confine ourselves solely within the ΛCDM paradigm.

A more theoretically tantalizing possibility is that the ΛCDM model no longer holds

on smaller galactic scales. In this case, one would need new physics Beyond the Standard

Model to provide us with additional particles that can potentially serve as a DM. For-

tunately, many theories that have been put forth over the years to tackle the limitations

of the Standard Model automatically propose the existence of new particles which can

serve as dark matter candidates. A well-known example is the aforementioned weakly-

interacting massive particles (WIMPs). Motivated by the hierarchy problem, WIMPs

has been under extensive search, though with null results so far.

Generic in many BSM physics models is the existence of a dark sector that parallels

the familiar SM dynamics. In such dark sectors, DM particles can scatter with each

other through 2 → 2 processes. Such self-interacting dark matter (SIDM) was origi-

nally proposed more than two decades ago as an attempt to resolve the core/cusp and

missing satellites problems [134] and still remains an encouraging alternative to the stan-

dard paradigm of a collisionless cold dark matter. By allowing energy and momentum

transport, dark matter self interactions give rise to significant deviations from the CDM
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predictions of the structure and dynamics of halos, especially towards its inner region.

At sufficiently large radii though, SIDM halos display the same structure as CDM halos

since the collision rate is negligible there with a very low DM density. This convergence

is not just desirable but requisite, given the observational success of the ΛCDM model

on large scales.

As the resolution of N -body simulations improves, we are now able to probe small

scale structures key to the differentiation of various physics models of dark matter, where

even the subhalos contained in each host halo can be accurately resolved. We now review

several basic properties of dark matter halos and galaxy formation, alongside with the

introduction of the specific halo simulator used in our later study.

4.1.1 Halo Properties and Halo Simulation

Once a halo (or a galaxy) stops expanding or collapsing, it has reached an equilibrium

point of gravitational stability. The resulting system is said to be virialized. The virial

radius Rvir of the system, that is, the radius within which the virial theorem applies, is

defined as the radius at which the density is equal to ∆ρc, where ρc is the critical density

of the universe and ∆ is the virial overdensity parameter.

One can relate the virial radius, virial mass, and virial velocity of the system via the

following set of equations [135],

Mvir =
4π

3
R3

vir∆ρc, (4.1)

Vvir =

√
GMvir

Rvir

. (4.2)

In a sense, all three parameters Mvir, Rvir, Vvir are equivalent labels of mass. The speci-

fication of one determines the other two, once a particular definition for the overdensity
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parameter ∆ is assumed. A common convention is to choose ∆ = 200, in which case the

corresponding virial radius and virial mass are labeled as R200 and M200, respectively.

Other choices are equally valid, as long as one remains consistent. In our study, we

follow the ∆ = 200 convention and set our fiducial mass of a Milky Way-like halo to be

M200 = 1012M⊙ at the present time z = 0.

Within the ΛCDM model, the density profile of a dark matter halo is modeled with

the Navarro–Frenk–White (NFW) profile [136] via

ρ(r) =
4ρ−2

(r/r−2)(1 + r/r−2)2
, (4.3)

where two additional parameters r−2 and ρ−2 are introduced. We define r−2 to be the

radius where the log-slope of the density profile is 2. This point marks the transition

from an inner r−1 cusp to an outer profile of a steep fall-off with r−3. Accordingly, ρ−2

sets the density at r = r−2 [135]. To first approximation, the NFW profile offers a good

depiction of the internal matter distribution of a dark matter halo of any mass. Note that

baryonic processes are not accounted for here, which can cause the density profile of a

halo to deviate significantly from the NFW profile and other upgraded functional forms.

It is therefore important that a good halo simulator takes into account such baryonic

physics.

Given a halo mass M200, one can replace one of the two parameters in the NFW

profile by the halo concentration defined as c200 = R200/r−2. A combination of M200 and

c200 then completely determines the dark matter density profile of a halo. Concentration

displays considerable variation from halo to halo, partially due to the difference in the

specific history of halo mass accretion [137]. Qualitatively speaking, early-forming halos,

which also tend to have lower masses, assemble at a time when the universe has a higher

mean density. Therefore, they usually acquire higher concentrations than larger-mass,
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later-forming halos, which are hierarchically built up by merging smaller halos according

to the ΛCDM narrative. Similarly, many other key halo properties are impacted by

the specific astrophysical merger history, making the incorporation of large halo-to-halo-

variance a critical component of any realistic simulator.

Although dark matter halos can be indirectly observed via methods such as gravita-

tional lensing, the most obvious things we see with telescopes are always their luminous

counterparts. Therefore, it is essential to link the properties of observable galaxies with

those of the halo that encompasses them. This galaxy-halo connection is extremely com-

plicated. The usual practice is to employ some forward model for galaxy formation from

the underlying physics within the standard ΛCDM paradigm or its modified version. We

expect a versatile galaxy simulator to incorporate different forward models and provide

good empirical relations for the galaxy-halo connection.

As emphasized above, a diverse array of baryonic effects need to be taken into account

for a simulator to reasonably model an actual halo. Such baryonic physics is usually

“painted” on top of dark matter only N -body simulation. One important and obvious

thing to add is a galactic disc at the center of the host halo. Primarily composed of

visible matters including stars and gas, a central disc can cause drastic suppression of

substructure formation of the host halo. Naturally, the mass of the disc relative to that

of the halo is an important property and is usually encoded by the parameter fm—the

disc mass fraction—at the present time z = 0. For a MW-like halo, we have fm = 0.05

as the fiducial value.

The halo simulator employed in our study is a semi-analytical satellite galaxy gen-

erator called SatGen [138, 139], which is designed to be a powerful and fast emulator of

much more computationally expensive N -body and hydrodynamic simulations. SatGen

is able to produce large samples of MW-like halos with high resolution, meaning that it

can track subhalos all the way down to a mass of 107.75M⊙. We now briefly describe the
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process of halo generation using SatGen; for a more complete description, please refer to

the original papers [138, 139].

SatGen simulation consists of two major steps in series. First, it generates a merger

tree which traces the formation history of a dark matter halo through its accretion and

merging processes with other halos [140]. This step is named TreeGen, which is relatively

efficient with one merger tree of a M200 ≈ 1012M⊙ halo produced in about a minute. A

number of pre-specified parameters are required to set the resulting properties of the

generated halo. For example, M200 is obtained from the mass of the main branch (i.e.,

the most massive progenitor) of the merger tree and can be tuned at this step. The

merger tree provides the backdrop against which satellite galaxies are to be evolved in

the next step.

Effects from baryonic feedbacks are crucial for the formation and evolution of a large

population of satellite galaxies in the host halo. In this second step named SatEvo,

the simulator integrates the orbits of each satellite galaxy within a composite potential,

accounting for the gravitational interactions between the satellites and the host galaxy.

At the same time, tidal forces and other structural evolutions experienced by the satellites

are also incorporated. Not surprisingly, such satellite evolution is computationally very

demanding, where more than 2 hours are needed to evolve the satellite galaxies for just

a single host halo of mass 1012M⊙. The required simulation time keeps increasing with

larger host halo mass.

Naturally, properties related to baryonic physics such as the galactic disc are inputted

in the second step SatEvo. In particular, the disc mass fraction fm can be tuned here,

independent of the previous merger tree step. In practice, this translates to the freedom

to scan a range of fm values given one same halo merger tree.
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4.1.2 Optimal Transport on Halo Substructure

The rich substructure of a dark matter halo encodes many of its key properties,

such as the mass, the fraction of its central disc, and the particular hierarchical merg-

ing history, among others. At the same time, it also reveals the essential dark matter

microscopic properties universally governing all halos. The hope is that a principled com-

parison between different halos (for example, simulation vs. observations) can inform us

more on the general particle nature of dark matter than on the specific astrophysical

history and properties of one halo. In particular, as dark matter self-interactions can

drastically modify the phase space distribution of a halo depending on the strength of

the interactions, it seems viable and promising to constrain the DM self-interactions via

a halo-to-halo comparison, which is the ultimate dream of our project.

But first, one would need a quantitatively precise way to define how similar two halos

are based on their substructure. This is where optimal transport comes in—to replace

the traditional summary statistics which simply reduce a halo down to a few scalars.

Indeed, the present situation is very similar to the collider physics scenario. Here the

distributions under comparison are dark matter halos instead of collider jets. If optimal

transport can again provide a useful metric structure, then the comparison between dark

matter halos will be straightforwardly facilitated by a precise OT distance calculation,

where halos with smaller OT distance will (hopefully) share similar underlying properties.

Of course, this optimal transport idea may not work at all in the present case of

dark matter halos. Essential to its success is the input distributions themselves. In other

words, we need to think of a most informative way to represent a halo as a distribution. In

the case of collider physics, the natural way to represent a jet as a pT -weighted discrete

distribution on the y − ϕ plane turns out to be extremely effective for tagging and

many other applications. This “miracle” does not just happen on its own, but is deeply
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grounded in theoretical reasons; see [13] for a pioneering exploration into the topic.

On the other hand, it is far from clear what distribution one should choose to rep-

resent a dark matter halo. Both the ground space and mass of the distribution need to

be properly defined in order to encode the essential physics about the underlying pa-

rameter. This also implies that the criteria of a distribution being informative may well

differ according to which theory parameter is under consideration: a specifically weighted

distribution in a certain ground space that works best for the inference of, say, the halo

mass does not necessarily assure the success of inferring the self-interaction strength.

In any case, it is reasonable, or rather only possible, to use features that can be

extracted from simulation and observational data as the ground space and mass for

the OT formulation. In specific, the velocities and radial distances of the visible satellite

galaxies are good choices as a first try, since they can be easily obtained from observations

and simulations and should encode halo substructure information to certain degree. We

therefore propose to construct three different 2-dimensional ground spaces using the pairs

(r, vtotal), (r, vtangential), and (r, vradial), where r is the distance from each satellite galaxy

to the halo center, vtotal is the magnitude of the total velocity of the satellite orbiting the

central halo, and vtangential, vradial are the tangential and radial parts of vtotal, respectively.

In practice, we always normalize the two ground space axes so that their ranges are both

on the order of O(1) and therefore contributions from the two features (i.e., r and v’s)

are roughly equal. 1 This motivates the choice of a HK distance with κ = 1, and in the

following study we exclusively focus on HKκ=1 for all the presented results. 2

As for the “mass” of the individual satellite galaxies of a host halo, we pick for our

1For the ground metric, we have tried both the Euclidean distance and the Manhattan distance on
the 2D ground space and observed no noticeable difference in the resulting OT distances computed.
Therefore, we stick with the Euclidean distance as the ground metric for all following studies.

2We have also tried different OT distances with κ values ranging form +∞ (W2), to 100, 10, 1, 0.1, 0.01.
Our preliminary results suggest HK distance with κ ∼ [0.5, 1] as the best performing OT distance for
the tasks currently considered. Further studies are needed to examine the effect of tuning κ on the
downstream statistical task.
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current preliminary study two natural choices: the log of the mass of each satellite galaxy,

Log(Msat)
3, and the absolute value of the v-band magnitude of each satellite, i.e., its

luminosity L 4. Therefore in total, there are six different distributions to represent the

substructure of one host halo; see Figure 4.1 for an illustration for two random halos

both with M200 = 1012M⊙ and fm = 0.05, where two are chosen in order to demonstrate

intrinsic halo-to-halo invariance due to different merger histories.

Now assuming optimal transport with the above ground spaces and mass definitions

works as we expect, we can proceed forward to use OT distances for the inference of

the underlying theory parameter(s). This problem belongs to the statistical field of

Simulation-based Inference (SBI), which is the topic of the next section.

4.2 Bayesian Optimization for Likelihood-free Infer-

ence

Suppose we are interested in constraining the mass of the observed Milky Way halo

by comparing it to a set of simulated MW-like halos. Here, the halo mass defines our

theory parameter, denoted as θ. In principle, one can have multiple theory parameters θ

that are to be inferred simultaneously. The method presented below works well when θ

is low dimensional. When the number of theory parameters gets large, additional tricks

may be required to maintain the efficiency of the inference framework. For simplicity, let

us stick with one theory parameter, which will be the case for our later applications.

Now given a specific value of θ drawn from some prior distribution p(θ) (usually

3We need to take the logarithm of the mass as it may vary approximately from 104 to 109 for different
satellite galaxies. If we were to directly use the galaxy mass, then the OT distance would be completely
dominated by the most massive satellites.

4The magnitude is a unit for stellar brightness, and the v-band means that the passband is within
the visible light range. Since the v-band magnitude is negative for the galaxies in our dataset, we use
its absolute value as the “mass”.
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Figure 4.1: Two host halos (one orange, one blue) with M200 = 1012M⊙ and
fm = 0.05 simulated by SatGen, with their respective satellite galaxies displayed
in three different ground spaces under two different “mass” choices. Top to bot-
tom: the ground space for OT computation is chosen to be (r, vtotal), (r, vtangential),
and (r, vradial), respectively. Left to right : the mass for individual satellite galaxy is
Log(Msat) and luminosity L.
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a uniform distribution), the simulator then generates certain outputs based on some

complex physical processes it is designed to model. Of course, the simulator most likely

involves many other underlying parameters in addition to θ—the primary parameter of

interest. We refer to those parameters as the latent variables z. Further, as the simulator

oftentimes includes stochastic components, its output observables are typically not in a

simple one-to-one correspondence with the input parameters. Therefore, given specific

inputs θ and z, we model the simulated outputs x with some probability p(x|θ, z). In the

case of inferring Milky Way mass, the theory parameter θ is the halo mass; one important

latent variable z is the galaxy-halo connection; the simulated output x is a specific host

halo with certain subhalo distribution; and the actual observation xo is the, of course,

Milky Way itself.

In general, this forward direction from the theory parameter to the simulated ob-

servables is straightforward and well grounded in physics. One runs the simulator and

the software “automatically” gives the desired outputs. However, it is often the inverse

problem that is of real interest in science. One usually is not content with just getting

some simulated data, but would like to go a step further to compare the simulation with

the ground truth in order to constrain the underlying parameter of the actual observation

xo. In other words, our primary goal is to obtain the posterior distribution p(θ|x)|x=xo ,

conditional on the observation. Bayes’ rule tells us that

p(θ|x)|x=xo =
L(x|θ)|x=xop(θ)∫

dθ′ L(x|θ′)|x=xop(θ′)
, (4.4)

where L(x|θ)|x=xo is the likelihood function of x with respect to θ when we observe x = xo

and L(x|θ) is defined by

L(x|θ) =
∫

dz p(x, z|θ). (4.5)
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Usually, the high complexity and expensive computational cost of many simulators

(including our astrophysical simulators) make it impossible to deduce an explicit, closed-

form solution for the above likelihood function. Under such circumstances of an in-

tractable likelihood function, traditional inference methods fail, necessitating the intro-

duction of novel techniques that do not require a known likelihood function. Given the

ubiquitousness of these problems in almost every discipline, a tailored field of simulation-

based inference is born where diverse methods are used to estimate the posterior without

the need to extract the exact likelihood function.

With the rise of neural networks, many recent studies on SBI has turned to NNs, using

them to emulate the likelihood function or the posterior distribution directly. Among

such NNs acting as surrogates, a prominent one is normalizing flows [141], which evokes

a series of invertible and differentiable transformations to turn a complex distribution

into a simple one (called based distribution and is usually a Gaussian). Yet just like

other NN approaches, flow-based models also suffer from interpretability issue due to its

long chains of transformations introducing high dimensional latent spaces. Whenever

possible, it is desirable to use easy-to-understand statistical methods in place of NNs.

That is why we turn to a different approach under the general category of Approx-

imate Bayesian Computation (ABC). First described in [142], ABC is nothing new at

all and its advantage lies in its conceptual clearness. Without the need to resort to ma-

chine learning for explicitly emulating any function, ABC builds upon our intuition that

simulations “closer” to the actual observation should share similar theory parameters.

Essentially, the vanilla ABC employs a simple rejection sampling scheme. First, we for-

ward simulate a set of data from various values of the theory parameter drawn from the

prior p(θ). Then, if the discrepancy between the simulated data and observed data is

smaller than some threshold ε, we keep this simulation; otherwise, we throw it away. At

the end of the day, the acceptance rate of the simulations serves as an approximation of
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the posterior distribution of theory parameter, with the one corresponding to the highest

acceptance rate indicating the optimal value of the parameter.

Key to this ABC framework is a notion of discrepancy, which measures how different a

given simulation is from the actual observation. In its usual version, this discrepancy score

depends crucially on good summary statistics, which usually reduce the data (observation

and simulation) to a few low-dimensional features. Expert knowledge (and a bit of luck)

is indispensable to a shrewd choice of summary statistics. Indeed, they are exactly the

same in spirit as the jet substructure observables discussed in the previous chapter under

the collider physics context.

However, when the system under study is sufficiently complex and the data high di-

mensional, as is the case for our astrophysical application, manually selecting a small set

of summary statistics most certainly leads to information loss, as important features may

be overlooked. Indeed, it becomes ever more challenging to craft the summary statistics,

when the underlying mechanisms governing the system are themselves not fully under-

stood. As the readers may already anticipate, optimal transport provides a promising

alternative to the usual practice of handpicking an ad-hoc set of summary statistics.

It offers a novel and more sophisticated notion of discrepancy between simulation and

observation, by better capturing the subtle patterns, dependencies, and higher-order sta-

tistical properties in data that my elude even an expert’s eye. Of course, the success

of optimal transport still hinge on a proper choice of the ground space with its ground

metric and that choice is highly problem specific.

Now back to the ABC framework. Another problem of its vanilla implementation is

that the model most often ends up throwing away too many simulations due to the simple

uniform cut on discrepancy. This is largely caused by a lack of knowledge about how

the theory parameters influence the discrepancy score, which makes the rejection scheme

highly inefficient. An exceedingly large number of simulations are therefore required,
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necessitating a formidable amount of computational time. This issue can be partially

resolved by an upgraded version of ABC, termed Bayesian Optimization for Likelihood-

free Inference (BOLFI) [143], where a technique called active learning is introduced to

vastly improve sampling efficiency for expensive simulators. The main innovation of

BOLFI is a combination of an optimization strategy and a probabilistic modeling of

discrepancy score with respect to the theory parameters.

In the following subsections, we successively discuss the individual components of

the BOLFI framework, where examples and plots are give to illuminate the statistical

formulation. Figure 4.2 presents a schematic flowchart of the BOLFI+OT framework to

guide our conceptual understanding.

4.2.1 Gaussian Process Regression

To reiterate, given an observation xo, our goal is to infer the theory parameter θo ∈ R

that gives rise to this observation. According to the ABC recipe, we sample a set of theory

parameters {θ1, θ2, · · · , θk} and generate the simulated data {x1, x2, · · · , xk} correspond-

ing respectively to each θi. We then define the discrepancy score between observation

xo and simulation xi, either by choosing some summary statistics or by evoking optimal

transport distance. We denote the resulting discrepancy score as {∆(θ1), · · · ,∆(θk)},

where the parenthesized θi’s highlight the dependence of discrepancy on the theory pa-

rameter. Intuitively, as the discrepancy score ∆ decreases, we expect the simulation to

become increasingly similar to the observation. In other words, the parameter θ̂ that

minimizes discrepancy will likely be close to θo that we wish to infer. Eventually, ev-

erything boils down to finding a relationship between the discrepancy score ∆ and the

theory parameter θ, whose exact functional form may be impossible to write down.

Now BOLFI proposes to use probabilistic modeling to infer the above relationship.
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Figure 4.2: A schematic flowchart of the BOLFI framework for simulation-based
inference problems. The key steps will be explained in the following main text.
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This is in essence a regression problem, where the tuples {θi,∆i(θi)}ki=1 provide the re-

quired set of k training data. A myriad of methods exist for such regression problems,

ranging from simple polynomial regression to neural networks. However, the key com-

plication here lies in the fact that due to the stochastic nature of the simulator, one

same value of θ may give rise to a variety of simulated data x, which in turns results in

different values of ∆. This is why probabilistic modeling is required to take into account

this intrinsic data variance and uncertainty.

In practice, BOLFI suggests using a Gaussian process (GP) to model the objective

function ∆(θ). GP assumes that the set of discrepancy scores {∆(θ1), · · · ,∆(θk)} is

drawn randomly from a Gaussian distribution, with mean function m(θ) and covariance

function Σ(θ, θ′). It then outputs the value of discrepancy ∆(θk+1) as a probability

distribution (again a Gaussian) at any new parameter point θk+1. In a sense, GP offers

a recursive relationship for ∆ in terms of θ and assigns a certain probability to each

possible regression functions ∆(θ), where the mean functionm(θ) gives the most probable

functional relationship between ∆ and θ. Figure 4.3 illustrates how a Gaussian Process

fits an underlying function given a training set of input data.

More precisely, using the shorthand notation ∆(θ1:k) := {∆(θ1),∆(θ2), · · · ,∆(θk)}

and θ1:k := {θ1, θ2, · · · , θk}, the distribution of ∆(θ1:k) can be written as

∆(θ1:k) ∼ N (m(θ1:k),Σ(θ1:k, θ1:k)), (4.6)
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Figure 4.3: An illustration of a Gaussian Process. The orange line represents the true
function ∆(θ) with a 2σ error band that the GP intends to model. The blue dots are
the training data inputted to the GP. The blue curve (with a 2σ blue band) represents
the mean function m(θ) the GP outputs based on the training data. The vertical
Gaussian distribution (dashed red) at a given θ value demonstrates the probability
the GP assigns to each possible function value ∆ at the specific θ.
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where N is a normal distribution with mean

m(θ1:k) =



m(θ1)

m(θ2)

. . .

m(θk)


, (4.7)

and covariance

Σ(θ1:k, θ1:k) =


Σ(θ1, θ1) . . . Σ(θ1, θk)

...
...

Σ(θk, θ1) . . . Σ(θk, θk)

+ Ikσ
2
n. (4.8)

Here Ik is the k-by-k identity matrix, and the additional σ2
n accounts for the noise in the

observed data.

The standard choice for the mean function is a convex quadratic polynomials, and

for the covariance function, a squared exponential. That is,

m(θ) = aθ2 + bθ + c, (4.9)

with non-negative a, and

Σ(θ, θ′) = σ2
f exp

(
1

λ2
(θ − θ′)2

)
. (4.10)

Here σ2
f is the signal variance and λ is the characteristic length scale. In the case where

θ is more than one-dimensional, one simply add a summation to account for each com-

ponent of θ.

The above GP model has six hyper-parameters, a, b, c, σ2
f , λ, σ

2
n, to be tuned by
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maximizing the likelihood of the data. For simplicity, in our later application, we choose

the mean function to be constant, i.e., a, b = 0, and thus having m(θ) = c.

With k pairs of training dataset {(θ1,∆(θ1)), . . . , (θk,∆(θk))}, we can then obtain the

posterior distribution of ∆(θ) at any point θ using Baye’s rule [144],

∆(θ)|∆(θ1:k) ∼ N (µk(θ), vk(θ) + σ2
n), (4.11)

where

µk(θ) = Σ(θ, θ1:k)Σ(θ1:k, θ1:k)
−1(∆(θ1:k)−m(θ1:k)) +m(θ1:k)

vk(θ) = Σ(θ, θ)− Σ(θ, θ1:k)Σ(θ1:k, θ1:k)
−1Σ(θ1:k, θ)

When simulated data enjoy little intrinsic dispersion or noise, even a relatively small

number of training data can already empower GP to output a satisfactory regression

function with low variance, providing a quick estimate of the probabilistic dependence

∆(θ). In such ideal cases, one can directly use the GP regression relation to approximate

the likelihood function L(x|θ); skip the following subsection on active learning and jump

directly to Section 4.2.3 for the next step in the BOLFI framework.

However, we are usually not so lucky, certainly not in the case of the astrophysical

dataset we are interested in. For one thing, due to different merger histories, halos usually

display significant variance even if they have the same underlying mass. Therefore, one

would need a large number of simulations at every single mass value (and its vicinity)

in order to faithfully cover such halo-to-halo variance. It soon becomes computationally

formidable to run the simulator at a large number of θ values. A simple strategy to

densely populate the parameter space is unrealistic; one needs additional tricks to do
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better than a random draw of θ from its prior distribution. This is where active learning

comes in.

4.2.2 Active Learning

Active learning answers the question of where to simulate next so as to minimize the

total number of simulator calls while at the same time achieve the best possible regression

function. As explained above, the mean function and covariance of the GP regression

can be updated according to Equation (4.11) with the introduction of a new parameter

point θk+1. Since we are only interested in the region around θ̂ that gives the minimum

∆, there is no reason to waste simulation runs for those θ values that are known to result

in large discrepancy. We therefore want more sample points near the current minimum

in order to improve resolution in this critical region.

On the other hand, there is no guarantee that the current minimum is the true global

minimum. This suggests that we should also explore the parameter space where the

variance v(θ) is large. This is the region of low confidence, most likely due to the lack

of sampled points there. Therefore, to balanced the two needs—the first of exploitation

and the second of exploration, we need to carefully draft an acquisition function, the

minimization of which would give the next parameter point of inquiry. There is currently

an increasing interest in designing various acquisition functions to emphasize different

parts of the parameter space. In our study, we use a simple acquisition function known

as lower confidence bound selection criterion [145] defined by

A(θ) = µk(θ)−
√
η2kvk, η2k = 2 log [kd/2+2π2/(3ϵ)], (4.12)

where d is the dimension of the theory parameter space, which is just d = 1 for our

case. Additionally, ϵ is a small constant set to be 0.1. As before, µk and vk are the mean
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function and the variance obtained from the existing k data points, as in Equation (4.11).

The above acquisition function consists of two parts, the mean µk minus a term pro-

portional to the variance vk. Minimizing the first term µk lets us focus on the parameter

region where the discrepancy score ∆ is the smallest according to the existing k data

points. This gives the exploitative “zoom-in” to the current optimal value of the theory

parameter. The second term, on the other hand, explores the region where the cur-

rent variance vk is large. There, substantial uncertainty remains about what the true

discrepancy is, and hence more data samples are needed to reduce our lack of knowledge.

The next point for inquiry, θk+1, is then obtained by minimizing the acquisition

function Equation (4.12). Of course, one can always sample a number of values around

θk+1 in one batch instead of one θ value at a time to save some efforts. Furthermore,

a stochastic component is usually added to the acquisition function in order to increase

the chance of exploring more values of the theory parameter. More precisely, instead of

sampling θk+1 at θm, the exact minimum of the acquisition function A, we sample θk+1

from a Gaussian distribution that is centered at θm with some characteristic length scale

λ as its variance. This is implemented in our later applications.

Figure 4.4 shows how active learning and GP regression works together step by step

in an attempt to find the minimum of the underlying function ∆(θ) same as in Figure 4.3.

First, one has an initial training dataset which the GP regression fits. From this, one

calculates the acquisition function, whose minimum outputs the next parameter point of

inquiry represented by a star. We add this new parameter point and the corresponding

discrepancy ∆ to the initial dataset, and then run the GP regression again on the aug-

mented dataset. This will give rise to a new acquisition function for the next step, and

the whole process repeats itself until some stopping criterion is met.

In Figure 4.4, we see nicely that the GP regression is successively converging to the

true function it intends to model. Furthermore, we can also visually confirm that the
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acquisition function does generate parameter points that are either around the minimum

or in the outer region where samples are insufficient. In practice, for the current astro-

physical application, we generate around O(50) halos for any given value of θ (host mass)

at each step, in order to better capture the halo-to-halo variance intrinsic to the data.

4.2.3 Approximated Likelihood Function

Regardless of the use of active learning, the GP regression above always yields a

mean function µ(θ) with variance v(θ) + σ2
n for the relationship between ∆ and θ. Once

we have ∆(θ) at hand, we can construct an approximated likelihood function L̃(θ) for

the minimum of ∆(θ) via a non-parametric approach. Using a kernel density estimation

[146, 147], an approximation of the likelihood function L(θ) is given by

L̃(θ) = E[κ(∆(θ))], (4.13)

where the kernel κ is chosen such that it has a maximum at zero (though the maximum

may not be unique). Assuming the discrepancy is always larger than 0, we can use the

uniform kernel for convenience, i.e.,

κu(∆(θ)) =


1 if 0 < ∆(θ) < h

0 if ∆(θ) > h

(4.14)

where the h is an arbitrary threshold. With this uniform kernel, we have

L̃(θ) ∝ P (∆(θ) < h). (4.15)

The problem has now been converted to estimating the probability of the discrepancy

∆ dropping below the threshold h. The threshold h is a critical choice. In our work, we
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Figure 4.4: Acquisition function (left) and Gaussian Process regression (right) at
each active learning step. The dashed orange line (right) represent the true function
(with a 2σ band) ∆(θ) that the GP intends to fit. At each step, the blue dots are
the sample points in the current dataset; the blue line (with a 2σ band) gives the GP
regression output; and the starred point highlights the new parameter point to run
the simulator determined by minimizing the acquisition function (left, orange).
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define h to be the minimum of mean µ(θ).

For discrepancy ∆(θ) with mean µ and variance
√
v + σ2

n, the likelihood function is

given by

L̃(θ) ∝ CDF

(
h− µ(θ)√
v(θ) + σ2

n

)
, (4.16)

where CDF stands for the cumulative distribution function of a Gaussian distribution

with a mean of 0 and a variance of 1. The approximated likelihood L̃(θ) gives a numerical

value that represents how well the model, when described by a certain value of the

parameter θ, matches the observed data. One would therefore like to maximize L̃ and the

corresponding θ̂ then defines the maximum likelihood estimation (MLE) of the parameter.

Of course, we also need to assess the accuracy of the estimated MLE. Since the integration

of likelihood function by itself does not have statistical significance, we use instead the

likelihood region to represent the confidence interval, which is the region of parameter θ

that corresponds to the likelihood larger than a certain percentage of its maximum [148].

For example, a 14.7% likelihood region produces a 95% confidence interval.

Figure 4.5 shows the final approximated likelihood function and the corresponding

MLE of the θ parameter, obtained from the last step of the GP regression in Figure 4.4

(bottom row, right plot). Again, the true underlying function is the same as before,

with its true minimum highlighted for a comparison with the MLE estimated using

BOLFI. It is satisfying to see that the MLE is very close to the true minimum 5 and the

corresponding 95% confidence interval is narrowly confined, indicating that the model is

rather confident in its estimation of θ̂.

Note that it does not really matter whether the GP regression function closely matches

the true function over the entire range of θ values, since we are only concerned about

5The true minimum is at θ = 0.263, whereas the MLE is θ̂ = 0.256 with the lower bound of the 95%
confidence interval at 0.174 and the upper bound at 0.338.
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Figure 4.5: Left : The final GP regression function ∆(θ) (blue) based on all existing
data samples, compared to the true underlying function (orange). Right : The approx-
imated likelihood function (blue) obtained from the GP regression on the left, and
the corresponding maximum likelihood estimation (MLE) of the parameter θ (blue)
compared to the true minimum of θ (orange).

the parameter region where ∆ obtains its minimum. For example, in Figure 4.5, the GP

regression function is rather different than the true function for θ ≳ 0.5 due to lack of

data samples there (see the bottom right plot in Figure 4.4). Yet, it in no way impacts

the excellent inference of the θ value corresponding to the smallest ∆.

The above three subsections conclude the BOLFI framework. As a first try, we

now apply the statistical tool to the inference of the disc mass fraction fm and the

halo mass M200, presented respectively in the following two sections. In our current

study, only simulated data are used and we generate mock observations in the place

of real observational data. This way, the ground truths for the underlying parameters

are known a priori, enabling us to validate our analysis pipeline before we move on to

infer the properties of actually observed halos. The hope is that soon our BOLFI+OT

framework would be able to help determine halo properties which are poorly constrained

at the moment using traditional statistical methods, and then ultimately to have a say

on dark matter self-interactions and its general particle nature.
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4.3 A Failed Example: Inference of the Disc Mass

Fraction of Milky Way-Like Halos

We first set the disc mass fraction fm as our theory parameter to be inferred. Even

without going through all the steps of BOLFI, we will soon discover the failure of this

inference task from the regression plots ∆OT(fm); see Figure 4.6. Still, we present the

study here in order to draw a sharp contrast with the semi-successful inference of M200

in the next section.

The disc mass fraction fm, being related to baryonic physics, is an input parameter

to the second step SatEvo in the simulator SatGen. This means that one can easily tune

fm to any reasonable value and simulate the corresponding halos straightforwardly. In

practice, we generate 500 merger trees in the first step TreeGen, with the halo mass fixed

at M200 = 1012M⊙.
6 For each single merger tree, we then put in the satellite galaxies

and let them evolve in the second SatEvo step for 50 times, each corresponding to one

specific fm value randomly picked from a uniform distribution between 0 and 0.1. 7 In

other words, we generate 10 halos at a particular fm value with each halo corresponding

to one merger tree in TreeGen, resulting in a total of 500 halos. 8 This small trial

dataset is used as a first look at the GP regression of ∆OT(fm) in order to determine if

the inference task is even possible of success.

6Another two important parameters in TreeGen are the halo response and the infall orbital parameter
distribution, where we set the former to be consistent with NIHAO simulations [149] and the latter to
be Zhao-Zhou Li’s distribution [150].

7When evolving the satellite galaxies, the flattening (disk scale radius / disk scale height) is set to
12.5, the bulge mass fraction is set to 0, and the stripping efficiency of the tide effects is set to 0.6; see
[151] for more details.

8To account for the fact that observations cannot distinguish very faint satellites, we apply a cut on
the surface brightness of all satellite galaxies. The surface brightness is defined as µv = Mv + 36.57 +
2.5Log(2πr2), where Mv is the v-band magnitude (a negative value) and r is the half-light radius in
kpc. The smaller the values of the surface brightness, the brighter the galaxy is. We require the surface
brightness to be smaller than 28 for a galaxy to be detectable. All satellites with a larger µv value are
discarded from the dataset.
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As mentioned above, instead of using actual observational data, for our current study

we generate a set of mock observations, i.e., simulated halos with the same underlying

theory parameter. In specific, for the task of inferring fm, we set the halo mass to be

M200 = 1012M⊙ and the disc mass fraction at fm = 0.05 for the 10 halos serving as

the mock observations. The reason why multiple halos need to considered rather than

a single one is that even with the same theory parameters, halos display considerable

variance due to their distinct merger tree histories, which in turn have a large effect on

the distribution of satellites within the host halo. Further study must be conducted to

determine how many halos are needed to account for this inherent halo-to-halo variance.

The generation of a set of mock observations is essential, since it serves as the reference

against which the OT distance is computed. Specifically, to obtain the discrepancy score,

we first compute the exact HK distance with κ = 1 between the individual halos in the

dataset and each of the ten halos acting as the mock observations, and then calculate

the average of these ten HK distances, which becomes the final discrepancy score ∆OT

for each halo with its specific fm value. Of course, a simple average may not be the

optimal way to combine the OT distances when the goal is to incorporate the halo-to-

halo variance in the resulting discrepancy score. Other methods will be examined in

details in the future.

We now apply the Gaussian Process regression on the discrepancy score as a function

of the theory parameter fm. The OT distance is evaluated on the aforementioned six

different pairs of ground space and mass choices. Again, all ground spaces are rescaled,

i.e., we divide the values of r and vtotal (or vtangential, or vradial) for all halos by 100, so as

to ensure that the x and y axes of the ground space are of the same order of magnitude

(∼ O(1)). This rescaling has no impact on the final inferred MLE. Figure 4.6 shows the

resulting GP regressions for the six available ground space and mass choices. As can

be seen, all six plots have similar flat distributions for the discrepancy vs. disc mass
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fraction regression, which immediately indicates the failure of this particular inference

task: there is no way to infer a minimum value of ∆OT and the corresponding fm.

Therefore no further inference step is necessary and the whole inference task should be

aborted.

We can speculate about a variety of possible reasons for this failure. One easily-

solvable issue may be simply due to insufficient data, both for the trial dataset and for

the mock observations. Improving data statistics, however, is unlikely to resolve the

problem, as the current regression relation of ∆OT(fm) seems too flat to indicate any

promise. Another possibility is that other OT distances should be considered as the

discrepancy score. We have tested a few other κ values and yet observed no noticeable

difference. A more physical reason may be that the current six pairs of ground space and

mass do not capture the necessary information about the disc mass fraction. One would

then need to search for other observable features to use as the ground space and mass.

On a more fundamental level, it may turn out that the dynamics of the satellite

galaxies of a host halo (at least as encoded by the ground space and mass choice) is

indeed not directly related to the disc mass fraction fm, although the presence of a

massive disc has been shown to enhance the destruction of halo substructure [152, 153].

Still, the large halo-to-halo variance may wash away such difference [139], giving rise to

the scattered nature of the data points at each fm value observed in Figure 4.6. As such

variance is intrinsic to the data, it would be extremely difficult to eliminate or even to

average out this latent variable, which constitutes one major challenge in astrophysical

simulations.
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Figure 4.6: Gaussian Process Regression of the discrepancy score ∆OT as a function
of the disc mass fraction fm for 500 simulated MW-like halos with M200 = 1012M⊙
and fm ∈ [0, 0.1] uniformly. Here ∆OT is obtained by averaging ten HK distances with
κ = 1, each with respect to one halo in the mock observations. Six choices of difference
pairs of ground space and mass for the OT computation are studied (indicated by the
text in each subplot), where similar regression functions are obtained. The ground
truth value for fm is 0.05. The flatness of the resulting mean function and the scattered
randomness of the data points suggest the failure to constrain fm with the current
dataset and method.

165



Optimal Transport for Dark Matter Astrophysics Chapter 4

4.4 A Semi-Successful Example: Inference of the Halo

Mass

We now proceed to infer the halo massM200 using the same method as above. Again,

we first generate a smaller trial dataset of 500 halos to facilitate faster inference and to

determine if a full BOLFI analysis is necessary. If the inference result using the trial

dataset is promising, we then use this dataset as the initial jumping-off point and ask

active learning to iteratively acquire new data points, eventually arriving at 2500 halos

for the final round of regression and inference.

The 500 halos in the trial dataset have the log of their mass uniformly drawn from

the interval Log(M200) ∈ [11.5, 12.5], whereas their disc mass fraction fm is fixed at the

fiducial value of 0.05. All other parameters are the same as in Section 4.3. We again

have 10 halos serving as mock observations, all with Log(M200) = 1012 and fm = 0.05.

The discrepancy score between each halo and the ten mock observations is calculated as

before, with the HKκ=1 distance playing the role of traditional summary statistics. The

OT distance is again evaluated on six ground space and mass choices, with the respective

GP regression plots of ∆OT(M200) showing in Figure 4.7.

Several observations can be made for Figure 4.7. First and foremost, the GP regression

functions all show a promising valley shape, in stark contrast with Figure 4.6 where the

regressed functions are flat. Here, a clear minimum can be drawn from the valley shape,

indicating the potential success of this inference task. Second, all six ground spaces

give more or less similar results, with almost no difference between using luminosity

L or log of satellite mass Log(Msat) as “mass”. The inference performance is slightly

worse if (vradial, r) is used as the ground space, whereas the differences between (vtotal, r)

and (vtangential, r) are negligible. We therefore do not need to go through the trouble

of studying all six ground space and mass choices; instead we focus exclusively on the
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Figure 4.7: Gaussian Process Regression of the discrepancy score ∆OT as a func-
tion of the log of halo mass Log(M200), where the unit for M200 is M⊙. The trial
dataset (blue dots) consists of 500 simulated MW-like halos with fm = 0.05 and
Log(M200) ∈ [11.5, 12.5] uniformly. Here ∆OT is defined to be the average of the
HKκ=1 distances with ten mock observations. Six choices of different pairs of ground
space and mass for the OT computation are respectively presented in the subplots.
The orange vertical line indicates the ground truth of M200 (i.e., 1012M⊙), whereas
the blue vertical line suggests the Log(M200) value that corresponds to the minimum
of the regressed ∆OT. The percent difference between the two are also shown on the
plot, with the sign indicating whether the inferred M200 is smaller or larger than the
true M200.
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pair (vtotal, r) + L in all the following analyses. The physics lesson here is that all six

ground spaces (coupled with mass) encode similar information about the halo mass, which

corresponds well with our intuition as luminosity is positively correlated with satellite

galaxy mass and the three velocities are simply different components of the satellite

velocity.

Third and most encouragingly, the values of Log(Msat) corresponding to the minimum

of the regressed function ∆OT are all relatively close to the true value: the percentage

difference is smaller than 1%. We therefore proceed to calculate the inferred likelihood

using the BOLFI framework on this trial dataset of 500 halos; see the top two plots in

Figure 4.8. Notice that here the regression function ∆OT(M200) (first row; left) is the

same as the subplot in the upper-left corner in Figure 4.7. BOLFI then gives the inferred

likelihood function (first row; right) with its 95% confidence interval and the maximum

likelihood estimate, i.e., Log(Msat)MLE = 11.917 with the lower bound at 11.836 and the

upper bound at 11.988. Although these inferred values are rather close to the ground

truth, i.e., Log(Msat)truth = 12, an unsettling issue is that the true value falls outside the

95% confidence interval. We now evoke active learning to add in more data points and

see whether the inference performance will be improved.

The second row of Figure 4.8 shows the final regression plot ∆OT(M200) and the

inferred likelihood on the full dataset of 2500 halos. We run 20 iterations of active

learning, where at each iteration 100 halos with the same value ofM200 as determined by

active learning are added to the dataset (shown as orange dots in the figure). Comparing

to the result for the trial dataset, the inferred likelihood using the full dataset clearly has

a narrower 95% confidence interval, suggesting the improved accuracy of the inference

thanks to enhanced statistics. However, the MLE is now at Log(Msat)MLE = 11.908,

with the lower bound at 11.869 and the upper bound at 11.944. The ground truth

Log(Msat)truth = 12 is now even further away from both the MLE and the upper 95%
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confidence interval bound. We therefore regard this inference task of halo mass to be

semi-successful, in that a confidently constrained MLE can be obtained for the mass (in

contrast to the inference of disc mass fraction) and yet the true value of M200 lies outside

(specifically above) the 95% confidence interval of the inferred MLE.

Such low fits ofM200 occur consistently no matter what OT distance we choose, as long

as the ground space is picked from the observable features considered in this study for the

halos, i.e., distance r, velocities v’s, luminosity L, and log mass Log(Msat). We have also

tried simple summary statistics constructed out of the above features. Almost all of them

uniformly give MLE fits lower than the actual 1012M⊙. We therefore suspect that the

features themselves are likely to be the cause of this “lower-fit problem”. More generally,

it is possible that using the dynamics of satellite galaxies alone may underestimate the

virial mass of the host dark matter halo. A similar phenomenon has also been observed

in [154]; see especially Section 8 for a detailed discussion.

Further studies are of course needed to gain better understanding of the “lower-fit

problem” and more broadly for the various inference performances presented both in

Section 4.3 and Section 4.4. Explanations in terms of the astrophysical underpinning

and simulator upgrades are as important (if not more) as improvements on the sides

of statistical framework developments. This would require deep domain expertises and

we look forward to more collaborations with the astrophysics community for the further

analysis of the two inference tasks here and for a broader application of the BOLFI+OT

framework, with an eye towards inferring the particle nature of dark matter—especially

its self-interaction strength.
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Figure 4.8: GP regression of ∆OT(M200) and the inferred likelihood function for
M200 using the BOLFI framework on the trial dataset of 500 halos (first row) and
on the full dataset of 2500 halos (second row) with the trial dataset serving as the
initial dataset. The additional 2000 halos (orange dots) are obtained iteratively by
active learning, where 20 iterations are run with each adding in 100 more halos at the
same M200 value. For the likelihood functions, the ground truth value is given by the
orange vertical line at Log(Msat)truth = 12, whereas the inferred MLE is indicated as
a blue vertical line with the associated 95% confidence interval showing as the blue
shade. The MLE for the trial dataset is Log(Msat)MLE = 11.917, and that for the full
dataset is Log(Msat)MLE = 11.908.
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Conclusion and Outlook

There certainly remains much more to explore at the interface between high energy

physics and the theory of optimal transport. The present thesis has merely presented

two illustrative examples, both still very much in their early stage of development. Yet

we have already seen rather promising results, encouraging us both to further hone this

powerful analysis tool and to dive deeper into the underlying theoretical connection

between optimal transport and quantum field theory.

Let us recap what we have achieved in this thesis and offer some further ideas for

future study. After briefly motivating our work in Chapter 1, we introduced in the next

chapter two categories of optimal transport distances—balanced OT for distributions

with equal total mass and unbalanced OT to generalize to the case of different total

mass. In particular, we focused on two special OT distances, the balanced 2-Wasserstein

metric and the unbalanced Hellinger-Kantorovich metric, and studied their linearization

by locally approximating their weak Riemannian structure with a tangent space. In

particular, we gave explicit forms of the respective logarithmic and exponential maps

for W2 and HK, as well as identifying a suitable notion of a Riemannian inner product

for each. Data samples can thus be represented as vectors in the tangent space at a
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suitable reference measure where their Euclidean norm locally approximates the original

metric. Such a linearization scheme is only available for the W2 and HK distances,

thanks to their unique geometric structure. Additionally, we put special emphasis on the

discrete case, since in practical numerical applications one most certainly only encounters

discrete distributions. We explicitly worked out every step to obtain the LinW2,R and

LinHKκ,R pseudo-distances, which is the actual formalism deployed in the collider physics

application.

Working with the local linearization and the corresponding embeddings allows us to

take advantage of the Euclidean setting, such as a significantly reduced computational

cost and a plethora of data analysis tools. As the same time, one can still enjoy the

descriptive power of the original exact W2 and HK metrics. The LOT framework devel-

oped here has significantly lowered the threshold for diverse applications of the theory

of optimal transport to data sciences, including potentially many other scenarios in high

energy physics.

Then in Chapter 3, we applied optimal transport in the context of collider physics,

specifically for the task of jet tagging. The Euclidean embedding not only enables even a

desktop computer to perform the OT calculation between O(105) collider events, but also

makes a natural input to simple machine learning algorithms that require more than the

pairwise distance between events. We demonstrated the value of the LOT framework—

specifically LinW2,R and LinHKκ,R—for jet tagging in a number of classification tasks,

illustrating both the relative computational efficiency (compared to exact OT approaches)

and interpretability (compared to deep neural networks) of our approach. The two main

classifiers we employed in our study, kNN and SVM, when coupled with the LOT ap-

proximations, both achieve high performance on a level comparable to the exact OT

approach and complex neural networks, while significantly outperforming the traditional

N -subjettiness variable.
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We then tackled the question—which is the best metric for the space of collider events,

where we compared the performance on W vs. QCD jet tagging of LinW2,R and LinHKκ,R

with a range of κ values. For optimized choices of κ, we found that LinHKκ,R matched or

exceeded the same algorithms using LinW2,R or the original EMD distances in a fraction

of the computing time. There is still considerable room to explore the interplay between

the Hellinger-Kantorovich length scale parameter κ, the jet clustering radius, and the

scale(s) associated with the choice of a reference measure. This subject has only been

briefly touched upon and certainly worths future study. Furthermore, we presented a first

study of the effects of pileup on optimal transport distances and found that boosted jet

classification based on the LOT framework exhibited an encouraging degree of robustness

against pileup contamination compared to the N -subjettiness shape observable. We also

included a brief discussion of further upgrades to the optimal transport framework, with

an eye mainly towards its application to event classification. Analysis on the full event

level presents a number of additional challenges, all calling for innovative developments

on the mathematical side. This serves as a good example to illustrate the impact of

practical concerns on theoretical study, which, after all, is how the entire field of optimal

transport was founded in the first place.

By equipping the space of jets with a metric, the theory of optimal transport offers a

new perspective on the traditional problems of collider physics, from unifying the panoply

of collider observables to enabling the use of interpretable distance-based machine learn-

ing algorithms. The computational speedup offered by our LOT approximation should

make it possible to apply optimal transport methods more broadly in analyzing both

simulated and actual collider data. Although we have mostly focused on boosted jet

classification as an initial application to collider physics, the flexible LOT framework

should be generally well-suited to an array of applications beyond supervised learning,

including clustering and anomaly detection. More broadly, the Riemannian event mani-
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fold itself obtained with either the 2-Wasserstein or the Hellinger-Kantorovich distance is

likely to have interesting properties and may reveal further hidden structure in the space

of collider events.

The same properties that make optimal transport an ideal tool for studying jet sub-

structure at colliders also make it potentially suitable to compare dark matter halo sub-

structure between simulation and observation. Chapter 4 offered the first systematic use

of optimal transport in comparing simulated dark matter subhalo distributions with the

aim of inferring the underlying halo property. Although the ultimate dream is to investi-

gate the effects of dark matter self-interactions and its other microscopic properties, here

we set as our immediate goal the inference of disc mass fraction and halo mass.

As the physics problem belongs to the realm of simulation-based inference, we rephrased

it in the more general statistical language and introduced the Bayesian Optimization

for Likelihood-free Inference framework, where active learning is employed for increased

sampling efficiency in face of expensive simulators. Our innovation on the framework

development side lies in the replacement of the usual handpicked summary statistics to

quantify similarity between halos with a more automated and sophisticated notion of

distance based on optimal transport.

Here the representation of halos as distributions does not come as naturally as in the

case of jets. The choice of a suitable ground space not only critically encodes the under-

lying physics but is also task specific. We have seen that the same halo representation

resulted in vastly different outcomes when the inference is for the disc mass fraction or

for the halo mass. For fm, all ground space choices failed equally miserably, suggesting

that the information contained in the current ground space(s) is not enough, or even

worse entirely off the point. On the other hand, the inference of halo mass is much more

successful. Here all six choices of the ground space give similar performance, indicating in

a different way that they encode more or less the same physics about halos. The obvious
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next step is to incorporate a larger variety of observable features of halo substructure, in

addition to the radii, velocities, magnitudes, and etc, currently being used. That would

in particular require further upgrades from the astrophysics side, as these features should

be either directly measurable or easily deducible from measurable quantities in order to

facilitate the envisioned simulation-to-observation comparison.

The current mixed results are in some sense more encouraging than a “happy ending”

everyone initially was wishing for. For one thing, it compels us to examine more closely

the astrophysical reasons behind the success or the failure of certain choices of the ground

space. It also highlights the importance of halo-to-halo variance, which may call for a

more versatile regression model than the Gaussian process currently implemented in

the BOLFI framework. Furthermore, if unfortunately optimal transport ends up failing

to provide a satisfying distance between dark matter halos, it would indeed make the

success of OT in collider physics an even stronger case and hint at deeper theoretical

connection between optimal transport and jet physics—a topic that has been studied in

the pioneering work [13]. But let us hope for the best, in which case our current effort is

laying the groundwork for future studies of dark matter self-interactions wherein subhalo

distributions can be compared as a function of dark matter self-interaction strength using

the same method. Of course, there is still a long way to go, and the first step is to resolve

the aforementioned “lower fit problem” in the inference of halo mass. More work needs

to be done, both on the framework development side and on the side of astrophysical

simulations.

5.1 Final Thoughts on Cross-disciplinary Research

As mentioned at the beginning of this thesis, many scientific fields today are facing

an explosion of data thanks to expansion and improvement of experimental pursuits,
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and are therefore similarly in need of advanced statistical methods to help extract useful

scientific knowledge from the rich information collected. In many cases, though the un-

derlying scientific focuses may be vastly different, the data themselves nonetheless often

possess a high degree of similarity that would allow for a unified treatment. Hence, the

development of versatile analysis frameworks naturally transcends the traditional disci-

plinary boundaries and calls for more conversations and collaborations between different

research fields.

Artificial Intelligence promises such a powerful set of tools based mainly on deep

neural networks but also including a variety of other methods. Traditionally, AI methods

are tested and deployed on industry-prepared datasets which may hold more commercial

values, such as images for computer vision and texts for natural language processing. Yet

increasingly, researchers in fundamental sciences are realizing the great benefits AI may

bring to their individual fields and we now see blooming endeavors almost everywhere

to incorporate AI into their standard analysis pipeline. In order not to repeat the same

effort of introducing and developing AI frameworks over and over again under different

contexts, the best way is for researchers across a range of scientific fields to talk to each

other and work together to solve the same underlying data problem despite the apparent

difference in the scientific questions they pursue. The present thesis gives one example of

how the early success of optimal transport in fields such as computer vision, economics,

and medical imaging translates to surprising benefits for high energy physics research. In

turn, we expect that the statistical frameworks developed here and the deeper theoretical

analysis will have positive impacts on other fields and would therefore like to encourage

everyone to think more about its potential usages elsewhere.

As every research field today is blessed with essentially the same challenge, more

cross-disciplinary dialogues should be encouraged to foster collaborations among different

domain experts. In particular, we believe that high energy physics has a unique advantage
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with lots to offer and will continue to contribute to this big data and AI revolution that

is unfolding both across all research fields and on the larger societal scale.

177



Bibliography

[1] HEP ML Community, “A Living Review of Machine Learning for Particle
Physics.”

[2] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Boosted
Decision Trees as an Alternative to Artificial Neural Networks for Particle
Identification, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 543 (May,
2005) 577–584.

[3] H.-J. Yang, B. P. Roe, and J. Zhu, Studies of Boosted Decision Trees for
MiniBooNE Particle Identification, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 555 (Dec, 2005) 370–385.

[4] P. T. Komiske, E. M. Metodiev, and J. Thaler, Metric Space of Collider Events,
Phys. Rev. Lett. 123 (2019), no. 4 041801, [arXiv:1902.0234].

[5] M. Thorpe, S. Park, S. Kolouri, G. K. Rohde, and D. Slepčev, A Transportation
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[52] M. Liero, A. Mielke, and G. Savaré, Optimal Entropy-transport Problems and a
New Hellinger–Kantorovich Distance between Positive Measures, Inventiones
mathematicae 211 (2018), no. 3 969–1117.
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