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Muscle synergy analysis (MSA) is a mathematical technique that reduces the

dimensionality of electromyographic (EMG) data. Used increasingly in biomechanics

research, MSA requires methodological choices at each stage of the analysis. Differences

in methodological steps affect the overall outcome, making it difficult to compare results

across studies. We applied MSA to EMG data collected from individuals post-stroke

identified as either responders (RES) or non-responders (nRES) on the basis of a

critical post-treatment increase in walking speed. Importantly, no clinical or functional

indicators identified differences between the cohort of RES and nRES at baseline. For this

exploratory study, we selected the five highest RES and five lowest nRES available from

a larger sample. Our goal was to assess how the methodological choices made before,

during, and after MSA affect the ability to differentiate two groups with intrinsic physiologic

differences based on MSA results. We investigated 30 variations in MSA methodology

to determine which choices allowed differentiation of RES from nRES at baseline.

Trial-to-trial variability in time-independent synergy vectors (SVs) and time-varying neural

commands (NCs) were measured as a function of: (1) number of synergies computed; (2)

EMG normalization method before MSA; (3) whether SVs were held constant across trials

or allowed to vary duringMSA; and (4) synergy analysis output normalizationmethod after

MSA. MSA methodology had a strong effect on our ability to differentiate RES from nRES

at baseline. Across all 10 individuals and MSA variations, two synergies were needed to

reach an average of 90% variance accounted for (VAF). Based on effect sizes, differences

in SV and NC variability between groups were greatest using two synergies with SVs that

varied from trial-to-trial. Differences in SV variability were clearest using unit magnitude

per trial EMG normalization, while NC variability was less sensitive to EMG normalization

method. No outcomes were greatly impacted by output normalization method. MSA

variability for some, but not all, methods successfully differentiated intrinsic physiological

differences inaccessible to traditional clinical or biomechanical assessments. Our results

were sensitive to methodological choices, highlighting the need for disclosure of all

aspects of MSA methodology in future studies.
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INTRODUCTION

Muscle synergy analysis (MSA) is a mathematical strategy
developed under the premise that complex patterns of muscle
activity are driven by a small set of activation components termed
synergies. Nikolai Bernstein first proposed the idea of synergies
to explain how the nervous system simplifies control of a vast
number of independent parameters (Bernstein, 1967). While
the relationship between the underlying neuromuscular control
strategies and the mathematical concept of synergy analysis are
still under debate, MSA is arguably an effective method for
reducing the dimensionality of a data set into units that represent
most of the variability in the original signals. Importantly, there
are numerous analytical parameters involved in MSA. A priori
decisions and assumptions regarding MSA may influence the
outcomes and interpretation of results. Among these choices are:
number of synergies used, filtering parameters, electromyogram
(EMG) normalization method, computational algorithm, output
variable normalization method, and which components [i.e.,
synergy vectors (SVs) or neural commands (NCs)] remain
constant and which can vary between trials. Many research
groups base these methodological decisions on the intended
application of the synergy analysis [e.g., a musculoskeletal model,
a device controller, or a comparison to kinematic, kinetic, or
functional variables within and across populations (Ivanenko
et al., 2003; Bowden et al., 2010; Berger and d’Avella, 2014;Walter
et al., 2014)]. Importantly, when comparing studies that utilize
MSA, great care is required to understand the consequences of
these decisions. Methodological inconsistencies in performing
MSA create challenges not only for interpreting results but also
replicating analyses across research groups. These inconsistencies
limit our ability to build a body of evidence based on this
analytical approach and detract from resolving debate regarding
the physiological relevance of MSA.

MSA decomposes EMG activation patterns into a smaller
dimension of time-varying signals, often referred to as neural
commands, and a matrix of weights, or synergy vectors, that
can be linearly combined to reconstruct the original EMG
signals. Neural commands are sets of basis functions that
represent the time-varying component of the signal and are
also known as activation components or activation signals
(Ivanenko et al., 2005; Cappellini et al., 2006; Gizzi et al.,
2011). Synergy vectors are scalar values that represent activity
patterns across all EMG signals and are also referred to as m-
modes or weighting coefficients (Ivanenko et al., 2005; Ting
and Chvatal, 2010). Collectively, one synergy vector and its
corresponding neural command can be termed a synergy or
module (Clark et al., 2010; Ting and Chvatal, 2010). The number
of synergies selected to represent a data set typically stems from
the percentage of variance (or variability) accounted for (VAF)
by a combination of synergies. Variability is a key component of

Abbreviations: MSA, Muscle synergy analysis; RES, treatment responders;

nRES, treatment non-responders; SV, synergy vector; NC, neural command;

VAF, variance accounted for; NNMF, non-negative matrix factorization; MagPer,

magnitude per trial; MaxOver, maximum value over all trials; MaxPer, maximum

value per trial; UnitPer, unit variance per trial; UnitOver, unit variance over all

trials.

MSA because the synergies must be flexible enough to combine
into the variable movement patterns that humans or animals
employ to perform a task. Several numerical methods can be
applied to perform MSA decomposition, including principal
component analysis (PCA), independent component analysis
(ICA), and non-negative matrix factorization (NNMF). PCA is
a linear eigenvalue decomposition technique that finds a set
of orthogonal components that represent the covariance of the
original data set (Chau, 2001). ICA is a non-linear blind-source
separation technique that identifies the statistically independent
sources that can be re-combined to generate a mixed set of signals
(Bell and Sejnowski, 1995; Hart and Giszter, 2004). Non-negative
matrix factorization creates a parts-based representation of the
final signal using only positive, additive components (Lee and
Seung, 1999). Once the choice of analysis method has been made,
the corresponding analysis parameters should be carefully chosen
based on the intended outcomes.

Myriad methodological choices are required throughout the
MSA process. First, EMG signals are processed, typically
involving filtering, time normalization, and amplitude
normalization. Filtering and amplitude normalization strategies
vary greatly in the literature (Ivanenko et al., 2005; Hug et al.,
2012; Santuz et al., 2016). Prior to or during the analysis,
depending on the algorithm, a decision must be made regarding
the number of synergies needed to reconstruct an intended
activity. Some investigators specify a minimum percent VAF
(or R2) threshold across all muscles (Roh et al., 2012; Routson
et al., 2013), while others include additional criteria such as
the requirement that the addition of one more synergy will
not increase the VAF by a considerable amount (Ting and
Chvatal, 2010; Hayes et al., 2014). In some cases investigators
take additional steps, such as measuring the slope of the VAF or
R2 curve and adding a synergy if doing so leads to a substantial
change in either of these parameters (Gizzi et al., 2011; Frère and
Hug, 2012; Berger and d’Avella, 2014). Additionally, the SVs can
be held constant or allowed to vary from trial-to-trial (Frère and
Hug, 2012). Finally, after the synergy algorithm is complete, the
SVs or NCs are typically normalized in some fashion to facilitate
comparisons in the final output.

MSA has a wide range of applications, from musculoskeletal
modeling to complementing a biomechanical analysis, and more
recently to studying characteristics of movement pathology.
Clark et al. showed that fewer synergies could be used to
account for muscle activity patterns during walking in the
paretic leg of stroke survivors compared to the non-paretic
leg or either leg of healthy controls (Clark et al., 2010).
Based on these results, they hypothesized that some of the
synergies employed by healthy individuals may be merged
in the paretic leg of persons following stroke (Clark et al.,
2010). This merging of modules was also described in the
upper extremity (Cheung et al., 2012) and lower extremity
following stroke, incomplete spinal cord injury, and Parkinson’s
disease, respectively (Rodriguez et al., 2013; Routson et al., 2013;
Hayes et al., 2014). However, two other studies reported no
difference in the number of synergies between stroke survivors
and healthy controls during walking (Gizzi et al., 2011) or in
studying the upper extremity (Roh et al., 2012). This variation
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in results could be attributable to many factors, including:
synergy analysis methods, number and choice of muscles
included, task performed, chronicity of pathologic condition, and
heterogeneity of deficits inherently present following stroke. The
latter two details are difficult to control, but careful selection
of synergy analysis methods should improve our ability to
replicate or compare results across studies. In the absence of
repeatable results both within and across clinical populations, it
becomes a challenge to understand the significance and utility of
MSA.

Recently, several studies have investigated key methodological
details involved in MSA, ranging from EMG collection and
processing to the chosen factorization algorithm. Selecting
the largest and most dominant muscles within a movement
synergy decreases the effect of experimental constraints on the
outcome of synergy analysis (Steele et al., 2013). The choice
of high-pass and low-pass filter cutoff frequencies impacts the
number of synergies selected and the quality of reconstruction
of the original signals (Hug et al., 2012; Santuz et al., 2016).
The number of trials, as well as whether trials are analyzed
individually, averaged, or concatenated into a single matrix, has
not been found to produce a major impact on the number
of synergies extracted, but averaging or concatenating smaller
data sets decreases reconstruction quality (Oliveira et al., 2014).
Some studies have compared factorization algorithms (Ivanenko
et al., 2005; Tresch et al., 2006), while another has focused
on comparing variations of the NNMF algorithm (Devarajan
and Cheung, 2014). Collectively, researchers are moving toward
standardizing synergy analysis methods in an effort to advance
the field and allow for better validation of the utility of MSA in
context.

Here our goal was to assess how variations in MSA
methodology affect the quantification of trial-to-trial variability
in muscle synergies. We chose to quantify variability because
of Bernstein’s theories regarding the importance of variability
within the nervous system; while variability is always present
in cyclical movements like walking, this movement variability
likely arises from the same movement synergy (Bernstein, 1967).
We applied MSA to EMG data collected during assessments
prior to an experimental rehabilitation intervention that targeted
walking recovery in chronic stroke. While the primary outcome,
walking speed, improved overall following intervention, the
cohort was divided equally between responders (RES) and
non-responders (nRES) (Clark and Patten, 2012). Importantly,
at baseline no clinical or neuromechanical gait parameter
differentiated individuals who were identified as RES and
nRES post-intervention. These data, having a known functional
outcome, afford an ideal test-bed for analyzing the impact
of variations in MSA methodology. Specifically, we sought to
determine the ability of MSA to differentiate RES and nRES
using only pre-treatment data. We applied MSA to the five
greatest and five least treatment responders with useable datasets
to evaluate differences in synergy vector and neural command
variability. We hypothesized that one or more methods of MSA
would detect differences in synergy variability between RES
and nRES.

METHODS

This study involves a subset analysis of subjects with chronic
hemiparesis following stroke who participated in 8 weeks of
rehabilitation. The intervention consisted of 5 weeks of paretic
lower extremity power training and 3 weeks of traditional
clinic-based gait training (Clark and Patten, 2012). At baseline
and post-treatment, self-selected walking speed and EMG data
were collected while participants walked over three force
plates (Advanced Mechanical Technology, Inc., Watertown,
MA). Gait events of heel strike and toe-off were recorded
(200 Hz) using a vertical ground reaction force threshold
(F>20 N) and target pattern recognition from heel marker
placement using a seven-camera Qualisys motion capture system
(ProReflex MCU 240, Göteborg, Sweden). Analog force signals
were low-pass filtered (second order bidirectional Butterworth,
10 Hz cutoff). Marker data were low-pass filtered (second
order bidirectional Butterworth, 6 Hz cutoff). Surface EMG
data were sampled (1 kHz) from eight paretic leg muscles:
tibialis anterior (TA), medial gastrocnemius (MG), soleus (SO),
rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF),
semitendinosus (ST), and gluteus medius (GM) using active,
pre-amplified electrodes (17 mm inter-electrode distance, input
impedance>100,000,000 �, CMRR>100 dB at 65 Hz, and
signal bandwidth 20–3,500 Hz; MA-411, Motion Lab Systems,
Baton Rouge, LA). All procedures were approved by the
Stanford University Administrative Panels on Human Subjects
Research and conducted in accordance with the Declaration of
Helsinki.

Participants were classified as either RES or nRES based on
post-treatment change in self-selected walking speed. Individuals
demonstrating a post-treatment change exceeding a minimal
important difference of 0.123m/s were classified as treatment
RES (n = 15). Conversely, individuals who did not produce or
exceed this change were classified as nRES (n= 17). Importantly,
clinical and functional measures at baseline were not different
between the RES and nRES in the original cohort (Clark and
Patten, 2012). The five highest RES and five lowest nRES with
useable EMG data sets were selected for the primary analysis. To
evaluate the validity of our findings, we compared five additional
nRES to the five lowest nRES. The number of trials included for
each subject ranged from 2 to 12, with a mean of 10 trials. Subject
characteristics for each group can be found in Table 1.

Muscle Synergy Analysis
We used non-negative matrix factorization (NNMF) to perform
the MSA for all conditions (Lee and Seung, 1999; Ivanenko et al.,
2005; Ting and Chvatal, 2010). All EMG data were band-pass
filtered (fourth-order zero phase-lag Butterworth filter, cutoff
20–200 Hz), demeaned, rectified, low-pass filtered (fourth-order
zero phase-lag Butterworth) with a variable cutoff frequency of
7/gc Hz (gc corresponds to the duration of the subject’s average
gait cycle) and time interpolated using the gait events to obtain
101 points per gait cycle (Clark et al., 2010; Chvatal and Ting,
2013; Routson et al., 2013). An individual’s ideal low-pass filter
frequency relates to the frequency of the task performed, which
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TABLE 1 | Subject demographics.

Responders

(RES)

Non-responders

(nRES)

Validation

nRES

DEMOGRAPHICS

n 5 5 5

sex (m/f) 4/1 3/2 4/1

age (yrs) 56.4 ± 6.97 65.5 ± 5.83 66.5 ± 9.79

self-selected walking

speed (m/sec)

0.46 ± 0.23 0.33 ± 0.24 0.41 ± 0.32

post-treatment walking

speed change (m/sec)

0.26 ± 0.08 0.03 ± 0.03* 0.06 ± 0.03*

chronicity (mos) 10 ± 3.14 12.8 ± 3.27 15.2 ± 2.34

affected side (r/l) 2/3 0/5 4/1

CLINICAL CHARACTERISTICS

Fugl-Meyer Synergy

Subscore (/22)

16 (14,21) 14 (6,18) 16 (3,21)

Demographic and clinical data are presented mean ± SD and median (range),

respectively. *Indicates a significant difference from RES, p < 0.05.

is variable in this sample because subjects walked overground at
self-selected speed (Shiavi et al., 1998; Hug, 2011; Meyer et al.,
2016).

We performed MSA using a total of 30 methodological
variations comprised of: five approaches for EMG normalization,
two approaches for SV calculation, and three approaches for
synergy output normalization. The five EMG normalization
approaches were: unit magnitude per trial (MagPer), maximum
value over all trials (MaxOver; Clark et al., 2010; Frère and
Hug, 2012; Routson et al., 2013; Zelik et al., 2014), maximum
value per trial (MaxPer; Gizzi et al., 2011; Walter et al., 2014),
unit variance per trial (UnitPer), and unit variance over all
trials (UnitOver; Roh et al., 2012; Steele et al., 2013). The SV
calculation approaches either held SVs constant across all trials
(Clark et al., 2010; Ting and Chvatal, 2010) or allowed them
to vary (Ivanenko et al., 2005; Cappellini et al., 2006). The
three synergy output normalization approaches were: SVs by
unit magnitude (SV Mag)1, SVs by maximum value (SV Max;
Safavynia and Ting, 2012; Chvatal and Ting, 2013; Rodriguez
et al., 2013), and NCs by maximum value (NC Max; Ivanenko
et al., 2005; Gonzalez-Vargas et al., 2015). If SVs were normalized,
then NCs were multiplied by the same normalization values
so that their product remained constant, and vice versa. Every
possible combination of EMG normalization, SV calculation,
and synergy output normalization was applied, thus creating 30
different methodological variations of MSA.

EMG normalization was either computed within individual
trials (per trial) or across all trials within a given muscle (over
all trials). MagPer normalization involves dividing each element
within the vector of 101 EMG data points by its 2-norm, to create
a unit vector:

yMagPer =
1

||x||
x, (1)

1MATLAB. Statistics and Machine Learning Toolbox. Natick, MA: The

MathWorks, Inc.

where x is the original EMG vector and y is the normalized EMG
vector.

In MaxPer normalization, each vector element is divided by
the vector’s maximum value:

yMaxPer =
1

max(x)
x (2)

MaxOver normalization involves the same calculation as MaxPer
except the denominator is replaced with the maximum EMG
value for the given muscle over all walking trials. UnitPer
normalization involves dividing each element of the EMG vector
by the vector’s standard deviation:

yUnitPer =
1

std(x)
x (3)

Similarly to MaxOver, UnitOver involves dividing the EMG
vector elements by the standard deviation over all trials for a
given muscle within a subject.

After each iteration of NNMF, the calculated synergies
were sorted within each trial, since NNMF algorithms do
not output synergies in any particular order. The neural
commands were sorted using the maximal cosine similarity
(cossim):

cossim (a, b) = cos θab =
a · b

||a|| ||b||
, (4)

where a and b are two neural commands within a synergy and
θ is the angle between the two vectors. This step was performed
to ensure that each synergy was similar across trials within each
subject (d’Avella and Bizzi, 2005; Santuz et al., 2016).

Once MSA was completed for each subject, we calculated the
trial-to-trial variability in the SVs and the trial-to-trial similarity
in NCs as a basis for identifying differences between RES and
nRES at baseline. VAF was averaged within subjects to quantify
mean differences between RES and nRES. Standard errors in the
SVs were averaged within and across subjects for each of the
RES and nRES to quantify the variability within these outcome
measures. Neural command similarity was calculated two ways:
using the cosine similarity and the maximum value of the circular
cross-correlation coefficient. The cosine similarity was calculated
as in Equation (4), above, for every combination of trials within
each synergy (d’Avella and Bizzi, 2005; Coscia et al., 2014; Santuz
et al., 2016). These values were then averaged to determine
the trial-to-trial similarity of each NC. The cross-correlation
coefficient was also averaged across all possible combinations of
trials (Ivanenko et al., 2004; Frère and Hug, 2012).

A two-way group∗synergy analysis of variance (ANOVA)
was conducted on mean VAF across all methods. Tukey’s HSD
was applied post-hoc to assess significant effects. Hedges’ g-
test was used to compare trial-to-trial differences in the SVs,
NCs, and VAF in the RES and nRES across MSA methods.
Hedge’s g is complementary to the t-test, but due to the small
sample size and the desire to determine the generalizability
of results to larger data sets, we computed effect sizes rather
than performing inferential statistics. We interpret results using
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effect thresholds as follows: small = ±0.2, medium = ±0.5,
large = ±0.8, very large = ±1.3 (Cohen, 1977). Because the
present study is a test-bed for MSA, we considered medium
effect sizes and larger noteworthy, with special emphasis on
large and very large effects. To evaluate our results, we also
calculated effect sizes of noteworthy MSA methods between

FIGURE 1 | Pre-treatment variance accounted for (VAF). VAF for each synergy,

averaged across all muscle synergy analysis methods for non-responders

(gray) and responders (black). Data represent mean ± standard error across

subjects.

the five worst nRES and five additional nRES from the larger
dataset.

EMG processing, MSA, and Hedge’s g-tests were performed
using Matlab’s Optimization ToolboxTM (Release r2015a, The
MathWorks, Natick, MA) and the Measures of Effect Size
Toolbox (Hentschke and Stüttgen, 2013). Custom functions were
written to analyze these data using each of the MSA methods
described above. ANOVA and post-hoc analyses were conducted
in JMP Pro 11 (SAS Institute, Inc., Cary, NC, USA).

RESULTS

A two-way ANOVA for mean VAF revealed significant main
effects of group (p = 0.005) and synergy (p < 0.0001) but
no interaction effect. RES had a lower average pre-treatment
VAF than did nRES (Figure 1). Across all methods, only two
synergies were needed to reach at least 90% VAF (92.72 ±

1.04% for RES, 94.44 ± 0.50% for nRES, mean ± standard
error). Figure 2 shows example synergies for one RES and one
nRES (top two rows). Addition of a third synergy increased
the average VAF to 95.95 ± 0.61% for RES and 96.90 ± 0.40%
for nRES. Whether an absolute 90% VAF cutoff or an average
95% requirement was applied, the full EMG data set could be
well-approximated using either two or three synergies. Since
VAF is unaffected by output normalization, there are 10 possible
combinations of MSA methods for comparing VAF between

FIGURE 2 | Example synergies for a responder (A), non-responder (B), and validation non-responder (C). The left two columns depict Synergy 1, while the right two

depict Synergy 2. Within each synergy, the leftmost plot represents the synergy vectors (SVs) and the rightmost plot represents the neural commands (NCs). Individual

trials are represented by thin bars (SVs) and thin lines (NCs), while the thicker bars and lines represent the average across trials for each subject. Synergies were

extracted using maximum value per trial EMG normalization, varying SVs, and normalization of SVs to unit magnitude. TA, tibialis anterior; MG, medial gastrocnemius;

SO, soleus; RF, rectus femoris; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus; GM, gluteus medius.
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groups. With two synergies, all 10 methods produced at least
medium effects, indicating that a larger sample with similar
characteristics is likely to have significantly greater VAF for
the non-responders than the responders (Figure 3). For three
synergies, there was one small effect, four medium effects,
and four large effects. All of the large effects occurred with
varying SVs. Because of these differential effects in VAF, we
examined both two and three synergies for effects in SV and NC
variability.

Synergy analysis methodology greatly influenced the
calculated trial-to-trial variability within the synergy vectors.
With two synergies and varying SVs between trials, six methods
produced medium effects and three methods produced large
effects (Table 2). All of these effects were positive, indicating
greater variability in the RES than the nRES. Figure 4 illustrates
absolute effect sizes when comparing SV variability between RES
and nRES with two and three varying synergies. MagPer EMG
normalization revealed large effects with two synergies regardless
of SV output normalization method. For three synergies, notable
differences between RES and nRES were revealed with six
methods. The greatest effect sizes were revealed with MaxPer
and MaxOver EMG normalization and NCs normalized to their
maximum value.

The trial-to-trial variability within the neural commands
differed depending on both the MSA method and the method
of quantifying variability (Table 3). For both cosine similarity
and cross-correlation, negative effect sizes indicate greater trial-
to-trial variability among RES, compared to nRES. For the
cosine similarity metric with two synergies and constant SVs,
there were three medium effects and no large or very large
effects (Figure 5). Two synergies with varying SVs produced
large effects for all fifteen combinations of EMG and output
normalization. Three synergies with constant SVs revealed
five medium effects and two large effects. Three synergies
with varying SVs revealed five medium and no large or

very large effects. For the cross-correlation comparison with
constant SVs, neither two nor three synergies produced
notable effects (Figure 6). Two synergies with varying SVs
revealed six medium effects and six large effects (Table 3).
Three synergies with varying SVs revealed three medium
effects and one large effect. In general, the same patterns

TABLE 2 | Notable effects in synergy vector variability.

Synergies EMG

normalization

method

Output

normalization

method

Effect sizea

2, Varying SVs MagPer SV Mag 0.904

SV Max 0.830

NC Max 0.949

MaxPer SV Mag 0.762

SV Max 0.720

NC Max 0.655

UnitPer SV Mag 0.680

SV Max 0.697

NC Max 0.665

3, Varying SVs MaxOver SV Max −0.653

NC Max −0.909

MaxPer SV Max −0.647

NC Max −0.909

UnitOver SV Mag −0.653

NC Max −0.597

SVs, synergy vectors; MagPer, magnitude per trial; SVMag, synergy vector magnitude; SV

Max, synergy vector maximum value; NCMax, neural command maximum value; MaxPer,

maximum value per trial; UnitPer, unit variance per trial; MaxOver, maximum value over all

trials; UnitOver, unit variance over all trials.
aEffect sizes calculated using Hedge’s g. Positive values in SV variability indicate greater

variability in RES.

FIGURE 3 | Absolute effect sizes at baseline, measured by variance accounted for (VAF). Effect sizes for two synergies with constant synergy vectors (SVs, A), two

synergies with varying SVs (B), three synergies with constant SVs (C), and three synergies with varying SVs (D). EMG normalization methods include: magnitude per

trial (MagPer), maximum value over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per trial (UnitPer), and unit variance over all trials (UnitOver).

Color bar represents effect size values.
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FIGURE 4 | Absolute effect sizes at baseline for synergy vector (SV) variability.

Effect sizes for two varying synergies (A) and three varying synergies (B). EMG

normalization methods include: magnitude per trial (MagPer), maximum value

over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per

trial (UnitPer), and unit variance over all trials (UnitOver). Output normalization

methods include SVs by magnitude (SV Mag), SVs by maximum value (SV

Max), and neural commands by maximum value (NC Max). Color bar

represents effect size values.

were present across output normalization methods but two
synergies with varying SVs produced large effects most
frequently.

To validate our findings, we compared results from the
original nRES to those from five additional nRES identified
from the larger data set. Example synergies for a validation
nRES are shown in Figure 2 (bottom row), which appear
qualitatively similar to the example nRES in the same figure. Two
synergies were sufficient to achieve 90% VAF in all validation
nRES across all methods, and there were no differences in
VAF between the original nRES and the validation group.
Because two synergies with varying SVs produced the most
consistent effects in the initial RES/nRES analysis, validation
focused on large effects within this subset of results. In this
case, large effects in the initial RES/nRES analysis coupled
with small or no effects in the nRES validation analysis are
desirable findings, indicating that the method has the capacity
to differentiate between response groups. For synergy vector
variability, MagPer EMG normalization produced large effects in
the initial analysis and no effects when comparing nRES to nRES

TABLE 3 | Notable effects in neural command variability.

Synergies EMG

normalization

method

Output

normalization

method

Cosine

similarity effect

sizea,b

Cross-

correlation

effect sizea,c

2, Constant

SVs

UnitPer SV Mag −0.509 –

SV Max −0.506 –

UnitOver SV Mag −0.500 –

2, Varying

SVs

MagPer SV Mag −0.852 −0.707

SV Max −0.853 −0.707

NC Max −0.851 −0.709

MaxOver SV Mag −0.917 –

SV Max −0.917 –

NC Max −0.868 –

MaxPer SV Mag −0.902 −0.858

SV Max −0.896 −0.851

NC Max −0.901 −0.861

UnitPer SV Mag −0.945 −0.912

SV Max −0.940 −0.882

NC Max −0.943 −0.893

UnitOver SV Mag −1.00 −0.718

SV Max −0.998 −0.671

NC Max −0.983 −0.693

3, Constant

SVs

MagPer SV Mag −0.700 –

SV Max −0.695 –

NC Max −0.695 –

MaxOver SV Mag −0.841 –

SV Max −0.789 –

NC Max −0.832 –

MaxPer NC Max −0.749 –

3, Varying

SVs

MagPer SV Mag −0.663 –

SV Max −0.759 −0.656

NC Max −0.756 −0.868

MaxOver SV Mag −0.539 –

MaxPer NC Max 0.558 –

UnitPer SV Max – −0.566

NC Max – −0.658

SVs, synergy vectors; MagPer, magnitude per trial; SVMag, synergy vector magnitude; SV

Max, synergy vector maximum; NCMax, neural commandmaximum; MaxOver, maximum

value over all trials; MaxPer, maximum value per trial; UnitPer, unit variance per trial;

UnitOver, unit variance over all trials; –, no notable effect.
aEffect sizes calculated using Hedge’s g. Negative values in NC cosine similarity and NC

cross-correlation indicate greater variability in RES.
bNeural command similarity compared by trial-to-trial cosine similarity.
cNeural command similarity compared by trial-to-trial cross-correlation.

(Table 4). For cosine similarity within the neural commands,
MagPer EMG normalization produced medium effects when
comparing between nRES and validation nRES across all output
normalization methods. All other EMG methods that produced
large effects from the initial analysis produced small or no
effects in the validation analysis. For NC cross-correlation, all
comparisons within the validation analysis revealed small or no
effects.
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FIGURE 5 | Absolute effect sizes at baseline for neural command (NC) variability as measured by the cosine similarity. Effect sizes are represented for two synergies

with constant synergy vectors (SVs, A), two synergies with varying SVs (B), three synergies with constant SVs (C), and three synergies with varying SVs (D). EMG

normalization methods include: magnitude per trial (MagPer), maximum value over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per trial

(UnitPer), and unit variance over all trials (UnitOver). Output normalization methods include SVs by magnitude (SV Mag), SVs by maximum value (SV Max), and NCs by

maximum value (NC Max). Color bar represents effect size values.

DISCUSSION

This study demonstrates that the methodological choices made
during MSA have a significant impact on the outcome. Several,
but not all, MSA methods were able to differentiate between two
groups of pathologic individuals with no distinguishing clinical
differences, but presumed intrinsic physiologic differences. Two
synergies with varying SVs across trials produced the highest
frequency and greatest magnitude of effects. When assessing SV
variability, MagPer EMG normalization was the most salient
method within this analysis. However, when comparing NCs
by cosine similarity or cross-correlation, any of the EMG
normalization methods other than MagPer produced differences
between RES and nRES that were validated in a secondary
analysis. MSA output normalization had no notable influence
on results. In general, our results were highly sensitive to
changes in MSA methodology, illustrating the need for careful
methodological consideration and disclosure when conducting
MSA or comparing with results found in the literature.

Methodological Considerations
We do not believe that our choice of one signal decomposition
method (i.e., NNMF) limits the ability to detect group differences
within our results. We chose to use NNMF for this MSA for three
reasons: muscle activation signals are inherently non-negative,

other methods require assumptions such as orthogonality and
independence of parameters (Ting and Chvatal, 2010), and
NNMF is a commonly used technique, allowing for greater
generalizability of results. Previous work using MSA illustrates
that NNMF produces synergy vectors and neural commands
that are highly correlated with those produced by other
computational methods such as PCA and ICA (Ivanenko et al.,
2005; Cappellini et al., 2006). NNMF is particularly robust to
differences in data distribution and noise across data sets (Tresch
et al., 2006). NNMF tends to define a solution subspace where
the synergies can be found, building non-negative components
(i.e., SVs and NCs) together to reconstruct the original signals
(Ting and Chvatal, 2010). This approach is appropriate for the
physiological interpretation of the muscle synergy data. There
are several variations of the NNMF algorithm and it is possible
that changing the algorithm could changeMSA results. However,
the current consensus in the literature is that the decomposition
method does not drastically change the structure of the extracted
synergies (Ivanenko et al., 2005, 2006; Cappellini et al., 2006;
Tresch et al., 2006). Ultimately, the choice of decomposition
method should be tailored to the intended application of the
results.

It is common for investigators to specify a minimum
VAF cutoff of 90% for identification of the number of
synergies that can be used to reconstruct the original signals
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FIGURE 6 | Absolute effect sizes at baseline for neural command (NC) variability measured by cross-correlation. Effect sizes are represented for two synergies with

constant synergy vectors (SVs, A), two synergies with varying SVs (B), three synergies with constant SVs (C), and three synergies with varying SVs (D). EMG

normalization methods include: magnitude per trial (MagPer), maximum value over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per trial

(UnitPer), and unit variance over all trials (UnitOver). Output normalization methods include SVs by magnitude (SV Mag), SVs by maximum value (SV Max), and NCs by

maximum value (NC Max). Color bar represents effect size values.

(Clark et al., 2010; Frère and Hug, 2012; Roh et al., 2012). If
this common cutoff was applied to the current analysis, two
synergies would have been more than adequate to reconstruct
the original EMG walking signals with reasonable accuracy.
If a cutoff of 95% VAF for all methods and all subjects was
applied, all but one subject would have required three synergies,
with the remaining subject requiring four. The decision to use
either two or three synergies simplifies the analysis and prevents
potential over-fitting problems. This result is also consistent with
findings that individuals post-stroke require fewer synergies to
reconstruct their movements (Clark et al., 2010; Cheung et al.,
2012). However, three varying synergies were also able to detect
differences between groups for some methods.

Decisions beyond decomposition method and number of
synergies, such as fixing or varying SVs and EMG normalization
method, exhibited a profound influence on the ability to
detect group differences within our sample. Allowing SVs to
vary from trial-to-trial, rather than fixing them across trials,
produced more frequent and larger effect sizes, although this
choice is less common in the literature (Ivanenko et al.,
2005; Oliveira et al., 2014). MagPer EMG normalization
produced large differences between groups for SV variability.
When comparing NCs with cosine similarity, all methods of
output normalization and EMG normalization (except MagPer)
produced group differences that were validated with further
analyses. When applying a cross-correlation analysis, MaxPer

and UnitPer EMG normalization were the best performing
methods across all output normalization approaches. EMG
normalization is a common step in MSA, however one utilized
without much justification for the choice of method. The impact
of normalization strategies is shown when one investigator
attempts to replicate the analysis of another. Two research groups
performed the same experiment with one added condition,
but found different results, which could be attributable in
part to differences in MSA methods (de Rugy et al., 2013;
Berger and d’Avella, 2014). Our analysis indicates that choice of
normalization methods and the choice of constant or variable
SVs across trials have a strong effect on the outcomes, thus
representing a non-trivial choice among MSA parameters.

It is conceivable that variation in the selection of muscles
included in the analysis could impact results (Steele et al., 2013).
Addition of more muscles or muscles that could more accurately
capture the differences between RES and nRES would likely
increase the resolution to detect group differences. These data,
and other synergy analysis data, should be interpreted within the
context of the muscles included in the analysis.

Detecting Physiological Differences
Differences in synergy vector and neural command variability
between RES and nRES were greatest using two synergies with
varying SVs. The largest difference between the two groups was
found in the SVs when EMG was normalized to its maximum
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TABLE 4 | Comparison of initial results for two synergies with varying synergy vectors with non-responder validation analysis.

Metric EMG normalization

method

Output normalization

method

RES vs. nRES effect sizea nRES vs. validation

nRES effect sizea

SV Variability MagPer SV Mag 0.904 −0.178

SV Max 0.830 −0.110

NC Max 0.949 −0.150

NC Cosine Similarity MagPer SV Mag −0.852 −0.687

SV Max −0.853 −0.705

NC Max −0.851 −0.695

MaxOver SV Mag −0.917 −0.070

SV Max −0.917 −0.101

NC Max −0.868 −0.157

MaxPer SV Mag −0.902 −0.361

SV Max −0.896 −0.357

NC Max −0.901 −0.392

UnitPer SV Mag −0.945 −0.127

SV Max −0.940 −0.109

NC Max −0.943 −0.106

UnitOver SV Mag −1.00 0.115

SV Max −0.998 0.127

NC Max −0.983 0.138

NC Cross-Correlation MaxPer SV Mag −0.858 0.040

SV Max −0.851 0.038

NC Max −0.861 0.050

UnitPer SV Mag −0.912 0.261

SV Max −0.882 0.254

NC Max −0.893 0.242

RES, responders; nRES, non-responders; SV, synergy vector; NC, neural command; MagPer, magnitude per trial; SV Mag, synergy vector magnitude; SV Max, synergy vector maximum;

NC Max, neural command maximum; MaxOver, maximum value over all trials; MaxPer, maximum value per trial; UnitPer, unit variance per trial; UnitOver, unit variance over all trials.
aEffect sizes calculated using Hedge’s g. Positive values in SV variability and negative values in NC cosine similarity and NC cross-correlation indicate greater variability in RES.

value per trial, while EMG normalization was less important
when detecting differences in the neural commands. The effect
sizes indicate that RES had more variability in their SVs than did
nRES. Previous findings indicate that the SVs, but not the NCs,
reveal differences between individuals post-stroke and healthy
controls (Gizzi et al., 2011). Our results differ slightly, indicating
that variability in the SVs and NCs can be used to quantify
differences between groups after stroke. However, we compared
two groups, both with neural pathology. Our most salient results
could not have been produced if the SVs were held constant, an
assumption that many investigators have used in their analyses
(Clark et al., 2010; Ting and Chvatal, 2010). Differences in
trial-to-trial neural command similarity between RES and nRES
were also greatest when two varying synergy vectors were used.
Similar to our findings in the SVs, these effects indicate that
RES exhibited more trial-to-trial variability in the NCs than
nRES. This characteristic could be due to a greater flexibility of
commands that can be combined to produce a richer variety of
movement patterns (Bernstein, 1967), which could be relevant
to identifying one’s capacity for recovery or treatment response.
When NCs were compared using cross-correlation instead of
cosine similarity, the results were similar; however, the effects

were often blunted. This difference in effect magnitude provides
further indication regarding the importance of all aspects of MSA
with respect to the final results.

Recommendations for Reporting Results
MSA has been popularized due to its ability to reduce the
dimensionality of complex patterns of muscle activity (Ivanenko
et al., 2006). However, the rapid popularization of a technique,
coupled with the lack of validation of each MSA methodological
choice, presents implementation challenges. In publications
utilizing synergy analysis, some investigators provide more than
adequate disclosure of the methods employed; however, others
provide little to no detail, making comparison of results a
challenge. We therefore propose a list of decisions that should
be reported explicitly in manuscripts performing MSA:

1) Muscles included in analysis,
2) EMG filtering methods,
3) EMG normalization method,
4) computational method (e.g., NNMF, PCA, ICA, FA),
5) whether constant or varying synergy vectors were used,
6) sorting method (if applicable),
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7) output vector normalization method, and
8) synergy comparison method (e.g., cross-correlation)

The present comparison of MSA methods is not intended
to suggest there is any one “best” method for all future
applications of MSA. Rather, our results illustrate and emphasize
the vast differences produced by variations in methodological
choices. Ultimately, the choice of analysis methodology should
be tailored to the application and research design. To
facilitate understanding and reproducibility we recommend
disclosure and justification of methods. Such openness between
investigators will move research forward, improving the
likelihood and timeliness of a research impact involving MSA.

CONCLUSIONS

The main goal of MSA, when applied to pathologic populations,
is to better understand the intrinsic physiologic characteristics
reflected in muscle activity. MSA, with specific focus on
trial-to-trial variability, has the potential to provide insight
regarding neural strategies that could be relevant to human
performance and rehabilitation. Notably, our analysis revealed
large differences between response groups with only 10
subjects. Clinical assessments typically require large samples, lack
sensitivity, and in this case, fail to differentiate subpopulations
that would later respond to an intervention. If information from
MSA can be successfully employed as a predictor of recovery or
intervention response on an individual basis, this information
could improve outcomes of neurorehabilitation. The analysis
must, however, be performed properly, with careful selection and
justification of methods.
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