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Skmer: assembly-free and alignment-free
sample identification using genome skims
Shahab Sarmashghi1 , Kristine Bohmann2,3, M. Thomas P. Gilbert2,4, Vineet Bafna5* and Siavash Mirarab1*

Abstract

The ability to inexpensively describe taxonomic diversity is critical in this era of rapid climate and biodiversity
changes. The recent genome-skimming approach extends current barcoding practices beyond short markers by
applying low-pass sequencing and recovering whole organelle genomes computationally. This approach discards the
nuclear DNA, which constitutes the vast majority of the data. In contrast, we suggest using all unassembled reads. We
introduce an assembly-free and alignment-free tool, Skmer, to compute genomic distances between the query and
reference genome skims. Skmer shows excellent accuracy in estimating distances and identifying the closest match in
reference datasets.

Keywords: Assembly-free, Alignment-free, DNA Barcoding, Genome skimming, DNA reference database, Second
generation sequencing

Background
The ability to quickly and inexpensively study the taxo-
nomic diversity in an environment is critical in this era
of rapid climate and biodiversity changes. The current
molecular technique of choice is (meta)barcoding [1–3].
Traditional (meta)barcoding is based on DNA sequenc-
ing of taxonomically informative and group-specific
marker genes (e.g., mitochondrial COI [1, 4] and 12S/16S
[5, 6] for animals, chloroplast genes like matK for plants
[7], and ITS [8] for fungi) that are variable enough for
taxonomic identification, but have flanking regions that
are sufficiently conserved to allow for PCR amplification
using universal primers. Barcoding is used for taxonomic
identification of single-species samples. In the case of
metabarcoding, the goal is to deconstruct the taxonomic
composition of a mixed sample consisting of multiple
species [3]. Beyond the barcoding application, the barcod-
ing marker genes have also been used to delimitate species
[9] and to infer phylogenies [10, 11].
The accuracy of (meta)barcoding depends on the cov-

erage of the reference database and the method used to
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search queries against it [3]. To increase coverage, ref-
erence databases with millions of barcodes have been
generated (e.g., Barcode of Life Data System, BOLD, for
COI [12]). Computational methods for finding the clos-
est match in a reference dataset (e.g., TaxI [13]), and for
placement of a query into existing marker trees [14–16]
have been developed. However, the traditional approach
to (meta)barcoding, despite its success, has some draw-
backs. PCR for marker gene amplification requires rela-
tively high-quality DNA and thus cannot be applied to
samples in which the DNA is heavily fragmented. More-
over, since barcode markers are relatively short regions,
their phylogenetic signal and identification resolution can
be limited [17]. For example, in a recent study, 896 out of
4,174 wasp species could not be distinguished from each
other using COI barcodes [18].
While low costs have kept PCR-based pipelines attrac-

tive, decreasing costs of shotgun sequencing have now
made it possible to shotgun sequence 1–2 Gb of total
DNA per reference specimen sample for as low as $80
[19], even after including sample preparation and labor
costs. This has lead researchers to propose an alter-
nate method that uses low-pass sequencing to generate
genome skims [19, 20], and subsequently identifies chloro-
plast or mitochondrial marker genes or assembles the
organelle genome. Reconstructing plastid and mtDNA
genomes from low-pass shotgun data is possible because
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organelle DNA tends to be heavily overrepresented in
shotgun sequencing data; for example, 10.4% of all reads
from the Apocynaceae family of flowering plants were
from the chloroplast in one genome-skimming study [20].
Large reference databases based on genome-skimming
techniques are under construction by projects such as
PhyloAlps [21], NorBol [22], and DNAmark [23].
Most current applications of genome skimming to

species identification require organelle genome assem-
bly, a task that requires relatively time-consuming manual
curation steps to ensure that assembly errors are avoided
[24]. This approach discards a vast proportion of the
non-target data, reducing the discriminatory power. For
these reasons, the DNAmark project [23] is consider-
ing alternative methods, where, instead of only relying
on organelle markers, one could use the entire set of
reads generated in a genome skim as the identifier of
a species. This approach poses an interesting method-
ological question: can the unassembled data be used
to taxonomically profile reference and query samples in
a similar manner to conventional barcoding, but using
all available genomic information and saving us from
the labor-intensive task of mitochondria/plastid genome
assembly? In this paper, we introduce a new assembly-
free method to directly use low-coverage genome skims
of both reference and query samples. By avoiding the
assembly step, our approach also reduces the amount
of data processing needed for expanding the reference
database.
We treat genome skims simply as low-coverage “bags

of reads,” both for a collection of reference species and
for query samples. The problem is to find the refer-
ence genome skim that matches the query; if an exact
match is not found, we seek the closest available match.
A more advanced problem, not directly addressed here,
is placing the query in a phylogeny of reference species.
An even more difficult challenge, also not addressed
here, is decomposing a query genome skim that con-
tains DNA from several different taxa into its constituent
species.
Central to solving these problems is the ability to esti-

mate a distance between two genome skims for low and
varied coverage using assembly-free and alignment-free
approaches. Alignment-free sequence comparison has
been widely studied [25–30], including for phylogenetic
reconstruction [25, 31–44]. Most existing methods, such
as Kr [28], spaced words [44], and kmacs [45], compute
evolutionary distances using the length distribution of
matched substrings or the count of certain words and thus
require assembled genomes to produce accurate results.
These methods will not work with high accuracy when
both the query and the reference are a set of reads and not
assembled contigs. Other methods, such as andi [41] and
FSWM [43], use micro-alignments to compute distances.

Even though it may be possible to extend the idea of
using micro-alignments to the assembly-free case, both
andi and FSWM software currently require assemblies as
input. However, several assembly-free methods also exist.
Co-phylog [39] makes micro-alignments and calculates
distances to reconstruct phylogenetic trees; Mash [46]
computes the Jaccard index and an evolutionary distance
using the k-mers; Simka [47] computes several distance
measures based on the whole k-mer content of reads.
However, these methods all assume high enough cover-
age, ensuring that most of the genome is covered. These
levels of coverage are currently not economically feasible
for building up large reference databases or for obtaining
many query samples. Among existing methods, AAF [33]
is the only one that aims to work even at lower coverage.
AAF first infers a phylogeny and then corrects its branch
lengths to reflect a given estimate of the coverage.
Here, we show that high levels of coverage are not nec-

essary.We focus on a distancemeasure defined as the pro-
portion of mismatches between the global alignment of
two genomes. Themismatch rate, called genomic distance
hereafter, is useful for species identification because it
reflects the evolutionary divergence between two species.
We introduce a new method, Skmer, for accurately com-
puting the genomic distance even from low-coverage
genome skims. In extensive test, we show that Skmer dra-
matically improves estimates of genomic distance based
on genome skims and accurately places genome-skim
queries on to a reference collection. This assembly-free
approach can therefore be considered a viable comple-
ment to currently available DNA barcoding and genome-
skimming tools.

Results
Skmer
We decomposed reads into fixed-length oligomers
(denoted k-mers with length k), a technique used by many
existing alignment-free methods [41, 48]. Recall that the
Jaccard index J is a similarity measure between any two
sets (e.g., k-mer collections) defined as the size of their
intersection divided by the size of their union. Ondov
et al. describe a tool, Mash [46], in which (a) J is esti-
mated efficiently using a hashing procedure and (b) J
is used to estimate the genomic distance between two
genomes. Mash, however, assumes sufficiently high cov-
erage. Unfortunately, J, in addition to the true distance,
is impacted by coverage, sequencing error, and genome
length. Skmer accounts for the impact of these factors on J.
Skmer has two stages (Fig. 1): first, we use k-mer fre-

quency profiles (computed using JellyFish [49]) to esti-
mate the amount of sequencing error and the coverage
(neither of which is known) using a novel method. LetMi
be the number of k-mers observed i times in the genome
skim. Let h=argmaxi≥2Mi. Then, defining ξ = Mh+1

Mh
(h+1),
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Fig. 1 Overview of Skmer pipeline. For both query and reference genome skims, first, the k-mer frequency profiles are used to estimate the
sequencing error and coverage (top). Then, the k-mers are hashed, and a subset is retained and used to estimate the Jaccard index between the
two genomes (bottom). Finally, the estimated Jaccard index and estimated sequencing coverage and error are used to compute the corrected
genomic distance between the query and the reference

we derive (see “Estimating sequencing coverage and error
rate” section):

λ = M1
Mh

ξh

h!
e−ξ + ξ

(
1 − e−ξ

)
(1)

ε = 1 − (ξ/λ)1/k (2)

where λ and ε are our estimates of the k-mer coverage and
the sequencing error rate, respectively.
In stage two, we use the hashing technique of Mash to

compute J. Finally, given these estimates, we compute the
genomic distance using

D = 1 −
(

2(ζ1L1 + ζ2L2)J
η1η2(L1 + L2)(1 + J)

)1/k
(3)

where for i ∈ {1, 2}, ηi = 1 − e−λi(1−εi)k and ζi = ηi +
λi

(
1 − (1 − εi)k

)
(for high coverage, we define ζi and ηi

differently; see “Sequencing error” section for details), and
Li is the estimated genome length.
We used a series of experiments to study the accuracy

of Skmer compared to existing methods with respect to (i)
the error in computed distances, (ii) the ability to find the
closest match to a query sequence in a reference dataset of
genome skims, and (iii) phylogenetic inference. We com-
pared the performance against Mash and AAF [33]. AAF

is a method that uses k-mers to estimate phylogenetic
distances among a set of at least four sequences. We con-
clude by comparing Skmer against the results of using COI
barcodes from available barcode databases.

Distance accuracy for pairs of genome skims
We first compare the accuracy of Mash and Skmer in esti-
mating distances between two genome skims. Since AAF
outputs a phylogenetic tree and so requires at least four
species, we cannot include it in our first set of analyses on
pairs of genomes.

Simulated genomes with controlled distance
Starting from the highly repetitive genome assembly of the
wasp species Cotesia vestalis, we simulated new genomes
with controlled true distance d by randomly adding
SNPs, and then we simulated genome skims by ran-
domly subsampling reads and adding error (see “Genomic
datasets” section). On these simulated genomes, distances
are computed with high accuracy by Mash when cover-
age is high (Fig. 2), except where the true distance is also
high (i.e., 0.2). However, the accuracy of Mash quickly
degrades when the coverage is reduced to 4× or less. In
contrast, even when the coverage is reduced to 1

8×, Skmer
has high accuracy. For example, with the true distance set
to 0.05, Mash estimates the distance as 0.081 with 1× cov-
erage (an overestimation by 62%) while Skmer corrects the
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Fig. 2 Comparing the accuracy of Mash and Skmer on simulated genomes. Genome skims are simulated using ART with read length � = 100.
Substitutions applied to the assembly of C. vestalis at six different rates (x-axis), and genome skims simulated at varying coverage range from 1

8 to
16×. The estimated distance (y-axis) by Mash (left) and Skmer (right) is plotted versus the real distances for each coverage level (color). The mean
(dots) and standard error (lines) of distances are shown (10 repeats). True distance is shown in red. See Additional file 1: Figure S1 for a scaled
representation

distance to 0.045 (an underestimation by 10%). Note that
applying Mash* (Mash without the unnecessary approx-
imation (1 − D)k ≈ e−kD used by default in Mash) to
the complete assemblies generally generates very accu-
rate results, as expected, but even given the full assembly,
Mash* still has a small but noticeable error when d = 0.2.
Note that results are extremely consistent across our ten
different runs of subsampling (Fig. 2). We repeated the
simulation with a lower range of coverage ( 1

64× to 1×).
Interestingly, even with very low coverage, the absolute
distance error is small in many cases (Additional file 1:
Figure S2); however, for d ≥ 0.1, Skmer estimates start to
degrade below 1

8× coverage.
Repeating the process with theDrosophila melanogaster

genome as the base genome also produces similar
results (Additional file 1: Figure S3). The only condi-
tion where Skmer has an absolute error larger than
0.01 is with coverage below 1× and d = 0.2 (Fig. 2).
However, we note that for d = 0.001, the rela-
tive error is not small with low coverage (Additional
file 1: Figure S4b) indicating that distinguishing very
small distances (perhaps below species level) requires
high coverage. Estimating the right order of magnitude
when the true distance is 0.001 seems to require 2×
coverage (preferably 8×) while 1× coverage is sufficient
to distinguish distances at or above 0.01 (Additional file 1:
Figure S4).

Pairs of insect and bird genomes
We now test methods on several pairs of insect and avian
genomes, subsampled to create genome skims. Note that
unlike the simulated datasets, here, genomes can undergo
all types of genetic variations and complex rearrange-
ments, and thus, do not have the same length.We carefully
selected several pairs of genomes to cover a wide range of
mutation distance and genome length.
Here, the true genomic distance is not known, but we

use the distance estimated by Mash* on the full assem-
blies as the true distance d. For all pairs of insect and
avian genomes (Fig. 3), Mash has high error for cov-
erage below 8× while Skmer successfully corrects the
estimated distance and obtains values extremely close to
the results of running Mash* on the full assembly. For
example, the distance between Anopheles stephensi with
length of∼196Mbp andAnopheles maculatuswith length
of ∼132 Mbp is estimated to be 0.104 based on the full
assembly and 0.102 (2% underestimation) with only 1

2×
coverage using Skmer, while Mash would estimate the
distance to be 0.163 (∼57% overestimation).

Distance accuracy for all pairs genome skims
We now turn to datasets with sets of genome skims, eval-
uating the accuracy of all pairs of distances. Here, since
we have at least four sequences in each test, in addition to
Mash, we also compare our results with AAF.
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a

b

Fig. 3 Comparing the accuracy of Mash and Skmer on pairs of insects (a) and birds (b) genomes. Genome skims are simulated at coverage 1
8× to

8× (shades of blue). The estimated distance (y-axis) is plotted for Mash (left) and Skmer (right) for each pair of species (x-axis). The results of Mash*
run on assemblies, which is taken as the ground truth, is shown in red. Mash overestimates at lower coverages. Skmer estimates are closer to the
ground truth and are less sensitive to the coverage. See also Additional file 1: Figure S5
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Fixed sequencing effort
So far, our experiments have controlled for the coverage
by subsampling varying amounts of sequence data, pro-
portional to the genome length. In our genome-skimming
application, coverage will not be fixed. Often, the amount
of sequence data obtained for each species will be rel-
atively similar. As a result, genomes of different length
end up being sequenced with different coverage depth
proportional to the inverse of their length. We therefore
performed a study where all species are subsampled to
produce 100 Mb of sequence data in total resulting in
varying levels of coverage (based on the genome length,
Additional file 1: Table S5). The error in the distance esti-
mated by Mash relative to the ground truth can be quite
large (higher than 300% in the worst case) while Skmer
consistently makes accurate estimates close to the true
distance even at the lowest amount of coverage (Figs. 4
and 5, and Additional file 1: Table S6). Repeating the anal-
ysis with 0.5 Gb or 1 Gb total sequence data produced
similar patterns, but as expected, increasing the sequenc-
ing effort reduces the error for all methods (Additional
file 1: Figures S6-S8).
Before error correction, AAF has error levels that are

comparable to Mash (Figs. 4, 5). The correction applied
by AAF, similar to Skmer, reduces the negative impact of
low coverage but not to the same extent. Thus, Skmer
has less error compared to corrected AAF (with 100 Mb
sequence and across all datasets, the mean error of Skmer
is 3.13% and AAF-corrected is 22.7%). For example, in the
Drosophila dataset, the worst-case error of AAF between
any two pairs of genome skims is 31%, whereas the error
never exceeds 8% for Skmer. Note that when computing
the error of AAF, we use the result of running AAF on full
assemblies as the ground truth.
To quantify the impact of distance estimates on down-

stream analyses, we used FastME [50] to infer phyloge-
netic trees using distances computed by Mash and Skmer
on genome skims and with correction using the JC69
model [51]. AAF by default generates trees as part of its
output. We compare these trees to those computed by
Mash/AAF run on the full assemblies (taken as the ground
truth) using the weighted Roubinson-Foulds (WRF) dis-
tance [52] (Table 1). WRF is the sum of branch length
differences between the two trees (using zero length for
missing branches), and we normalizedWRF by the sum of
branch lengths of both trees. In all three datasets, Skmer
distances lead to trees with lower WRF distance to the
ground truth compared to Mash and AAF/uncorrected.
AAF correction reduces WRF compared to uncorrected
AAF; however, Skmer trees have two to 14 times less error
compared to the corrected AAF, except in one case where
AAF/corrected has 1.05% error and Skmer has 1.19%
(Table 1). Increasing the size of skims to 0.5 Gb and 1 Gb
helps all methods to produce more accurate trees.

Heterogeneous sequencing effort
In addition to changes in the genomic length, the sequenc-
ing effort per speciesmay also vary across sequencing pro-
tocols, experiments, and research labs, and so a database
of reference genome skims may consist of samples with
heterogeneous sequencing efforts. To capture this, for
each species, we choose its total sequencing effort from
three possible values 0.1 Gb, 0.5 Gb, and 1 Gb, uniformly
at random, and estimate all pairs of distances within each
dataset as before (Fig. 6 and Additional file 1: Figure S9).
Similar to the case of fixed sequencing effort, Skmer mit-
igates large relative error in the distances estimated by
Mash and produces more accurate results than bothMash
and AAF (Table 2, Fig. 6, and Additional file 1: Figure S9).
For example, comparing to the case of fixed 100-Mb
genome skims of the Drosophila dataset, the worst-case
error of AAF is increased to 70%, while using Skmer it
remains almost the same (8%). Comparing trees inferred
from distances estimated by various methods also con-
firms the higher accuracy of Skmer (Table 1). For instance,
on the Anopheles dataset, Skmer has only 0.58% WRF
distance to the reference tree whereas Mash and AAF-
corrected trees have 14.75% and 8.45%WRF distance.

Genome skims from real reads
Running time
So far, all of our tests used simulated reads. When analyz-
ing real genome skims, there are additional complications
such as extraneous DNA (real or artifactual) and the
over-representation of organelle genome. We next tested
Skmer using real reads. We created 100-Mb skims of
14 Drosophila genomes by subsampling short-read data
produced in a recent Drosophila genome assembly study
[53]. Before running Skmer or Mash, we filtered reads
that (even partially) aligned to 12 Drosophila-associated
microbial genomes as reported in previous studies
[54–56] (see Additional file 1: Table S1), to the human
genome, or to the mitochondrial genome of respective
Drosophila species. We then estimated all pairs of dis-
tances as before and computed the error relative to the
distances computed from the assemblies (Fig. 7). Consis-
tent with the results that, we obtained on the simulated
skims, Skmer has less error compared to Mash. The aver-
age error of Mash on this dataset is 43.48% (± 2.29%) with
maximum error of 217%. Skmer, on the other hand, has an
average error of 4.21% (± 0.35%) and its maximum error
is 22.2%.
Skmer and Mash have comparable running time,

while AAF is much slower. In the experiment with
heterogeneous sequencing effort, the total running time
(using 24 CPU cores) to compute distances based

on genome skims for all
(
47
2

)
pairs of birds using

Mash, Skmer, and AAF was roughly 8, 33, and 460 min,
respectively.
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a

b

Fig. 4 Distance error with fixed 100 Mb sequence per genome for a 22 Anopheles and b 21 Drosophila. Each genome is skimmed with 100 Mb
sequence and distances are computed using Mash, Skmer, and AAF. True distance used in calculating the error is computed by applying each
method (AAF and Mash) to the full genome assemblies. The heatmaps on the left show the error of Mash (upper triangle) and Skmer (lower
triangle), and the heatmaps on the right are for AAF before correction (upper) and after correction (lower)

Leave-out searchagainsta referencedatabaseofgenome skims
We now study the effectiveness of using genomic dis-
tance to search a database of genome skims to find the

closest match to a query genome skim. Given a query
genome skim and a reference dataset of genomes, we can
order the reference genomes based on their distance to
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Fig. 5 Distance error with fixed 100 Mb sequence per genome for the avian dataset. The errors of Mash and AAF for the two eagle species (H.
albicilla and H. leucocephalus) were extremely large (Mash: ≈ 4000%, AAF > 3000% error), dominating the color spectrum; we excluded H. albicilla to
help readability; for the eagles, Skmer’s estimate is 0.00244 (∼9% error)
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Table 1 Tree error

Dataset Sequencing
effort

Mash Skmer AAF
(uncorrected)

AAF
(corrected)

Anopheles 0.1 G 23.19% 1.07% 19.92% 6.36%

0.5 G 12.84% 0.45% 9.74% 4.9%

1 G 8.92% 0.37% 9.59% 3.3%

Mixed 14.75% 0.58% 8.46% 8.45%

Drosophila 0.1 G 23.87% 2.05% 20.29% 5.85%

0.5 G 13.33% 0.72% 10.37% 5.25%

1 G 7.11% 0.58% 10.84% 2.2%

Mixed 16.58% 1.11% 11.36% 10.87%

Birds 0.1 G 37.03% 5.64% 31.81% 21.13%

0.5 G 25.16% 1.91% 20.8% 6.86%

1 G 19.42% 1.19% 15.54% 1.05%

Mixed 28.14% 3.08% 18.15% 7.57%

For each method, we show normalized weighted RF distance (%) of trees inferred
from genome-skim distances to trees inferred from full assembly distances. Italics:
the lowest error

the query. The results can be provided to the user as a
ranking. When the query genome is available in the refer-
ence dataset, finding the match is relatively easy. To study
the effectiveness of the search as the distance of the closest
available match increases, we use a leave-out experiment,
as described in “Leave-out” section. Figure 8 shows the
mean rank error as well as the mean distance error of
the best remaining match in a leave-out experiment when
removing genomes closer than d for 0.01 ≤ d ≤ 0.1. A
rank error (or distance error) equal to zero corresponds to
a perfect match to the best available genome.
On all three datasets, Skmer consistently and often sub-

stantially outperforms Mash and AAF in terms of finding
the best remaining match, except the Drosophila dataset
whereMash and Skmer have comparable rank error, while
both are better than AAF (Fig. 8). Even in that case, on
average, the distance of the best match found by Skmer
is closer to the distance of the true best match compared
to the best hit found by Mash. Moreover, the mean rank
error of Skmer is smaller than Mash (Additional file 1:
Figure S10) if we exclude only one species Drosophila
willistoni (which is at distance 0.1565 ≤ d ≤ 0.1622 from
other species). It is also notable that over the avian dataset,
Skmer has mean rank error less than 0.5 for all range of
distances, while Mash and AAF can be off by more than
2.5 on average. These results demonstrate that correcting
the distance not only impacts our understanding of the
absolute distance, but also impacts results of searching a
reference library.

Phylogenyreconstruction and comparison to organellemarkers
As the last experiment, we estimated phylogenetic trees
for Anopheles and Drosophila datasets after transforming

the genomic distances estimated by Skmer to Jukes-
Cantor (JC) distances [51]. For each dataset, we also built
another tree based on available COI barcodes, using an
identical method. We compare the results against a ref-
erence tree obtained from Open Tree of Life [57]. We
restricted the results to species for which COI barcodes
were available (Fig. 9ab).
For the Anopheles species, Skmer distances produce a

tree that is almost identical to the reference tree (with only
one branch difference out of nine), while COI tree dif-
fers from the reference in seven branches. Similarly, for
the Drosophila species, Skmer differs from the reference
in three branches (with small local changes) out of 13 total
branches in the reference tree, whereas COI tree is very
inconsistent with the reference tree (seven branches are
different). We also built maximum-likelihood trees from
COI barcodes (Additional file 1: Figure S11), but the num-
ber of incorrect branches did not reduce. Comparing the
distribution of all pairwise genomic distances obtained
from genome skims and barcodes (Fig. 9c), Skmer has
larger distances and fewer pairs with zero or close to zero
distance, indicating that Skmer has a higher resolution in
differentiating between samples. For example, four species
of the Anopheles genus A. coluzzii, A. gambiae, A. ara-
biensis, and A. melas have very small pairwise distances
based on COI barcodes, while using Skmer, the estimated
distances are in the range 0.02–0.04 for these species.

Discussion
We showed that Skmer can compute the genomic dis-
tance between a pair of species from genome skims with
very low coverage (at or even below 1×), with much bet-
ter accuracy than the main two alternatives, Mash and
AAF. We also showed that the distances computed by
Skmer can accurately place a voucher genome skim within
a reference database of genome skims, and can be used
to infer the phylogenetic tree with reasonable accuracy.
While Skmer is not the first k-mer-based approach for
distance estimation or phylogenetic reconstruction, as we
showed, the alternatives have low accuracy given low-
coverage data. We compare with Mash because it is used
within Skmer and is one of the most widely used align-
ment and assembly-free methods. However, we note that
authors of Mash do not claim it can handle low coverage,
and so our results are not a criticism of their approach.
Besides the methods we discussed, many other alignment-
free sequence comparison and phylogeny reconstruction
algorithms exist [25, 28, 29, 31, 32, 34–43]. However,
these methods take as input assembled (but unaligned)
sequences, and thus, are not applicable in an assembly-
free pipeline. In other words, their goal is to avoid the
alignment step and not the assembly step.
Compared to using COI markers, currently used in

practice, we showed that using all k-mers, including those
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a

b

Fig. 6 Distance error with heterogeneous sequencing effort for a Anopheles and b Drosophila. Species have random amount of sequence chosen
uniformly among 0.1 Gb, 0.5 Gb, and 1 Gb. See Additional file 1: Figure S9 for birds

from the nuclear genome, improves the phylogenetic
accuracy. These improvements are resulting from dis-
tances that have a larger range and more resolution
compared to COI. Also, the increased resolution should

not be surprising given that the entire genome is much
larger than any single locus, reducing the variance in esti-
mates of the distance. Beyond the question of resolution,
gene trees and species trees need not match [58], a fact
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Table 2 Comparing the average error of Mash, Skmer, and AAF
in estimating distances over three datasets with heterogeneous
sequencing effort

Dataset Mash Skmer AAF
(uncorrected)

AAF
(corrected)

Anopheles 28.72% (1.10%) 0.84% (0.03%) 13.48%
(0.56%)

11.36%
(0.44%)

Drosophila 29.05% (0.59%) 0.84% (0.04%) 15.25%
(0.38%)

10.94%
(0.33%)

Birds 64.29% (0.54%) 2.21% (0.04%) 36.02%
(0.29%)

5.28%
(0.16%)

The standard error of the mean is provided in parentheses. Italics: the lowest error

that can further reduce the accuracy of marker genes
for both species identification and phylogeny reconstruc-
tion. By using the entire genome, Skmer ensures that an
average distance across the genome is computed, reduc-
ing the sensitivity to gene tree/species tree discordances.
Moreover, a recent result shows that the JC-transformed
genomic distance is a statistically consistent estimator of
the species distances despite gene tree discordance due
to incomplete lineage sorting [59], further encouraging
our use of the genomic distance as a measure of the
evolutionary divergence.
We showed that genomic distances as small as 0.01

can be estimated accurately from genome skims with 1×

or lower coverage. What does a distance of 0.01 mean?
The answer will depend on the organisms of interest.
For example, two eagle species of the same genus (Hali-
aeetus albicilla and Haliaeetus leucocephalus) have D ≈
0.003 but two Anopheles species of the same species
complex (A. gambiae and A. coluzzii) have D ≈ 0.018.
Broadly speaking, for eukaryotes, detecting distances in
the 10−2 order is often enough to distinguish between
species (Additional file 1: Figure S12). On the other hand,
to differentiate individuals in a population, or very sim-
ilar species, we may need to reliably estimate distances
of the order 10−3. Detection at these lower levels seems
to require > 1× coverage using Skmer (Additional file 1:
Figure S4b) but future work should study the exact level
of sequencing required for accurate ordering of species
at distances in the order of 10−3 or less. Moreover, the
question of the minimum coverage required may avail
itself to information-theoretical bounds and near-optimal
solutions, similar to those established for the assembly
problem [60, 61].
Although most of our tests were performed on genome

skims simulated from assemblies, we also tested Skmer
on genome skims simulated by subsampling previous
whole-genome sequencing experiments. Several compli-
cations have to be addressed in real applications. The
actual coverage of real genome skims may not be uniform

Fig. 7 Comparing the error of Mash and Skmer on a dataset of 14 Drosophila genome skims. Each SRA is subsampled to 100 Mb and then filtered to
remove contamination. True distances are computed from the assemblies
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a

b

c

Fig. 8 The mean rank and distance error of the best remaining match in leave-out experiments. The distance of the closest genome in the reference
to a query is varied from 0.01 to 0.1 (x-axis). The rank and distance errors (y-axis) of the best match to a query, are computed by comparing the order
given by each method with the order obtained by applying Mash* to the full assemblies (ground truth). For each dataset, the experiment is
repeated by taking each species as the query, and then the errors are averaged. Three methods, Mash, Skmer, and AAF, are compared on a the
Anopheles dataset, b the Drosophila dataset, and c the avian dataset
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a

b

c

Fig. 9 Comparing distances and phylogenetic trees from COI barcodes and simulated genome skims. Shown in red are wrong internal branches
corresponding to the bipartitions that are not found in the reference tree. Genome-skim size is randomly chosen among 0.1 Gb, 0.5 Gb, and 1 Gb.
a Anopheles trees. b Drosophila trees. c Distribution of distances for Anopheles (left) and Drosophila (right) genomes

and randomly distributed and they can have an overrep-
resentation of mitochondrial or plastid sequence. More
importantly, other sources of DNA originating from for
example, parasites, diet, fungi, commensals, bacteria, and
human contamination may all be present in the sample

and may cause a bias in the estimation of distances. In
our test, we simply searched all reads in a genome skim
against a few bacterial genomes and the human refer-
ence genome; this simple scheme filtered out up to ∼10%
of reads (for D. virilis). These filtering strategies were
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sufficient to produce reliable distance estimates in the case
of Drosophila genomes. We recommend that before using
Skmer, such database searches should be used to find and
eliminate bacterial or fungal contamination (using BLAST
[62] or perhaps metagenomic tools such as Kraken [63]),
as well as removing contaminant reads with human ori-
gin (using for example Bowtie2 [64]). However, in future,
it will be beneficial to develop better methods for finding
extraneous reads without reliance on known sources.
A related direction of future work is to explore whether

Skmer can be extended to environmental DNA analyses,
i.e., queries consisting of genome skims of multi-taxa sam-
ples. While Skmer is presented here in a general setting,
its best use is for eukaryotic organisms, where the notion
of species is better established and species can be sepa-
rated with reasonable effort. We tested Skmer on birds
and insects, but we predict it will work equally well for
plants, a prediction that we plan to test in future work.
Throughout our experiments, we usedMash* run on the

assemblies to compute the ground truth. Given the true
alignment of the two genomes, we can compute the true
genomic distance as the proportion of mismatches among
aligned orthologous positions (i.e., ignoring gaps). To
ensure that Mash* closely approximates true distances, we
used simulated genomes of Rat andMouse from theMam-
malian dataset of the Alignathon competition [65]. This
simulation uses Evolver [66] and includes many forms of
mutation, including indels, rearrangements, duplications,
and losses. On this dataset, the true distance based on
the known true alignment is 0.145 and Mash* estimated
the distance as 0.143, which is a very good approximation.
In contrast, FastANI [67], an alignment-free sequence
mapping tool for estimating average nucleotide identity,
computes the distance as 0.189. If we count gaps as non-
matching positions in the definition of distance, then the
true distance would be 0.287, which also does not match
FastANI. Presumably, FastANI, which relies on alignment
of short blocks, counts short gaps (with some definition
of short) as mismatch but excludes larger ones. Thus, on
real data, Mash* is the best available option to approxi-
mate the true distance. Finally, note that, for real genomes,
we chose not to use estimated whole genome alignments
(WGA) to compute the ground truth because WGA is a
difficult problem, and WGAs that are available are not
necessarily accurate. We get inconsistent estimates of dis-
tance when we use pairwise or multipleWGAs. For exam-
ple, between D. melanogaster and D. yakuba, the distance
changes from 0.10 when using the multiple WGA [68], to
0.21 if we use the pairwise WGAs [69] from the UCSC
genome browser [70], which is the state of the art.
The connection between genomic distance and phy-

logenetic distance depends on mutation processes con-
sidered. If only substitutions are allowed and assum-
ing the Jukes-Cantor model, the phylogenetic distance

is − 3
4 ln

(
1 − 4

3d
)
; note this transformation is monotonic

and does not change rankings of matches to a query
search. Assuming a more complex model such as GTR
[71], genomic distance is not enough to estimate the phy-
logenetic distance. However, we have devised a simple
procedure to estimate GTR distances using the log-det
approach [72] by repeated applications of Skmer to per-
turbed reads (Additional file 1: Appendix B). The GTR
distances can rank matches to a query differently from
the genomic distance; the accuracy of the two distances
should be compared in future work.
Insertions, deletions, duplications, and losses can all

lead to differences between genomes, thereby reducing
the Jaccard index and increasing the genomic distance.
They also impact genomic length. Interestingly, in our
experiments, Skmer run with the true coverage is less
accurate than with estimated coverage (Additional file 1:
Figure S13). We speculate that on genomes with repeats,
by overestimating coverage, our method gives an estimate
of the “effective” coverage, reducing the impact of repeats
on the Jaccard index. Nevertheless, with these complex
mutations, the correct definitions of the evolutionary dis-
tance and genomic distance are not straightforward, nor
is it clear how the Jaccard index should be translated to
the genomic distance. Here, we used a heuristic approach
that simply averaged the length of the two genomes, leav-
ing these broader questions about the best definition of
genomic distance in the presence of large structural vari-
ations to future work.

Conclusions
Skmer is an assembly-free and alignment-free tool for esti-
mating the distance between two genome skims. It can
estimate a wide range of distances with high accuracy
from low-coverage and mixed-coverage genome skims
with no prior knowledge of the coverage or the sequenc-
ing error. Our paper shows that the idea of genome-wide
sample identification using genome skims has merit and
should be pursued in the future.

Methods
Consider an idealized model where two genomes are the
outcome of a random process that copies a genome and
introduces mutations at each position with fixed probabil-
ity d. Moreover, substitutions are the only allowed muta-
tion. In this case, the per-nucleotide hamming distance D
between the two genomes is a random variable (r.v.) with
expected value d. We would like to estimate d. While this
is a simplified model, we will test the method on real pairs
of genomes that differ due to complex mutational pro-
cesses (also, see Additional file 1: Appendix B for exten-
sions).We start with known results connecting the Jaccard
index and the hamming distance and then show how these
results can be generalized to low-coverage genome skims.
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Throughout, we present our results succinctly and present
derivations and more careful justifications in Additional
file 1: Appendix A of the supplementary material.

Jaccard index versus genomic distance
The Jaccard index of subsets A1 and A2 is defined as

J = |A1 ∩ A2|
|A1 ∪ A2| = |A1 ∩ A2|

|A1| + |A2| − |A1 ∩ A2| . (4)

Let W be the number of shared k-mers between the
two genomes. Note that J = W

2L−W ⇒ 2J
1+J = W

L , where
L is the genome length. Assuming random genomes and
no repeats, perhaps justifiably [73], the probability that
a changed k-mer exists elsewhere in the genome is van-
ishingly small for sufficiently large k. Thus, we assume a
k-mer is in the shared k-mers set only if no mutation falls
on it, an event that has probability (1 − d)k . Thus, we can
model W as a binomial with probability (1 − d)k and L
trials. As Ondov et al. [46] pointed out, we can estimate

D = 1 −
(

2J
J + 1

) 1
k

(5)

and they further approximate D as 1
k ln

(
J+1
2J

)
. To be

able to estimate large distances, we avoid the unneces-
sary approximation and use Eq. 5 directly. We skim each
genome to obtain k-mer sets A1,A2 and estimate J using
Eq. 4, which can be computed efficiently using a hashing
technique used by Mash [46]. Note that, however, Eq. 5
assumes a high coverage of the genome so that each k-mer
is sampled at least once with very high probability. This
assumption is violated for genome skims in consequential
ways. As a simple example, suppose the coverage is low
enough that a k-mer is sampled with probability 0.5. Then,
even for identical genomes, we estimate J as 1

3 , resulting
in a distance estimate of D ≈ 0.032 for k = 21.

Extending to genome skims with known low coverage and
error
We now show how Eq. 5 can be refined to handle genome
skims despite low and uneven coverage, sequencing error,
and varying genome lengths. We first assume that cover-
age and error are known and later show how to compute
these.

Low coverage
When the genome is not fully covered, three sources
of randomness are at work: mutations and sampling of
k-mers from each of the two genomes. Each genome of
length L is sequenced independently using randomly dis-
tributed short reads of length � at coverages c1 and c2
to produce two genome skims. Under the simplifying
assumption that genomes are not repetitive, we choose
k to be large enough so that each k-mer is unique with
high probability. Therefore, the number of distinct k-mers

in each genome is L − k 
 L. The probability of cover-
ing each k-mer can be approximated as ηi = 1 − e−λi

where λi = ci(1 − k/�). Modeling the sampling of k-mers
as independent Bernoulli trials, |Ai| becomes binomially
distributed with parameters ηi and L. By independence,
W = |A1 ∩ A2| also becomes binomially distributed with
parameters η1η2(1 − d)k and L. Moreover, U = |A1 ∪ A2|
can also be modeled approximately as a Gaussian with
mean

(
η1 + η2 − η1η2(1 − d)k

)
L. Treating η1 and η2 as

known and dividing W
L by U

L gives us:

J = W
U

= η1η2(1 − D)k

η1 + η2 − η1η2(1 − D)k
;

thus,

D = 1 −
(

(η1 + η2)

η1η2

J
(1 + J)

) 1
k
.

Sequencing error
Each error reduces the number of shared k-mers and
increases the total number of observed k-mers, and thus
can also change the Jaccard index. Let εi denote the base-
miscall rate for genome skim i. For large k and small εi, the
probability that an erroneous k-mer produces a non-novel
k-mer is negligible. The probability that a k-mer is covered
by at least one read, without any error, is approximately

ηi = 1 − e−λi(1−εi)k . (6)

Adding up the number of error-free and erroneous
k-mers, the total number of k-mers observed from
both genomes can again be approximately modeled as a
Gaussian with mean ζiL for

ζi = ηi + λi
(
1 − (1 − εi)

k
)
. (7)

Just as before, we can simply estimate D by solving for
it in

J = η1η2(1 − D)k

ζ1 + ζ2 − η1η2(1 − D)k
. (8)

When the coverage is sufficiently high, each k-mer will
be covered by multiple reads with high probability, and
low-abundance k-mers can be safely considered as erro-
neous. Mash has an option to filter out k-mers with
abundances less than some thresholdm to remove k-mers
that are likely to be erroneous. In this case,

ζi = ηi = 1 −
mi−1∑

t=0

(
λi(1 − εi)k

)t

t!
e−λi(1−εi)k (9)

assuming all erroneous k-mers are removed. For instance,
filtering single-copy k-mers (i.e.,m = 2) gives us:

ζi = ηi = 1 − e−λi(1−εi)k − λi(1 − εi)
ke−λi(1−εi)k

and the Jaccard index follows the same equation as (8).
Since this filtering approach only works for high coverage,
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we filter low-coverage k-mers only when our estimated
coverage is higher than a threshold (described below).
Note that the genome skims compared may use different
filtering schemes, yet Eq. 8 holds regardless.

Differing genome lengths
Based on a model where the genomic distance between
genomes of different lengths is defined to be confined to
the mutations that are falling on homologous sequences,
we can drive

J = η1η2 min(L1, L2)(1 − D)k

ζ1L1 + ζ2L2 − η1η2 min(L1, L2)(1 − D)k
.

This computation does not penalize for genome length
difference. While a rigorous modeling of evolutionary
distance for genomes of different length requires sophis-
ticated models of gene gain, duplication, and loss, we take
the heuristic approach used by Ondov et al. [46] and sim-
ply replace min(L1, L2) with (L1 + L2)/2. This ensures
that the estimated distance increases as genome lengths
becomes successively more different. This leads us to our
final estimate of distance given by:

D = 1 −
(

2(ζ1L1 + ζ2L2)J
η1η2(L1 + L2)(1 + J)

)1/k
(10)

Estimating sequencing coverage and error rate
So far we have assumed a perfect knowledge of sequencing
depth and error. However, for genome skims, the genome
length is not known; thus, we need to estimate the cov-
erage in order to apply our distance correction. We also
assume a constant base error rate, and co-estimate it with
the coverage.
The sequencing depth, which is the average number

of reads covering a position in the genome, can be esti-
mated from the k-mer coverage profiles. The probability
distribution of the number of reads covering a k-mer is a
Poisson r.v. with mean λ, where λ is defined as k-mer cov-
erage. As we look into the histogram data, it is easier to
work with counts instead of probabilities. Let M denote
the total number of k-mers of length k in the genome,
and Mi count the number of k-mers covered by i reads.
Thus, for i ≥ 0, E[Mi]= M λi

i! e
−λ. For a given set of

reads, we can count the number of times that each k-mer
is seen, and assuming zero sequencing error, it equals the
number of reads covering that k-mer. Then, we can aggre-
gate the number of k-mers covered by i reads and find
Mi for i ≥ 1. However, since in a genome skim, large
parts of the genome may not be covered, both M and M0
are unknown. To deal with this issue, we could take the
ratio of consecutive counts to get a series of estimates
of λ as λ̃i = Mi+1

Mi
(i + 1) for i = 1, 2, . . .. In practice,

sequencing errors change the frequency of k-mers and has

to be considered when estimating the coverage. Assum-
ing that the error is introduced at a constant rate along
the reads, we can use the information in the k-mer counts
to co-estimate ε and λ. Like before, we assume that the
k-mer length k is large enough that any error will intro-
duce a novel k-mer, so the count of all erroneous k-mers
is added to the count of single-copy k-mers. Moreover, for
k-mers with more than one copy, the number of times that
each k-mer is seen equals the number of reads covering
that k-mer without any error. Formally, let M̂i denote the
count of k-mers seen i times in the presence of error, and
ρ = (1 − ε)k denote the probability of error-free k-mer.

E

[
M̂i

]
=

{ ∑
j≥i M

λj

j! e
−λ

(j
i
)
ρi(1 − ρ)j−i i ≥ 2

∑
j≥1M

λj

j! e
−λ

(
jρ(1 − ρ)j−1 + j(1 − ρ)

)
i = 1

=
{
M ξ i

i! e
−ξ i ≥ 2

M
(
ξe−ξ + λ − ξ

)
i = 1

(11)

where ξ = λρ is the average number of error-free reads
covering a k-mer. A family of estimates for ξ is obtained
by taking the ratio of consecutive counts of error-free k-
mers as ξ̃i = M̂i+1

M̂i
(i+1) for i ≥ 2. Then, using an estimate

of ξ and the count of single-copy k-mers, we get a series
of estimates of λ for i ≥ 2 as

λ̃i = M̂1

M̂i

ξ̃ i

i!
e−ξ̃ + ξ̃

(
1 − e−ξ̃

)
. (12)

Moreover, we can estimate the error rate from the esti-
mates of λ and ξ as

ε̃ = 1 −
(
ξ̃ /λ̃

)1/k
. (13)

While any of these ξ̃i and λ̃i can be used in principle,
the empirical performance can be affected by the choice;
in our tool, we use heuristic rules (described below) that
seek to use largeMi values.

Skmer: implementation
Skmer takes as input two or more genome skims. It uses
JellyFish [49] to compute Mi values, which are then used
in estimating λ and ε based on Eqs. 12 and 13, by setting
ξ̃ = ξ̃h and λ̃ = λ̃h, where h = argmaxi≥2Mi. Then, Mash
is used to estimate the Jaccard index, with k = 31 (selected
empirically; Additional file 1: Figure S14) and sketch size
107. Finally, we use Eq. 10 to compute the hamming dis-
tance with η and ζ values computed using Eqs. 6, 7 if c < 5
or else using Eq. 9. The genome length L is estimated as
the total sequence length divided by the coverage c.
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Experimental setup
Method settings
For Skmer, we use the default parameters described above.
For Mash, similar to Skmer, we used k = 31 (selected
empirically; Additional file 1: Figure S14) and sketch size
107. As Mash handles errors by removing low copy k-
mers, we set the minimum cardinality for k-mers to be
included as

⌊ c
5
⌋ + 1 with our estimate of c.

AFF has an algorithm to correct hamming distances for
low coverage, but the correction relies on adjusting the
length of tip branches in a distance-based inferred phy-
logeny. As such, it cannot run on a pair of genomes and
requires at least four genomes. Also, AAF leaves cover-
age estimation to the user with some guidelines, which we
fully follow (Additional file 1: Appendix C).
For building phylogenetic trees, we transformed Skmer

distances using the JC69 [51] model and used FastME
[50] to construct the distance-based trees via BIONJ [74]
method.

Genomic datasets
We used an assembly of Cotesia vestalis (GenBank acces-
sion: GCA_000956155.1) as well as three sets of publicly
available assembled genomes (Additional file 1: Tables
S2-S4) and used ART [75] to simulate genome skims of
read length � = 100 with default sequencing error profile,
controlling for the sequencing depth (coverage) (Addi-
tional file 1: Appendix C). Specifically, the data included
21 Drosophila genomes (flies) and 22 genomes from the
Anopheles genus (mosquitoes) obtained from InsectBase
[76], and 47 avian species from the Avian Phylogenomic
Project [77, 78].
For the experiment on real genome skims, high-

coverage SRA’s of 14 Drosophila species were obtained
fromNCBI database under project number PRJNA427774
[79] and then subsampled to 100 Mb. Assemblies used to
compute true distances for these 14 Drosophila species
were obtained from the Drosophila project [80]. We used
the tool fastp [81] for filtering low-quality reads and
adapter removal. We also used Megablast [82] to search
against a database of bacterial andmitochondrial genomes
and remove contaminant reads. We used Bowtie2 [64]
with the highest sensitivity to remove the reads aligning
(even partially) to the human reference genome.
To simulate genomes with controlled genomic distance,

we introduced random mutations. As a challenging case,
we took the highly repetitive assembly of the wasp species
Cotesia vestalis, andmutated it artificially; we only applied
single nucleotide mutations distributed uniformly at ran-
dom across the genome. We repeated the study on the
simpler case of the fly species D. melanogaster. We gen-
erate genome skims using ART with � = 100, default
error profile of Illumina sequencer, and varying cover-
age between 1

64× and 16×. For simulated genomes, we

repeated the subsampling 10 times and reported the mean
and standard error.
In order to compare with DNA barcoding method, we

downloaded available COI barcodes for the Drosophila
and Anopheles species in the BOLD database [12]. Out of
21 Drosophila and 22 Anopheles species in our dataset,
16 Drosophila and 19 Anopheles species had one or
more barcodes in BOLD. For each species, we selected
a barcode, and using MUSCLE [83], aligned all barcodes
within each dataset and constructed the phylogenetic tree
assuming the Jukes-Cantor model. Under the same model
of substitution, we transformed Skmer distances and
built the Skmer tree. We used FastME [50] to construct
the distance-based trees via the BIONJ [74] method.
The maximum-likelihood COI trees were built using
PhyML [84].

Evaluationmetrics
For simulated data, the true distance is controlled and is
thus known. For biological datasets, the ground truth is
unknown. Instead, we use the distance measured on the
full assembly by each method as its ground truth; thus,
the ground truth for AAF is computed using AAF. We
show both absolute error and the relative error, measured
as

∣
∣∣ d̂−d

d

∣
∣∣ where d and d̂ are the true and the estimated

distances.

Leave-out
We used a leave-out strategy to study the accuracy of
searching for a query genome in a reference set. For a
query genome Gq in a set of n genomes {G1 . . .Gn}, we
ordered all genomes based on their distances to Gq cal-
culated using the full assemblies, which represents the
ground truth; let G1

q . . .Gn
q denote the order, and d1q . . . dnq

be the respective distances from the query (note G1
q = Gq

and d1q = 0). For 0.01 ≤ d ≤ 0.10, we removed genomes
1 . . . i from the datasets where i is the largest value such
that diq ≤ d, leaving us with Gi+1

q . . .Gn
q . We then ordered

the remaining genomes by each method; let x1 . . . xn−i be
the order obtained by a method and let r be the the rank
of the best remaining genome according to the ground
truth in the estimated order

(
i.e., x1 = Gi+r

q

)
. Since r = 1

implies perfect performance, and r > 1 indicates error,
we measured rank error as the mean of r − 1 across all
query genomes (1 ≤ q ≤ n). Moreover, themean (relative)
distance error is defined as the mean of di+r

q −di+1
q

di+1
q

over all
queries.
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