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Abstract
The considerable interest in the high performance computing (HPC) community regarding analyzing and visualization data
without first writing to disk, i.e., in situ processing, is due to several factors. First is an I/O cost savings, where data is ana-
lyzed/visualized while being generated, without first storing to a filesystem. Second is the potential for increased accuracy, where
fine temporal sampling of transient analysis might expose some complex behavior missed in coarse temporal sampling. Third
is the ability to use all available resources, CPU’s and accelerators, in the computation of analysis products. This STAR paper
brings together researchers, developers and practitioners using in situ methods in extreme-scale HPC with the goal to present
existing methods, infrastructures, and a range of computational science and engineering applications using in situ analysis and
visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics

1. Introduction

The traditional use model for analysis and visualization has been
to write data first to persisent storage, then later read it back into
memory for the purpose of analysis or visualization. This post hoc
usage reflects that visualization or analysis is performed “after the
fact.” An alternative approach, for which we use the umbrella term
in situ, is one where visualization or analysis processing happens
without first writing data to persistent storage. While the concept of
in situ processing has existed for several decades, the motivations
for its use have varied over time in response to changing needs of
the scientific community and to the changing balance of computa-
tional architectures.

In the present, there is a great deal of active work and interest
in in situ methods, infrastructures, and applications. This interest
is particularly strong in high performance computing (HPC) where
machines are built with multiple processors to achieve much greater
computational capacity than is possible with single systems. The
largest HPC systems today aggregate the power of many thousands
of processors to achieve over 1016 floating point operations per sec-
ond (FLOPS). This STAR report brings into focus several different

dimensions of this vibrant area into one place with an emphasis on
the many significant recent advances of in situ for HPC applica-
tions. It is timely, due to the rapidly changing landscape of compu-
tational architecture that accompanies the evolution from petascale-
to exascale-regime computing, along with the attendant challenges
facing computational, computer, and domain scientists. Because of
breadth and diversity in the in situ space, as well as a significant
amount of historical work, this STAR report covers a significant
amount of material in several different dimensions. However, the
scope of this STAR report is limited to HPC applications and does
not include “big data” applications or HPC architectures designed
for big data.

We begin with a discussion of the motivations for in situ meth-
ods and approaches (§ 2). In some cases, these motivations include
the desire to perform computational steering, which can help in
decreasing time-to-solution for some challenging computational
problems. In other cases, pursuit of in situ methods is a practical
necessity due to the architectural balance present in modern HPC
platforms that favors FLOPS over I/O.

Owing to the diversity of approaches and considerations, we de-
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vote an entire subsection (§ 3) to terminology in this space. Because
there are many different ways of performing in situ processing, and
because this style of processing has been labelled with different
terms over the decades, there is a rich and diverse vocabulary of
terms that are in use to describe different aspects of this domain.

Next, we provide a review of previous and current work in
this space (§ 4), some of which goes back over two decades. In
some cases, early work is targeting computational steering, while
more recent works focus on infrastructures and on methods that
help overcome some of the fundamental limitations of in situ ap-
proaches, namely the limited ability for exploratory visualization
analysis as a post process.

Bringing the focus more into the present, we next go into some
depth for four different in situ infrastructures (§ 5), with an eye to-
wards helping give a sense of how a developer would integrate one
of these infrastructures with a simulation code along with a view of
the types of in situ methods and operations each supports.

We devote an entire section (§ 6) to show the use of in situ meth-
ods and infrastructure applied to specific contemporary science
problems in climate modeling, structural engineering, and magnetic
fusion energy modeling.

2. Motivation for In Situ Methods and Infrastructure

On the surface, one might be inclined to believe that it is some-
how simpler and less complex to simply have a simulation write
data to persistent storage and then later do post hoc analysis or vi-
sualization. After all, why would one want to potentially increase
the complexity of an already complex simulation code with the ad-
dition of new code that does additional analysis or visualization
processing? That line of reasoning is predicated upon two assump-
tions, though, that don’t always hold true. The first is the view that
the simulation is a write-only “black box” that will run, from start
to finish, free from any sort of intervention or external and dynamic
input, which is a capability statement. The second is that it is ac-
tually possible to write some, or all, data to persistent storage for
subsequent analysis, which is a capacity statement. A third issue is
the very real fact of economics: moving data around is expensive in
terms of energy, and disks and I/O fabric are expensive, as is having
separate computational infrastructure for performing visualization
and analysis.

As we discuss later (§ 4), a significant body of earlier work in
the in situ space focused on computational steering and interaction,
which takes aim at the capability argument. In some cases, finding
a good set of initial conditions for a simulation, so that it can con-
verge to a meaningful result, is not something that can be done ana-
lytically. Having means to interact with a simulation, to gain quick
feedback on how a change in an input parameter will affect the sim-
ulation, or perform on-the-fly debugging, is a significant capability
that can, in the long run, result in more efficient use of computa-
tional resources. In other cases, some computational problems that
are known to be NP-hard, can be guided towards a solution with
a human-in-the-loop, who can cull portions of the potential solu-
tion space believed to be non-optimal. Finally, in many cases, it is
desirable to periodically check on the progress of a running simula-
tion, and perhaps induce early termination if it is not going well. In

all these cases, it might be possible to accomplish these objectives
using a post hoc processing path, where simulation data is written
first to persistent storage, then read from storage for visualization
or analysis processing. This approach would be possible only if it
is possible write all the data to persistent storage. The post hoc ap-
proach here is, by definition, a one-way flow of information, and
would preclude somehow providing information back into the sim-
ulation.

The real challenge, though, and the one that is the primary focus
of most in the community today, is the fact that it is increasingly
difficult to write simulation data to persistent storage. There is a
very clear reason for this challenge, and very real impacts on our
ability to perform scientific investigation. The reason stems from
the fact there simply is insufficient I/O capacity on modern HPC
systems, and that the problem will be getting worse. Therefore, in
situ methods and approaches are of increasing interest and impor-
tance to the HPC computational science community.

An ongoing trend in high performance computing is an expo-
nential increase of the computational throughput of the machine,
but a comparatively much smaller increase in the bandwidth to the
disk storage system [Ahe12, BDE13, Ahr15, Mor16]. This has lead
to a very large disparity between the computation bandwidth and
storage bandwidth even today. For example, as demonstrated in
Figure 1 on the Titan supercomputer at the Oak Ridge Leadership
Class Facility, there are five orders of magnitude difference between
the aggregate computational bandwidth and the peak bandwidth to
the parallel file system. The next generation supercomputer there,
Summit, will have more than 5 times the amount of computation as
Titan, but there will be no improvement to the storage system.

As the disparity between computation bandwidth and storage
bandwidth grows, simulations are capable of writing out only
smaller proportions of the data that are generated. Attempting to
write too much information to disk storage could stall the sim-
ulation, possibly enough to prevent the simulation from making
progress. Given a large enough disparity between computation
bandwidth and storage bandwidth, a simulation may be incapable
of writing enough data to properly analyze the results.

The in situ approach circumvents this bottleneck by removing
the necessity of first storing data to persistent storage before pro-
cessing. By running the visualization or analysis on the data as they
are generated and while the simulation is still running, it is possi-
ble to have a much more thorough analysis by processing data that
would otherwise be discarded.

All types of visualization and analysis can benefit from access
to full spatio-temporal resolution data. However, it is particularly
valuable for certain classes of operations, such as flow analysis
and feature tracking, whose output fidelity increases with access
to higher resolution input data.

Ultimately, in situ visualization can be used to maximize the in-
formation in data written to disk. Most visualization processes have
a tendency to reduce the amount of data required to represent infor-
mation. In situ implementations can also help provide more general
data reduction capabilities such as compressing data and making
better determinations of which regions should be captured at what
times.
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Figure 1: A plot of the relative bandwidth of system components in the Titan supercomputer at the Oak Ridge Leadership Class Facility.
The widths of the blue boxes are proportional to the bandwidth of the associated component. Multiple scales are shown to demonstrate the 5
orders of magnitude difference between the computational bandwidth and the storage bandwidth. Image source: Moreland.

The in situ approach has the potential to reduce the overall cost
of performing computational science. HPC systems dedicated to
visualization can comprise a significant proportion of the overall
facility [Chi07], so integrating visualization with simulation and
running directly on the computational resources could make the
most of facilities dollars. Making use of the same computational
platform for both simulation and visualization/analysis activities
reflects an economy of scale, where a center does not need sepa-
rate platforms and additional support staff [BvRS∗11].

In addition to these classic motivations for in situ visualization,
the primary reason for the recent increase in interest comes from
preparation for computational science on exascale computers. In
situ visualization is considered a critical technology for achieving
scientific discovery at exascale [ASM∗11, Ahe12, Mor12, CGS∗13,
BDE13, Ahr15].

3. In Situ Methods

The term “in situ visualization” has evolved into an umbrella term
to cover a variety of methods for processing. Recently, a group of
approximately fifty visualization scientists convened to formalize
the terminology for describing different in situ methods [ins16],
also known as the “In Situ Terminology Project.” This group cur-
rently is characterizing in situ methods using six axes: integration

type, proximity, access, synchronization, operation controls, and
output type. This section describes these axes, drawing from ideas
and discussion from the participants of the In Situ Terminology
Project.

3.1. Integration Type

Several different methods are used to integrate visualization ca-
pabilities into running simulations. There are many examples of
simulation developers creating and embedding their own visualiza-
tion routines as part of the simulation system. Such implementa-
tions tend to be lightweight but unsuitable for reuse elsewhere. For
more universal reuse of in situ visualization capabilities, there exist
general-purpose libraries intended to be used by simulations to in-
corporate visualization routines. These libraries allow visualization
capabilities designed by one group to be directly integrated into a
simulation of another group.

There are also indirect methods to integrate in situ visualization
with a simulation. One such approach is to use a shared protocol to
indirectly connect the two components. This approach can be real-
ized through a middleware framework, such as ADIOS [LZKS09]
or GLEAN [VHMP11] (both discussed further in § 5), where one
or both of the components could be using the simulation data for
purposes in addition to visualization. Another indirect integration
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method is function interposition where functions already used in
the simulation are replaced by functions that do in situ visualization
processing. For example, the simulation’s function to write data to
disk can be replaced, unbeknownst to the simulation code, with an
alternate function that intercepts the data for visualization purposes.

3.2. Proximity

The proximity between visualization routines and the simulation
code can greatly affect performance. Enumerating all possibilities
for proximity is difficult, especially in the face of emerging archi-
tectures and deep memory hierarchies. The closest proximity for
in situ routines is to share the same cores as the simulation, but
even this basic configuration is complicated when considering how
data is moved through the cache. The furthest proximity for in situ
would be to send data to faraway nodes, possibly even to distinct
machines (and possibly even to another continent). This model,
where data is moved between nodes, is sometimes referred to as
in transit processing. Points along the close-to-far proximity spec-
trum include architectural features such as burst buffers, local file
systems, dedicated connections (e.g., PCI between CPU and GPU,
NVLink between GPUs), etc. Finally, it is important to note that
visualization routines may run in multiple locations. A common
example would be to run data triage routines on the same nodes as
the simulation and also to run additional visualization routines on
distinct nodes (that access data via a transport operation).

3.3. Access

An important description of an in situ system is its access to simu-
lation data. With direct access, the visualization routine runs in the
same logical memory space as the simulation code. In this case, the
visualization routine typically gains access to data via pointers to
simulation memory. With indirect access, the visualization routine
runs in a distinct logical memory space separate from the simula-
tion code. In this case, the visualization routine typically gains ac-
cess to data via a communication mechanism that copies data from
the logical memory space of the simulation.

Access is often conflated with proximity, because direct access
occurs most often with on-node proximity, and indirect access oc-
curs most often with off-node proximity. However, the remaining
options are possible, although not common. Indirect access and on-
node proximity occurs when visualization routines are run on the
same nodes as the simulation, but using distinct memory resources
(likely as a separate program running alongside the simulation).
While this approach incurs extra overhead for accessing data, it en-
ables clear separation between simulation and visualization, which
can lead to simpler implementations. Direct access and off-node
proximity can occur in PGAS-type settings. While this approach is
feasible in some settings, it would likely be impractical. For exam-
ple, if the simulation and visualization are located on distinct com-
puting resources connected with a slow network, then algorithms
that do random access within a data set are likely to perform slowly
due to latency. That said, algorithms that can hide latency could
still possibly perform well even in this setting.

3.4. Synchronization

Synchronization is about the relationship of “when” the visualiza-
tion routines and the simulation code operate with respect to each
other. With synchronous in situ, computing resources are devoted
exclusively to the visualization routine or the simulation. In this
model, the simulation and visualization routines trade off control of
the computing resources, with only one executing at a time. With
asynchronous in situ, the visualization routine occurs concurrently
with the simulation. In this model, the simulation and visualization
routines can execute at the same time. This sharing may occur by
partitioning compute nodes between simulation and visualization,
by sharing resources within a node for both activities, or by other
models where the allocation of resources vary over time.

As mentioned in the discussion of Proximity, visualization rou-
tines may be occurring in multiples locations within a single in situ
system. In this case, each routine may have its own synchroniza-
tion. Revisiting the example from the previous section of an ar-
chitecture that does data triage in close proximity and visualization
routines from distant proximity, it would be common for the former
to run synchronously (i.e., the simulation passes execution control
to the triage routine, which passes execution control back to the
simulation when finished) and the latter to run asynchronously (i.e.,
execute on data extracts after they arrive from the triage step).

3.5. Operation Controls

Operation controls describe whether the end user can modify which
visualization operations can be performed during execution. One
type of operation controls allows the end user to modify the visu-
alization operations being performed while the simulation is exe-
cuting. This is often referred to as “interactive” usage. Interactive
controls often have further distinctions regarding whether the sim-
ulation data can be modified (i.e., “steering”) or not. Another type
of operation controls requires that the set of visualization opera-
tions to be performed be fixed before the simulation begins, i.e.,
they cannot be changed by the user during execution. This is often
referred to as “batch” usage.

3.6. Output Type

Output type describes what the in situ visualization routines gen-
erate. While the output of the execution does not affect the design
of the system per se, many participants of the In Situ Terminology
Project felt that it was an important descriptor of the system.

Explorable outputs are outputs that are useful for post hoc ex-
ploration, while non-explorable outputs are outputs from visual-
ization routines that are not useful for post hoc exploration. These
two options are best seen as extremes of a spectrum. If the output
of the simulation is static images, for example renderings of iso-
surfaces, then that would typically be described as non-explorable.
That said, animating these images over time may enable post hoc
exploration, so even this simple example is fuzzy. Further, the Cin-
ema system [AJO∗14b], which extracts images in situ for multiple
visualizations, viewpoints, and time slices, and then enables post
hoc exploration by providing an environment where users can ex-
plore data in a traditional manner (for example by animating images
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from different viewpoints to fly around a data set), is an example of
an approach which produces images and yet is clearly explorable.
Other important examples of explorable extracts are those that com-
press fields, for example using wavelets, and those that extract key
portions or aspects of the data (for example subsetting or topology).

4. In Situ History and Survey

While interest and research are rising presently for in situ methods,
primarily due to the architectural motivations spelled out earlier
(§ 2), there is a long and rich history of prior work in this space that
dates back several decades.

The idea of generating images, or performing analysis, without
first writing data to persistent storage, is as old as the field of com-
puter graphics itself. In perhaps what may be the earliest known
and documented example, Zajac, 1964 [Zaj64] computes the orbital
path of two bodies and generates movie frames on-the-fly through a
direct-to-film process. The NCAR Graphics Library [NCA], origi-
nating in the 1960s, may be some of the earliest production-quality
“in situ infrastructure and methods”, and continues to be developed
and used by a world-wide community today. It consists of set of
subroutine-callable methods for generating images/plots of scien-
tific data. The NCAR Graphics Library has been widely utilized
for both in situ and post hoc use cases.

Since the earliest of days in the history of in situ, there have been
many diverse accomplishments that have explored many different
dimensions of the space. The survey of the salient work will be
organized along the following lines in ensuing subsections. First,
we present work from the 1990s and early 2000s (§ 4.1), which
focus primarily on coupling simulation codes with external infras-
tructures for in situ analysis and visualization, as well as highly
specialized in situ applications and methods. Second, we examine
the more recent large body of work (§ 4.2) that explores ways of
overcoming the limitations of in situ such as: non-explorable ver-
sus explorable in situ data products; coarse versus fine temporal
sampling; feature detection/tracking; guided simulation processing;
and intelligent reduction of data saved to persistent storage for sub-
sequent processing. In some cases, a given work has a contribution
to more than one of these categories. Finally, we describe the sig-
nificant amount of work focusing on topics related to in situ infras-
tructures (§ 4.3).

4.1. Early Work: 1990s-early 2000s

In a survey of methods and infrastructure of the in situ space, Hei-
land and Baker, 1998 [HB98], referred to this type of technology as
“co-processing systems”. That report focused on systems/methods
that support interactive computation, or computational monitoring
and steering. All the systems they surveyed have some visual data
exploration and analysis dimension. Those systems served as the
basis for a large body of work in the 1990s. A year later, Mulder,
et al., 1999 [MvWvL99] performed a similar survey of computa-
tional steering environments that included several additional sys-
tems. They distinguished three computational steering use cases:
model exploration, algorithm experimentation and performance op-
timization. They categorized each system based on these steering
use cases, user interface and architecture.

Two particular examples cited in the Heiland and Baker report
are pV3 and AVS. Haimes, 1995 [Hai95] couples a CFD code with
the pV3 distributed visualization toolkit [Hai94], and describes
the usefulness of being able to visually inspect calculations as
they evolve on a MPP-class system. pV3 itself supports distributed
memory operation, and uses an application interface design pat-
tern that is very similar to contemporary in situ infrastructures (c.f.,
§ 5.3). Bethel, et al., 1994 [BJH94] and Jacobsen, et al., 1995 [JB-
DGH95] couple a multi-phase flow code used for subsurface mod-
eling with the AVS system [UFK∗89] for the purpose of rapid con-
figuration of initial conditions, namely the location of injection and
production wells in a reservoir simulation. This implementation
makes use of the AVS co-processing API to connect the visual-
ization infrastructure to a simulation code.

Meanwhile, there were other independent research projects dur-
ing this period that did not use any of these infrastructures, and
instead focused on the core concept of producing images in situ
without first writing data to storage. For example, Ma, 1995 [Ma95]
describes a method for doing volume visualization concurrent with
a parallel CFD solver on an Intel Paragon.

Along a similar vein, Globus, 1995 [Glo95] proposed a visu-
alization software model where data extracts could be generated in
the simulation run to reduce the size of unsteady CFD output. These
extracts could then be further processed later in order to generate
graphics. The model consisted of a database for organizing the var-
ious in situ and post-processed visualization products in order to
enable rapid exploration of the results post hoc. In the analysis, he
compared several extract outputs to the full data size and compute
times for extraction compared to rendering for the results.

4.1.1. Integrated Computational Environments

As machines and software technology evolved, at times the dis-
tinction between in situ framework and computational framework
have blurred. During this period, integrated computation or prob-
lem solving environments were widely explored. Related to in situ
visualization, Tu et al. [TYRG∗06] propose integrating the entire
simulation workflow, including mesher, partitioner, solver, and vi-
sualization, in a single execution for the sake of efficiency. They
implement this idea in a finite element simulation system for earth-
quake modeling named Hercules. SCIRun [Ins15,PJB97] is a prob-
lem solving environment developed at the University of Utah. It is
designed for interactive construction and in situ steering of simula-
tions.

The Cactus Code framework [GAL∗03] consists of infrastructure
for building codes (the “flesh”) and then add-on components (the
“thorns”) that provide specific types of functionality. Cactus pro-
vides in situ visualization and analysis capability through this thorn
mechanism. For example, one can view a Cactus-generated in situ
visualization of simulation results while it is running by pointing a
browser at a URL that is specific and unique to that simulation run.

Finally, specialized applications emerged that made use of
custom code that focused on a specific activity. Bethel et al.,
2000 [BTl∗00] made use of a distributed architecture that used
a combination of image-based and parallel rendering techniques
to address the challenges of large-data visualization, and use this
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methodology, which included in situ coupling with a binary black
hole merger simulation built in the Cactus framework, to win the
SC Network Bandwidth Challenge three years in a row [BS05].
That project used what we are referring to in this paper as a multi-
stage in transit processing model.

4.2. Focused Work

In this subsection, we examine the more recent, large body of re-
search and development that explores ways of overcoming the per-
ceived limitations of in situ such as: non-explorable versus ex-
plorable in situ data products; coarse versus fine temporal sam-
pling; feature detection/tracking; guided simulation processing;
and intelligent reduction of data saved to persistent storage.

4.2.1. Explorable Extracts

With in situ visualization, the basic idea is that you produce images
showing the results of some visualization application. But what if
you want to change some of the visualization parameters, like view-
point position, isocontouring level, or so forth?

One of the common concerns about in situ methods is that they
produce results that are not “explorable.” In other words, with tradi-
tional post hoc approaches, a visualization application would allow
a user full, unconstrained navigation through the parameter space of
potentially dozens of different visualization or analysis operations.
That property is something that makes those post hoc applications
so useful in terms of scientific discovery. To overcome that limi-
tation, there has been a great deal of work in the past decade that
focuses on different dimensions of the problem.

Chen et al., 2008 [CYB08] present the idea of computing a col-
lection of imagery from a visualization application in a way that
represents a discrete sampling of parameter settings in a visualiza-
tion application, e.g., viewpoint, isocontour level, time step, and
so forth, and then using a remote lightweight client to allow a
user to explore this collection of pre-rendered images. Ye et al.,
2013 [YMM13] focused on facilitating flow-field visualization in
an in situ setting, where post hoc interactions focus on changing
viewpoint, doing block cutaways, or changing the lighting or color
transfer function. Finally, Ahrens et al., 2014 [AJO∗14b] explore
extracting many images and creating seamless animations using the
Cinema system.

Others have looked at exploring enhanced images that can
be used as input to create new renderings. Tikhonova et al.,
2010 [TCM10] focused on isosurfaces, storing layers of images
that could be explored, and referred to the approach as visualiza-
tion by proxy. She later demonstrated this technique in an in situ
setting [TYC∗11]. Fernandes et al., 2015 [FBF∗15] focused on cre-
ating volume renderings, by capturing regions of interest via volu-
metric depth images (VDI) to enable later exploration.

Other works have focused on extracts derived from topology.
Duque et al., 2005 [DL05] extract isosurfaces into their XDB
format for later exploration in their FieldView visualization tool.
Biedert et al., 2015 [BG15] utilize contour trees to create compact
image-based representations which enable explorative analysis and
visualization, including analysis based on specific subsets of the

contour tree’s segmentations. Similarly, Ye et al., 2015 [YWM∗15]
extract features into depth maps to enable post hoc feature extrac-
tion and tracking.

Lastly, Agranovsky et al., 2014 [ACG∗14] considered in situ re-
duction and post hoc exploration in the context of flow visualiza-
tion. Rather than using the traditional Eulerian frame of reference,
i.e., interpolating particle trajectories from vector fields, they con-
sidered a paradigm where Lagrangian basis particles were extracted
in situ and new trajectories could be interpolated from the basis tra-
jectories post hoc. This paradigm was shown to be faster, more ac-
curate, and use less storage than the traditional approach, because
their Lagrangian particles were able to benefit from the increased
temporal resolution afforded by in situ processing.

4.2.2. Fine Spatiotemporal Sampling

In typical post hoc workflows, simulations typically perform data
saves at relatively infrequent temporal intervals. This situation
arises from the disparity between the ability to compute and save
data. In situ methods offer the potential to perform visualization
or analysis processing at a much higher temporal resolution than
would otherwise be possible in a post hoc scenario.

Ellsworth, et al., 2006 [EGH∗06] describe a concurrent visual-
ization pipeline used in a production environment for use with a
weather forecasting code, where shared memory buffers hold sim-
ulation output for use by visualization tools. Their concurrent pro-
cessing pipeline enabled this team to achieve and 864-fold increase
of temporal resolution in animations, aiding scientists in gaining
new insights. Coupling custom in situ methods with a combus-
tion simulation code running on a large parallel machine, Yu, et
al., 2010 [YWG∗10] enable scientists to see phenomena that are
high frequency in nature, or that occur with temporal sparsity.

In a related vein, computational scientists may be forced to run
their codes at reduced spatial resolution due to the large cost as-
sociated with performing full spatial resolution I/O. Rübel et al.,
2016, [RLV∗16], customize production in situ methods and in-
frastructure for guiding in situ domain-science focused query- and
feature-based analytics to facilitate deeper understanding of phe-
nomena in an ion accelerator simulation. This approach enables
computational scientists to overcome the high cost of I/O and run
their codes at higher model resolution than would otherwise be pos-
sible.

4.2.3. Feature Detection/Tracking

In Situ methods can be used to adequately detect and track
and ultimately output features in a running simulation in order
to significantly reduce data output. To this end, Bennett et al.,
2012 [BAB∗12] combine in situ and in transit processing using the
ADIOS framework to compute merge trees for combustion sim-
ulations. A topological segmentation [BWT∗11] accelerates com-
puting statistics concerning burning regions and defines a reduced
data representation that still supports analysis for multiple fuel con-
sumption thresholds.

Additionally, Morozov and Weber, 2013 [MW13] describe an
algorithm to compute a distributed representation of merge trees,
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which describe the connectivity in scalar fields (connected compo-
nents below a given thresholds), and write halo catalogs to stor-
age for subsequent analysis. Here, halos are features of interest in
cosmological simulations, and the size of halo catalogs is tiny in
comparison to the size of simulation output.

4.2.4. Guided Simulation Processing

Simulation codes often have some form of intrinsic analysis that
will help guide processing. For example, AMR-based codes [Ber]
will often refine the spatial domain in regimes of “interesting
physics.” Using this information, simulations can be steered by
leveraging in situ instrumentations.

Crivelli et al. 2004 [CKH∗04] couple custom in transit meth-
ods and infrastructure with a parallel code that computes minimal-
energy protein structure configurations with external visual data
exploration and analysis tools that provide visual feedback on the
solution progress, as well as to steer the simulation towards an op-
timal solution by pruning unrealistic or unpromising combinations
of permutations. Here, the use of an in transit methodology helps
to accelerate convergence of a computation for a problem that is
NP−hard.

Biddiscombe et al. 2012 [BSO∗12] developed ICARUS, a sim-
plified in situ interface for codes that output results to HDF5. By
changing the HDF5 function calls to ICARUS function calls with
the same API they were able to send the simulation data to a Par-
aView server without further code modification. A ParaView plugin
allowed for interactive simulation monitoring and steering. Rivi et
al. 2012 [RCMS12] reviewed instrumenting two simulation codes
with ICARUS and another with Libsim and presented some parallel
performance analysis of ParaView and VisIt.

4.2.5. Intelligently Reduced-size Data Products

Some works consider a paradigm where in situ triage is used to
prioritize data where only the most important aspects are saved.
While the data reduction goal is also achieved through feature de-
tection/tracking use cases, these works explore other methods for
the intelligent reduction of data output.

First, Lehmann et al., 2014 [LJ14] consider both multi-
resolution and temporal compression of data using a technique
that can generate adaptively refined meshes. Nouanesengsy et al.,
2014 [NWP∗14] introduced a scheme around Analysis-Driven Re-
finement (ADR), also inspired by the principles behind adaptive
mesh refinement. Fernandes et al., 2014 [FFSE14] extend volu-
metric depth images (VDI) for compression of simulation results
for post hoc visualization. Their method takes advantage of space-
time coherence of time-dependent simulation data to obtain in situ
data reduction. Rübel et al., 2016 [RLV∗16] compute and save
histograms, statistics, and multivariate joint distribution functions
from both 2D and 3D simulations to enable intermodel comparison
and rapid post hoc exploration. Finally, Li et al., 2015 [LGP∗15]
considered the efficacy of wavelet compression, which prioritizes
based on wavelet coefficients, with an eye toward in situ.

4.3. In Situ Infrastructure Projects

While later in section § 5 we provide details of four contempo-
rary in situ infrastructures, this section provides a brief summary
of other contemporary in situ infrastructure projects. For each of
these projects, we give a short description and list their functional-
ity based on the categorization of in situ methods presented earlier
(§ 3). The categorization combined with the software availability
are contained in Table 1.

There exist a large number of simulation codes that have in situ
capabilities. A majority of these instrumentations have been fo-
cused on solving issues in their specific workflows and not devel-
oped with the goal for use with other codes. For that reason we
omit their coverage here. In addition, we do not include libraries
like VTK or NCAR Graphics in this section because they are gen-
eral purpose tools that would require significant development in
order to customize them for in situ use with a simulation code.

Cactus [GAL∗03, cac] is a computational framework that has
in situ capabilities. While Cactus is a framework, its design in-
cludes the ability to support legacy codes (C, C++, Fortran 77 and
Fortran 90) which allows it to be used as a way to instrument
an existing simulation code with Cactus’s in situ infrastructures.
Cactus provides thorns, to output data to screen or output files.
The remote screen output is done through a web-browser. The in
situ operations include isosurfacing, downsampling and subsetting
to reduce the data. Remote visualization is done through sending
polygons for isosurfacing and 2D slides for the rest. The output file
formats include images, ASCII and HDF files. In addition, steering
of pre-defined parameters can be done through a web-browser as
well.

CUMULVS [Koh], short for Collaborative User Migration, User
Library for Visualization and Steering, contains infrastructure for
visually monitoring and steering a simulation. The steering mecha-
nism allows for multiple connected users to coordinate the simula-
tion run progress through locking. Users can dynamically connect
and disconnect from a CUMULVS instrumented simulation code
run. Text and 2D viewers are included with CUMULVS for viewing
outputs but no 3D viewer is included. CUMULVS has a Fortran
and C interface and can operate on PVM or MPI interprocess com-
munication libraries. It handles topologically structured grids and
particle decompositions. CUMULVS does not support output of
data extracts or images. The last released version of CUMULVS
was version 1.3.0 alpha2 and is from 2003.

Damaris/Viz [DSP∗13, dam] is an in situ framework based on
the Damaris [Ker] middleware. It provides a simple way of con-
necting a simulation to in situ analysis and visualization tasks via
an external, XML-based data description. Damaris/Viz can be used
both synchronously and asynchronously. For asynchronous usage,
the simulation’s computing resources can be partitioned such that
a subset of cores in a multicore node or a subset of the nodes of a
job’s allocation can be used to run in situ analysis and visualization
tasks. While in situ tasks take the form of user-provided plugins
written in C++ or Python, Damaris/Viz also natively supports a
connection to VisIt through the Libsim interface.

EPIC [DHH∗15] is a toolkit for generating in situ surface ex-
tracts and then optionally computing a Proper Orthogonal Decom-
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position reduced order model for post hoc analysis and visualiza-
tion. It uses a master-slave MPI task hierarchy to manage the data
from the other analysis and user application tasks. The simulation
is required to use the EPIC defined MPI communicator.

EPSN [eps] is a library for computational steering and on-line
visualization. The in situ visualization tool works in parallel and
can disconnect and reconnect to the running simulation. A light-
weight GUI is included for examining results in situ. It allows
viewing and modifying the steered parameters and uses VTK and
IceT [Ice] for viewing. A front-end API is also included for con-
necting with a high-level visualization tool. EPSN version 1.0.0
came out in 2009 and the last code change is from 2011.

Freeprocessing [FPS∗14, fre] is a tool designed to reduce the
barriers for in situ integration. Its fundamental motivation is that
integrating in situ visualization routines into simulation codes is
labor-intensive, which in turn reduces the number of codes that
adopt the practice. Its approach is to use library interposition, in-
cluding co-opting IO routines to insert in situ visualization into
the simulation’s workflow. The authors then furthered their goal of
simplifying integration in separate work [FK15, vis] by observing
a simulation to identify when visualization should occur as well as
characterize memory organization for the purpose of creating in-
teractive visualizations. This removed Freeprocessing’s underlying
assumptions about the simulation code and its usage of I/O.

Nessie [LOKR11, LOK12], short for NEtwork Scalable Ser-
vice InterfacE, is a framework for developing parallel, application-
specific data services for HPC systems. These services include
checkpointing, interactive visualization, network traffic analysis,
and in transit analysis. Nessie uses a client-server architecture with
asynchronous methods with heterogenous system support. Nessie
is now part of Trilinos [Tri].

pV3 [Hai94, Hai], short for parallel Visual3, was developed at
MIT and handles 3D unstructured grids. It has variants that can use
PVM or MPI for inter-process communication. pV3 is designed as
a library that can be linked to for in situ visualization and analysis
and/or for post-processing results performing operations such as
isosurfaces, slices and probing. It has a GUI client that connects
to a parallel server through PVM. pV3’s design allows the GUI
to connect and disconnect from a running simulation to do in situ
analysis and visualization and also allows computational steering.
Additionally, extract output is also supported. The latest release of
pV3 is revision 2.05 and as of 2000 is no longer under development.

QIso [ZABP15] is an in situ library for parallel generating of
images of isosurfaces. It works with topologically regular grids and
has been shown to scale to 92,160 MPI ranks.

SCIRun [Ins15, PJB97] is a problem solving environment de-
veloped at the University of Utah. It is designed for interactive
construction, debugging, steering, and visualization of simulations.
SCIRun’s design is modular with the goal of having other modules
added to compute the desired physics. Several physics modules are
already included and in situ use is most easily done through build-
ing on top of the existing framework as opposed to use as a library.
SCIRun is publicly available and is still under active development
with a stable version 4.7 release in September 2014 and an alpha
release of version 5 available.

Strawman [LBC∗15] is a thin infrastructure designed to explore
the in situ analysis and visualization needs of simulation code de-
velopment teams planning for multi-physics calculations on ex-
ascale architectures. Another goal of Strawman is to serve as a
community proxy for research into in situ techniques. It uses Con-
duit’s [con] data model for describing uniform, rectilinear, and un-
structured grids, EAVL for the analysis and visualization pipeline
and IceT for the parallel compositing of the individual images. It
can perform a zero-copy use of the simulation data structures if the
formats match. Otherwise, a full copy of the data is required.

yt [TSO∗11] is a Python-based scripted visualization system de-
signed specifically for AMR data from astrophysics simulation al-
though it can be applied to data from other science problems as
well. yt is customarily used in file-based post-processing, but it also
contains a library interface that allows it to be integrated with sim-
ulation codes. yt is publicly available and is still under active de-
velopment with a stable release of version 3.2.3 in February 2016.

5. In Depth Analysis of Four In Situ Infrastructures

In situ analysis and visualization is still relatively new. Until re-
cently, the field has been dominated by ad hoc, proof-of-concept
prototypes initially concentrating on the monitoring and steering
use case for simulations, and later transitioning to in situ focused
work (as detailed in sections § 4.1 – § 4.3). However, several pro-
duction quality infrastructures have emerged. In this section, we
present three of the most widely deployed in situ infrastructures,
ParaView Catalyst, Libsim, and ADIOS, to give a full idea of de-
sign considerations and general functionality available. To balance
the methodologies presented in this section, we provide a deep dive
into a promising research infrastructure, GLEAN.

5.1. ParaView Catalyst

ParaView Catalyst is an in situ, in transit, and hybrid workflow
library [BGS15, FMT∗11], with a malleable application program-
ming interface (API), that orchestrates the delicate alliance between
simulation and analysis or/and visualization processes. It exposes
the renown capabilities of VTK [SML04] and ParaView [Aya15].
The analysis and visualization methods can be implemented in C++
or Python and can run in situ, in transit, or a hybrid of the two
methods. Python scripts can be crafted from scratch or using the
ParaView GUI to interactively setup prototypes and export as Cat-
alyst scripts.

The largest scale run to date used 256K MPI processes
on Argonne National Laboratory’s BlueGene/Q Mira ma-
chine [RSC∗14]. The scaling studies utilized Parallel Hierarchic
Adaptive Stabilized Transient Analysis (PHASTA), a highly scal-
able CFD code, developed by Kenneth Jansen at UC Boulder, for
simulating active flow control on complex wing design (see Fig-
ure 2).

5.1.1. Methods

Catalyst supports In Situ workflows as it was designed to run syn-
chronously with the simulation, where analysis methods and visu-
alization pipelines are executed along side the simulation run, in
the same address space.
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Tool Synchronization Operation Controls Integration Type Availability
Cactus Synchronous Interactive Framework Public
CUMULVS Synchronous Interactive Direct Integration Public
Damaris/Viz Both All Shared Protocol Public
EPIC Asynchronous Batch Direct Integration Private
EPSN Both Interactive Direct Integration Public
Freeprocessing Synchronous Batch Interposition Public
Nessie Asynchronous Batch Shared Protocol Public
pV3 Asynchronous Interactive Direct Integration Public
QIso Synchronous Batch Direct Integration Private
SCIRun Synchronous Interactive Framework Public
Strawman Synchronous Batch Direct Integration Public
yt Synchronous Batch Direct Integration Public
ADIOS* Both Both Shared Protocol, Direct Integration Public
Catalyst* Synchronous All Direct Integration Public
GLEAN* Both Batch Shared Protocol, Direct Integration, Interposition Public
Libsim* Synchronous All Direct Integration Public

Table 1: Categorization of in situ infrastructures. Note that ADIOS, Catalyst, GLEAN and Libsim are discussed in detail in § 5.

Figure 2: Catalyst was utilized to contour two separate PHASTA
quantities that are used for fluid flow computation and analysis,
wall distance and Q-criterion, and generated Q-criterion contours
colored by velocity magnitude. Inset shows a zoomed view of the
wing tip. Image source: Rasquin & Jansen, UC Boulder

In Transit workflows can be implemented using two sub-groups
of a global MPI communicator: one for simulation processes and
one for analysis and visualization processes. However, the data
movement from the simulation processes is not automatic, and re-
quires the writing of an additional communication routine during
instrumentation.

Catalyst enables Hybrid workflow using VTK’s I/O capabilities
or by leveraging additional middleware such as Nessie [OMFR14].
For example, analysis methods and visualization pipelines could
send intermediate results to burst buffers, and ParaView or another
application would pull data from the burst buffers for interaction
and/or further analysis.

In addition, Catalyst can connect to a separately running Par-
aView Live session for exploring results as they are being produced.
The Live method can facilitate a Monitoring/Steering workflow.
This, in turn, enables subtly unique Analysis and Visualization

Steering workflows where the analysis methods and visualization
pipelines are modified interactively through user feedback.

Finally, synchronous and asynchronous communication patterns
are generally aligned with specific Catalyst workflows. Live sup-
ports both, and communications can be changed, as described
above with hybrid workflows, utilizing third-party software.

5.1.2. Basic In Situ Integration

Instrumenting a simulation with Catalyst is as simple as implement-
ing three routines: Initialize, CoProcess, and Finalize, but
mapping the simulation’s data structures to the VTK data model
may require significant effort. However, by leveraging the flexible
API, the impact on the simulation codebase can be minimized.

Catalyst needs to be initialized before the first invocation of
the CoProcess call using Initialize. This initialization step in-
cludes setting up the in situ output and Live connection option.
CoProcess is typically called for each time step as the simulation
progresses mapping simulation data structures and performing the
desired analysis or/and visualization. Finalize is called to clean
up Catalyst state including releasing any allocated memory.

Once implemented, end-users have access to the flexible analysis
and visualization capabilities associated with the ParaView appli-
cation in situ.

5.1.3. Products

Catalyst scripts provide access to a wide range of analysis methods
and/or visualization pipelines. These scripts may produce images,
statistical quantities, plots, derived information (such as polygonal
data geometry), and reduced or full data results. Recent work added
support for exporting explorable images or Cinema [AJO∗14b]
databases. These image databases can be post-processed using
light weight applications. Other efforts are adding support to se-
rialize analysis results using high performance I/O libraries like
ADIOS [LZKS09].
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5.1.4. Editions

For systems with limited memory, one common concern is the
size of code that Catalyst (through ParaView and its dependen-
cies) brings in. Eliminating components that are not used during
the analysis and/or visualization saves on the system memory used.
Reduced-size versions of the Catalyst library are called Catalyst
editions. Using a Python script included in the ParaView or VTK
source code, combined with JSON files describing the classes to in-
clude, customized Catalyst editions can be produced. Several edi-
tions are pre-configured in the ParaView source code. These pre-
configured editions have different levels of common analysis and
visualization functionalities included. The memory impact on the
simulation was closely examined in [FMM∗14] for several Cata-
lyst editions, build configurations and per node run concurrency.
Table 2 gives the increase in executable size for several of the pre-
configured editions using static Catalyst builds.

Name Size
Flyweight 2.1 MB
Base 16 MB
Base-Python 23 MB
Essentials 18 MB
Extras 23 MB
Essentials+Extras+Rendering 32 MB
Essentials+Extras+Rendering-Python 44 MB
Full ParaView 98 MB

Table 2: Size impact of common Catalyst editions on executable.

5.2. Libsim

Libsim [WFM11, CMY∗12] is an in situ library that enables data
analysis and visualization to be performed on simulation data us-
ing the full complement of tools available in the VisIt software.
Libsim is fairly low level and can be adapted to a variety of appli-
cations from batch-style simulations to interactive programs. Lib-
sim’s more recent niche has been the generation of engineering ex-
tract databases, or smaller feature based subsets of the simulated
data that provide enough information for useful post-processing
of the data, albeit on a much reduced version of the data. Lib-
sim has been used to produce extract databases in FieldView
XDB [WFL16] format using simulations such as OVERFLOW2,
CREATE-AV Kestrel, and AVF-LESLIE (see Figure 3) at over-
heads of between 2-3 percent of the overall solver runtime, depend-
ing on the solver and requested extracts. The runs for AVF-LESLIE
at 62K compute cores are currently the high water mark for Libsim,
though VisIt’s compute server, which forms the basis of the Libsim
runtime library has run up to 98K cores.

5.2.1. Methods

Libsim was conceived as a mechanism to allow users interactively
running the VisIt graphical user interface to connect to running sim-
ulations so that the simulation’s data could be explored and moni-
tored, offering a powerful debugging capability to simulation code
developers. The VisIt GUI can send commands to the simulation to
tell it which data to obtain, process in situ, and return to the VisIt
viewer for display. This enables users to interactively apply the full

Figure 3: Visualization of flame front from AVF-LESLIE. Image
source: Whitlock.

set of VisIt features to in situ data analysis and to also perform
some simulation steering via custom simulation user interfaces. All
Libsim data processing is done in the simulation’s address space,
using pointers to data stored in the simulation’s data structures. The
need for interactive visualization of the running simulation has been
overshadowed by a need to automatically create data products as
the simulation runs, for offline analysis when the job completes.
Libsim has adapted to this use case by providing a simpler-to-use
batch mode that adds new functions for programmatically setting
up the VisIt plots that form the foundation of the generated image
and extract data products.

5.2.2. Basic In Situ Integration

Libsim itself consists of two pieces: a control library and a runtime
library. Solvers normally link only to the control library, which is
a lightweight library that dynamically loads the Libsim runtime li-
brary. The separation of the front end and runtime libraries means
that typical simulations instrumented with Libsim do not grow ap-
preciably or use additional memory until in situ operations are re-
quested. To run at the highest levels of concurrency, it is possible to
statically link the Libsim libraries and their dependencies into the
executable, eliminating the added cost of loading shared libraries.

The typical batch-mode solver makes a few Libsim calls to set
up the environment needed to locate and load the Libsim runtime
library. Once the runtime has been loaded, Libsim functions for set-
ting up plots, saving images, or saving data extracts can be added to
the code. Data for these VisIt operations are obtained via an adap-
tor layer, which consists of C/C++, Fortran or Python functions
written by the simulation developer. The adaptor functions are in-
voked by the Libsim runtime library on demand when certain data
are needed and their role is to interface the simulation’s data struc-
tures with Libsim. Typically, adaptor functions will create Libsim
objects by making calls to the Libsim library and then store point-
ers to simulation data arrays in those Libsim objects, which are
ultimately returned to VisIt. VisIt uses the data stored in the Lib-
sim objects to create VTK objects whose data points directly to
the simulation data, enabling most data to be passed in a zero-copy
fashion.
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5.2.3. Products

Libsim builds on VisIt’s notion of plots, which are visual represen-
tations of data. Libsim provides functions for creating plots directly
or setting up more complex visualizations with multiple plots via
VisIt session files, which are XML files that describe all of the at-
tributes of a VisIt visualization. Once plots have been created, Lib-
sim provides functions for saving sets of image files or exporting
geometric plot data to visualization output formats such as VTK,
or FieldView XDB, among others.

5.3. ADIOS

ADIOS [LLT∗14, LKS∗08] is a high-performance I/O middleware
library that combines fast synchronous I/O to storage, with ad-
vanced capabilities for in situ and in transit processing. ADIOS
uses a high-level description of data to guide its data processing
pipeline. The data is described either through an external XML
file, or through a comprehensive descriptive API. The structural
and semantic information thus produced is maintained alongside
the stored data. ADIOS provides data access APIs that can utilize a
priori knowledge of data structure to read the data, as well as APIs
that enable dynamic discovery of the data’s structural and seman-
tic information. This enables a class of generalized data process-
ing components for analysis and visualization workflows. Applica-
tions have, in the past, utilized platform agnostic interfaces such as
Fortran native I/O, MPI-IO, etc, to address their needs; but there
is a performance penalty due to the over generalization of the in-
terface. ADIOS obviates this trade-off by introducing a platform
agnostic API for the application, and abstracting the architecture
specific I/O techniques to separate methods, thus providing both
a low maintenance interface and a high performance mechanism
for I/O. ADIOS has seen significant success in addressing the I/O
needs for many leadership class applications at the DOE Leader-
ship Class Facilities. For example, the XGC fusion simulation code
that runs at full scale on Titan uses ADIOS for data output and
leverages the in situ capabilities of ADIOS for online analysis and
visualization.

5.3.1. Methods

ADIOS is designed as a componentized application library, where
one of multiple available data transports can be selected at run-
time. An important benefit of this approach is that once applica-
tions utilize ADIOS for I/O, in situ and in transit workflows can be
instantiated without requiring any further modifications to the ap-
plication code. Transports such as DataSpaces [DPK12, DZJ∗14],
FlexPath [DCE∗13, ZCD∗11] and ICEE [CWW∗13] all follow the
same principle - data is buffered in memory at the application node,
additional in situ processing can be applied to this buffer, and the
processed data is moved to auxiliary nodes for an in transit work-
flow.

ADIOS supports execution of data processing actions in
situ [ZZC∗13] (data is buffered and processed in local memory), in
transit [ZAD∗10] (data is buffered and processed in remote mem-
ory), through post processing (data is accessed from storage) and a
combination of all three [BAB∗12]. Wide area networks are simi-
larly supported through a specialized transport.

5.3.2. Basic Integration

Adding in situ and in transit operators to applications that already
utilize ADIOS for I/O is a trivial operation - instead of using a to-
disk transport, the user can modify a single file to utilize a memo-
ry/network transport. The basic ADIOS interface comprises of two
distinct parts for data output. First, the application provides a de-
scription of the data, including the extents of arrays, the decom-
position of data within the parallel cohort and the specific trans-
port to be utilized. This information can further embed a visual-
ization schema to enable general visualization operations without
customization for a particular application or use case. Second, a
POSIX-write like API is provided for actual data output from the
application. In a coupled scenario, the data is made available to the
consumer at the end of the close operation.

The actual in situ operators also utilize the ADIOS read API for
access to data. The ADIOS read API was designed to enable dif-
ferentiated access to data through programmatic querying and se-
lection functionality. This enables visualization and analytic com-
ponents utilizing ADIOS for data access to easily convert to in situ
operation.

The read API also provides introspection support for the data
structure, allowing applications to discover variables at runtime.
The read API differs from standard reading APIs by providing an
explicit mechanism for scheduling and batching read operations.
Individual operations can be chained to form a complete end-to-end
workflow, with each operator reading data with ADIOS, processing
data using internal logic, and outputting data with ADIOS.

5.4. GLEAN

GLEAN [VHMP11] is a flexible and extensible framework that
takes application, analysis, and system characteristics into account
to facilitate simulation-time data analysis and I/O acceleration. The
GLEAN infrastructure hides significant details from the end user,
while at the same time providing a flexible interface to the fastest
path for their data and analysis needs and, in the end, scientific in-
sight. It provides an infrastructure for accelerating I/O, interfacing
to running simulations for in transit analysis, and/or an interface for
in situ analysis with zero or minimal modifications to the existing
application code base.

5.4.1. Methods

GLEAN supports In Transit workflows wherein the application
data is moved from the simulation nodes to a set of dedicated nodes
to be processed. Next, to analyze the data on the staging nodes,
there are two possible ways: a) Use of GLEAN as a library by ex-
isting packages, such as ParaView, or, b) executed as an application
wherein one can embed custom analysis and visualization kernels
to process the data.

GLEAN also supports the In Situ workflow modality wherein it
is embedded as part of the simulation and shares the same address
space as the simulation, shares the resources, and is executed when
desired by the simulation.
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5.4.2. Basic Integration

Figure 4 provides an overview of the GLEAN infrastructure and
compares the traditional mechanism used for I/O with GLEAN.
The simulation running on the compute nodes may invoke GLEAN
directly or transparently through a standard I/O library such as
Parallel-netCDF [LLC∗03] and HDF5 [HDF]. The data is moved
out either directly to storage or to dedicated analysis/staging nodes.
Using GLEAN, one can apply custom analyses to the data on the
compute resource or on the staging nodes. This can help reduce
the amount of data written out to storage. On the staging nodes,
GLEAN uses MPI-IO or higher level I/O libraries to write the data
out asynchronously to storage.

Figure 4: Relationships between GLEAN and principal compo-
nents of an HPC application. Image source: Vishwanath et al.,2014
[VBHP14]

GLEAN is implemented in C++ leveraging MPI and pthreads,
and provides interfaces for Fortran and C-based parallel applica-
tions. It offers a flexible and extensible API that can be customized
to meet the needs of the application. It has currently scaled to 768K
cores of the Mira IBM Blue Gene/Q supercomputer.

6. In Situ Applications

From earlier sections (§ 2 and § 5), in situ analysis and visualiza-
tion has been actively used for more than a quarter of a century to
solve science and engineering problems, and hundreds of advanced
modeling and simulation codes have been instrumented with in
situ infrastructures. In the following subsections, we leverage the
reader’s, now, in depth understanding of the in situ infrastructures
highlighted previously in section § 5, and present several in situ
use cases demonstrating the impacts of in situ analysis and visual-
ization on critical science and engineering workflows instrumented
with either ParaView Catalyst, VisIt Libsim, ADIOS, or GLEAN.
In addition, we present Cinema explorable features application re-
sults that have excited the in situ analysis and visualization research
community as well as domain scientists and engineers.

6.1. Using ParaView Catalyst to Analyze Nuclear Reactor
Physical Phenomena

The Consortium for Advanced Simulation of Light Water Reac-
tors (CASL) is the first United States Energy Innovation Hub es-
tablished in 2010 by the Department of Energy. CASL connects
fundamental research and technology development through an in-
tegrated partnership of government, academia, and industry that ex-
tends across the nuclear energy enterprise. CASL was established
to provide leading edge modeling and simulation (M&S) capabil-
ity to improve the performance of currently operating light water
reactors (LWR).

To this end, Hydra–TH was developed, for CASL, to create a
computational capability that enables the simulation of the ther-
malhydraulics processes inside a nuclear reactor at unprecedented
fidelity. These simulations can use tens of thousands of compute
cores on the largest supercomputers in the world and enable the de-
tailed resolution of turbulent flow fields and their interaction with
the reactor fuel assembly.

Figure 5: Example input deck option for Hydra–TH input deck.
Image source: Bauer.

The Hydra–TH developers worked to ensure that the Catalyst
output mirrors what is available in the normal ExodusII full data
dump output. Catalyst in situ analysis and visualization is sim-
ply requested within the Hydra–TH input file as depicted in Fig-
ure 5. In this example input deck snippet, the nuclear scientist
or engineer identifies the in situ analysis and visualization script,
hydrasinglepin.py, along with several derived quantities to be
provided to Catalyst for processing. These quantities correspond
to Hydra–TH’s built-in in situ capabilities for computing derived
quantities of interest on the fly. With this design, the nuclear sci-
entist or engineer can request specific field information to be out-
put similar to the input deck format for writing out dump files. The
Catalyst output can be node, element, and/or sideset quantities. The
Python script is then used to perform the individual analysis and
visualization pipelines.

To increase the performance of current LWRs, CASL and the
nuclear energy enterprise are utilizing Hydra–TH and Catalyst in
situ analysis and visualization to investigate two performance prob-
lems [OCJ∗15]: grid-to-rod fretting (GTRF) and lower plenum flow
anomaly (LPFA).

The GTRF problem in pressurized water reactors (PWR) is a
flow-induced vibration problem that results in wear and eventually
failure of the rods in nuclear fuel assemblies. Currently, it has not

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Bauer et al. / In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms

Figure 6: In situ visualization of the GTRF problem: A single nu-
clear reactor rod, one of three spacers along the rod, and the mix-
ing vanes (all in grey) with pressure isosurfaces in orange to cream
colormap. Image source: O’Leary.

been possible to completely characterize the flow-induced fluid-
structure interaction (FSI) problem for the GTRF problem. Indeed,
given the incompressible nature of the coolant, the relatively high
Reynolds number, and the flexible character of the fuel rods and
spacers, the FSI problem at the reactor core scale is daunting.

Hydra–TH is run using a Smagorinsky subgrid-scale model tur-
bulence with Smagorinsky model constant of 0.18 for a represen-
tative single rod with three spacers. Hydra–TH is used to compute
the time-accurate and fully three-dimensional flow field for the sin-
gle rod, while Catalyst is used for in situ data reduction (a clipped
1/3 meter of the 9 meters simulated) to focus the analysis on the
flow past one spacer. The reduced data sets are post-processed us-
ing ParaView (see Figure 6).

Figure 7: In situ visualization of the LPFA problem: Simulating
reactor flow in the lower-plenum during pump startup sequence
with Hydra–TH. We see pressure contours in the lower plenum at
startup that indicate transient behavior possibly associated with
the lower-plenum flow anomaly. Image source: O’Leary.

The LPFA problem is a known reactor flow anomaly. Hydra–
TH simulations are used to develop a better understanding of the
sensitivity of the flow distribution to differential inlet flow.

In this case, Hydra–TH is run using a Spalart-Allmaras model
turbulence on a representative reactor vessel. Hydra–TH simulates
reactor flow in the lower plenum during the pump startup sequence

with an objective of identifying actions to reduce (or at least con-
trol) the variation. Catalyst creates explorable artifacts utilizing
ParaView Web (a web-based interface for ParaView) for ensemble
comparison analysis and visualization (see Figure 7).

The CASL M&S coupled with these in situ analysis and visual-
ization capabilities assist in producing safer and more productive
commercial nuclear power production.

6.2. Using Libsim To Create Scalable Extracts for Rotor-craft
Simulation

Simulation of rotor-craft during forward flight and hover requires
many CFD solver time steps to simulate seconds of actual flight
time and accurately capture the movement of rotors and associated
unsteady airflow structures.

Rotor-craft engineering applications may use hybrid or overset
grids consisting of tens of millions of unstructured nodes for ve-
hicle geometries and hundreds of millions of nodes for Cartesian,
adaptive grids that capture off-body airflow. While these numbers
are smaller than some science domains, the high number of solver
iterations involved has the potential to create large amounts of
volume-based simulation output.

Typical engineering culture tends to favor keeping volume data
files for post-processing, but this practice is not sustainable for
large, complex runs. In situ analysis and visualization methods,
which create image-based and statistical data products, have not
been adopted quickly. There is a concern these techniques may fail
to capture enough information about the simulation to answer ques-
tions that may arise later in the analysis process.

A compromise could be in situ extraction of geometric features
with associated scalar and vector fields that can be saved and ex-
plored later. Identification, simplification, and data extraction pro-
cesses are well-suited to in situ technologies, and enable important
structures to be saved at high frequency without writing impractical
amounts of volume data. These in situ extracts allow engineers to
analyze and/or integrate quantities and perform explorable visual-
ization.

CREATE-AV Kestrel [FLPS15] is a CFD solver used for simu-
lation of both fixed-wing and rotor-based aircraft. Kestrel has been
coupled to the US Navy’s CASTLE flight simulator to use CFD to
more realistically simulate a UH60 helicopter landing on the back
of a moving ship (see Figure 8).

The turbulence introduced by airflow across irregular structures
on the moving ship adds to instabilities that must be accounted for
to enhance realism for the flight simulator. In order to visualize the
effects of the ship air-wake on the landing UH60, Kestrel integrated
Libsim to produce surface-based extract files that could be used
for later offline analysis and visualization. The extracts in this case
were saved every 5 solver time steps to FieldView XDB format,
which permitted later exploration of the much smaller extract files
in FieldView. The size of the extract data per saved iteration was
about 5 percent of the volume data’s size, while taking as little as 2-
3 percent of the overall solver runtime to generate. The production
of XDB extract files from Kestrel by way of Libsim has generated
a great amount interest among its user-base. In response, Kestrel’s
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Figure 8: Coupled ship air-wake visualization - isosurface of vor-
ticity colored by pressure. Image source: Forsythe et al. [FLPS15].

in situ capabilities are being expanded to include additional data
products in Kestrel 7.

6.3. Using ADIOS to Visualize and Analyze a Multi Scale
Fusion Edge Model

XGC is a suite of codes to study plasma edge physics in magnetic
fusion devices; and is one the largest science simulations running
on Leadership Computing Facilities (LCFs) in the USA. Numerical
models used at the Center for Edge Physics Simulation (EPSi) and
in simulation codes have been enhanced in recent years. These ad-
vances have led to greater data generation capabilities, which cur-
rently exceed the file system and disk-based storage capacities of
current LCF. The volume, velocity, and variety of output data pose
tremendous challenges in storing the datasets and carrying out post-
simulation analysis. In order to keep pace with data volumes and
velocities within current storage limits, output from an EPSi simu-
lation needs to be processed in situ and in transit via complicated
workflows that result in meaningful data reduction (before being
written to storage) and for scientific data analysis and visualization.

The ADIOS framework has been used to develop support for
such challenging workflow scenarios in EPSi. The focus is cen-
tered on providing transparent support of workflow management
and execution engines to EPSi. Figure 9 shows one of the challeng-
ing EPSi workflows, called a coupling workflow, and how ADIOS
provides an integrated environment. In the coupled execution, two
different EPSi codes, XGC1 and XGCa, need to be tightly coor-
dinated for data sharing during their concurrent executions, while
data reduction-and-prolongation and post-analysis routines should
be performed in a timely manner to reduce any I/O related over-
heads and minimize the time-to-solution in HPC environments.
ADIOS has further extended the support to take into account and

Figure 9: EPSi XGC1-XGCa coupling workflow. Each separate
code is executed as independent executables, and exchange infor-
mation which is either reduced or expanded when they are coupled,
and use the DataSpace method for ADIOS to exchange the data.
Image source: J. Choi ORNL.

leverage multi-level data storage hierarchies and high performance
network interconnections as well as enable data reduction, com-
pression, or indexing, in order to efficiently move data between
tasks during execution.

Figure 10: Fusion comparative study workflow. The data is ex-
changed using the ADIOS ICEE method, and transferred from the
A*STAR supercomputing center in Singapore over the WAN to
Georgia Tech, where the data is processed using multiple appli-
cations with the ADIOS API. Image source: J. Choi, 2016 ORNL.

Another challenge of data management in EPSi is in support-
ing workflows to perform comparative studies with remote exper-
imental data transferred over wide-area networks in near real-time
(NRT) fashion. Fusion experiments not only provide critical infor-
mation to validate and refine simulations that model complex phys-
ical processes in the fusion reactor, but also drive simulations to
quickly decide operational parameters for the next runs in between
experiments.

Figure 10 shows an EPSi workflow used to process particle data
during the simulation in order to observe if particles were follow-
ing field lines. In this workflow, EPSi’s XGC1 outputs data through
ADIOS. ADIOS streams data over wide-area networks to a remote
site, to be analyzed in a near real-time way. ADIOS’s modularized
transport methods (EVPath, FlexPath, and DataSpaces) enables sci-
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entists to launch remote analysis in an efficient way. ADIOS’s inte-
grated in situ indexing and query module can be used to reduce the
payload to meet the NRT requirement. Figure 11 shows the screen-
shot from the XGC scientist as they were trying to understand how
the feature flowed around the torus.

Figure 11: On the left is an interactive image to select a feature
of interest from the simulation. The data for this image is sent over
the WAN by the ADIOS ICEE method. On the upper right is a 3D
image of the plane along with the calculated trajectory. The sim-
ulation feature of interest is shown as a circular isosurface. The
relevant data needed to visualize the feature of interest is extracted
from the simulation on the supercomputer using ADIOS’s query in-
terface and then transferred to a remote visualization cluster for
visualization and display. Image source: D. Pugmire et al. 2015
ORNL.

6.4. Using GLEAN for Scalable Analysis for a FLASH
simulation

FLASH multi-physics multi-scale simulation code [FOR∗00] is an
adaptive mesh, parallel hydrodynamics code developed to simu-
late high energy density physics and astrophysical thermonuclear
flashes in two or three dimensions, such as Type Ia supernovae,
Type I X-ray bursts, and classical novae. It solves the compressible
Euler equations on a block-structured adaptive mesh. FLASH pro-
vides an Adaptive Mesh Refinement (AMR) grid using a modified
version of the PARAMESH package [MOM∗00] and a Uniform
Grid (UG) to store Eulerian data. The Sedov explosion test prob-
lem is included in the FLASH simulation distribution. The Sedov
explosion problem involves the self-similar evolution of a cylin-
drical or spherical blast wave from a delta-function initial pressure
perturbation in an otherwise homogeneous medium [FLA].

To facilitate in situ analysis for FLASH with GLEAN, we de-
signed a new dataset subclass in GLEAN to capture the data se-
mantics of FLASH including the AMR hierarchy. Figure 12 depicts
the AMR hierarchy of a FLASH simulation. For I/O, the FLASH
simulation uses the pNetCDF API and format [LDL∗]. To interface
with FLASH in a non-intrusive way, we map relevant pNetCDF
calls into appropriate GLEAN API calls. Next, when the simula-
tion performs an I/O call, it also invokes the analytics embedded in
the GLEAN framework in the I/O path. Thus, we are able to inte-
grate with FLASH without modification to the FLASH simulation
code.

Two in situ analyses to compute the fractal dimension and the

vorticity were performed on the Sedov explosion problem. For
FLASH, the fractal dimension helps illustrate the degree of tur-
bulence in a particular time step as well as identify the variation of
turbulence across sub regions in the domain and is very communi-
cation intensive. The vorticity calculation involves a more compute
and memory intensive operation. The results were evaluated the ef-
ficacy of invoking the vorticity analysis in situ wherein it is embed-
ded in the I/O stack with GLEAN as well as in an in transit mode
wherein the data is moved to dedicated staging nodes for analysis.

Figure 12: Visualization of a FLASH Rayleigh-Taylor Flame simu-
lation and the effect of additional AMR levels. The upper left image
shows just the coarsest refinement level. The number of refinement
levels progresses to the right and down until all six levels are shown
in the lower right image. The variable being visualized is an ana-
lytical estimate of the flame front. The green-blue color highlights
the flame surface, and the yellow-orange-red transition shows the
fuel-ash mixture, which the flame front leaves behind.Image source:
Nick Leaf et al. [LVI∗13].

A FLASH simulation could need a large memory footprint on
each node depending on the science being simulated and studied.
Depending on the simulation resource requirements and available
analysis resources available, there exists a tradeoff between in situ
and in transit analysis. A significant future challenge is to better or-
chestrate and schedule in situ analyses together with the simulation
while taking into account the time and memory requirements of the
analyses, the importance of the analyses, and the system parame-
ters such as the computation time, I/O bandwidth, and maximum
available memory to decide the optimal frequencies of the in situ
analyses [MVM∗15].

6.5. Using Cinema to Create Explorable Features from a
Climate Modeling Simulation

The Accelerated Climate Modeling for Energy (ACME) project is
developing and applying the most complete, leading-edge climate
and Earth system models to critical, challenging and demanding
climate-change research imperatives. For this community analysis
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and visualization are typically done using a post-processing path
through the simulator code called analysis mode. Typically, these
analysis mode runs utilize an order of magnitude fewer MPI pro-
cesses, and are executed several times with different analysis and
visualization objectives. Analyzing and visualizing simulation data
in situ in analysis mode share the same benefits that make in situ so
attractive for simulation mode.

In general, in situ approaches operate on a predefined set of anal-
yses and visualizations. Scientists need in situ analysis and visu-
alization to: first, preserve important elements of the simulations,
second, significantly reduce the data needed to preserve these el-
ements, and third, offer as much flexibility as possible for post-
processing exploration. Given the current views on climate change,
this community has a policy to save the full simulation data results
regardless of the I/O constraints. Hence, both the first and second
scientific needs are satisfied by these project guidelines.

(a) (b)

Figure 13: (a) MPAS-Ocean simulation indicating contours that
represent the locations of water masses within the ocean of salinity
colored by temperature. (b) A user interface depicting the visual-
ization pipeline for analysis and visualization objects (Earth core,
temperature contours, and salinity contours) compositing. Image
source: O’Leary.

One of the ACME codes is the Model for Prediction Across
Scales (MPAS) Ocean simulator [RPH∗13]. The Data Sciences
at Scale group at Los Alamos National Laboratory developed the
highly interactive, image-based in situ analysis and visualization
framework, Cinema [AJO∗14b, AJO∗14a, OAJ∗15], to address the
third requirement, namely interactive feature exploration. This ex-
ploration – so important to scientific discovery – is supported intu-
itively and effectively with Cinema.

High-resolution global ocean simulation with realistic topogra-
phy, currently use 1.8 million horizontal 15 km sized grid cells with
40 vertical levels. In simulation results, contours of temperature and
salinity indicate the locations of water masses within the ocean.
Water masses, with names like North Atlantic Deep Water and
Antarctic Bottom Water, occur within specific ranges of temper-
ature and salinity. Visualizations of water masses allow oceanog-
raphers to view their pathways and extents, and compare them to
observed climatology. Meandering ocean jets and eddies may be
visible as perturbations to these Cinema visualization objects. Us-
ing these techniques helps scientists to determine if the simulated
ocean currents and eddy activity compares well with observations.

These simulations are typically run on approximately ten thou-
sand processors to achieve two simulated years per wall clock day.
At this resolution, file output sizes present difficulties for traditional

(a) (b)

Figure 14: (a) The dynamic rendering offers the capability to edit
color lookup tables, set the light direction and color, and adjust
material properties. (b) The fully interactive feature exploration,
enabled by the Cinema, pulling resulting Cinema images and anal-
ysis products from the database. Image source: O’Leary.

interactive post-processing analysis and visualization workflows.
During analysis mode, ParaView Catalyst is used to output a Cin-
ema database from the saved outputs. Then interactive visualization
and analysis is supported via Cinema instead of using a traditional
post-processing approach. In situ analysis and visualization inte-
grated in analysis mode has been shown to adequately address the
needs of the community.

7. Conclusion and Future Work

The phrase “in situ processing” is an umbrella term that has come
to refer to a set of activities in which visualization and analysis
processing happens without the need to write scientific data first
to persistent storage. This concept is not new, it has been around
for decades. Work in this space, which includes fundamental meth-
ods and production-quality infrastructures, has evolved to track
changes in computational platforms and computing environments,
to overcome the fundamantal tension of a priori selection of visu-
alization or analysis algorithmic parameters with the needs for ex-
ploratory use, and to respond to the specific needs of the scientific
community.

Going forward, many of the challenges facing in situ methods
and infrastructures that have driven prior work will likely continue
to persist, although these challenges will evolve as the computa-
tional landscape changes. Many of the challenges in the in situ
space called out in earlier reports [Ma09] persist, even though the
specifics have changed somewhat. For example, a number of re-
lated challenges will likely entail a concerted, collaborative effort
with others, such as researchers and developers in the areas of op-
erating systems and runtime, programming languages, system ar-
chitecture, and so forth. These challenges include topics like how
to share computational resources with simulations: cores, memory,
and so forth. Another challenge centers around the idea of mak-
ing in situ methods easy to use, so that a third party, like a code
team, could download and use in situ methods and infrastructure
with ease, and without the necessity of having an expert.

Beyond the future work that focuses on challenges related to
changing computational platforms, usability and software engi-
neering, future work in the in situ space will likely continue in sev-
eral key directions. One area for future work is the notion of in situ
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computation of extracts and derived data products that are suitable
for subsequent exploratory use and for quantitative analysis.

Another is the notion of in situ algorithms that require persistent
state information. For example, temporal analysis requires multiple
timesteps of simulation data for processing. Examples of such algo-
rithms include proper orthogonal decomposition (POD), autocorre-
lation and/or other temporal statistics. Retaining potentially multi-
ple timesteps’ worth of data for temporal analysis could exceed a
desired memory footprint target, which could have deleterious re-
sults on a simulation. This problem may be addressed in many po-
tential ways. From an engineering perspective, taking advantage of
new architectural features like burst buffers could help to overcome
some of the tension resulting from needing more memory for in situ
analysis but not using too much as to adversely impact the simula-
tion. Algorithmic advances could offer some benefit in the form of
finding ways to perform temporal analysis but without the need for
growth in memory commensurate with the size of the time window
being analyzed.

One trend we have witnessed in the HPC simulation space over
the years is that simulations will adapt to make the best possible
use of the underlying resources. For example, they may choose to
not use all cores on a node so as to increase the relative amount
of memory available to those cores they do use. In situ methods
and infrastructures will need to be able to gracefully adapt to these
situations, as well as to situations where there is architectural het-
erogeneity as well as differing platforms for running parallel code
(GPUs, MIC CPUs, etc.). These are largely engineering issues, as
opposed to algorithmic ones, whereby there is interplay between
resource scheduling, provisioning and monitoring. The implication
is that the in situ infrastructures themselves need to undergo con-
tinuous evolution in sophistication with respect to interacting with
the system environment.

In that light, we envision a dichotomy emerging whereby the
cost of entry for a new in situ infrastructure may be relatively high,
but there is the desire to be able to quickly develop and deploy a
new in situ method. To that end, a move towards a generic data in-
terface between simulation codes and in situ infrastructures would
be of great benefit. It would help to insulate the simulations from
changes in the underlying in situ infrastructure, and could help fa-
ciliate an ecosystem that promotes in situ method reusability. In
other words, one might like to be able to write an in situ method
once, and then reasonably expect it to run without modification in
any number of in situ infrastructures. Or, conversely, a simulation
code developer could code to a generic in situ interface and reason-
ably expect it to work without modification with any number of in
situ infrastructures.

Nearly all of the contemporary examples we have presented re-
flect a one-sided view of the problem space: the motivation is a
widening gap between FLOPS and I/O, and so the work has fo-
cused on enabling knowledge discovery in spite of that widening
gap. The other view of this problem returns to the roots of the in
situ work that has its origins in the 1990s, namely getting data back
into simulations.

There are multiple science drivers for this kind of work. One is
to use simulations in concert with experiments, so that experimen-
tal data from an instrument is migrated into a simulation (boundary

conditions, initial conditions, material properties, etc.). Then, the
simulation’s computations can help to predict how to tune an ex-
periment to maximize its value. Another is in the area of code cou-
pling, for projects like the Accelerated Climate Modeling for En-
ergy (ACME) project [ACM] that aim to use multiple codes for dif-
ferent phases of climate modeling (atmosphere, ocean, cryosphere,
etc.). Meeting the needs of these types of science drivers will re-
quire major advances in both the engineering and algorithmic as-
pects of in situ technology. A third type of driver comes from the
need to use analysis methods and computations to alter the trajec-
tory of a simulation. While many simulation codes do this kind
of thing already, such as block-structured AMR performing grid
refinement in the presence of “interesting physics” [Ber], there is
opportunity to expand this type of capability in many different di-
rections to leverage other analysis and computational methods to
aid in producing better simulations.

A significant amount of research and engineering work remains
to be done to facilitate in situ code reusability, so that research in
this space has a vector through which it can be deployed into the
hands of the user community as well as to simplify research ac-
tivities by eliminating or reducing reinvention of key components
of in situ infrastructure. Fundamental work in the in situ space is
increasingly part of a larger ecosystem that includes complex and
potentially distributed workflows, scientific code teams, resource-
constrained execution environments and computational platforms
of rapidly increasing complexity.
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[FK15] Fogal T., Krüger J.: An approach to lowering the in situ visual-
ization barrier. In Proceedings of the First Workshop on In Situ Infras-
tructures for Enabling Extreme-Scale Analysis and Visualization (2015),
ACM, pp. 7–12. 8

[FLA] FLASH user guide. http://flash.uchicago.edu/website/. 15

[FLPS15] Forsythe J. R., Lynch C. E., Polsky S., Spalart P.: Cou-
pled Flight Simulator and CFD Calculations of Ship Airwake using
HPCMP CREATE-AV Kestrel. In 53th AIAA Aerospace Sciences Meet-
ing, SciTech 2015 (Jan. 2015), pp. 1–18. doi:http://dx.doi.org/
10.2514/6.2015-0556. 13, 14

[FMM∗14] Fabian N., Moreland K., Mauldin J., Boeckel B., Ayachit
U., Geveci B.: Instruction memory overhead of in situ visualization and
analysis libraries on hpc machines. Supercomputing2014. 10

[FMT∗11] Fabian N., Moreland K., Thompson D., Bauer A. C., Mar-
ion P., Geveci B., Rasquin M., Jansen K. E.: The paraview coprocess-
ing library: A scalable, general purpose in situ visualization library.
In IEEE Symposium on Large-Scale Data Analysis and Visualization
(LDAV) 2011 (October 2011), Institute of Electrical and Electronics En-
gineers, pp. 89–96. 8

[FOR∗00] Fryxell B., Olson K., Ricker P., Timmes F. X., Zingale M.,
Lamb D. Q., MacNeice P., Rosner R., Tufo H.: FLASH: An Adaptive
Mesh Hydrodynamics Code for Modelling Astrophysical Thermonu-
clear Flashes. Astrophysical Journal Supplement 131 (2000), 273–334.
15

[FPS∗14] Fogal T., Proch F., Schiewe A., Hasemann O., Kempf A.,
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331. 11

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://doi.acm.org/10.1145/2828612.2828620
http://dx.doi.org/10.1145/2828612.2828620
http://dx.doi.org/10.1145/2828612.2828620



