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Distributed optimal resource allocation using
transformed primal-dual method

Solmaz S. Kia, Senior Member, IEEE, Jingrong Wei and Long Chen

Abstract— We consider an in-network optimal resource allo-
cation problem in which a group of agents interacting over
a connected graph want to meet a demand while minimizing
their collective cost. The contribution of this paper is to design a
distributed continuous-time algorithm for this problem inspired
by a recently developed first-order transformed primal-dual
method. The solution applies to cluster-based setting where
each agent may have a set of subagents, and its local cost
is the sum of the cost of these subagents. The proposed
algorithm guarantees an exponential convergence for strongly
convex costs and asymptotic convergence for convex costs.
Exponential convergence when the local cost functions are
strongly convex is achieved even when the local gradients are
only locally Lipschitz. For convex local cost functions, our
algorithm guarantees asymptotic convergence to a point in the
minimizer set. Through numerical examples, we show that our
proposed algorithm delivers a faster convergence compared to
existing distributed resource allocation algorithms.

I. INTRODUCTION

The recent decade has seen a flurry of new research in
designing and analyzing optimization algorithms for large-
scale in-network optimal decision-making problems. These
large-scale problems often involve either constrained or
unconstrained optimization of the sum of objective functions
associated with local data in individual data centers or in-
network local objectives; see [1] for examples in power
networks. In this setting, the gradients can be computed
perhaps with reasonable cost, while the Hessians are still
expensive, and even their computation and/or storage become
infeasible. As such, in the past decade, we have witnessed
a surge in the design of first-order gradient descent algo-
rithms with parallel/decentralized/distributed structures that
are intended to address large-scale in-network optimization
problems with efficient computation/communication/storage
cost; see, e.g., [2] for a survey of recent distributed opti-
mization algorithms. However, in many of the applications
involving in-network optimizations, there is also a need for
real-time adjustment of the system’s response/decision to
the present situation. Therefore, fast converging optimization
algorithms are more and more in demand. As has been
known in the classical optimization literature, improvement
to the rate of convergence of optimization algorithms within a
first-order framework can be obtained through methods such

The first author is with the Department of Mechanical and Aerospace
Engineering, University of California Irvine, Irvine, CA 92697. Her work
was supported by NSF, under CAREER Award ECCS-1653838. The second
and third authors are with the Department of Mathematics, University
of California Irvine, Irvine, CA 92697. Their work was supported by
NSF2012465. {solmaz,jingronw,lchen7}@uci.edu

as quasi-Newton, heavy-ball, Nesterov, and other momentum
methods [3]. However, these methods require storage of
gradient at least one step behind. In this paper, we consider
an in-network resource allocation problem and propose a
first-order algorithm that only requires the agents’ current
gradient. This algorithm is based on a recently proposed
transformed primal-dual [4] with proven fast convergence.

In an in-network optimal resource allocation problem, a
group of N agents with limited resources wants to collec-
tively meet a demand in a way that the overall cost consisted
of sum of the local cost of the agents is minimized for the
entire network, i.e.,

x⋆ = argminx∈RN

∑N

i=1
f i(xi)

subject to x1 + x2 + · · ·xN = b,
(1)

where xi, i ∈ V = {1, 2, · · · , N} is the ith element of x, the
local cost functions f i : R → R are convex differentiable
and agents meet the demand b > 0 in the equality constraint.
When resources are bounded the inequality constraint xi ≤
xi ≤ x̄i, i ∈ V , should be added to the constraints of (1).
Optimal in-network resource allocation appears in many
optimal decision making tasks such as economic dispatch
over power networks [5], [6], network resource allocation
for wireless systems [7], [8] and optimal routing [9], [10].

Distributed solutions for problem (1) are studied extensively
in the literature. For example, in the context of the power
generator economic dispatch problem, [11]–[14] offer dis-
tributed solutions that solve a special case of (1) when
local cost functions are quadratic. Distributed algorithm
design with non-quadratic costs are presented in [15]–[17] in
discrete-time form, and [18]–[23] in continuous-time form.
These algorithms almost all are primal-dual solutions, some
of them inspired by centralized solution of [24]. These
results guarantee exponential convergence when the local
costs are strongly convex with globally Lipschitz gradients.
Only [21]–[23] guarantee convergence for convex functions.
To induce robustness and also to yield convergence without
strict convexity of the local cost functions, often augmented
Lagrangian framework [25] is considered as in [16], [23].

In this paper, we propose a novel distributed continuous-time
algorithm based on the newly proposed transformed primal-
dual algorithm [4] to solve the optimal resource allocation
problem (1). We propose our algorithm for a variation of
in-network optimal resource allocation in which each agent



i ∈ V may contain ni ≥ 1 sub agents with local costs f i
j(x

i
j).

The optimal resource allocation objective then is

x⋆ = argminx∈RN

∑N

i=1

∑ni

j=1
f i
j(x

i
j)

subject to 1⊤
n1x1 + 1⊤

n2x2 + · · ·1⊤
nNxN = b,

(2)

where xi = [xi
1, · · · , xi

ni ], and 1ni ∈ Rni

is the vector
of all ones with dimension ni ≥ 1. We only consider the
case of equality constraints and assume that local bounded
decision constraints can be addressed using penalty function
method as in [23]. We show the exponential convergence of
our algorithm if the local cost function are strongly convex
and the gradients are only locally Lipschitz. For convex local
cost functions, the convergence is guaranteed to a point in
the optimizer set. We compare the numerical results with
distributed algorithms based on primal-dual algorithms. Our
solver reduces oscillation in the trajectories and shows faster
convergence for strongly convex and convex cases.

II. NOTATION AND PRELIMINARIES

We let R, R>0, R≥0, denote the set of real, positive real,
and nonnegative real numbers, respectively. Throughout the
paper, the bold letter like x ∈ RN denotes the vectors.Where
clear from the context, we skip the dimension index. We let
Rn be the n-dimensional Hilbert space with l2 inner product
and Euclidean norm ∥ ·∥. For a positive definite matrix M ∈
Rn×n and a vector x ∈ Rn, ∥x∥2M denotes x⊤Mx. For any
proper closed convex function f : Rn → R , we say f is
µ-strongly convex, µ ∈ R>0, if f is differentiable and for
any x1,x2 ∈ Rn, we have f (x2)−f (x1)−∇f(x1)

⊤(x2−
x1) ⩾ µ

2 ∥x1 − x2∥2 . We say ∇f is globally Lipschitz if
there exists L ∈ R>0 such that for any x1,x2 ∈ Rn,

(∇f(x1)−∇f(x2))
⊤(x1 − x2) ⩽ L ∥x1 − x2∥2 . (3)

∇f is locally Lipschitz if for any x ∈ Rn there exists a
neighborhood U such that for any x1,x2 ∈ U, (3) holds for
some L ∈ R>0.

We denote an undirected connected graph by G = (V, E ,A)
where V is the vertex set with |V| = N , E ⊂ V × V is the
edge set and A = [aij ] is the symmetric N ×N adjacency
matrix with aij > 0 if (i, j) ∈ E and aij = 0 otherwise.
Recall that a graph is undirected if and only if aij = aji,
and connected if there is a path from every vertex to every
other vertex of the graph. We denote the Laplacian matrix of
the graph L = [lij ]. The Laplacian matrix is given by L =

D−A where D = Diag(d1, · · · , dN ), where di =
∑N

j=1 aij .
Recall that L is a positive semidefinite matrix, which for
an undirected connected graph satisfies rankL = N − 1.
Moreover, zero is a simple eigenvalue of L and {α1 : α ∈ R}
is the eigenspace corresponding to the zero eigenvalue. We
denote the eigenvalues L by {λi}Ni=1 where λ1 = 0 and
λi ≤ λj for i ≤ j. We let r = 1√

N
1 and R be an N ×

(N − 1) orthonormal matrix where its ith column is the
normalized eigenvector of λi+1. We denote T =

[
r R

]
and Λ = Diag(λ1, · · · , λN ). Notice that T⊤T = I and

T⊤L = ΛT⊤. Direct computation gives R⊤R = IN−1 and
RR⊤ = IN − rr⊤. Lastly, if pi ∈ R is a variable of agent
i ∈ V = {1, · · · , N}, the aggregated pi’s of the network is
the vector p = [p1, · · · , pN ]⊤ ∈ RN .

III. PROBLEM STATEMENT

We consider the optimal resource allocation problem (2) over
a network of N agents under the following assumptions.
We define N̄ =

∑N
i=1 n

i, V = {1, · · · , N} and Vi =
{1, · · · , ni} for i ∈ V .

Assumption 1: The information sharing graph G is undi-
rected and connected.

Assumption 2: The local costs of each agent i ∈ V at each
subagent j ∈ Vi, f i

j(x
i
j), are continuously differentiable

convex functions with locally Lipschitz continuous gradients.
Moreover, the optimization problem (2) has a finite minimum
value f⋆ = f(x⋆).

Assumption 2 ensures the problem (2) has a finite mini-
mizer in the feasible set. The Karush-Kuhn-Tucker (KKT)
conditions give a set of necessary and sufficient conditions
to characterize the solution set of the convex optimization
problem (2) as follows. The proof can be founded in [26].

Lemma 3.1 (KKT condition for convex optimization prob-
lems): Let Assumption 2 hold. A point x⋆ ∈ RN̄ is a solution
of (2) iff there exists a y⋆ ∈ R, such that (x⋆, y) ∈ K, where

K = {(x, y) ∈ RN̄ × R | ∇f(x) + 1N̄y = 0, (4)

1⊤
n1x1 + · · ·+ 1⊤

nNxN = b}.

When the local costs f i
j are all strongly convex, the KKT

condition (4) has a unique solution.

Denote the Lagrangian of problem (2) by L =∑N
i=1

∑ni

j f i
j(x

i
j) + y(1⊤

n1x1 + · · · + 1⊤
nNxN − b) and

its Augmented Lagrangian by Laug = L + ρ
2∥1

⊤
n1x1 +

· · · + 1⊤
nNxN − b∥2, ρ > 0. A well-known centralized

solution for problem (1) is the saddle point dynamics [24]

ẋi
j = − ∂L

∂xi
j

= −∇f i
j(x

i
j)− y,

ẏ =
∂L
∂y

=
∑N

k=1

∑nk

l=1
xl
k − b,

for i ∈ V and j ∈ Vi. This solver has convergence guarantee
only when every cost function f i

j(x
i
j) is strictly convex, see

[27, Appendix B]. Using Augmented Lagrangian, conver-
gence can be extended to convex cost by implementing

ẋi
j = −

∂Laug

∂xi
j

= −∇f i
j(x

i
j)− ρ(

N∑
k=1

nk∑
l=1

xl
k − b)− y, (5a)

ẏ =
∂Laug

∂y
=

∑N

k=1

∑nk

l=1
xl
k − b, (5b)

for i ∈ V and j ∈ Vi. Some of the existing distributed
algorithms, e.g., [18]–[23], for the optimal resource alloca-
tion problem are inspired by the aforementioned centralized



solutions. The main premise of these approaches is to use a
dynamic average consensus algorithm to track/generate the
coupling term

∑N
i=1

∑ni

j=1 x
j
i − b in a distributed manner,

most often for ni = 1, i ∈ V . In a recent work in [4], authors
propose a centralized transformed primal-dual (TPD) method

ẋi
j = − ∂L

∂xi
j

= −∇f i(xi
j)− y, i ∈ V, j ∈ Vi, (6a)

ẏ =
∂L
∂y

− 1⊤ ∂L
∂x

=

N∑
k=1

nk∑
l=1

xk
l −b−

N∑
l=1

nk∑
l=1

(∇fk
l (x

k)+y),

(6b)

as an alternative centralized solver for problem (1). This
solver has guaranteed convergence for convex functions and
shows faster convergence than the primal-dual dynamics, es-
pecially when the saddle point system is not strongly concave
with respect to the dual variable. Recall that the augmented
Lagrangian method extends the convergence of the primal-
dual solver (5) to convex cost functions by introducing
the augmented term ρ

2∥1
⊤
n1x1 + · · · + 1⊤

nNxN − b∥2 into
Lagrangian, which results in the stabilizing term −ρxi

j in the
dynamics of ẋi

j . Alternatively, noticed that the (augmented)
Lagrangian is only concave but not strongly concave with
respect to the dual variable, we shall introduce the stabilizing
term in the the dual dynamics. As the critical points of the
dynamic should not be changed, one intuitive choice is to
add the terms from the primal dynamic to ẏ. In this case,
we get (6b) and the corresponding stabilizing term for the
dual variable dynamic ẏ is −y. Therefore, the transformed
primal-dual dynamics recover the loss of strong concavity
with respect to y in the (augmented) Lagrangian.

IV. DISTRIBUTED PRIMAL-DUAL ALGORITHM

Invoking Lemma (3.1), the set of minimizers and their
corresponding Lagrange multiplier is given by

We propose the continuous-time distributed transformed
primal-dual (D-TPD) algorithm

v̇i =
∑N

j=1
aij(y

i − yj), (7a)

ẏi =

ni∑
l=1

xi
l−b̄i −

ni∑
l=1

(∇f i
l (x

i
l) +yi)−

∑N

j=1
aij(y

i − yj)− vi,

(7b)

ẋi
l = −∇f i

l (x
i
l)− yi, l ∈ Vi, (7c)

initialized at yi(0), xi
j(0) ∈ R, j ∈ Vi and vi(0) = 0, i ∈ V ,

as a distributed solver for optimization problem (2). Here,
b̄i, i ∈ V are defined such that

∑N
j=1 b̄

j = b; e.g., b̄i = b
N ,

i ∈ V when all agents know the demand, or b̄j = b and
b̄i = 0 i ∈ V\{j} when only agent j knows the demand.

Our proposed D-TPD algorithm (7) is inspired by the cen-
tralized TPD algorithm (6), in which every agent has a local
copy of the dual variable y, driven by local component∑ni

l x
i
l− b̄i−

∑ni

l (∇f i
l (x

i
l)−yi) of each agent followed by a

proportional integral agreement feedback −
∑N

j=1 aij(y
i −

yj) − vi to make yi of each agent to eventually converge
to y dynamics (6b). Compared with primal-dual algorithms,
the dynamic of yi is transformed with the local private data
∇f i

j(x
i
j) and yi. This can be viewed as approximation of

gradient flow to (6). The D-TPD algorithm (7)’s aggregate
representation reads

v̇ =Ly, (8a)

ẏ =Γ(x−∇f(x))− b̄−Dy − Ly − v, (8b)

ẋ = −∇f(x)− Γ⊤ y, (8c)

where Γ = Diag(1⊤
n1 , · · · ,1⊤

nN ) and D =
Diag(n1, · · · , nN ). Consider the change of variable

ν =T⊤(v − (Γx̂⋆ − b̄)), (9a)

η =(y − ŷ⋆1), (9b)

χ =(x− x̂⋆), (9c)

where (x̂⋆, ŷ⋆) ∈ K is an arbitrary solution of the KKT
equation of problem (2) resource allocation problem. Recall
that r⊤L = 0, and note that T⊤L = T⊤LRR⊤. Also,
because ΓΓ⊤ = D, we have Γ(∇f(x̂⋆) + Γ⊤ ŷ⋆1) =
Γ∇f(x̂⋆) + D ŷ⋆1 = 0. Denote L+ = R⊤LR. Then,
using (9a), (8) can be written in the equivalent form

ν̇1 =0, (10a)

ν̇2:N =L+R⊤ η, (10b)

η̇ =Γχ− Γ(∇f(x)−∇f(x̂⋆))−Dη − Lη −Rν2:N ,
(10c)

χ̇ = − (∇f(x)−∇f(x̂⋆))− Γ⊤η. (10d)

For convenience in analysis we will study convergence of
the equivalent representation (10). Let (ν̄2:N , η̄, χ̄) denote
an equilibrium point of (10b)-(10d), i.e.,

0 =L+R⊤ η̄,

0 =Γχ̄− Γ(∇f(x̄)−∇f(x̂⋆))−Dη̄ − Lη̄ −R ν̄2:N ,

0 = − (∇f(x̄)−∇f(x̂⋆))− Γ⊤η̄,

where x̄ = χ̄ + x̂⋆. Since L+ is invertible and we have
1⊤L = 0⊤, R⊤1 = 0, 1⊤R = 0⊤, it is straightforward to
confirm that the set of equilibrium points of (10b)-(10d) are

S = {(ν̄2:N , η̄, χ̄) ∈ RN−1 × RN × RN̄ |χ̄ = x⋆ − x̂⋆,

η̄ = y⋆1− ŷ⋆1, ν̄2:N = R⊤Γχ̄, ∀(x⋆, y⋆) ∈ K}. (11)

With the preliminaries in order, we are ready to make the first
statement about the convergence guarantee of algorithm 7.

Theorem 4.1 (Convergence when the local cost functions
are convex): Let Assumption 1 and Assumption 2 hold.
Starting from any initial condition xi

j(0) ∈ R, j ∈ Vi,
yi(0) ∈ R and vi(0) = 0, the trajectory of algorithm (7) for
each agent i ∈ V to satisfy (xi

j , y
i) → (xi⋆j , y⋆) as t → ∞,

where (x⋆, y⋆) ∈ K where K is given in (4).



Proof: Consider the equivalent representation (10) of
the algorithm (7). To analyze stability of (10b)-(10d) consider
the radially unbounded Lyapunov function

Vc =
1

2
χ⊤χ+

1

2
η⊤η +

1

2
ν⊤
2:N (L+)−1ν2:N+∑N

i=1

∑ni

j=1
(f i

j(x
i
j)− f i

j(x̂
i⋆
j ))−∇f(x̂⋆)⊤χ. (12)

Along the system trajectories of (10b)-(10d) we get V̇c =
−η⊤Lη− (Γ⊤η +(∇f(x)−∇f(x̂⋆)))⊤(Γ⊤η+(∇f(x)−
∇f(x̂⋆)))− χ⊤(∇f(x)−∇f(x̂⋆)) ≤ 0, where we invoked
D = ΓΓ⊤. V̇c ≤ 0 follows from L ≥ 0 and the convexity of
local cost functions, i.e., χ⊤(∇f(x)−∇f(x⋆)) ≥ 0. So far
we have established that V̇c ≤ 0. Let Sc = {(ν2:N ,η,χ) ∈
RN−1 × RN × RN̄ |V̇c = 0}. The points in Sc satisfy

Γ⊤η + (∇f(x)−∇f(x⋆))) = 0, (13a)

η⊤Lη = 0, (13b)

χ⊤(∇f(x)−∇f(x⋆)) = 0. (13c)

It follows from (13b) that for trajectories in Sc we have η in
the span of 1. Then, using (13a), we obtain from (13c) that∑N

i=1

∑ni

j χi
j = 0 or

∑N
i=1

∑ni

j xi
j =

∑N
i=1

∑ni

j x̂i⋆ = b.
Thus, the smallest invariant set of (10b)-(10d) in Sc is in fact
S as in (11), the set of equilibrium points of (10b)-(10d).
Then, it follows from the La Salle invariant set theorem [28,
Theorem 3.4] that starting from every initial condition the
trajectories of (10b)-(10d) converges to S. Next, notice
that (12) is radially unbounded Lyapunov function which
is zero only at origin. Therefore, it follows from V̇c ≤ 0
that origin is Lyapunov stable equilibrium point of (10b)-
(10d). Since, (x̂⋆, ŷ⋆) used in (9) is an arbitrary point in
K, it is straightforward to argue that every other equilibrium
point of (10b)-(10d) is Lyapunov stable. Therefore, it follows
from [28, Theorem 4.20] that (10b)-(10d) is semistable, i.e.,
starting from any initial condition, the trajectories of (10b)-
(10d) converge to one of its equilibrium points in S. Then,
given (9), as t → ∞, D-TPD algorithm (7) under the stated
initialization results in (xi

j(t), y
i(t)) → (xi⋆j , y⋆), i ∈ V ,

j ∈ Vi where (xi⋆j , y⋆) is a point in K.

Next, we show that when the local costs are strongly convex
the convergence guarantee of D-TPD algorithm is exponen-
tial. Notice that this guarantee does not require the customary
global Lipschitezess of the gradient of the local costs.

Theorem 4.2 (Convergence when the local cost functions
are strongly convex): Let Assumption 1 and Assumption 2
hold. Additionally, assume each f i

j , i ∈ V and j ∈ Vi is mi
j-

strongly convex. Starting from any initial condition xi
j(0) ∈

R, j ∈ Vi, yi(0) ∈ R and vi(0) = 0, algorithm (7) result
in (xi

j , y
i) → (xi⋆j , y⋆) exponentially fast as t → ∞. Here,

(xi⋆, y⋆) is the unique solution of the KKT condition (4).

Proof: Consider (10), the equivalent representation
of (8). Consider the radially unbounded Lyapunov function
V = Vc+Vs, where Vs =

ϕ
2 (η+Rν2:N )⊤D−1(η+Rν2:N )

+ϕ
2ν

⊤
2:N (L+)−1ν2:N for some ϕ ∈ R>0 and Vc is given

in (12). Note that V̇s = ϕ(η + Rν2:N )⊤D−1(Γχ −
Γ(∇f(x)−∇f(x̂⋆))−Dη− Lη−Rν2:N +RL+R⊤η) +
ϕν⊤

2:NR⊤η. Noting that RL+R⊤ = L, after some straight-
forward manipulations, we can write V̇s = −ϕ

2 ∥η+Rν2:N−
Γχ + Γ(∇f(x) − ∇f(x̂⋆))∥2

D−1 + ϕ
2 ∥Γχ − Γ(∇f(x) −

∇f(x̂⋆))∥2
D−1 −ϕη⊤(I− 1

2D
−1)η− ϕ

2 ∥Rν2:N∥2
D−1 . Recall

that by virtue of analysis in proof of Theorem 4.1 (V̇c ≤ 0),
we have established that the unique equilibrium point of
(10b)-(10d) is Lyapunov stable. Therefore, starting from any
initial condition trajectories of (10b)-(10d) are guaranteed
to stay in a compact bounded set. Because local costs are
differentiable and locally Lipschitz, then in that compact set,
there is always an L for which we have ∥∇f(x)−∇f(x̂⋆)∥ ≤
L∥x−x̂⋆∥. Thus, we can show from our derivation above that

V̇s ≤− ϕ

2
∥η +Rν2:N − Γχ+ Γ(∇f(x)−∇f(x̂⋆))∥2D−1

− ϕ

2
∥Rν2:N∥2D−1 + ϕ∥D−1∥∥Γ∥2(1 + L2)∥χ∥2

− ϕη⊤(I− 1

2
D−1)η.

By invoking strong convexity of the local costs f i
j we can

write −χ⊤(∇f(x) − ∇f(x̂⋆)) ≤ −m∥χ∥2, where m =
min{{mi

j}n
i

j=1}Ni=1. Then, considering the bound established
for V̇c in the proof of Theorem 4.1, V̇ = V̇c + V̇s along the
trajectories of (10b)-(10d) satisfies

V̇ ≤−ϕη⊤(I− 1

2
D−1)η−(m−ϕ∥D−1∥∥Γ∥2(1+L2))∥χ∥2

− ϕ

2
∥η +Rν2:N − Γχ+ Γ(∇f(x)−∇f(x̂⋆))∥2D−1

− ϕ

2
∥Rν2:N∥2D−1 − η⊤Lη − ∥Γ⊤η +∇f(x)−∇f(x̂⋆)∥2.

Notice that I− 1
2D

−1 > 0. Also, since rank(R) = N − 1,
we have ∥Rν2:N∥D−1 = 0 if and only if v2:N = 0. Next,
note that there always exists a ϕ̂ > 0 such that for 0 <
ϕ ≤ ϕ̂ we have −(m − ϕ∥Γ∥2(1 + L2)) < 0. Therefore,
for any 0 < ϕ ≤ ϕ̂, we have V̇ < 0. Similarly, we can
establish a quadratic negative definite polynomial bound for
V̇ . Therefore, we can establish an exponential convergence to
origin for (10b)-(10d) by invoking [29, Theorem 4.10]. The
exponential convergence of the D-TPD algorithm as stated
in the theorem statement then follows from (9).

V. NUMERICAL SIMULATIONS

We demonstrate the performance of our algorithm via two
examples. We compare the performance of our algorithm
with that of the the following primal-dual based algorithms:
the continuous-time distributed algorithm (PD) proposed
in [21]; the initialization-free distributed projected (Proj)
algorithms proposed in [20]; the initialization-free distributed
coordination (dac+L∂) proposed in [6]; the distributed aug-
mented Lagrangian algorithm (PD-AL) proposed in [23].
For both examples we consider our in-network resource
allocation problems for a group of 6 agents interacting over
an undirected connected graph depicted in Fig. 1. To compare



1 3 5

2 4 6

Fig. 1: A communication topology with edge weights of 1.

Fig. 2: Trajectories of the D-TPD dynamics for the IEEE 118
bus system. Horizontal dashed lines depict the centralized solution
obtained using Matlab’s constraint optimization solver ‘fmincon’.

Fig. 3: Relative error of function value computed by D-TPD
dynamics (blue) and PD (orange), PD-AL(black), Proj (purple),
dac+L∂ (green).

with existing literature which do not consider subagents, we
use ni = 1, i ∈= V = {1, · · · , 6}.

For first example, the local cost functions are f i(xi) =
ai(xi)2 + bixi + ci, where (ai, bi, ci), i ∈ {1, 2, · · · , 6},
which describe the cost for power generators in the IEEE
118 bus test model, located at buses (4, 10, 18, 26, 54, 69).
In this problem, the agents meet a demand b = 1200 with
their allocated powers. The optimization problem thus is

x⋆ = argminx∈R6

∑6

i=1
f i(xi)

subject to x1 + x2 + x3 + x4 + x5 + x6 = 1200.

Figure 2 shows the trajectory of decision variables following
D-TPD dynamics (7) and compares it to the centralized
solution obtained by Matlab’s constraint optimization solver
‘fmincon’. As expected the decision variable xi of each agent
i ∈ {1, 2, 3, 4, 5, 6} converges to its corresponding solution
of the optimization problem.

The relative error of the function value on the trajectories
computed by primal-dual based algorithms and D-TPD dy-
namics are shown in Fig. 3. Comparing rate of convergence
of continuous-time algorithms is a subtle matter. To have a
fair comparison, as proposed in [30], we assume that the
decision variable evolution in each algorithm is of the form
ẋi(t) = ui(t), where we think of ui(t) as control input. For
example for the D-TPD algorithm ui(t) = −∇f i(xi) − yi.

Fig. 4: The input energy ∥u(t)∥∞ = max{ẋi(t)}Ni=1 to the
dynamic systems: D-TPD dynamics (blue) , PD (orange), PD-
AL(black), Proj (purple), dac+L∂ (green).

We assume that an algorithm has accelerated convergence
compared to another algorithm if it converges faster for
almost the same control effort ∥u(t)∥∞ = max{ẋi(t)}Ni=1

as of the other algorithm. Notice that in a continuous-time
algorithm a faster convergence can always be achieved by
cranking up the ‘input’, i.e., using ẋi = αui for an α > 1.
Figure 4 shows the input size of the dynamic systems are
at the comparable level, which means the acceleration of
D-TPD that is observed in Fig. 3 is not due to scaling
on the continuous-time system, for example by changing
time scales. Compared with the PD algorithm, the D-TPD
dynamics reduce the oscillation of the decision variables
and the input energy to the system. That is, compared with
other primal-dual based algorithms, the D-TPD algorithm
accelerates the convergence of the decision variables without
increasing the input size.

As a second example, consider

x⋆ =arg min
x∈R6

∑6

i=1
f i

(
xi
)
,

subject to x1 + x2 + x3 + x4 + x5 + x6 = 2.
(14)

where the local cost functions are

f i
(
xi
)
=


0,

∣∣xi
∣∣ ≤ βi

1

2αi

(∣∣xi
∣∣− βi

)2
, βi <

∣∣xi
∣∣ ≤ βi + αi(∣∣xi

∣∣− βi − 1
2α

i
)
,

∣∣xi
∣∣ > βi + αi

with αi, βi chosen randomly between (0, 0.01) and (2, 2.5),
respectively. Cost function (14) is smooth and convex, and
the optimization problem (14) has infinite number of mini-
mizers that correspond to the minimum cost of f⋆ = 0.

Figure 5 shows the trajectory of decision variables following
D-TPD dynamics (7). The error of constraint is shown in
Fig. 6. Notice that the decision variable xi of each agent
converges to a point satisfying the constraint only for D-
TPD, PD-AL and dac+L∂ algorithms. The error of function
value in Fig. 7 shows relatively slow decay for primal-dual
based algorithms. We conclude that the decision variables of
D-TPD dynamics converges significantly faster to one of the
solutions of the optimization problem.

VI. CONCLUSIONS

This paper proposed a novel distributed algorithm to solve
an in-network optimal resource allocation problem over



Fig. 5: Trajectories of the D-TPD dynamics for the convex
optimization problem (14).

Fig. 6: Error of constraint computed by D-TPD dynamics (blue)
and PD (orange), PD-AL(black), Proj (purple), dac+L∂ (green).

Fig. 7: function error computed by D-TPD dynamics (blue) and
PD (orange), PD-AL(black), Proj (purple), dac+L∂ (green).

undirected connected graphs. This algorithm was inspired by
a recently proposed first-order centralized algorithm referred
to as transformed primal-dual algorithm, which comes with
an exponential convergence for a strongly convex cost and
asymptotic convergence for a convex cost. We used a control
theoretic framework to study the convergence of this algo-
rithm and established that when the local cost functions are
strongly convex and have only locally Lipschitz gradients,
our proposed distributed algorithm guarantees exponential
convergence. For convex local cost functions, the conver-
gence guarantee was asymptotic convergence to a point in the
minimizer set. Numerical examples show that our algorithm
achieves faster convergence than existing continuous-time
first-order distributed solutions for our problem of interest.
Our future work focuses on characterizing the stepsize for
discrete-time implementation of our algorithm and expanding
the results to include multiple demand equations.
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