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ABSTRACT
This paper evaluates the technical efficiency of smallholder dairy farmers assisted by a climate resilience
programme in the Brazilian semi-arid region. We use stochastic frontier models applied to a panel with
quarterly data for 43 dairy family farmers assisted by the MAIS programme (Módulo Agroclimático
Inteligente e Sustentável) between January 2016 and March 2018. Results highlight how the assistance
to implement climate-smart production practices, in addition to access to basic technologies, played a
key role in improving the frontier of production of dairy farmers. We also show that increasing
temperature continues to be the main threat to the continuous growth of technical efficiency in the
region. Our findings provide insights for policy and decision-makers in designing adaptive strategies
to reduce the vulnerability of impoverished family farmers that face extreme weather events.
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1. Introduction

Family farmers in the semi-arid region of Brazil are extremely
vulnerable to climate change. This scenario is explained by
various factors such as advanced desertification, land degra-
dation, rainfall deficits, water scarcity, and precarious socioe-
conomic and infrastructure conditions (Burney et al., 2014).
Droughts have intensified in the Brazilian semi-arid region
since the 1990s and have become more widespread since the
2010s (Alvalá et al., 2019; Costa et al., 2020 Marengo et al.,
2018). Besides, climate forecasts indicate worsening conditions
related to rainfall deficits and soil aridity in this region during
the second half of the twenty-first century (IPCC, 2014).

Several studies have investigated the impact of climate
change on agricultural production in different regions of the
world (Donatti et al., 2019; Hannah et al., 2017; Key & Sneer-
inger, 2014; Mendelsohn & Dinar, 2009; Omerkhil et al., 2020
Pires et al., 2016). More recently, studies have focused on how
adaptive strategies may offset the negative impacts of climate
change on production and food security (de Sousa et al.,
2018; Di Falco et al. 2011; Jamshidi et al., 2020 Oumer, 2019;
Salat & Swallow, 2018; Smit & Wandel, 2006 Teklewold
et al., 2019; Teklewold et al., 2019; Tong et al., 2019). A general
concern is that adaptation may require investment in technol-
ogies and production practices that are not affordable for
smallholder family farmers in less developed regions.

However, specific experiences have shown that adopting
basic management practices may bring remarkable economic
gains to family farmers facing yield-limiting factors (Adego
et al., 2019; Onyeneke, 2020; Shahzad & Abdulai, 2020). In
this context, climate resilience programmes have been formu-
lated to help counteract the effects of climate change on

vulnerable rural areas in the developing world. For example,
Khanal et al. (2018) show evidence that climate change adap-
tative strategies (CCAS), designed by different programmes in
Nepal, had a positive impact on the average yield and technical
efficiency of smallholder farmers. Using the stochastic frontier
(SF) model, the authors also indicated that socioeconomic
characteristics (such as education and market access) played
an essential role in explaining farmers’ efficiency. Khanal
et al. (2021) also showed that Nepalese farmers that adopted
CCAS were, on average, 11%more efficient than non-adopters.
Ankrah Twumasi and Jiang (2021) evaluated the impact of
CCAS on the technical efficiency of goat farmers in Ghana,
showing that these practices helped increase farmers’
efficiency. Using SF models, Bai et al. (2019) indicated that
CCAS improved livestock production’s technical efficiency
among vulnerable Chinese farmers. Ojo and Baiyegunhi
(2020) conducted a similar analysis among smallholder rice
farmers in Nigeria, pointing to the importance of CCAS in
enhancing average rice yield and technical efficiency.

The purpose of this study is to evaluate the technical
efficiency of family dairy farmers assisted by a climate resili-
ence programme in the Brazilian semi-arid region. The pro-
gramme is called MAIS, Módulo Agroclimático Inteligente e
Sustentátvel, which means Sustainable Smart Agro-climatic
Module. In 2016, the MAIS programme implemented an
approach for enabling smallholders to sustainably achieve
yield and economic gains through improvements in manage-
ment practices and the use of locally-adapted and low-cost
technologies. Therefore, our analysis’s central purpose is to
identify if and how family farmers can maximize their feasible
production given only a bundle of limited but strategically
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selected inputs and technologies. We also evaluated how the
main exogenous shocks in the region, weather conditions,
may compromise farmers’ technical efficiency.

This study provides insights regarding climate-smart prac-
tices and their impacts among smallholder farmers. Results
from this research can be particularly helpful for policy- and
decision-makers in formulating and designing effective adap-
tive strategies to reduce vulnerability and improve the resili-
ence of impoverished family farmers that face extreme
weather events and climate change.

2. Background

The study focuses on the Jacuípe basin area (JBA), located in
the state of Bahia – Northeast region of Brazil (Figure 1).
The JBA is part of the most populous semi-arid area in the
world (the Brazilian Sertão1), covering 10,739 km2 (14 munici-
palities) with a population of 238,127 people in 2018. The
region is plagued by high poverty levels, inequality, and food
insecurity (Gori Maia et al., 2018).2 The main agricultural
activities in the region are extensive livestock and dairy farm-
ing. According to the 2017 Agricultural Census, nearly 26,000
smallholder farmers lived in the JBA, and one-third of them
are dairy farmers.3

Analyzing the climate conditions, the area has been severely
hit by increasing temperatures and recurrent droughts.
Between 1961 and 2018, the average monthly temperature
increased by 0.4°C per decade, reaching a minimum (maxi-
mum) average of 21°C (31°C) in the 2010s (Figure 2). The
region has also historically suffered prolonged and irregular
periods of drought, which seems to have worsened in the
last decades: the average rainfall has reduced by 10 mm per
decade since the 1960s.

In this context, a multi-stakeholder group called Adapta
Sertão created the MAIS programme in 2014. The pro-
gramme’s objective was to enhance the productivity and
efficiency of smallholder livestock and dairy family farmers,
using climate change adaptative strategies through the adop-
tion of low-cost technologies and production practices, along

with market integration strategies. In addition to aiming to
achieve food security, the programme sought to reduce the
environmental impact of agricultural activities. The pro-
gramme was financed by the Interamerican Development
Bank (IDB) and Nordic Development Bank (NDF), with a
minor contribution from the Bahia State Government.

Between 2016 and 2018, the MAIS programme assisted 100
family farmers4 in their milk and sheepmeat production. The
selection of the MAIS farmers was partially random. The
Adapta Sertão applied a survey in the JBA in 2015 and ranked
the family farmers using a score containing seven main dimen-
sions: education, family structure, technical training, financial
resources, market integration, access to water, land area, and
management. Fifty farmers were strategically (non-randomly)
selected among those with the best scores. The selection of the
other 50 farmers was based on: (i) a random selection of those
farmers who met threshold criteria determined by Adapta Ser-
tao but who were not among the Adapta selection; (ii) farmers
recommended by the local cooperative and rural associations.

The programme consisted of four interrelated steps: adop-
tion of improved production practices (“modules”), technical
training, financial orientation, and monitoring and evaluation
(Voigtlaender et al., 2017). The production modules required a
minimum area of 20 hectares and included a package of 20
locally adapted practices and technologies. The minimum
area of production was established to guarantee: (i) a sustain-
able provision of pastures, area for Livestock-Forest-Pasture
integration, area for hay production and forage, mainly Opun-
tia-Ficus Indica (a cactus)5; (ii) a maximum number of heads
per module to guarantee a sustainable production in the long
run without the depletion of natural resources; (iii) best animal
management practices; (iv) construction of wells, water cis-
terns, and earth damns to ensure family and animal water
needs during prolonged droughts; recommendation of small-
scale and low-cost machinery.

The MAIS programme may improve farmer’s efficiency pri-
marily through the access to technical guidance, which is still
scarce in the region (Gori Maia et al., 2018). The quality and
duration of the technical assistance were one of the greatest

Figure 1.Municipalities in the Jacuípe basin area (JBA). Note: the municipalities in the JBA are Baixa Grande, Capela do Alto Alegre, Gavião, Ipirá, Mairi, Nova Fátima, Pé
de Serra, Pintadas, Quixabeira, Riachão do Jacuípe, São José do Jacuípe, Serra Preta, Várzea da Roça, and Várzea do Poço.
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strengths of the MAIS programme. The farmers were uni-
formly assisted by professional technical assistance for two
to three years through monthly four-hour visits to properly
implement and manage production in the new system. In
addition to organizing and planning the activity, the experts
provided support and information on water and food storage,
rotation and pasture recovery, mechanization, animals’ man-
agement, among other extension services. In other words,
the programme taught farmers how to better use the resources
they had available. For example, one primary strategy dissemi-
nated in the programme was how to accordingly cultivate den-
sely spaced Opuntia cactus, which can be used to feed the herd
during periods of prolonged drought. The programme also
included a financial orientation plan to implement the mod-
ules and advised farmers in four areas: (i) selling of unused
assets; (ii) investment of farmers’ savings; (iii) access to gov-
ernment incentives/subsidies to agriculture; (iv) access to
credit programmes. Finally, each farm was monitored and
evaluated by collecting quantitative and qualitative technical,
economic, environmental, and production data. We used
this data to analyze the technical efficiency of MAIS farmers.

Previous studies analyzed how the MAIS programme
strengthened the adaptive capacity of family farmers in the
Brazilian semi-arid region. Simoes et al. (2010), for example,
described how the project helped family farmers to implement
adaptive strategies in the municipality of Pintadas in the JBA.
Gori Maia et al. (2019) indicated that the programme had sub-
stantive and significant impacts on production practices, land
management, and quality of life in general. Our study contrib-
utes to this debate, exploring the technical efficiency of the
family dairy farmers assisted by the MAIS programme. Local
experiences could provide insights to improve adaptation pol-
icy frameworks for climate change aiming to reduce small-
holder farmers’ vulnerability and alleviate poverty.

3. Material and methods

3.1. Data source

We use a panel with monthly (longitudinal) data for 43 dairy
farmers assisted by the MAIS programme between January
2016 and March 2018. The information was collected by
four technicians trained by the MAIS programme. The same
technician visited each farm every month to collect data for
monitoring, provide technical assistance, and production
planning. An agronomist and a technical director specialized
in milk production supervised the visits, reducing potential
measurement errors in the data collection. To reduce volatility
and missing data (attrition), we computed farmers’ monthly
average production and inputs in each quarter. Missing data
may arise predominantly because the small-scale production
in the region is based on scarce resources and subjected to
extreme irregularities.

The programme began with only seven farmers in the first
three quarters of 2016 and reached a peak in the first quarter of
2017, with 43 farmers (Figure 3). Our final sample comprises
an unbalanced panel data with 239 observations, distributed
in 9 time periods (quarters).

Our outcome of interest is the average milk production
(milk, in litres).6 The main predictor of interest is the cumulat-
ive number of quarters each farmer was assisted by the pro-
gramme (quarters), a proxy for the MAIS programme’s
learning gains. In other words, we assume that the cumulative

Figure 2. Distribution of average monthly values of precipitation (mm) and
temperature (oC) in each decade, JBA between the 1960s and the 2010s. (a) Aver-
age Monthly Precipitation (mm). (b) Average Monthly Temperature (Celsius).
Note: Monthly values from the meteorological station located in the Serrinha
municipality, the closest from the JBA (nearly 30 miles of distance). Average
values represent the mean of the monthly values observed in each decade
(1960-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2009, 2010-2017). Source:
INMET (2017)

Figure 3. Total number of farmers per quarter between 2016 and 2018. Note:
January to March (J-M), April to June (A-J), July to September (J-S), October to
December (O-D). Source: Survey data
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number of quarters in the programme may capture the net
effect of MAIS’s technical assistance on milk production
once we control for the primary inputs of production. The
inputs of production available in our panel data are a) size,
farm size in hectares; b) labor, hours of hired labour (tempor-
ary or permanent)7; c) investment, a binary variable that
assumes 1 when the total investment since entering in the pro-
gramme was greater than zero, i.e. the variable captures the
cumulative investment until the quarter.

We also obtained information for each farm’s infrastructure
and access to technology: a) cistern, a binary variable that
equals 1 for the presence of water cistern in the farm with a
minimum storage capacity of 50,000 litres; b) tractor, a binary
variable that equals 1 for the presence of (2 or 4 wheels) tractor
in the farm; c) cooling, a binary variable that equals 1 for the
presence of milk cooling system. These three variables are
time-invariant because they were collected in an independent
survey applied at the end of the programme (1st quarter of
2018). These time-invariant regressors are available for 37 of
43 farmers who participated in the survey.

Figure 4 shows the distribution of the average production
of milk per month between quarters 1 and 9. We identify a
structural break between the 4th and the 5th quarters when
30 new farmers entered the MAIS programme. Between the
5th and the 9th quarter, the median milk production
increased by 40% (from 2,593 to 3,635 litres of milk per
month). Notably, a few outliers reached more than 10,000
litres per month, suggesting that they may be in the frontier
of production and that it may still be possible to improve
technical efficiency.

The MAIS farmers show to be positively selected in terms of
land size, but they use few inputs in the production, and access
to essential technologies is scarce. The average farm size was
42.2 hectares (Table 1), 50% higher than the region’s average.
Nonetheless, these farmers showed low investment capacity:
only 37.2% of them invested in the period. Nearly three-
quarters of the dairy farmers hired labour (temporary or per-
manent), while the other quarter relied exclusively on family
labour – the average hours per month of hired labour is
394.7. The technology adoption in the production system

was limited. While around one-third of the farmers had a
milk cooling system, only 15.2% had a tractor. Furthermore,
only 24.8% of the farmers had a water source to ensure family
and animal needs during prolonged droughts. Finally, the
average period of participation in the MAIS programme was
3.5 quarters.

We also analyzed the impact of climatic data on technical
efficiency. Our data came from conventional weather stations
of the National Meteorological Institute (INMET). We initially
interpolated the stations’ data through all municipalities using
the method of Inverse Distance Weighting (IDW) (Kurtzman
& Kadmon, 1999). The IDW method makes a weighted linear
combination of all meteorological stations’ data. Weights are
proportional to the inverse of the distances: the larger the dis-
tance, the lower the weight. Although the interpolation con-
sidered a sample of 261 weather stations in Brazil, the
interpolated values used in our analysis were strongly
influenced by those stations located close to the JBA.

Using the interpolated data, we then estimated two indicators
of short-term climate shocks in the farm’s municipality: average
monthly standardized temperature (Z − temperature) and total
monthly standardized precipitation (Z − precipitation). The
standardized measures are given by [(monthly value – historical
monthly average between 1961 and 2018)]/standard deviation].
The standardized measures eliminate potential historical climate
differences in the region and provide an intuitive interpret-
ation for the climate variables: positive values mean tempera-
ture or precipitation above the historical average and negative
values mean monthly averages below the historical average
(Dell et al., 2014).

Figure 5 shows the distribution of Z − temperature and
Z − precipitation between the 1st quarter of 2016 and the 1st
quarter of 2018. The family farmers have faced harsh climate
conditions during the implementation of the MAIS program.
The temperature was above the historical average (positive
values of Z − temperature) in the whole period of analysis.
The precipitation was below the historical average (negative

Figure 4. Distribution of monthly production of milk (liters), by quarter, for all
MAIS farmers between 2016 and 2018. Note: January to March (J-M), April to
June (A-J), July to September (J-S), October to December (O-D). Source: Survey
data.

Table 1. Descriptive statistics. Sampled farmers between the 1st quarter of 2016
and the 1st quarter of 2018.

Variables Description Farmers Average Std. Dev.

Milk Litres of milk per month 43 3,392 2,277
Size Farm size in hectares 43 42.200 28.500
Labour Monthly hours of hired farm

labour divided per 100
43 3.947 4.583

Investment 1 when the total investment
since entering in the
programme is greater than
zero, 0 otherwise

43 0.372 0.484

Cistern 1 for the use of water cistern with
a minimum storage capacity of
50,000 litres, 0 otherwise

37 0.248 0.433

Tractor 1 for the use of a tractor, 0
otherwise

37 0.152 0.360

Cooling 1 for the use of milk cooling
system, 0 otherwise

37 0.343 0.476

Quarters Total number of quarters in the
programme

43 3.548 2.000

Note: The data were obtained at the farmer level through interviews carried out
by the technicians of the MAIS programme. Farmers refer to the number of
farmers with non-missing values for each variable. The averages represent
the mean of monthly values for all farmers and quarters between January
2016 and March 2018. Source: survey data
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values of Z − precipitation) in 6 of 9 quarters of analysis. We
also observed large variations between quarters and across
farmers (within quarters). For example, the Z − temperature
ranged from a minimum of 0.1 standard deviation in the 3rd
quarter of 2017 to a maximum of 2.4 standard deviations in
the 3rd quarter of 2016. Standardized precipitation ranged
from −1.23 standard deviations in the 2nd quarter of 2016–
1.00 standard deviation in the 3rd quarter of 2017. In the
2nd quarter of 2017, the Z − precipitation across farmers ran-
ged from a minimum of −0.19 standard deviation to a maxi-
mum of 0.23 standard deviations.

3.2. Empirical strategy

We used SF models to analyze the technical efficiency of MAIS
farmers. The SF models allowed us to (i) evaluate how close the
farmers were to maximum production efficiency and (ii) ident-
ify how technical inefficiency may be affected by climatic con-
ditions. SF models were initially developed by Aigner et al.
(1977) and Meeusen and van den Broeck (1977) to estimate
the inefficiency associated with a traditional production
function.

The first step of our empirical strategy consisted of defining
a function for the average milk production (production func-
tion). When yit is the production (milk) of the farm i in quarter

t and xit a vector of k explanatory factors (inputs of pro-
duction), the production function for panel data is given by:

ln yit = xitb+ dt + ci + eit i = 1, .., n (1)

The coefficient d measures the farmers’ average learning
gains, i.e. the improvements in farmers’ production per quar-
ter in the MAIS programme (variable t). Our matrix x includes
both time-varying (ln size, labor, and investment) and time-
invariant variables (cistern, tractor, and cooling). Panel data
models strength causal inference because it controls omitted
farmers’ characteristics that are constant over time (such as
prior technological knowledge, agricultural skills, social and
human capital).

The component ci is the time-invariant unobservable farmer
heterogeneity (for example, prior level of climate vulnerability
and agricultural skills), which can be controlled by random or
fixed effects (Greene, 2005). The random-effects estimator is
more efficient than the fixed effects estimator, but it can be
biased if the unobservable heterogeneity ci is correlated to expla-
natory variables (t and xit). In turn, one main limitation of the
fixed effects estimator is that it does not accept time-invariant
regressors, which is the case of some of our inputs of production
(cistern, tractor, and cooling). We used the Hausman test to
compare the random and fixed effects and check the consistency
of random-effects estimates (Hausman, 1978).

The second step of our strategy is based on an SF model.
The SF model allows us to disaggregate the error eitinto two
specific components: i) random shocks (vit), resultant, for
example, from unexpected or unobserved factors (for example,
animal disease); ii) components associated with technical
inefficiency (uit), (for example, difficulty in farmers’ knowledge
uptake and environmental conditions). In other words:

ln yit = xitb+ dt + ci + vit − uit (2)

The shock vit is assumed to be independent of uit and iden-
tically distributed. The component uit is positive and rep-
resents technical inefficiency. In other words, uit represents a
decrease in the maximum feasible production. The component
uit can also be represented by a function of a vector zit of
characteristics that are beyond the farmers’ control (Battese
& Coelli, 1995). In other words, we have:

uit � N+(mii, s
2
u) (3)

mit = zit∅ (4)

In this case, uit has a normal positive distribution with an
average value mit conditional to the characteristics zit, and ∅ is
its vector of coefficients. The vector zit may represent observable
and unobservable factors, such as household, farm, institutional,
and regional characteristics. We are particularly interested in
the impacts of climate shocks on technical inefficiency, and
our vector zit includes two variables: Z − temperature and
Z − precipitation in the farm’s i municipality at quarter t.

The SF model can be estimated in one- or two-steps (Wang
& Schmidt, 2002). The one-step approach fits both equations
(2) and (4) simultaneously. The two-step approach fits firstly
equation (2) and secondly equation (4) using the first-stage
residuals. We used the one-step approach since it is consistent,

Figure 5. Distribution of average values of standardized precipitation and stan-
dardize temperature. Sampled farmers between the 1st quarter of 2016 and the
1st quarter of 2018. (a) Standardized Precipitation. (b) Standardized Temperature.
Note: January to March (J-M), April to June (A-J), July to September (J-S), October
to December (O-D). Source: INMET (2017)
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while the two-stage approach may be biased (Wang &
Schmidt, 2002). The estimation strategy consists of maximiz-
ing the function of log-likelihood conditioned to the vector
of coefficients β and ∅, and to the parameters s2 = s2

v + s2
u

and g = s2
u/(s

2
v + s2

u), where s
2
v is the variance of v (Battese

& Coelli, 1995).
A particularly useful analysis in the SF model is the esti-

mation of technical efficiency. Based on equation (2), the pro-
duction yit can be given by the product of three components:

yit = exp (xitb+ dt + ci)× exp (vit)× exp (−uit) (5)

The product of the first two components defines the pro-
duction possibility frontier, i.e. the production level consider-
ing a total productive efficiency hypothesis. In turn, the
inefficiency component exp (−uit) represents the distance to
the production frontier resulting from inefficiency. Based on
this analysis, we can extract one of the most common technical
efficiency measures (Coelli et al., 1998):

TEit = yit
exp (xitb+ dt + ci)× exp (vit)

= exp (−uit) (6)

TEit assumes a value between 0 and 1 and represents the
ratio between the observed production for i and its maximum
expected production. In other words, TEit represents the share
of the maximum production attained by i in the quarter t.
Thus, the closer TEit is to 1, in both situations, the closer i is
to total efficiency at time t.

4. Results and discussion

4.1. Production function models

We first estimate equation 1 to better define the production
function specification and estimation strategy. Table 2 reports
random effect estimates for coefficients of the model for the
average log of milk as a function of the number of quarters
that family farmers are in the programme (equation 1). We
tested three different (nested) specifications (Models 1-3).
Model 1 is based on a traditional Cobb–Douglas production
function: the average log of production as a linear function
of the log of area (ln size), hours of hired labour (labor), and
a binary for investment (investment).8 Model 2 is based on a
translog production function: the average log of production
as a function of the inputs (ln size, labor, and investment),
the square of the continuous variables (ln size and labor),
and the interactions between the inputs (ln size× labor,
ln size× investment, and labor × investment). Model 3 adds
controls for time-invariant technological variables (cistern,
tractor, and cooling) and all interactions with these variables.
Since time-invariant technological variables are only available
to a subset of farmers, we missed 29 observations in Model
3. The estimates for Models 2 and 3 in Table 2 refer to each
variable’s main effect (∂Y/∂X) at the means, i.e. fixing all
other variables at their means.

The Hausman test’s null hypothesis in Table 2 is that the
random effect estimates are consistent and more efficient
than the fixed effect estimates. The Hausman tests for Models
1 and 2 indicate that the differences between fixed and random
effect estimates are insignificant, i.e. the random effect method

provides consistent and the most efficient estimates. The
Hausman test does not apply to Model 3 because it includes
time-invariant regressors and can only be fitted using a ran-
dom effect estimator. Nonetheless, the random-effects esti-
mates’ consistency may also hold in Model 3 because it is an
extension of Models 1 and 2 (nested models).9

Table 2 also shows the results of the sample selection test
proposed by Verbeek and Nijman (1992). The null hypothesis
assumes that the unobservable selectivity is unrelated to the
idiosyncratic errors, i.e. the estimates are robust to selectivity.
We have moderate evidence of sample selection (p , 0.05)
only in Model 2. Model 3 is robust to selectivity and presents
the best statistics of the goodness of fit. The R2 equals 41.4%
against 32% in Model 1 and 36.6% in Model 2. Model 3 will
henceforth be the focus of our analysis.

The estimates for the net impacts of the number of quarters
in the MAIS programme (quarters) are significant and robust
in all model specifications. Results indicated that the time in
the MAIS programme had a positive impact on dairy farming:
average milk production increased by nearly 10% (Model 3)
for each quarter of technical assistance provided by the
MAIS programme. These results follow the literature on the
importance of agricultural extension services to transfer tech-
nology to smallholder farmers (Khonje et al., 2018; Shahzad &
Abdulai, 2020 Wainaina et al., 2018; Zhang et al., 2016).

4.2. Stochastic frontier models

Once we have defined the best model specification (Model 3)
and estimation strategy (random effects) in section 4.1, we

Table 2. Random effect estimates for the dependent variable log of monthly
average of milk production.

Variable Model 1 Model 2a Model 3a

Quarters 0.106 *** 0.110 *** 0.098 ***
(0.014) (0.016) (0.014)

ln size 0.102 0.107 0.376 *
(0.086) (0.111) (0.171)

Labour 0.035 * 0.068 * 0.032 **
(0.017) (0.033) (0.010)

Investment −0.071 −0.124 −0.064
(0.075) (0.076) (0.071)

Cistern 0.262
(0.148)

Tractor −0.073
(0.173)

Cooling 0.348 *
(0.139)

n 235 235 206
R2-within 0.320 0.366 0.414
Hausman (x2)b 8.70 5.53 -
Selection (t)c −1.79 −2.12 * −1.15
Sampled farmers between the 1st quarter of 2016 and the 1st quarter of 2018.
Notes: ***p<0.001; **p<0.01; *p<0.05. Robust standard errors in parentheses.
Model 1 is a linear function the independent variables (Cobb-Douglas function).
Model 2 and 3 are functions of the independent variables and their interactions
(Translog function). Estimates for Model 2 and 3 refer to the main effect of each
variable at the means of covariates. bThe null hypothesis in the Hausman spe-
cification test is that the fixed effect estimates are equal to the random effect
estimates for model 1, i.e. the random effect estimates are consistent and more
efficient. The chi-square statistic used in the Hausman test presents four
degrees of freedom in Model 1 and eight degrees of freedom in Model
2. cThe null hypothesis in the sample selection test is that sample selection is
uncorrelated with the idiosyncratic errors, i.e. the estimates without sample
selection correction are consistent.
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now analyze SF models for milk production (equations 2 and
4). Table 3 shows the estimates for the SF models considering
two different specifications: Model 3-A is based on equation 2,
assuming that the frontier of milk production is a translog
function of the time in the programme (quarters) and the
inputs of production (ln size, labor, investment, cistern,
tractor, and cooling); Model 3-B is based on equations 2 and
4, assuming that the frontier of milk production is simul-
taneously defined by a translog function for the log of milk
production (equation 2) and a function for the mean technical
inefficiency (equation 4). Climate shocks (Z − Temperature
and Z − Precipitation) are the regressors (z) in the model for
the mean technical inefficiency (equation 4).

The SF models fitted well to our data: the variance of the
disturbances associated with random shocks (s2

v) and techni-
cal inefficiency (s2

u) are statistically different from zero in
both models. The variability of the technical inefficiency is
between 12% (l in Model 3-B) and 27% (Model 3-A) higher
than that of the random shocks, suggesting that inefficiency
plays a crucial role in explaining farmers’ differences in milk
production.

The estimates indicate that the duration of the technical
assistance provided by the MAIS programme increased the
frontier of milk production between 6.4% (e0.062 − 1 = 0.064
in Model 3-B) and 7.7% (e0.074 − 1 = 0.077 in Model 3-A)
per quarter. Additionally, basic inputs of production also
played a key role in improving the frontier of production.
Every 100 additional hours of hired non-family labour in the
month increased production’s frontier by nearly 7%
(e0.063 − 1 = 0.065 in Model 3-A and e0.065 − 1 = 0.068 in
Model 3-B). Making investments in production increased the
frontier by nearly 18% (e0.163 − 1 = 0.177 in Model 3-A and

e0.173 − 1 = 0.189 in Model 3-B). Findings also highlighted
that access to milk cooling system is the most strategic technol-
ogy to increase the production’s frontier: the use of a cooling
system increased the frontier by nearly 29%
(e0.255 − 1 = 0.291 in Model 3-A and e0.250 − 1 = 0.283 in
Model 3-B). This result is in line with recent studies (Bai
et al., 2019; Khanal et al., 2018; Ojo & Baiyegunhi, 2020),
which used the SF approach and showed a positive impact of
climate-smart practices on technical efficiency.

Model 3-B also indicates that increasing temperature may
be a major concern in milk production’s technical efficiency.
For each increase of one standard deviation in the average
monthly temperature, technical inefficiency increases by
0.282 point. This result means that milk production would
be 32.6% (e0.282 − 1 = 0.326) lower than in the frontier of pro-
duction. This is a crucial aspect once, in some quarters of the
analyzed period, the average temperature was two standard
deviations larger than the historical average. The impacts of
precipitation on technical inefficiency is also positive and sig-
nificant at 5%: for each increase of one standard deviation in
total monthly precipitation, technical inefficiency increases
by 19.8% (e0.180 − 1 = 0.198). Qi et al. (2015) also identified
that marginal increases in precipitation might negatively
impact dairy farm productivity. However, our results reflect
mainly short-term impacts of temperature and precipitation.
A longer-term analysis would be necessary to understand bet-
ter climate resilience in an area with many timescales of
drought.

Appendix A shows the SF estimates (Models 3-A and 3-B)
with binaries for calendar quarters. The idea is to check the
robustness of our estimates to seasonality. The estimates of
Appendix A for the time in the programme (quarters) and
inputs of production are quite similar to those from Table 3.
The main difference is the insignificance of the estimates for
the inefficiency component (variables Z − temperature and
Z − precipitation). Multicollinearity helps explain this result
because weather shocks varied by season in the JBA. Shocks
of high temperature were more frequent in the autumn (aver-
age Z − temperaturewas 1.40 in the second quarter and 1.05 in
the whole period), and; shocks of low precipitation were more
frequent in the spring (average Z − precipitation was equal to
−0.97 in the fourth quarter against−0.37 in the whole period).

Advanced desertification, land degradation, rainfall deficits,
water scarcity, and precarious socioeconomic and infrastruc-
ture conditions have historically affected smallholder farmers’
productivity in the JBA. Burney et al. (2014) attributed the
reduced productivity to farmers’ lack of climate resiliency
and their dependence on scarce water resources in the region.
Nonetheless, our results indicate that the time in the MAIS
programme had an essential effect on milk production. In gen-
eral, as Zhang et al. (2016) argued, it is possible to propose
affordable adaptive strategies that are efficient and easily
assimilated by small producers. Particularly considering the
MAIS programme, locally adapted and low-cost technologies,
such as a milk cooling system, have remarkably improved
farmers’ production gains.

Figure 6 shows the estimates for the farmers’ technical
efficiency (TE in Equation 6) using Model 3-B. We focus our
analysis between the fifth (January-March 2017) and the

Table 3. Frontier model results for log of milk production.

Model 3-A Model 3-B
Frontier of production (ln milk)

Quarters 0.074 *** 0.062 ***
(0.016) (0.018)

ln size 0.198 0.182
(0.146) (0.140)

Labour 0.063*** 0.065***
(0.012) (0.012)

Investment 0.163* 0.173*
(0.074) (0.075)

Cistern 0.098 0.080
(0.107) (0.105)

Tractor 0.083 0.078
(0.115) (0.114)

Cooling 0.255** 0.250**
(0.089) (0.088)

Technical inefficiency (m)
Z-Temperature 0.282*

(0.122)
Z-Precipitation 0.180*

(0.089)
n 206 206
su 0.381* 0.324*
sv 0.301*** 0.288***
l = su/sv 1.269*** 1.125***
Log likelihood −91.3 −89.5
Sampled farmers between the 1st quarter of 2016 and the 1st quarter of 2018.
Notes: *** p<0.001; ** p<0.01; * p<0.05. Standard errors in parentheses. su is the
standard deviation of the component associated with the technological ineffi-
ciency and sv is the standard deviation of the idiosyncratic error. Estimates for
the frontier of production refer to the main effect of each variable at the means
of covariates.
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ninth (January-March 2018) quarters when most farmers par-
ticipated in the MAIS programme. One main achievement of
the programme in this period was to increase the top perfor-
mers’ technical efficiency, since the third quartile increased
from 0.743 to 0.783 (4 percentage points). The median TE
increased by two percentage points (from 0.704 to 0.723),
and the mean TE increased by 2.4 percentage points (from
0.696 to 0.721). The mean TE in the whole period increased
from 65% in the first quarter (January-March 2016) to 72%
in the ninth quarter (January-March 2018), i.e. there is still
room for major improvements in technical efficiency.

5. Conclusion

This study investigated the technical efficiency of dairy family
farmers assisted by a climate resilience programme (MAIS) in
the Brazilian semi-arid region. The programme created an
agricultural system aiming to regenerate the local ecosystem
services and build climate resilience through the adoption of
smart production practices and locally adapted and low-cost
technologies.

Results indicated that the smallholder farmers assisted by
the programme improved their average milk production
during the 2016–2018 period by nearly 10% per quarter,
while the frontier of production increased by nearly 7% per
quarter. We also identified that a milk cooling system10

might remarkably increase both the average and the frontier
of production. However, temperature shocks are the main
threat to the farmers’ efficiency. Our findings confirm the
importance of agro-climatic conditions on total factor pro-
ductivity (Demir & Mahmud, 2002; Mukherjee et al., 2013;
Njuki et al., 2020 Perez-Mendez et al., 2019).

Technical efficiency also grew in the period of analysis (7
percentage points). Although we can not infer causality, the
programme duration is also associated with improvements in
farmers’ efficiency. Because technical efficiency is a measure
of howmuch a farmer can do with what they have, the findings
suggest that the programme may have contributed to farmers’
resilience: a farmer able to achieve higher system productivity
creates more of a buffer to absorb climate shocks to the system.
In addition to impacting the depth of shock’s impact, better
technical efficiency through practices aimed at maintaining a

robust farm ecosystem will also impact the time to recovery
from a shock in a positive way. In sum, the adoption of
smart production practices can enhance production capacity
and engage farms in production that is not depleting the natu-
ral capital.

The analysis’s main limitation is that our sample is
restricted to a small group of beneficiary farmers. In this
respect, our study is limited in its ability to address any causal
relationship between participation in the programme and
improvements in milk production and technical efficiency.
In other words, we can not necessarily infer that improve-
ments in milk production and technical efficiency were solely
due to the participation in the MAIS programme. Also, we
used a production function instead of a profit function
because, for family farmers, it is tough to separate business
from all of life. That is, it would be challenging to understand
inputs/costs and outputs/revenues without an entire compre-
hensive household budget/accounting.

Nonetheless, one main contribution of this study is to
demonstrate that “best practices” can be relevant in alleviating
the impacts of climate change on impoverished family farmers.
The average production and technical efficiency of family
farmers substantially improved with the duration of a
locally-adapted technical orientation. Insights from this
research can help policymakers to formulate strategies related
to climate resilience in semi-arid regions. In this context, some
factors (such as technical extension services, credit to access
new technologies, education, and weather information) must
be considered when designing and implementing policies
since they contribute to overcoming financial and information
barriers, enhancing the use of climate change adaptative prac-
tices (Shahzad & Abdulai, 2020). Moreover, the results offer
interesting points for academic discussion regarding both the
identification of vulnerable areas and the analysis of strategies
to improve coping strategies and the adaptive capacity of
farmers.

Notes

1. The main biome of the Brazilian Sertão is known as Caatinga – an
exclusively Brazilian biome that occupies about 10% of the
national territory and 50% of the state of Bahia. It is characterized
by a semi-arid climate, diverse landscape, desert vegetation
adapted for long periods of drought, and high biodiversity
(Beuchle et al., 2015).

2. The Human Development Index (HDI) of the municipalities of
JBA ranged, in 2010, between 0.53 and 0.63 – similar to those
observed in many Sub-Saharan African countries. The Gross
Domestic Product (GDP) per capita was 75% lower than the Bra-
zilian average. Further, almost 80% of the population has com-
pleted no more than basic primary education.

3. The average land size in the area (29 hectares) was far below the
average in the state of Bahia (36 hectares) and Brazil (69 hectares).
The JBA produced an annual average of 58 thousand liters of milk
between 2010 and 2018, accounting for 5.5% of Bahia state’s total
production and 0.2% of the Brazilian production. During this
period, the average yield was 705 liters/cow in the JBA, 8%
(56%) lower than the state (national) indices(IBGE, 2020).

4. The milk production in the Jacuípe Basin mainly involves family
farmers. The Brazilian Federal Law No. 11,326 of 2006 defines a
family farmers those satisfying the following criteria: (i) the farm
size cannot be larger than four (official) modules - the module var-
ies from 50 to 60 hectares for the municipalities of the JBA; ii) the

Figure 6. Distribution of the estimates of the technical inefficiency in the milk
production, Model 3-B. aNote: January to March (J-M), April to June (A-J), July
to September (J-S), October to December (O-D). Source: Survey data
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farm is managed by the own family; iii) the labor force comes pre-
dominantly from the own family; iv) the family income comes pre-
dominantly from the own farm.

5. The use of Opuntia-Ficus Indica as a feed supplement for the live-
stock played a key role in the program. The cactus (Opuntia) pre-
sents a great adaptation in semiarid areas, since it is a low-water
requirement plant. Despite the low protein content, the Opuntia
has high content of carbohydrates and provides a relevant pro-
portion of livestock’s water requirement. Further, since the cactus
represents a lower cost feed (compared to corn, for example) and
presents high water use efficiency, its use contributes to enhance
semi-arid region sustainability (Andrade-Montemayor et al.,
2011).

6. We summed the total production of milk per quarter and divided
by 3.

7. We did not consider family labor, since this variable showed many
null values – probably because farmers misunderstood the ques-
tion and did not recognize family members as labor force.

8. We do not use log of labor because 35% of the total number of
observations are zero.

9. The larger the number of regressors (x), the lower the farmers’
unobservable heterogeneity (c).

10. Milk cooling systems increase the farmers’ capacity to store milk
and eventually sell it at a higher price, which brings more cash
to invest in the farm. That is, cooling systems are directly related
to milk quality.
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Appendix A.

Table A1. Frontier model results for log of milk production with seasonal
component (binaries for calendar quarters). Sampled farmers between the 1st
quarter of 2016 and the 1st quarter of 2018.

Model 3-A Model 3-B
Frontier of production (log of milk)

Quarters 0.068*** 0.065***
(0.016) (0.018)

ln size 0.154 0.148
(0.146) (0.138)

Labour 0.064*** 0.066***
(0.012) (0.012)

Investment 0.160* 0.159*
(0.074) (0.073)

Cistern 0.084 0.078
(0.107) (0.104)

Tractor 0.094 0.092
(0.114) (0.113)

Cooling 0.229** 0.231**
(0.089) (0.088)

Calendar quarters (binaries) yes yes
technical inefficiency (m)

Z-temperature 0.255
(0.164)

Z-precipitation 0.207
(0.173)

N 206 206
su 0.362* 0.300
sv 0.302*** 0.300***
l = su/sv 1.200*** 1.001***
Log likelihood −88.1 −87.4
Notes: *** p<0.001; ** p<0.01; * p<0.05. Standard errors in parentheses. su is the
standard deviation of the component associated with the technological ineffi-
ciency and sv is the standard deviation of the idiosyncratic error. Estimates for
the frontier of production refer to the main effect of each variable at the means
of covariates.
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