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ALLELE-SPECIFIC COPY NUMBER ESTIMATION BY WHOLE 
EXOME SEQUENCING

Hao Chen*, Yuchao Jiang†, Kara N. Maxwell†,1, Katherine L. Nathanson†,2, and Nancy 
Zhang†,3

*University of California, Davis

†University of Pennsylvania

Abstract

Whole exome sequencing is currently a technology of choice in large-scale cancer genomics 

studies, where the priority is to identify cancer-associated variants in coding regions. We describe 

a method for estimating allele-specific copy number using whole exome sequencing data from 

tumor and matched normal.
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1. Introduction

Cancer is a disease characterized by gains and losses of segments of chromosomes. These 

somatic copy number alterations (CNAs) play critical roles in cancer progression, and their 

accurate detection and characterization is important for disease prognosis and treatment. 

Each person inherits two copies of the genome, one from each parent, and somatic CNAs 

that are acquired by a tumor can affect one or both inherited copies. A challenging problem 

in the analysis of tumor genomes is to accurately estimate the number of copies of each 

inherited allele, sometimes called the allele-specific copy number or the parent-specific copy 
number.

Methods for quantifying CNAs have evolved with the advance of technology, from 

traditional spectral karyotyping to array-based comparative genome hybridization (CGH), to 

single nucleotide polymorphism (SNP) genotyping arrays, and, more recently, to high-

throughput sequencing-based methods. As one of the earliest high-throughput methods, 
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CGH allows the genome-wide assessment of the sum of the copy numbers of the two 

inherited chromosomes. In contrast, genotyping microarrays, which have probes that 

separately target the different alleles at single nucleotide polymorphic sites, allow the 

estimation of allele-specific copy number. Allele-specific copy number estimation is 

especially important for detecting loss of heterozygosity, since there are common mutation 

processes that cause copy-neutral loss of heterozygosity where a region on one chromosome 

is replaced by the same region duplicated from the other homologous copy. For CNAs that 

do involve changes in total DNA copy number, it is often important to know whether one or 

both of the inherited alleles are affected. Thus, in addition to methods for total copy number 

estimation [see Lai et al. (2005), Willenbrock and Fridlyand (2005), Zhang (2010), 

Medvedev, Stanciu and Brudno (2009) for reviews], methods for allele-specific copy number 

estimation have received increasing attention [Chen, Xing and Zhang (2011), Olshen et al. 

(2011), Zhang, Lange and Sabatti (2012), Mayrhofer et al. (2013), Chen et al. (2014)].

High-throughput sequencing is a natural platform for allele-specific copy number estimation 

since at heterozygous loci both alleles will be sequenced and observed in the data. High-

throughput sequencing can provide much finer resolution than genotyping microarrays, 

especially for allele-specific analysis. This is because most polymorphic loci have low minor 

allele frequency, and are not targeted by the probes on standard genotyping microarrays. 

Copy number estimation by high-throughput sequencing requires different statistical models 

from those designed for array-based technologies: The data is in the form of read counts, 

and many sources of experimental bias cause these counts to fluctuate wildly along the 

genome, even when copy number doesn’t change. Chen, Gunel and Zhao (2013), Chen et al. 

(2014) and Favero et al. (2015) proposed methods that utilize a matched normal sample, 

derived from normal tissue taken from the same patient, as the control for allele-specific 

copy number estimation. These methods have proven useful for whole genome sequencing, 

where DNA from the entire genome is sequenced.

In this paper, we focus on allele-specific copy number estimation from whole exome 

sequencing (WES) data. Only 1% of the human genome are protein coding. These regions 

are called exons or, collectively, the “exome.” Most cancer studies focus primarily on the 

exome because it is much more straightforward to assign functional relevance to mutations 

that are found in protein-coding regions. Since the target size (the size of the genome being 

targeted for sequencing) in whole exome sequencing is only 1% of the target size in whole 

genome sequencing, with the same cost one can afford to sequence at much higher coverage 

by WES. Such high coverage sequencing is crucial in cancer studies because mutations of 

clinical relevance may be present in only a small fraction of cells in the tumor, and thus are 

undetectable at low coverage. For these reasons, whole exome sequencing has become a 

platform of choice for many cancer studies.

Read coverage from whole exome sequencing data is much noisier than whole genome 

sequencing, with most of the noise coming from the step in the experiment where exons are 

selected and amplified. In whole genome sequencing, which does not involve this step, a 

matched normal sample serves in most cases as an adequate control for removing site-

specific background bias, as shown in Chen et al. (2014). However, in whole exome 

sequencing, many studies [Fromer et al. (2012), Jiang et al. (2015)] have shown that 
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experimental bias differs substantially across samples. In particular, Jiang et al. (2015) 

showed that simply comparing against a matched normal does not effectively remove the 

strong biases in whole exome sequencing. Several methods, including XHMM by Fromer et 

al. (2012), CoNIFER by Krumm et al. (2012), EXCAVATOR by Magi et al. (2013) and 

CODEX by Jiang et al. (2015), were proposed based on the idea of pooling data across a 

large cohort to estimate the biases caused by enrichment and amplification. However, these 

methods do not work for allele-specific copy number estimation since the set of 

heterozygous sites differ across individuals. Thus, it is still necessary to rely on the matched 

normal sample to identify heterozygous sites and to control for allele-specific experimental 

biases.

We propose a bivariate binomial mixture model with site-specific background bias to 

estimate allele-specific copy number from whole exome sequencing data. We describe a 

majorize-minimization (MM) algorithm for fast parameter fitting in this model. We also 

adapt the segmentation procedure from Chen et al. (2014) to this setting, and derive a new 

modified Bayes information criterion for model selection that builds on the framework 

developed in Chen et al. (2014), Zhang and Siegmund (2007) and Zhang and Siegmund 

(2012). The model and methods are described in Section 3. Performance is assessed on 

spike-in data in Section 4. The method is then applied to a breast and ovarian cancer data set 

in Section 5, where the improved accuracy of the new approach is shown by comparison to 

array-based results from The Cancer Genome Atlas Project.

The proposed method, which we call Falcon-X for finding somatic allele-specific copy 

number changes in whole exome sequencing, is implemented as an open source R-package 

falconx.

2. More background in biology

First, we summarize the concepts from biology that play a central role in this paper. This is 

not meant to be a comprehensive introduction to these subjects, but simply a definition of the 

key terms and a reference to the literature.

2.1. DNA variation, copy numbers and inherited heterozygous sites

Our genome, which is encoded by the four letter DNA code, encodes the instructions for the 

function of each cell in our body. Mutations are changes to the genome, and come in many 

sizes and types. Single nucleotide mutations are changes of one nucleotide, for example, a 

guanine to a cytosine. Copy number mutations are gains or losses of large segments of the 

genome. Normally, we have two homologous copies of each of the 22 autosomes, inheriting 

one from each parent. A heterozygous deletion is a deletion of one of the two parental 

copies, and a homozygous deletion is a deletion of both inherited copies. A gain in copy 

number may be a gain of either one or both of the two inherited copies. A loss of 

heterozygosity refers to a loss of one of the parental copies, which may or may not involve a 

change in total copy number; specifically, some mutation processes lead to a loss of one 

parental copy accompanied by a simultaneous gain of the other parental copy in the same 

region, thus leading to a loss of heterozygosity without changing total copy number, aka 

copy-neutral loss of heterozygosity.
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We inherit many DNA variation from our parents, and these are carried by every cell in our 

body. Most inherited variants are population-level polymorphisms, that is, variation caused 

by mutations that are passed down from our evolutionary ancestors that are carried by many 

individuals in the current population. In addition, germ cells in each individual gain 

mutations, which can be passed along to the offspring and might not be shared within the 

population. The basic unit in our model for estimating allele-specific copy number is 

sequencing data at inherited heterozygous sites, where the variations/mutations (e.g., single-

nucleotide variants, short insertions and deletions) hit one allele out of the two in the doploid 

genome. Somatic mutations occur sporadically during our lifetime to specific cell lineages 

within our body and are not passed to our offspring. Most of the mutations found in tumor 

genomes are somatic. The focus of this paper is detecting somatic copy number changes in 

tumors.

2.2. High-throughput sequencing

High-throughput short read sequencing, often referred to as “high-throughput sequencing” 

or “next-generation sequencing,” provides data for quantifying DNA, RNA, protein binding 

and many other genome-wide features in biology. A good overview of the technology and its 

applications can be found in three articles in the November 2009 issue of Nature Methods: 

Flicek and Birney (2009), Medvedev, Stanciu and Brudno (2009) and Pepke, Wold and 

Mortazavi (2009). In this paper, we focus on high-throughput whole exome sequencing 

(WES). Figure 1 shows an overview of a WES pipeline. First, DNA is extracted from the 

sample, fragmented, and the exon-regions are captured and enriched. This step, called target 

enrichment, may be achieved by several strategies including molecular inversion probes or 

microarrays. These exon regions are usually amplified by PCR, resulting in a sequencing 

library. The library can be sequenced by any of the existing strategies, including classical 

Sanger sequencing, Illumina Genome Analyzer or Life Technologies SOLiD.

In this paper, we consider mainly Illumina sequencing data, but our model can conceivably 

also be applied to other types of sequencing scenarios. The Illumina Genome Analyzer 

produces fixed length genome sequences, called reads, that cover the exon targets. These 

reads are mapped to a reference template, where the number of reads that cover a position is 

called the “coverage” at that position. At heterozygous positions, reads would reflect the 

alleles for that position that are present in the sample. For example, at a position that is 

heterozygous with the two alleles A and C, if there are no somatic mutations and the 

hybridization (and alignment) process is unbiased toward the haplotype with the A and the 

haplotype with the C, then approximately half of the reads should contain an A and half 

should contain a C. We define the allele-specific coverage to be the number of reads that 

contain a specific allele. At heterozygous positions, we should have two allele-specific 

coverage values, one for each of the two inherited alleles.

DNA sequencing has been used to detect copy number variation because coverage of any 

given region reflects the relative quantity of the DNA from that region in the sample. 

However, coverage is also influenced by many other features of the DNA sequence. For 

example, it has been shown that the local GC-content, defined as the proportion of the bases 

that are guanine (G) or cytosine (C), heavily influences coverage [Benjamini and Speed 
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(2012)]. As mentioned earlier, such local biases are especially strong in whole exome 

sequencing, where the efficiency of target enrichment can vary dramatically from exon to 

exon. Careful modeling of the background biases are essential for accurate copy number 

estimation by whole exome sequencing data. Several algorithms have been developed for 

copy number estimation with whole exome data that uses latent factors estimated across 

many samples to remove the background bias [Krumm et al. (2012), Fromer et al. (2012), 

Jiang et al. (2015)]. Specifically, Jiang et al. (2015) showed that in matched case/control 

settings, such as a tumor sample with matched normal, cross-sample approaches are more 

effective than normalizing to the matched control. Jiang et al. (2015) proposed a method, 

CODEX, which estimates site- and sample-specific coverage bias. We will describe CODEX 

in more detail, and use its estimated bias values, in the next section.

3. Model and methods

3.1. Overview

The data input to our model consists of sequencing coverage for a tumor sample and its 

matched normal sample from the same patient. In addition, we assume that a large (>30) 

number of normal samples have been sequenced by the same laboratory protocols, which we 

call the “control cohort.” For example, in Section 5, the control cohort consists of the 

matched normal samples for all of the tumors in the study.

Figure 2 shows an overview of the analysis pipeline that we propose. First, in Step 1, 

sequenced reads are aligned to the reference template, resulting in bam files. In Step 2, the 

matched normal sample is used to identify all of the heterozygous sites in the individual, 

using existing software such as GATK [Auwera et al. (2013)]. These heterozygous sites are 

the inherited heterozygous sites and are the basic units in our model. Let T be the total 

number of heterozygous sites. In Step 3, the total and allele-specific coverage at these sites 

are extracted from the tumor sample as well as all of the samples in the normal control 

cohort. In Step 4, the matrix of total coverage at the union of all germline heterozygous loci 

across all samples is used by CODEX to estimate the background total coverage bias for the 

tumor and matched normal sample. For each t = 1, 2, …, T, we obtain from CODEX s(t) and 

s*(t), the background total coverage bias for, respectively, the tumor sample and its matched 

normal control. In Step 5, the allele-specific coverage at these heterozygous positions in the 

tumor and the normal control, along with the total coverage bias estimates from CODEX, 

are taken as input to the Falcon-X model to estimate the allele-specific copy number at these 

heterozygous positions. Since GATK and CODEX are published methods, this paper focuses 

on Step 5 in the analysis.

3.2. Model

We now describe the new model underlying Falcon-X. Let the two alleles at each bi-allelic 

loci be arbitrarily labeled A and B. At inherit heterozygous locus t ∈ {1, 2, …, T }, let YA(t) 

and YB (t) be the allele-specific coverage in the tumor sample, and let  and  be the 

allele-specific coverage in the matched normal sample. Notice that the tumor sample could 

be homogeneous at some inherited heterozygous loci due to somatic mutations. We label the 

two inherited homologous chromosomes arbitrarily by a and b, also called the two inherited 
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haplotypes. A priori, we don’t know whether allele A is on inherited chromosome a or b. Let 

I (t) be a latent indicator variable that equals 1 if allele A is on inherited chromosome a, and 

0 if it is on inherited chromosome b. Hence, I (t) is the same for the tumor sample and the 

normal sample from the same patient. Consider the hypothetical situation where we observe 

I (t); then we would know the haplotype-specific coverage, which we denote by Ya (t) and 

Yb(t) for the tumor sample and by  and  for the matched normal. The relationship 

between the haplotype-specific coverage and allele-specific coverage is

Here, Ya (t), Yb(t),  can be modeled by independent Poisson random variables 

with location-specific means λa (t), λb(t), , respectively (the independence 

assumption is discussed in more detail in Section 3.5):

The mean values depend on the true underlying haplotype specific copy numbers and other 

experiment and sequence-dependent variables. We use Ca (t), Cb(t) to represent the 

haplotype-specific copy numbers at loci t in the tumor; in normal we assume that both 

haplotypes have copy 1. Experimental variables that affect coverage include the following: 

the total number of reads sequenced for the sample, local biases in total coverage due to ease 

of fragmentation, mappability, and target enrichment and amplification, and allele-specific 

mapping bias. Let N and N* be the total number of reads sequenced for tumor and normal, 

respectively. Let s(t) and s*(t) be the site-specific biases in total coverage for normal and 

tumor, respectively, that are estimated by CODEX. Let bA(t), bB (t) be site-specific mapping 

biases for alleles A and B. Our model for the mean processes is

This model is similar to the model underlying Falcon, an allele-specific copy number 

estimation method proposed in Chen et al. (2014). The important difference between the two 

models is that, in this model, the total coverage bias values s(t) and s*(t) vary between the 

tumor and normal samples, while Falcon assumes s(t) = s*(t). For whole exome sequencing, 

the site-specific bias in total coverage varies substantially across samples, and the 
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assumption of s(t) = s*(t) in Falcon is not satisfied. On the other hand, the allele-specific 

mapping biases, bA(t) and bB (t), depend mostly on the mapping algorithm, and so it is 

reasonable to assume that they are shared across the tumor and matched normal samples.

Since copy number change is abrupt, it is appropriate to assume that Ca (t) and Cb(t) are 

piecewise constant functions of t. By a simple relationship between the Poisson and 

Binomial distributions, the model with K break points, which we denote by ℳK, can be 

written as

(3.1)

for t = τk + 1, τk + 2, …, τk+1, k = 0, 1, …, K, with

where , (Ca,k, Cb,k) is the allele-specific copy 

number at segment k, and .

Let τK = (τ1, …, τK) be the change-points of this process. It is constrained to lie in the set

We augment τK by τ0 = 0 and τK+1 = T to make the model complete.

We use a Minorize–Maximization (MM) algorithm to estimate the maximum likelihood 

estimators for the parameters Ca,k and Cb,k in each segment k (Section 3.3). As for searching 

the break points τk’s, we adapt Circular Binary Segmentation (CBS) [Olshen et al. (2004), 

Venkatraman and Olshen (2007)] to avoid the combinatorial problem of searching over all 

possible combinations of τk’s. To determine the number of break points K, we derived a 

modified BIC approach extended from Chen et al. (2014) and Zhang and Siegmund (2007) 

(for details see Section 3.4).

3.3. The estimation of Ca,k and Cb,k in segment k

We suppress the subscript k in this subsection. Algorithm 1 can be used to estimate the 

parameters. We next show that the algorithm is a valid MM algorithm.

This algorithm is modified from the conventional EM algorithm for mixture models. In the 

conventional EM algorithm, in the mth iteration, the missing data I (t) is estimated in the 

Chen et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expectation step (line 4 in Algorithm 1), and is substituted into the log-likelihood function of 

the complete data [the observed data and missing data I (t)’s] by its estimate γ̂ (t):

where . Then Q(m)(Ca, Cb) is 

a minorization function of the log-likelihood on the complete data up to a constant that 

depends on (Ca,(m−1), Cb,(m−1)), the estimates of the parameters from the (m − 1)th iteration, 

and the equality achieves at (Ca,(m−1), Cb,(m−1)).

Since it is hard to maximize Q(m) over Ca and Cb, we construct a new minorization function 

based on Q(m). Let

Then  is a minorization function of Q(m), and

Thus,  is a minorization function of the log-likelihood on the complete data up 

to a constant that depends on (Ca,(m−1), Cb,(m−1)), and the equality achieves at (Ca,(m−1), 

Cb,(m−1)). Solving for Ca and Cb that maximizes  gives Algorithm 1.
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Algorithm 1

MM Algorithm for Estimating Ca and Cb

1: Take initial guesses for the parameters, such as C̃a = 0.95, C̃b = 1.05. (The initial values of Ca and Cb need to be 
different.)

2: Set nIter=0, diff=0.

3: while nIter==0 or diff > δ (δ can take value such as 10−5) do

4:  For every t,

γ (t) = 1

1 + (
C
∼

b
C
∼

a
)

Y A(t) − YB(t)

(
w(t)C∼a + 1

w(t)C∼b + 1
)

nA(t) − nB(t) .

5:  Update the estimates of the parameters:

C
∼

a, new =
∑t (Y A(t)γ (t) + YB(t)(1 − γ (t)))

∑t w(t)(nA(t)γ (t) + nB(t)(1 − γ (t)))/(w(t)C∼a + 1)
,

C
∼

b, new =
∑t (YB(t)γ (t) + Y A(t)(1 − γ (t)))

∑t w(t)(nB(t)γ (t) + nA(t)(1 − γ (t)))/(w(t)C∼b + 1)
.

6:

  

7:  C̃a = C̃a,new, C̃b = C̃b,new.

8: end while

3.4. Determining the number of break points

Because the site-specific biases in total coverage is different in the tumor and matched 

normal samples, pa (t) and pb(t) are not constants even within a segment. We extend the 

method in Chen et al. (2014) and Zhang and Siegmund (2007) to derive a modified Bayesian 

information criterion to choose the optimal K.

Let Z be the input data {YA(t), YB (t), , w(t): t = 1, …, T }. We reparameterize 

the parameters by letting

Proposition 1—Let ℳK be the model defined in (3.1), assuming that (K, τK, θK) follows a 
uniform prior over + × K × ℝK; then when T is large, we have
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(3.2)

where τ̂K = (τ̂1, …, τ̂K) = arg max0<τ1<⋯<τK<T l(θ̂K (τK)), θ̂K (τK) are maximum likelihood 
estimates given break points τK, which can be estimated through Algorithm 1, and

with

where hw(t)(θ) = log(w(t)eθ +1), and .

The proof of this proposition is in the Appendix. Based on the proposition, we choose K that 

maximizes

(3.3)

3.5. A discussion on the independence assumption

In whole exome sequencing, some nearby inherited heterozygous sites could be too close 

that they can be spanned by the same read for single-read sequencing or by the same pair of 

reads for paired-end sequencing. If this happens, the read counts for the nearby sites would 

be dependent, violating the independence assumption for model (3.1). Here, we discuss two 

approaches to get around the issue. The first approach (“combining”) treats the problem 

more completely but needs to start from the BAM file, while the second approach 
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(“pruning”) can start from the raw read counts directly but is usually less efficient than the 

first approach.

We first illustrate the two approaches for the single-read sequencing. Figure 3 is a schematic 

plot of reads over a stretch of a chromosome with 10 inherited heterozygous sites. We can 

see from the plot that if two sites are very close, they could be spanned by the same read. For 

example, there are two reads that span both site 6 and site 7. However, this does not 

necessarily happen to every pair of nearby sites. For example, sites 3 and 4 are close, but 

there is no read that spans both of them.

The combining approach is as follows: If two or more sites are spanned by the same read, 

then we view them all together as one site and the read count for the combined site is the 

number of distinct reads that cover at least one of the original sites contributing to the 

combined site. For example, sites 6 and 7 are viewed as one site and its read count is 6, 

while sites 3 and 4 are viewed as different sites and their read counts are 2 and 3, 

respectively. Then, in the example shown in the figure, there are 9 independent sites with 

one site being a combined site. To apply this approach, we need to know whether there is at 

least one read that spans the nearby sites. Hence, we need to start from the BAM file.

The pruning approach is easier to apply, and it can start from the raw read counts. For 

instance, the raw read counts for the 10 sites in the figure are 3, 8, 2, 3, 2, 3, 4, 4, 2 and 3, 

respectively. We then identify all combinations of sites that might be covered by one read, 

that is, identify the combinations of consecutive loci whose distances are less than the read 

length, such as 100 bp. In this example, we would identify two such combinations: {3, 4} 

and {6, 7}. We then randomly pick one site to keep for each combination. For example, keep 

site 4 from {3, 4} and keep site 7 from {6, 7}. This will lead to 8 sites—1, 2, 4, 5, 7, 8, 9, 10

—and they are independent.

For paired-end sequencing, the two approaches can be adopted similarly by viewing the 

fragment spanned by the pair of reads as a “read” in the figure.

In the above discussion, we simplified the problem by only considering one sample. In 

practice, we need to consider the paired sample (tumor and matched normal samples). Then 

the criterion for the combining approach is slightly more complicated: If two or more sites 

are spanned by the same read in one or both samples, we combine these sites together.

Comparing the two approaches, it is clear that the combining approach loses less 

information but is more complicated in preparing the read counts, while the pruning 

approach is easier to implement but loses more information. If the BAM file is available, 

then the combining approach is recommended.

The R-package falconx takes read counts as input. If the combining approach was taken, 

then we can set the argument “independence = TRUE” (default) to let the function know that 

the input read counts are independent. Otherwise, we need to tell the function the length of 

read (or the maximal span of the read pairs for paired-end sequencing) and the pruning 

approach will be performed.
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4. Spike-in experiment

We assess the accuracy of Falcon-X through a spike-in experiment, which allows us to 

systematically evaluate specificity and sensitivity for signals of varying size, purity and type. 

Sensitivity for copy number changes at low purity, that is, carried by a low proportion of 

cells in the sample, is especially desirable since tumor samples often have high normal cell 

contamination. To create the spike-in data sets, we started with real sequencing data from a 

normal sample and added signals of varying length at a fixed purity level by changing the 

coverage in the signal region commensurate with the given purity. As compared to 

simulating sequencing data in silico, adding signals to real sequencing data allows us to 

retain the noise properties of real data. For purity levels from 5% to 100% at 5% intervals, 

we created a total of 20 spike-in samples.

There are 6 possible configurations for allele-specific copy number aberrations listed in the 

rows of Table 1. All signals have width covering exactly 200 heterozygous sites, which on 

average corresponds to 26 Mb in the genome. For signals of this size, at 100% purity 

sensitivity is 100% for all aberration types for Falcon-X. We assessed sensitivity by 

recording, for each of the 6 types of aberrations, the lowest purity at which sensitivity rises 

above 95%. Falcon-X is compared to Falcon, an existing allele-specific method [Chen et al. 

(2014)], and CODEX, a total copy number estimation method [Jiang et al. (2015)]. Also 

shown for Falcon and Falcon-X, in parentheses, is the lowest purity at which not only the 

signal is detected but also the type of aberration is correctly identified. Note that, by 

modeling allele-specific changes, Falcon and Falcon-X significantly improve the sensitivity 

under low purity settings, as seen by the drop in purity level required for signal detection 

compared to CODEX. As previously shown in Chen et al. (2014), considering allele-specific 

information improves sensitivity, even for signals where the total copy number is changed. 

Also, by explicitly modeling the sample-specific biases in WES data, Falcon-X improves the 

aberration-type classification accuracy. For example, both Falcon-X and Falcon detect 

balanced Gain/Loss events at 15% purity; however, Falcon is able to correctly identify the 

event as balanced Gain/Loss only when the signal is present at 50%, whereas Falcon-X can 

do this when the purity is much lower, at 20%.

Figure 4 shows the example of the true versus estimated signal for the 35% purity spike-in 

data. At this level, Falcon-X recovers the signal perfectly. Falcon also recovers a large part 

of the signal, but its segmentation is much less accurate and it makes some false positive 

detections as well.

Figure 5 shows the specificity, as reflected by the percentage of loci where both alleles have 

copy number 1 that were not classified into any of the six aberration types. In all data sets, 

both Falcon and Falcon-X use a modified Bayes information criterion to determine the 

number of signals. Whereas Falcon makes a substantial number of false positives, the false 

positive rate of Falcon-X is much lower. This reduced false positive rate is due to the 

removal of sample-specific artifacts that are captured in the terms s(t) and s*(t).

To study the effect of the signal length on the performance of Falcon-X, we did spike-in 

simulations with shorter signal regions—signals spanning 40, 20 and 10 heterozygous sites, 
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respectively. Table 2 lists the lowest purity at which the signal is detected, with the number 

in the parentheses the lowest purity at which the type of aberration is correctly identified by 

Falcon-X. We see that the performance of Falcon-X becomes slightly worse when the signal 

becomes shorter, while the sensitivity is overall quite good even for signals spanning only 10 

heterozygous sites. Figure 6 plots the estimated and true ASCNs for 45% purity spike-in 

data with signals spanning 10 inherited heterozygous sites. We see that all signals are 

correctly identified.

5. Analysis of a breast cancer cohort of gBRCA1/2 carriers

Approximately 3–5% of breast and 20% of ovarian cancers arise in individuals carrying 

germline mutations in BRCA1 and BRCA2 [King et al. (2003)]. The main function of the 

BRCA1/2 proteins is the repair of double strand breaks in DNA. Mutations in these proteins 

lead to genome instability, facilitating the accumulation of somatic chromosome aberrations 

in tumorigenesis. Thus, BRCA1/2 mutation carriers have an increased risk for developing 

early onset breast and ovarian cancer.

Using Falcon-X, we analyzed WES sequencing data from 39 gBRCA1/2 breast and ovarian 

tumors with matched normal blood DNA. An in-depth study of these samples is described in 

Maxwell et al. (2016), where the goal is to delineate molecular mechanisms of 

tumorigenesis in gBRCA1/2 carriers and to identify potentially druggable alterations in 

these tumors. Whole exome sequencing on these samples was performed using the Agilent 

All-Exon Kit. Tumors were sequenced by Illumina Hi-Seq 2000 to an average depth of 

141X and blood DNA to an average mean depth of 155X. The sequenced reads were aligned 

to the hg19 genome assembly using the Burrows-Wheeler Aligner (BWA) for short-read 

alignment. The aligned data was analyzed as described in Figure 2. Specifically, inherited 

heterozygous sites were called in the matched normal samples using GATK, the position-

specific total coverage biases were estimated by CODEX, and allele-specific copy number 

was finally estimated through the Falcon-X model and algorithm. In this application, the 

pruning approach was used to avoid dependence issue.

To illustrate the actual data that is used as input for our analysis, Figure 7 shows the raw 

values and estimated profiles from chromosome 1 p arm of one of the 39 samples. In the 

following, we refer to these samples as Basser gBRCA1/2 samples. The top plot shows the 

tumor to normal ratios of allele-specific coverage, that is,  and . 

The second plot shows the same ratios, after adjusting by the total coverage bias; that is, in 

the notation of Section 3.2, the second plot shows

It is hard to detect by eye obvious change-points, and it is also hard to see the effect of bias 

correction, that is, the difference between the first and second figure panels. Statistically, 

however, there is a clear change-point at around position 3.3e7 indicated by both Falcon and 

Falcon-X results. Figure 8 shows the histograms of the tumor-to-normal allele coverage 
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ratios for the two regions delineated in the Falcon-X result, where region 1 (from around 

0.1e7 to around 3.3e7) contains a single copy deletion and region 2 (from around 3.3e7 to 

the end) is normal. Deletions cause allelic imbalance, that is, unequal copy numbers for the 

two alleles at heterozygote sites, and thus we expect the normal-to-tumor allele coverage 

ratios to be a two-component mixture for region 1, as opposed to a one-component mixture 

for region 2. In Figure 8, the histogram of these two regions look similar before the bias 

correction, but after the bias correction we indeed find, as expected, two peaks in region 1 

and one peak in region 2. This example does not confirm the validity of our method, since 

we do not know the truth for this region, but is merely an illustration of the real data input 

and the empirical evidence that is used by Falcon-X to determine the change-points. As a 

contrast, the third plot from the top in Figure 7 shows the allele-specific copy numbers 

estimated by Falcon, which was not designed for whole exome sequencing and does not 

allow bias correction. It is clear that bias correction makes a difference, and we will next 

attempt to show that this difference is positive.

Allele-specific copy number estimates can be validated through procedures such as digital-

droplet PCR or targeted sequencing, both of which are laborious procedures that are usually 

only applied to a small number of events. It is too costly to apply such validation techniques 

on the genome scale, and so, to assess the quality of Falcon-X estimates, we compare our 

analysis of the 39 breast cancer samples to an existing genotyping-array-based analysis of 47 

gBRCA1/2 breast tumors from The Cancer Genome Atlas Project (TCGA). Since analysis 

methods for genotyping arrays are now more mature than those for high-throughput 

sequencing data, and since TCGA applied rigorous quality control to their data sets, we 

expect that high-level trends observed in the TCGA samples should be reproduced in our 

breast cancer cohort. Although no two cancer patients have the same chromosome copy 

number profile, it has been shown that breast cancer patients with gBRCA1/2 mutations, and 

similarly gBRCA1/2 ovarian cancer patients, often share recurrent gain and loss regions. We 

adopt that most of these recurrent CNAs have been seen in the TCGA cohort and we expect 

to observe similar recurrent gains and losses between the TCGA gBRCA1/2 breast cancer 

samples and our Basser gBRCA1/2 samples.

Figure 9 shows the frequency of detected gain and loss at each genome position for the 

TCGA gBRCA1/2 breast cancers as well as for the Basser gBRCA1/2 samples analyzed by 

Falcon-X and by Falcon. For each plot, blue bars in the “positive” direction show the 

proportion of the samples with a detected gain at the given position, and red bars in the 

“negative” direction show this proportion for losses. Since copy number changes are 

scattered somewhat randomly in the genomes of all gBRCA1/2 tumors due to genome 

instability, almost all positions are marked as gained or lost in at least some of the patients. 

Yet, the Falcon-X results clearly indicate that there are genome regions that are more 

frequently altered than others, such as loss of 8p and 17p and gain of 3q, 8q and 17q. This 

agrees with the recurrent regions reported in the literature on gBRCA1/2 breast tumors. Note 

that the recurrent regions found by Falcon-X are more similar to those found by TCGA, as 

compared to the Falcon results. Falcon analysis detects much more copy number events, as 

seen by the elevated occurrence of both gains and losses at all genome positions across the 

cohort. Against this uniformly elevated background of detections, Falcon results do not show 

marked evidence for recurrence at the known positions reported in the literature, which are 
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found by Falcon-X. We believe many of the Falcon detections are false positives caused by 

the biases inherent in WES data.

Figure 9 does not explicitly show the frequency of copy-neutral loss-of-heterozygosity 

(LOH) events, where one of the parental alleles have been lost and replaced by a duplication 

of the allele from the other parent. Figure 10, which plots the frequency of copy-neutral 

LOH events along the genome, shows that copy-neutral LOH events are frequent in the 

Basser gBRCA1/2 cancer data. These events would not have been detected if we only 

estimate total copy number. Using Falcon-X, we identified copy-neutral LOH that helped us 

better understand the initiation mechanism of BRCA1/2 tumors. These events are described 

and analyzed in Maxwell et al. (2016).

6. Conclusion

We have proposed a statistical framework for allele-specific copy number estimation by 

whole exome sequencing. We focused specifically on the study design where a tumor 

sample and a matched normal control are both sequenced, and where a batch of normal 

tissue samples are also sequenced by the same protocol. Whole exome sequencing has 

become a commonly adopted approach to cancer genomics, and since experimental biases 

introduced by exon selection and amplification cannot be fully captured by simply 

comparing the tumor against its matched normal, more sophisticated statistical modeling is 

necessary. In the Falcon-X model, allele-specific sequencing coverage is represented by a 

binomial mixture process, where the binomial means depend on the copy numbers of the 

underlying haplotypes as well as site-specific sequencing bias. We showed using simulation 

spike-in data that, by controlling for these site-specific biases, Falcon-X allows more 

sensitive detection of allele-specific copy number change under high normal cell 

contamination. We also applied the new analysis approach to a set of BRCA1/2 breast and 

ovarian tumor samples, where the results we obtained are in good concordance with existing 

knowledge about this type of tumor.

The two technical challenges in the Falcon-X model are (1) fast and precise estimation of 

the parameters in the mixture model, and (2) determining the number of change-points, that 

is, the model complexity. For parameter estimation, we developed a majorization-

minorization algorithm, described in Section 3.3. This fast algorithm allows the Falcon-X 

model to scale to large genomic studies (analysis of the 39 breast and ovarian tumors took 

less than one hour on a Macbook Air). This algorithm can potentially be used in other 

mixture deconvolution settings; for example, one can extend the Falcon-X model to allele-

specific RNA expression analysis. For determining the number of change-points, we 

extended the modified Bayes information criterion of Chen et al. (2014) and Zhang and 

Siegmund (2007), which allows the method to be used off-the-shelf.
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APPENDIX: PROOF OF PROPOSITION 1

The log-likelihood function of the observed data under the new parameterization can be 

written as

where

Fixing τK, we can expand the log-likelihood in a second order Taylor series around the 

maximum likelihood estimate:

Under the uniform prior assumption for (τk, θK), we have

Similarly, we have for K = 0

When K follows a uniform prior over ℤ+, we have
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Based on the extension of Zhang (2005), it can be shown that

is uniformly bounded in T under the hypothesis of K change-points.

Notice that H (θ̂K (τK)) is a block diagonal matrix with (K + 1) blocks and each block is a 2 

× 2 matrix. Its (k + 1)th block is

Hence,

and Proposition 1 follows.
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Fig. 1. 
Overview of a whole exome sequencing (WES) experiment.
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Fig. 2. 
Overview of the proposed analysis steps for estimating allele-specific copy number from 

whole exome sequencing of tumor and matched normal samples*CODEX is applied to the 

union of heterozygous sites across all samples using the tumor-normal option.
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Fig. 3. 
A schematic plot of reads over a stretch of a chromosome with 10 inherited heterozygous 

sites.
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Fig. 4. 
The allele-specific copy number estimates from Falcon-X (top panel) and Falcon (bottom 

panel) under 35% tumor purity with signals spanning 200 inherited heterozygous sites. The 

two colored lines represent the estimates of the two allele-specific copy numbers (Ca and 

Cb), and the two lines overlap when the two estimates are the same. Losses are shown in 

blue and gains are shown in red. Normal copy number is shown in green. Dotted black lines 

show the true allele-specific copy numbers in the spike-in set.
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Fig. 5. 
The percentage of loci where both alleles have copy number 1 that were not classified into 

any of the six aberration types for Falcon-X and Falcon.
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Fig. 6. 
The allele-specific copy number estimates from Falcon-X under 45% tumor purity with 

signals spanning 10 inherited heterozygous sites. The two colored lines represent the 

estimates of the two allele-specific copy numbers (Ca and Cb), and the two lines overlap 

when the two estimates are the same. Losses are shown in blue and gains are shown in red. 

Normal copy number is shown in green. Dotted black lines show the true allele-specific 

copy numbers in the spike-in set.
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Fig. 7. 
Data from chromosome 1 p arm of a breast cancer patient (patient ID: Brca1Br10): The top 

plot shows the tumor to normal ratios of allele-specific coverage, that is,  and 

. The second plot shows the same ratios after adjusting by total coverage bias. 

In the first and second plots, a horizontal green line is plotted at value 1.0 for reference. The 

third and bottom plots show the allele-specific copy number estimates by Falcon and Falcon-

X, respectively. Losses are shown in blue and gains are shown in red. Normal copy number 

is shown in green.
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Fig. 8. 
Histogram of tumor to normal ratios of allele-specific coverage before and after bias 

correction. These histograms summarize the values shown in the first and second plots of 

Figure 7, broken down by two regions, with region 1 including sites shown as Normal/Loss 

in the Falcon-X result and region 2 including sites shown as Normal/Normal in the Falcon-X 

result. The red curve is the kernel density estimated by the R function density() in package 

“stats.”
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Fig. 9. 
Frequency of detected occurrence of gains (in blue, above the axis) and losses (in red, below 

the axis) of total copy number in three breast cancer cohorts: TCGA sporadic breast cancers, 

TCGA gBRCA1/2 breast cancers, and our Basser gBRCA1/2 breast cancers. The TCGA 

cohorts, shown in the top two plots, were profiled by the genotyping array. The Basser 

samples were profiled by WES and analyzed by Falcon-X, shown in the third plot from the 

top, and by Falcon, shown in the bottom plot. The horizontal axis shows genome location, 

and is aligned between the four plots. The vertical axis shows the proportion of samples 

where a call is made. Chromosome boundaries are marked by vertical lines or color shading.
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Fig. 10. 
Frequency of occurrence of Copy-neutral loss of heterozygosity (LOH) found by Falcon-X 

in the Basser gBRCA1/2 breast cancer cohort and the Basser gBRCA1/2 ovarian cancer 

cohort. As in Figure 9, the horizontal axis shows genome location aligned between the two 

plots, and vertical axis shows percentage of samples where LOH is detected. Vertical lines 

denote chromosome boundaries.
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Table 1

The smallest tumor purity under which the region of the change is found by Falcon-X, Falcon and CODEX. 

(The smallest tumor purity under which the type of aberration is correctly detected by Falcon-X and Falcon 

is shown in the parentheses)

Type of change Falcon-X Falcon CODEX

Normal/Loss 15 (15) 15 (15) 30

Loss/Loss 15 (30) 10 (30) 15

Gain/Normal 15 (15) 20 (20) 35

Gain/Gain 15 (35) 15 (40) 20

Balanced Gain/Loss 15 (20) 15 (50) –

Unbalanced Gain/Loss 10 (10) 10 (10) 35
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Table 2

The smallest tumor purity under which the region of the change is found by Falcon-X with different signal 

lengths (l: the number of heterozygous sites in each signal). (The smallest tumor purity under which the type 

of aberration is correctly detected is shown in the parentheses)

Type of change l = 40 l = 20 l = 10

Normal/Loss 20 (20) 30 (30) 40 (40)

Loss/Loss 20 (25) 15 (25) 25 (25)

Gain/Normal 10 (10) 35 (35) 45 (45)

Gain/Gain 15 (35) 25 (35) 25 (30)

Balanced Gain/Loss 20 (20) 30 (30) 35 (35)

Unbalanced Gain/Loss 15 (20) 20 (25) 20 (20)
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