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Al’brekht’s Method in Infinite Dimensions

Arthur J. Krener

Abstract—1In 1961 E. G. Albrekht presented a method for
the optimal stabilization of smooth, nonlinear, finite dimen-
sional, continuous time control systems. This method has been
extended to similar systems in discrete time and to some
stochastic systems in continuous and discrete time. In this paper
we extend Albrekht’s method to the optimal stabilization of
some smooth, nonlinear, infinite dimensional, continuous time
control systems whose nonlinearities are described by Fredholm
integral operators.

Keywords: Infinite Dimensional Optimal Stabilization,
Infinite Dimensional Linear Quadratic Regulation, Fredholm
Integral Operators

I. INTRODUCTION

A fundamental control engineering problem is to find a
feedback law that stabilizes a plant to an operating point.
Suppose the plant can be modeled by a finite dimensional
system of nonlinear differential equations

f(z,u) )

and the operating point is z = 0,u = 0 where f(0,0) = 0.
We assume that the state z is n dimensional and control u
is m dimensional. We also assume that f(z,u) is smooth
around the operating point,

f(z,u)

‘t =

= Fz4Gu+O(z,u)?

Then posing and solving a Linear Quadratic Regulator
(LQR) problem will yield a locally stabilizing linear feed-
back. We chose an (n +m) X (n + m) nonnegative definite
matrix [@,S’;S,R] > 0 with R > 0 positive definite. We
seek to minimize

1 o0
3 / Z'Qz+22'Su+ v Ru dt )
0

subject to the linear dynamics

Fz+ Gu

3 =
and a given initial condition z(0) = 2°.

Under the standard assumptions of stabilizability and
detectability, the optimal cost exists and is of the form
£(2°)'Pz" and the optimal feedback exists and is of the
form wu(t) = Kz(t) where the n X n nonnegative definite
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matrix P > 0 and the m x n matrix K satisfy the familiar
LQR equations

0 = F'P+PF+Q—(PG+S)RYPG+S)
K = —-RYPG+S)
3)

The first equation is called the Algebraic Riccati Equation
(ARE).

The function z'Pz is a local Lyapunov function for the
closed loop nonlinear dynamics using the optimal linear
feedback,

2 = f(z,Kz)
%z’(t)Pz(t) — ((F +GK)z+ 0()?) P2
+2 P((F + GK)z 4+ O(2)?)
= —Z(Q+(PG+S)R Y (PG+58)) =
+O(2)?

Consider the problem of minimizing a more general cri-
terion

/00 l(z,u) dt “4)
0

subject to the nonlinear dynamics (I)) where the Lagrangian
is smooth

1
l(z,u) = 3 (2Qz + 22'Su + v/ Ru) + O(z,u)?

The higher degree terms in [(z,u) could be penalty terms to
ensure that state and control constraints are satisfied. They
might destroy its even symmetry. The higher degree terms
in f(z,u) might destroy its odd symmetry.

Given that z(0) = 2° the optimal cost 7(2%) if it exists
and is smooth and if the optimal feedback u(t) = x(z(t))
exists then they satisfy the familiar Hamilton-Jacobi-Bellman
(HJB) equations

0 = min, {ZZ(2)f(z,u) +1(z,u)}

&)
k(z) = argmin, {97 (2)f(z,u) + (2, u)}
If the quantity to be minimzed in these equations is a smooth
function then the HJB equations can be simplified to the

sHJB equations

0 = GE(2)f(2k(2)) + 1z k(2))
(6)
0 = S(2)5 (= k(=) + 5Lz, m(2))
Assuming f(z,u) and I(z,u) are sufficiently smooth

Al’brekht [1] showed how to compute the Taylor polynomi-
als of 7(2°) and x(z) degree by degree. At the lowest degrees



he obtained the familiar LQR equations. At higher degrees he
obtained a sequence of linear equations for the higher degree
coefficients of 7(2°) and x(z). The purpose of this paper is
to show that Al’'brekht’s method can be extended to some
infinite dimensional control problems. Navasca extended
Al’brekht’s method to discrete time problems [16]. We have
extended it to some stochastic problems in both continuous
[11] and discrete time [12].

In the next section we review Al’brekht method for smooth
finite dimensional problems. Rather than rely on the sHJB
equations we will use a technique which is a conceptually
simpler called completing the square. Completing the square
is frequently used to derive the LQR equations. We shall
use it to find the higher degree terms of the optimal cost. In
Section 4 we extend Al’brekht method to controlled reaction-
diffusion systems. Section 5 contains an example of such a
system.

We are not the first to use Al’brekht’s method on infinite
dimensional systems, see the works of Kunisch and coau-
thors [2], [3], [14]. Krstic and coauthors have had great
success stabilizing infinite dimensional systems where the
the nonlinearites are expressed by Volterra integral operators
of increasing degrees using backstepping techniques, [13],
[17]. In our extension of Al’brekht we assume that the
nonlinearites are expressed by Fredholm integral operators
of increasing degrees.

II. AL’BREKHT METHOD IN FINITE DIMENSION

Al’brekht assumed that f(z,u) and I(z,u) are sufficiently
smooth to have the Taylor polynomial expansions

flzu) = Fz+Gu+ fBzu)+ ...+ fl(z,u)

+0(z, )"
% (2'Qz + 22'Su+ v/ Ru) + 1P (2, u) + . ..
+UH Y (2 u) + Oz, u)d+?

l(zyu) =

(] indicates terms of homo-

for some degree d > 1 where
geneous degree k in z, u.
He also assumed that the optimal cost 7(z) and the optimal

feedback have similar Taylor polynomial expansions

%Z/PZ + 7B (2) + .. 4 7l (2) 4 O(z)d+2
Kz 4 kP (2) + ...+ kld(2) + O(2)4H?

First we complete the square for the LQR problem. Let
P be any symmetric n x n matrix. For any control trjectory
u(t) that results in a state trajectory z(t) that goes to zero
we have

0 = z/(O)Pz(O)Jr%/OOO %z'(t)Pz(t) dt
0)

L[l =][]FP+PF PG|[=] .
2/, U G'P 0 U

We add this zero quantity to the criterion to be minimized
to get a new criterion to be minimized

%z'(O)Pz(O)
L1 [ 2]1[ FP+PF+Q PG+S ]
2 ), |u G'P+S R u

We want to choose P and an m xn matrix K so the integrand
is a perfect square

:'[ FP+PF+Q PG+S [ =
U G'P+ S R u
= (u— Kz)'R(u— Kz)
This will be true iff P and K satisfy the LQR equations (3).
Clearly then P is the kernel of the the optimal cost and K
is the optimal feedback gain.
Suppose 7l3(z) is any homogeneous polynomial of degree

three in z. Again for any control trjectory wu(t) that results
in a state trajectory z(¢) that goes to zero we have

0 = %z’(O)Pz(O)—l—%/OOO %z'(t)Pz(t) dt

+1B(2(0)) + /0 b %#3(2(15)) dt
= %z/(O)PZ(O)
SLE L ()

0z
+2 PP (2, K2) + 1Pz, K2) dt + O(z,u)?

+r2(2(0)) + ; (2) (F+GK)z

We add this to the criterion (@) to be minimized. We have
already matched quadratic terms. The cubic terms are

< Prl3

3 o
T (z(O))+/O 52
+2'PfRN(z, K2) + 182, K2) dt

(2)(F+GK)z

We choose 73(z) so that the integrand vanishes,

o3l
0= 0z

then 73/(2°) is the cubic part of the optimal cost. Notice
that the quadratic part x2(2) of the optimal feedback does
not enter in this equation (7).

The solvability of depends on the invertability of the
operator

(2) (F+GK)z+ 2 Pf(z, Kz2) +1P(2, Kz) (7)

7Bl(2) —

(3]
agz (2) (F+GK) 2 ®)
acting on homogeneous polynomials of degree three. The
eigenvalues of this operator are the sums p; + p; + py of
three eigenvalues of the linear closed loop dynamics F+GK.
Under the standard LQR assumptions these eigenvalues are
all in the open left half plane and hence no triple sum is
zero. So the operator is invertible.

Suppose 1, .. .,1, are the left row eigenvectors of F' +
GK. Then the corresponding eigenvectors of the operator
are of the form (v;2)(¢;2)(¢xz). Let ¥ be the n x n



matrix whose rows are the v; then the linear change of state
coordinates

¢ = Tz 9)

diagonalizes the operator (§) and makes (7) easy to solve.
The quadratic terms in the second sHIB equation (6) are

(3] (2]
= agz (2)G + = Paaf (2, Kz)
91131 )
+ 5 (5 K2) + (P () R

where x[?(z) is the quadratic part of the optimal feedback.
Since we have assumed R is positive definite this equation
uniquely determines x?(z).

The higher degrees terms in the optimal cost and optimal
feedback are found in a similar fashion. First we solve

orlk+1
o (2)(F+GK)z = Known Stuff (10)
and then we solve
[k+1] !
kFl(z) = —R! (aﬂa (2)G + Known Stuff)
z

where the Known Stuff consist of terms from the Taylor
polynomials of f(z,u) and I(z,u) and previously computed
terms from the Taylor polynomials of 7(z) and x(z). The
first equation uniquely determines 7*+1](z) because the
eigenvalues of the linear operator

aﬂ_[k-i-l]

b1 () (2) (F+GK)z

are the sums of k+1 eigenvalues of F'+G K. Again the linear
change of state coordinates (9) diagonalizes the equation
for every k.

III. CONTROLLED REACTION-DIFFUSION EQUATIONS

In this section we extend Al’brekht’s Method to controlled
reaction-diffusion equations of the form

0z 0%z
a(xat) = @(x,t)+f(:17,z(~,t),u(',t)) (11)
0z 0z
%(O»t) = 0 = %(Lt) (12)
2(x,0) = 2%x) (13)

for x € [0, 1] with Neumann (no flux) boundary conditions.
We wish to stabilize z(x,t) to z(z) = 0. Both z(x,t) and
u(zx, t) could be vector valued but for simplicity of exposition
we assume that they are scalar valued.

Notice that the reaction term is a functional of
z(+,t),u(-, t). We assume that f(x, z(-,t), u(-,t)) is given by
a sum of Fredholm integral operators of increasing degrees

f(@, (), ul))
/ Fhl (z,21)2(x1) +GH ](x z1)u(zr) dzy

/ / F[Q] (z, 1, 29)2(x1)2(22) drrdas

This is not the most general reaction term that we could
consider, for example we could have terms quadratic in u(-)
or bilinear in z(-) and u(-) or higher degrees in z(-) and u(-).
WLOG we assume all the Fredholm kernels are symmetric
with respect to the subscripted z;, e.g.

as (377$17JU2) = rA (377562,%1)

Note that FI*(z, z1,... x;) and GY(z, z1) could be gener-
alized functions. For example if F1'(z,z1) = F(2)d(z—x1)
and GIU(z, 1) = G(x)d(x — 21) then the linear part of the
reaction term is

/01 Fl(z, 2)2(x1) + G (z, 1)u(zy) day
= F(x)z(z) + G(x)u(x)

To keep the notation simple we shall assume that (I4) is the
case.

To find a linear feedback that locally stabilizes the system
to z(x) = 0, we pose the infinite dimensional LQR problem
of minimizing

[e'e) 1
! / / e + Jue, ) dedt (15)

- / //53:1—3:2 (z1,t)2(z2,1)

+0(z1 — z2)u(z1, t)u(ze, t) dridxs dt

(14)

subject to the linear part of the dynamics. We pose this
simple Lagrangian but our method readily extends to more
complicated ones in Fredholm form..

We complete the square again. Suppose we have a Fred-
holm quadratic form in 2°(z)

1,1
/ / pl (w1, 9)2°(21)2°(22) dx1das
0o Jo

and the control trajectory u(x,t) takes z(x,t) to zero as
t — oo. Then

1 1
0 :/ / P[Q](xl,xg)zo(ml)zo(xg) dxidxo
o Jo

00 1 1 d
+/ / / — (P[Q](m,m)zm,t)Z(JJzJ)) daydzadt
0 0 0 dt

We add this zero quantity to the criterion (I3)) to get a
new expression to be minimized

fo fo PPRl(21,29)2°(21)2%(22) daidas
+ 157 Jo Jo PP 1 2)

X (g:é (x1,t)2(x2,t) + 2(21,1) gm (xg,t))

+ PP (21, m5) (F(21)z(21, ) + G(a)u(w1, 1)) 2(22, 1)
+ P (21, m9)2(21, 1) (F(22)2(22,t) + G(2)u(x2, 1))
+(x1 — x9)z(x1,t)2(22, 1)

+(z1 — zo)u(xy, t)u(we, t) daidradt



We have assumed that z(x, t) satisfies Neumann boundary
conditions. If we assume that P!?(z1,z5) also satisfies
Neumann boundary conditions then when we integrate by
parts twice we get

Iy Jo PR (@1, 29)20(21)20(22) davydazs

L (APP (@, xa) + 0(21 — x9)) 2@, t)2(wa, t)
+PE (2, 20) (F21)2(21,t) + G Jul(ar, 1)) 2(22, 1)
+PE(2, 25)2(21, 1) (F(22) 2(2, ) + G(m2)u(ws, )

+0(z1 — z2)u(zy, t)u(xe, t) dt dridrodt

where AP'?l(z,,25) is the two dimensional Laplacian of
P[z] (.231, $2).

We want the integrand of the time integral to be a perfect
square of the form

fol fol ( u(zy,t —fol KW(xy, 23)2(xs,t) dxg) 0(z1 — x2)
f K {EQ,.Tg (I’g,t) dl‘g) d.TldSCQ

X (u Zo,t

for some not necessarily symmetric K (z, z3).
This leads to infinite dimensional LQR equations

KW (2, 21) = =P (2, 21)G(a1)

1
/ P (2, 5)G(w5) ) P (w5, 05) das
0

= AP[Q] (1‘1, 3;‘2) + (5(1‘1 — 1‘2)
+F(£L’1)P[2] ((El, 1’2) + P[Q] ((El, l‘g)F(mg)

The second of these equation is called a Riccati PDE and
it is to be interperted in the weak sense. If 6(x1), 6(x5) are
any C? functions then

fo fo fo (1) PP (21, 23)G(x3)

xG(x3) PP (23, 22) O(z

_fo fo

—|—F(a:1)P[2] (.131,.232) + pl2 (xl,xQ)F(xg)) (9(.%‘2) dxidzs

Similar equations have appeared in the works of J.L.. Lions
[15], J. Burns [6], [5], K. Hulsing [8], [4], B. Batten King
[9] and others.

If P2 (zy,z5) is a weak solution of the Riccati PDE
then it is the kernel of the degree two Fredholm form
that is the quadratic part of the optimal cost. The optimal
linear feedback gain is given by (I6). The closed loop linear
dynamics is

0z 822
a(l‘a t) -

(16)

a7

2) dIldIEQdZL'g

(APm (x1,22) + 0(z1 — z2)

§p2 (@ t) + Fla)z(2,1)

/G

A standard approach to solving the Riccati PDE (T7) is
to expand P (z,, z5) in the eigenfunctions of the diffusion

(z,z1)2(21,t) dq

. . 2 .
operator. The eigenvectors and the eigenvalues of % subject
to Neumann boundary conditions on x € [0, 1] are

>\0 - 03 ¢0($) = (18)
i = —i?7?, éi(x) = /2 cos(imx)
for i =0,1,2,.... Notice that this is an orthonormal family

If we assume that

Z 0 j¢i(w1)dj(z2)
i,j=0
Then the Riccati PDE becomes an Algebraic Riccati
equation for the infinite dimensional matrix [IT; ;].

Let the linear closed loop eigenvalues and left eigenvectors
be denoted by

PRz, 25) (19)

i, ¥i(x)

With the criterion (T3) the LQR is clearly detectable. Under
an additional assumption of stabilizability we have that all
the u; are in the open left half plane [7]. But in general the
1;(x) are not orthonormal.

Let PBl (1, 29, 23) be the kernel of any degree three Fred-
holm form and suppose that u(z, t) is a control trajectory that
results in an asymptotically stable state trajectory z(z,t).
Then

0= % fol fol P
+3 fO fO 0 dt (
+ fOl fol fol P[S](xh z2, xS)ZO(xl)ZO($2)ZO($3) dridrodxs

IS0 o Jo & (P

d:rl d:rzdxgdt

2] (z1, xz)zo(m)zo(mz) dz1dx2

(:tcl7 z2)z(x1,t)z(z2, t)) dzi1dxodt

(w1, T2, 23)2(x1,t)2(22, t)2(T3, t))

As before we add this zero quantity to the criterion to be
minimized to get a new expression to be minimized. We have
already matched up the quadratic terms in this expression.
The cubic terms are

fo fo fo
+ fooo fol fol fol (APB] (21,22, 23)

(w1, 22, 23)2° (1) 2% (22)2° (x3) dridradas

+3 fol P[B] (1‘4,1‘1,%2) (F(134) + G($4)K[1] (ZE4,$3) d$4)

+ [y PP (24, 21)F® (24, 22, 235) dm4)

X z(z1,t)z(22,t)z(x3,t) de1dradrsdt
where APBl(xy, 22, 23) is the three dimensional Laplacian.

We set the time integrand to zero to get a weak linear elliptic
PDE for the symmetric function Pl (z1, 22, 23)

0 = AP[3](QT1,$2,$3)
+3 )

+ Jo PP

P[B] (:L'4,ZL'1,ZE2) (F($4) + G($4)K[1] (:E4,£U3) d$4)

(x4, 21)F® (24, w2, 73) daa
(20)



blue (o red Cpgreen ¢, solid full feedbck, dashed partial feedback

Fig. 1.
feedback

First three modes under full (solid) and partial (dashed) cubic

subject to Neumann boundary conditions. By weak we mean if we
multiply the right side of this equation by any three C? functions
0(x1)0(x2)0(x3) and integrate over the unit cube we get zero.

Based on what we saw for finite dimensional systems it is natural
to make the linear change of state coordinates

Gty = / i)z, )

Suppose

PP @y, m0,m3) = D Tgwtbi(a); (we) v (as)

i,5,k=0
Then @) becomes the triple sequence of equations

0 = (us + pj + pr) i gk
Loy PR (a0 ) FP (24, 22, @) @1

Xwi(xﬁ)’lﬂj ($2)¢k (323) d$1d$2d$3d$4

This determines II; ; .
The quadratic part of the optimal feedback is then found from
the second sHIB equation,

K[2](m,x1,:r2) = 73P[3](ﬂc,:c1,3c2)G

The higher degree terms are found in a similar fashion

1V. EXAMPLE

We close with a simple example that is a quadratic modification
of Example 6.2 of Curtain and Zwart [7]. Consider a rod of length
one with distributed heating/cooling, no flux boundary conditions
and a quadratic nonlinearity.

0z _ 9%z 2
E(:mt) = @(:&t) + u(z, t) + z(z,t)
0z 0z
2(z,0) = 2°(x)
Then
F(z) =0, Gx)=1

F (2, 21,20) = 6@ —x1)0(zx — a2)

and all the other higher degree terms are zero.

To find a feedback that stabilizes this system to z(z) = 0 we
pose the optimal control problem of minimizing @) subject to this
dynamics.

The open loop linear eigenvalues and eigenvectors are (I8) so if
we assume that (T9) then the Riccati PDE becomes

ZHi,ka,j = (Ni+ )+ 6iy
k=0
This is identical to equation (6.81) of [7] and their solution is

IL,;, = 46, (/\1'4—«//\?4—1)

The linear part of the optimal feedback is

1
u(z,t) = /K[l](a:,xl)z(:cl,t) dzy
0

1
—/ P[Q](w,xl)z(xl,t) dx
0

The closed loop eigenvalues are p; = —+/A2 + 1. The closed loop
eigenvectors are still ¢;(x). But the basin of asymptotic stability
of the nonlinear system closed by the linear feedback is not very
large. If 2°(x) = 1 4 ¢ for € > 0 then the linearly closed loop
nonlinear system diverges.

The Fredholm kernel of cubic part of the optimal cost is of the
form

PP @y, wa,ms) = D T di(@)e;(2) bk (ws)

4,4,k=0

and (ZI) becomes

1
0 = (pa+py+ pe)je+ 3 (T jr + i k)
The solutions I, ; ; of these equations are not symmetric in the
indices ¢, j, k. They need to be symmetrized. The Fredholm kernel
of the quadratic part of the optimal feedback is given by

K (z,z1,22) = —3pBl (z, 21, 22)

The Fredholm kernel of quartic part of the optimal cost is of the
form

Pz, g, m5,00) = N Wik di(@1)é;(02) bk (23) b1 (wa)

4,5,k,1=0

where the coefficients satisfy the equations

3
0 = (pi+p+pe+p)je+ 3 (XL 5kt + i 1)

—g Z I 5,7 10 o
r=0

Again the solutions I; ; x,; of these equations are not symmetric in
the indices ¢, j, k,l. They need to be symmetrized. The Fredholm
kernel of the cubic part of the optimal feedback is given by

K@, 21, 00,25) = —4PP(a, 21,22, 25)

The linear closed loop poles go to —oo quite fast, for example
us ~ —88.8321 so we did a Galerkin projection on the first
three eigenfunctions. Let (;(¢) =< ¢:(z), 2(x,t) > and v4(t) =<
¢i(x),u(z,t) > for i = 0,1,2. The Galerkin projection is the
three dimensional nonlinear control system

. 1 1
G = MG+ro+G+5¢E 53
o= MG+ 420G+ GG

. 1

G = Qe+ vo+20C + 5@2



Using our Nonlinear Systems Toolbox we found the optimal cost
m(¢) to degree 4 for the three dimensional Galerkin approximation.
If the initial state is [Co; C1; (2] then

#2(¢) = 0.5000 ¢Z 4 0.0253 ¢§ + 0.0063 3
73(¢) 0.3333 ¢ + 0.0288 (o¢7

+0.0066 CoC3 4 0.0010 (7¢o
() 0.1250 (3 + 0.0281 (2¢7 + 0.0065 ¢2¢2

+0.0012 ¢o¢F C2 +0.0004 ¢
+0.0002 ¢7¢3 4 0.0000 3
By way of comparison if the initial state of the infinite dimen-

sional system is 2°(z) = S°°° ¢ () and if TI*)() is degree &
part of its optimal cost then

() = 0.5000 ¢Z 4 0.0253 ¢ + 0.0063 2

1 & 5
+§ ; IL;,:¢;

0.3333 ¢§ + 0.0276 CoCP
+0.0065 ¢o¢3 + 0.0010 (T ¢
+ Z I1;,5,kGiCiCr
i,j,k=3
0.1250 ¢§ + 0.0279 C3¢3 + 0.0063 ¢3¢3
+0.0011¢0¢? 2 + 0.0004 ¢
+0.0002 ¢7¢3 + 0.0000 ¢G5

+ Z 1L 5,1 GiCiCk G

4,7,k 1=3

We started the three dimensional Galerkin approximation at (o =
5,(1 = 5,(2 = 5 which is way outside the basin of asymptotic
stability for the linearly closed loop nonlinear system We used two
cubic feedbacks. The full cubic feedback was the one computed
by the Nonlinear Systems Toolbox [10] using Al’brekht’s method
on the three dimensional system. But under the linear closed loop
dynamics the monomial (;, - - - (;, satisfies

d

so it may go to zero extremely fast. The partial cubic feedback
ignores any monomial (;, - - - (;, where

(Biy 4 4 piy) Ciy = iy,

Wiy o, < =20

and performs almost as well as the full cubic feedback, Figure 1.
Because the linear change of coordinates (9) diagonalizes the

equations (I0) for every £ > 2 we don’t have to solve these

equations for all the monomials of degree k£ + 1. We can choose to

solve them only for the monomials that don’t go to zero very fast

under the linear closed loop dynamics

V. CONCLUSION

Al’brekht developed a method to compute the Taylor polynomial
expansions for the optimal cost and optimal feedback for smooth,
finite dimensional, infinite horizon optimal control problems whose
linear quadratic part satisfies the standard LQR conditions. We have
shown that Al’brekht’s method can be extended to the optimal sta-
bilization of some smooth infinite dimensional controlled reaction-
diffusion equations whose linear quadratic part satisfies the infinite
dimensional LQR conditions. The crucial steps in the extension
are the ability to express the nonlinearities as Fredholm linear
operators and the ability to compute a few of the least stable left
eigenfunctions of closed loop linear part of the dynamics.

The example that we presented had distributed control. The next
step is to apply Al’brekht’s merhod to a reaction-diffusion problem
under boundary control. We would also like to extend Al’brekht’s
method to other infinite dimensional problems such as nonlinear
wave equations and nonlinear delay equations.
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