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ABSTRACT OF THE DISSERTATION 

 

Characterizing Near Nadir Ka-band Backscatter  

for Mapping Water Surfaces With InSAR  

 

by 

 

Jessica Victoria Fayne 

Doctor of Philosophy in Geography 

University of California, Los Angeles, 2022 

Professor Laurence C. Smith, Co-Chair 

Professor Dennis P. Lettenmaier, Co-Chair 

 

 

 

To gain an empirical understanding of the utility of near-nadir Ka-band for mapping 

surface changes, particularly with respect to water and wet surfaces, this dissertation demonstrates 

the utility for mapping water surface elevation (WSE) and inundation as observed by the airborne 

complement of the upcoming Surface Water and Ocean Topography (SWOT), AirSWOT. To 

produce high-resolution WSE and extents, SWOT and AirSWOT rely on strong backscatter signal 

returns using the Ka-band radar frequency. However, despite having many theoretical assessments 

of Ka-band scattering for water surfaces, observation-based knowledge of high-resolution Ka-band 
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scattering for small inland water bodies is limited, consequently limiting the understanding of 

signal errors and resultant elevation errors.  

AirSWOT has provided the first Ka-band InSAR observations over diverse land cover and 

under changing hydrologic conditions by flying through Alaska and Canada during July and 

August 2017, allowing an unprecedented assessment of Ka-band scattering dynamics. These 

flights revealed bright radar returns, akin to a theoretical open water return, over vegetation and 

moist, bare soils, complicating open water classification, a necessary task for the SWOT mission. 

AirSWOT WSE errors relative to in-situ GPS showed an average bias of -58 cm. After correcting 

for biases, centimeter-level seasonal hydrologic changes are identified across the study region for 

the period July-August 2017. Following bias correction, residual errors may be explained by the 

prevalence of mixed water-vegetation pixels, which may occur in 5% of observations on average, 

and by wind speeds below 3 m/s (6.7 mph), which reduce water surface roughness.  

This dissertation uses airborne AirSWOT, LiDAR, model, and in-situ data to (1) 

demonstrate the utility of the 2017 Ka-band AirSWOT observations, showing that the error-prone 

dataset can nonetheless observe cm-scale hydrologic spatial and temporal gradients across the 

ABoVE domain; (2) identify differences and similarities in backscattering values between water 

and land cover types to assess the likelihood of misclassification, additionally enabling the 

characterization of vegetation densities alongside the heights estimated from InSAR; and (3) assess 

atmospheric influences from the wind on Ka-band scattering changes due to water surface 

roughening, creating a path for assessments at the water-air interface for small water bodies. 
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Chapter 1 

 

1. Introduction 

  

1.1 Overview 

 

Knowledge of surface water level and inundation extent is critically important to 

understanding regional water cycle dynamism and water resources. The forthcoming Surface 

Water and Ocean Topography (SWOT) mission will be the first satellite mission to make 

simultaneous observations of water level and extent for small and moderate-sized (250m)2 + water 

bodies. Prior to this mission, a suite of diverse remote sensing instruments acquired global 

inundation extents separately from elevations. Inundation extents could be observed using active 

and passive sensors, while water levels could be assessed using active sensors. The differences 

between these instruments often resulted in spatial and temporal mismatches between 

observations, and many small water bodies could only be observed with high-resolution optical 

sensors, without the possibility of a water surface elevation measurement. 

While studies have shown that inundation extents can be identified using high resolution 

(0.5-15 m) optical imagery [Davranche et al., 2013; Cooley et al., 2017; Kyzivat et al., 2019], these 

data suffer from cloud cover, reducing the frequency of observations. With the increased 

availability of cloud-penetrating SAR satellite data beginning in the late 1990s, many studies have 

demonstrated the efficacy of observing inundation extents, primarily with C- and L-band SAR 

instruments, with average look angles of 50 degrees, and 10-30 m spatial resolution [Hess et al., 

1995; Kasischke et al., 1997; Alsdorf et al., 2007; Cretaux et al., 2011; Amani et al., 2019; Liao et 
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al., 2020]. While the C- and L-band instruments are capable of producing interferometric synthetic 

aperture radar (InSAR) elevation data for land, the time between observations and the viewing 

geometry of these land imaging SARs prevent adequate InSAR retrievals of water surface 

elevations. Radar altimetry instruments have the opposite issue, as altimeters provide coarsely 

spaced (AltiKa: 12 km; JASON 25 km) point measurements along the 1-dimensional orbital path, 

with no 2-dimensional mapping capabilities. 

SWOT is the first space-borne instrument designed to produce 3-dimensional 

measurements of surface elevations and inundation extents and is also the first operational Ka-

band SAR imaging satellite. Although SWOT has been designed to make these 3-D measurements, 

sensitivities of the spatial resolution and high-frequency SAR instrument to diverse inland surface 

covers and dynamic hydrologic and meteorologic conditions are not well understood. 

 

1.2 Motivation 

 

The uniqueness of SWOT comes from the onboard Ka-band SAR interferometer, an active 

remote sensing instrument designed to measure elevations with a very small spatial resolution 

compared with traditional altimeters  (~10-70 m versus ~10-25 km) and with small vertical errors 

(±1.7 cm/km river slope (river reaches greater than 10 km); water surface elevation errors are 

limited to 10 cm (lake areas greater than 1 km2), 25 cm (lake areas 0.0625-1 km2) [Altenau et al., 

2017; Desai et al., 2018; Pitcher et al., 2018; Fayne et al., 2020]. In support of the calibration and 

validation efforts for SWOT, an airborne SWOT-like instrument (AirSWOT) was developed.  

Despite having different viewing geometries, antenna configurations, and processing parameters, 

the Ka-band sensor on AirSWOT, the Ka-band SWOT Phenomenology Airborne Radar 
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(KaSPAR) provides measurements that are designed to be similar to SWOT. With development 

beginning in 2010 and with the first engineering flights in 2013 [Moeller et al., 2010; Wu et al., 

2011, Martin 2013], AirSWOT KaSPAR is an experimental sensor that continues to undergo 

upgrades and improvements into 2022. Early studies of AirSWOT data identified Ka-band 

backscattering sensitivities to damp soils [Baney et al., 2014], and water surface elevation errors 

greater than 1 m [Altenau et al., 2019; Tuozzolo et al., 2019; Pitcher et al., 2019;]. These studies 

focused on localized and diverse regions, making it difficult to identify the prevalence of these 

issues. In addition, improvements to the AirSWOT data processing for 2017 reduced the 

magnitude of elevation errors originally identified in earlier studies, making the data ideally more 

comparable with in-situ measurements and SWOT, but also reducing the comparability with earlier 

AirSWOT data acquisition.   

To identify to what extent AirSWOT can be used as an effective calibration and validation 

instrument for SWOT, and to have a better understanding of Ka-band scattering sensitivities, it is 

important to examine a variety of AirSWOT observations and derived products. This proposal is 

motivated by the necessity for an enhanced understanding of Ka-band radar in support of the 

forthcoming Surface Water Ocean Topography (SWOT) mission afforded by the novel 

observations of Arctic and Boreal river-lake-wetlands from the 2017 AirSWOT ABoVE flights. 

 

1.3 Approach 

 

In 2017, AirSWOT acquired the largest known collection of Ka-band SAR data to date. In 

support of the Arctic Boreal Vulnerability Experiment (ABoVE) Airborne Campaign (AAC), 

AirSWOT flew the KaSPAR instrument through central Canada to Alaska and back, with specific 
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focus areas in the Yukon Flats, Alaska, and the Peace Athabasca Delta, Canada. The total 

collection of the amassed data spans 23 degrees latitude and an area of over 22,000 km2. This 

dissertation assesses the 2017 Ka-band AirSWOT KaSPAR data to achieve three goals: 1) 

demonstrate the accuracy and utility of the derived elevation data for hydrological analysis, 2) 

identify Ka-band radar scattering sensitivities for 15 diverse land covers and moisture regimes, 

including open water dry land, and wet vegetation (limited to 3-27 degrees of incidence), and 3) 

categorize the impacts of regional wind speeds on Ka-band scattering (limited to 3-17 degrees of 

incidence).  

 

1.4 Summary of Examinations 

 

 The contents of this dissertation encompass three journal articles: one published [Chapter 

2- Fayne et al., 2020], two under review [Chapter 3- Fayne et al., in review], [Chapter 4- Fayne et 

al., in review].  

 The first journal article, presented in chapter 2, examines the quality of the 2017 ABoVE 

AirSWOT InSAR data by 1) assessing the frequency of available data over observed water bodies, 

2) validating the retrieved and spatial-averaged water surface elevations from AirSWOT with in-

situ GPS water levels, 3) comparing spatially-averaged and point-based observations of AirSWOT 

with LiDAR data from the Land Vegetation and Ice Sensor (LVIS), and finally 4) demonstrating 

how AirSWOT InSAR elevations can be used to assess broad-scale hydrologic variability when 

compared with pressure transducers situated throughout the Canada-Alaska flight paths.  

The second paper, now in review and presented in chapter 3, identifies Ka-band scattering 

sensitivities with a specific focus on 15 land cover types. The primary motivation for this study 
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came from a lack of off-the-shelf Ka-band scattering models spanning a wide range of incidence 

angles (0-30 degrees), with locally varying sensitivities to changing land cover and moisture. The 

project first assessed dielectric contributions to Ka-band scattering by comparing the KaSPAR 

scattering coefficients with moisture and temperature. Next, the influence of vegetation structure 

on scattering was assessed by using high-resolution LiDAR data that was acquired within days of 

the AirSWOT flight.  

The third and final chapter will is found in chapter 4. Following a study of vegetation and 

land contributions to Ka-band scattering and examining the scattering diversity of land surfaces, it 

was appropriate to consider the diversity of within-water scattering. This project was additionally 

motivated by the notion that water surface scattering varies under certain meteorological 

conditions, and those conditions have the potential to reduce the quality of retrieved water surface 

elevations and inundation extents. Specifically, AirSWOT was treated like a simplified 

scatterometer to identify the influence of wind speeds on the backscatter coefficient as an indicator 

of signal strength and total coherence as an indicator of InSAR elevation quality. 

  

1.5 Outline 

 

 This dissertation is defined by a focus on understanding Ka-band scattering to suggest 

improvements to future Ka-band airborne and satellite sensors and to understand possible sources 

of error in retrieved elevation products on the upcoming SWOT mission. Increased understanding 

of Ka-band scattering and the impacts on the derived elevation is not only important to the SWOT 

mission, but also to provide avenues for study using Ka-band radar and InSAR data for purposes 
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outside the goals of AirSWOT and SWOT, such as for the study of wetlands, infiltration, 

vegetation structure, wind speed, and evaporation.  

Chapter 2 presents the problem of low-accuracy elevation retrievals, while Chapters 3 and 

4 examine possible sources of error in the form of calculating the prevalence of water 

misclassification (Chapter 3), and demonstrating how low wind speeds lead to low Ka-band 

backscatter and low total coherence, reducing the quality of derived elevation measurements. 
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Chapter 2 

 

2. AirSWOT Water Surface Elevation Accuracy  

 

Title: Airborne Observations of Arctic Boreal Water Surface Elevations from Ka-band InSAR and 

LVIS LiDAR  

 

2. 1 Introduction 

 

Arctic-Boreal regions contain the largest number of freshwater bodies in the world [Lehner 

and Doll 2004; Carroll et al., 2011; Pekel et al., 2016], most of which are inaccessible and poorly 

studied. Yet the future vulnerability of these freshwater systems to high-latitude warming remains 

unknown [Walvoord and Kurylyk 2016; Bring et al., 2016]. To enhance scientific understanding 

of broad-scale physical, ecological, and social changes in the Arctic, the NASA Arctic Boreal 

Vulnerability Experiment (ABoVE) deployed 10 airborne assets in 2017 to survey over 4 million 

km2 of Alaska and western Canada spanning diverse climatic, topographic and hydrological 

regimes coordinated with near-coincident ground-based measurements [Miller et al., 2019]. These 

assets provide important scientific datasets that are essential for Arctic-Boreal surface water 

studies [Kyzivat et al., 2019; Pitcher et al., 2020].  To that end, this work integrates three ABoVE 

airborne instruments to map water surface elevations (WSEs) of Arctic-Boreal surface water 

bodies, with a particular emphasis on an airborne Ka-band interferometric synthetic aperture radar 

(InSAR) developed by Remote Sensing Solutions (RSS) and the NASA Jet Propulsion Laboratory 



8 

 

(JPL), named the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) [Moller et al., 2010; 

Wu et al., 2011] carried on the AirSWOT aircraft. 

AirSWOT KaSPAR produces swath-based digital elevation models (DEMs) covering both 

land and water. These data are optimized for WSE assessment, and KaSPAR was engineered as a 

validation instrument for the forthcoming Surface Water and Ocean Topography (SWOT) satellite 

mission planned for launch in 2022 [Fu et al., 2012; Chen et al., 2018]. SWOT will be the first 

satellite mission to map high-resolution WSEs for inland water bodies as well as oceans, using Ka-

band (35.7 GHz) InSAR. SWOT will enhance scientific understanding of surface water, river 

discharge fluxes and lake volume changes by mapping WSE globally for rivers as narrow as 100 

m, and lakes as small as (250m)2 (0.0625 km2).  Requirements for the mean absolute errors on 

SWOT are 10 cm when spatially averaged across water bodies having areas larger than 1 km2, and 

25 cm for (250m)2 areas [Desai et al., 2018]. However, investigations and quality assessment of 

Ka-band InSAR WSE retrievals over real-world water bodies are needed before the launch of 

SWOT, especially over lakes that have received little previous study. The 2017 ABoVE AirSWOT 

flight campaigns thus provide a rich observational dataset for this purpose as well as advancing 

scientific understanding of Arctic-Boreal surface water across the ABoVE domain. 

As flown for ABoVE in 2017, the AirSWOT instrument suite included the KaSPAR 

interferometer (InSAR), and a color infrared digital camera system (CIR) [Moller et al., 2010; 

Moller et al., 2011; JPL-AirSWOT Group 2019].  During mostly-clear-sky days in July and 

August, the AirSWOT radar acquired 128 flight transects averaging ~45 km long and 3.9 km wide, 

collecting a total mapped area of 22,775 km2 from North Dakota to Alaska spanning 23 degrees 

of latitude [Fayne et al., 2019].  The CIR system imaged a 4 km wide swath simultaneously, 

producing a total imaged area of 23,380 km2 over the two months [Kyzivat et al., 2019]. The 
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AirSWOT platform flew northbound from North Dakota to Alaska in July, then returned 

southbound over the same flight transects in August, thus acquiring a large, multi-temporal data 

collection [Miller et al., 2019; Moller et al., 2010]. 

For the remainder of this study, we will refer to the AirSWOT Ka-band KaSPAR 

interferometer data as ‘radar data’, the derived DEM as ‘elevation’ or ‘WSE’ if the water has been 

extracted. 

          Here we present a first assessment of the performance and utility of the 2017 AirSWOT 

radar data acquired for ABoVE. Our objectives are to assess the quality of AirSWOT WSE 

observations across a broad spatial domain and to determine if their quality is sufficient for ABoVE 

hydrologic science and SWOT validation goals. Specifically in this application, we focus on Arctic 

storage changes at seasonal time scales. Broadly, we answer two questions: 1) How well did the 

AirSWOT radar data map water surface elevations across the ABoVE domain? 2) Can AirSWOT 

WSEs measure surface water storage change at seasonal time scales? To answer these questions, 

we compared AirSWOT WSE with coincident in situ elevation data collected by field-based GPS 

surveys [Pitcher et al., 2020], and overlapping flight acquisitions of the NASA Land Vegetation 

and Ice Sensor (LVIS) airborne LiDAR instrument [Blair et al., 1999] which flew many of the 

same flight lines for ABoVE in 2017. 

We discuss the completeness of the AirSWOT elevation data for mapping water bodies, as 

well as the utility of AirSWOT WSEs for measuring absolute elevations and changes in water 

storage through a comparison with LVIS airborne WSEs, and in situ GPS and pressure transducers 

and conclude with a discussion of best practices for handling the dataset and potential lessons for 

future deployments. 
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Figure 1. Spatial coverage of the 2017 NASA Arctic-Boreal Vulnerability Experiment (ABoVE) 

AirSWOT radar and LVIS LiDAR airborne flight campaigns.  AirSWOT flight tracks are shown in 

orange, LVIS LiDAR tracks in blue. Purple tracks represent overlapping coverage. Red circles 

denote locations of in-situ field GPS and coincident pressure transducer measurements of water 

surface elevation used for independent validation of both AirSWOT and LVIS WSE estimates. 

 

2.2 Data  

 

2.2.1 AirSWOT Airborne Ka-band InSAR and Camera Data 

The AirSWOT data presented here are the radar’s ‘outer swath’ product, having an 

incidence angle range of 4-27° [Moller et al., 2010].  The ‘inner swath’ configuration (having 

incidence angles 1-5°, like SWOT) remains under development at NASA-JPL. AirSWOT radar 

data collected during the ABoVE 2017 flight campaign consist of elevation (“height” in meters 

relative to WGS84 ellipsoid), backscatter (“magnitude” in linear units), incidence angle (in 

radians), coherence (normalized correlation), sensitivity factor of estimated elevation to InSAR 
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phase (“Δh/Δphi” in meters/radian), and elevation uncertainty (1-sigma “error” in meters) over 

land and water surfaces [Fayne et al., 2019, https://doi.org/10.3334/ORNLDAAC/1646]. NASA-

JPL developed software to produce these six radar products from raw radar data. Automated and 

manual quality assurance methods were used to identify regions with significant discrepancies 

(tens of meters) in elevation compared to a geoid-removed MERIT reference DEM [Yamazaki et 

al., 2017], and these regions are re-processed as needed to improve elevation accuracy (explained 

in the following sub-section). We reprojected the data to the Canada Albers Equal Area projection 

per ABoVE specifications. Next, we used the ABoVE-C high-resolution grid [Loboda et al., 2018] 

to clip flight lines to individual tile extents and combine the six radar products into multiband 

GeoTIFFs, for simplified spatial-temporal referencing [Fayne et al., 2019]. 

For the ABoVE 2017 campaign, the AirSWOT aircraft integrated a color-infrared (CIR) 

digital camera that collected data in green (520-600nm), red (630-690nm), and near-infrared (760-

900nm) wavelengths at 1-meter spatial intervals simultaneously with radar acquisitions [Kyzivat 

et al., 2018, https://doi.org/10.3334/ORNLDAAC/1643]. Using these data, a mask of open water 

extent was produced [Kyzivat et al., 2019, https://doi.org/10.3334/ORNLDAAC/1707]. This 

product identifies areas of open water not impacted by aquatic or riparian vegetation, which is 

particularly important for this study because the inclusion of emergent vegetation would contribute 

to vertical elevation error in retrievals of WSE. SWOT water-detection algorithms are not 

appropriate for AirSWOT due to instrument geometry differences, necessitating the use of a 

reference water mask for AirSWOT radar. Lower incidence angles used in SWOT will allow direct 

water detection without the use of an onboard camera. An example of the water mask applied to 

the elevation data for the Peace-Athabasca Delta, Canada is presented in Figure 2.  
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Figure 2.. Peace-Athabasca Delta, August 13, 2017. Composited data from the CIR Camera, 

AirSWOT Height Product, and color infrared open water mask are shown here. The vertical 

striping in the AirSWOT DEM (center) shows the individual flight lines in color, with white 

showing gaps between flight lines. The image on the right shows the AirSWOT DEM with the open 

water mask applied on top, black areas are land, highlighting the AirSWOT water surface 

elevations in purple and blue. 

 

2.2.1.1 InSAR Data Processing to Produce Elevations (supplement) 

The AirSWOT InSAR processor requires reference elevation and water surface extent 

maps to help solve for the geolocation and elevation during phase unwrapping, which are used to 

“flatten” the InSAR phase, removing the effects of propagation delay and DEM topography.  

After phase unwrapping, the geolocation and elevation of each pixel is refined using the 
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estimated InSAR phase. The digital elevation model used for the ABoVE processing comes from 

MERIT [Yamazaki et al., 2017], which represents the elevations as orthometric heights with 

respect to the EGM96 geoid. Because the InSAR processor uses elevations with respect to the 

WGS84 ellipsoid, and not orthometric elevations, the MERIT DEM’s vertical datum was 

converted to WGS84 before processing. The reference water mask used to estimate the spatial 

extent of water bodies is from the Global Surface Water Occurrence dataset [Pekel et al., 2016]. 

The occurrence water data uses 30 meter historical Landsat data to estimate how frequently an 

area is inundated with water, from 0 - 100% occurrence. For processing with AirSWOT, the 

occurrence data is binarized at the 70 percent level, in order to include water bodies that are 

present at least 70 percent of the time.   

From the initial output of the InSAR processor, flight transects are analyzed at the 

regional scale as bundles of neighboring and overlapping flights. During this post-processing 

stage, we check for phase unwrapping and phase calibration errors which contribute to tilts in the 

surface, elevation errors tens of meters from true elevation, and geolocation errors. Because each 

flight transect has at least two overlapping acquisitions from July and August, and the elevation 

of land is not expected to change significantly, the water mask [Pekel et al., 2016] is used to 

remove the water bodies and compare the elevation difference of the land areas covered by both 

flight lines. The difference maps are used to refine the phase calibration of each flight line by 

solving for the InSAR phase biases that reduce the elevation difference between the overlapping 

land areas. The elevation differences are also visually assessed for relative tilts between the lines, 

and where possible are corrected to remove anomalous elevation trends. Surface elevations will 

not be perfectly matched due to instrument noise and constraints imposed by the relationship 
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between InSAR phase and elevation, allowing the possibility of WSE changes between dates. 

For more details on radar processing and correction techniques, see Denbina et al., [2019]. 

 

  

  

Figure 3.  2017 ABoVE AirSWOT products that have been publicly released from JPL include 

height (elevation), magnitude (backscatter), coherence, incidence angle, Δh/Δphi (sensitivity 

factor of estimated elevation to InSAR phase), and error (elevation random uncertainty). Note that 



15 

 

in the near range of the flight (in this instance, on the right), there are water bodies surrounded 

by missing-data fill values. 

  

 

 

2.2.2 LVIS Airborne LiDAR Data 

Since 1997, the Land Vegetation and Ice Sensor (LVIS) has been providing high-quality 

full-waveform elevation returns from the vegetation canopy to the ground with sub-decimeter 

accuracy [Blair et al., 1999]. Although no known studies have assessed LVIS’s performance over 

open water, previous studies have identified elevation accuracies of less than 10 cm [Hyde et al., 

2005; Hofton et al., 2008], making it a promising validation instrument for AirSWOT WSE 

assessments. During the ABoVE campaign, LVIS collected 1.8 km swath-width data having 10 m 

point spacing. By design, the 2017 ABoVE LVIS flight campaigns overlap with 35.3% of the 2017 

AirSWOT flights [Figure 1], providing a sizeable reference elevation dataset at a scale that would 

be impossible to obtain with in situ measurements. The LVIS LiDAR data were acquired between 

June 29 and July 16, within days of the July 8-22 AirSWOT flights. The snapshot of WSEs from 

LVIS in July permits temporal change analysis to be conducted with AirSWOT data from July and 

August using appropriate LVIS reference elevations. 

 

2.2.3 In-Situ Water Level Sensors 

Sixty-three lake surveys and additional river profiles were collected by GPS-mounted floating 

Water Surface Profilers (WaSPs) spanning 17° latitude [Pitcher et al., 2020].  Solinst® Levelogger pressure 

transducers were also installed to record WSE at 15-minute intervals for 18 lakes used in this study [Figure 

1]. Using these in situ data, a previous study [Cooley et al., 2018] demonstrated a seasonal hydrological 

drawdown (WSE decline) between July 6 and August 19, with water levels decreasing 8-60 cm in the 
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Canadian Shield, and 15-60 cm in the Yukon Flats Basin. These measurements enable timing synchrony 

with AirSWOT overflights either through coincident GPS surveys or acquisition of continuous pressure 

transducer time series throughout the summer. GPS receivers were provided by UNAVCO, and the GPS 

Precise Point Positioning (PPP) solutions were processed at the Centre National d’Etudes Spatiales (CNES) 

using GINS software [Marty et al., 2011]. This collection of in situ WSE measurements from GPS surveys 

and pressure transducer time series is used here to compare differences between LVIS and AirSWOT 

WSEs.  

 

2.3 Methods  

 

We conduct four tests to determine how well 2017 ABoVE AirSWOT WSEs can be used 

to assess sub-seasonal variations in Arctic-Boreal surface water and to identify optimal data 

processing techniques to guide future AirSWOT and SWOT hydrologic science objectives. In 

order, we 1) assess the frequency of missing water data in the AirSWOT elevations; 2) compare 

AirSWOT WSE retrievals with in situ GPS measurements; 3) compare AirSWOT WSE retrievals 

with near-coincident LVIS LiDAR and determine best practices for filtering AirSWOT based on 

incidence angle, magnitude, coherence and elevation uncertainty; and 4) estimate sub-seasonal 

storage change by comparing temporally coincident AirSWOT-LVIS elevation differences, with 

temporally asynchronous differences between July and August.    

 

2.3.1 Test 1 Assessment of missing data within water bodies 

Strong Ka-band radar backscatter returns over water are required to produce accurate WSE 

retrievals and to validate SWOT. Therefore, the AirSWOT KaSPAR data products contain missing 

data values for pixels with insufficiently high backscatter or low coherence. Variations in aircraft 
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attitude produce a uniquely jagged edge in the near range, closest to the aircraft. There are also 

patches of missing data within the swath, particularly over water bodies, as seen in Figure 3. These 

patches are caused by specular reflection of the radar waves in the far range (i.e. incidence angles 

> 17°), which results in very low backscatter. Excessive areas of missing data have the potential 

to impact the accuracy of spatially averaged WSEs. To assess the fraction of water-only data 

presence at each incidence angle, data presence statistics are extracted for water bodies within the 

CIR open water mask. 

 

2.3.2 Test 2 Comparison with in situ GPS measurements 

To quantify potential biases and outliers in AirSWOT derived WSEs, measurements from 

WaSP GPS systems [8] are directly compared with spatially-averaged AirSWOT data. AirSWOT 

WSE data for individual pixels are noisy [Altenau et al., 2017; Pitcher et al., 2018; Tuozzolo et 

al., 2019; Denbina et al., 2019], so it is not recommended to compare GPS measurements directly 

with the elevation value of the single nearest AirSWOT WSE pixel. To enable a fair comparison 

with in situ GPS data, we take the average elevation of all AirSWOT water masked pixels within 

a (250 m)2 area (SWOT minimum averaging window) around each GPS point. 

 

2.3.3 Test 3 Comparison with ABoVE LVIS airborne LiDAR WSEs 

As LVIS elevations are categorized as percentages of the returned energy waveform, we 

first compare in situ GPS measurements with LVIS waveforms for each GPS observed water body 

to determine the appropriate relative height (RH) elevation product to be used for LVIS WSE 

retrieval. Next, we rasterize and compare LVIS WSE with AirSWOT WSE on a pixel-to-pixel 

basis, and compare again after spatially averaging lakes. To produce the pixel-to-pixel comparison, 
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the open water mask was used to extract all of the LVIS pixels within the mask. The selected LVIS 

pixels are then used to extract the nearest neighbor AirSWOT elevations, providing a pixel-to-

pixel comparison of LVIS and AirSWOT WSE over open water bodies including lakes and rivers. 

AirSWOT acquisitions more than 14 days from the July LVIS acquisition are not included in the 

elevation validation. The pixel comparison is a useful tool to compare between datasets, 

particularly over rivers where spatial averaging over long slopes will not yield an appropriate 

average elevation.  It also provides a detailed view of how radar parameters such as incidence 

angle, magnitude, coherence and elevation uncertainty contribute to increasing errors in the 

AirSWOT WSE, providing an opportunity to assess best practices in pre-filtering AirSWOT WSE 

before spatial averaging. 

To arrive at a representative elevation measurement for lakes, spatial averaging is 

recommended. Similar to previous studies where large elevation outliers are manually removed 

[Altenau et al., 2019] or where elevations are manually constrained to 3 meters around the mean 

elevation for the region [Denbina et al., 2019], this study uses a reference DEM to remove 

elevation outliers. The MERIT DEM is used to reduce noise and remove outliers in AirSWOT 

elevations where the AirSWOT elevations deviate more than 5 meters from the MERIT DEM, 

following MERIT’s 5 meter elevation uncertainty. Finally, LVIS and AirSWOT data are again 

extracted from each water body and AirSWOT pixels are filtered using the radar parameters to 

produce spatially averaged mean lake elevation for lakes larger than (250m)2. 

 

2.3.4 Test 4 AirSWOT Sub-Seasonal Variability 

LVIS data can be used to normalize the differences between AirSWOT observations, 

enabling a broad-scale assessment of change in water level over time. AirSWOT-AirSWOT WSE 
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comparisons can be made, although noise and errors in the current measurements may amplify the 

uncertainty in the sub-seasonal water level assessment. July LVIS measurements are used as a 

temporal reference for AirSWOT to assess sub-seasonal storage changes between July and August. 

The mean difference between LVIS and AirSWOT WSEs is expected to be small on coincident 

days, but that difference may change along with seasonal water level changes. For example, if the 

mean WSE difference between July AirSWOT and July LVIS is -0.5m in a given region, and the 

mean WSE difference between August AirSWOT and July LVIS is -0.9 m, this would suggest that 

water levels in that region declined by 0.4 m on average. When applied to lakes clustered across 

the landscape, this analysis allows us to estimate the seasonal WSE trend. Pressure transducers 

distributed from Yukon Flats, Alaska, to the Canadian Shield in the Northwest Territories highlight 

the variation in hydrological change across the northern ABoVE domain and are used to validate 

the sub-seasonal storage change observed from the AirSWOT-LVIS comparison. 

 

 

2.4 Results 

 

2.4.1 Missing data within water bodies 

Figure 4 summarizes the mean and median percent data presence across incidence angles 

for all data within water bodies. For water located at incidence angles <5°, less than 60% of 

expected pixels are available, which is reasonable given they lie outside of the nominal extent of 

the outer swath. Within the nominal AirSWOT outer-swath extent, an average of 70% of data is 

present over known CIR-mapped water bodies, with data losses associated with forward specular 

scattering in the far range.  Usable radar returns are more consistently available (~85% presence) 
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between 5-17°. While the nominal radar swath-width is ~3.2 km, the total swath-width from nadir 

may be little more than 4 km. Missing data can additionally be attributed to aircraft movement, 

producing a noticeably jagged edge at 3-5° incidence angles. 

 

Figure 4. Approximately 70% of the AirSWOT radar data are recovered within the nominal swath 

range, with rapid data loss <4° and >17°.  WSE Data is present mostly at > 4 degrees of incidence.  

2.4.2 Comparison with in situ GPS 

Of the 63 in situ WaSP GPS observations available, only 26 had pairs with AirSWOT 

matching the minimum water body size and AirSWOT data coverage. GPS observations [Pitcher 

et al., 2020] are strongly correlated with AirSWOT WSEs averaged across (250 m)2 areas around 

each GPS survey point [Figure 5a]. However, a bias of approximately -58 cm (std.dev=27 cm) is 

found between the two datasets, with AirSWOT WSEs lower than in situ WSEs. Overall, the full-

resolution AirSWOT WSEs have a 1-2 meter elevation range within the (250 m)2 subset of the 

individual water bodies. This further demonstrates the inherent noisiness of these WSE retrievals 

and the necessity for spatial averaging within water bodies to yield useful estimates of WSE. The 

statistics for all WaSP GPS - AirSWOT lake pairs are found at the end of this chapter [Table 1].   
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Figure 5. In A, GPS elevations are sampled from 26 lakes across the ABoVE Domain and are 

correlated with AirSWOT WSE measurements (r2=0.999). While correlated, AirSWOT WSEs 

display a mean bias of -58 cm relative to GPS WSEs. Uncertainty analysis using leave-one-out 

and bootstrapping (20,000 iterations leaving out 1/4th of the data, with replacement) in B 

demonstrate the sensitivity of the bias estimate to the samples of the GPS data used. For leave-

one-out and bootstrapping tests, the means are -57.9 cm and -58.2 cm. The 25th and 75th percentiles 

for leave-one-out are -58.3 cm and -57.6 cm, while bootstrapping are -59.8 cm and -56.8 cm. 

Density distributions of pixels with (250 m)2 open water areas for three representative lakes with 

in situ WaSP surveys are shown (in C and D) highlighting the noisiness in the data, having a range 

of up to two meters from the mean. The GPS measurement is represented by a black vertical line 

while the mean AirSWOT measurement is shown in red. 

2.4.3 Comparison of AirSWOT WSE with LVIS WSE 

Via comparison with in situ WaSP GPS, the LVIS RH65 elevation data were determined 

to be the closest approximation of the GPS WSE (Figure 6). Using the LVIS RH65 product, the 

average of the pixel-to-pixel differences between LVIS RH65 WSEs and AirSWOT WSEs yields 

a mean error bias, with AirSWOT WSEs 63 cm lower than LVIS.  The AirSWOT-LVIS mean 
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error plotted against incidence angles show no trend.  As reported in previous studies [Moller et 

al., 2010, Wu et al., 2011], we find a clear correlation between incidence angle and absolute error 

(Fig. 7). 

 

Figure 6 (A-I). For nine selected lakes with collocated GPS and LVIS measurements, all LVIS 

waveforms within the lakes are shown, with vertical axis limited to an interval near the amplitude 

peak. The large amplitude peak corresponds to strong energy returns from reaching the 

impenetrable surface. The GPS elevation is shown as a solid black line.  The 60-65% energy return 
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(referred to as RH60 and RH65) and mean estimated ground elevations from LVIS are shown as 

the orange, green, and red dashed lines, respectively.  J.) When compared across all 9 GPS 

stations, the RH65, 65% energy return level, is often within the GPS measurement uncertainty 

range for open water, providing the conclusion that the LVIS RH65 data can be used as a proxy 

for in situ GPS measurements. In two out of the nine regions examined, a single stray waveform 

skewed the mean. 

 

Filtering recommendations can be made by identifying which incidence angles reduce the 

standard deviation and mean absolute errors. Viewing the relationships between mean absolute 

error and incidence angle, coherence, backscatter, and elevation uncertainty in the radar products 

suggests how to achieve WSE with higher accuracy and precision, reducing the noisiness seen in 

Figure 5.    
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Figure 7.  Relationships between the mean absolute error derived from the difference between 

AirSWOT WSE and LVIS WSE and the AirSWOT radar products pixel-to-pixel comparison 

provide four distinct filtering boundaries on the AirSWOT radar products: A. Elevation 

Uncertainty B. Magnitude C. Incidence, and D. Coherence. The filtering boundary of desired data 

is shown as a black line with directional arrows. A red local regression line shows how the 

absolute error decreases or increases with changing radar parameters. The scatterplot is 

represented as a smoothed point cloud demonstrating the density of points; points are tightly 

clustered where the point cloud is dark blue, and sparse where the cloud is light or white. 

Figure 7 demonstrates absolute error relationships with the AirSWOT radar products, with 

positive correlations with elevation uncertainty and incidence angle, and negative correlations with 

magnitude and coherence. It is recommended that AirSWOT ABoVE 2017 data users isolate data 

where the elevation uncertainty is less than 1 meter, magnitude is greater than 5 dB, the incidence 

angle is between 5 and 15 degrees, and the coherence is greater than 0.8. These filtering 

recommendations provide insight into the spread of error values and into how precision and 

accuracy can be improved. Filtering the data reduces the bias in the pixel-based analysis from -63 

cm to -54 cm. Bias correcting the data by adding 54 cm produces a mean absolute error (MAE) of 

35 cm. 

The reported bias is slightly different for spatially averaged lakes. Users are advised to 

spatially average AirSWOT WSE data to reduce noise, arriving at a single mean WSE value. 

Applying the filtering recommendations and removing pixels for which the absolute difference 

from the reference MERIT DEM is greater than 5 m, we extract AirSWOT WSEs from lakes 

greater than (250m)2 and average the lake elevations, producing 1,043 LVIS-AirSWOT lake 

coverage pairs across the entire domain. While the 1,043 AirSWOT - LVIS lake pairs are 

correlated, scattered outliers greater than 20 meters skew the mean error between the two datasets 

to -88 cm (Fig. 8). As the pairs are within 1 m about 80% of the time, the 805 lake pairs having a 
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mean WSE error of -45 cm (blue in Figure 5a, b), can be used in further temporal analysis. Adding 

45 cm for bias correction produces a MAE of 27 cm. 

 

 

Figure 8. Black dots in A and line in B show AirSWOT vs. LVIS WSE after adding the MERIT 

reference elevation filter, using all 1043 available AirSWOT-LVIS lake observation pairs. Blue 

dots A and line in B show AirSWOT WSE vs. LVIS WSE after reference elevation filtering and 

limiting the absolute difference between AirSWOT and LVIS to 1 meter using 805 available 

AirSWOT-LVIS lake pairs. 

 

2.4.3.1 Solid earth tides as a source of elevation bias 

Possible bias sources include residual artifacts in the radar processing, signal delay, or solid 

earth tides. While all three datasets use the same reference vertical datum, as elevation above the 

WGS84 ellipsoid, differences in elevations for AirSWOT, LVIS, and Water Surface Profiler 

(WaSP) GPS may be attributed how solid earth tides are treated in the measurement and derivation 

of those elevations. Solid earth tides may vary by approximately 35 cm [Hendershott 2005]. 

AirSWOT elevations are produced with solid earth tide correction, which may be different from 

the treatment of other reference datasets used in this study. Solid earth tides vary over space and 
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time, having the potential to create biases which are also spatially and temporally varying. This is 

particularly relevant with the 2017 ABoVE AirSWOT campaign, as the data collection spans 23 

degrees of latitude over the course of two months. Here, we consider that large biases on the order 

of 40-50 cm are unlikely due to true measurement error, but can be attributed to differences in how 

elevations are referenced relative to solid earth tides. 

2.4.4 Sub-seasonal Variability in WSE 

Finally, we assess WSE changes mapped by AirSWOT and LVIS WSE over time [Figure 

9]. To summarize regional and sub-seasonal variability, AirSWOT-LVIS lake differences are 

aggregated into 29 sub-regional clusters based on the grouping of the AirSWOT flight lines (Figure 

3 shows the flight lines for the Peace-Athabasca region, for example). Similarly, AirSWOT-

AirSWOT WSE pairs can be used for this analysis, although errors inherent in the lakes used in 

the pairing cannot be normalized, amplifying the uncertainty in the sub-seasonal water level 

assessment. A previous study of summer 2017 lake variation demonstrated shrinking lake areas 

between July and August [Cooley et al., 2019], corresponding to a seasonal drawdown of lake 

water storage. Eighteen pressure transducers (PTs) placed in lakes ranging from the Yukon Flats, 

Alaska, to the Canadian Shield demonstrate the sub-seasonal hydrological drawdown between July 

6 and August 19, 2017 (day-of-year 187-231). Despite the spread in aggregated WSE elevation 

differences in lakes present in the time-series analysis represented in Fig. 9, there is a trend in the 

elevation difference between AirSWOT and LVIS, aligning with the change in water surface 

elevation from PTs. During this time WSEs from PTs decreased by 7-35cm, while AirSWOT 

shows a mean WSE decrease across the region of 17 cm.  
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Figure 9. After bias correction (see Figures 7 and 8), spatially-averaged AirSWOT WSEs reveal 

a broad-scale drop in lake levels averaging ~17 cm across the ABoVE domain over the period 

July 8-August 17, 2017.  This finding is consistent with in situ time series of WSE acquired by 18 

pressure transducers (colored lines: July 6- August 19, 2017). The 805 LVIS-AirSWOT lake pairs 

(from Figure 8) have been aggregated into 29 regions (black dots). Reference datum (0 m) is 

relative to LVIS WSEs acquired in early summer.  

 

 

2.5 Conclusion 

 

This study demonstrates the spatial and temporal capabilities of AirSWOT to map Arctic-

Boreal lake WSEs and their sub-seasonal changes over time, as well as strengths and limitations 

of AirSWOT data collection and analysis across a >22,000 km2 region of the North American 

Arctic-Boreal region. AirSWOT radar retrievals of WSE across the ABoVE domain [Fayne et al., 

2019] were evaluated using precise in situ GPS measurements acquired by WaSP [Pitcher et al., 

2010], in situ pressure transducers [Cooley et al., 2019], and LVIS airborne LiDAR data [Blair et 
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al., 2018].  For AirSWOT WSE retrievals to be beneficial to both hydrologic science and SWOT 

validation goals, its spatially-averaged values must meet or exceed SWOT elevation mean absolute 

error requirements of 25 cm for water bodies (250 m)2 and 10 cm for (1 km)2 water bodies [Desai 

et al., 2018].  AirSWOT radar should also secure useable returns over open water bodies. In support 

of ABoVE hydrology goals, AirSWOT WSEs should be able to capture Arctic-Boreal water 

storage changes. The immense ABoVE dataset presented here is thus a significant opportunity for 

both Arctic-Boreal hydrologic science and pre-launch SWOT mission planning. 

A missing data analysis [Figure 4] confirms that forward, specular scattering increases with 

higher incidence angles in flat water bodies [Grant et al., 1957], reducing the amount of backscatter 

returned to the AirSWOT radar sensor at incidence angles greater than 17°. However, missing data 

do not necessarily preclude retrieval of useful WSE measurements, as remaining data are still 

useful for estimating the WSE.  Seemingly low data presence does not necessarily signify that 

entire water bodies are missing, but rather that fractional returns from water result in reduced data 

availability for spatial averaging and thus potential for greater error in WSE. To mitigate this 

problem in future AirSWOT campaigns, we agree [Pitcher et al., 2020] that increasing the overlap 

of flight lines would ensure areas experiencing specular scattering have multiple observations, 

more specifically focusing on incidence angles greater than 17°. 

Spatial averaging and various filtering techniques applied AirSWOT WSEs reduce noise 

and constrain random error in the WSE, producing mean error biases ranging from -45 cm to -88 

cm for all observed water bodies. Possible bias sources include residual artifacts in the radar 

processing, signal delay, or solid earth tides. Random WSE errors in the AirSWOT elevation 

product are reduced by applying the recommended filters of incidence angle (5-15 degrees), 

coherence (>0.8), magnitude (>5 dB), and elevation uncertainty (<1 meter) available in the 
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accompanying products. Previous studies used similar filtering techniques, as well as visual 

identification to select and manually remove regions of anomalous elevation values [Altenau et 

al., 2017], while others automatically remove outliers based on an expected elevation range 

[Tuozzolo et al., 2018; Denbina et al., 2019]. 

 

Seasonal water storage change can be assessed by applying the filtering recommendations 

to AirSWOT flight lines and aggregating the AirSWOT-LVIS differences into 29 sub-regions 

across the ABoVE domain. Here, we identify an overall hydrologic drawdown of -17 cm across 

the ABoVE domain between July 8 and August 17, 2017, consistent with a -22 cm drawdown 

recorded with in situ pressure transducers installed in lakes across the ABoVE domain for 

AirSWOT WSE validation [Cooley et al., 2019]. Using aggregated regions enables a seasonal 

water storage assessment, reducing the impacts of noise and errors found at the individual lake 

level. Because of residual errors in the WSE following filtering and spatial averaging, ABoVE 

AirSWOT data users are advised to examine multiple lakes or rivers (n>50) in a given study area 

to identify relative changes in WSE rather than absolute elevations. 

While our results suggest a large spread in mean error values across the ABoVE domain, 

previous studies of AirSWOT WSE focused on particular regions such as the Tanana River [26, 

30], Yukon Flats [Pitcher et al., 2018], Willamette River [Tuozzolo et al., 2019], and the 

Mississippi River Delta [Denbina et al., 2019]. As these examinations included the first AirSWOT 

datasets ever produced, JPL engineers were able to focus on these smaller regions to correct and 

reprocess data as necessary, before the datasets were released to scientists. Unlike earlier studies, 

this study encompasses an immense region, covering 23 degrees of latitude and with 128 flight 

lines covering a 22,775 km2 area. Due to the size of the ABoVE collection, JPL engineers used 
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more automation in preparing the data, significantly limiting manual corrections and multiple re-

processing attempts before releasing the data. Being an experimental instrument, there have been 

multiple modifications and repairs made to the AirSWOT radar since 2014, resulting in slightly 

different product quality between studies and differences in reported error statistics across studies 

are expected. Future research directions for AirSWOT error analysis could include quantifying 

non-instrument sources of error, such as how water movement, wind, rain, and vegetation intrusion 

impact the AirSWOT radar signal, potentially contributing to errors observed across studies 

despite instrument changes. 

Finally, we can answer the questions: How well did the AirSWOT radar map water surface 

elevations across the ABoVE domain?  Can AirSWOT WSEs be used to measure storage change at seasonal 

time scales? We conclude 1) there is a correctable mean bias of -45 cm in the 2017 ABoVE AirSWOT 

collection relative to LVIS WSEs that is identified after filtering the AirSWOT elevation, 2) bias correcting 

the WSE data produces a mean absolute error of 27 cm, similar to the SWOT ‘total height error’ requirement 

of 25 cm for water bodies between (250 m)2 and 1 km2, and 3) AirSWOT can detect decimeter scale water 

level changes over large regions. Through spatial averaging, vigorous filtering and bias correction of 

AirSWOT WSE retrievals, small vertical changes in water surface elevation are detectable at the landscape 

scale, demonstrating the capacity of the AirSWOT data for broad-scale Arctic-Boreal hydrologic mapping 

and SWOT validation purposes.    
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Table 1. A subset of the 63 water surface elevation (WSE) surveys collected from Water Surface Profiler (WaSP) 

floating GPS devices [Pitcher et al., 2020] are used to validate 2017 NASA Arctic Boreal Vulnerability Experiment 

(ABoVE) AirSWOT KaSPAR observed lakes. 

Due to repeat coverage of the same lakes, the AirSWOT observed lake WSE may be compared with the same WaSP 

GPS measurement multiple times. AirSWOT KaSPAR may image the same lake multiple times in the same day, 

producing additional GPS-AirSWOT lake pairs for comparison. 

Lake 

ID 
Longitude Latitude 

GPS 

Date 

AirSWOT 

Date 

Days 

Apart 

GPS WSE 

[m] 

AirSWOT 

WSE [m] 
Diff [m] 

AirSWOT 

Pixels, N 

2 -133.5288 68.7526 198 197 -1 79.6726 79.2422 -0.430382 2331 

4 -148.8473 69.037 204 200 -4 387.2296 386.583 -0.646344 2576 

4 -148.8473 69.037 204 202 -2 387.2296 386.687 -0.542281 263 

5 -148.8585 69.1669 204 200 -4 323.5982 323.346 -0.252361 13 

5 -148.8585 69.1669 204 200 -4 323.5982 323.094 -0.504591 3544 

6 -148.8177 69.0061 204 200 -4 353.9454 353.515 -0.430449 309 

6 -148.8177 69.0061 204 202 -2 353.9454 353.449 -0.495972 1670 

9 -106.1058 52.2066 229 228 -1 527.5217 527.195 -0.326847 1080 

9 -106.1058 52.2066 229 229 0 527.5217 527.024 -0.497583 2885 

11 -107.2051 52.7135 187 189 2 482.9965 482.77 -0.226575 58195 

11 -107.2051 52.7135 187 189 2 482.9965 482.792 -0.204806 8749 

12 -107.2168 52.6684 189 189 0 483.095 482.77 -0.325075 58195 

12 -107.2168 52.6684 189 189 0 483.095 482.792 -0.303306 8749 

13 -106.092 52.2026 229 228 -1 523.7553 523.441 -0.314253 108 

13 -106.092 52.2026 229 229 0 523.7553 523.255 -0.500518 93 

16 -107.2058 52.7135 228 228 0 483.0227 482.417 -0.605587 73382 

16 -107.2058 52.7135 228 228 0 483.0227 482.448 -0.574546 135524 

16 -107.2058 52.7135 228 229 1 483.0227 482.369 -0.653316 157023 

16 -107.2058 52.7135 228 229 1 483.0227 482.314 -0.708316 167697 

18 -107.2117 52.6758 228 228 0 483.0603 482.417 -0.643187 73382 

18 -107.2117 52.6758 228 228 0 483.0603 482.448 -0.612146 135524 

18 -107.2117 52.6758 228 229 1 483.0603 482.369 -0.690916 157023 

18 -107.2117 52.6758 228 229 1 483.0603 482.314 -0.745916 167697 

22 -107.0826 52.6606 185 189 4 498.8452 498.588 -0.257691 111 

26 -107.0572 52.6526 185 189 4 509.0371 508.864 -0.173152 34 

28 -107.0605 52.6528 185 189 4 506.4899 506.3 -0.190385 116 

37 -111.6683 64.8351 190 196 6 391.123 390.608 -0.51539 10866 

41 -113.2135 63.8692 190 196 6 340.4361 340.038 -0.398372 426861 

41 -113.2135 63.8692 190 196 6 340.4361 340.103 -0.333469 735 

45 -114.1571 63.2189 191 196 5 256.5165 255.92 -0.596722 1215 

48 -145.7919 66.7859 196 201 5 133.7659 133.021 -0.744547 64928 

51 -145.5504 66.4561 196 198 2 137.2486 136.626 -0.622159 16825 

51 -145.5504 66.4561 196 198 2 137.2486 136.693 -0.555745 48237 

52 -146.3889 66.2458 196 201 5 127.4344 126.726 -0.708488 23418 

52 -146.3889 66.2458 196 203 7 127.4344 126.734 -0.700041 11791 

54 -146.3533 66.3836 196 201 5 126.8725 126.27 -0.602516 33 

55 -146.4181 66.1739 196 198 2 134.3166 133.496 -0.820913 63302 

55 -146.4181 66.1739 196 201 5 134.3166 133.553 -0.763855 91887 

56 -146.6518 66.1831 197 201 4 126.1839 124.829 -1.35458 1772 

56 -146.6518 66.1831 197 201 4 126.1839 124.869 -1.31492 40936 

57 -145.8415 66.6778 200 201 1 129.4319 128.393 -1.03916 5785 

58 -145.434 66.4324 196 198 2 139.0149 138.304 -0.711206 60837 
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59 -146.1487 66.1762 196 198 2 147.8695 147.147 -0.722204 27314 

60 -146.2748 66.0755 197 198 1 234.5194 233.411 -1.10875 13877 

 

Table 1 
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Chapter 3:  

 

3. AirSWOT Ka-band Land Surface Interactions 

 

Title: Characterizing Near-Nadir Ka-Band SAR Backscatter from Wet Surfaces and Diverse Land 

Covers 

 

3. 1 Introduction 

 

The inundation extent and water surface elevation of inland lakes, rivers, and wetlands are 

critical remote sensing measurements for monitoring the terrestrial hydrological cycle [Smith, 

1997; Alsdorf et al. 2003; 2007; Schumann et al. 2009; Crétaux et al. 2011; Cooley et al. 2019; 

2021; Frasson et al. 2019]. Remote sensing of inundation extent is complicated by riparian 

vegetation along shorelines and aquatic vegetation in shallow or flooded areas, especially with 

optical sensors [Kasischke et al. 1997; Hess et al. 2003; Kyzivat et al. 2019]. Both optical and 

microwave methods underestimate inundation extent where vegetation density outweighs 

observable water fraction, [Hess et al. 1995; Hess et al. 2003], or if conservative classification 

methods prioritize reducing misclassification over total extent [Kyzivat et al. 2019].  

While long-wavelength, high incidence angle radars (especially L band) are traditionally 

favored for hydrological applications due to their superior vegetation penetration and in some 

cases, ground penetration, [Wdowinski et al., 2008; Hong et al., 2010; Kim et al., 2014; Bakian-

Dogaheh et al. 2022], new low incidence angle short-wavelength radar systems can also measure 

water extent and water surface elevation effectively [Fjortoft et al. 2010; Wu 2011].  Because Ka-
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band SAR can be highly sensitive to both liquid surface water (Ka band is additionally sensitive 

to frozen surface water, but these relationships are not discussed in this study) and vegetation, it is 

useful for terrestrial hydrology and ecological studies. Ka-band radars are sensitive to fine-scale 

scattering features (i.e. on the order of their wavelength, ~8 mm) suggesting better capability for 

detecting small standing and capillary waves on open water surfaces, for example, or the presence 

of non-woody emergent and/or floating aquatic plants. The short Ka-band wavelengths, therefore, 

have the potential to reveal different physical properties of wet and/or vegetated surfaces than 

conventional longer-wavelength C-, L-, and P- band radars. Nonetheless, to what extent such 

technologies can discriminate between diverse surface covers and differing moisture contents 

remains poorly understood [Fjortoft et al. 2010; Frappart et al. 2015; Fatras et al. 2016]. 

The forthcoming Surface Water Ocean Topography (SWOT) satellite mission 

(https://swot.jpl.nasa.gov/), developed by NASA and CNES with contributions from CSA and 

UKSA, will be the first Ka-band swath altimeter launched in space [Durand et al. 2010; Peral and 

Esteban-Fernandez 2018]. For land surface hydrology, the goal of the SWOT mission is to enable 

global, sub-monthly mapping of freshwater storage and river discharge for lakes as small as (250 

m)2 and rivers as narrow as 100  m [Durand et al. 2010].  To achieve this, open water surfaces 

must be readily identifiable in SWOT Ka-band imagery. Based on theoretical modeling and 

observations, accurate open water identification is anticipated due to strong backscatter returns 

from open water surfaces at near-nadir incidence angles (0.6-4.1 degrees) [Moller et al., 2010; 

Fjortoft 2010; Wu et al. 2011; Fjortoft 2014; Lobry et al. 2019].  However, preliminary 

observations of near-nadir (0-30°) Ka-band backscatter from AirSWOT, an airborne swath 

altimeter, suggest significant real-world complexity including relatively low backscatter returns 

from portions of some open water surfaces, and higher returns from some classes of land surfaces 
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[Fayne & Smith 2021].  Early AirSWOT assessments also report strong radar returns, similar to 

expected open water returns, from wetland vegetation and moist bare soils [Smith et al. 2014; 

Baney et al., 2014; Fayne & Smith 2021].  Such reports have raised concern within the SWOT 

science community about possible misclassifications of surface water [Smith et al. 2014; Smith et 

al. 2018], and have prompted a desire for improved understanding and modeling of Ka-band 

backscatter returns over inland water bodies and diverse land covers. 

Software for analyzing radar backscatter (e.g. PolSARProSim, SNAP) are often developed 

for longer wavelengths (>5 cm), but to the authors’ knowledge, no publicly available software can 

readily be used to simulate Ka-band scattering for hydrology applications including surface water 

and various land covers. Theoretical frameworks such as the Kirchhoff Approximation (KA), 

including the Geometric Optics (GO) and Physical Optics (PO) models [Hagfors 1966; Barrick 

1968; Longhurst et al. 1973; Hajnsek & Papathanassiou 2005] are rigorous but computationally 

intensive for complex terrain. This is especially true when the terrain has diverse surface cover 

including bare soil, vegetation, and water, with a wide range of incidence angles. Using a small 

number of soil-only observations, one study simulated Ka-band backscatter from soils using a GO 

model for small incidence angles <7° [Fatras et al. 2016]. Empirical and semi-empirical models 

often require dual- or quad-polarized observations (HH, VV, VH, and HV) and assume that surface 

roughness variations are small relative to the wavelength [Oh et al., 1992, DuBois et al. 1995]. 

Because of the computational cost of the KA models, and the geometric restrictions of the 

empirical models (i.e. AirSWOT only uses VV, and the wavelength is much smaller than ground 

roughness features such as vegetation and water-wave-height variability), these modeling 

frameworks are not used in this study. Instead, we develop a simple empirical scattering model 

based on the statistical relationships between remotely sensed datasets. We assume that a simple 
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model should include surface dielectric properties, which we capture using moisture and 

temperature, and surface geometry, which we capture using surface roughness and structural 

complexity. For this analysis, roughness refers to intermediate-scale textural-geometric facets, 

which are larger than the wavelength, such as leaves and branches, in comparison with the 8 mm 

wavelength examined here. We do not apply any model to physically convert moisture and 

temperature to dielectric values, nor do we calculate a physical model of roughness. The dielectric 

component of radar backscatter modeling often focuses on moisture and ignores temperature (with 

some exceptions related to snow, ice, or permafrost [Ulaby & Stiles, 1981; Zhang et al. 2003; 

Mironov & Lukin 2009, Baghdadi et al. 2018]) because scattering is assumed to be much more 

sensitive to moisture than temperature [Jackson 1987]. For surface hydrology applications, other 

authors have not yet assessed the sensitivity of Ka-band scattering to surface temperature.  

Traditional SAR and InSAR systems for land surface observations 

are typically C, L, or P-band (0.05 - 1 meter wavelengths), which are 

less sensitive to fine-scale surface features such as tree leaves and 

short, non-woody plants. Because the primary objective of these 

systems is to investigate land properties [Short et al. 2014; 

Mohammadimanesh et al. 2018; Brisco et al. 2019; Liao et al., 2020], they 

typically use larger incidence angles, averaging around 30° (±5°) and 

up to 50° [Kim and Liao 2021], that exhibit higher backscatter over land 

than over open water surfaces. In contrast, AirSWOT and SWOT use 

smaller incidence angles, producing higher backscatter returns over 

water than the surrounding land [Fjortoft et al. 2010; Wu et al. 2011; 
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Fayne et al. 2020; Desrochers et al., 2021].  AirSWOT acquires data in 

two swaths: an inner swath having an incidence angle range similar to 

SWOT (0.6-4.1°), and an outer swath which covers part of the inner range 

and extends to higher incidence angles ( 3≲ -27°) [Moller et al. 2010; Wu 

et al. 2011]. Both swaths use vertical polarization for transmit and 

receive. The data in this study and those reported in previous studies 

[Altenau et al. 2017; Pitcher et al. 2019, Altenau et al. 2019; Tuozzolo et 

al. 2019; Denbina et al. 2019] are from the outer swath, and thus the 

range of incidence angles is large enough that the water 

backscattering varies significantly from one edge of the swath to the 

other, within the observed range of incidence angles. In this paper, 

“near-nadir” refers to the fairly broad incidence angle range 0-30° 

unless otherwise specified. For brevity, the phrase “near-nadir Ka-

band backscatter” is shortened to simply ‘backscatter’ throughout the 

paper; and the term “Ka-band” is used to refer to the 35.75 GHz 

frequency (8 mm wavelength) of AirSWOT and SWOT. For detailed 

specifications of the AirSWOT and SWOT instruments see [Fjortoft et 

al. 2010; Moller et al. 2010; Wu et al. 2011; Fjortoft et al., 2014; Altenau 

et al. 2017; Pitcher et al. 2019, Altenau et al. 2019; Tuozzolo et al. 2019; 

Denbina et al. 2019]. 
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Additionally, it is critical to identify regions with mixed pixels containing backscatter 

contributions from both land and water, as these may lead to classification errors and phase shifts 

resulting in elevation retrieval errors [Denbina et al. 2019; Fayne et al. 2020].  Surface water extent 

and resultant phase errors have implications for developing and validating future Ka-band 

instruments and future applications and validation of AirSWOT and SWOT. To assess these 

phenomenological sources of error, we must identify backscatter sensitivities to varying surface 

types and evaluate under what conditions water surfaces may be confused with other land types, 

which additionally has implications for mixed pixels at more coarse spatial scales than observed 

with AirSWOT.  

This study advances physical understanding and modeling of Ka-band backscattering 

response across a diverse range of surface moisture conditions and land cover types by analyzing 

an extensive archive of AirSWOT Ka-band SAR data acquired across Alaska and western Canada 

for the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) [Fayne et al. 2019].  First, we 

determine the separability of near-nadir Ka-band SAR backscatter for wet surfaces and diverse 

land covers to assess retrievals of water surface area. Next, we conduct an empirical investigation 

of the influence of surface moisture, temperature, and roughness on Ka-band surface scattering. 

These relationships are then used to develop a model to simulate near-nadir Ka-band surface 

scattering, called Ka-band Phenomenology Scattering (KaPS) model. For incidence angles 4-6°, 

we determine 1) open and vegetated water are clearly and robustly separable from surrounding dry 

land; 2) soil moisture variations are positively and strongly correlated with backscatter, while 

temperature variations have a minor influence on backscatter; and 3) surface geometry, as 

characterized with LVIS LiDAR complexity, is negatively correlated with backscatter as 

backscatter decreases with increasing vegetation density. KaPS can also simulate spatial and 
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temporal variations in Ka-band backscatter caused by changing surface moisture and roughness 

for broader incidence angles (1-27°). We conclude with a broader discussion of the study’s 

implications for hydrological Ka-band remote sensing and backscatter modeling.  

3.2 Data 

3.2.1 The 2017 ABoVE AirSWOT Radar Data Collection 

The AirSWOT Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) is a multi-

antenna, Ka-band wide-swath altimeter that uses InSAR processing to produce high-resolution 

maps of water and land surface elevations. AirSWOT was developed as an airborne complement 

to SWOT to test and design radar and InSAR algorithms and to understand surface 

phenomenological interactions at Ka band [Moller et al. 2010; Wu et al. 2011].  This study uses 

AirSWOT’s outer swath data products, spanning near-nadir incidence angles (~3-27°).  The radar 

data products used in the analysis are incidence angle, noise subtracted and calibrated backscatter, 

signal-to-noise ratio (SNR), and ungridded geolocation (LLHE) processed at the NASA Jet 

Propulsion Laboratory (JPL) [Fayne et al. 2019].  The published data are multi-looked and 

geocoded to produce final map products having a nominal pixel spacing of 3.6 meters, with various 

flight acquisition dates between July 8 and August 17, 2017. For technical descriptions of these 

data products and the AirSWOT instrument configuration see [Moller et al. 2010; Fayne et al. 

2019]. The collection spans a large latitude gradient and captures a seasonal hydrologic drawdown 

[Fayne et al. 2020], enabling study of temporal changes in Ka-band backscatter due to surface 

moisture variability. Except for the SNR and LLHE radar products, these products are freely 

available for download [https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1646 Fayne et al. 2019; 

2020].    
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3.2.2 The 2014 ABoVE Landsat Land Cover Reference 

The 2014 Arctic Boreal Vulnerability Experiment ABoVE Landsat Land Cover (LSLC) 

[Wang et al. 2019] product is used as a land cover reference. The 30 m LSLC is derived from 

Landsat-7 Thematic Mapper imagery and contains the annual dominant plant functional type 

represented as fifteen land cover classes (evergreen forest, deciduous forest, mixed forest, 

woodland, low shrub, tall shrub, open shrub, herbaceous, tussock tundra, sparsely vegetated, fen, 

bog, shallows/littoral, barren and water). Using a reference land cover dataset such as the LSLC is 

beneficial because it is well-documented that surface variations and land cover variability 

influence Ka-band backscatter, although previous analyses have been limited to water surfaces and 

broad forest types [Grant & Yaplee 1957; Waite & MacDonald 1971; Rodriguez et al. 2017; 

Desrochers 2021]. The extensive coverage area and moderate resolution afforded by the Landsat-

based classification make it a very useful reference dataset to analyze Ka-band scattering 

coefficients for a more diverse range of land cover types than has been previously published. 

3.2.3 NOAA Soil Moisture Reference 

The NOAA Soil Moisture Products System (SMOPS) blended radiometer products 

[NOAA STAR, 2019] are used to assess broad-scale variations in surface moisture with 25 km 

spatial resolution and a daily temporal resolution. Additionally, the MODIS Land Surface 

Temperature (LST) products from the Aqua and Terra platforms [Zhengming et al. 2015] are used 

to assess variations in surface temperature at 1 km spatial resolution. Including data from both 

satellite platforms, the LST data has four daily observations, two in the morning and two in the 

evening, enabling a closer surface temperature estimate to the time of the AirSWOT overflights 

than daily observation data.  
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3.2.4 LVIS LiDAR Vegetation Complexity Reference 

Airborne LiDAR data collected from the Land Vegetation and Ice Sensor (LVIS) [Blair et 

al. 1999] are used to assess the influence of facet-scale features on Ka-band scattering. The LiDAR 

data are collected within days of the AirSWOT flights and provide full-waveform analysis of 

surface characteristics. These full-waveform pulses are capable of penetrating canopies, providing 

detailed information on canopy and forest structure in diverse environments with reflected power 

at continuous elevation points along the height of the feature [Hyde et al., 2005]. LiDAR 

complexity is the specific LVIS product used for this analysis, which is included in the LVIS L2 

Geolocated Surface Elevation Product dataset (Blair, J. B. and M. Hofton. 2018 

https://nsidc.org/data/ABLVIS2). Complexity is also known as foliage height diversity and is also 

related to the leaf area index (LAI), which provides a measure of vertical heterogeneity and density 

[Tang and Armston 2019]. Low complexity values usually indicate flat ground or water surfaces, 

while high complexity values usually indicate dense canopies. The nominal pulse footprint spacing 

is 10 m, but the data has been resampled to 20 m to provide smoother coverage and transitions 

over the irregularly missing data. 

 

3.3 Methods 

 

3.3.1  Separability of near-nadir Ka-band SAR backscatter for wet surfaces and diverse land 

covers  

 

To calculate the extent to which open water, emergent aquatic vegetation, wet soils, and 

land vegetation are separable (i.e. distinguishable) in Ka-band backscatter imagery, we compare 
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the LSLC reference land cover dataset with AirSWOT images as follows. First, we reproject the 

AirSWOT images to the same coordinate reference system as the LSLC, and convert the AirSWOT 

pixels to vector points to extract the land cover directly corresponding to each radar pixel using a 

nearest neighbor extraction.  Next, the separability metric [Cumming and Van Zyl 1989; Baghdadi 

et al. 2001], defined as the difference between the linear backscatter means (µ) and standard 

deviations (σ) for each pair of land cover classes (class i and class j), is used to calculate 

separability of land cover classes from each other in the AirSWOT data. Land cover class pairs 

with separability values greater than 2 are considered separable, or unlikely to be confused when 

classified.  For each pair of land cover classes i and j and each 3° incidence angle bin k the 

separability metric S is calculated as: 

 

 

Eq. 1 

 

Because this study is interested in identifying the occurrence of non-water observations 

being misclassified as water, the separability metric can be modified to refer to individual 

observations within the class. Here, we compare the group of observations from one class (j), with 

the means and standard deviations from the reference class (i) (excluding the standard deviation 

from class j, converted to 0 in the second equation).  

 

 

Eq. 2 
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As a result of this calculation, Si,j,k will have the same number of values as the input observations 

from the class (j), giving each observation its own separability value. For each class (j) the fraction 

of the separability values greater than the reference separability threshold, 2, out of the total 

number of observations is assessed as the separability ratio. 

 

 

3.3.2 Influence of surface moisture and temperature on Ka-band surface scattering  

 

To assess the influences of moisture and temperature on Ka-band backscatter, the NOAA 

SMOPS soil moisture and MODIS surface temperature data are spatially and temporally 

downscaled to 1 km posting (moisture) and an hourly time step (temperature), to more closely 

approximate the spatial and temporal extent of AirSWOT acquisitions. The downscaling methods 

are summarized here and are explained in more detail in the supplement.   

Prior to downscaling, each pixel of the 25 km soil moisture data is five times the swath 

width of the AirSWOT flight lines, allowing only broad-scale comparisons of regional moisture 

variations. Over the vast AirSWOT study domain during a time of seasonal hydrologic change in 

the region [Fayne et al., 2020], substantial changes in soil moisture are observed even in coarse 

resolution SMOPS data. The surface moisture data have a daily temporal resolution, sufficient for 

monitoring changing surface moisture for this purpose. However, SMOPS omits inland water 

bodies, complicating our assessment of AirSWOT radar backscatter over open water.   To mitigate 

this, water bodies from the 30 m LSLC dataset are merged with the 25 km SMOPS dataset to 

produce a 1 km, higher resolution product. The soil moisture downscaling produces products that 

visually show both the original 25 km large pixel shapes and LSLC water bodies. We term this 



44 

 

final 1 km daily resolution downscaled product ‘surface moisture’ rather than ‘soil moisture’ 

because open water bodies are included. The spatial downscaling methodology is explained in 

more detail in the supplement (Figure S1). 

 

The land surface temperature data has opposite scaling requirements compared with the 

surface moisture data; since temperature has diurnal variability, it is more important to have high 

temporal resolution temperature data at the MODIS 1 km spatial resolution. The MODIS 

observations occur in the morning and evening, with slightly shifting observation times around 

their nominal equatorial crossing times. Observations at the pixel scale occur zero to four times 

per day depending on cloud cover. Several days may pass without a temperature observation. 

Therefore, to estimate land surface temperatures over the AirSWOT study domain, we temporally 

downscale the 1 km MODIS Land Surface Temperature Product. A high temporal resolution 

temperature product is created by analyzing the temporal variability of the temperature 

observations at the pixel level and estimating temperature based on an expected diurnal pattern, 

providing a set of 1 km temperature maps at 1-hour intervals. For more information on the temporal 

downscaling along with an example time series for a single pixel, see the supplement (Figure S2).  

Having increased the spatial and temporal resolution of the moisture and temperature data 

for comparison with AirSWOT radar backscatter data, we examine sets of surface moisture, 

temperature, and Ka-band backscatter values at the pixel level. Irrespective of land cover or 

roughness-driven variations, the purpose of this examination is to identify backscatter sensitivity 

to moisture and temperature. A representative surface describing how near-nadir backscatter varies 

with moisture and temperature is estimated by subsetting the pixel-level data to less than 6° 

incidence. This yields a single, ensemble average surface representing different possible 
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combinations of available moisture, temperature, and backscatter data, containing 1,000 different 

surfaces generated by randomly sampling 25% of the data, with replacement, creating an 

interpolated surface on each iteration.  

 

3.3.3 Influence of surface structural complexity on Ka-band surface scattering  

 

Radar backscatter varies with surface dielectric constant (assessed here in the form of 

moisture and temperature) and geometry-roughness [Hallikainen et al. 1985; Hoen and Zebker 

2000].  Because the incidence angles assessed in this study are less than 30°, scattering is 

dominated by reflections from appropriately oriented facets on the surface [Elachi and Van Zyl 

2006]. In this case, leaves provide diverse orientations and the structure of the vegetated canopy 

provides a mixture of facets and gaps. Because LVIS LiDAR is full-waveform, it is able to capture 

signal returns of different strata within the vegetative canopy, providing information on vegetation 

density diversity and therefore canopy structure. The LVIS LiDAR complexity metric measures 

the vertical heterogeneity of surface features and is related to the leaf area index [Tang and 

Armston 2019]. These metrics are related to two-way transmissivity, as less LVIS LiDAR energy 

is returned from dense, highly complex canopies than from sparse canopies and bare ground with 

low complexity. While the complexity metric does not directly provide any information regarding 

the orientation of the surface facets, leaves with horizontal rather than vertical orientations are 

more exposed to LiDAR pulses, which may have greater contributions to the assessment of counts 

per elevation bin. Thus, the relationship between LiDAR complexity and Ka-band scattering is 

hypothesized to be indicative of the two-way transmissivity of Ka-band, assuming a uniform 

distribution of leaf and branch orientations.   
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3.3.4 Ka-band Phenomenology Scattering (KaPS) Model: A simple empirical statistical model to 

simulate near-nadir Ka-band surface scattering  

 

To simulate how Ka-band scattering may vary over space and time, we develop a simple 

statistical scattering model based on near-nadir surface moisture, temperature, and LiDAR 

complexity to estimate backscatter (Figure 10). To develop the model, the relationships between 

scattering (y) and each of these three parameters (xi = moisture, temperature, or complexity) are 

investigated independently for binned backscatter values. It is important to note that the incidence 

angle range for this examination is limited to 4-6°.  This investigation is conducted by subsetting 

the data into the 15 land cover types (LC) and correlating each of the three parameters with 

backscatter. The three parameters are examined separately to identify the strength of the 

relationship for each parameter alone; land covers are examined separately because various land 

covers are expected to have different scattering mechanisms due to differences explained by the 

three parameters. While there is a close relationship between moisture and temperature variations 

over land—particularly at high temperatures with enough energy to support rapid evaporation or 

in hot and dry climates with low antecedent moisture—this work seeks to identify individual 

contributions to backscatter at diurnal temporal scales over a temperate summer (averaging 10° 

C). Following investigation of the three scattering parameters, non-linear equations describing 

these relationships are used as the framework for the model. Three formulas (for each xi = 

moisture, temperature, or roughness) are generated for each land cover type, estimated first using 

a loess local regression to reduce the influence of outliers prior to estimating the non-linear 

relationships. 
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For each land cover, observed backscatter values from pixels with incidence angle between 

4 and 6° are binned into ~0.5 dB groups to extract the mean and standard deviation for each 

parameter, creating a look-up table of expected values for each backscatter bin. Next, scatterplots 

of these expected values are produced for each parameter, yielding non-linear regression equations 

for each land cover. While backscatter may be estimated using each of the equations separately, it 

is expected that the variable importance of each parameter will not be the same for each land cover 

type and therefore none of the three parameters should be used alone to estimate backscatter. A 

single equation for each land cover is produced with weighted contributions from each class. 

Weights are assessed to maximize the coefficient of determination (R2) when the weighted 

averaged estimates are compared with the binned observations.  The direct output of the combined 

regression formulas is applicable to the reference incidence angle range 4-6°, but estimates of 

higher incidence backscattering can be produced by using the 4-6° reference value (as if the pixel 

were identified within the reference incidence range, even if that is not the case). The quantile 

scattering curves are used to estimate scattering at higher incidence angles. The starting reference 

backscatter value, identified by the regression formula, is used to select which of the quantile 

categorized scattering curves would best depict the higher incidence scattering. Finally, 2D density 

plots (backscatter vs. parameter, unbinned) are used to estimate the probability that the estimated 

value will occur. A secondary map depicting backscatter confidence may be produced alongside 

the backscatter map. Together, the pair comprise the Ka-band Phenomenology Scattering (KaPS) 

model. 
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Figure 10. Schematic diagram showing the stages of designing the Ka-band Phenomenology 

Scattering (KaPS) model (first four columns) and producing a simulation. Reference land cover 

(green), moisture (blue), temperature (red), and complexity (brown) data are preprocessed and 

compared with Ka-band radar backscatter to produce empirical scattering curves and look-up 

tables of parameter-backscatter relationships and expected values. The derived empirical 

scattering curves and look-up tables form the foundation of the KaPS Ka-band backscatter 

simulator.  

 

3.4 Results 

 

3.4.1 Separability of near-nadir Ka-band SAR backscatter for wet surfaces and diverse land covers  

 

Typically, open water and dry vegetation are easily and frequently distinguishable. 

Backscatter values extracted from the LSLC demonstrate the variation in scattering for different 

land cover types for incidence angles 2° to 27° (Figure 11). For dry land classes, average 

backscatter for incidence angles less than 5° is often very low (~0 dB), with a small standard 
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deviation across the 2° to 27° incidence range, compared to wetter surfaces. The open water class 

shows consistently high scattering at small incidence angles (~15 dB at 3°), and sharply decreasing 

backscatter with increasing incidence angles, as expected from the relatively specular scattering. 

The shallow-littoral zone of water bodies contains both water and emergent or floating vegetation, 

producing bright scattering as indicative of the smooth scattering source of the underlying water 

surface and perhaps some double-bounce scattering—observed as bright rings around some small 

lakes with reedy vegetation—between the vegetation and the water surface [van Zyl, 1989], with 

an average of about 7 dB at 3°. The barren land cover shows a brighter backscatter than vegetated 

dry land, averaging ~3 dB at 3°. Bright scattering from barren land surfaces is indicative of the 

variability in the land cover itself. While barren surfaces are not generally considered to be 

specular, they may be very flat, smooth, and angular, producing a near-specular scattering source, 

and they may also be wet, having similar scattering as the littoral zone vegetation or the open water 

in some cases.  

For all observed dry-land cover classes, there are few bright pixels at small incidence 

angles (<5°). The low occurrence of bright scatterers for vegetated land cover classes demonstrates 

that it is uncommon for these classes to be very bright in these Ka-band near-nadir observations, 

limiting their impact. Additionally, anomalously high backscatter returns from the vegetated 

classes are likely to be caused by differences in resolution and misclassification, as a few bright 

scatterers classified as vegetation in the LSLC were observed to be small water bodies in the 

AirSWOT camera data. Additionally, pixels from other surface classes such as water or littoral 

zones may be included in the extraction of a different land cover class such as low shrub due to 

uncertainties in the land cover classification.  
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Figure 11. Extracted Ka-band backscatter from 2017 AirSWOT 2017 flights acquired over the 

ABoVE domain. The red line shows average backscatter, while the black dotted lines present the 

32nd and 68th percentiles around the average. The blue shading shows the 2D density of the 

observations, excluding outliers. The majority of land covers have low backscatter across all 

incidence angles, while wetter surfaces such as water and littoral zones have higher backscatter 

at lower incidence angles. The barren class shows a higher standard deviation, particularly at the 

near range, demonstrating more variability. 
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We can visually observe that, especially at incidence angles around 5°, water differs from 

all of the vegetated land covers (Figure 11). However, the differences between water, littoral zone, 

and barren soils are smaller, though they are still distinguishable. By applying the separability 

metric [Cumming and Van Zyl 1989], we quantify to what extent the scattering is similar or 

separable for each land cover class and incidence angle (Figure 12).  

 

Figure 12 Left. The separability metric (Eq. 1) is calculated for each land cover class combination 

for the 0-3 degrees of incidence bin to determine the separability between each pair of land cover 

classes. Pairs of classes with values greater than 2 are considered separable. Figure 12 Right. 

The modified separability metric (Eq. 2) is applied to each land cover class in contrast to the open 

water class, along all incidence angles, to identify how separability changes as a function of 

incidence angle. Open water is shown to not be separable from itself as expected, and many land 

cover classes are shown to be consistently separable from water. For near-nadir SWOT-like 

incidence angles, and angles up to 15°, open water is considered to be highly separable and 

distinct from other classes. 

 

The separability matrices shown in Figure 12 demonstrate that 

open water is highly separable from most land cover classes from low 

SWOT-like incidence angles up to mid-range AirSWOT incidence angles 
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(~3 12°). As separability values greater than 2 are considered highly ≲

separable or distinct classes [Baghdadi et al. 2001], the open water 

separability values of 5-15 compared with all other classes 

demonstrate that water is distinct. Excluding the littoral zone and 

barren classes, the separability of other land classes is even higher 

(8-15), demonstrating that open water has up to five times greater 

separability compared with vegetated land cover classes and is twice 

as separable as littoral and barren classes. Since the separability 

metric measures the distances between classes through the mean and 

standard deviation values, it is important to note that separability 

refers to only one standard deviation of observations and therefore 

represents the majority of cases but not all cases.  

The majority of the time, open water, littoral zone, and barren surface classes are separable 

from each other, which is the ideal scenario for SWOT and for future applications of Ka-band data. 

However, under certain conditions, the differences between these three classes narrow, particularly 

when non-water classes exhibit higher than expected backscatter. These results are corroborated 

by similar studies looking at more coarse-resolution GPM data [Rodriguez et al. 2017; Lobry et 

al. 2019]. These findings suggest that it is additionally important to assess the influence of 

changing surface conditions, which may cause changes in backscatter.  

 

3.4.2 Influence of surface moisture and temperature on Ka-band surface scattering  

 



53 

 

To assess the relationship between backscatter, surface temperature, and moisture, the 

surface temperature and moisture products were temporally and spatially downscaled to 

resolutions comparable with AirSWOT observations. The results of the downscaling for the 

temperature (as a time series), and moisture (as a map), are shown in Figure S1 and Figure S2, 

respectively, in the supplement.  

To investigate how surface moisture and temperature contribute to changing near-nadir 

backscatter, these variables are plotted in 3-D space, irrespective of land cover type and limited to 

0-6° incidence angles (Figure S3, see also Fayne and Smith, 2021). The resulting best-fit 3-D 

surface represents an ensemble average of all of the possible combinations of backscatter, 

moisture, and temperature and reduces the uncertainty provided by limited observations or 

anomalous data values. Surface moisture has a steep positive trend with backscatter, with end 

segments having shallower trend slopes at 0-20% and 50-100% moisture. As anticipated, 

temperature has a small, imprecise, and highly variable contribution to near-nadir Ka-band 

backscatter compared with surface moisture. Because of the weaker relationship between 

backscatter and temperature (Figure S3), temperature is not analyzed further; however, the 

stronger relationship between surface moisture and backscatter is examined in more detail. 

The strong correlation between surface moisture and backscatter is shown in Figure 4. 

Using 0.5 dB backscatter bins, the mean and standard deviation moisture values are assessed for 

each bin and for each land cover. Bins are limited to incidence angles 4-6° to limit the incidence 

angle-related change in backscatter. Most land cover values have low moisture, as expected, with 

the exception of the three classes of interest: littoral zone, barren soils, and water. A polynomial 

regression curve (red curve) is drawn through the mean values for each of the land cover classes, 

producing backscatter-moisture relationships that are unique to each land cover. 
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Figure 13. Mean (black dots) and half-standard-deviation (horizontal lines) surface moisture 

values assessed for each 0.5 dB bin for each specific land cover, limited to 4-6° of incidence. 

Littoral zone, barren soils, and water have the highest surface moisture of the 15 classes. For each 

land class, a best-fit regression (red curve) yields an empirical backscatter-moisture relationship 

unique to each land cover.   
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The variation between the moisture values of the land cover classes presented in Figure 13 

can be explained as follows. The shallow water-littoral zone contains a mixture of vegetation and 

water; however, the surface moisture data is limited by the spatial resolution of the data and the 

artificial addition of moisture for wet areas such as open water bodies, which was not possible with 

the littoral zone. Thus, the mixture of water and vegetation would provide an expected observed 

surface moisture value ranging between 30-50%. The barren surface classification sometimes 

consists of exposed soils of rivers and lake beds on the edge of water bodies. Across the ABoVE 

domain, where the land cover data was produced, there is also an abundance of exposed rock and 

bedrock, particularly closer to the Canadian Shield in the east. However, the areas that we 

examined rarely include these rocky surfaces, and therefore dry, barren surfaces are less frequent 

in this analysis compared to near-water soils or exposed lakebeds, leading to a wetter moisture 

range of 40-65%. Finally, open water has a range of 80-100% moisture, explainable by the 

differences in spatial resolutions between the LSLC, surface moisture, and radar data products. 

The large standard deviations of moisture within each bin and high slopes of the fit lines suggest 

that the accuracy of the estimate from moisture alone is limited. 

While the regression curves are designed to show the expected backscatter value given a 

specific surface moisture value based on the trend, any specific combination of moisture and 

backscatter may or may not be statistically likely to occur. For example, we previously noted that 

some mixed water pixels would have a lower moisture value and less backscatter. It is additionally 

good to know what the expected backscatter would be when pixels are mixed, however, across the 

observations, mixed water pixels are not particularly likely. Figure 14 shows the un-binned 

observations as a 2-D density plot highlighting the backscatter-moisture pairs that are particularly 

likely.  
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Figure 14. A scatterplot of the backscatter- moisture observations are shown for each land cover 

type, different from the binned plots above, for incidence angles 4-6°. Blue contours show dense 

clusters of points, supported by probability density lines on the x and y axes, revealing probable 

scattering values. These figures demonstrate the likelihood that a given backscatter value or 

moisture value would be observed, given the seasonal observation range of July-August 2017. 
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As previously mentioned, the open water class may become mixed water along edges of 

channels and lakes, lowering the scattering value, although this is not particularly likely for areas 

that are classified as open water. However, the littoral zone, which is a transition between open 

lake water and land, represents a very large range of expected moisture values, which also explains 

why the alignment of the mean values from this class represented in Figure 13 is vertical. The 

littoral zone cover class shows that backscatter can be high even when the ground is not particularly 

wet, supporting the idea of mixed pixels and an imprecise moisture reference, and additionally 

raises the idea of backscatter variability based on surface texture and geometry at different vertical 

scales. Unlike dense forest types, the littoral zone contains thin, non-woody vegetation that would 

allow Ka-band penetration or transmission, producing backscatter from different heights, varying 

vertically up to three meters. Moisture variability cannot fully describe the variability of the Ka-

band backscatter, possibly due to the surface complexities over varying vegetation types. To begin 

to answer these questions, we next look at surface structural complexity through the lens of 

coincident LiDAR measurements.  

 

3.4.3 Influence of surface structural complexity on Ka-band surface scattering  

 

Full-waveform LiDAR data from the Land Vegetation and Ice Sensor (LVIS) provide 

information on surface and vegetation structure. Low complexity values (close to 0) are usually 

flat ground or water surfaces, while higher complexity values (close to 1) are usually dense 

canopies. In practice, for this region, complexity values rarely exceed 0.6, with the exception of 

infrequent measurement errors, easily recognizable as a stripe through the center of the flight 
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segment. These errors appear to be more apparent over water bodies, and so for the purposes of 

this analysis, all complexity values greater than 0.6 are omitted.  

Using the same method of comparison as with the moisture data, backscatter values are 

binned into 0.5 dB groups (y axis) and the average and half-standard deviation of the LVIS 

complexity values are plotted on the x axis. All land cover classes have at least some observations 

of low complexity, due to land cover variability, misclassification, and diverse densities of land 

covers. Only forest and shrub vegetation types have higher complexity values. Forest and shrub 

vegetation classes show higher backscatter in low complexity areas and relatively lower 

backscatter when complexity increases. Because complexity is a measure of vertical structure and 

density, the decreased backscatter signal is indicative of the decreasing radar and LiDAR 

transmittance through thicker canopies, producing “L” and “C” –shaped backscatter-complexity 

relationships. However, it is important to note that the shapes are not uniform across the different 

land cover types. This is important because it indicates that the Ka-band backscatter is sensitive 

not just to surface complexities, but also to foliage type, as the Evergreen Forest and Deciduous 

Forest classes have very different scattering curves, as an example.  
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Figure 15. Mean (dots) and half-standard-deviation (horizontal lines) LVIS LiDAR complexity 

values assessed for each 0.5 dB bin for each specific land cover, limited to 4-6° of incidence. 

Colored dots represent moisture where blue dots are very wet and red dots are very dry. Forest 

and shrub vegetation classes show a decreasing trend of backscatter with increasing complexity, 

whereas other land cover classes, such as water are limited in their complexity variability. For 

each land class, a best-fit regression (black curve) yields an empirical backscatter-complexity 

relationship for that class.   
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Though the data in Figure 15 represents the scattering relationship between LiDAR 

complexity and Ka-band backscatter using backscatter bins, very low backscatter values in the 

case of water, and very high backscatter values in the case of dry land, are not particularly common. 

The purpose of Figure 15 (and Figure 13) is to demonstrate the contributions of backscatter 

variability if a given backscatter value is observed. Figure 16 demonstrates the probability that a 

land cover type will have a high or low complexity value.  

 

Figure 16. A scatterplot of the backscatter- LVIS LiDAR complexity observations are shown for 

each land cover type, different from the binned plots above, for incidence angles 4-6°. Blue 

contours show dense clusters of points, supported by probability density lines on the x and y axes, 
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revealing probable scattering values. These figures demonstrate the likelihood that a given 

backscatter value or complexity value would be observed, given the observations from July 2017. 

 

Using the frequency distributions and backscatter-complexity relationships (Figures 15 and 16), 

we estimate likely backscatter values over dry land. When we combine our complexity-based 

estimates with our moisture-based estimates, we can start to account for dominant factors in 

scattering variability across the landscape.  By building a simple model, we can produce 

simulations of backscatter that are sensitive to changes in moisture and surface complexities, as 

described next. 

 

3.4.4. Ka-band Phenomenology Scattering (KaPS) model: A simple empirical statistical model to 

simulate near-nadir Ka-band surface scattering   

 

We introduce a simple empirical statistical model for near-nadir Ka-band surface 

scattering, called Ka-band Phenomenology Scattering (KaPS), to demonstrate likely variations in 

surface scattering due to diverse and changing moisture conditions and land covers. The KaPS 

model combines the two output backscatter estimates from the complexity-backscatter and 

moisture-backscatter equations. When both data sources—moisture and complexity—are 

available, the data can be input directly into the model. When data is unavailable, a look-up table, 

supported by frequency distributions (Figures 14 and 16) can be used to estimate likely values 

based on land cover type. KaPS initially produces a backscatter estimate for a given pixel based 

on the moisture and complexity values. The backscatter values from each equation are combined 

using an iterative weighting technique to maximize the R2 when compared against the true, binned 

AirSWOT data. These values are only applicable for the reference incidence range (4-6 degrees); 
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these values are acceptable for that specific range, and can be used as a reference for higher 

incidence angle pixels. Using quantile curves extracted from the backscatter incidence angle 

relationships, we can estimate for each land cover which of the quantile curves (4-6 degree portion) 

best fits the reference backscatter value identified by the two equations, producing a map of 

backscatter values extending to 27°. For the 4-6 degree incidence angle range, Figure 17 

demonstrates the relationship between the estimated backscatter values produced from KaPS, and 

the original binned backscatter values from AirSWOT. The mean and median R2 from the KaPS 

and AirSWOT comparison ‘best case’ across the 15 surfaces are 0.75 and 0.76, respectively, 

demonstrating that the majority of the backscatter variability is captured by moisture and LiDAR 

complexity, while the remainder of the variability is likely due to finer, wavelength-scale (~1 mm, 

a fraction of the 8mm wavelength) roughness features, which are not examined in this study. 

 

Three look-up tables are used to simulate backscatter:   

 

1) Formulas with weights for the LiDAR complexity and moisture components and the resultant 

‘best case’ R2 value (see Table S2), and  

2) Expected values and probabilities for moisture, LiDAR complexity, and backscatter as seen in 

Figures 13-16 (see Table S3).  

3) Incidence Angle -- Backscatter Quantile Curves (Figure 11; see also Table S1).  

 

To simulate the backscatter from a given surface, either surface complexity, surface 

moisture, or both are required as inputs alongside a map of incidence angles for the coverage area. 

Given input reference data and an incidence angle map (as in the example shown in Figure 9), the 
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workflow is as follows. If both complexity and moisture datasets are available, the near range (4-

6°) reference backscatter values may be computed directly. If one or the other dataset is 

unavailable, the available data value for each pixel can be used as a starting point in the Expected 

Values lookup table (S3), pointing to the likely value for the other dataset. Given the observed 

value from one dataset, and an estimated value selected from the lookup table, the values can be 

input directly into their corresponding equations. Finally, if neither value is known, KaPS can be 

used to test the mapped backscatter response to changes in surface complexity and moisture.  

  

 

Figure 17. Binned backscatter observations from AirSWOT versus simulated or ‘expected’ values 

from KaPS. Backscatter values are simulated for each land cover independently based on 

AirSWOT-derived empirical relationships between moisture, surface complexity, and backscatter. 

These estimated values represent a ‘best case scenario’ for how closely the data can be estimated. 
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Figure 18. Reference data and KaPS model simulation output for a transect through the Peace 

Athabasca Delta (PAD) region, located in Canada (approximately 58.369N, 111.347W) with (A) 

Landsat-derived land cover (Wang et al., 2019), (B) NOAA SMOPS surface moisture, modified for 

this study, (C) NASA LVIS LiDAR Complexity, (D) False Color Infrared Image, collected 

simultaneously from the same aircraft as the AirSWOT Radar observations,(E) AirSWOT Ka-band 

backscatter, and (F) KaPS model simulation developed in this study. Note that the simulated 

backscatter (F) shows a diagonal line of brighter scattering in the center of the flight line as a 

result of increased moisture; the near-saturated moisture for that area is shown as a large green 

tile in the reference NOAA SMOPS data. As the KaPS model relies on the input data extents, the 

output KaPS simulation takes on the same irregular zig-zag shape of the LVIS LiDAR complexity 

image and does not cover the full AirSWOT swath. If KaPS is applied to an area with a wider 

LiDAR extent (matching AirSWOT), the output would have more similar coverage to the original 

AirSWOT data. 
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KaPS demonstrates possible radar backscattering values for wet and dry earth surfaces. 

KaPS simulations show good visual agreement with water bodies, wet vegetation, and soils as 

compared with AirSWOT observed Ka-band radar backscatter data (Figure 17 and 18). KaPS 

additionally highlights the sensitivity of radar backscatter to surface moisture, as the increased 

moisture jump from the low-resolution 25 km SMOPS tile, from ~30 to 60% moisture, results in 

a dramatic increase in radar backscatter (Figure 18). Soil moisture is generally accepted to be 

saturated at around 50-60%, which is also evidenced in the moisture-temperature-backscatter 

surface (Figure S3), where backscatter increases with increasing moisture until the surface is 

saturated. KaPS model output in Figure 18F demonstrates this sensitivity as brighter backscatter 

cutting diagonally across the center of the flight line, corresponding to higher moisture from the 

reference data. Following the available data from the reference products, because the LVIS data 

have an irregular shape and a narrower swath width (~1.8 km) compared to the AirSWOT data 

(~3.2 km), the output KaPS simulation is limited to the same swath width as the LVIS reference.  

The KaPS model can be applied to any region having reference land cover and moisture 

datasets. As its purpose is to approximate near-nadir Ka-band backscatter, either modeled or 

remotely sensed data products may be used as inputs. Additionally, moisture, surface structural 

complexity, and land cover may be varied within the model itself, or by simply using different 

input data. The primary purpose is to be able to map water and land surface backscatter dynamics 

due to transient events (like moisture), with the expectation that relatively stable spatial differences 

due to heterogeneous surface complexity should be considered in order to assess the transient state 

of the surface. As observations of Ka-band backscatter are limited in temporal and spatial 

coverage, KaPS provides a method for creating simulated images of unobserved surfaces and 
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estimating backscatter changes for those surfaces by including dynamic parameters such as surface 

complexity and moisture. Further, KaPS has the potential to be used for inverse problems, as the 

Ka-Band Radar Water Likelihood (KaRWL) or ‘KaRWL mode’, where backscatter values can be 

used to assess vegetation characteristics and surface moisture variability, although more work is 

necessary to demonstrate and prove the validity of the inverse case. 

 

3.5 Discussion and Conclusion 

 

We determine near-nadir Ka-band scattering sensitivities for diverse Arctic-Boreal land 

and water surfaces by segmenting NASA ABoVE AirSWOT observations by land cover and 

comparing observed backscatter values to remotely sensed moisture, temperature, and roughness. 

Following this analysis, we are able to produce a statistical scattering model, Ka-band 

Phenomenology Scattering (KaPS), to simulate Ka-band surface scattering at near-nadir incidence 

angles for diverse land cover and moisture conditions.  

This research quantifies observed Ka-band backscatter from wet soils considering both 

vegetation vertical complexity and moisture content. Moisture, a dominant component of the 

dielectric constant, is a well-known control on radar backscatter [Hallikainen et al. 1985], although 

this has not been studied as extensively for higher frequencies including Ka band. In addition, the 

specularity or roughness of various features has not been well studied for Ka-band backscatter 

from various terrestrial surface types, further limiting our knowledge about the occurrence of 

brightly scattering, non-water features. To gain insight on land surface variations through the 

perspective of the Ka-band frequency, airborne Ka-band observations are used to identify 

backscatter sensitivities to variations in land cover, moisture, temperature, and roughness.  
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Ka-band radar backscatter-incidence angle curves from AirSWOT outer-swath data 

(Figure 11) demonstrate clear separation between water surfaces and dry vegetation. Using the 

separability metric [Cumming & Van Zyl, 1989; Baghdadi et al., 2001], open water is determined 

to be ‘highly separable’ from other classes, with separability values up to five times greater than 

the minimum separability versus dry land classes.  Importantly, surfaces that are spatially proximal 

to water, such as barren soils (often sandbars and river and lake edges in this study) and littoral 

zone vegetation, are clearly distinguishable from open water in most cases. Compared to these 

classes, water separability is up to two times greater than the minimum value necessary to consider 

groups distinct (Figure 12). However, it remains possible for barren soils and littoral zone 

vegetation to produce backscatter values similar to open water, making up the remainder of cases 

where water, barren soil, and littoral zone vegetation could not be separated with backscatter values 

alone. Using the modified separability metric observations of barren soil/sand bars, and littoral 

zone vegetation are found to be confused with open water about 5% of the time.  

When the downscaled moisture and temperature are assessed alongside airborne Ka-band 

backscatter from AirSWOT, the sensitivity of backscatter to temperature is confirmed to be 

negligible or uncertain at best, given the scales of the available MODIS data and relatively small 

sub-seasonal temperature gradient. The transition between frozen and non-frozen ground would 

result in significant change in scattering due to the phase change of water [Jackson 1987], although 

no such transitions have been observed.  Because all of the ABoVE AirSWOT observations used 

in this study are during the summer, there were no observations of a frozen ground surface, when 

the impacts of temperature would have been more significant for backscatter. The observed 

backscatter is strongly dependent on moisture as evidenced by the high moisture variability across 

the spatial domain and the seasonal water level dynamics. Without distinguishing between land 
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cover types, the highest backscatter values occur when moisture is greater than 50%. When the 

moisture-backscatter relationship is examined for each land cover, the positive relationship 

remains; although most land covers are not coincident with high moisture, backscatter nevertheless 

increases with increasing moisture. Considering moisture was only added to produce water bodies 

in the surface moisture data, moisture values 0-50 are primarily or entirely from the original 

SMOPS soil moisture product.  Investigating the backscatter vs moisture confirms that this trend 

is still observable from some land cover class observations that are not in close proximity to open 

water. We demonstrate the utility of the LVIS LiDAR complexity, which is a measure of the 

vertical heterogeneity of a vegetative canopy, for separating dielectrically similar features such as 

saturated soils, emergent vegetation, and open water. The relationship pairing complexity with 

backscatter appears to vary significantly by land cover, providing more interesting lines of future 

inquiry. The shapes of the backscatter-complexity relationship are possibly due to differences 

between two-way transmissivity for different vegetation types and foliage orientations.  

Because of the low complexity of water compared with vertical vegetation, and because 

water is always fully saturated, moisture and surface complexity data are not very helpful for 

studying backscatter from open water. Instead, water is fairly self-consistent as indicated by the 

separability metric, suggesting that the incidence angle curve is sufficient to explain most water 

dynamics, assuming the water observation is not a mixed pixel.  

Combining observed LiDAR surface complexity with surface moisture and reference land 

cover datasets provides a framework for a simple empirical scattering model, the Ka-band 

Phenomenology Scattering (KaPS), capable of simulating Ka-band backscatter returns from water 

and land surfaces, with implications for being used for inverse problems, called the Ka-band Radar 

Wet-land Likelihood (KaRWL) model, to estimate moisture and surface complexity (vegetation 
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types) from Ka-band backscatter. The majority of observed variations in the AirSWOT backscatter 

data can be reproduced using  the KaPS model, as evidenced by the mean and median R2 values 

of 0.75 and 0.76 in a ‘best case’ or a ‘matching observations’ scenario (Figure 17). Figure 17 also 

shows that the worse performing land covers have mean absolute errors no greater than ~3 dB, 

which is similar to the GO model used by Fatras et al. [2016] for soil-only land covers at incidence 

angles less than 7°. This work additionally stands out as achieving this error range while including 

very diverse surface types, from open water, to exposed soils, and dense foliage. The purpose of 

the model is to map how backscatter changes as a result of changing surface conditions, meaning 

the model is not expected to resemble the observations exactly, but should reflect the input 

reference data, as seen in Figure 189F. The model is highly sensitive to the input data, as desired, 

showing a tonally rough surface matching the complexities of the input data.   

There are several limitations of this analysis, including: 1) Because the Ka-band AirSWOT 

data examined in this study primarily observed Arctic-Boreal wetland regions, the distribution of 

scattering coefficients, particularly those found in Figure 2,may be skewed to reflect wetter 

regions. To counter this effect and to understand how the scattering values may depart from those 

observed, we describe how scattering varies over similar yet drier, surfaces, and develop a simple 

model to simulate Ka-band radar backscatter to estimate the appearance of wetter and drier areas. 

2) The expected moisture values underpinning the KaPS model are much coarser than ideal for 

this study.  While this issue was addressed by adding in surface water features to give a larger 

range of moisture variability and higher resolution wet-dry transitions, variations across non-water 

surfaces remain limited to the scale of the original 25 km SMOPS resolution, so the dynamic range 

of moisture for non-land features is likely to be under-sampled as a result. 3) The MODIS surface 

temperature data suffered from issues of low internal consistency and sometimes unrealistic and 
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extreme temperature values, making the diurnal amplitudes difficult to estimate correctly. As a 

result, the influence of temperature variability on backscatter had higher uncertainty than is ideal 

for assessing significant trends. Despite inconsistencies in the temperature data, it is generally not 

expected that the observed temperature range would contribute significantly.  

This research reveals that, under moderately wet, summertime conditions, 1) the mean 

backscatter from open water, emergent aquatic vegetation, wet soils, and land vegetation classes 

vary by at least one standard deviation, making them all highly separable, with likely confusion 

with water occurring about 5% of the time, and 2) a simple model for near-nadir Ka-band scattering 

can be used to simulate changes to natural surface complexity and dielectric constant (as 

complexity and surface moisture) under non-frozen conditions. Barren soils and aquatic vegetative 

features may have similar or identical backscatter values as open water, depending on the 

roughness and moisture of each surface. Since moisture is a primary component of the dielectric 

constant and therefore backscatter, it is not surprising to find that exposed soils may begin to 

resemble open water when the surface is nearly or completely saturated. We confirm this 

expectation for near-nadir Ka-band radar by examining the effects of moisture and roughness 

variability, and developing Ka-band Phenomenology Scattering (KaPS), a simple empirical 

statistical model to simulate near-nadir Ka-band surface scattering. The performance of KaPS is 

similar to that of a previous GO modeling study [Fatras et al., 2016], while including more diverse 

surface covers and higher incidence angles, up to 27°. Future applications for KaPS and KaRWL 

include further investigations of skin-surface moisture and complex surface impacts on Ka-band 

backscatter returns for terrestrial ecology and hydrology studies, and increased confidence in 

AirSWOT and SWOT surface classification accuracies and water surface elevation retrievals. 
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3.6 Supplement  

 

3.6.1 Figure S1: SMOPS Soil Moisture Downscaling   

 

Daily NOAA SMOPS soil moisture data are spatially downscaled by adding reference 

water features from the Landsat-derived Annual Dominant Land Cover product (LSLC).  On the 

left, is a map of the NOAA SMOPS 25 km soil moisture product covering parts of Alaska and 

Canada; on the right is the 1km downscaled data including water bodies produced in this study. 

The SMOPS data are nearest-neighbor-resampled to 30 meters to match the LSLC, and the 

resampled SMOPS pixels corresponding to LSLC open water class are re-assigned values of 100% 

moisture. Finally, the 30-meter resampled and waterbody-added moisture data is aggregated to 1 

km to increase computation speed for analysis. An additional 90-meter product was developed for 

finer-detailed analysis and testing as the AirSWOT swath width is approximately 4 km.  This 

process produces products that visually show both the original 25 km large pixel shapes and finer 

LSLC water bodies. Note: Because the LSLC does not have a separate class for ‘snow’, snow-

capped mountain ranges are labeled water as seen in the Alaska Range in the south and the Brooks 

Range in the north. None of the AirSWOT lines in this analysis include snow cover. 

 

3.6.2 Figure S2: MODIS Land Surface Temperature Downscaling 
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Daily MODIS Aqua and Terra Land Surface Temperature (MOD/MYD-11A1) data are 

temporally downscaled by fitting a sine curve to each 1km pixel to model the diurnal variation and 

fill in missing observations due to cloud cover for July and August 2017. The seasonal trend is 

first removed to isolate diurnal variability, then a sine curve is fit to the trend removed points by 

using a non-linear regression estimator, finally, the seasonal trend is added to the fitted sine curve. 

This figure shows how temperature is estimated for a single pixel over time. On the left, data from 

a single pixel location taken from day and night observations from MODIS Aqua and Terra are 

shown as red points; there may be up to four observations per day from these instruments, but data 

may be missing for several consecutive observations. Green points represent hourly estimated 

temperature. On the right, the hourly estimated temperature is compared with the MODIS 

temperature for overlapping hours. The scatterplot of points generally follows the 1:1 line, with an 

average variation of around 3° C, showing that the temperature estimate can be used when 

observations are not present, and is also better than selecting the temperature value nearest in time, 

as the nearest temperature value may be off by as much as 30° C. 

 

3.6.3 Figure S3: Ensemble Average Surface Moisture, Temperature, and Ka-band Backscatter 

  

An ensemble average of surfaces representing moisture, temperature, and backscatter at incidence 

angles less than 6°. Instead of using all of the points as inputs to the surface, a random subset of 



73 

 

25% of the points are selected with replacement 1,000 times to create 1,000 surfaces and then 

averaged to produce a single surface representing different possible combinations of available data. 

This method of selection reduces the probability of sampling bias. The range of likely temperature 

values has a small, imprecise, and highly variable contribution to near-nadir Ka-band backscatter 

compared with the steep gradient and strong correlation seen with surface moisture. 

 

3.6.4 Table S1: Incidence Angle Backscatter Curve Look-up Table 

A subset of an example incidence angle backscatter curve look up table that is used to estimate the 

backscatter for the open water land cover class. The data is subset by incidence angle (the actual 

range is ~0- 27°). These values, and the values for other land covers, correspond to the percentile 

lines shown in Figure 2a in the main text. The Ka-band Phenomenology Scattering (KaPS) 

simulator uses percentile curves to simulate backscatter values beyond the 4-6 range that is 

estimated from the regression formulas shown in TS2. 
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3.6.5 Table S2: Formulas with Weights for ‘Best Case’ Regression Fit 

 

Formulas with weights for the 

complexity and moisture 

components. When the estimated 

backscatter values calculated for 

the moisture-only and complexity-

only equations are combined using 

a weighted average, the ‘best case’ 

r2 value has a wide range, with 

median value of 0.76.  
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3.6.6 Table S3: Example Lookup Table of Moisture Values Varying with Backscatter 

This is an example look-up table representing the open water class where moisture varies alongside 

expected values for backscatter. For the open water class, there is variation in moisture due to 

mixed pixels from the relatively low spatial resolution of the reference surface moisture dataset. 

Pixels having lower moisture values have a lower water fraction and are correlated with lower 

backscatter, likely due to the mixture of land and vegetation (which have low backscatter compared 

to water at near range) and due to the water dampening effect of vegetation on water. 
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Chapter 4:  

 

4. AirSWOT Ka-band Near-Surface Wind Interactions 

 

Title: Influence of Wind on Near-Nadir Ka-band SAR Backscatter and Interferometric Coherence 

over Small Inland Water Bodies 

 

 

4.1 Introduction 

The water-air interface is an important component in tracking and modeling wind-driven 

surface water dynamics [Xiao et al., 2018; Wu et al., 2022]. Wind induces waves and seiches and 

increases evaporation rates over lakes, for example [Van Hylckama 1968; Ma et al., 2016].  

However, inland surface wind speeds are highly variable over space and time due to topographic 

relief, and boundary layer frictional resistance from surface features such as trees and buildings 

which reduce wind velocity. Because of the spatially varying nature of wind speed over land, the 

availability of high-resolution datasets of airflow over inland water bodies, would increase  the 

accuracy of models focused on atmospheric dynamics and the water cycle.   

Radar remote sensing offers unique capabilities for tracking spatial and temporal variations 

in wind-induced surface water roughness, including estimation of wave heights and wind velocities 

over water.  Such retrievals are traditionally obtained through scatterometry over oceans, [Jones 

et al., 1977; Rodriguez et al., 2018]. Classic scatterometry studies were conducted to establish 

geophysical model functions (GMFs) relating wind parameters to water surface scattering over 

ocean surfaces [Jones et al., 1977; Durden and Vesecky 1985; Giovanangeli et al., 1991; Yueh et 
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al., 2013; Rodriguez et al., 2018; Wineteer et al., 2020].  Due to oblique viewing geometries and 

poor calibration for SAR-wind GMFs, few have used SAR imagery to assess surface water 

scattering [Monaldo et al., 2013].  

While SAR sensors offer high spatial resolution and focused imagery over inland water 

compared with scatterometers, to our knowledge, there has been no attempt to quantitatively assess 

wind-induced roughness of multiple small inland water bodies using SAR data. For this reason, 

the potential influence of wind on Ka-band returns for small inland water from the forthcoming 

Surface Water and Ocean Topography (SWOT) satellite, the world’s first hydrology-focused 

InSAR mission, remains poorly understood.  

Preliminary experiments demonstrated that AirSWOT (an experimental airborne Ka-band 

precursor to SWOT, see [Moller et al., 2010; Wu et al., 2011]), SAR backscatter returns over 

inland surface water bodies appear to be sensitive to emergent vegetation and wind [Fayne et al., 

in review, Altenau et al., 2017, Pitcher et al., 2019, Denbina et al., 2019]. For accurate SWOT and 

AirSWOT data retrievals of water surface elevation (WSE) and extent, inland water bodies must 

present strong signal returns (backscatter) and internally consistent transmit/receive signals 

(interferometric coherence).  AirSWOT observations over Canada and Alaska have produced 

water surface elevations that do not quite meet the designed accuracy standard of 10 cm [Altenau 

2017; Pitcher et al., 2019; Denbina et al., 2019; Touzzolo et al., 2019; Fayne et al., 2020] due in 

part to low backscatter (“dark water”) and low coherence from water surfaces [Fayne et al., 2020].   

Furthermore, pre-launch assessments of SWOT’s potential vulnerability to dark-water returns over 

small inland water bodies use traditional scatterometry models developed for oceans using coarse 

resolution Ka-band radar data from precipitation satellite GPM (5 km) and altimetry satellite 

AltiKa (12 km) [Peral et al., 2015; Frappart et al., 2015;  Nouguier et al., 2016; Rodriguez et al., 
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2017; Rodriguez et al., 2018; Frappart et al., 2020], a scale far coarser than most inland water 

bodies.  Using high-resolution optical remote sensing, for example, Cooley et al., [2019] report an 

average area of just 26 m2 for ~85,000 lakes across Canada and Alaska. 

The SWOT satellite will image water bodies with a minimum area of (250 m)2, while 

AirSWOT is capable of imaging water bodies with a minimum area of 10 m2 [Fjørtoft et al., 2014; 

Fayne et al., 2020]. Because of the influence of local topography and diverse water body shapes 

and sizes, we suspect that existing Ka-band scattering models designed for features greater than 

10 km2 may not be sufficient for modeling the impacts of surface wind friction velocities for 

millions of smaller water bodies which will be observed by SWOT. Understanding the relationship 

between wind speed, wind direction, and radar backscatter will increase our ability to estimate the 

quality of SWOT observations prior to the flyover, and improve planning capabilities for airborne 

AirSWOT data acquisitions. Studying how wind speeds influence radar backscatter and coherence 

can help to estimate and improve the performance of derived InSAR elevation estimates. While 

this work seeks to improve our understanding of the performance of Ka-band InSAR sensors for 

estimating water surface elevations, the simultaneous work of quantifying the relationship between 

Ka-band backscatter and wind characteristics for small waterbodies will enable future 

investigations of wind-water friction velocities for assessing hyper-local evaporation and water 

vapor transport.  

This study assesses the influence of wind on Ka-band scattering for 11,072 water features 

across Alaska and western Canada, which were imaged across  ~22,000 km2 of AirSWOT flights 

for the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) [Fayne et al., 2020].  The areas 

of these water features range from 350 m2 to 156 km2, including lakes too small to detect from 

AltiKa and GPM. Figure 19 highlights the flight path of the AirSWOT data collected during the 
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2017 summer field campaign. Using reference wind speed and direction data from modeled and 

in-situ data sources and Ka-band backscatter, coherence, and flight heading data from AirSWOT, 

we correlate wind and radar data to identify scattering sensitivities to wind speed and direction. 

For incidence angles 0-17°, we determine that 1) wind speeds 3 m/s or higher are required for 

strong backscatter and coherence, leading to higher accuracy elevation data and 2) the AirSWOT 

data used in this study does not capture enough varying conditions of wind direction to be 

comparable with Ka-band wind direction GMFs and theoretical models. We conclude with a 

discussion on further implications of Ka-band SAR data for wind speed assessments and InSAR 

water surface elevation retrievals for SWOT. 

 

Figure 19. The 2017 AirSWOT data collection (black lines) was acquired as a part of the Arctic 

Boreal Vulnerability Experiment (ABoVE) Airborne Campaign (AAC), beginning in North Dakota, 

USA, and flying north through Western Canada to Alaska, USA, before returning south along an 

overlapping flight path. The inset highlights a snapshot (July 1, 2017) of the spatial variability of 
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wind speeds from ERA-5 Reanalysis over several lakes in southern Northwest Territories and 

northern Alberta.  

 

4.2 Data 

4.2.1 AirSWOT Ka-band Interferometric Synthetic Aperture Radar 

The airborne SWOT (AirSWOT) platform supports a Ka-band interferometric wide-swath 

altimeter, called the Ka-band SWOT Phenomenology Radar (KaSPAR), which is used to produce 

high-resolution maps of water surface elevations [NASA JPL 2022]. AirSWOT was developed as 

a complement to SWOT to understand surface phenomenological interactions and to test and 

design radar and InSAR algorithms at Ka band [Moller et al. 2010; Wu et al. 2011].  While 

AirSWOT has collected small datasets over various parts of the United States [Altenau et al., 2017; 

Pitcher et al., 2019; Tuozzolo et al., 2020; Denbina et al., 2020], the largest published AirSWOT 

collection to date is from a July 8-August 17, 2017 airborne flight and field campaign conducted 

for the NASA Arctic Boreal Vulnerability Experiment (ABoVE) [Fayne et al., 2019, 2020; Miller 

et al., 2019]. The collection acquired ~22,000 km2 km of flight lines spanning 23° in latitude, 

ranging from North Dakota through Canada to Alaska and back again.  The collection covered 

over 40,000 inland water bodies [Kyzivat et al., 2019]. These lakes have varying sizes, 

orientations, shapes, and prevailing wind conditions.  Though the available “outer swath” radar 

data used in this study has a nominal incidence angle range of ~3-27° (some observations cover 

0.5-3°), higher incidences are removed from this study, limiting the analysis to 3-17°. After 

filtering, the number of water bodies remaining to be studied here is 11,072. The radar data 

products used in the analysis are incidence angle, noise subtracted and calibrated backscatter, total 

coherence, and un-gridded geolocation (LLHE) processed by the NASA Jet Propulsion Laboratory 
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(JPL) and presented in Fayne et al. [2019].  These data have a gridded pixel spacing of 3.6 meters, 

an average swath width of 4 km, and an average flight altitude of 9.5 km. The 2017 ABoVE 

AirSWOT products are freely available for download at https://daac.ornl.gov/cgi-

bin/dsviewer.pl?ds_id=1646). For technical descriptions of the AirSWOT instrument 

configuration and these data products, see Moller et al. [2010] and Fayne et al. [2019]. 

 

4.2.2 Modeled and In-Situ Wind Parameters 

Wind speed and direction data from three different datasets are used to compare with 

AirSWOT data. Reanalysis data from the European Center for Medium-Range Weather Forecasts 

(ECMWF) ERA5 hourly data on single levels from 1979 to present [Copernicus Climate Change 

Service, 2022, accessed March 2022; 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview] is 

the primary wind speed and direction reference dataset. The ERA-5 hourly data used in this study 

include 10 km resolution geolocated U- and V- component wind speeds at 10 m heights, which 

are converted to total wind speed (Eq. 1) and wind direction (Eq. 2) as follows: 

��� = ��� + 	� 
Eq. 1 

� = �180 + �180
� � ∗ ����2�	, ��� %% 360 

Eq. 2 
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To include and prioritize in-situ wind speed and direction measurements where available, we use 

hourly and sub-daily in-situ meteorological stations around Wood Buffalo National Park [Wood 

Buffalo Environmental Association, 2022] and from approximately 40 more sparsely placed in 

situ stations throughout western Canada and Alaska from Copernicus Global land surface 

atmospheric variables from 1755 to 2020 from comprehensive in-situ observations [Copernicus 

Climate Change Service, 2022, accessed March 2022; 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-observations-surface-

land?tab=overview]. These in-situ measurements are spatially integrated together with the gridded 

ERA-5 data to form a single combined wind parameter dataset, as explained in the next section. 

Because these sites do not have consistent measurements for all time steps, the number of total in-

situ stations integrated into the regularly gridded ERA-5 modeled data varies between 20-80 

stations for each time step across the study domain. 

 

4.3 Methods 

4.3.1 Extract Ka-band radar backscatter and coherence over more than 11,000 inland water 

bodies 

To compare AirSWOT backscatter and coherence from small inland water surfaces with wind 

speed and direction, we use a camera-based reference water mask acquired simultaneously with 

AirSWOT radar data [Kyzivat et al., 2020]. The water mask is derived from 1-meter optical 

imagery from a Cirrus Designs Digital Camera System (DCS) mounted on the AirSWOT 

Beechcraft Super King Air B200 aircraft, consisting of 40,000 open-water polygons with areas 

ranging from 40 m2 to 156 km2 [Kyzivat et al., 2019]. Individual coherence and backscatter pixel 
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values were extracted from within these independently identified water body polygons and filtered 

by incidence angle, enabling analysis of 11,072 remaining water features.  

4.3.2  Interpolate local wind speed and direction 

Gridded wind speed and wind direction data are produced by integrating three reference 

wind datasets. Because the AirSWOT swaths are 4 km wide, narrower than the 10 km ERA-5 data, 

we resample the ERA-5 data to a 5 km grid and add sparsely located and temporally varying in-

situ stations to produce hourly wind speed and direction datasets. The 5 km hourly data are 

produced by converting the ERA-5 gridded raster data into geolocated-pixel-centroid points, 

which are combined with the geolocated in-situ points from the Wood Buffalo and Copernicus 

data. The combined points from the three datasets are spatially interpolated to a 5 km grid, leaving 

the majority of the resampled ERA-5 data values similar or identical to the original dataset except 

for near in-situ stations. 

4.3.3 Compare AirSWOT Ka-band SAR backscatter and InSAR coherence with wind speed  

Wind speed values are extracted for each of the point coordinates corresponding to the 

radar data extracted from within the predefined water features. We bin wind speeds into seven 1 

m/s categories (from 0 to 7m/s) for comparison with AirSWOT Ka-band backscatter and coherence 

values, using box plots as in Rodriguez et al. (2018). The resultant box plots reveal how increasing 

wind speeds influence AirSWOT Ka-band backscatter and coherence over inland water bodies.   

4.3.4 Compare AirSWOT Ka-band SAR backscatter and InSAR coherence with wind direction 

Wind direction is similarly derived from the point corresponding to the nearest neighbor radar 

point within the water features. Additionally, we assess the heading of the AirSWOT aircraft to 

offset the flight heading from the wind direction. The flight heading is formatted as -180 to 180 
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degrees, which we shift by adding 180 to make the range 0 to 360 to match the wind direction data. 

Wind influences scattering in reference to the flight path as upwind (0 degrees), downwind (180/-

180), and crosswind (-90/90). We calculate these azimuthal wind values relative to the flight 

heading using a simple offset described in Eq. 3: 

 

�� !"#$ %&'( = 180 − *+,- .(' − +� !"/ 
Eq. 3 

Azimuthal wind directions are separated into 10-degree bins (from -180 to 180 degrees), and 

box plots are generated using the observed backscatter and coherence. These box plots enable 

comparison of observed AirSWOT backscatter-wind azimuth relationships to a theoretical 

sinusoidal relationship reported in a classic earlier modeling study (i.e., a three cosine model, 

Giovanangeli et al., 1991). 

 

4.4 Results 

4.4.1 Interpolate local wind speed and direction 

We produce 5 km hourly raster files representing wind speed and direction covering 

Canada and Alaska. Their full extent spans 50 degrees to 70 degrees North latitude and 60 to 180 

degrees West longitude.  Figure 1 presents a close-up of these wind speed data. Because of the 

spatially and temporally varying availability of the in-situ stations (i.e., 20-80 stations have uneven 

observations across 20 degrees latitude, 120 degrees longitude, and 1500 hours), the in-situ data 

rarely cover AirSWOT observation regions, severely hampering their utility. Nonetheless, the in-
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situ data are included, where possible, and the ERA-5 modeled data has even temporal and spatial 

coverage for this study.   

4.4.2 Compare AirSWOT Ka-band SAR backscatter and InSAR coherence with wind speed  

Strong relationships are found between wind speed and Ka-band backscatter and 

coherence, as seen in Figure 20. Radar backscatter increases with wind speed, with relatively low 

values (averaging around -3 to 5 dB) associated with wind speeds  <3m/s.  The first incidence 

angle bin (0.05-0.1 radians, 2.8-5.7°), which approximates SWOT incidence angles (~0.5-4.1°) 

suggests that hourly mean wind speeds of ~0 m/s yield a median backscatter of ~0 dB.  At 7 m/s, 

the median backscatter increases to ~15 dB.  This overall increase in backscatter for wind speeds 

>3 m/s manifests across all incidence angles, despite the expected incidence angle-dependent 

decrease in scattering (Figure 20).  Even the fifth incidence angle bin, midway across the 

AirSWOT swath (0.25-0.3 radians, 14.3-17.2°), exhibits backscatter increases from ~ -10 dB to 

~3 dB.   
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Figure 20. Comparison of AirSWOT Ka-band backscatter with wind speed (0-7m/s) over ~11,000 

small inland water bodies in western Canada and Alaska. Backscatter consistently increases with 

increasing wind speeds across all incidence angles. Wind speeds 3 m/s or higher for incidence 

angles between 3-8.6 degrees achieve the minimum ideal value to consistently separate water from 

land or other wet surfaces(>10 dB). The first incidence angle category (0.05-0.1 radians, 2.8-5.7 

degrees) is most comparable to SWOT due to similar viewing geometry. This second category 

shows consistently high backscatter, 15 dB, for wind speeds greater than 3m/s.  

 

To obtain backscatter values consistently 10-20 dB, are greater than 3 m/s, wind speeds 

much ideally reach 3 m/s or higher, suggesting that Ka-band SAR images will not yield useful 

WSE retrievals when winds are below 3 m/s.  This recommendation is further corroborated by 

comparing wind speed with AirSWOT interferometric coherence (Figure 21). For accurate 

estimation of water surface elevation from AirSWOT or SWOT data, coherence over water bodies 

should be high (ideally ~0.75-1).  Our comparison of wind speeds with AirSWOT coherence 

demonstrates consistently high coherence, greater than 0.75, for incidence angles 0.05-0.3 radians 

(2.9-17.2 degrees) when wind speeds are 3 m/s or greater.  
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Figure 21. Comparison of AirSWOT Ka-band coherence with wind speed (0-7m/s) over ~11,000 

small inland water bodies in western Canada and Alaska. Coherence consistently increases with 

increasing wind speeds across all incidence angles. Wind speeds 3 m/s or higher for incidence 

angles between 2.9-17.2 degrees achieve the minimum ideal value for producing high-quality 

AirSWOT elevations (>0.75). The first incidence angle category (0.05-0.1 radians, 2.8-5.7 

degrees), while most comparable to SWOT due to similar viewing geometry, does not have the 

highest coherence due to the AirSWOT antenna pointing having been focused near 12.9 degrees. 

Due to the antenna pointing, the highest coherence is identified in the third category (0.15-0.2 

radians, 8.6-11.4 degrees), with coherence values exceeding 0.85 for wind speeds greater than 

3m/s. Wind speeds of 3-7 m/s are much more likely to produce highly coherent data, which is 

important for reducing horizontal and vertical errors in the computed elevation product. 

 

4.4.3 Compare AirSWOT Ka-band SAR backscatter and InSAR coherence with wind direction 

Upon conducting the wind direction analysis, we find an insufficient number of samples 

spanning a necessary diversity of wind directions and speeds to compare with the AirSWOT radar 

observations, shown in Figure 22. More specifically, we find abundant high wind speed 

observations for only a small subset of wind directions (210-320 degrees), and low wind speeds 
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dominated by another subset of wind directions (30-150). A clear relationship is found between 

wind direction and wind speed, which can only be explained by a seasonal effect (stronger winds 

from the southwest). Due to this relatively narrow range of wind direction/speed combinations, 

together with the fixed azimuthal headings of the long 2017 AirSWOT flight lines acquired over 

a relatively short period of time, we are unable to assess the influence of wind direction on either 

backscatter or interferometric coherence from the 2017 ABoVE AirSWOT data collection. 

 

Figure 22. An incomplete distribution of wind directions and speeds occurred during the NASA 

ABoVE AirSWOT flight campaigns (July 08 -August 17, 2017).  During these flight acquisitions, 

high wind speeds occurred at wind directions 210-320 degrees, while directions 30-150 degrees 

experienced lower wind speeds. Wind directions between 320 and 30 degrees (winds from the 

north) rarely occurred during the AirSWOT flight acquisitions. A statistical assessment of the 

influence of wind direction on the AirSWOT Ka-band backscatter and coherence is not possible 

due to this insufficient diversity of wind direction/wind speed combinations during the flight 

campaigns.  
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4.5. Discussion and Conclusion 

The 2017 AirSWOT flight experiment provides a rare trove of Ka-band backscatter and 

interferometric coherence imagery (Fayne et al. 2019; 2020), as well as simultaneous near-infrared 

camera imagery and open-water classifications (Kyzivat et al. 2018; 2019), over 11,072 inland 

water bodies across Alaska and western Canada.  By comparing AirSWOT Ka-band radar returns 

from these water bodies with a resampled ERA-5 reanalysis wind speed and direction product, we 

identify robust correlations among wind speed, backscatter, and coherence.  These correlations are 

generally consistent across different incidence angle ranges, albeit with lower backscatter and 

coherence at larger (i.e. more oblique) incidence angles.  Due to the under-sampling of different 

wind direction/wind speed combinations during the 2017 AirSWOT flight campaign, we are 

unable to provide a comparable analysis of wind direction. 

Our analysis of the 2017 AirSWOT Ka-band data suggests low accuracy water surface 

elevations are likely under low wind conditions (<2 m/s). Referencing best practices for high 

accuracy Ka-band InSAR retrievals of water surface elevation (i.e. >5 dB backscatter and >0.8 

coherence, Fayne et al. 2020]), we conclude that wind speeds of 0-3 m/s wind produce 

unacceptably low backscatter (<0 dB) and coherence (~0.25) across all incidence angles. Wind 

speeds of ~3 m/s and higher produce high values of SAR backscatter (>10 dB) and interferometric 

coherence (>0.8)  optimal for water surface elevation retrieval.  

Our study characterizes Ka-band radar returns from small inland water bodies (350 m2 - 155 

km2), which are critically important to the SWOT satellite mission’s success.  SWOT will use 

wide-swath Ka-band interferometry with 10-70 m spatial resolution to estimate areas and surface 

elevations of millions of inland water bodies as small as 250m x 250m (0.0625 km2).  Previous 

studies using GPM and AltiKa data focused on much larger water bodies or ocean surfaces, with 
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emphasis on estimating wave heights and shapes for much higher wind speeds (up to 20 m/s) [Peral 

et al., 2015; Nougier et al., 2016; Rodriguez et al., 2018]. Nonetheless, our results agree with a 

high-resolution (600m x 36m) scatterometry study over the Gulf of Mexico, which determined that 

wind speeds of >2-3 m/s are necessary to retrieve meaningful radar returns [Wineteer et al., 2020]. 

Similarly, a bridge-mounted Ka-band system identified very strong backscatter (20 dB) from a 

river surface at wind speeds >2-3 m/s [Fjortoft et al., 2014]. This study lends further support to the 

notion that wind speeds of ~3 m/s or more may be necessary for the successful retrieval of water 

surface elevations over small inland water bodies from SWOT.  

Previous scatterometry studies focused on large water bodies and open oceans having 

background surface wave roughness higher than the roughness seen from smaller water bodies, 

asserting minimum speeds of 2 m/s [Nougier et al., 2016; Rodriguez et al., 2018; Wineteer et al., 

2020]. However, this study points to slightly higher wind speeds (i.e., at least 3 m/s) for successful 

water surface elevation retrieval over small inland water bodies.  The 1 m/s difference between 

these studies may be explained by the absence of internal turbulence or wave trains on small lakes, 

unlike the open ocean. Wind shadowing from surrounding topographic relief and frictional 

resistance from surrounding vegetation also dampen wind speeds over small inland water bodies, 

requiring a higher atmospheric wind speed to achieve comparable water surface roughening.  

Future studies on radar backscattering should incorporate high-resolution (sub-kilometer) DEM 

and land-cover-based wind speed modeling, to account for fine-scale phenomena induced by 

localized topographic and frictional resistance factors.  Other limitations of our analysis include a 

dearth of observational data reflecting multiple wind directions relative to the fight heading. 

Regardless of these limitations, we conclude that AirSWOT Ka-band InSAR data are 

sensitive to wind speeds, producing higher quality backscatter and InSAR coherence data when 
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wind speeds reach and exceed 3 m/s. Unlike scatterometry studies, the goal of this research is not 

to produce new GMFs, but to assess Ka-band wind sensitivities as related to AirSWOT and SWOT 

water surface elevation retrieval accuracies.  Future research on surface scattering from radars not 

designed for scatterometry will create opportunities for high-resolution wind monitoring, enabling 

greater advancements in the study of water-air interactions and the water cycle, for example, 

investigations of limnology and evaporation. Further, studies of wind-induced sources of error and 

uncertainty will aid in data screening protocols and quality assessment for AirSWOT and SWOT 

Ka-band water surface elevation retrievals.  
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Chapter 5 

 

5.1 Conclusion 

 

To gain an empirical understanding of the utility of near-nadir Ka-band for mapping 

surface changes, particularly concerning water and wet surfaces, Chapter 2 of this dissertation 

demonstrated the utility for mapping water surface inundation and elevation using KaSPAR 

InSAR data collected on the AirSWOT platform by investigating sources of- and quantifying 

absolute errors in water surface elevation (WSE) estimate. As part of the NASA Arctic Boreal and 

Vulnerability Experiment (ABoVE), AirSWOT data demonstrated absolute height errors and 

biases which exceed SWOT requirements. The experimental InSAR technology used in AirSWOT 

KaSPAR suggests that theoretical expectations for near-nadir Ka-band do not align with field 

observations. While there are significant differences between the experimental AirSWOT airborne 

platform and the SWOT satellite, if these same effects are assumed for the satellite mission, errors 

observed in AirSWOT may be present in SWOT. If required, knowledge of such sources of error 

can help guide algorithm development in support of the SWOT mission.  

Preliminary assessments of the AirSWOT Ka-band InSAR data revealed difficulties in 

classifying water surfaces, particularly when water is in proximity to other wet surfaces. A survey 

of radar scattering literature for water surfaces, in turn, indicated a dearth of knowledge 

surrounding near-nadir Ka-band scattering for heterogeneous regions containing water and land, 

in comparison to homogeneous surfaces such as oceans. Chapter 3 identifies the magnitudes of the 

differences and similarities for backscattering values in the comparison of water and 14 land cover 

types to assess misclassification prevalence due to similar surface texture and moisture regimes. 
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Chapter 3 identifies Ka-band sensitivity to canopy structure, particularly of sparse vegetation, 

enabling unique assessments of vegetation type. In comparing wet surface sensitivity, it was also 

revealed that Ka-band backscatter could observe shallow wet surfaces such as wetlands and 

ponding due to rainfall or seasonal permafrost thaw. Chapter 4 focuses on the open water region 

only and demonstrates that AirSWOT KaSPAR data have similar wind speed sensitivity to 

conventional scatterometers. This finding is particularly unique as the field of scatterometry, and 

the study of wind speed scattering relationships have traditionally studied only large water bodies 

such as oceans and seas.  
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