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Development/Plasticity/Repair

Revisiting the Neural Architecture of Adolescent
Decision-Making: Univariate and Multivariate Evidence for
System-Based Models

João F. Guassi Moreira, Adriana S. Méndez Leal, Yael H. Waizman, Natalie Saragosa-Harris, Emilia Ninova,
and Jennifer A. Silvers
Department of Psychology, University of California, Los Angeles, California 90095-1563

Understanding adolescent decision-making is significant for informing basic models of neurodevelopment as well as for the
domains of public health and criminal justice. System-based theories posit that adolescent decision-making is guided by
activity related to reward and control processes. While successful at explaining behavior, system-based theories have
received inconsistent support at the neural level, perhaps because of methodological limitations. Here, we used two com-
plementary approaches to overcome said limitations and rigorously evaluate system-based models. Using decision-level
modeling of fMRI data from a risk-taking task in a sample of 20001 decisions across 51 human adolescents (25 females,
mean age = 15.00 years), we find support for system-based theories of decision-making. Neural activity in lateral PFC
and a multivariate pattern of cognitive control both predicted a reduced likelihood of risk-taking, whereas increased ac-
tivity in the NAcc predicted a greater likelihood of risk-taking. Interactions between decision-level brain activity and
age were not observed. These results garner support for system-based accounts of adolescent decision-making behavior.

Key words: adolescence; risk-taking; neurodevelopment; brain modeling; fMRI

Significance Statement

Adolescent decision-making behavior is of great import for basic science, and carries equally consequential implications for
public health and criminal justice. While dominant psychological theories seeking to explain adolescent decision-making have
found empirical support, their neuroscientific implementations have received inconsistent support. This may be partly
because of statistical approaches used by prior neuroimaging studies of system-based theories. We used brain modeling, an
approach that predicts behavior from brain activity, of univariate and multivariate neural activity metrics to better under-
stand how neural components of psychological systems guide decision behavior in adolescents. We found broad support for
system-based theories such that neural systems involved in cognitive control predicted a reduced likelihood to make risky
decisions, whereas value-based systems predicted greater risk-taking propensity.

Introduction
Adolescent decision-making has important implications for
basic science (Blakemore and Mills, 2014; Larsen and Luna,
2018; Sharp and Wall, 2018; Yeager et al., 2018) as well as pub-
lic health, civic matters, and criminal justice policy (Cohen
and Casey, 2014; Cohen et al., 2015; Oosterhoff and Wray-
Lake, 2021). Influential theories posit that adolescent decision-
making is governed by psychological “systems” that compete
(or in some cases, complement) to guide behavior (Casey, 2015;
Shulman et al., 2016). While system-based theories have
enjoyed broad success at describing the psychological under-
pinnings of adolescent decision behavior, they have yielded
mixed findings when used to describe the neurobiology under-
lying said behavior (e.g., Pfeifer and Allen, 2012). This discrep-
ancy between psychological and neural data may be due in part
to prior neuroimaging work using brain mapping (predicting
brain from behavior) instead of brain modeling (predicting
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behavior from brain) approaches, testing theory between-
instead of within-subjects, and not considering multivariate
neural patterns. The current neuroimaging study sought to
overcome these methodological limitations, and to more rigor-
ously test the validity of system-based models for predicting ad-
olescent risky decision-making.

A number of system-based theories have been used to explain
risky decision-making and related motivated behaviors in adoles-
cence (Ernst et al., 2006; Strang et al., 2013; Casey, 2015). Most
of these theories contain two key elements. First, they posit the
existence of two (though some posit three) adversarial systems: a
value-based system oriented toward immediate incentives,
increasing the propensity for risk-taking; and a cognitive control
system that restrains the former system to avoid risks. Second,
these prominent theories argue the value-based system is primed
to “overpower” the cognitive-control system in adolescence (i.e.,
they interact with age), ostensibly leading adolescents to take
more risks than children and adults, particularly in socioemo-
tional contexts (Shulman et al., 2016; Steinberg et al., 2018).
System-based models tend to perform well at explaining adoles-
cent behavior in observational and experimental studies (Botdorf
et al., 2017; Steinberg et al., 2018; Ellingson et al., 2019).
However, neuroscientific evidence for these theories is far less
consistent (van Duijvenvoorde et al., 2016a, 2016b; Flannery et
al., 2017; Lee et al., 2018), prompting calls to update system-
based theories (Pfeifer and Allen, 2012, 2016; Casey, 2015), or
revise them so drastically as to be categorically different from
existing versions (Harden et al., 2017; Romer et al., 2017).
Without outright rejecting these possibilities, we propose an al-
ternative interpretation for why system-based theories receive
inconsistent neuroscientific support.

Most prior neuroscientific investigations of adolescent deci-
sion-making have relied on univariate brain mapping methods
to compare individuals who differ in terms of age or risk-taking
behavior. Brain mapping refers to statistically predicting brain
activity from stimulus or task characteristics, or task behavior
(Kragel et al., 2018). An alternative to brain mapping is brain
modeling (Kragel et al., 2018), which uses neuroscientific data to
predict cognitions and behavior (i.e., any kind of neural metric
predicting behavior). Having recently grown in popularity, brain
modeling approaches have seen broad applications, some of
which involve within-person modeling, including prediction of
food craving (Cosme et al., 2019; Cosme and Lopez, 2020), emo-
tion regulation tendencies (Doré et al., 2017), negative affect
(Chang et al., 2015), chronic pain (Wager et al., 2013), and vision
(Liu et al., 2018; Gardner and Liu, 2019). While brain mapping
has generated key discoveries in neuroscience (e.g., Kanwisher,
2017), it can be problematic for evaluating system-based theories.
Statistically, brain modeling may be preferable to brain mapping
because individual units of analysis (e.g., voxels or neurons) are
more predictive when used in concert (e.g., as in a multivariate
signature) to predict task behavior, as opposed to the opposite
(e.g., behavioral responses predicting brain activity) (Zhao et al.,
2021). That is, treating individual voxels as the outcome of an
analysis is less informative than examining how multiple voxels
collectively predict a phenomenon of interest. Unfortunately,
prior brain-mapping studies testing system-based theories of de-
cision-making have largely overlooked the cumulative informa-
tion that comes from many voxels. Another advantage of brain
modeling is that it is better suited for trial-level, within-subject
modeling, which tends to be better powered than classic
between-subject analyses. Philosophically, system-based theories
make predictions about how underlying neural processes drive

behavior; for example, “when value-based brain activity is high,
individuals will be more likely to take a risk,” which almost by
definition aligns with brain modeling. Relatedly, system-based
theories of decision-making are implicitly geared toward explain-
ing within-subject behavior (Strang et al., 2013), yet most prior
studies of adolescent risky decision-making have focused on
between-subject differences (van Duijvenvoorde et al., 2016a;
Flannery et al., 2017; Rudolph et al., 2017). Understanding
within-adolescent fluctuations in decision-making carries critical
translational implications for understanding why the same indi-
vidual may be law-abiding most of the time but occasionally
engage in destructive or maladaptive behavior. The aforemen-
tioned limitations of prior work motivated the present study to
use novel methodology to test the validity of system-based
accounts for predicting adolescent decision-making.

Materials and Methods
Overview
The current study is, to the best of our knowledge, the first within-
subject, brain modeling investigation of system-based theories of adoles-
cent decision-making. Using fMRI, we predicted trial-by-trial risky
decision-making in healthy adolescents as a function of brain activity
from value-based and cognitive control systems, the first premise posited
by system-based models. We then tested to see if the two systems inter-
acted with age, testing the second premise posted by system-based mod-
els. Critically, we examined two versions of value-based and cognitive
control systems: a “classic” univariate version and a newly posited
“switchboard” multivariate version. The classic variant of the theory
assumes that the value-based system that prioritizes immediate rewards
is primarily housed in the NAcc, whereas the cognitive control system is
located in lateral PFC (lPFC) (Shulman et al., 2016). This variant is
clearly modular, in that it posits that psychological functions are repre-
sented in isolated brain regions, or modules, that independently and
locally perform their respective function. While evidence exists to suggest
that some degree of modularity may be present in the brain (Kanwisher,
2017), this assumption is inconsistent with much other work in cognitive
neuroscience that shows psychological processes are encoded in distrib-
uted, multivariate signatures (e.g., Chang et al., 2015; Huth et al., 2016;
Parkinson et al., 2017). To that end, we additionally tested a “switchboard”
version of the model wherein we predict risky behavior as a function of
multivariate neural signatures of value and cognitive control (via the use
of multivoxel pattern analysis). The advantage of this approach is that it
does not hypothesize the localization of mental function to any given ROI
but instead assumes that mental functions are encoded in distributed pat-
terns. Another way to summarize the two variants of the model is that the
functional units of the classic model lie in particular ROIs, whereas the
functional units of the switchboardmodel are comprised by patterns of ac-
tivity that cut across brain regions. We used multilevel logistic regression
to examine how linear combinations of these brain metrics predicted
within-person risky behavior. Last, for thoroughness, we also imple-
mented a between-subjects version of the brain model (predicting risky
behavior as a function of brain metrics using only between-subjects infor-
mation) while considering between-subject variables, including age and
sex as predictors, in addition to a traditional univariate analysis.

Procedures and measures
Participants. The N=51 participants (mean age = 15.00 years,

SD=3.66, range= 9.11-22.60, 25 females) in the current study were part
of a broader longitudinal study investigating the impact of early life
experiences on the neural bases of socioemotional development. This
age range is consistent with recent scientific advances that suggest ado-
lescence in human development may last nearly 15 years (Kinghorn et
al., 2018). Participants in the current set of analyses were those who pro-
vided usable data from an fMRI scanning session and did not have a his-
tory of early social deprivation. Ethnically, 8 participants identified as
Hispanic/Latinx (15.7%). Racially, 26 participants identified as white
(51%), 6 participants (11.8%) identified as Asian/Asian American, no
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participants identified as Black (0%), 1 participant (2%) identified as
Native Hawaiian/Other Pacific Islander, 7 participants (13.7%) identified
as African American, no participants (0%) identified as Native
American/Alaskan Native, 4 participants (7.8%) identified as being
mixed race, 4 participants identified as belonging to an unlisted race
(7.8%), and 3 participants (5.9%) declined to report their race. Sample
size was dictated by the number of participants willing to participate in
this wave of data collection. Participants were compensated $50 for par-
ticipating in fMRI scanning. The research was completed at the
University of California, Los Angeles. All participants under 18 years
provided informed assent, and their parents provided informed consent;
all participants 181 years provided informed consent. All research prac-
tices were approved by the Institutional Review Board at the University
of California, Los Angeles. Data and analysis code are publicly available
on the Open Science Framework (www.osfi.io/fphn4).

Experimental design
Risky decision-making paradigm. Participants completed the Yellow

Light Game (YLG) while undergoing fMRI scanning (Fig. 1A) (Op de
Macks et al., 2018). An adaptation of a widely used adolescent risk-tak-
ing task (the stoplight game) (Gardner and Steinberg, 2005; Chein et al.,
2011; Peake et al., 2013), the YLG is a computerized driving simulation
in which participants drive along a straight road and encounter a series
of intersections. Consistent with prior studies, participants in our study
were told the objective of the game was to drive through the set of inter-
sections as quickly as possible. The traffic light at each intersection
turned yellow for 1000ms before crossing each intersection, and partici-
pants were faced with a choice to brake (“stop”) or drive through the
intersection (“go”). A choice to brake at the intersection resulted in a
delay of 2500ms. A choice to accelerate through the intersection resulted
in one of two outcomes: (1) participants would drive straight through
the intersection with no delay, or (2) a car from the cross-street would
crash into them resulting in a 5000ms delay. A 10,000ms delay was
imposed if participants failed to respond on a trial. Participants made
their choices by pressing one of two buttons on a button box using their
index and middle fingers.

Participants completed three runs of the task, consisting of 15 trials
each (n=45 total trials). Unbeknownst to participants, five intersections
per run were set to result in a crash if participants chose to accelerate
through them, meaning that the probability of crashing was equal to
one-third. Participants were not made aware of this probability. Each
run had specific intersections that were rigged to crash, and the order in
which runs were administered was counterbalanced across participants.
Buttons indicating “go” and “stop” were also counterbalanced between
subjects among the index and middle fingers. The task was self-paced
but typically took participants ;2.5min to complete each run.
Participants completed two, 10-trial practice runs before scanning to
eliminate any potential confounds associated with learning. The YLG
was programmed in Java and ran off Apache Tomcat, a program that
creates an http web-server environment.

fMRI data acquisition. Imaging data were acquired on a 3T Siemens
Prisma scanner using a 32-channel head coil and a parallel image acqui-
sition system (GRAPPA). A high-resolution T1-weighted, MPRAGE
image was acquired for registration to functional runs (TR=2400 ms,

TE= 2.22ms, flip angle = 8°, FOV=256 mm2, 0.8 mm3 isotropic voxels,
208 slices). Functional images were acquired using a T2* EPI BOLD
sequence. Thirty-three axial slices were collected with a TR of 2000ms
and a 3� 3 � 4 mm3 voxel resolution (TE=30 ms, flip angle = 75°,
FOV=192 mm2). Participants completed the YLG by using a head-
mounted mirror on the coil to view an LCD back projector screen.

fMRI analysis. The following sections describe our approach to analyz-
ing the fMRI data using both univariate activity estimates of the NAcc and
lPFC and multivariate pattern expression (PE) values for reward and cogni-
tive control signatures (signature definitions described below). We first
describe our preprocessing steps and then outline the single-trial analysis
procedure used to produce both univariate activity estimates and multivari-
ate metrics for each trial during the task. Because we were interested in
within-subject variability in decision-making, we estimated univariate and
multivariate values for each trial across all subjects. Single-trial metrics were
used for both the within-person (in disaggregate form) and between-person
(in aggregate form) analyses, for consistency. We also detail how we con-
ducted the traditional univariate analysis of the YLG.

Preprocessing
Before preprocessing, functional images were visually inspected for arti-
facts and biological abnormalities. No images contained obvious artifacts
or biological abnormalities that warranted exclusion from further analy-
sis. fMRI data were preprocessed and analyzed using the fMRI Expert
Analysis Tool (version 6.00) of the FMRIB Software Library package
(FSL, version 5.0.9; www.fsl.fmrib.ox.ac.uk). Preprocessing consisted of
the following steps: We used the brain extraction tool to remove non-
brain tissue from functional and structural runs, spatially realigned func-
tional volumes to the middle image to correct for head motion using
MCFLIRT, and high-pass filtered the data with a 100 s cutoff. We used
fsl_motion_outliers to identify volumes that exceeded a 0.9 mm frame
displacement threshold for head motion (Siegel et al., 2014), although
most participants failed to record any volumes exceeding this threshold
(Extended Data Table 1-1; Extended Data Fig. 1-1). No participant had
.10% of their volumes in a given run exceed the aforementioned
framewise displacement threshold; thus, no participants were excluded
on the basis of head motion in our sample. Spatial smoothing was not
conducted during preprocessing and was instead applied later when
extracting data from single-trial activity estimates because the extent of
smoothing depended on the type of information that was being extracted
from the single trial (average ROI activation warrants greater smoothing
than PE analysis). We prewhitened the data to correct for autocorrelated
residuals across time. Functional data were registered to each subject’s
high-resolution MPRAGE scan with FSL’s boundary-based registration
(Greve and Fischl, 2009) while maintaining the 3� 3� 4 mm voxel size.
To preserve the fine-grained spatial resolution of the data, we did not
register the functional runs to standard MNI space at this stage but did
so for the traditional group analyses (see Table 7). As detailed below,
masks and neural signatures were defined in standard space and then
transformed to subject space.

Within-subject analyses
Single-trial activity estimation. We used a least squares analytic

framework to obtain trial-level estimates of the BOLD signal (i.e., a

Figure 1. Schematic of data collection, processing, and analysis. For visualization of head motion metrics for fMRI data, see Extended Data Figure 1-1. A, Data acquisition of the YLG while partici-
pants were undergoing fMRI scanning. B, LSS modeling implemented as a preprocessing step. C, Schematic of extracting the set of univariate and multivariate metrics from resulting b -series in B.
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b -series) (Rissman et al., 2004). Here we opted to use the least squares
single (LSS) (Fig. 1B) method because of its advantageous statistical
properties over the least squares all estimator, especially considering the
fast timing of the YLG (Mumford et al., 2012, 2014). Accordingly, a
fixed-effects GLM was created for the decision period on each trial of the
YLG game within each participant. A decision period was defined as the
time between the onset of the yellow light (i.e., when the light at the traf-
fic intersection switched from green to yellow as the car approached the
intersection) and when participants pressed a button to signify their de-
cision. A GLM was modeled for the i-th decision period (target decision)
such that the target decision received its own regressor, all other decision
periods were modeled in a single, separate nuisance regressor, and out-
comes of all decisions (delays because of the braking, successful passes
after running the light, or crashes) were modeled in another regressor.

Head motion was statistically controlled for across all GLMs by add-
ing FSL’s extended motion parameters (6 regressors for x, y, z, pitch,
roll, yaw directions, their squares, and the derivatives of both, compris-
ing 24 regressors) in addition to regressors for single volumes that
exceeded a frame displacement threshold of 0.9 mm (i.e., censoring).
The first temporal derivative of all task and motion regressors were also
entered into the model to account for slice timing and motion effects,
respectively. Parameter estimates from each trial-specific GLM were
used to create a linear contrast image comparing the target decision pe-
riod to the implicit baseline (unmodeled events). We then used the
unthresholded z statistics of this contrast to extract univariate and multi-
variate estimates of the BOLD signal in ROIs.

Extracting univariate ROI activity from single-trial estimates (classic
model).Masks were defined to extract univariate activity from the NAcc
and lPFC. Both masks were defined using the Harvard-Oxford prob-
abilistic atlas as rendered in FSL’s viewer (fslview) on the MNI152
NLIN sixth-generation T1 template image at 2 mm3 voxel resolution
(avg152T1_brain.nii.gz) (Brett et al., 2002). This atlas contains probabil-
istic masks to various bilateral structures that articulate the probability
that a given voxel within the mask falls in the specified brain region. We
created a bilateral NAcc mask by merging the atlas’ left and right NAcc
probabilistic images into a nifti volume and thresholding the image at
p= 0.25. We selected the NAcc because of prior empirical and theoretical
accounts of this region’s importance in adolescent risk-taking (Galvan et
al., 2006; Steinberg, 2010). The 0.25 threshold was selected with the goal
of creating a mask that was relatively inclusive but did not also possess

clear outlying voxels (i.e., voxels with a very low probability of landing in
the accumbens). A similar procedure was used to create a bivariate lPFC
mask by selecting and merging left and right interior frontal gyrus masks
(both the pars opercularis and pars triangularis) and thresholding the
image at p= 0.50. We chose a 0.50 threshold for this mask because lPFC
activation reported in prior adolescent neuroimaging studies tends to be
spatially broad. However, we also created another version of this mask
by thresholding at p=0.25 to be consistent with the NAcc mask and
found consistent results (masks shown in Fig. 2).

Once our masks were defined, we transformed the masks into the
native space for each single-trial activity map using FLIRT (i.e., whole
brain zstat) and then extracted activity estimates using the nilearn soft-
ware package (Abraham et al., 2014). We used the package’s NiftiMasker
() function to mask each single-trial activity estimate with the aforemen-
tioned NAcc mask and then again with the aforementioned lPFC mask
and extract the mean of all voxels within each respective mask (Fig. 1C).
It was at this step that we applied smoothing to the extracted data (6
mm, FWHM), as the NiftiMasker() function allows one to smooth a
masked image when extracting data. This step produced a set of NAcc
and lPFC activation estimates for each trial on the task across all subjects
(i.e., each subject had as many NAcc and lPFC activation estimates as
they did decisions in the YLG).

Computing PE from single-trial estimates (switchboard).We used PE
analyses to quantify the extent to which whole-brain patterns of
brain activity corresponded to neural signatures of cognitive con-
trol and value-based computations (Fig. 1C). Such an analysis
allows one to determine how strongly a given pattern of brain ac-
tivity is expressed as a function of a neural signature of interest
(Wager et al., 2013; Chang et al., 2015; Kragel et al., 2018). Neural
signatures are thought to be the fingerprints of brain activity that
encode a particular psychological process or state of interest. In
practice, they are frequently defined as maps of the brain contain-
ing weights that quantify the strength and direction of association
between each voxel and the psychological process of interest.

The first step in this analysis involved defining neural signatures of
cognitive control and value-based computation. To this end, we used
Neurosynth, a web-based platform that automates meta-analysis over a
large set of published fMRI studies (Yarkoni et al., 2011), to retrieve
meta-analytic maps for the terms “value” (470 studies) and “cognitive
control” (598 studies). We chose these terms based on system-based

Figure 2. NAcc and lPFC masks used to extract univariate activation estimates. NAcc refers to ventral striatum. Thresholds were applied to probabilities values from the Harvard-Oxford corti-
cal and subcortical atlases. Masks are depicted in MNI standard space and projected onto an average of all subjects’ high-resolution anatomic images.
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theories such that “value” references one sys-
tem which drives adolescents to make risky
decisions in service of acquiring immediate
hedonic rewards, whereas “cognitive control”
references a second system which modulates
the drive toward immediate rewards
(Steinberg, 2013; Shulman et al., 2016). A ben-
efit of using meta-analytic maps as neural sig-
natures is that they “allow the data to speak for
themselves” by allowing us to select voxel
weights that are most strongly associated to
our psychological processes of interest (in con-
trast to approaches that posit singular ROIs
that might exclude meaningful voxels). To our
knowledge, the majority of data used to calcu-
late these analytic maps come from traditional
univariate studies, although we note that the
high volume of studies should theoretically
allow for identification of the most sensitive
voxels. To ensure the robustness of results, we
used both the uniformity and association
maps (reported in Table 3). While a review of
the differences between these two types of
images is beyond the scope of this paper (see
Neurosynth.org/faq), we briefly note here that
association maps provide greater selectivity
about the relationship between a voxel and a
given term by incorporating information
about base rates. To be comprehensive, we
reran all analyses with the Neurosynth term
“reward” and observed nearly identical results.
Maps of the two signatures (uniformity) are
depicted in Figure 3.

Once the neural signatures were defined, we transformed each signa-
ture into the native space of each single-trial activity map (i.e.,
whole-brain zstat), and extracted multivariate patterns from both the
transformed neural signatures and activity estimates using NiftiMasker
(). Multivariate patterns were minimally smoothed (1 mm FWHM)
(Weaverdyck et al., 2020), and then the dot product between voxels in
the two patterns (activity estimate, neural signatures) was taken (we
reran all analyses with a greater smoothing kernel, 4 mm FWHM, and
obtained highly similar results). This resulted in two PE estimates per
trial: one quantifying the expression of value patterns in brain activity
during a given decision and another quantifying the expression of cogni-
tive control patterns in brain activity during the same decision. Barring
missing decision data (Fig. 4), each subject had 90 PE estimates: 45 for
value and 45 for cognitive control, each corresponding to a decision dur-
ing the YLG.

Notably, we were aware of previous work using PE analyses with a
preprocessing stream that involved normalizing images to standard
space (Wager et al., 2013; Chang et al., 2015). We note that our decision
to keep images in subject space for PE calculation is not necessarily at
odds or incompatible with these prior studies, best practices for PE anal-
yses, or even the broader multivoxel pattern analysis literature. Unlike
these prior studies, our goal was not to create a biomarker or construct a
neural signature that can be applied across an entire population
(Weaverdyck et al., 2020). Because our focus was on intra-individual
fluctuations in activity and links to decision-making behavior, it was
appropriate to refrain from normalizing to preserve fine-grain spa-
tial information.

Between-subject analyses
Aggregation of trial-level data for between-subjects analysis. In order

to conduct between-subject analyses, we aggregated the trial-level uni-
variate and PE data. We did this by taking the average of the aforemen-
tioned brain activity metrics for each subject.

Group-level brain mapping analysis. We conducted traditional,
group-level brain mapping (mass univariate) analyses to serve as a com-
parison point and complement our between-subject analyses (Chein et

al., 2011; Telzer et al., 2015; Op de Macks et al., 2018). To this end, we
first submitted each participant’s run-level data to a fixed GLM analysis
in FSL. For this purpose, the YLG was modeled consistent with other
prior univariate studies by including a regressor for Go decisions, a
regressor for Stop decisions, and a regressor for outcomes (regardless of
type, e.g., successful pass, crash). This differed from the LSS analysis in
that all events from each condition of interest (Go decisions, Stop
decisions, outcomes) are put into a single regressor for that condi-
tion, whereas the LSS analysis assigns a target decision trial (regard-
less of type) its own regressor, and all other decisions and outcomes
are modeled as two separate nuisance regressors. The same prepro-
cessing decisions steps were taken as in all other analyses (e.g., slice
timing correction via adding temporal derivatives, adding extended
motion parameters, censored volumes, etc.). The only exception was
that we smoothed our data for this model (6 mm, FWHM), and non-
linearly registered high-resolution anatomic images to the MNI152
template image (10 mm warp resolution), and used the subsequent
transformation matrix to register the functional images to standard
space.

Parameter estimates from this GLM were used to create linear con-
trast images comparing the Go and Stop conditions (Go-Stop, Stop-Go).
Random effects, group-level analyses were performed on this contrast
using FSL’s FLAME1 module. A cluster defining threshold of Z= 3.1 was
used in conjunction with a familywise error rate of p, 0.05 and
Random Field Theory cluster correction to address the problem of mul-
tiple comparisons. An additional whole-brain analysis regressed age
(mean centered) on these contrasts but found no age effects.

Statistical analysis
Overview. Our analytic approach consisted of two parts. The first set

of analyses examined neural systems underlying within-subject variabili-
ty in decision-making, using both classic and switchboard models. The
second set of analyses examined between-subject variability in decision-
making. Here, we again compared classic and switchboard dual-systems
models. A detailed description of both approaches follows below. For
thoroughness, we also report a traditional between-subjects univariate
analysis of the YLG in Table 7.

Figure 3. Multivariate signatures of value (top row) and cognitive control (bottom row). Both signatures obtained from
Neurosynth. Uniformity signatures are depicted. Voxels weights differed between each mask (i.e., a hypothetical voxel could
be included in both signatures, but its weight likely varied between signatures). This is important to note because these
maps were used as multivariate signatures, which ultimately meant that the same brain regions included in both masks pos-
sessed a different multivariate signature.
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Within-subjects: modeling trial-level influences of brain on behavior.
We executed our within-subjects test of the classic and switchboard
models with a series of multilevel logistic regression models. For each
theory (classic, switchboard), we conducted a multilevel logistic regres-
sion model, including trial-level estimates of brain activity and subject-
level controls (age, gender). The form and specification of the statistical
models for both variants follow:

Trial-level, Classic:

LogitðDecisionijÞ ¼ p 0j 1p 1jðNAccijÞ1p 2jðlPFCijÞ

Trial-level, Switchboard:

LogitðDecisionijÞ ¼ p 0j 1p 1jðValue PEijÞ
1p 2jðCognitive Control PEijÞ

Decisions (1= risky [Go], 0 = safe [Stop]) at the i-th trial for the j-th
individual were modeled as a function of a subject-specific intercept
(p 0j), and brain activity metrics. The brain activity metrics in the classic
model were average activations in the ventral striatum (NAccij) and
lPFC (lPFCij) at the i-th trial for the j-th individual. Said activity metrics
in the switchboard model were PE estimates for value (Value PEij) and
cognitive control (Cognitive Control PEij) for the i-th trial for the j-
th individual. Subject-specific parameters for all within-person pre-
dictors (p 1j and p 2j) correspond to the subject-specific expected
change in the log-odds of making a risky decision given a 1 unit
increase in the predictor (e.g., average univariate brain activity, PE
score) holding the other predictors constant. All trial-level predic-
tors were standardized using the grand mean. Rerunning main anal-
yses while standardizing trial-level predictors within-person
produced statistically significant results with comparable parameter
estimates (magnitude and sign).

As noted above, we controlled for the following between-subject var-
iables: gender (dummy coded, 0 =male, 1 = female) and age. The form of
the between-subjects component of the model for both classic and
switchboard follows (i.e., this component of the model was the same for
both classic and switchboard models):

p 0j ¼ g 00 1 g 01ðGenderjÞ1 g 02ðAgejÞ1 u0j

p 1j ¼ g 10 1 u1j

p 2j ¼ g 20 1 u2j

This component of the model reflects how all trial-level parameters
are allowed to vary randomly between subjects (indicated by the uj’s,
random effects) while showing the main effect of between-subject pre-
dictors (g 01 and g 02). The other gammas in the model (g 10 and g 20)
represent the fixed effect of the trial-level predictors (i.e., the portion of
trial-level effects that are common to all participants). Random coeffi-
cient regression models were implemented with the lme4 package in R
(Bates et al., 2014), and significant tests were obtained using the
lmerTest package (Kuznetsova et al., 2017). Here we note that this ana-
lytic framework affords us greater statistical power than we would focus-
ing on a model exclusively testing between-subjects differences because
we have many decisions nested within individuals. Because our predic-
tors of interest occurred at the level of the decision, we were able to reach
;80% statistical power to detect a meaningful trial-level effect
(Schoeneberger, 2016; Astivia et al., 2019). We also tested permutations
of these models that allowed age to interact with the trial-level brain ac-
tivity metrics, effectively testing the possibility that the strength of the
two neural systems changes with age.

Modeling between-subject brain-behavior associations. Using the
aggregated univariate activity (i.e., the average of each subjects’
trial-level brain activity metrics) and aggregated PE estimates
(obtained via averaging over estimates within each subject), we
sought to examine between-subject brain-behavior associations.
To do so, we conducted two multiple regression analyses. The first
analysis examined the contribution of univariate NAcc and lPFC
activity on the percentage of risky decisions during the task while
controlling for age and gender. The second analysis swapped out
the univariate predictors for the multivariate PE metrics.

Results
Baseline models and descriptive data visualizations
Individual decisions across all subjects are plotted in Figure 4. This
figure highlights the variability in risky behavior both within and

Figure 4. Visualizing risky and safe decisions on the YLG for all participants. Red squares represent risky decisions. Black squares represent safe decisions. White squares represent no decision (i.e., fail-
ure to respond). Columns represent decision (trial) number, arranged chronologically. Rows represent subjects (arranged in order of descending rate of risky decisions). Entries into the matrix represent
whether a given subject made a risky or safe decision on a given trial.
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between subjects. Additionally, we ran two “baseline” multilevel
logistic regression models on the trial-level risky decision-making
data from the YLG. The first model was an empty model, modeling
trial-level decisions only as a function of an intercept, effectively esti-
mating the unconditional likelihood of making a risky decision on
the task (Table 1). The second model included gender and age as
predictors (“covariate-only model”) so as to examine the effects of
these variables unconditioned on the brain activity data (Table 1);
neither was related to risky decision likelihoods.

Within-subjects results
Results from our within-subject models are summarized in
Tables 2-4 and Figure 5. All are described in greater detail below.

Classic
Using the classic system-based model, we found that trial-level
univariate NAcc and lPFC activity was independently associated
with decision tendencies in the YLG in a manner consistent with
theory. Within-person increases in NAcc activity were associated
with an increased likelihood of making a risky decision, whereas
within-person increases in lPFC activity were associated with a
decreased likelihood of making a risky decision. The magnitudes
of the effects were comparable: a 1 unit increase in NAcc activity
was associated with a 15.03% increase in the expected odds of
making a risky decision, whereas a 1 unit increase in lPFC activity
corresponded with a 13.67% decrease in the expected odds of
making a risky decision (calculated using coefficients reported in
Table 2, Column A). Notably, these results remained highly simi-
lar when using an alternate, more conservative lPFC mask (results
still significant, same direction, comparable effect sizes; Table 2,
Column B). Age did not interact with either NAcc or lPFC activity
(Table 4, Column A).

Switchboard
Results from the switchboard system-based model are summar-
ized in Table 3. These results are partially consistent with sys-
tem-based theories, in that cognitive control PE estimates were
significantly associated with risky decision-making on the YLG.
A 1 unit increase in cognitive control PE corresponded with an
11.57% decrease in the expected odds of making a risky decision
(obtained from Table 3, Column A). Sensitivity analyses indi-
cated that this effect was robust to variations in neural signatures
(e.g., when using uniformity and association maps, unique voxels
in uniformity maps; see Table 3, Columns B, C) and these effects
were not present when using theoretically orthogonal neural sig-
natures (“vision” and “auditory,” see Table 5). Collectively, these

results indicate that multivariate pattern-based activity related to
cognitive control encodes meaningful information about risk-
taking tendencies. Simultaneously, and inconsistent with system-
based theories, value-based PE estimates were not significantly
associated with risky decision propensities (coefficient: 0.051,
SE 0.048, not significant; Table 3). To ensure our value-based
results were not driven via the selection of an erroneous pattern,
we reran analyses using Neurosynth’s “reward” term and obtained
near-identical results (reward coefficient: 0.043, SE=0.048, not
significant). Importantly, multivariate patterns and univariate ac-
tivity metrics were modestly correlated (correlations ranged
between;0.09 and 0.4), and overlap between the lPFC and cogni-
tive control multivariate signature, the only system that was signif-
icant in both model variants, was minimal (only 7.9% of the
voxels in the cognitive control signature were also present in the
lPFC mask). We reiterate here that univariate activity metrics and
multivariate PE scores represent different aspects of brain activity,
and these descriptive statistics emphasize this point. As with the
classic model, age did not interact with either value or cognitive
control patterns.

We conducted post hoc analyses to interrogate the lack of a rela-
tionship between value-based PE estimates and risky behavior. We
first examined whether multivariate signatures within the NAcc
were associated with behavior given that univariate signals within
this region were, operating under the logic that value-based patterns
may be more localized to a given region than cognitive control. We
reran the PE analyses with the value-based neural signature, but this
time only included voxels in the NAcc in our mask. Again, this
analysis showed a nonassociation between value-based PE scores in
the NAcc and risky decision-making (coefficient=0.000, not signifi-
cant). Given this result and the nature of PE analysis, it was puzzling
why univariate activity in the NAcc tracked with behavior (espe-
cially when considering a bulk of the pattern was comprised of
NAcc voxels; Fig. 3), but value-based signatures, even if localized to
the NAcc, did not. This led us to believe that perhaps it was the ho-
mogeneity of multivariate activity in NAcc that related to risky deci-
sion tendencies. Multivariate patterns necessarily encode spatial
variability, but it could be that homogeneity or uniformity of activity
is more strongly predictive of behavior, suggesting that PE estimates
that inherently capture this variability may be poor predictors of
behavior. To test this, we re-extracted multivariate patterns from
the NAcc and lPFC and computed Gini coefficients for each region
for each trial. Traditionally used in macroeconomics but recently
applied in neuroscience (Guest and Love, 2017; Guassi Moreira et
al., 2019), Gini coefficients in this context can describe the extent
to which brain activity in a given region is homogeneous (uni-
form) or heterogeneous. Indeed, as shown in Table 6, a lower Gini
coefficient in the NAcc (i.e., more uniform activation) was associ-
ated with an increased propensity to take risks on the YLG, sug-
gesting a strong, one-dimensional encoding of value signatures
during decision-making.

Between-subject results
Results from between-subject analyses indicate that none of the
between-subject brain activity metrics (univariate or pattern
based) was related to proportion of risky decisions (univariate
NAcc: b=0.223, SE= 0.316, p. 0.250; univariate lPFC: b =
�0.209, SE= 0.270, p. 0.250; value PE: 8.725e-5, SE= 1.823e-4,
p. 0.250; cognitive control PE: �1.435e-4, SE= 1.219e-4,
p= 0.245). A traditional brain mapping (mass univariate) analy-
sis of the YLG showed significant ACC activity for the Go .
Stop contrast in addition to significant amygdala and dorsal
striatal activity (Fig. 6; Table 7).

Table 1. Log-odds of risky choice from empty and covariate-only models

Empty Covariate-only

Term Estimate
Intercept 0.527 (0.087)*** 0.599 (0.119)***
Trial number — �0.009 (0.047)
Age — 0.104 (0.085)
Gender — �0.144 (0.169)
Variance component Estimate
Var(intercept) 0.282 0.268
Var(trial number) — 0.006
Fit statistic Statistic
AIC 2887.1 2892.8
BIC 2898.5 2932.8

Sex was dummy coded (0 = male; 1 = female). SEs of parameter estimates are given in parentheses. Var()
refers to a variance component of a given random effect from the model.
***p, 0.001.
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Discussion
The current study used a brain modeling philosophy (Kragel et al.,
2018) in conjunction with within-subject multilevel logistic regres-
sion to test system-based theories of adolescent decision-making. In
doing so, we also expanded on traditional neuroscientific imple-
mentations of system-based theories by examining the role of multi-
variate neural signals. We found that features of brain activity
predicted behavior in a manner consistent with system-based theo-
ries. We observed this in two variants of the model: a classic imple-
mentation assuming modularity among ROIs and a novel variant
that included information for multivariate signatures. These find-
ings have a number of ramifications for neuroscientific models of
adolescent decision-making.

Implications for system-based theories of adolescent
decision-making
We observed that value-based and cognitive control systems gen-
erally predicted behavior in a manner consistent with system-

based theories: univariate estimates of NAcc and lPFC activity
were directly and inversely, respectively, associated with the
probability of making risky decision, while cognitive control PE
was predictive of a reduced likelihood to make a risky decision.
Our between-subject analyses, along with traditional mass uni-
variate brain mapping analyses, failed to show any such trends.
Two broad conclusions follow from these results. First, these
findings support the utility of brain modeling techniques for test-
ing system-based theories of decision-making in developmental
neuroscience and beyond, reinforcing that brain modeling and
brain mapping philosophies are not simply inverse functions of
the other that yield equivalent results (Kragel et al., 2018).
Second, and perhaps more importantly, these results suggest fea-
tures of system-based theories of decision-making carry evidenti-
ary value, despite compelling arguments to the contrary (Pfeifer
and Allen, 2012). The present findings suggest that system-based

Table 3. Log-odds of risky choice from within-subjects analysis of switchboard
system-based models

Term A: Estimate B: Estimate C: Estimate

Intercept 0.581 (0.123)*** 0.510 (0.122)*** 0.619 (0.122)***
Value PE 0.051 (0.048) 0.008 (0.054) �0.004 (0.052)
Cognitive control PE �0.123 (0.047)** �0.119 (0.060)* �0.154 (0.055)**
Age 0.113 (0.087) 0.134 (0.079)† 0.122 (0.087)
Gender �0.104 (0.181) 0.054 (0.181) �0.176 (0.174)

Variance component A: Estimate B: Estimate C: Estimate
Var(p 0ij) 0.259 0.253 0.284
Var(p 1ij) 0.000 0.006 0.010
Var(p 2ij) 0.003 0.039 0.022

Fit statistic A: Statistic B: Statistic C: Statistic
AIC 2894.3 2892.6 2888.1
BIC 2957.1 2955.4 2950.9

Value PE refers to value-based PE; Cognitive control PE refers to cognitive control PE. Var() refers to a variance com-
ponent of a given random effect from the model. Results come from a multilevel logistic regression model, with
log-odds of a risky choice as the dependent variable. Column A, Results using Neurosynth association maps for PE
analysis; Column B, Results using Neurosynth uniformity maps; Column C, Results from a PE analysis using only
unique voxels among the value and cognitive control Neurosynth uniformity maps (i.e., common voxels between the
two masks were removed).
*p, 0.05. **p, 0.01. ***p, 0.001. †p, 0.10.

Table 2. Log-odds of risky choice from within-subjects analysis of classic
system-based models

Term A: Estimate B: Estimate

Intercept 0.580 (0.121)*** 0.575 (0.121)***
NAcc 0.140 (0.063)* 0.135 (0.064)*
lPFC �0.147 (0.057)* �0.123 (0.058)*
Age 0.105 (0.086) 0.104 (0.086)
Gender �0.084 (0.172) �0.077 (0.172)

Variance component A: Estimate B: Estimate
Var(p 0ij) 0.267 0.267
Var(p 1ij) 0.041 0.043
Var(p 2ij) 0.024 0.024

Fit statistic A: Statistic B: Statistic
AIC 2888.7 2888.7
BIC 2951.5 2951.5

Gender was dummy coded (0 = male; 1 = female). NAcc refers to univariate ventral striatum activity; lPFC
refers to univariate lPFC activity. Var() refers to a variance component of a given random effect from the
model. Results come from a multilevel logistic regression model, with log-odds of a risky choice as the de-
pendent variable. Column A, Results using an lPFC mask thresholded at 0.25; Column B, Results using an
alternate, more conservative mask (thresholded at 0.50) that covered less cortical area.
*p, 0.05. ***p, 0.001.

Figure 5. Associations between univariate and multivariate brain activity and probability of making a risky decision. NAcc Univariate, trial-level univariate NAcc activity estimates; lPFC
Univariate, trial-level univariate lPFC activity estimates; Cog Control Pat Exp, trial-level cognitive control PE estimates; Value Pat Exp, trial-level value-based PE estimates. Left, Fixed effects of
brain activity metrics from both models. Middle, Subject-specific random effects of associations between risky decision-making probability and univariate NAcc and univariate lPFC activity.
Right, Subject-specific random effects of associations between risky decision-making probability and, value-based PE, and cognitive control PE values.
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theories may offer interim frameworks for relatively young fields,
such as cognitive neuroscience, as they continue to incrementally
extend theory on the basis of novel evidence (Baddeley, 2012;
Pfeifer and Allen, 2016). Even as these theories are eventually
replaced by stronger accounts that consider more nuanced rela-
tionships between cognitive control and value systems as well as
other biological influences (Harden et al., 2017; Davidow et al.,
2018), their use as “baseline”models may facilitate novel theoret-
ical insights so long as they are not subscribed to too rigidly.
Furthermore, that features of system-based models have eviden-
tiary value is not tantamount to saying they are optimal (indeed,
a comparison of model fit statistics between system-based mod-
els and empty or covariate-only models in the present study sug-
gests otherwise), but rather points to the need to develop and test
more nuanced quantitative models of the neurodevelopment of
decision-making behavior. Relatedly, we failed to observe inter-
actions between brain activity metrics and age, a major tenet of
developmental system-based models. This null finding under-
scores our call for greater nuance in quantitative models of

decision-making neurodevelopment: clear age-related behavioral
differences in risk-taking behavior (Duell et al., 2018; Defoe et
al., 2019) are necessarily encoded in brain activity, yet current
modeling approaches have been unable to consistently link age
differences in the association between neurobiology and
behavior.

Modularity and population coding in system-based theories
of decision-making
On a more granular level, our results speak to two long-discussed
concepts in neuroscience: modularity and population coding
(Erickson, 2001). These two concepts are reflected by univariate
and multivariate analyses, respectively, in neuroimaging data.
Most system-based theories of adolescent decision-making origi-
nate from disciplines within psychological science that espoused
modularity at the psychological level (Steinberg et al., 2008).
Although it is not a given that psychological modularity necessi-
tates neural modularity, this assumption has been preserved in
many neuroscientific implementations of system-based theories
(Strang et al., 2013; Shulman et al., 2016), despite evidence in
adults that multivariate patterns reflect meaningful information
about decision-making (Hampton and O’Doherty, 2007). Our
univariate and multivariate results, somewhat surprisingly, pro-
vide support for both modularity and population coding, respec-
tively (Cosme and Lopez, 2020); specifically, results revealed that
univariate NAcc and lPFC activity was associated with decision
behavior, and also that PE of a multivariate cognitive control
(but not value) signature predicted decisions. The former (evi-
dence of modularity) is surprising, given the limited support for
neural modularity that prior studies have found (Erickson,
2001), whereas the latter (population coding) is notable because
no prior studies, to our knowledge, have found evidence of such
in the context of brain modeling decision behavior (i.e., using
multivariate metrics to model behavior/cognition).

These findings carry notable implications. Although our
results suggest that modularity may be a feature of adolescent de-
cision behavior, we cannot conclude with certainty what activa-
tion in those modules (i.e., NAcc and lPFC) reflects. While such
activation could index computations related to value and cogni-
tive control, respectively, it is more difficult to infer psychological
processes from ROI-based activity than from multivariate signa-
tures, which tend to be more specific in what they reflect
(Poldrack, 2006; Wager et al., 2013). Our data are roughly

Table 4. Models testing interactions with age

Term A: Estimate B: Estimate

Intercept 0.583 (0.121)*** 0.508 (0.122)***
NAcc (A) | Value PE (B) 0.120 (0.063)† 0.007 (0.054)
lPFC (A) | Cognitive control PE (B) �0.139 (0.057)* �0.117 (0.061)†
Age 0.107 (0.087) 0.120 (0.086)
Gender �0.088 (0.171) �0.056 (0.182)
NAcc (A) | Value PE (B) � Age �0.090 (0.063) 0.004 (0.056)
lPFC (A) | Cognitive control PE (B) � Age 0.045 (0.057) 0.019 (0.062)

Variance component A: Estimate B: Estimate
Var(p 0ij) 0.266 0.252
Var(p 1ij) 0.033 0.006
Var(p 2ij) 0.022 0.036

Fit statistic A: Statistic B: Statistic
AIC 2890.8 2896.5
BIC 2965.0 2970.7

Gender was dummy coded (0 = male; 1 = female). NAcc refers to univariate ventral striatum activity; lPFC
refers to univariate lPFC activity. Var() refers to a variance component of a given random effect from the
model. Results come from a multilevel logistic regression model, with log-odds of a risky choice as the de-
pendent variable. Column A, Results from the classic model (lPFC threshold = 0.25); Column B, Results from
the switchboard model (association maps). In order to be concise, differing terms for each model (any term
involving a metric of brain activity) are included in the same line of the first column, separated by “|.”
*p, 0.05. ***p, 0.001. †p, 0.10.

Table 5. Log-odds of risky choice from models with additional Neurosynth pat-
terns to gauge uniqueness of cognitive control PE findings

Term Estimate

Intercept 0.569 (0.120)***
Vision PE 0.096 (0.054)†
Auditory PE 0.075 (0.050)
Age 0.072 (0.083)
Gender �0.072 (0.168)

Variance component Estimate
Var(p 0ij) 0.292
Var(p 1ij) 0.027
Var(p 2ij) 0.011

Fit statistic Statistic
AIC 2888.4
BIC 2951.2

Gender was dummy coded (0 = male; 1 = female). The alternate maps correspond to the terms listed in the
table (Vision, Auditory). Association maps for each term were used. Var() refers to a variance component of
a given random effect from the model. Results come from a multilevel logistic regression model, with log-
odds of a risky choice as the dependent variable.
***p, 0.001. †p, 0.10.

Table 6. Models with predicting decision activity from trial-level Gini
coefficients

Term Estimate

Intercept 0.629 (0.121)***
NAcc Gini �0.115 (0.048)*
lPFC Gini 0.057 (0.047)
Age 0.080 (0.088)
Gender �0.198 (0.172)

Variance component Estimate
Var(p 0ij) 0.270
Var(p 1ij) 0.009
Var(p 2ij) 0.004

Fit statistic Statistic
AIC 2894.1
BIC 2956.9

Gender was dummy coded (0 = male; 1 = female). Var() refers to a variance component of a given random
effect from the model. Results come from a multilevel logistic regression model, with log-odds of a risky
choice as the dependent variable.
*p, 0.05. ***p, 0.001.
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consistent with an amplifier model, which would allow for rec-
onciliation of our classic and switchboard results. In such a
model, multivariate patterns may code for the psychological pro-
cess of interest and the modules observed here act as “volume”
knobs that amplify their magnitude. In other words, the multi-
variate patterns code for a given psychological process, whereas
the univariate activity of the modules controls the intensity of
the process. Indeed, such multidimensional coding schemes
appear to support decision behaviors in monkeys (Zhang et al.,
2019), and similar findings from human samples in other
domains (eating behavior) further hint at the neural plausibility
of a modular-population hybrid scheme (Cosme and Lopez,
2020). Further work could also examine whether there is a quali-
tative shift between coding schemes across development (Gee et
al., 2013). Although we found no such evidence in our own data,
future work could broaden age ranges to include young children
and adults to determine the extent to which system-based models
explain decision-making at different developmental stages. Overall,

it is clear that additional work is needed to characterize the relative
contributions of neural modules and population codes in system-
based theories of decision-making, involving the use of different be-
havioral tasks, different multivariate signatures, and evaluation of
decision behaviors in different contexts.

Building on system-based theories of adolescent decision-
making
Our findings suggest system-based models provide at least some
explanatory utility, but it is critical that future work improves on
existing models in several key ways. One future step will be to
determine the algebraic form of influential system-based theo-
ries. Existing neuroscientific system-based theories of human de-
cision-making are virtually exclusively expressed in linguistic
terms without specifying a computational model (i.e., they are
explained qualitatively, instead of with an algebraic equation).
This means one could posit a number of algebraic forms that sat-
isfy qualitative requirements of system-based theories that each
carry very different implications. We assumed a linear relation-
ship between the log-odds of a risky choice and metrics of brain
activity, but an alternate statistical model may be more appropri-
ate. Future studies could test a set of candidate algebraic formula-
tions of system-based decision-making theories (e.g., estimating
latent value and linking to decision likelihoods, etc.). This could
facilitate cross-study and cross-discipline comparison by setting
an objective framework that supports falsifiability. Future work
must also directly address our null findings involving value-
based PE values. While we tested “reward” and “value” patterns
and obtained null results with both, it is possible an alternative
untested pattern computed in a different manner (i.e., not relying
on meta-analytic maps) would yield positive results. To rigor-
ously test this possibility, we recommend future studies system-
atically create and test patterns that vary iteratively on
psychological processes relevant for system-based theories
(Wager et al., 2013; Chang et al., 2015). This process should also
involve understanding how such maps change with develop-
ment, as it may be unrealistic to assume a reward signature

Table 7. Brain regions that showed significant activation Go . Stop and Stop
. Go

Region x y z Z k

Go . Stop
Occipital pole L �18 �90 0 7.51 13,177b

Striatum R 10 6 8 4.22 b

pSTS L �52 �36 28 5.18 491
ACC R 12 10 42 5.15 406
Amygdala L �30 �10 �14 5.60 372
Amygdala R 30 �12 �12 5.86 229
Insular cortex L �56 4 12 4.49 216
SPL R 24 �52 56 5.34 146

Stop . Go
TPJ R 50 �56 42 4.97 566
TPJ L �46 �60 46 4.52 204

R, Right; L, left; x, y, and z, MNI coordinates; Z, z statistic at those coordinates (local maxima); pSTS, poste-
rior superior temporal sulcus; SPL, superior parietal lobule; TPJ, temporoparietal junction. Regions that share
the same superscript (b) are part of the same cluster.

Figure 6. Results from the Go. Stop (top row) and Stop. Go (bottom row) contrasts. x, y, z indicate voxel coordinates in MNI standard space. Clusters rendered here were obtained using
a cluster-defining threshold of Z= 3.1, correct for multiple comparisons at p, 0.05 using Random Field Theory. Clusters are rendered on bg_image, FSL’s average of all subjects’ high-resolu-
tion anatomic images.
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derived in one age group is readily applicable to all ages. Taking
such an approach would also have the benefit of providing
insights into what specific psychological features these patterns
encompass, for example, by examining subcomponents of cogni-
tive control (e.g., working memory). Finally, it is worth noting
that interactions between each system and age were null, defying
a core feature of system-based theories, suggesting that more bot-
tom-up exploratory work is needed to better understand how the
dynamic potency of each system changes with age. Ideally, such
work would involve repeated sampling at both the decision- and
subject-level (i.e., longitudinal assessments).

Limitations and future directions
The current study has several limitations that point directly to
future directions in this line of research. The first is that the effect
sizes found from key results are somewhat modest. Though not a
traditional “limitation” per se, this points to the possibility that
other untested computational signals in the brain may also con-
tribute to decision behavior. Another limitation is that the pres-
ent results were obtained in a single, moderately sized sample
and ought to be replicated (Helmer et al., 2020; Marek et al.,
2020). That said, our concerns about sample size are partially
assuaged by the fact that we leveraged multilevel models to maxi-
mize statistical power when examining brain-behavior associa-
tions (Schoeneberger, 2016). Three additional limitations also
exist regarding generalizability. First, in terms of adolescent deci-
sion-making, prior work shows adolescent decision behaviors
are prone to tremendous diversity across the world and even
within individuals (Steinberg et al., 2018), forcing us to consider
that these results, even ignoring other limitations, may not reflect
a “common ground truth” among all humans or even within a
single human (to the extent such a “ground truth” actually
exists). Second, it is possible that a different pattern of results
would emerge for decision behaviors in other contexts (e.g.,
moral, financial decisions). Third, it is unclear whether these
findings are specific to adolescence or generalize to general deci-
sion-making processes across the lifespan. A final limitation is
that we did not compare our implementation of system-based
theories to alternative theories. While this is mainly because sys-
tem-based theories have dominated the field and alternative
approaches have been relatively atheoretical (Pfeifer and Allen,
2012, 2016), we look forward to future work aimed at rigorously
comparing alternate explanations.

In conclusion, system-based theories of adolescent decision-
making have drawn tremendous scholarly interest, yet the verac-
ity of their neuroscientific implementation has been the subject
of much debate. This investigation was the first, to our knowl-
edge, to test system-based theories of adolescent decision-making
using a methodological approach that is more consistent with
the core tenets of such theories (i.e., brain modeling). We found
evidence that system-based theories are indeed predictive of
adolescent risk-taking behaviors, showing that univariate and
multivariate brain activity metrics of cognitive control and value-
based processes predict trial-by-trial risky decision tendencies.
We did not, however, observe evidence that these neural systems
interacted with age, at odds with a key element of system-based
theories. Overall, this work contributes knowledge about the
neural bases of adolescent decision behavior.
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