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Abstract

Recent genetic studies have provided overwhelming evidence of the involvement of microglia-

related molecular networks in the pathophysiology of Alzheimer disease (AD). However, the 

precise mechanisms by which microglia alter the course of AD neuropathology remain poorly 

understood. Here we discuss current evidence of the neuroprotective functions of microglia with a 

focus on optical imaging studies that have revealed a role of these cells in the encapsulation of 

amyloid deposits (“microglia barrier”). This barrier modulates the degree of plaque compaction, 

amyloid fibril surface area and insulation from adjacent axons thereby reducing neurotoxicity. We 

discuss findings implicating genetic variants of the microglia receptor, Triggering Receptor 
Expressed On Myeloid Cells 2 (TREM2), in the increased risk of late onset AD. We provide 

evidence that increased AD risk is at least partly mediated by deficient microglia polarization 

towards amyloid deposits, resulting in ineffective plaque encapsulation and reduced plaque 

compaction, which is associated with worsened axonal pathology. Finally, we propose possible 

avenues for therapeutic targeting of plaque-associated microglia with the goal of enhancing the 

microglia barrier and potentially reducing disease progression.
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Introduction

Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder, is characterized 

by slowly progressive cognitive decline that has devastating personal and socio-economic 

implications. Despite significant efforts to develop treatments the field has seen little 

success, partly due to an incomplete understanding of the mechanisms underlying disease 

pathogenesis. The defining neuropathological criteria for AD are extracellular deposits of 

aggregated β-amyloid (Aβ) peptides, and intracellular neurofibrillary tangles (NFT) 

composed of hyperphosphorylated microtubule associated protein (MAP) tau. A general 

consensus is that Aβ deposition occurs first, triggering NFT formation, synapse loss, cell 

death and cognitive decline(1, 2). However, the sequence of events leading to protein 

aggregation and the relative contributions of Aβ and tau aggregates to neural toxicity and 

glial reactions remain incompletely understood.

Aβ peptides are produced by enzymatic cleavage of the extracellular domain of the amyloid 

precursor protein (APP) (3) and are continuously released into the interstitial space. Peptides 

with different lengths are produced, with Aβ40 being the most abundant isoform but Aβ42 

having the highest propensity to aggregate and greatest potential cytotoxicity(1). These 

peptides can polymerize into oligomers and fibrils, with low molecular weight species (e.g. 

dimers, trimers) being water soluble and diffusible(4), while protofibrils and fibrils 

becoming insoluble and having a tendency to coalesce into aggregates that deposit within the 

brain parenchyma and microvasculature (5). Once extracellular aggregation occurs, these 

deposits become a sink where newly formed Aβ monomers bind with high affinity, causing 

gradual plaque enlargement over very long intervals(6–9). Postmortem clinical-pathological 

correlations and Positron Emission Tomography (PET) imaging of AD patients has revealed 

that the build-up of Aβ precedes cognitive deficits by decades(10, 11). This suggests that a 

critical threshold of Aβ burden must be reached to instigate cognitive decline. However, 

there is a relatively weak correlation between plaque load and cognitive scores(12, 13), 

suggesting that additional factors contribute to modulating neural injury caused by amyloid 

deposits.

One such factor may be the microglial and astrocytic responses that occur around amyloid 

deposits. Microglia are yolk sac derived cells(14), that share functional and molecular 

features with tissue macrophages(15–17), and function as resident immune cells in the 

central nervous system (CNS). Microglia are found throughout the CNS where they are tiled 

into non-overlapping domains. Under homeostatic conditions, microglia are highly branched 

and motile, constantly extending and retracting while their cell body remains stationary(18, 

19). The function of this dynamic behavior is poorly understood, but it may serve a 

surveillance role for detection of tissue homeostatic and pathological changes(20, 21). 

Recent work suggested that microglia may have additional physiological roles in the healthy 

brain such as synapse refinement(22, 23); monitoring synapse activity(24), and providing 

trophic support for neuronal plasticity(25). In response to pathogenic stimuli, cell debris and 

physical injury, microglia rapidly transform into activated phenotypes involving 

proliferation, increased phagocytosis and production of pro-inflammatory cytokines(20). In 

AD, microglia cluster around Aβ deposits and adopt a polarized morphology with 

hypertrophic processes extending towards plaques(26–28). Microglia are thought to regulate 
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the degree of amyloid deposition by phagocytosis of amyloid aggregates with potentially 

protective impact on AD progression(29, 30). However, chronic microglia activation may be 

associated with production of neurotoxic inflammatory cytokines and reactive oxygen 

species(31) and microglia have been suggested to phagocytose synapses under pathological 

conditions(32, 33); thus, they could exert deleterious effects that contribute to disease 

pathogenesis. Thus, it remains unclear if microglia have a net protective or harmful effect.

The role of microglia in AD has recently gained renewed impetus due to the identification of 

rare coding variants associated with AD in genes highly expressed in these cells(34, 35), 

providing strong evidence that microglia may contribute directly to the pathogenesis of this 

disorder. The strongest of these associations are variants in TREM2; (Triggering Receptor 

Expressed on Myeloid cells 2), a gene that in the brain is virtually exclusively expressed in 

microglia(36). Recent evidence suggests that microglia exert neuroprotective functions that 

are impaired in individuals with TREM2 variants resulting in increased AD risk(34, 35, 37). 

Here, we review the biology of microglia neuroprotection in AD, with special emphasis on a 

previously unrecognized role for these cells in the encapsulation of amyloid plaques, which 

has marked effects on the conformation and toxicity of amyloid deposits and their insulation 

from adjacent neuronal processes(27, 38). We discuss studies using high-resolution optical 

imaging in live mice and postmortem human brain that have provided supporting evidence 

for these neuroprotective functions and the modulatory role by TREM2. Finally, we discuss 

the implications of these findings regarding therapeutic interventions and diagnostic 

imaging.

TREM2 variants highlight a protective microglia function in AD 

pathogenesis

Although microglia could play a significant role in AD pathogenesis through Aβ 
phagocytosis or secretion of pro-inflammatory cytokines, evidence supporting their 

involvement in AD has not been definitive. AD patients on chronic anti-inflammatory 

treatment did not show any cognitive benefits(39), suggesting that neuroinflammation was 

not a major disease driver. In addition, mutations in genes expressed by microglia 

(Complement receptor 1, HLA class II histocompatibility antigen DRB1 beta chain, CD33, 

Membrane-spanning 4-domains subfamily A member 6A) modified AD risk only modestly 

(0.9<odds ratio<1.1)(40). In contrast, single nucleotide polymorphisms in a microglia 

specific gene, TREM2, was found to be strongly associated with late onset AD (odds ratio ~ 

3; see meta-analysis in Figure 1)(34, 35). Moreover, mutations in the TREM2-signaling 

partner, TYRO Protein Tyrosine Kinase Binding Protein (TYROBP; also known as DAP12) 

also increased AD risk(37). Although TREM2 is also expressed in peripheral monocytes 

(41), these cells appear to play a limited role in AD pathogenesis because they do not 

significantly enter the normal(42) or neurodegenerative brain(42, 43) in mice, or humans 

with AD (15)(43–45). Therefore, for the first-time, there is unequivocal evidence that certain 

microglia functions are robustly involved in AD pathogenesis.

TREM2 is a single-pass transmembrane protein that was known to regulate immune 

responses in peripheral macrophages(41, 46) by means of lipopolysaccharide binding and 
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bacterial phagocytosis(47). In addition, TREM2 attenuates inflammatory cytokine release 

from macrophages(41), promotes their differentiation and survival and stimulates 

phagocytosis(48). TREM2 knock-out (TREM2−/−) microglia exhibit reduced clearance of 

dying cells(49), or myelin debris clearance(50, 51); and loss of TREM2 increases TNF-α, 

IL-1β, and IL-6 release upon LPS stimulation(52). Individuals with severe loss of TREM2 

function due to homozygous mutations develop polycystic lipomembranous osteodysplasia 

with sclerosing leukoencephalopathy (Nasu-Hakola disease (NHD))(53), possibly due to 

abnormalities in microglia-oligodendrocyte interactions (54, 55).

However, it remains unclear how TREM2 mutations contribute to increased AD risk. Given 

that mutations in TREM2 (i.e. R62H, R47H and D87N) are all associated with increased AD 

risk, it is likely that they cause loss rather than gain of function. Indeed, expression of 

mutant TREM2 in cultured cells led to disruption in its translocation to the cell membrane, 

and diminished ligand binding(56, 57). Therefore, mutations in TREM2 lead to a loss-of-

function phenotype like TREM2 knockout, with apparent reduced phagocytosis and 

inflammation. However, there is conflicting data on whether Trem2 knockout increases or 

decreases overall plaque burden(58–60), even though TREM2−/− microglia have reduced 

phagocytic capacity in culture(56, 61). Furthermore, Trem2 deficiency does not seem to 

increase inflammation given that cytokines were reduced in AD mice lacking Trem2(60, 62). 

The extracellular domain of TREM2 can be cleaved into a soluble fragment (sTREM2), 

which can stimulate cytokine release(63), but the R47H mutation may reduce its capacity for 

inducing cytokine secretion(63). Therefore, TREM2 mutations are unlikely to increase the 

risk of AD through an inflammatory mechanism.

While the changes observed in phagocytosis and cytokine production are subtle, loss of 

TREM2 dramatically disrupts microglia engagement with amyloid plaques. Several groups 

have reported that TREM2 deficiency in AD mice leads to reduced microglia numbers 

around amyloid deposits(59, 60, 62), due to lower proliferation rates(38, 43, 64), reduced 

metabolic fitness(65), and increased death(60). Furthermore, the polarization of microglial 

processes towards the plaque surface is markedly reduced in mice with Trem2 

haplodeficiency(38). A similar polarization deficiency, albeit to a lower degree, occurs in 

humans carrying a single allele of the R47H TREM2 mutation(38). The reduction in 

polarization and plaque encapsulation observed in TREM2 deficiency suggests that this 

microglial function may play important roles in AD pathogenesis. However, human TREM2 

variants appear to also modestly increase the risk of non-β-amyloid based disorders such as 

amyotrophic lateral sclerosis, fronto-temporal dementia(66–70), and Nasu-Hakola disease in 

homozygous mutants(53, 71). This suggests that TREM2 deficiency may affect additional 

mechanisms independent of amyloid phagocytosis or plaque encapsulation, such as efficient 

corpse removal of dying cells(52, 72) or degenerating myelin(50, 51), or additional unknown 

TREM2 functions.

Aβ phagocytosis: what do microglia really eat in vivo?

Given that Aβ can disrupt synaptic transmission, induce oxidative stress and trigger cell 

death in vitro(4), microglia phagocytosis of Aβ could be a neuroprotective function. 

Microglia have been shown to internalize fluorescently-tagged synthetic Aβ in vitro or after 
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infusion into the mouse brain in vivo(73, 74). Imaging of mouse or AD human tissue reveals 

some Aβ inside microglial phago-lysosomes(73, 75), consistent with their ability to 

phagocytose Aβ in vivo. Moreover, their role in Aβ clearance has been demonstrated by 

genetic manipulation of chemokine or pattern recognition receptors. Loss of CCR2(76), 

CD45(77), or TLR4(78) in microglia exacerbated amyloid load, while CX3CR1 or NLRP3 

deficiency increased microglia phagocytosis and reduced amyloid burden(73, 79, 80). 

Moreover, passive immunization with anti-Aβ antibodies reduced fibrillar amyloid 

deposition in transgenic mice(81–83), and potentially in humans as assessed by PET 

scanning(84, 85) and postmortem histology(86, 87). Thus, under certain conditions 

microglia phagocytosis of Aβ can reduce the overall amyloid burden.

However, the exact Aβ species that microglia can gobble up remains controversial. Aβ exists 

in a variety of conformations and sizes, with nascent Aβ polymers forming dimers, 

oligomers and protofibrils, and plaques which are composed of β-sheet rich fibrils (3). One 

possibility is that microglia are not selective and phagocytose all Aβ species, including 

mature fibrillar plaques(29, 30). However, immunohistochemistry with conformation 

specific antibodies revealed that microglial lysosomes contain oligomers and protofibrils, 

but not β-sheet rich amyloid fibrils(73). Furthermore, time-lapse in vivo imaging of 

individual plaques labeled by a single pulse of a β-sheet binding dye showed no change in 

plaque shape over months(73), indicating no significant removal of Aβ fibrils by adjacent 

microglia. Consistently, in vivo studies that re-labeled plaques before each imaging time-

point observed gradual growth and no disappearance of plaques(6–9),even after anti-Aβ 
immunization(88). Moreover, using a BACE inhibitor(89) or a regulatable transgene to turn 

off APP expression(82, 90) during Aβ immunotherapy remained ineffective in clearing pre-

existing plaque cores; although, they did appear to reduce the diffuse protofibrillar Aβ halo 

surrounding them(82). In contrast, experiments tracking fluorescently tagged Aβ42 

monomers infused into the subarachnoid space, which rapidly bound to the protofibrillar 

plaque halo did not show significant removal over intervals up to 90 days(27). Collectively, 

these experiments indicate that under normal circumstances microglia do not efficiently 

remove Aβ fibrils from compact plaques or protofibrillar halos, but may be able to 

phagocytose nascent Aβ polymers. Therefore, microglia phagocytosis has the potential to 

reduce seeding of new plaques(73, 74) but may have a limited effect once seeding has 

occurred. Consistent with this, ablation of microglia for 1 month did not change either 

soluble Aβ levels or plaque numbers in aged mice(91)(92–94). However, these studies 

followed animals for short intervals and in advanced stages of amyloidosis, which may have 

led to underestimating phagocytosis. Indeed, a recent paper demonstrated that ablation of 

microglia led to modest growth of the plaque halo(95). Although this could be due to a loss 

of ongoing microglia phagocytosis leading to plaque growth(27, 82); it is also possible that 

growth is due to the loss of microglia encapsulation which restricts Aβ polymerization and 

outward fibril extension (see discussion below).

Microglia processes form a neuroprotective barrier around plaques

Microglia processes are highly intertwined with fibrils protruding from the plaque core (26, 

28). Intravital imaging in mice revealed that as amyloid deposits form, microglia 

concurrently cluster around and polarize their processes towards the plaque surface (96). 
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Once enveloped around plaques, microglia processes can remain anchored to the plaque with 

little motility over weeks(27), in contrast to their constant motility in the normal brain(18, 

19) or in microglia distant from plaques(73). Close inspection revealed that plaque regions 

wrapped by microglia processes appeared compact as evidenced by intense binding of 

Thioflavin S, while those microregions not covered by microglia appeared more diffuse(27). 

Interestingly, small molecule dyes like curcumin and THK-265 preferentially labeled plaque 

regions not covered by microglia (Figure 2)(27), possibly reflecting their affinity for 

protofibrillar Aβ conformation(97). These data are consistent with the possibility that the 

tight wrapping of microglia behaves as a physical barrier that limits the outgrowth of fibrils 

and compacts them into a conformation with high affinity for β-sheet binding dyes.

What are the consequences of the presence of these hotspots of protofibrillar Aβ in areas not 

covered by microglia? To test this, several measures of axonal dystrophy were quantified. 

Remarkably, plaque microregions not compacted by microglia were associated with a 

greater extent of dystrophic axons(27). One possible reason for this is that the freely 

extending fibrils not insulated by microglia protrude into the parenchyma and cause physical 

damage to neurites. Alternatively, the protofibrillar Aβ conformation in areas not covered by 

microglia may be more neurotoxic, consistent with in vitro data(98). These and other 

findings prompted a new hypothesis for the role of plaque-associated microglia processes. 

We postulated that the tight envelopment of microglia around the amyloid surface constitutes 

a neuroprotective barrier that limits fibril outgrowth and plaque-associated toxicity. 

Consistent with this, depletion of microglia in an AD mouse model showed increased plaque 

outgrowth and dendritic spine loss and shaft atrophy in adjacent neurons(95). Given that 

plaque-associated axonal dystrophy has been shown to be a good correlate of cognitive 

dysfunction (99, 100), this pathology may be a significant contributor to neural circuit 

disruption in AD. Thus, the microglia encapsulation function may play a role in preventing 

neural AD-associated neural dysfunction.

In AD mouse models haploinsufficient for Trem2(38, 59, 60, 62) or DAP12(38, 101), 

microglia clustering around plaques was found to be significantly reduced. Importantly, 

microglia process polarization was also dramatically diminished leading to a near complete 

loss of plaque encapsulation(38). As a consequence, plaques became much more diffuse, 

with their morphology shifting from one with compact borders to one with outward 

projecting fibers resembling a sea urchin(38, 43). Furthermore, super-resolution optical 

microscopy revealed that in Trem2-deficient mice individual Aβ filaments appeared to have 

a greater number of side branches(38). The increase in outwardly projecting fibers with 

greater number of branches would be predicted to significantly increase the total Aβ fibrils 

surface area that can be exposed to surrounding neural structures, with potentially damaging 

effects. Consistent with this view the extent of plaque-associated axonal dystrophy was 

exacerbated in mice lacking Trem2 or DAP12, supporting the hypothesis that the microglia 

barrier is a neuroprotective function. Importantly. heterozygous human carriers of the R47H 

TREM2 mutation also had disrupted microglia clustering and barrier formation around 

plaques. Similar to Trem2-haplodeficient mice, R47H mutants exhibited an increase in the 

number of less compact and filamentous deposits as well as a greater extent of dystrophic 

axons and neuronal processes with hyper-phosphorylated tau (38). The phenotypic 

resemblance in humans and mice suggests that the microglia barrier is a shared mechanism 
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to limit plaque-associated neural damage. However, the conformational plaque phenotype in 

R47H human carriers is less dramatic than in mice. One likely explanation is that the R47H 

variants constitute only a partial loss of function, with less severe barrier disruption. 

Alternatively, the markedly faster rates of amyloid accumulation in mice may overwhelm the 

capacity of microglia, leading to a more severe phenotype. Interestingly, however, humans 

with R47H variants did have a robust disruption of axons as evidenced by the degree of 

axonal dystrophy and tau hyperphosphorylation. Thus, in humans the main protective 

function of microglia may be their ability to insulate plaques from the surrounding tissue, 

while their role in plaque compaction may be more limited.

Cellular mechanism involved in the microglia barrier function

Microglia sensing of amyloid deposits and their polarization towards plaques are likely 

important steps in the formation of an effective barrier. TREM2 may serve as both the 

receptor for recognizing plaque components and the trigger for downstream cytoskeleton re-

organization that is required for process polarization. TREM2 does not bind to Aβ per se, 

but has affinity for lipids found on plaques(60). TREM2-lipid mediated signaling may be 

critical for barrier formation. A single point mutation in the arginine-47 (R47) residue within 

the TREM2 ligand-binding domain(102) leads to reduced lipid affinity (60) and disruption 

of microglia clustering and plaque encapsulation(38). Intriguingly, microglia do not form 

barrier processes around diffuse plaques. Unlike compact plaques, diffuse deposits are not 

decorated with lipids(103)(104), suggesting that lipidation of Aβ is a key step in TREM2-

mediated microglia polarization. Upon lipid binding in vitro, the intracellular domain of 

TREM2 can trigger downstream DAP12-mediated tyrosine-based activation motif (ITAM)-

signaling cascade, PI3K pathway activation and cytoskeletal re-organization(52). DAP12 

and phosphorylated tyrosine are up-regulated and co-localized with TREM2 in the polarized 

microglia processes, and disrupting this signaling pathway in mice by deletion of DAP12 

abolished the microglia barrier (38). However, single cell RNAseq (15) or 

immunohistochemistry (38, 44), have shown that TREM2 signaling appears to be activated 

only after microglia have fully engaged around plaques. This raises questions as to how 

TREM2 sensing of the plaque can occur prior to its upregulation (38) and precisely at what 

stage of plaque engagement TREM2 signaling becomes critical. Nevertheless, evidence 

argues that TREM2-DAP12 signaling mediates plaque sensing and is likely involved in the 

microglia process polarization necessary for barrier formation.

The exact process by which microglia induce plaque compaction remains unknown. One 

possibility is that microglia processes clear the diffuse protofibrillar Aβ at the plaque halo 

through phagocytosis and/or secretion of proteolytic enzymes, leading to the appearance of a 

more compact core in areas covered by microglia. However, these microglia processes are 

not optimally positioned to remove prefibrillar Aβ because they are closely anchored to the 

perimeter of the compact plaque core(27) rather than at the site of the less compact plaque 

halo and under normal conditions have been shown to have a limited capacity for 

phagocytosis of protofibrillar Aβ(73, 82). Therefore, instead of phagocytosis, we propose 

that microglia processes wrapping around deposits create an insulated and crowded macro-

molecular environment that leads to accelerated Aβ aggregation(105), resulting in plaque 

compaction. Also compact plaque regions have decreased affinity for monomeric Aβ42, 
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which may further limit the outward outgrowth of protofibrils once deposits become 

compact. The reduced affinity for Aβ42 could be due to microglia exerting a direct force on 

outwardly growing amyloid fibrils leading to their bending, which may mask their growing 

ends and prevent their elongation. Microglia may reduce fibirllization by physically 

preventing the entry of monomeric Aβ42 into the core region. However, in vivo infusion of 

Aβ40, which has a molecular weight similar to Aβ42, demonstrates full penetration 

throughout the plaque. This and other experiments(27, 73), suggest that microglia do not 

prevent entry of monomeric Aβ42 but rather change the affinity to Aβ42 in areas covered by 

microglia processes, likely by altering the conformation and compaction of accumulating 

protofibrils.

Failure of the microglia barrier as a general mechanism in the development 

of AD

While TREM2 loss-of-function mutations are found in a small percentage of AD patients 

(~0.5%)(34), a defective microglia barrier could also be a risk factor for the development of 

late onset AD. Indeed, like the defective barrier seen in TREM2 or DAP12 deficient 

mice(38), comparison of plaques of similar size between young and old wild type AD mice 

revealed that microglia coverage was significantly reduced in aging, and as predicted this 

was associated with enlarged protofibrillar Aβ halos as well as greater axonal dystrophy(27). 

Multiple mechanisms may contribute to defective microglia encapsulation given that ageing 

is associated with complex molecular and cellular changes (106) including reduced cell 

proliferation (107). Indeed, BrdU incorporation in plaque-associated microglia is 

significantly reduced in aging (27), suggesting that reduced proliferation limits the number 

of microglia available for plaque encapsulation. In addition, microglia in aging display 

tortuous processes and focal swellings (21, 107), suggesting cellular dysfunction that may 

impair polarization towards plaques. In addition, aging microglia may be less phagocytic 

and adopt an activated phenotype with release of pro-inflammatory cytokines (108), and a 

reduction in anti-inflammatory cytokines such as TGFβ (109). Thus, as protective 

microglial functions like phagocytosis and plaque encapsulation fail in aging, their chronic 

activation and changes in cytokines may increase their neurotoxic potential.

Recent studies have suggested potential modulation of microglia by mechanisms involving 

Apolipoprotein E (ApoE). ApoE is known for its role in brain lipid and cholesterol transport. 

The APOE gene has three polymorphic alleles(ε2, ε3 and ε4), and GWAS studies have 

shown that carriers of one ε4 allele have 2–3 times increased risk of AD, while ε4/ε4 have 

~15 times increased risk(110). The APOE ε4 allele is also the most prevalent AD risk factor 

estimated to be in ~14% of the global population and 37% of AD patients(111). Recent 

studies uncovered an interaction between ApoE and TREM2 in vitro, where recombinant 

TREM2 exhibited high binding affinity to ApoE (112, 113). Interestingly, this affinity was 

reduced in mutated TREM2 (R46A, R47A, R47E and R47H), suggesting a correlation 

between loss of ApoE-TREM2 interaction and increased AD risk. Because ApoE can be 

found on the plaque surface (114), it is possible that ApoE provides a targeting signal for 

TREM2-expressing microglia processes. However, it remains unknown whether the different 

ApoE isoforms bind to TREM2 with the same affinity. Interestingly, ApoE4, but not ApoE3, 
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was shown to activate Toll-like receptors in microglia cultures, leading to reduced TREM2 

expression (115), and thus it is possible that ApoE4 could disrupt TREM2-mediated 

microglia polarization towards plaques in vivo. Consistent with this, in ApoE4 isoform-

specific knock-in mice, microglia adopted an inflammatory phenotype and displayed 

abnormal processes around plaques compared to E2 and E3 knock-in mice (116, 117). 

Therefore, in addition to the better studied differential effects of ApoE on Aβ metabolism 

(117–120), it is possible that ApoE within amyloid deposits plays a role in signaling to 

adjacent microglia (121) for the polarization of their processes and encapsulation of plaques. 

However, additional microglia functions mediated through ApoE, that are independent of 

amyloid, may also be at play, as it has recently been shown that ApoE isoforms in mice 

directly modulate tau pathology and cell death (122, 123). Thus, the potential involvement of 

ApoE in the microglia encapsulation of plaques combined with the fact that this function 

diminishes with ageing, suggests that failure of the microglia barrier could constitute a 

general mechanism involved in AD pathogenesis.

Microglia-mediated neuroprotection as a target for AD therapies

Experimental strategies to enhance the microglia encapsulation of plaques have been 

demonstrated with the chemokine receptor CX3CR1 genetic deletion or by passive anti-Aβ 
immunization in mice (27). These manipulations led to reduced axonal dystrophy formation 

around plaques, indicating a possible neuroprotective effect of microglia. Importantly, in 

humans carrying the R47H TREM2 variant, diminished microglia encapsulation, not only 

worsened axonal dystrophy, but exacerbated neuronal phospho-tau accumulation around 

plaques (38). This suggests that boosting the microglia barrier may not only reduce axnal 

dystrophy but could also limit plaque-associated tau pathology. Given that the degree of tau 
hyperphosphorylation negatively correlates with cognitive function (124), it is plausible that 

enhancing microglia encapsulation of plaques could slow disease progression.

Although it is likely that most molecular manipulations will have a variety of effects on 

microglia function including on phagocytosis and cytokine production, ongoing research 

into mechanisms of microglia process polarization may suggest novel strategies to 

specifically manipulate their ability to encapsulate amyloid deposits. The following are 

potential strategies: 1) Anti-Aβ immunization: Several groups have shown that this treatment 

increases microglia clustering around plaques in AD mouse models(27, 82, 84). Anti-Aβ 
immunization increases plaque encapsulation probably by activating Fc receptors that trigger 

downstream signaling overlapping with that of TREM2(125). It is worth noting that 

microglia only express a subset of Fc receptors and different Fc receptor subtypes activate 

different downstream pathways(126). Particularly, while FcγRI and FcγRIII activate 

immunoreceptor tyrosine-based activation motif (ITAM) signaling that converges with 

TREM2 activation, FcγRIIB inhibits ITAM signaling. Therefore, anti-Aβ IgG antibodies 

with high FcγRI and low FcγRIIB affinity may be the most effective in boosting microglia 

barrier function due to their potential net activation of ITAM signaling. 2) Anti-ApoE 

immunization: Anti-ApoE immunotherapy has been shown to increase microglial 

recruitment around plaques in mice(127). Since ApoE can bind Aβ aggregates (114), it is 

likely that anti-ApoE antibodies have affinity towards plaques, similar to anti-Aβ antibodies. 

And likewise, anti-ApoE antibodies may be able to promote microglia process polarization 
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by activating Fc receptors and their downstream signaling. Furthermore, given recent results 

showing that ApoE knock-out is neuroprotective against tau pathology(122), antibodies 

sequestering ApoE may have a dual beneficial effect. 3) CX3CR1 inhibition: Genetically 

deleting CX3CR1 in microglia leads to reduced plaque load(73, 79) and enhanced microglia 

barrier(27). Neutralization of CX3CR1 could thus be an approach to enhance microglia 

encapsulation of plaques. This may be achieved by neutralizing antibodies against CX3CR1 

or its ligand Fractalkine, or by small molecule antagonist such as AZD-8797 (128). 

However, systemic suppression of CX3CR1 signaling may disrupt bacterial clearance by the 

peripheral immune system(129), while CX3CR1 deficiency may exacerbate tau 

hyperphosphorylation(130)(131). Thus, suppression of CX3CR1 should ideally be confined 

to plaque-associated microglia to increase encapsulation with minimal systemic side effects. 

4) Bispecific antibodies: Antibodies with two different Fab domains can simultaneously bind 

to two separate epitopes. One of the two Fab domains may be against fibrillar Aβ (84), 

which would lead to enrichment around plaques, providing an approach to engage the 

second target only in the vicinity of the plaque. If the second Fab domain is anti-Fractalkine 

or anti-CX3CR1, then such approach may achieve simultaneous suppression of CX3CR1 

signaling and activation of ITAM signaling in plaque-associated microglia, potentially 

leading to enhancement of the microglia barrier and/or phagocytosis.

In terms of suitability for human use of these therapeutic strategies, based on previous 

mouse data, it appears to be clear that the barrier function is most effective when plaques are 

still relatively small (27). Thus, it is likely that therapies would have to target early 

preclinical AD. Furthermore, as with all attempts to translate therapies based on mouse 

models, there is a significant uncertainty that targeting amyloid will be sufficient in the 

absence of direct modulation of other disease hallmarks such as tau pathology.

Potential implications for clinical human imaging

Current amyloid PET tracers are limited in their utility as predictive biomarkers due to their 

poor dynamic range and linearity. When patients present with mild cognitive impairment, 

their PET signals are near maximal and correlate poorly with the degree of cognitive 

impairment(10, 132, 133). Interestingly, our data shows that plaque compaction inversely 

correlates with the degree of axonal injury (27, 38). However, PET tracers, which are 

derivatives of Thioflavin T or Congo Red, have the greatest affinity for compact plaques 

which likely prevents detection of the potentially most neurotoxic protofibrillar species of 

Aβ (27, 134). In contrast, small molecule dyes such as curcumin and THK-265 

preferentially bind protofibrillar Aβ (27, 97). Given that protofibrillar plaque regions are 

associated with more severe axonal dystrophy and neuronal process tau 
hyperphosphorylation (38), it is possible that novel PET probes based on compounds with 

affinity to protofibrillar Aβ could constitute better biomarkers of neurotoxicity. Indeed, 

improved brain-penetrant curcumin analogs have been developed which may have potential 

as amyloid PET tracers in humans(135, 136).

Current PET imaging approaches to monitor microglia activation utilize small-molecule 

ligands that bind the translocator protein 18kDa (TSPO) in mice(137–139) and humans(140, 

141). TSPO is found in the outer mitochondrial membrane in various cell types, including 
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neurons, astrocytes and endothelial cells (142). Thus, while TSPO is upregulated in 

microglia in AD (138, 139), it lacks sufficient specificity for proper quantification of 

microglia activation. Novel PET tracers targeting microglia receptors such as TREM2 may 

have greater potential because of their cell specificity and their marked upregulation in 

microglia surrounding amyloid deposits, which would greatly enhance the signal to noise 

ratios. Such probes may also provide information about the robustness of the microglia 

barrier and may thus be an indicator of the neuroprotective microglia that encapsulate 

plaques and reduce axonal dystrophy. Overall, such a strategy may offer greater resolution 

for tracking and interpreting the progression of AD-related neuroinflammation in parallel 

with existing amyloid and tau PET tracers.
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Figure 1. Meta-analysis on the association of R47H TREM2 mutation and the risk of developing 
AD
Studies (34, 35, 37, 66, 67, 69, 143–150) were selected from the combined search results of 

“rs75932628 Alzheimer” and “TREM2 R47H Alzheimer” on Pubmed (total of 64 search 

results as of September 2017), with the following criteria: 1. case-control studies examining 

the risk for late-onset AD associated with the single nucleotide polymorphism rs75932628 

(19 studies); and 2. The studies have at least one TREM2 R47H subject in the case and 

control groups (14 studies). Pooled odds ratios (OR) and 95% confidence intervals (CI) were 

calculated by combining raw data from all studies. Arrows in the graph indicate values 

exceeding the axis limits. The heterogeneity among studies does not reach statistical 

significance with Cochran’s Q-test.
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Figure 2. Microglia barrier and protofibrillar Aβ hotspot around amyloid plaques
Example 3D reconstruction of a confocal image stack showing microglia coverage around 

an amyloid deposit in a 5XFAD mouse. Curcumin-labeled protofibrillar Aβ accumulates in 

the plaque regions not covered by microglia processes (27).
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Figure 3. Modulating microglia barrier alters plaque-associated protofibrillar Aβ content, 
axonal dystrophy and tau hyperphosphorylation
TREM2 on microglia processes binds to the lipid and lipoprotein components of amyloid 

plaque, triggering the downstream signaling cascade involving DAP12 and Syk tyrosine 

kinase. This signal leads cytoskeletal reorganization and to the polarization and expansion of 

the microglia processes, and the formation of microglia barrier, which increases the 

compaction of adjacent amyloid fibrils. Deficiency in the microglia barrier results in loosely 

organized amyloid fibrils, protofibrillar Aβ accumulation, increased axonal dystrophy 

formation and neuronal process tau hyperphosphorylation. Augmenting the microglia barrier 

may have therapeutic benefits in AD. Two potential strategies are: 1) plaque-targeted 

signaling ligands that activate TREM2 or other receptors, and 2) modulators of downstream 

signals that boost the microglia barrier.
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