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30 
ABSTRACT 31 
 32 
 33 
The unicellular green alga Chlamydomonas reinhardtii is a choice reference system for 34 

the study of photosynthesis, cilium assembly and function, lipid and starch metabolism 35 

and metal homeostasis. Despite decades of research, the functions of thousands of 36 

genes remain largely unknown, and new approaches are needed to categorically assign 37 

genes to cellular pathways. Growing collections of transcriptome and proteome data 38 

now allow a systematic approach based on integrative co-expression analysis. We used 39 

a dataset comprising 518 deep transcriptome samples derived from 58 independent 40 

experiments to identify potential co-expression relationships between genes. We 41 

visualized co-expression potential with the R package corrplot, to easily assess co-42 

expression and anti-correlation between genes from manually-curated and community-43 

generated gene lists. We extracted 400 high-confidence cilia-related genes at the 44 

intersection of multiple co-expressed lists, illustrating the power of our simple method. 45 

Surprisingly, Chlamydomonas experiments did not cluster according to an obvious 46 

pattern, suggesting an underappreciated variable during sample collection. One 47 

possible source of variation may stem from the strong clustering of nuclear genes as a 48 

function of their diurnal phase, even in samples collected in constant conditions, 49 

indicating substantial residual synchronization in batch cultures. We provide a step-by-50 

step guide into the analysis of co-expression across Chlamydomonas transcriptome 51 

datasets to help foster gene function discovery. 52 
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53 

INTRODUCTION 54 

 Discovering the functions of genes has driven biology for over a century, using a 55 

multitude of tools to determine the factors associated with a given cellular process. The 56 

concept of the gene as a heritable structure was developed by observing how 57 

individuals with distinct visible phenotypes could arise from a population and be 58 

transmitted to their progeny. Thomas Morgan isolated the first spontaneous mutant in 59 

the fruit fly (Drosophila melanogaster) in 1910 (Morgan, 1910), followed quickly by more 60 

spontaneous mutations through the careful examination of thousands of flies (Bridges 61 

and Morgan, 1916). Induced mutations, first by X- or gamma rays, paved the way to 62 

classical genetic screens in multiple species, including the Jimson weed (Datura 63 

stramonium), the fruit fly, the green unicellular alga Chlamydomonas (Chlamydomonas 64 

reinhardtii) and barley (Hordeum vulgare), the latter creating the field of radiation 65 

breeding (Gager and Blakeslee, 1927; Muller, 1928; Stadler, 1928; Birch et al., 1953).  66 

These mutations fueled a very thorough phenotypic dissection of the processes 67 

affected by the absence of a gene product, but it is only in the 1970s that the nature of 68 

the mutated genes began to be unraveled. The development of transformation protocols 69 

to introduce transgenes into model systems further opened new possibilities for 70 

dissecting the role of a gene in situ by over-expression of a wild-type or mutated copy 71 

(Leutwiler et al., 1986; Hinnen et al., 1978; Rubin and Spradling, 1982; Kindle et al., 72 

1989; Rochaix et al., 1984). 73 

The next technological innovation revolutionized biology: deep sequencing 74 

techniques have revealed the complete genomic landscape and gene complement of 75 

most any species. Expression profiling by microarrays, and later by deep sequencing of 76 

the transcriptome (RNAseq) now provide easy access to the changes in the 77 

transcriptome in response to genetic or environmental perturbations. In 78 

Chlamydomonas alone, RNAseq analysis has empowered hypothesis generation by 79 

providing a detailed picture of the changes in gene expression in response to light (Zhu 80 

et al., 2008; Xiang et al., 2001; Wittkopp et al., 2017), CO2 (Fang et al., 2012; Fukuzawa 81 

et al., 2001; Xiang et al., 2001; Brueggeman et al., 2012) and stress (Wakao et al., 82 

2014; Urzica et al., 2012a; Blaby-Haas et al., 2016; Blaby et al., 2015), as well as 83 
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nutritional deficiencies such as for nitrogen or micronutrients, including iron (Blaby et al., 84 

2013; Castruita et al., 2011; Dudley Page et al., 2012; González-Ballester et al., 2010; 85 

Kajikawa et al., 2015; Miller et al., 2010; Ngan et al., 2015; Schmollinger et al., 2014; 86 

Urzica et al., 2012b). RNAseq data have largely been analyzed in comparative mode, 87 

that is by comparing the wild type to the mutant, or between untreated and treated 88 

cultures. Chlamydomonas transcriptome studies comprise hundreds of samples from 89 

dozens of independent experiments from multiple research groups. Due to the ease of 90 

growing large volumes of cell cultures under defined conditions, While most samples 91 

are typically collected from cells grown in constant light, several studies have focused 92 

on the diurnal control of gene expression by measuring transcript levels over the course 93 

of a diurnal cycle (Strenkert et al., 2019a; Zones et al., 2015; Panchy et al., 2014).  94 

Several pipelines have been implemented that combine transcriptomics datasets 95 

to build gene regulatory networks and assign gene function (Romero-Campero et al., 96 

2016; Aoki et al., 2016; Nguyen et al., 2019), based on the premise that genes involved 97 

in a similar process will be co-expressed, in particular if their encoded proteins 98 

physically interact (Zhu et al., 2008; Simonis et al., 2004; Komurov and White, 2007; Ge 99 

et al., 2001). However, these approaches largely allow the visualization of the network 100 

associated with a single gene at a time or offer pre-computed co-expression modules; 101 

thus, they do not provide a visual summary of the underlying correlations. In addition, 102 

negative correlations are not considered. Rather than superseding the contribution of 103 

these previous studies, we wished to develop an easily searchable dataset of co-104 

expression and anti-correlation estimates for any gene of interest to facilitate 105 

prioritization of candidate genes fulfilling user-defined criteria. 106 

We describe here a thorough analysis of the Chlamydomonas transcriptome 107 

landscape, based on the analysis of Pearson’s correlation coefficients associated with 108 

all nuclear gene pairs using a set of 518 RNAseq samples from 58 independent 109 

experiments. RNAseq samples from a given experiment were more correlated than to 110 

samples from any other experiment, even those querying the same variable, indicating 111 

the strong environmental sensitivity of Chlamydomonas cultures. We observed frequent 112 

co-expression between genes, but also report on anti-correlations, an underappreciated 113 

dimension in regulatory networks. We illustrate our approach by revisiting gene lists 114 
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curated by the Chlamydomonas community and by exploring co-expression modules 115 

with the R package corrplot (Wei and Simko, 2017) and identify high-confidence 116 

candidate genes involved in cilia biogenesis and function. Finally, we discovered that 117 

the vast majority of RNAseq samples exhibit substantial diurnal rhythmicity, even when 118 

derived from cells grown in constant light. We provide a simple R script for data 119 

exploration and hope that this resource will be of use to the community, as this 120 

approach can be applied to any biological system. 121 

 122 

 123 

  124 
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RESULTS  125 

Remapping and Normalization Steps of the Chlamydomonas Transcriptome 126 

The analysis of changes in gene expression typically covers a limited number of 127 

conditions on selected genotypes to identify treatment-specific modulators of the 128 

transcriptome in a given organism. While this approach is powerful, we wished to 129 

integrate multiple transcriptome datasets that represent multiple variables in growth 130 

conditions and genotypes. To this end, we collected 58 transcriptome deep-sequencing 131 

(RNAseq) datasets generated by the community and by our own laboratory that 132 

correspond to 518 samples. We remapped all reads to version v5.5 of the 133 

Chlamydomonas genome to remove changes in gene models between experiments as 134 

a variable, as our collection of datasets span about 10 years. We did not attempt to 135 

compensate for batch effects or variation in sequencing platforms, which were all 136 

Illumina-based. 137 

We then assessed the global expression of all 17,741 Chlamydomonas nuclear 138 

genes across our set of 518 samples. Most nuclear genes were expressed at levels of 1 139 

Fragment Per Kilobase of transcript per Million mapped reads (FPKM) in the majority of 140 

samples, although a large subset of nuclear genes was seldom expressed even at this 141 

low expression cut-off (Supplemental Table 1). With a higher threshold for expression, 142 

the fraction of expressed nuclear genes decreased (Supplemental Table 1). This pattern 143 

indicated that most genes are expressed at moderate levels and only in a limited 144 

number of conditions.  145 

We next normalized our RNAseq dataset following the same steps used for the 146 

ALCOdb gene co-expression database for microalgae (illustrated in Supplemental 147 

Figure 1; Aoki et al., 2016). The final normalization step centered expression estimates 148 

to zero, as a Z-score normalization would (Supplemental Figure 1B). RIBOSOMAL 149 

PROTEIN GENES (RPGs) beautifully illustrated the power of normalization 150 

(Supplemental Figure 2). Indeed, variation between RPGs only emerged after log2 151 

normalization, but offered little differentiation on the basis of experiments or samples. 152 

Normalization to mean fixed this issue, and revealed variation between RPGs and 153 

experimental samples that were until then hidden.  154 

 155 
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Samples from the Same Experiment Show Strong Positive Correlations 156 

These datasets allowed us to assess the extent of correlation between 157 

samples/experiments (each sample being represented by its unique 17,741 gene 158 

expression estimates) or between genes (each gene being characterized by its unique 159 

518 gene expression estimates across all samples). We used the R package corrplot to 160 

visualize correlations across samples or genes (see Supplemental Figure 3 for details). 161 

FPKM values failed to extract a pattern, as most samples were strongly and positively 162 

correlated, based on Pearson’s correlation coefficients (PCCs) between samples 163 

(Figure 1A; mean PCC = 0.74 ± 0.18). The same held true for log2- and quantile-164 

normalized datasets (Supplemental Figure 4; mean PCC of 0.83 ± 0.17). It was only 165 

after normalization to means that clear localized correlation clusters appeared along the 166 

diagonal of the matrix that matched with each experiment (Figure 1B). Indeed, although 167 

the entire correlation matrix had a mean PCC close to zero (0.002 ± 0.226), samples 168 

belonging to the same experiment exhibited strong and positive correlations (Figure 169 

1C). Samples from a given experiment (including the reference or control samples) 170 

were more related to each other than to any other sample, even when designed to 171 

query the same biological question (see, for example, nitrogen deprivation samples, 172 

Figure 1C and Supplemental Figure 4E). Likewise, the laboratory provenance of 173 

samples did not explain the extent of relationship between samples: over half of all 174 

RNA-seq samples analyzed here have been generated by our laboratory, and yet most 175 

failed to exhibit significant correlations outside of each experiment (Supplemental Figure 176 

4F), despite careful considerations of consistent sample collection procedures. 177 

Two sets of experiments deviated from the general trend: experiments that were 178 

1) metal-related (Figure 1D) or 2) that spanned a diurnal cycle (Figure 1E). Positive 179 

correlations largely segregated samples collected from cultures lacking a single 180 

micronutrient (copper Cu, iron Fe, manganese Mn and zinc Zn) into their targeted 181 

deficiency. Based on correlations across samples, Fe-deficient cultures were slightly 182 

more similar to Zn- and Mn-deficient cultures than they were to Cu-deficient cultures 183 

(Figure 1C), as expected. These observations support the hypothesis that these three 184 

metals (Fe, Zn and Mn) are transported by partially overlapping sets of transporters and 185 

involve partially shared regulon components (Tsednee et al., 2019; Merchant et al., 186 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.05.326611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326611
http://creativecommons.org/licenses/by-nc-nd/4.0/


Co-expression networks in Chlamydomonas 
 

 8

2006; Malasarn et al., 2013; Hong-Hermesdorf et al., 2014a). Metal-related experiments 187 

appeared more related to each other than to any other experiments, which may reflect 188 

the tightly-controlled growth conditions we follow for such studies (Moseley et al., 189 

2002a; Urzica et al., 2012b; Hong-Hermesdorf et al., 2014b; Allen et al., 2007). 190 

However, these correlations clearly did not extend to non-metal related work within our 191 

own laboratory, despite using the same stock solutions, growth medium recipes, and 192 

incubators (Supplemental Figure 4E, 4F). 193 

The correlation matrix between diurnal samples was striking: we obtained the 194 

highest degree of positive correlation between samples that were temporally close to 195 

one another within and across diurnal experiments (Figure 2E). At a slightly broader 196 

scale, samples collected during the day were generally positively correlated, again 197 

within and across diurnal experiments, although the extent of correlation was stronger 198 

between samples from the same experiment. The same observation held true when 199 

comparing samples collected during the night part of the diurnal cycle. Finally, samples 200 

collected during the day were negatively correlated with samples collected at night, both 201 

within and across experiments (Figure 1E). In all diurnal samples, over 80% of nuclear 202 

genes exhibited a rhythmic pattern with phases spanning the entire day (Strenkert et al., 203 

2019; Zones et al., 2015). That diurnal samples can cluster so clearly according to their 204 

collection time suggests that the endogenous timing of an unknown sample might be 205 

accessible by comparing its correlation profile with that of known diurnal datasets. This 206 

approach is similar in concept to the molecular timetable method used to detect sample 207 

time from single time-point data (Ueda et al., 2004).  208 

 209 
Co-Expression Potential in Manually Curated Gene Lists 210 

We next turned our attention to correlation between genes to dissect co-211 

expression potential in Chlamydomonas. We calculated PCCs for all gene pairs 212 

(157,362,670 pairs, not counting self-self pairs); they followed a normal distribution 213 

(Kolmogorov-Smirnov test statistic D = 0.019, p-value < 2.2 x 10-16), indicating that most 214 

gene pairs are not co-expressed (Supplemental Figure 5A). Although the distribution of 215 

all PCC values had a mean of zero, its two tails contained the most interesting gene 216 

pairs with high absolute correlations. Of the 157,362,670 possible gene pairings, 5.4 % 217 
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(or 845,249 gene pairs) had PCC values < –0.6 and > +0.6. Fewer gene pairs were 218 

defined by PCC values < –0.8 and > +0.8, accounting for 0.5 % of all PCCs (or 76,462 219 

pairs), nevertheless leaving ample room for co-expression. 220 

Hierarchical clustering suggested that sets of genes displayed very similar 221 

expression behaviors, as the larger blue blocks visible along the diagonal of the 222 

correlation matrix attested (Supplemental Figure 5B and 5C). Based on these 223 

observations, we followed a three-pronged approach to test for co-expression and 224 

identify co-expressed genes. First, we determined the extent of co-expression and anti-225 

correlation in manually-curated gene lists from the community. Second, we defined the 226 

co-expression cohort associated with a given nuclear gene. Third, we identified co-227 

expression modules. Both latter approaches entailed calculating the Mutual Rank (MR) 228 

associated with each gene pair (Obayashi and Kinoshita, 2009; Aoki et al., 2016; 229 

Wisecaver et al., 2017). We then turned MRs into edge weights as a measure of the 230 

connection between co-expressed genes (or nodes) for the construction of five MR-231 

based co-expression networks with decreasing decay rates, denoted N1 to N5. During 232 

this process, we identified all genes that were co-expressed with each individual nuclear 233 

gene (Supplemental Data Sets 2-4 for networks N1-N3) and their anti-correlated 234 

cohorts, by inverting the rank order (Supplemental Data Sets 5-7). Each gene was at 235 

the center of a co-expression cohort with a clustering coefficient of zero (Supplemental 236 

Table 2). Faster decay rates restricted the size of co-expressed cohorts: with the most 237 

stringent criteria, a Chlamydomonas gene was co-expressed with 1 to 68 genes, with a 238 

mean cohort size of 17 genes. Relaxing the stringency imposed on co-expressed genes 239 

increased the mean size of cohorts to 36 (N2 networks) and 98 (N3 networks) 240 

(Supplemental Table 2). 241 

 242 

 As a proof of concept, we turned to gene lists compiled by the community. These 243 

lists comprised genes that participate in the same biological function or pathway, but 244 

information about their co-expression potential is incomplete. In particular, most co-245 

expression analyses focus on positive correlations as the core criterion for the 246 

identification of co-expressed groups. Here, we capitalized on the graphical output of 247 

the R package corrplot to indicate 1) whether and 2) what fraction of genes was co-248 
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expressed, and 3) whether the expression profile of any gene within the lists was anti-249 

correlated with others. We will acknowledge here that only genes with fairly dynamic 250 

expression profiles will register a co-expression pattern. By contrast, genes with low 251 

variance will have PCCs close to zero.  252 

Since Chlamydomonas is a premier reference organism for organellar 253 

biogenesis, cilia biosynthesis and biology, we determined the co-expression potential of 254 

genes encoding components of the mitochondrial respiration chain, photosystems, 255 

chlorophyll and hemes biosynthesis (Figure 2), as well as motile cilia (Figure 3). We 256 

also assessed the co-expression potential of ribosome protein genes (RPGs) (Figure 4), 257 

as much early work in Chlamydomonas has described the organellar protein translation 258 

machinery in detail (Sager and Hamilton, 1967; Siersma and Chiang, 1971; Ohta et al., 259 

1975; Martin et al., 1976). Finally, we tested co-expression between genes encoding 260 

transcription factors in Chlamydomonas and Arabidopsis (Figure 5). 261 

 262 

Nucleus-encoded organellar energy systems. Mitochondria and chloroplasts 263 

provide energy and reducing power to the cell, albeit at different times of day. Based on 264 

previous results (Strenkert et al., 2019; Zones et al., 2015), we expected to observe 265 

global co-expression of genes encoding components of the respiratory complex. 266 

Indeed, most genes whose products participate in electron transport or oxidative 267 

phosphorylation were co-expressed (Figure 2A), although some genes deviated from 268 

this pattern. For instance, CONSERVED IN THE GREEN LINEAGE 66 (CGL66, 269 

Cre09.g390467) was negatively correlated with other complex 1 genes, suggesting that 270 

it may not belong to this complex, or functions as a negative regulator. Proteins 271 

encoded by two related genes provided an example of potential sub-functionalization: 272 

NUOS4B (Cre16.g681700, from complex 1) and MITOCHONDRIAL PROCESSING 273 

PEPTIDASE ALPHA SUBUNIT (MPPA1, Cre17.g722800, from complex 3) were not co-274 

expressed with other genes coding for components forming their respective complexes, 275 

although the related genes NUOS4A and MPPA2 were (and were also more highly 276 

expressed). 277 

Of the genes involved in tetrapyrroles biosynthesis, only those encoding 278 

enzymes responsible for chlorophyll biosynthesis appeared to be co-expressed, with the 279 
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exception of the porphobilinogen deaminase gene PBGD2 (Cre02.g113850) and the 280 

magnesium chelatase subunit H gene CHLH2 (Cre11.g4776625), although their 281 

homologues PBGD1 and CHLH1 were (Figure 2B), with PBGD1 expressed at much 282 

higher levels than PBGD2. By contrast, heme biosynthetic genes exhibited no co-283 

expression with genes from either photosystem (mean PCC: -0.03 ± 0.23).  284 

All photosynthetic genes were strongly co-expressed (Figure 2B). Although heme 285 

and chlorophyll biosynthesis compete for the same pool of precursors, the expression of 286 

the genes involved in each pathway is independent (mean PCC: 0.04 ± 0.28). Genes 287 

encoding heme-containing enzymes and other cytochromes were however anti-288 

correlated with chlorophyll biosynthetic genes (Figure 2B-2D), thereby ensuring that 289 

adequate levels of heme be synthesized without reaching toxic levels by coordinating 290 

the heme pool with heme binding proteins. The two heme oxygenase genes followed 291 

distinct expression behaviors: HMOX1 was weakly co-expressed with photosystems 292 

and other tetrapyrrole biosynthetic genes, whereas HMOX2 was strongly anti-correlated 293 

with them, consistent with the light-dependent repression of this gene (Wittkopp et al., 294 

2017). Furthermore, the hmox1 mutant is pale-green, a phenotype typical for chlorophyll 295 

biosynthesis mutants. Notably, the expression of genes involved in photosynthesis is 296 

not affected in the hmox1 background, which is consistent with the general lack of 297 

correlation between HMOX1 and photosystems (Wittkopp et al., 2017). 298 

Finally, genes encoding proteins that form the mitochondrial respiratory complex 299 

were largely anti-correlated with photosynthetic and tetrapyrrole biosynthetic genes 300 

(Figure 2D, 2E). This opposite co-expression may partially stem from the distinct 301 

temporal separation of the underlying cellular events: high expression during the day for 302 

photosynthesis and tetrapyrroles biosynthesis, and high expression at night for 303 

mitochondrial respiration (Strenkert et al., 2019; Zones et al., 2015). 304 

 305 

Cilia. The components of the Chlamydomonas cilia are coordinately transcribed 306 

following cell division at night, as cells first resorb their existing flagella prior to division 307 

and must synthesize them afresh in anticipation of dawn and photosynthetic activity 308 

(Cross and Umen, 2015; Wood et al., 2012; Rosenbaum et al., 1969). Although most 309 

RNAseq samples were collected from cultures grown in constant light and, presumably, 310 
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asynchronous, we observed strong co-expression across most genes encoding 311 

structural components of the cilia (mean PCC: 0.65 ± 0.18), as well as with components 312 

of IntraFlagellar Transport (IFT) particles responsible for the assembly, maintenance 313 

and signaling within cilia (mean PCC: 0.74 ± 0.17) (Figure 3A). Several genes did not 314 

follow this general trend: they encoded proteins that modify protein function and 315 

therefore act at the post-translational level (Flagella Associated Protein 8 (FAP8), a 316 

protein phosphatase 2A regulator; enolase, contributing to ATP production within cilia, 317 

and a number of chaperones or heat shock proteins [DNJ1, HSP70A]). Other genes that 318 

were not co-expressed encoded proteins with cellular roles outside of cilia, for instance 319 

HSP70A, actin and profilin, suggesting that a fraction of the total pool of each protein 320 

participates in cilia biogenesis while the bulk carries out functions in the cytosol. 321 

 Centriole proteins have been identified by a number of techniques, including 322 

mass spectrometry of purified centrioles, co-expression following deflagellation, and 323 

comparative genomics (Keller et al., 2005; Keller and Marshall, 2008; Li et al., 2004). 324 

Genes encoding most basal body components were indeed co-expressed across all our 325 

samples and showed strong co-expression with PROTEOME OF CENTRIOLE (POC) 326 

genes. Both basal body and POC genes were however only weakly co-expressed with 327 

genes coding for cilia components, as might be expected: the centriole is always 328 

present in the cell, whereas cilia form a more dynamic structure (Figure 3A). As 329 

previously described, the majority of BASAL BODY UPREGULATED AFTER 330 

DEFLAGELLATION (BUG) genes were more co-expressed with cilia components than 331 

with basal body markers (Figure 3A). The co-expression profile of several BUG genes 332 

(BUG23, BUG24, BUG27) suggested that their function may be instead associated with 333 

the centriole proper, as they showed stronger co-expression with basal body genes. We 334 

also denoted a lack of co-expression between basal body components and CCT3, 335 

HSP90A, FMO11 and PHB1, all predicted to perform function(s) outside of the centriole 336 

(Zones et al., 2015). 337 

 Genes encoding components of the Bardet-Biedl syndrome protein complex 338 

(BBSome) were only weakly co-expressed (mean PCC: 0.29 ± 0.16) and were not co-339 

expressed with basal body constituents (mean PCC: 0.23 ± 0.16), while moderately with 340 

ciliary structures (mean PCC: 0.38 ± 0.23). Our co-expression analysis of cilia and 341 
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centriole components therefore accurately grouped genes based on function and 342 

cellular localization and highlighted those genes with distinct expression profiles. The 343 

ability to identify bona fide cilia and centriole components based on co-expression also 344 

offered the opportunity to subject larger lists to a similar analysis. The cilium proteome 345 

is predicted to comprise close to a thousand proteins based on proteomics analysis 346 

(Pazour et al., 2005), although a fraction is likely to correspond to contaminants. 347 

Likewise, a comparative genomics approach uncovered around 200 genes conserved 348 

between ciliated species and absent in all other species: Ciliacut (Li et al., 2004). These 349 

two lists overlap only partially, with 81 genes belonging to both. We wondered if co-350 

expression profiling might allow to pull high-confidence cilia components: we measured 351 

co-expression in three groups (Ciliacut only; Ciliacut+cilium proteome overlap; cilium 352 

proteome only). The resulting correlation matrix is shown in Figure 4B. Genes only 353 

included in Ciliacut were on average not co-expressed with each other (mean PCC: 0. 354 

03 ± 0.24) and consisted of many MOTILITY (MOT) genes not found in Caenorhabditis 355 

elegans (which lacks motile cilia) and SENSORY, STRUCTURAL AND ASSEMBLY 356 

(SSA) genes. Similarly, about 550 genes only present in the cilium proteome gene list 357 

showed no pattern of co-expression, with a mean PCC of 0.01 ± 0.22. In sharp contrast, 358 

76 genes that belonged to both lists were highly co-expressed (mean PCC: 0.63 ± 359 

0.20). Equally highly co-expressed was a set of ~300 genes whose encoded proteins 360 

are only found in the cilium proteome (mean PCC: 0.63 ± 0.15), with many 361 

uncharacterized FLAGELLAR ASSOCIATED PROTEIN (FAP) genes. Together, these 362 

two sets comprised over 400 co-expressed genes that are prime candidates for 363 

functional dissection. They are listed in Supplemental Data Set 8. 364 

 365 

Ribosome Protein Genes. Nucleus-encoded ribosomal protein genes (RPGs) 366 

code for proteins with three cellular destinations. The co-expression pattern observed 367 

between RPGs largely reflected the organelle in which their encoded subunits will 368 

function (Figure 4A). Plastid RPGs exhibited the strongest degree of co-expression 369 

(mean PCC = 0.88 ± 0.06). The sole exceptions were PLASTID SPECIFIC 370 

RIBOSOMAL PROTEIN1 PSRP1 and PSRP4, which are among the lowest expressed 371 

genes encoding small subunits proteins, and the gene encoding the Chloroplast Stem-372 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.05.326611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326611
http://creativecommons.org/licenses/by-nc-nd/4.0/


Co-expression networks in Chlamydomonas 
 

 14

loop binding Protein of 41 kDa CSP41 (mean PCC = 0.27 ± 0.09) (Figure 4B).  Neither 373 

PSRP1 or CSP41 are thought to be plastid ribosomal proteins, but both participate in 374 

efficient translation, either by inducing conformational changes within the ribosome 375 

(PSRP1, Sharma et al., 2010) or by stabilizing target plastid RNAs (CSP41, Qi et al., 376 

2012). Large and small plastid ribosomal subunits were co-expressed equally strongly 377 

(PRPLs: 0.89 ± 0.04; PRPSs: 0.86 ± 0.09 excluding PSRP1 and PSRP4) (Figure 4C). 378 

Plastid translation factors also displayed a high degree of co-expression with one 379 

another (mean PCC: 0.52 ± 0.18) and with plastid RPGs (mean PCC: 0.59 ± 0.20). Co-380 

expression between chloroplast translation regulators defined three sub-groups: one 381 

group that was highly co-expressed with plastid RPGs (11 genes), one group that was 382 

not co-expressed (4 genes: RNA-BINDING PROTEIN 38 RB38, ACETATE 383 

REQUIRING 115 AC115, BUNDLE SHEATH DEFECTIVE2 BSD2 and CHLOROPLAST 384 

RHODANESE-LIKE TRANSLATION CRLT), and a single weakly anti-correlated gene 385 

with all plastid RPGs, the translation factor and translation regulator (TBA1; mean PCC 386 

against RPGs: -0.35 ± 0.19).  387 

The co-expression of RPGs encoding proteins destined for the mitochondrion or 388 

cytosol was less pronounced, but similar between large and small subunits RPGs 389 

(Figure 4C). For both compartments, correlation coefficients between RPGs followed a 390 

bimodal distribution, with a fraction of PCCs around zero. For mitochondrial RPGs, high 391 

expression levels appeared to come at the cost of lower PCCs, whereas the opposite 392 

was true for cytosolic RPGs. Mitochondrial RPGs tended to be weakly co-expressed 393 

with plastid RPGs (mean PCC: 0.13 ± 0.14) while anti-correlated with cytosolic RPGs 394 

(mean PCC: -0.08 ± 0.15) (Figure 4D). There was no clear correlation between the 395 

expression of most plastid and cytosolic RPGs (mean PCC: -0.0006 ± 0.14) (Figure 396 

4D). As the single exception, the cytosolic RPG RPS27E2/RPS27B, which is generally 397 

expressed at much lower levels than all other cytosolic RPGs, stood out with a 398 

pronounced anti-correlation with plastid RPGs (mean PCC: -0.54 ± 0.05) (Figure 4B). 399 

Nitrogen deficiency results in a sharp increase in RPS27E2 expression, concomitant 400 

with a global arrest in plastid translation until more auspicious conditions return 401 

(Schmollinger et al., 2014; Kajikawa et al., 2015; Plumley and Schmidt, 1989), which 402 

may explain the pattern observed here. 403 
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Given the strong correlation between sets of RPGs in Chlamydomonas, we 404 

wondered how conserved this pattern might be. We determined the correlation between 405 

Arabidopsis RPGs using normalized data from microarrays downloaded from 406 

AtGenExpress. The Arabidopsis genome contains 429 RPGs; as in Chlamydomonas, 407 

their encoded products will locate to one of three compartments (cytosol, mitochondria 408 

or chloroplasts). We observed a correlation matrix very reminiscent of that of 409 

Chlamydomonas RPGs: indeed, each organellar RPG set is co-expressed. A subset of 410 

Arabidopsis RPGs lacked a clear functional localization; however, co-expression with 411 

other RPGs clearly predicted their localization as being either plastidic (“unknown 1”) or 412 

cytosolic (“unknown 2” in Figure 4E). We provide the Arabidopsis normalized microarray 413 

dataset as Supplemental Data Set 9. We obtained similar results with Physcomitrium 414 

patens (not shown), although the exact interpretation is likely muddled by the multiple 415 

splice variants listed for each gene. 416 

 417 

 Transcription factors. As regulators of gene expression, transcription 418 

factors and other DNA-binding proteins will bind to their cognate cis-regulatory elements 419 

to modulate gene expression. We wished to test whether co-expression cohorts 420 

associated with transcription factors may help in deciphering their biological function. To 421 

this end, we calculated the mean PCC between a given transcription factor and its co-422 

expressed cohort from networks N1, N2 and N3. As shown in Figure 5A, PCC values 423 

ranged from 0.42 to 0.92, with a mean of 0.64 ± 0.09. The gene encoding the 424 

transcription factor NITROGEN RESPONSIVE REGULATOR (NRR1) showed one of 425 

the highest PCCs (0.885 for its N1 cohort) and was highly co-expressed with two other 426 

transcription factor genes, both encoding Helix-Loop-Helix proteins (Cre01.g011150 and 427 

Cre04.g216200. The genes LOW-CO2 RESPONSE REGULATOR (LCR1) and 428 

CIA5/CCM1 participate in the induction of gene expression in response to low CO2 429 

conditions (Fang et al., 2012; Xiang et al., 2001; Fukuzawa et al., 2001; Yoshioka et al., 430 

2004), with LCR1 predicted to act downstream of CIA5 (Yoshioka et al., 2004). Both 431 

genes showed high correlation with their N1 cohorts (CIA5: mean PCC of 0.61 with 20 432 

genes and LCR1: mean PCC of 0.715 with 34 genes), but their cohorts did not overlap. 433 

In addition, we failed to identify LCR1 as a gene co-expressed with CIA5, suggesting 434 
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that each transcription factor may act in parallel rather than in converging pathways. We 435 

also looked at the extent of co-expression between transcription factors, as illustrated in 436 

Figure 5B and 5C. When subjected to hierarchical clustering with the First Principle 437 

Component (FPC) method from corrplot, transcription factor genes showed weak to 438 

moderate co-expression, as well as anti-correlations. The potential for co-expression (or 439 

anti-correlation) did not appear to follow simple rules related to the family of the 440 

transcription factors. The dataset generated here will provide an interesting opportunity 441 

to compare the output from methods such as DNA Affinity Purification and sequencing 442 

(DAP-Seq) (O’Malley et al., 2016). 443 

We performed the same analysis with Arabidopsis transcription factors. We 444 

calculated the mean PCC for 1,864 transcription factors represented by a probe on the 445 

ATH1 Affymetrix microarray: mean PCCs per gene ranged from 0.49 to 0.96, with a 446 

mean of 0.86 ± 0.06 (Figure 5D. Co-expression between Arabidopsis transcription 447 

factors was much more evident than in Arabidopsis, as shown in Figure 5E and 5F. The 448 

vast majority of genes encoding transcription factors showed strong co-expression, but 449 

a subset was anti-correlated (Figure 5E) that was not explained based on a crude 450 

separation into leaf- and root-specific expression pattern. We thus selected a list of 150 451 

genes exhibiting the highest anti-correlation and subjected them to Gene Ontology (GO) 452 

enrichment analysis to determine their function. The biological processes associated 453 

with these genes included “heterochronic regulation of development”, “photoperiodism”, 454 

“regulation of seed development” and “regulation of flower development”, raising the 455 

possibility that the observed pattern may reflect the temporal rather than the spatial 456 

specificity of regulatory proteins. 457 

Returning to Chlamydomonas genes encoding DNA-binding proteins, we took a 458 

closer look as histone genes, most of which are coordinately expressed with a peak in 459 

expression shortly before cell division (Strenkert et al., 2019a; Zones et al., 2015). 460 

However, a small group of histone genes remain constantly expressed over the diurnal 461 

cycle and are termed “non-replication” (or emergency) histones. Histone genes 462 

displayed a striking co-expression pattern, with all replication histones being highly co-463 

expressed (Figure 5G). Similarly, non-replication histones were strongly co-expressed 464 

as a group, but less so when probed against replication histones. Histone variants 465 
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showed little correlation in their expression with either group. While assembling the 466 

gene list for histones, we noticed their high numbers (117 histone genes, not counting 467 

histone variants) and their tight clustering along only five chromosomes (Figure 5G). 468 

Even more remarkable was their arrangement as divergent gene pairs: all histone H2A 469 

and H2B genes were present as divergent pairs, and all histone H3 genes occurred as 470 

a divergent partner to a histone H4 gene. In many cases, each major histone class was 471 

represented in a 4-gene cluster, corresponding to 84 (out of 117) histone genes (Figure 472 

5H). The high number of histone genes appeared to be unique to Chlamydomonas, as 473 

the genomes of the other unicellular algae Micromonas sp., Chromochloris zofingiensis 474 

and Volvox carteri encoded far fewer histones. However, the clustering of histones as 475 

divergent gene pairs was partially maintained, as summarized in Figure 5I. In 476 

Micromonas, the four histone genes were arranged as two divergent pairs, with H2A 477 

and H2B belonging to one pair, and H3 and H4 found in the second pair. Likewise, most 478 

histone genes from C. zofingiensis and V. carteri grouped in divergent pairs. 479 

 480 

Co-Expression Cohorts and Co-Expression Modules 481 

Testing co-expression between members of a gene family may help assign 482 

specific functions, or group them in functionally homologous groups. We applied the co-483 

expression cohort approach to the ferredoxin gene family, consisting of 12 genes 484 

(FDX1-FDX12). FDX1, also known as PETF, is the main electron acceptor from 485 

Photosystem I during photosynthesis. FDX5 has been shown to function in fatty acid 486 

desaturation (Yang et al., 2015), while FDX9 likely plays a critical role in fermentation 487 

(Strenkert et al., 2019b). We extracted the co-expression cohort associated with each 488 

FDX from network N1 (Supplemental Data Set 10), and plotted the complete correlation 489 

matrix, as shown in Supplemental Figure 6. As expected, the FDX1 cohort included the 490 

FDX1 partner ferredoxin NADP reductase (FNR1) and genes encoding multiple 491 

subunits of cytochrome b6f. Each FDX cohort varied in size and in the function of its 492 

constituents. For instance, FDX4 showed strong co-expression with several 493 

tetrapyrroles biosynthetic genes, while FDX2 was co-expressed with the nitrite 494 

transporter NAR1.6 and the nitrate transporter NAR2. In addition, FDX1 and FDX2 were 495 

anti-correlated (PCC: -0.48), as were their respective cohorts (Supplemental Figure 6), 496 
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pointing to specific functions for FDX2 outside of photosynthesis. FDX5 was shown 497 

previously to be induced under Cu deficiency, and its co-expression cohort comprised 498 

several genes up-regulated in low-Cu conditions, including the putative Cu transporters 499 

CTR1 and CTR2 (Page et al., 2009), as well as COPPER RESPONSE DEFECT1 500 

(CRD1), which encodes a chlorophyll biosynthetic gene that functions specifically under 501 

low-Cu conditions (Moseley et al., 2002b). FDX6 was itself co-expressed with several 502 

genes involved in carotenoid biosynthesis, suggesting a role for the protein. 503 

We conclude that co-expression cohorts can provide useful information when 504 

characterizing a gene of interest, and may offer hints about the underlying function of 505 

the encoded protein. For example, we validated a role for FDX2 in nitrogen metabolism 506 

based on co-expression alone, corroborating earlier results (Terauchi et al., 2009). We 507 

also suggest that FDX4 may participate in tetrapyrroles biosynthesis. 508 

 We next used our co-expression cohorts and associated edge weights as input 509 

for the graph-clustering Cytoscape plugin ClusterONE (Nepusz et al., 2012), resulting in 510 

the identification of 616 co-expressed modules for network N1, 248 modules for network 511 

N2, and 117 modules for network N3 (Supplemental Figure 7, Supplemental Table 2). 512 

We restricted our efforts to the N3 network as a good compromise between larger 513 

module sizes and significant GO enrichment within modules. Out of 117 N3 modules, 514 

we grouped 37 modules into 8 functional groups based on their significant enrichment in 515 

biological processes: transcription, translation, ribosome biogenesis, protein 516 

degradation, DNA replication, transport, photosynthesis and flagella biogenesis and 517 

function (Supplemental Table 3, Supplemental Data Set 11). A single module defined a 518 

ninth group associated with response to phytohormones, specifically cytokinin, whose 519 

signaling cascade is incomplete in the microalga (Lu and Xu, 2015). These categories 520 

were not surprising and satisfying all the same: they broadly mapped to conserved 521 

cellular functions, or to processes where Chlamydomonas is a premier model organism 522 

for their study.  523 

To obtain genes that are co-expressed with a list of interest, we separately used 524 

manually-curated gene lists as baits to extract their co-expressed genes from the N1, 525 

N2 and N3 networks. As stringency decreases from the N1 to the N3 networks, the 526 

number of selected genes increased, but the resulting lists were nested. Co-expression 527 
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cohorts associated with gene lists expanded the number of potentially informative genes 528 

2-20 fold, with an average increase of 10-fold (Supplemental Figure 8). Using genes 529 

from co-expression modules as baits, we thus identified their associated co-expressed 530 

cohorts and determined the extent of overlap with other user-defined lists (as illustrated 531 

in Figure 3C) to obtain high-confidence genes. We also established the timing of peak 532 

expression over the diurnal cycle for each module, group and co-expressed cohorts, 533 

using the diurnal phase of all genes considered rhythmic in two diurnal datasets 534 

(Supplemental Figure 9) (Zones et al., 2015, Strenkert et al., 2019). 535 

 536 

Cell Division Modules. Five modules involved in cell division and DNA 537 

replication comprised a non-redundant set of 245 genes (Figure 6A), with 88 genes with 538 

an acronym and 157 with no prior functional knowledge. Using guilt by association, we 539 

propose that these non-annotated genes play a role in some aspect of cell division. 540 

Only 19 out of the 245 genes overlapped with 79 genes identified by forward genetic 541 

screens for defects in cell cycle progression; this overlap was limited to the highly co-542 

expressed genes within both sets (Figure 4A) (Tulin and Cross, 2014; Breker et al., 543 

2018). We then determined the co-expression cohorts associated with each gene list 544 

and assessed their overlap. By definition, all genes within our modules are highly inter-545 

connected, but they also exhibited co-expression with ~ 400 additional genes that define 546 

a larger cohort with presumptive function in cell division (Figure 6B). Similarly, hundreds 547 

of genes showed strong co-expression with the 30 co-expressed genes from the 548 

genetics list (Figure 6C). Finally, we defined a third list comprising genes critical for 549 

DNA replication, chromosome segregation and cell division proper, for which we 550 

determined the co-expression cohorts (Figure 6D, Supplemental Data Set 12).Notably, 551 

although the initial gene lists were quite distinct (Figure 6E), their cohorts shared more 552 

genes as network stringency decreased, suggesting that the intersection of co-553 

expression cohorts converged on a common set of genes. 554 

 555 

Proteasome-Dependent Protein Degradation. Two modules shared a function 556 

in protein degradation. They largely overlapped and defined a set of 96 genes that 557 

included all but two of the 26S proteasome subunit genes. Most subunits of the 26S 558 
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proteasome were highly co-expressed (mean PCC: 0.67 + 0.13). CSN2 and CSN6 were 559 

however not part of the protein degradation modules; they exhibited the weakest co-560 

expression profile with other 26S proteasome subunit genes, although clearly still quite 561 

high (CSN2 mean PCC: 0.54 ± 0.15; CSN6 mean PCC: 0.53 ± 0.06) (Supplemental 562 

Figure 10A). The Chlamydomonas ortholog for the E3 ubiquitin ligase CONSTITUTIVE 563 

PHOTOMORPHOGENIC 1 (COP1), Cre13.g602700 (currently annotated as SPA1, 564 

Gabilly et al., 2019), showed no co-expression with the 26S proteasome (mean PCC: –565 

0.09  ± 0.10), consistent with a role as a regulatory component of the proteasome. We 566 

observed the same absence of co-expression in Arabidopsis between COP1 and the 567 

remaining subunits of the proteasome, indicating a conserved mode of control from 568 

unicellular algae to land plants. 569 

 Proteasome-dependent proteolytic degradation entails the addition of ubiquitin 570 

onto the protein targeted for removal by the concerted action of E1 ubiquitin-activating 571 

enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. The 572 

Chlamydomonas genome bears 13 ubiquitin genes, three genes encoding potential E1 573 

enzymes (Cre09.g386400, Cre06.g296983, and Cre12.g491500) and 17 genes coding 574 

for E2 enzymes. We did not compile a list of all E3 ubiquitin ligase genes, as they form 575 

large gene families. Our protein degradation modules only incorporated a single gene 576 

each for ubiquitin (UBQ2), E1 activating enzyme (Cre12.g491500, annotated as UBA2) 577 

and E2 conjugating enzyme (UBC21, although it was the second lowest-expressed 578 

UBC gene in our dataset; Supplemental Figure 10A). No other ubiquitin gene displayed 579 

a co-expression pattern with our protein degradation modules. By contrast, both 580 

remaining E1 enzyme genes (Cre09.g386400 and Cre06.g296983) were highly co-581 

expressed with genes from our protein degradation modules. Likewise, we identified a 582 

subset of genes encoding E2 conjugating enzymes that were co-expressed with 26S 583 

proteasome subunit genes: UBC3 (Cre03.g167000), UBC9 (Cre16.g693700, also the 584 

most highly expressed UBC gene) and UBC13 (Cre01.g046850) and present in the co-585 

expression cohort linked to our modules. In addition, the gene UBC22 (Cre12.g515450) 586 

appeared anti-correlated with other 26S proteasome subunit genes, hinting at a 587 

previously unexpected level of control. 588 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.05.326611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326611
http://creativecommons.org/licenses/by-nc-nd/4.0/


Co-expression networks in Chlamydomonas 
 

 21

 We used the 96 genes that formed the protein degradation modules as baits to 589 

identify their co-expressed cohorts in each of our three most stringent networks (N1-590 

N3). Via guilt-by association prediction, we thus assigned a potential function in protein 591 

degradation for 350-760 genes in addition to those already found within our modules 592 

(Supplemental Figure 10B, Supplemental Data Set 13).  593 

 594 

 Cilia Modules. Four modules were associated with GO terms with a function in 595 

cilia assembly or intraciliary transport. They also demonstrated partial overlap between 596 

themselves, indicating that these four modules defined a single, larger cilia group 597 

consisting of 221 nuclear genes (Figure 6F). The genes making up these modules were 598 

highly co-expressed with a fraction of genes identified in CiliaCut and the cilium 599 

proteome (Figure 6F). The intersection of the initial gene lists (modules, CiliaCut, 600 

overlap and cilium proteome) defined a set of 44 genes, nine of which (ODA1, DRC3, 601 

IFT121, IFT46, IFT74, MBO2, MIA1, PF16 and PF20) were previously identified through 602 

forward genetic screens. We also extracted the co-expression cohorts associated with 603 

cilia modules, CiliaCut and the cilium proteome (Figure 6G-I, Supplemental data Set 8), 604 

linking several hundred genes to cilia. Their overlap (when using the N1 network) 605 

consisted of a set of 193 high-confidence cilia-related genes. 606 

 607 

Photosynthesis modules. Four modules defined a larger photosynthesis group 608 

(Figure 6K) that we sub-divided into three modules containing many of the genes 609 

encoding tetrapyrrole biosynthetic enzymes, while the last module was related to 610 

photosystems components. We extracted their co-expression cohorts (Figure 6L-N), 611 

resulting in hundreds of genes exhibiting strong co-expression. We also determined the 612 

overlap between the initial gene lists (Figure 6O) and their N1 cohorts (Figure 6P): the 613 

co-expression modules clearly included both photosynthesis- and tetrapyrrole 614 

biosynthesis-related genes. As might be expected for genes necessary for proper 615 

chloroplast function, the overlap between N1 cohorts was substantial across all 616 

categories tested (modules, photosynthesis and tetrapyrroles), highlighting interesting 617 

genes for potential follow-up studies within the modules and the N1 cohort. 618 

 619 
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Genes in Co-Expression Modules Cluster Based on their Diurnal Phase 620 

During our analysis of co-expression modules, we noticed a high proportion of 621 

diurnal synchronization between co-expressed genes within modules and their 622 

associated co-expression cohorts, even though diurnally-expressed genes occupy the 623 

entire diurnal time landscape (Figure 7A, 7B). We therefore asked how frequently genes 624 

within co-expressed modules shared the same phase. Out of 117 modules extracted 625 

from the N3 network, 110 contained at least two rhythmic genes (Figure 7C). with a 626 

mean percentage of rhythmic genes of 65% and a median value of 71.6% (Figure 7C). 627 

Modules with few rhythmic genes tended to be associated with large standard 628 

deviations, indicative of little synchronization between the genes comprising them 629 

(Figure 7C). By contrast, modules consisting of a higher frequency of rhythmic genes 630 

showed high synchrony; their mean phase provided information relating to the biological 631 

function of each module, as illustrated below. Notably, the anti-correlated cohorts to 632 

most modules exhibited a mean phase that was 6-12 h out of phase with that of their 633 

related module (not shown), highlighting the importance of time-of-day when 634 

considering co-expression. 635 

Molecular events leading to cell division are coordinately expressed with a phase 636 

distribution between 10-12 h after dawn: in agreement, we determined that the phase 637 

distribution of cell division modules and genes from the cell division “genetics” list 638 

showed the same phase preference, with 232 out of 245 genes being rhythmic, as did 639 

their associated co-expressed cohorts from the N1 network, (Figure 7D, 7E). After cell 640 

division, cells reassemble cilia in anticipation of the coming dawn: 191 (out of 221) 641 

genes within cilia modules exhibited a marked preference for the middle of the night part 642 

of the diurnal cycle, which precisely corresponds to the time of cilia biogenesis (Figure 643 

7F). The degree of synchrony may provide an additional selection criterion for co-644 

expressed genes, as seen with phase distributions of genes belonging to CiliaCut only 645 

(that is, CiliaCut genes whose gene products were not detected in the cilium proteome). 646 

Indeed, CiliaCut only genes displayed a wide range of diurnal phases, whereas co-647 

expressed cilium proteome genes and genes at the intersection of CiliaCut and the 648 

cilium proteome were highly rhythmic and synchronized to the middle of the night 649 

(Figure 3C and Figure 7G). 650 
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We used the 96 genes (Figure 7H, inset) that form the protein degradation 651 

modules as baits to identify their co-expressed cohorts. They displayed a high degree of 652 

synchronized rhythmicity across diurnal datasets (Figure 7H). Only two out of the 96 653 

genes from the protein degradation modules did not show rhythmic expression over a 654 

diurnal cycle. The occurrence of diurnal rhythmicity remained very high in their 655 

associated co-expression cohorts, with 391 rhythmic genes out of 450. The distribution 656 

of their diurnal phases was also quite narrow for both sets of genes, with a peak in the 657 

second half of the day (Figure 7H). We speculate that timed protein degradation offers a 658 

mechanism for the removal of photo-oxidized proteins, which is broadly consistent with 659 

the recent characterization of Chlamydomonas mutants lacking activities for the E3 660 

ubiquitin ligase and Cullin components of the SCF (Skip, Cullin, F-box) complex (Gabilly 661 

et al., 2019). 662 

The majority of genes that belonged to the non-redundant translation modules 663 

N3-5/94 were rhythmic (121 out of 158), and their diurnal phases concentrated in a 664 

narrow window of time between 3 and 5 h into the dark part of the diurnal cycle (Figure 665 

7I). GO enrichment analysis indicated a role for these two modules in the nucleolus and 666 

ribosome biogenesis (Supplemental Table 3). Cytosolic RPGs were constitutively 667 

expressed and thus had no clear diurnal phase, whereas both plastid and mitochondrial 668 

RPGs exhibited preferred diurnal phases between 1-2 h and 3-5 h after dawn, 669 

respectively (Figure 7J), as expected (Zones et al., 2015). 670 

Four modules defined a larger photosynthesis group that we sub-divided into 671 

three modules containing many of the genes encoding tetrapyrrole biosynthetic 672 

enzymes, while the last module was related to photosystems components. Both sub-673 

groups were highly rhythmic over the diurnal cycle and restricted to a small time-674 

window. Their respective phases agreed with their underlying biological function: genes 675 

encoding tetrapyrrole biosynthetic enzymes peaked ~ 2 h prior to components of both 676 

photosystems (Figure 6K). While highly co-expressed, photosynthesis- and 677 

tetrapyrroles-related modules did not substantially overlap (Supplemental Data Set 14), 678 

indicating that a diurnal phase difference of 2 h was sufficient to form independent 679 

clusters. 680 
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We conclude that co-expression modules are strongly influenced by the diurnal 681 

phase of their constituent genes. While this result may in itself not be surprising, it also 682 

raised the question of the overlap contribution of diurnal phase to clustering in our 683 

dataset, which we addressed next. 684 

 685 

Genes Cluster Based on their Diurnal Phase 686 

While the majority of Chlamydomonas genes exhibit a diurnal expression profile 687 

when cells are grown under light-dark cycles, most of the samples included in our 688 

RNAseq dataset were collected from cells grown in constant light, with the assumption 689 

that cells in such cultures would be largely asynchronous. Since we observed frequent 690 

co-expression that followed diurnal phase information, we determined whether genes 691 

globally clustered according to their diurnal phase, and whether cells in constant light 692 

retained some entrained properties. 693 

 We first explored how various clustering methods ordered genes as a 694 

function of their diurnal phase. We performed this analysis on three datasets: the fully 695 

normalized and complete dataset (RNAseq4), which included samples collected from 696 

cells grown in constant light and under diurnal cycles; RNAseq4LL, only consisting of 697 

samples collected from cells grown in constant light; RNAseq4LD, comprising all 698 

samples with a rhythmic component, either diurnal or related to cell cycle progression. 699 

We calculated all pairwise PCCs and ordered genes according to hierarchical clustering 700 

(hclust, as shown in Supplemental Figure 5B), Angle of the Eigenvectors (AOE, Figure 701 

8A), or First Principle Component (FPC, Supplemental Figure 11). The AOE correlation 702 

matrix exhibited a smooth transition from the first gene to the last gene (along each 703 

row), with strong positive correlations along the diagonal and at the upper right corner, 704 

separated by a gradual transition to negative correlations parallel to the diagonal (Figure 705 

8A). The matrix also lacked the localized clustering seen with the “hclust” method 706 

(compare Figure 8A with Supplemental Figure 5B). The FPC correlation matrix 707 

arranged pairwise PCCs in a similarly smooth pattern, with the strongest positive PCC 708 

values located in the upper left corner and the strongest negative PCCs in the upper 709 

right corner (Supplemental Figure 11A). The PCCs generated from RNAseq4LD 710 

followed a wider normal distribution relative to those of RNAseq4 and RNAseq4LL 711 
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(Figure 8B), which we hypothesize results from the smaller number of samples and a 712 

higher amplitude in gene expression under rhythmic conditions, in contrast to averaged 713 

values from asynchronous cells. 714 

We next assigned a row number to each gene according to its place within the 715 

AOE correlation matrices, from 1 to 17,741. For those that also exhibited a diurnal 716 

expression pattern (Supplemental Figure 9; Zones et al., 2015, Strenkert et al., 2019), 717 

we plotted their diurnal phase (on the y axis) as a function of AOE gene order (on the x 718 

axis). As shown in Figure 8C, the relationship between AOE gene order and diurnal 719 

phases was far from random, and instead followed a linear pattern, whereby genes that 720 

appeared first in the AOE correlation matrix had phases with peaks in the late evening. 721 

As gene row number increased, diurnal phases gradually decreased, demonstrating the 722 

widespread influence of diurnal phase on correlation potential between gene pairs. In 723 

addition, the overall pattern of the AOE correlation matrix was reminiscent of that seen 724 

for diurnal experiments (Figure 1C, 1E), with genes separated by 12 h in terms of 725 

diurnal phases showing the strongest anti-correlations, while genes in similar time 726 

neighborhoods shared strong co-expression. 727 

The RNAseq4 and RNAseq4LD datasets globally resulted in the same gene 728 

order after AOE clustering (Figure 8C), which at first might imply that samples collected 729 

from diurnally-grown cells imposed the observed gene ordering. However, this did not 730 

appear to be the case, as  1) the overall pattern of the AOE matrix for RNAseq4LL-731 

derived PCC values was identical to that of RNAseq4 (Figure 8A), and 2) the 732 

corresponding gene order still carried diurnal information, as evidenced by the increase 733 

in diurnal phase with increasing gene order (Figure 8C), and despite the removal of all 734 

diurnal samples. Although the AOE clustering gene order did change between the 735 

RNAseq4 and RNAseq4LL matrices, the alteration in the pattern was systematic: a 736 

scatterplot of gene order for RNAseq4 and RNAseq4LL underscored the linear 737 

relationship between the two gene order series (Figure 8D). FPC clustering also sorted 738 

genes according to their diurnal phase, although along distinct parameters 739 

Supplemental Figure 11B).  740 

 We conclude that diurnal phase contributes substantially to the clustering of 741 

genes, even for samples obtained from cells grown in constant light. Such samples 742 
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appear to retain diurnal information that shapes the clustering outcome at the genome 743 

level.  744 

 745 

Molecular Timetable Analysis Confirms Residual Synchronization of the 746 

Chlamydomonas Transcriptome  747 

That genes clearly clustered according to their diurnal phases even in a dataset 748 

comprised solely of samples collected from cells grown in constant light raised the 749 

possibility that these samples exhibited residual rhythmicity. We thus applied the 750 

molecular timetable method (Ueda et al., 2004) to all RNAseq samples to determine the 751 

extent of rhythmicity they might exhibit. The molecular timetable method, whose 752 

principle is briefly explained in Supplemental Figure 12, extracts the rhythmic (diurnal or 753 

circadian) information from single time-point transcriptomes using the known phases 754 

and expected expression levels from a reference diurnal (or circadian) dataset. We 755 

selected 480 genes across 24 phase bins; their peak time of expression is known 756 

exactly, as well as their expression levels. We then extracted their normalized 757 

expression from RNAseq4 and calculated the mean expression for each phase bin. 758 

Finally, we plotted this mean for each RNAseq sample and each diurnal phase bin as a 759 

heatmap.  760 

We first looked at the two large diurnal time-courses, shown in Figure 9A, to 761 

validate out methodology. Indeed, each diurnal sample (one row) showed a rhythmic 762 

pattern with each peak and trough separated by ~12 h. In addition, successive time-763 

points were more similar to one another than to later time-points, as observed earlier in 764 

the correlation matrix (Figure 1E). These results demonstrated the applicability of the 765 

molecular timetable method to Chlamydomonas RNAseq samples, paving the way for 766 

the extraction of the internal time of the collected sample, as determined by the phase 767 

bin with maximal normalized expression. 768 

We next subjected all remaining RNAseq samples to the same analysis and 769 

clustered them based on their underlying pattern while generating the heatmap shown 770 

in Figure 9B. Completely asynchronous samples should appear off-white across all 771 

phase bins (“as”, bottom of Figure 9B); overwhelmingly, Chlamydomonas RNAseq 772 

samples instead displayed remarkable residual rhythmicity. Diurnal time-courses were 773 
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easy to distinguish from other samples when we plotted the minimum and maximum 774 

normalized expression values associated with each sample (Figure 9C). Notably, most 775 

other samples, collected from cells grown in constant light, retained strong global 776 

oscillations, which we estimate to represent a synchronization between cells ranging 777 

from 21-96%, with a mean rhythmicity of 48%, based on the amplitude between minima 778 

and maxima relative to diurnal time-course samples (Figure 9C). 779 

The timing of minimum and maximum gene expression should be ~ 12 h apart in 780 

diurnal and rhythmic samples: we therefore plotted peak and trough times predicted for 781 

all samples based on the molecular timetable data. As shown in Figure 9D, most 782 

samples indeed reached peak value 12 h after their lowest time-point, validating our 783 

hypothesis that the vast majority of Chlamydomonas RNAseq samples exhibit strong 784 

residual rhythmicity even when the cells were grown in constant light.  785 

Finally, we asked whether samples displayed a preferential diurnal phase by 786 

plotting the distribution of peak phases across all samples. To our surprise, about one 787 

third of all samples showed a peak phase between 5-6 h after dawn.  788 

 789 

Applicability of the Molecular Timetable Method to Other Algae: Volvox carteri 790 

and Chromochloris zofingiensis as Tests 791 

 Incorporating new Chlamydomonas transcriptome datasets to the one we used 792 

here would be cumbersome, as it would entail repeating all normalization steps each 793 

time a new dataset is added. A more practical approach would be to subject new 794 

transcriptome datasets to an abridged normalization, namely log2 normalization followed 795 

by normalization to the mean calculated from our full dataset. We tested the usefulness 796 

of this method by re-analyzing a transcriptome dataset included in our original list that 797 

was focused on iron homeostasis (Urzica et al., 2012c), for which Chlamydomonas cells 798 

had been grown with various iron concentrations (0.25, 1 or 20 µM FeEDTA) in 799 

autotrophic (no reduced carbon source provided, but cultures were bubbled with CO2) 800 

or heterotrophic (with acetate as reduced carbon source) conditions. We normalized 801 

FPKM counts to the mean inferred from the full RNA-seq dataset, and used the same 802 

diurnal phase values as above. As shown in Figure 10A, autotrophic cultures exhibited 803 

a very similar molecular timetable profile, with an estimated internal phase around dawn 804 
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across all three iron concentrations. In sharp contrast, heterotrophic cultures responded 805 

very differently: indeed, iron-limited cultures (0.25 µM FeEDTA) were 12 h out of phase 806 

with the other two samples. Iron-limited heterotrophic cultures grow more slowly than 807 

iron-deficient (1 µM FeEDTA) or iron-replete cultures (20 µM FeEDTA). We hypothesize 808 

that the difference in internal phase between heterotrophic samples may thus partially 809 

reflect the time at which cultures were sampled, as cells were harvested at the same 810 

cell density (Urzica et al., 2012c). However, we cannot exclude a contribution to a 811 

slower circadian clock under low iron conditions, as described for land plants (Chen et 812 

al., 2013; Salomé et al., 2013; Hong et al., 2013). Nonetheless, we conclude that the 813 

molecular timetable method is applicable to Chlamydomonas samples after performing 814 

log2 and mean normalization. 815 

 We then explored the applicability of this method to other algae where a high-816 

density diurnal time course is not available: Vovox carteri and Chromochloris 817 

zofingiensis. V. carteri samples consisted of two technical replicates each collected from 818 

somatic and gonidial cells (Matt and Umen, 2018). We obtained one-to-one orthologs 819 

between Chlamydomonas and V. carteri from Phytozome, after which we subjected all 820 

C. carteri genes with a rhythmic Chlamydomonas ortholog to log2 normalization and to 821 

normalization with Chlamydomonas means. We then calculated the average normalized 822 

expression for all genes, in 1 h bins. Gonidial cells appeared strongly rhythmic, with a 823 

peak phase around 4-5 h after dawn and a trough ~12 h later (Figure 10B). Remarkably, 824 

somatic cells exhibited a completely different profile with a peak phase in the middle of 825 

the night. We performed the same analysis of transcriptome samples collected in C. 826 

zofingiensis over a 12 h time-course with addition or removal of glucose from the growth 827 

medium (Roth et al., 2019). Here, cultures were maintained in light-dark cycles 828 

consisting 16 h light and 8 h darkness. All samples exhibited a rhythmic profile, strongly 829 

indicating that the molecular timetable accurately predicted the internal phase of the 830 

samples. Indeed, the peak phase of samples collected later during the day showed a 831 

clear and distinct shift to a later phase. Notably, the rhythmic pattern extracted from 832 

these transcriptome samples followed the same overall pattern regardless of the 833 

treatment imposed on the cultures, which is consistent with the strong contribution of 834 

time-of-day noted in these samples (Roth et al., 2019). 835 
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 We conclude that the molecular timetable method can be applied to 836 

Chlamydomonas and to other algae, even when they lack a reference diurnal time-837 

course. Such analysis would allow a rapid estimation of the contribution of rhythmic 838 

gene expression to variation in gene expression, even in the absence of a reference 839 

diurnal time-course. 840 

 841 
 842 
 843 
 844 
  845 
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DISCUSSION 846 

 We initially set out to analyze multiple RNAseq datasets to prioritize genes 847 

whose expression responded to changes in iron status in Chlamydomonas and 848 

Arabidopsis. Our working hypothesis was that genes with a prominent role in iron 849 

homeostasis should closely follow the expression pattern of known iron-responsive 850 

genes like the iron transporters IRT1 and IRT2 or NATURAL RESISTANCE 851 

ASSOCIATED MACROPHAGE PROTEIN 4 (NRAMP4), the Fe ASSIMILATION (FEA) 852 

genes FEA1 and FEA2, or the FERRIC REDUCTASE (FRE). We quickly realized that 853 

the assembly of 518 RNAseq samples into one dataset offered a unique opportunity to 854 

explore the transcriptome landscape of the alga. We believe that we have only skimmed 855 

the surface during our meta-analysis and invite others to use this dataset for their own 856 

research questions. 857 

 We were surprised to see how little correlation existed between Chlamydomonas 858 

experiments, even though several queried the same biological question, such as 859 

responses to nitrogen deficiency or metal deficiencies (Figure 2). Samples collected in 860 

the same laboratory similarly failed to show strong correlations, although growth 861 

conditions are likely to be similar. We do not fully understand the underlying source of 862 

variation, but we propose that strong residual rhythmic gene expression may contribute 863 

to the observed pattern. As a test of our analysis pipeline, we determined the correlation 864 

matrix of Arabidopsis microarray datasets, downloaded from AtGenExpress. As shown 865 

in Supplemental Figure 13, samples (using the expression data for all genes as data 866 

points) clearly grouped as a function of the tissue of origin, with shoot and leaf samples 867 

generally strongly correlated, while anti-correlated with root samples. It is likely that 868 

Arabidopsis samples show strong differentiation of their expression profiles as a 869 

function of the tissue of origin, as might be expected, thus validating our pipeline. More 870 

puzzling though is the fact that Chlamydomonas samples behave as independent units 871 

that share little correlation with others. In this regard, it would be informative to perform 872 

a comparative analysis of transcriptome datasets from multiple uni- and multi-cellular 873 

organisms, to determine whether multicellularity drives the more polarized differentiation 874 

of expression profiles seen across Arabidopsis samples relative to Chlamydomonas. 875 
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 Co-expression modules assemble the most consistent gene pairs into a coherent 876 

list that is characterized by high connectivity. However, each gene is itself co-expressed 877 

with many genes not included in the module (Supplemental Figure 8). These co-878 

expression cohorts can provide cues as to the function of a gene, especially when it 879 

does not belong to a module. In addition, genes with the opposite expression profile can 880 

give hints as to the function of a gene of interest. We have extracted co-expression and 881 

anti-correlation cohorts for all Chlamydomonas genes, provided as Supplemental Data 882 

Sets 2-7. We also provide an example script to run the same analyses presented here 883 

on any gene list, from extracting the co-expression cohort to plotting the corresponding 884 

correlation matrix (Supplemental File 1). We hope that this type of analysis spurs new 885 

discoveries, not only in Chlamydomonas but also in Arabidopsis and other plants. Our 886 

results with Arabidopsis RPGs (Figure 4E) demonstrates the applicability of the method 887 

to other organisms.  888 

 We do not anticipate all candidate genes identified based on co-expression to be 889 

functionally tested, at least not in Chlamydomonas. Rather, we expect co-expressed 890 

genes to be compared to other gene lists, generated by other means, in order to narrow 891 

down the number of interesting candidates for follow-up studies further. For example, 892 

large-scale non-targeted mutant screens in Chlamydomonas pave the way for the 893 

systematic genetic dissection of phenotypes (Li et al., 2015, 2019); we envisage that the 894 

intersection of co-expression and large-scale genetic screens will empower research, 895 

not only in Chlamydomonas, but also in other algae.   896 

 The Chlamydomonas life cycle resolves around cell division, the timing of which 897 

can be synchronized to dusk by light-dark cycles (Zones et al., 2015; Strenkert et al., 898 

2019; Cross and Umen, 2015). When maintained under entraining conditions, at least 899 

80% of the Chlamydomonas transcriptome exhibits rhythmic expression. It is unclear 900 

how quickly algal cells become asynchronous when transferred to constant light 901 

conditions. It is thought that cultures grown in constant light are largely arrhythmic at the 902 

population level due to loss of synchrony. When applying the molecular timetable to 903 

Chlamydomonas RNAseq samples, we discovered that the vast majority of samples 904 

exhibited substantial rhythmicity, even when collected from cells grown in constant light 905 

(Figure 9). About one third of all samples appeared to have been collected 5-6 h after 906 
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subjective dawn (that is, the dark-to light transition, had the cells been maintained under 907 

entraining conditions). Based on the amplitude between minima and maxima extracted 908 

from phase marker genes, we estimate that 21-96% of cells within a given culture were 909 

synchronized, with a mean of 48%. Chlamydomonas strain stocks are typically kept in 910 

constant light on solid medium before inoculating a liquid culture, which will itself be 911 

placed in constant light. Pre-cultures are common before inoculating the test culture; 912 

cells are generally collected by centrifugation when they reach mid-log. It is therefore 913 

possible that diluting cells at the beginning of an experiment sends a resetting signal to 914 

the Chlamydomonas circadian clock, the signature of which is still present 2-3 d later, 915 

as evidenced by the degree of residual synchronization in all samples analyzed. We are 916 

here only seeing the bulk behavior of Chlamydomonas cultures. Single-cell RNAseq 917 

(scRNA-seq) analysis will allow a more detailed dissection of the diurnal contribution to 918 

the Chlamydomonas transcriptome landscape. To begin to explore this possibility, we 919 

recently performed scRNA-seq on almost 60,000 Chlamydomonas cells grown under 920 

three growth conditions and from two genotypes. Indeed, we observed a substantial 921 

heterogeneity among the cells that was partially explained by the endogenous phase of 922 

individual cells (Ma et al.). Although cultures were grown in constant light for several 923 

weeks, we hypothesize that diluting cells at the beginning of an experiment may act as 924 

a resetting signal for the endogenous cell cycle and circadian clock. 925 

Our observations also raise a question regarding the design of RNA-seq experiments: 926 

when assessing the effect of a mutation or a treatment on cultures, Is it more important 927 

to collect samples at the same cell density or at the same time? Our results suggest that 928 

sampling time exerts a far greater influence on expression outcomes than sampling 929 

density would. Best practices for RNAseq analysis may therefore dictate that a matched 930 

control sample be collected at each time-point in order to remove any contribution to 931 

differential gene expression from the strong rhythmicity exhibited by cultures. Genes 932 

belonging to the same co-expressed modules tended to have the same diurnal phase 933 

(Figure 9C); the narrow window of expression seen in rhythmic genes would thus be 934 

missed when comparing samples collected hours apart. In Arabidopsis, samples 935 

collected 30 min apart already exhibited differential expression (Hsu and Harmer, 2012). 936 

Our results generalize this observation. 937 
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 The molecular timetable method is a powerful and easily implemented method to 938 

test the rhythmic component of transcriptome data. We demonstrate here that 939 

Chlamydomonas data can be transferred onto other algae like V. carteri and C. 940 

zofingiensis to reveal an unexpected dimension of rhythmic expression from single time 941 

points. We propose that all transcriptome datasets should be subjected to such analysis 942 

before delving into more in depth analysis, to estimate the fraction of variation in gene 943 

expression that might be explained by rhythmic expression. We provide the mean and 944 

phase values from Chlamydomonas to normalize RNAseq data from other algae as 945 

Supplemental Data Set 15. 946 

 In conclusion, we describe here an analysis of co-expression in the green 947 

unicellular alga Chlamydomonas. We observed known and new connections between 948 

genes ad provide the tools to take this analysis further for any gene of interest, in both 949 

Chlamydomonas and other system with a body of transcriptome data available. 950 

 951 

 952 

 953 
 954 
MATERIALS AND METHODS 955 

Co-Expression Analysis Network in Chlamydomonas 956 

We re-analyzed a set of 58 RNAseq experiments, consisting of 518 samples, by 957 

mapping reads to version v5.5 of the Chlamydomonas genome (v5.5 from Phytozome) 958 

with STAR (v2.5) (Dobin et al., 2013) using default settings except --alignIntronMax 959 

10000 --outFilterMismatchNoverLmax 0.04. Expression was calculated in terms of 960 

Fragments Per KB per Million mapped reads (FPKMs) with cuffdiff (v2.0.2) (Trapnell et 961 

al., 2014) using default settings except --multi-read-correct --max-bundle-frags 962 

1000000000. We assembled all expression estimates as FPKM into one file and did not 963 

attempt to correct for batch effect at this stage, with the thought that such effects would 964 

contribute to the variation in expression. We then log2-transformed mean FPKMs across 965 

replicates was with a pseudo-count of “1” added prior to conversion, followed by 966 

quantile normalization with the R package preprocessCore. Finally, we subtracted mean 967 

expression across all experiments for each gene, which removed any potential batch 968 

effects from the data. We calculated Pearson’s correlation coefficients (PCC) with the 969 
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cor function in R and visualized for each gene pair using the R package corrplot, using 970 

all 518 expression estimates. We maintained four expression datasets following each 971 

normalization step: RNAseq1 (mean FPKMs); RNAseq2 (log2-normalized); RNAseq3 972 

(quantile-normalized); RNAseq4 (normalized to mean). 973 

 We calculated the rank for all gene pairs by inverting the sign of PCCs by 974 

multiplying the data frame by –1, then converting PCC values for each gene into ranks 975 

with the function rank in R. We derived the mutual ranks (MRs) for two genes a and b 976 

from the formula MR(a,b) = √(rankab x rankba). Considering a matrix of ranks, the 977 

ranks rankab and rankba are geometrically linked on either side of the diagonal: if 978 

rankab has the coordinates (x,y) in the rank matrix, then rankba will have the 979 

coordinates (y,x). We therefore transposed the rank matrix with the t function in R. We 980 

obtained MR values for each gene pair by multiplying each cell from the rank matrix by 981 

their counterpart in the transposed rank matrix, then square-rooted. 982 

 For network selection and visualization, we calculated edge weights from MR 983 

values with the formula: Nx = e-(MR-1)/x, with x = 5, 10, 25, 50 or 100. Only Nx ≥ 0.01 984 

were considered significant. We extracted gene pairs with significant edge weights from 985 

the full edge weight matrix and loaded them into Cytoscape 3.5.1. We detected modules 986 

of co-expressed genes with ClusterONE with default parameters. Modules with a p-987 

value ≤ 0.1 were considered significant. 988 

 We also determined lists of anti-correlated genes by ranking PCC values from 989 

the non-inverted PCC matrix generated by corrplot, and by calculating associated edge 990 

weights as above. In this case, we limited our analysis to identifying anti-correlated 991 

genes, as ClusterONE cannot detect modules using edge weights from anti-correlated 992 

genes.  993 

 994 

Co-expression Analysis Network in Arabidopsis 995 

 Microarray datasets were downloaded from the AtGenExpress project site 996 

(http://jsp.weigelworld.org/AtGenExpress/resources/), and collated into a single file that 997 

consisted of 34 Arabidopsis accessions, 16 sets of etiolated seedlings exposed to 998 

various light treatments, 36 sets of seedlings exposed to pathogens, 13 cell culture 999 

samples, 68 sets each for shoots and roots exposed to various abiotic stresses, 79 1000 
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developmental samples (72 from shoots or leaves, 7 from roots), and 18 sets each for 1001 

leaves and roots subjected to iron deficiency, with controls included. We log2-1002 

normalized all data when not already done, and followed the same normalization steps 1003 

described for the Chlamydomonas data set. 1004 

 1005 

Analysis of Co-Expression from ClusterONE Modules 1006 

 We extracted normalized expression data (from RNAseq4) for genes belonging 1007 

to a given cluster in R using the stack and unstack functions, and generated the 1008 

corresponding co-expression matrix with corrplot. We tested for overlap between co-1009 

expression modules with similar predicted function with the online tool Venny (Oliveros, 1010 

2007), and redrew co-expression matrices with a non-redundant gene list as input. 1011 

Unless stated otherwise, we ordered genes based on the FPC (First Principle 1012 

Component) clustering method built into corrplot. 1013 

 1014 

Analysis of Co-expression from Manually-Curated and Community Gene Lists 1015 

 We extracted normalized expression data for genes that belonged to manually-1016 

curated or community-generated lists as described above for co-expression modules. 1017 

We maintained the same gene order when working with community lists, as the genes 1018 

were sorted and grouped based on shared function. We sorted genes from manually-1019 

curated lists following the FPC method in corrplot. 1020 

 1021 

Identification of Co-Expression Cohorts 1022 

 We extracted the sets of genes co-expressed with each gene belonging to our 1023 

co-expression modules in R by merging each module-specific gene list with a file 1024 

representing all nodes and edges from networks N1 to N3. We collapsed each co-1025 

expression cohort into a non-redundant list by using the function unique in R and tested 1026 

each subset for overlap with merge or join.  1027 

Manually-curated and community-generated gene lists presented an initial 1028 

challenge, since not all of their constituents are necessarily co-expressed (for example, 1029 

only a fraction of the genes defined by the mutant screen carried out by Fred Cross for 1030 

cell cycle mutants is co-expressed). We therefore 1) ordered genes using the FPC 1031 
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clustering method; 2) counted how many gene pair PCCs were above 0.25, 0.4 or 0.5 1032 

for each row of the matrix in order to 3) define cut-offs between subsets of genes with 1033 

high-, medium- or low-PCCs. We then used these subsets (from 1 to 3) as bait to 1034 

identify their associated co-expression cohort, as described above for co-expression 1035 

modules. 1036 

 1037 

GO Category Enrichment in Co-Expressed Modules 1038 

 We tested our co-expression modules for Gene Ontology term enrichment by 1039 

using the PANTHER database (pantherdb.org) through the Gene Ontology Resource 1040 

page (http://geneontology.org). First, all Chlamydomonas gene identifiers 1041 

(Crexx.gxxxxxxx) were converted to their corresponding Uniprot identifiers using a 1042 

gene-to-Uniprot list generated in-house. Of 117 modules, 86 retained at least 10 genes 1043 

with corresponding Uniprot identifiers (31 had ≤ 9 genes with matching Uniprot 1044 

identifiers and were deemed too small for further analysis), and 37 returned significant 1045 

enrichment in GO term(s) for Biological Process.  1046 

 1047 

 1048 

Venn Diagrams and Gene List Overlaps 1049 

We compared gene lists and determined the extent of overlap with the online tool 1050 

Venny (Oliveros, 2007). Proportional Venn diagrams were drawn with BioVenn (Hulsen 1051 

et al., 2008) for 2-way diagrams or EulerAPE 3.0.0 (Micallef and Rodgers, 2014) for 3-1052 

way diagrams. 1053 

 1054 

Statistics 1055 

PCC values for the entire genome were calculated with the cor function in R, and 1056 

their distributions plotted with the density function in R. A random normal distribution of 1057 

mean = 0 and standard deviation = 0.2 was generated with the rnorm function in R for 1058 

100 million values; only 23 values fell outside of the –1 to +1 range and were not 1059 

discarded.  1060 

For comparisons between distributions, we applied a Kolmogorov-Smirnov test 1061 

(ks-test) using the ks.test function in R. 1062 
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 1063 

 1064 

SUPPLEMENTAL MATERIALS 1065 

Supplemental Figure 1. Normalizations of the Chlamydomonas transcriptome dataset. 1066 

Supplemental Figure 2. How ribosomal protein genes (RPGs) respond to each 1067 

normalization step. 1068 

Supplemental Figure 3. The R package corrplot and visualization of large correlation 1069 

matrices. 1070 

Supplemental Figure 4. Correlations between experimental samples and normalization 1071 

methods. 1072 

Supplemental Figure 5. Chlamydomonas gene pairs are largely not co-expressed. 1073 

Supplemental Figure 6. Co-expression cohorts for Chlamydomonas ferredoxins. 1074 

Supplemental Figure 7. From co-expression cohorts to co-expression modules. 1075 

Supplemental Figure 8. Using module nodes as baits to identify co-expressed genes. 1076 

Supplemental Figure 9. Convergence of diurnal phase between two time-courses. 1077 

Supplemental Figure 10. Co-expression of the protein degradation machinery is 1078 

limited to the 26S proteasome. 1079 

Supplemental Figure 11. Genes Cluster Based on their Diurnal Phase.  1080 

Supplemental Figure 12. Molecular timetable method to extract diurnal information 1081 

from single time-points. 1082 

Supplemental Figure 13. Arabidopsis microarray data clearly differentiates between 1083 

tissue types. 1084 

 1085 

Supplemental Table 1. Summary of expression estimates across all conditions and 1086 

samples. 1087 

Supplemental Table 2. Cohort and modules sizes for co-expression data derived from 1088 

the RNAseq4 dataset. 1089 

Supplemental Table 3. Summary of GO terms enriched in N3 co-expressed clusters. 1090 

 1091 

All Supplemental Data Sets have been uploaded to: 1092 
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https://drive.google.com/drive/folders/1Ee9tArvYiMHgzx9fJ7-L-1093 

06xSc3uhPwj?usp=sharing 1094 

Supplemental Data Set 1. The fully normalized RNAseq dataset. 1095 

Supplemental Data Set 2. List of co-expressed genes for each nuclear 1096 

Chlamydomonas gene for the N1 network. 1097 

Supplemental Data Set 3. List of co-expressed genes for each nuclear 1098 

Chlamydomonas gene for the N2 network. 1099 

Supplemental Data Set 4. List of co-expressed genes for each nuclear 1100 

Chlamydomonas gene for the N3 network. 1101 

Supplemental Data Set 5. List of anti-correlated genes for each nuclear 1102 

Chlamydomonas gene for the N1 network. 1103 

Supplemental Data Set 6. List of anti-correlated genes for each nuclear 1104 

Chlamydomonas gene for the N2 network. 1105 

Supplemental Data Set 7. List of anti-correlated genes for each nuclear 1106 

Chlamydomonas gene for the N3 network. 1107 

Supplemental Data Set 8. Cilia genes, and co-expressed cohorts. 1108 

Supplemental Data Set 9. The fully normalized Arabidopsis dataset. 1109 

Supplemental Data Set 10. Co-expression cohorts for all FDX genes. 1110 

Supplemental Data Set 11. List of genes from the 117 co-expression modules 1111 

identified in network N3. 1112 

Supplemental Data Set 12. Cell division modules and co-expressed cohorts. 1113 

Supplemental Data Set 13. Photosynthesis and tetrapyrroles biosynthetic genes and 1114 

their co-expressed cohorts. 1115 

Supplemental Data Set 14. Proteasome and protein degradation-related genes and 1116 

their co-expressed cohorts. 1117 

Supplemental Data Set 15. Phases and means for 10,294 rhythmic Chlamydomonas 1118 

genes. 1119 

Supplemental Data Set 16. List of co-expressed genes for each nuclear Arabidopsis 1120 

gene for the N1 network. 1121 

Supplemental Data Set 17. List of co-expressed genes for each nuclear Arabidopsis 1122 

gene for the N2 network. 1123 
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Supplemental Data Set 18. List of co-expressed genes for each nuclear Arabidopsis 1124 

gene for the N3 network. 1125 

 1126 

Supplemental File 1. Examplar R script to extract data for a gene list, plot the 1127 

corresponding correlation matrix and extract the co-expression cohort. 1128 

Supplemental File 2. Normalization pipeline to turn transcriptome data into an input file 1129 

for co-expression analysis. 1130 

 1131 
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1148 
FIGURE LEGENDS 1149 
 1150 
Figure 1. Samples from the Same Experiment are Strongly Correlated. 1151 
Correlation matrices between all samples using expression estimates for all 17,741 1152 
nuclear genes as FPKM (A), or after all normalization steps (B). Samples belonging to 1153 
the same experiment are in consecutive order, and roughly in chronological order. 1154 
(C) Ditribution of Pearson’s correlation coefficients between (“inter-expt”) and within 1155 
(“intra-expt”) experiments. PCCs for all comparisons between experiments are shown 1156 
as violin plots and box plots (“inter-expt”, gray), alongside mean PCCs from all samples 1157 
within each experiment (“intra-expt”, green), samples collected in the context of nitrogen 1158 
deprivation (blue), PCCs for all metal-related samples (light purple) and specific metals 1159 
(darker shades of purple), samples collected over a diurnal cycle (light orange) and 1160 
PCC between subsets of samples (darker shades of orange). Values along the diagonal 1161 
of the matrix (equal to 1) were discarded prior to plotting. 1162 
(D) Correlation matrix for samples from metal-related experiments, all from the 1163 
Merchant laboratory, and in which either one micronutrient has been omitted from the 1164 
growth medium (for deficiency conditions: copper Cu, iron Fe, manganese Mn and zinc 1165 
Zn) or a toxic metal was added to observe the effect on homeostasis (cadmium Cd and 1166 
nickel Ni). 1167 
(E) Correlation matrix of samples collected over a diurnal cycle. The light- and dark-part 1168 
of each sampling day is indicated on the left and bottom sides of the matrix as white and 1169 
black bars, respectively. Four time-courses are compared here (Zones et al., 2015; 1170 
Strenkert et al., 2019b; Panchy et al., 2014). 1171 
 1172 
Figure 2. Correlations and Anti-Correlations between Organellar Energy 1173 
Producing Systems. 1174 
(A) Correlation matrix of nucleus-encoded components of each mitochondrial 1175 
respiratory complexes, in the order defined by Zones et al. (Zones et al., 2015). An 1176 
asterisk after the name of a complex signifies that its dedicated assembly factors (one 1177 
to two genes outside of complex 4) are shown last, after the complex components. 1178 
(B) Correlation matrix of chlorophyll and hemes biosynthetis genes. Genes have been 1179 
ordered according to Zones et al., (2015). Pairs of homologous genes are indicated 1180 
above the correlation matrix. 1181 
(C) Co-expression matrix of photosystem genes (in green) and tetrapyrroles 1182 
biosynthetic genes (in blue). 1183 
(D) Comparison of co-expression profiles of chloroplast- and mitochrondrion-localized 1184 
energy production systems. The respiratory complex matrix is redrawn from 1185 
Supplemental Figure 9. 1186 
(E) Distribution of PCCs between groups of genes. The gray distribution is the genome-1187 
wide distribution of all PCCs between all gene pairs. Photosynthesis: photo.; 1188 
tetrapyrroles: tetra.; respiration: resp.. 1189 
 1190 
Figure 3. Confirmation of High-Confidence Cilium Proteins Based on Co-1191 
Expression of their Encoding Genes. 1192 
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(A) Correlation matrix of structural constituents of the Chlamydomonas cilia, in the order 1193 
defined by Zones et al. (Zones et al., 2015). DRC: dynein regulatory complex; BBS: 1194 
Bardet-Biedl syndrome protein complex; BUG: basal body upregulated after 1195 
deflagellation; POC: proteome of centriole; IFT: intra-flagellar transport. 1196 
(B) Correlation matrix between genes belonging to CiliaCut (green) or encoding 1197 
components identified in the cilium proteome (light purple; Pazour et al., 2005). The 1198 
genes within each subset were subjected to hierarchical clustering (First Principle 1199 
Component (FPC) method in corrplot). 1200 
(C) Venn diagram of the overlap between genes encoding putative components of the 1201 
cilium proteome, CiliaCut and the cilia and basal body. Note that the gene lists do not 1202 
reflect co-expression here. 1203 
(D) Venn diagram of the overlap between genes encoding putative components of the 1204 
cilium proteome, CiliaCut and genes belonging to cilia-related co-expression modules 1205 
(listed in Suplemental Table 3). 1206 
(E) Venn diagram of the overlap between genes encoding putative components of the 1207 
the cilia and basal body and genes belonging to cilia-related co-expression modules. 1208 
 1209 
Figure 4. Co-Expression Between Ribosomal Protein Genes Reflects the Final 1210 
Location of the Corresponding Ribosomal Proteins. 1211 
(A) Correlation matrix between ribosomal protein genes (RPGs) and their translation 1212 
regulators, sorted by the subcellular localization of their encoded proteins. For each set 1213 
of RPGs and their regulators, we followed the same gene order defined by Zones et al. 1214 
(Zones et al., 2015). 1215 
(B) Correlation matrix restricted to RPGs. Each set of RPGs was subjected to 1216 
hierarchical clustering (FPC method in corrplot) to single out non co-expressed genes. 1217 
(C) Distribution of PCCs between RPG gene pairs encoding large or small ribosome 1218 
subunits. The gray distribution indicates the PCC distribution of all gene pairs for the 1219 
Chlamydomonas genome. 1220 
(D) Distribution of PCCs for gene pairs belonging to distinct RPG groups. 1221 
(E) Correlation matrix for 429 RPGs using the fully normalized dataset derived from 1222 
Arabidopssi microarray experiments (Supplemental Data Set 7). “unknown 1” and 1223 
“unknown 2” denote predicted RPGs whose encoded proteins have not been clearly 1224 
assigned a localization. Note how “unknown 1” RPGs show strong correlation with 1225 
chloroplast RPGs (cp), while “unknown 1” RPGs appear to be strongly correlated with 1226 
cytosolic RPGs. 1227 
 1228 
Figure 5. Correlations Between and Across Transcription Factors in 1229 
Chlamydomonas and Arabidopsis, and the Special Case of Chlamydomonas 1230 
Histone Genes. 1231 
(A) Ordered mean Pearson’s correlation coefficient (PCC) for each Chlamydomonas 1232 
gene encoding a DNA-binding protein or a transcription factor. We calculated the mean 1233 
correlation between each gene and their co-expressed cohort (from networks N1, N2 or 1234 
N3, as indicated). PCCs from networks N2 and N3 were ordered according to 1235 
increasing mean PCC from network N1 co-expressed cohorts. Several transcription 1236 
factors are listed for reference. 1237 
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(B) Correlation matrix between Chlamydomonas genes encoding a DNA-binding protein 1238 
or a transcription factor, ordered according to First Principle Component (FPC) 1239 
clustering method built in corrplot. 1240 
(C) Distribution of inter-transcription factor PCCs plotted in (B). We defined five groups, 1241 
indicating by a-e in (B) and (C). 1242 
(D) Ordered mean Pearson’s correlation coefficient (PCC) for Arabidopsis genes 1243 
encoding a DNA-binding protein or a transcription factor with a probe on the AtH1 1244 
Affymetrix microarray. Genes were ordered based on increasing PCC from network N1 1245 
co-expressed cohorts. 1246 
(E) Correlation matrix between Arabidopsis genes encoding a DNA-binding protein or a 1247 
transcription factor, ordered according to the FPC clustering method built in corrplot. 1248 
(F) Distribution of inter-transcription factor PCCs plotted in (E). We defined six groups, 1249 
indicating by a-f in (E) and (F). 1250 
(G) Correlation matrix among Chlamydomonas histone genes, ordered according to 1251 
their genomic coordinates. Histone genes that are not regulated by the cell cycle are 1252 
indicated as “non-replication histones”. 1253 
(H) Global clustering of histone genes in Chlamydomonas. All histone genes occur as 1254 
divergent pairs, and are oftentimes grouped as one representative of each major 1255 
histone type (H2A, H2B, H3 and H4). The number to the left gives the number of 1256 
instances of the given arrangement in the Chlamydomonas genome. 1257 
(I) Comparison of histone gene clustering in selected photosynthetic organisms. V. 1258 
carteri: Volvox carteri; C. zofingiensis: Chromochloris zofingiensis. 1259 
 1260 
Figure 6. Core cell division genes are coordinately and highly co-expressed. 1261 
(A) Correlation matrix of non-redundant cell division modules and correlation matrix of 1262 
genes whose loss of function leads to cell division defects (Tulin and Cross, 2014; 1263 
Breker et al., 2018). Genes within each set were ordered according to hierarchical 1264 
clustering using the FPC method in corrplot. 1265 
(B-D) Co-expressed cohorts, shown as nested Venn diagrams, associated with genes 1266 
from the cell division modules (B), the genetics list (C) or genes involved in DNA 1267 
replication and chromosome segregation (manual list) (D) from networks N1-N3. 1268 
(E) Overlap between original gene lists related to cell division (modules, genetics and 1269 
manual lists). 1270 
(F) Correlation matrix of non-redundant cilia modules (“modules”) and genes belonging 1271 
to CiliaCut only (“CiliaCut”), the cilium proteome and shared genes between CiliaCut 1272 
and the cilium proteome (“overlap”). The color bars on the right refer to the color 1273 
scheme used for co-expression cohorts in G-J. 1274 
(G-I) Co-expressed cohorts, shown as nested Venn diagrams, associated with genes 1275 
from CiliaCut (G), the overlap between CiliaCut and the cilium proteome (H) and the 1276 
cilium proteome (I) from networks N1-N3. 1277 
(J) Overlap between N1 cohorts associated with each initial gene list (CiliaCut, overlap 1278 
and cilium proteome). 1279 
(K) Correlation matrix of non-redundant photosynthesis modules, photosynthesis-1280 
related genes and tetrapyrrole biosynthesis-related genes. 1281 
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(L-N) Co-expressed cohorts, shown as nested Venn diagrams, associated with genes 1282 
from the photosynthesis modules (L), photosynthesis-related genes (M) and tetrapyrrole 1283 
biosynthesis-related genes (N) from networks N1-N3. 1284 
(O) Overlap between initial gene lists. 1285 
(P) Overlap between N1 cohorts associated with photosynthesis and tetrapyrrole 1286 
biosynthesis. 1287 
In panels C, D, M and N, the asterisk indicates that the gene list was restricted to highly 1288 
co-expressed genes, based on FPC clustering of the data. 1289 
 1290 
 1291 
Figure 7. Co-Expression Modules Routinely Comprise Genes with Similar Diurnal 1292 
Phases. 1293 
(A) Schematic of the Chlamydomonas diurnal cycle in cell division events. 1294 
(B) Phase distribution of 10,294 high-confidence diurnally rhythmic genes, shown as a 1295 
circular plot covering the full 24 h of a complete diurnal cycle. Gray shade indicates 1296 
night. 1297 
(C) Co-expression modules with a high percentage of rhythmic genes exhibit a uniform 1298 
diurnal phase. The light purple shade indicates the distribution of rhythmic modules. 1299 
(D-K) Example of phase distribution for co-expression modules and associated N1 co-1300 
expression cohorts. 1301 
 1302 
 1303 
Figure 8. Genes Cluster Based on their Diurnal Phase. 1304 
(A) Correlation matrix of the 17,741 Chlamydomonas nuclear genes, ordered based on 1305 
clustering by the Angle of the Eigenvector (AOE) method built into corrplot, using the 1306 
fully normalized dataset RNAseq4, RNAseq4LD (consisting of RNA samples collected 1307 
from cells grown under light-dark cycles) and RNAseq4LL (with all other RNAseq 1308 
samples) as input. 1309 
(B) Distribution of pairwise PCCs for all gene pairs using RNAseq4, RNAseq4LD and 1310 
RNAseq4LL as input. 1311 
(C) Scatterplot of diurnal phases from 10,294 high-confidence diurnally rhythmic genes, 1312 
as a function of their order from AOE clustering, using RNAseq4, RNAseq4LD and 1313 
RNAseq4LL as input. We saved gene order following AOE clustering (from 1 to 17,741) 1314 
and plotted the diurnal phase of the subset of 10,294 rhythmic genes (along the y axis). 1315 
(D) Scatterplot of diurnal phases from 10,294 high-confidence diurnally rhythmic genes, 1316 
ordered based on the AOE clustering method on RNAseq4 (y axis) and RNAseq4LD or 1317 
RNAseq4LL (x-axis). 1318 
 1319 
 1320 
Figure 9. Chlamydomonas Cultures Grown in Constant Light Retain Substantial 1321 
Rhythmicity. 1322 
Heatmap representation of the molecular timetable approach, applied to two diurnal 1323 
datasets: Strenkert et al., (2019) and Zones et al., (2015) (A), and to all remaining 1324 
RNAseq samples (B). Each sample is represented as the mean expression of 20 phase 1325 
marker genes (per h). In (A), diurnal samples are ordered from top to bottom. For (B), 1326 
samples were subjected to hierarchical clustering while generating the heatmap in R. 1327 
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as: heatmap from an asynchronous sample, corresponding to the average expression of 1328 
all rhythmic genes for each time-point. 1329 
(C) Scatterplot of minimum and maximum normalized expression across all RNAseq 1330 
samples. Diurnal time-courses are indicated by a gray shade. as: expected position of 1331 
minima and maxima for a completely asynchronous sample. The samples are ordered 1332 
by experiments: therefore, consecutive data points belong to the same experiment. 1333 
(D) Peak and trough times largely occur 12 h apart. Scatterplot of all peak expression 1334 
time (x-axis) and trough times (y-axis). 1335 
(E) Distribution of peak times across all RNAseq samples. 1336 
 1337 
 1338 
Figure 10. Application of the Molecular Timetable Method to Independent RNAseq 1339 
Experiments Across Algae. 1340 
(A) Re-analysis of a transcriptome dataset including in our initial RNAseq data (Urzica 1341 
et a., 2012). We subbjected FPKM values to log2 normalization, followed by 1342 
normalization to the mean (obtained during the normalization steps that yielded 1343 
RNAseq4). We then used the molecular timetable method to determine the rhythmic 1344 
pattern of the samples (Chlamydomonas CC-4532 strain grown in Tris Acetate 1345 
Phosphate (TAP) or Tris Phosphate (CO2) medium with 0.25, 1 or 20 µM FeEDTA. 1346 
(B) Molecular timetable method applied to Vovox carteri samples collected in duplicates 1347 
from somatic or gonidial cells (Matt and Umen, 2018). 1348 
(C) Molecular timetable method applied to Chromochloris zofingiensis samples 1349 
collected over 12 h after addition and remval of glucose (Roth, Gallaher et al., 2019). 1350 
For (A), we used 960 highly rhythmic genes to draw the heatmap. For (B) and (C), we 1351 
included all rhythmic genes with orthologs in V. cateri (B) or C. zofingiensis (C), after 1352 
log2 normalization and normalization with the Chlamydomonas-derived gene means.1353 
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Figure 1. Samples from the Same Experiment are Strongly Correlated. 
Correlation matrices between all samples using expression estimates for all 17,741 nuclear genes as FPKM 
(A), or after all normalization steps (B). Samples belonging to the same experiment are in consecutive order, 
and roughly in chronological order. 
(C) Ditribution of Pearson’s correlation coefficients between (“inter-expt”) and within (“intra-expt”) 
experiments. PCCs for all comparisons between experiments are shown as violin plots and box plots (“inter-
expt”, gray), alongside mean PCCs from all samples within each experiment (“intra-expt”, green), samples 
collected in the context of nitrogen deprivation (blue), PCCs for all metal-related samples (light purple) and 
specific metals (darker shades of purple), samples collected over a diurnal cycle (light orange) and PCC 
between subsets of samples (darker shades of orange). Values along the diagonal of the matrix (equal to 1) 
were discarded prior to plotting. 
(D) Correlation matrix for samples from metal-related experiments, all from the Merchant laboratory, and in 
which either one micronutrient has been omitted from the growth medium (for deficiency conditions: copper 
Cu, iron Fe, manganese Mn and zinc Zn) or a toxic metal was added to observe the effect on homeostasis 
(cadmium Cd and nickel Ni). 
(E) Correlation matrix of samples collected over a diurnal cycle. The light- and dark-part of each sampling 
day is indicated on the left and bottom sides of the matrix as white and black bars, respectively. Four time-
courses are compared here (Zones et al., 2015; Strenkert et al., 2019; Panchy et al., 2014). 
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Figure 2. Correlations and Anti-Correlations between Organellar Energy Producing Systems. 
(A) Correlation matrix of nucleus-encoded components of each mitochondrial respiratory complexes, in the 
order defined by Zones et al. (Zones et al., 2015). An asterisk after the name of a complex signifies that its 
dedicated assembly factors (one to two genes outside of complex 4) are shown last, after the complex 
components. 
(B) Correlation matrix of chlorophyll and hemes biosynthetis genes. Genes have been ordered according 
to Zones et al., (2015). Pairs of homologous genes are indicated above the correlation matrix. 
(C) Co-expression matrix of photosystem genes (in green) and tetrapyrroles biosynthetic genes (in blue). 
(D) Comparison of co-expression profiles of chloroplast- and mitochrondrion-localized energy production 
systems. The respiratory complex matrix is redrawn from Supplemental Figure 9. 
(E) Distribution of PCCs between groups of genes. The gray distribution is the genome-wide distribution of 
all PCCs between all gene pairs. Photosynthesis: photo.; tetrapyrroles: tetra.; respiration: resp.. 
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Figure 3. Confirmation of High-Confidence Cilium Proteins Based on Co-Expression of their 
Encoding Genes. 
(A) Correlation matrix of structural constituents of the Chlamydomonas cilia, in the order defined by Zones 
et al. (Zones et al., 2015). DRC: dynein regulatory complex; BBS: Bardet-Biedl syndrome protein complex; 
BUG: basal body upregulated after deflagellation; POC: proteome of centriole; IFT: intra-flagellar transport. 
(B) Correlation matrix between genes belonging to CiliaCut (green) or encoding components identified in 
the cilium proteome (light purple; Pazour et al., 2005). The genes within each subset were subjected to 
hierarchical clustering (First Principle Component (FPC) method in corrplot). 
(C) Venn diagram of the overlap between genes encoding putative components of the cilium proteome, 
CiliaCut and the cilia and basal body. Note that the gene lists do not reflect co-expression here. 
(D) Venn diagram of the overlap between genes encoding putative components of the cilium proteome, 
CiliaCut and genes belonging to cilia-related co-expression modules (listed in Suplemental Table 3). 
(E) Venn diagram of the overlap between genes encoding putative components of the the cilia and basal 
body and genes belonging to cilia-related co-expression modules. 
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Figure 4. Co-Expression Between Ribosomal Protein Genes Reflects the Final Location of the 
Corresponding Ribosomal Proteins. 
(A) Correlation matrix between ribosomal protein genes (RPGs) and their translation regulators, sorted by 
the subcellular localization of their encoded proteins. For each set of RPGs and their regulators, we followed 
the same gene order defined by Zones et al. (Zones et al., 2015). 
(B) Correlation matrix restricted to RPGs. Each set of RPGs was subjected to hierarchical clustering (FPC 
method in corrplot) to single out non co-expressed genes. 
(C) Distribution of PCCs between RPG gene pairs encoding large or small ribosome subunits. The gray 
distribution indicates the PCC distribution of all gene pairs for the Chlamydomonas genome. 
(D) Distribution of PCCs for gene pairs belonging to distinct RPG groups. 
(E) Correlation matrix for 429 RPGs using the fully normalized dataset derived from Arabidopssi microarray 
experiments (Supplemental Data Set 7). “unknown 1” and “unknown 2” denote predicted RPGs whose 
encoded proteins have not been clearly assigned a localization. Note how “unknown 1” RPGs show strong 
correlation with chloroplast RPGs (cp), while “unknown 1” RPGs appear to be strongly correlated with 
cytosolic RPGs. 
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Figure 5. Correlations Between and Across Transcription Factors in Chlamydomonas and 
Arabidopsis, and the Special Case of Chlamydomonas Histone Genes. 
(A) Ordered mean Pearson’s correlation coefficient (PCC) for each Chlamydomonas gene encoding a DNA-
binding protein or a transcription factor. We calculated  the mean correlation between each gene and their 
co-expressed cohort (from networks N1, N2 or N3, as indicated). PCCs from networks N2 and N3 were 
ordered according to increasing mean PCC from network N1 co-expressed cohorts. Several transcription 
factors are listed for reference. 
(B) Correlation matrix between Chlamydomonas genes encoding a DNA-binding protein or a transcription 
factor, ordered according to First Principle Component (FPC) clustering method built in corrplot. 
(C) Distribution of inter-transcription factor PCCs plotted in (B). We defined five groups, incidating by a-e in 
(B) and (C). 
(D) Ordered mean Pearson’s correlation coefficient (PCC) for Arabidopsis genes encoding a DNA-binding 
protein or a transcription factor with a probe on the AtH1 Affymetrix microarray. Genes were ordered based 
on increasing PCC from network N1 co-expressed cohorts. 
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(E) Correlation matrix between Arabidopsis genes encoding a DNA-binding protein or a transcription factor, 
ordered according to the FPC clustering method built in corrplot. 
(F) Distribution of inter-transcription factor PCCs plotted in (E). We defined six groups, incidating by a-f in 
(E) and (F). 
(G) Correlation matrix among Chlamydomonas histone genes, ordered according to their genomic 
coordinates. Histone genes that are not regulated by the cell cycle are indicated as “non-replication 
histones”. 
(H) Global clustering of histone genes in Chlamydomonas. All histone genes occur as divergent pairs, and 
are oftentimes grouped as one representative of each major histone type (H2A, H2B, H3 and H4). The 
number to the left gives the number of instances of the given arrangement in the Chlamydomonas genome. 
(I) Comparison of histone gene clustering in selected photosynthetic organisms. V. carteri: Volvox carteri; 
C. zofingiensis: Chromochloris zofingiensis. 
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Figure 6. Core cell division genes are coordinately and highly co-expressed. 
(A) Correlation matrix of non-redundant cell division modules and correlation matrix of genes whose loss of 
function leads to cell division defects (Tulin and Cross, 2014; Breker et al., 2018). Genes within each set 
were ordered according to hierarchical clustering using the FPC method in corrplot. 
(B-D) Co-expressed cohorts, shown as nested Venn diagrams, associated with genes from the cell division 
modules (B), the genetics list (C) or genes involved in DNA replication and chromosome segregation 
(manual list) (D) from networks N1-N3. 
(E) Overlap between original gene lists related to cell division (modules, genetics and manual lists). 
(F) Correlation matrix of non-redundant cilia modules (“modules”) and genes belonging to CiliaCut only 
(“CiliaCut”), the cilium proteome and shared genes between CiliaCut and the cilium proteome (“overlap”). 
The color bars on the right refer to the color scheme used for co-expression cohorts in G-J. 
(G-I) Co-expressed cohorts, shown as nested Venn diagrams, associated with genes from CiliaCut (G), the 
overlap between CiliaCut and the cilium proteome (H) and the cilium proteome (I) from networks N1-N3. 
(J) Overlap between N1 cohorts associated with each initial gene list (CiliaCut, overlap and cilium proteome). 
(K) Correlation matrix of non-redundant photosynthesis modules, photosynthesis-related genes and 
tetrapyrrole biosynthesis-related genes. 
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(L-N) Co-expressed cohorts, shown as nested Venn diagrams, associated with genes from the 
photosynthesis modules (L), photosynthesis-related genes (M) nad tetrapyrrole biosynthesis-related genes 
(N) from networks N1-N3. 
(O) Overlap between initial gene lists. 
(P) Overlap between N1 cohorts associated with photosynthesis and tetrapyrrole biosynthesis. 
In panels C, D, M and N, the asterisk indicates that the gene list was restricted to highly co-expressed genes, 
based on FPC clustering of the data. 
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Figure 7. Co-Expression Modules Routinely Comprise Genes with Similar Diurnal Phases. 
(A) Schematic of the Chlamydomonas diurnal cycle in cell division events. 
(B) Phase distribution of 10,294 high-confidence diurnally rhythmic genes, shown as a circular plot covering 
the full 24 h of a complete diurnal cycle. Gray shade indicates night. 
(C) Co-expression modules with a high percentage of rhythmic genes exhibit a uniform diurnal phase. The 
light purple shade indicates the distribution of rhythmic modules. 
(D-K) Example of phase distribution for co-expression modules and associated N1 co-expression cohorts. 
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Figure 8. Genes Cluster Based on their Diurnal Phase. 
(A) Correlation matrix of the 17,741 Chlamydomonas nuclear genes, ordered based on clustering by the 
Angle of the Eigenvector (AOE) method built into corrplot, using the fully normalized dataset RNAseq4, 
RNAseq4LD (consisting of RNA samples collected from cells grown under light-dark cycles) and 
RNAseq4LL (with all other RNAseq samples) as input. 
(B) Distribution of pairwise PCCs for all gene pairs using RNAseq4, RNAseq4LD and RNAseq4LL as input. 
(C) Scatterplot of diurnal phases from 10,294 high-confidence diurnally rhythmic genes, as a function of 
their order from AOE clustering, using RNAseq4, RNAseq4LD and RNAseq4LL as input. We saved gene 
order following AOE clustering (from 1 to 17,741) and plotted the diurnal phase of the subset of 10,294 
rhythmic genes (along the y axis). 
(D) Scatterplot of diurnal phases from 10,294 high-confidence diurnally rhythmic genes, ordered based on 
the AOE clustering method on RNAseq4 (y axis) and RNAseq4LD or RNAseq4LL (x-axis). 
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Figure 9. Chlamydomonas Cultures Grown in Constant Light Retain Substantial Rhythmicity. 
Heatmap representation of the molecular timetable approach, applied to two diurnal datasets: Strenkert et 
al., (2019) and Zones et al., (2015) (A), and to all remaining RNAseq samples (B). Each sample is 
represented as the mean expression of 20 phase marker genes (per h). In (A), diurnal samples are ordered 
from top to bottom. For (B), samples were subjected to hierarchical clustering while generating the heatmap 
in R. as: heatmap from an asynchronous sample, corresponding to the average expression of all rhythmic 
genes for each time-point. 
(C) Scatterplot of minimum and maximum normalized expression across all RNAseq samples. Diurnal time-
courses are indicated by a gray shade. as: expected position of minima and maxima for a completely 
asynchronous sample. The samples are ordered by experiments: therefore, consecutive data points belong 
to the same experiment. 
(D) Peak and trough times largely occur 12 h apart. Scatterplot of all peak expression time (x-axis) and 
trough times (y-axis). 
(E) Distribution of peak times across all RNAseq samples. 
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Figure 10. Application of the Molecular Timetable Method to Independent RNAseq Experiments 
Across Algae. 
(A) Re-analysis of a transcriptome dataset including in our initial RNAseq data (Urzica et a., 2012). We 
subbjected FPKM values to log2 normalization, followed by normalization to the mean (obtained during the 
normalization steps that yielded RNAseq4). We then used the molecular timetable method to determine the 
rhythmic pattern of the samples (Chlamydomonas CC-4532 strain grown in Tris Acetate Phosphate (TAP) 
or Tris Phosphate (CO2) medium with 0.25, 1 or 20 µM FeEDTA. 
(B) Molecular timetable method applied to Vovox carteri samples collected in duplicates from somatic or 
gonidial cells (Matt and Umen, 2018). 
(C) Molecular timetable method applied to Chromochloris zofingiensis samples collected over 12 h after 
addition and remval of glucose (Roth, Gallaher et al., 2019). 
For (A), we used 960 highly rhythmic genes to draw the heatmap. For (B) and (C), we included all rhythmic 
genes with orthologs in V. cateri (B) or C. zofingiensis (C), after log2 normalization and normalization with 
the Chlamydomonas-derived gene means. 
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